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Résumé

Dans les systèmes cognitifs, le rôle de la mémoire de travail est crucial pour le raisonnement
visuel et la prise de décision. D’énormes progrès ont été réalisés dans la compréhension
des mécanismes de la mémoire de travail humain/animal, ainsi que dans la formulation de
différents cadres de réseaux de neurones artificiels à mémoire augmentée.

L’objectif global de notre projet est de former des modèles de réseaux de neurones ar-
tificiels capables de consolider la mémoire sur une courte période de temps pour résoudre
une tâche de mémoire et les relier à l’activité cérébrale des humains qui ont résolu la même
tâche. Le projet est de nature interdisciplinaire en essayant de relier les aspects de l’intel-
ligence artificielle (apprentissage profond) et des neurosciences. La tâche cognitive utilisée
est la tâche N-back, très populaire en neurosciences cognitives dans laquelle les sujets sont
présentés avec une séquence d’images, dont chacune doit être identifiée pour savoir si elle
a déjà été vue ou non. L’ensemble de données d’imagerie fonctionnelle (IRMf) utilisé a été
collecté dans le cadre du projet Courtois Neurmod.

Nous étudions plusieurs variantes de modèles de réseaux neuronaux récurrents qui ap-
prennent à résoudre la tâche de mémoire de travail N-back en les entraînant avec des sé-
quences d’images. Ces réseaux de neurones entraînés optimisés pour la tâche de mémoire
sont finalement utilisés pour générer des représentations de caractéristiques pour les images
de stimuli vues par les sujets humains pendant leurs enregistrements tout en résolvant la
tâche. Les représentations dérivées de ces réseaux de neurones servent ensuite à créer un
modèle de codage pour prédire l’activité IRMf BOLD des sujets. On comprend alors la
relation entre le modèle de réseau neuronal et l’activité cérébrale en analysant cette capa-
cité prédictive du modèle dans différentes zones du cerveau impliquées dans la mémoire de
travail.

Ce travail présente une manière d’utiliser des réseaux de neurones artificiels pour
modéliser le comportement et le traitement de l’information de la mémoire de travail du
cerveau et d’utiliser les données d’imagerie cérébrale capturées sur des sujets humains lors
de la tâche N-back pour potentiellement comprendre certains mécanismes de mémoire du
cerveau en relation avec ces modèles de réseaux de neurones artificiels.

Mots clés: réseau de neurones récurrents à mémoire court et long terme (LSTM),
mémoire de travail, IRMf, modèle de codage, similarité de représentation
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Abstract

In cognitive systems, the role of working memory is crucial for visual reasoning and deci-
sion making. Tremendous progress has been made in understanding the mechanisms of the
human/animal working memory, as well as in formulating different frameworks of memory-
augmented artificial neural networks.

The overall objective of our project is to train artificial neural network models that are
capable of consolidating memory over a short period of time to solve a memory task and
relate them to the brain activity of humans who solved the same task. The project is of
interdisciplinary nature in trying to bridge aspects of Artificial Intelligence (deep learning)
and Neuroscience. The cognitive task used is the N-back task, a very popular one in Cognitive
Neuroscience in which the subjects are presented with a sequence of images, each of which
needs to be identified as to whether it was already seen or not. The functional imaging
(fMRI) dataset used has been collected as a part of the Courtois Neurmod Project.

We study multiple variants of recurrent neural network models that learn to remember
input images across timesteps. These trained neural networks optimized for the memory task
are ultimately used to generate feature representations for the stimuli images seen by the
human subjects during their recordings while solving the task. The representations derived
from these neural networks are then to create an encoding model to predict the fMRI BOLD
activity of the subjects. We then understand the relationship between the neural network
model and the brain activity by analyzing this predictive ability of the model in different
areas of the brain that are involved in working memory.

This work presents a way of using artificial neural networks to model the behavior and
information processing of the working memory of the brain and to use brain imaging data
captured from human subjects during the N-back task to potentially understand some
memory mechanisms of the brain in relation to these artificial neural network models.

Keywords: long-short term memory (LSTM) networks, working memory, fMRI, encod-
ing model, representational similarity
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Chapter 1

Introduction

The brain is a complex and uniquely intriguing system that is composed of billions of neurons
that are interconnected. The computations of these neurons manifest themselves over several
organized components that are responsible for specific processes and lead to all our thoughts
and actions. Our notion of intelligence as humans has been primarily been through this
entity. Yet, the question that has amazed us over centuries is how the brain makes this
intelligent behavior possible. The 17th-century philosopher and scientist René Descartes
famously wrote "I think, therefore I am" 1 [26]. From an era when these questions were
merely philosophical pondering, we find ourselves in a time with sophisticated technologies
to measure and record activity from the brain to help us better answer this question.

Scientific advancement over the years has empowered humans with the ability to take
much closer and detailed look at the brain, although with several challenges. With the
introduction of functional imaging of the brain [88, 87], it has been possible to non-invasively
record data of human brain activity under various conditions. Using these data, there have
been significant advances in our understanding of the brain as well as in methods of diagnosis
of certain medical conditions. Over the years, this has been possible because of a systematic
development of a whole suite of statistical methods to analyze brain functional imaging data
and better understand the functional architecture and working of the brain.

On the other hand, Deep learning has dominated Artificial Intelligence (AI) in the past
decade [3]. There was a transition from symbolic to more connectionist systems of artifi-
cial neural networks [98, 42, 105]. These networks work because of data-driven training
methods that help them construct good representations of the input data through different
computational hierarchies. These networks learn meaningful transformations of the inputs
that are associated with the tasks that they are trained on. Thus, the applications of these
networks can go beyond just making predictions for the trained task.

1Originally in French: je pense, donc je suis and later in Latin : Cogito, ergo sum



These developments provide a good opportunity and timing for synergy to explore pos-
sibilities of similarities and differences at various levels between these two systems : brains
and artificial neural networks. Especially, the relationship of these systems at the computa-
tional level is a great research avenue for computer scientists. In both cases of brains and
artificial networks, we know that the responses observed in these systems are a result of
complex computations dependent on the input data and other conditions. A recent study
[17] takes this view and argues for the use of deep neural networks as scientific models in the
study of cognitive phenomena. The study emphasizes the different advantages of deep neural
networks in this pursuit - predictive (practical applications, experimental substitute for the
brain), explanatory (useful for teleological, mathematical and post-hoc explanations) and
exploratory (generating new hypotheses, proof-of-principle demonstrations and determining
the suitability of phenomena).

Deep learning methods have already started being employed in analysis of brain imaging
data [108, 110]. There have been several studies such as [120] that have explored the de-
tection of brain disorders. Research from recent times such as [126, 52, 60] have attempted
to model the functioning of visual and auditory systems in the brain by successfully exploit-
ing deep neural networks. Some of these studies have also led to a better understanding of
the these perceptual systems [117, 52]. However, there still remains a huge potential to
leverage deep learning to study the brain in terms of representations and further expand the
toolbox of statistical methods for brain imaging data analysis. These models when used in
conjunction with brain recordings can potentially help build hypotheses about the nature of
the environment and the information processing in the brain.

Memory is a very important aspect of intelligence. Many neuroimaging studies have
been carried out to understand the representation of memory in specific regions of the brain
[19, 14, 35]. Deep learning has significantly advanced with respect to the deep neural
networks that have memory capabilities [51, 10, 101]. But, there has not been much
progress in utilising these modern deep neural networks to understand memory processing
in the human brain. Our work is a step in this direction. Most current understanding
has been achieved by analyzing fMRI data from the mirror perspectives of encoding and
decoding. When analyzing data from the encoding perspective, one attempts to understand
how activity varies when there is concurrent variation in the world.

In the study that we present in the thesis article, we model the functional
Magnetic Resonance Imaging (fMRI) activity recorded from human solving a
memory task. We achieve this by training architectural variants of deep neural
networks, specifically deep recurrent neural networks such as Long-short Term
Memory (LSTM) to solve a memory task. We use the network representations
obtained for the stimuli to create predictive models to encode the fMRI data
recorded from humans performing the memory task. We further establish the
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relationship between memory representations in trained deep recurrent neural
networks and the brain regions involved in memory processing.

We hope that our contribution provides value by reinforcing the idea of studying memory
in the brain using artificial neural networks and serves as a prototype for further extending
to other cognitive memory tasks. From an Artificial Intelligence perspective, it expands the
use of learned representations of recurrent networks by exploring the relevance of them to
memory in brain. From a Cognitive Neuroscience standpoint, it has a potential to help
understand visual cognition and memory in the brain in addition to providing a new way of
modeling brain activity during memory processing.

In the remainder of this document, we first present the initial chapters (Chapters 2, 3, 4
and 5) to familiarize the reader with the necessary background to understand our work. We
then discuss our experimental and modeling methods and present the analysis done in our
study in the form of a scientific article.
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Chapter 2

Functional Magnetic Resonance Imaging

In this chapter, we introduce some preliminary ideas and terminology in functional magnetic
resonance imaging (fMRI) to help understand the neuroimaging data that we use to model
in our work.

2.1. Functional Neuroimaging
Functional neuroimaging is a class of methods that use neuroimaging to measure activity

in some brain areas, in order to understand how different aspects of cognitive function arise
from them. These technologies that record data from the neural activity in the brain form
the core of methods used to further our knowledge about the brain.

Fig. 2.1. An overview of various functional neuroimaging techiques depicted to indicate
their spatial and temporal resolutions along with portability of the recording technique (from
Deffieux et al. [24] - CC BY 4.0 )

https://creativecommons.org/licenses/by/4.0


Some commonly used means of functional neuroimaging are functional magnetic
resonance imaging (fMRI), electroencephalography (EEG) and magnetoencephalography
(MEG). The dependence on quantitative methods for analysis of the recorded neuroimaging
data using statistics, data science and other computational methods opens up ways for
contributions by the community of computer scientists to makes advances.

Figure 2.1 shows placement of many functional neuroimaging methods with respect to
their portability and resolutions in time and space. For example, MEG signals have a higher
temporal resolution compared to fMRI and are portable, while fMRI has a higher spatial
resolution and less portable. It is worth noting that many methods are useful in different
contexts, despite their limitations.

fMRI has been widely used and it has dominated the study of the brain the past years,
mainly because it is non-invasive in the sense that it does not harm or cause side effects to
the people being and its ability to model the whole brain at a fair temporal resolution.

2.2. Magnetic Resonance Imaging (MRI)
Some nuclei that contain an odd number of protons (such as water) align along an external

constant magnetic field. Under this condition, they posses a spin property that causes them
to emit a characteristic electromagnetic signal when they are perturbed a weak magnetic
field oscillating at a certain specific frequency characteristic of the nuclei. The protons in
these kinds of nuclei are always spinning about their axis producing a net magnetic moment
along the direction of the axis of the spins. This happens when this characteristic frequency
matches that of the perturbing magnetic pulse, causing a resonance effect that is referred to
as Nuclear Magnetic Resonance (NMR).

MRI uses this principle of NMR to measure the net magnetization of the all such nuclei
in a given space. An MRI scanner such as the one shown in Figure. 2.2 consists of a very
strong magnet that produces the magnetic field in the bore where the participant lies down on
the table. Radio-frequency (RF) coils capable of producing the oscillating pulse at different
frequencies are used to excite the nuclei at particular locations which results in the emission
of a radio frequency signal (referred to as the echo pulse), which is received by another
coil. The frequency of the received signal from each location is mapped to a corresponding
intensity value to structure the image as arrays of pixels.

Time to Echo (TE) is a setting of the experiment indicating the the time taken between
the transmission of the RF pulse and the receipt of the echo signal. Different types of tissues
produce different types of contrasts. This is due to the fact that tissues that need to be
images have different characteristic frequencies when the NMR can occur.
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Fig. 2.2. A view of a MRI scanner showing the table extended out of the bore
(attribution: Liz West from Boxborough, MA - CC BY 2.0 )

2.3. Blood-oxygen-level-dependent (BOLD) Signal
The neurons in the brain depend on oxygen in the blood for the metabolic needs of their

firing activity. On being stimulated with some condition, the neurons that actively respond
to it fire at a faster rate increasing their energy demand. Through the blood vessels, the
body supplies more oxygen to these active neurons compared to the inactive neurons through
the phenomenon called as the hemodynamic response. This alters the relative proportions
of oxyhemoglobin and deoxyhemoglobin (oxygenated and deoxygenated blood respectively)
and thus it can be used a proxy to measure neuronal activity.

Seiji Ogawa and his colleagues identified the the difference in magnetic properties of
oxygenated and deoxygenated hemoglobin [87] and successfully demonstrated [88] the de-
tection of the signal variation in an MRI scanner. The NMR signal originating from this is
referred to as the Blood Oxygen Level Dependent. The BOLD fMRI signal can be thought
of as representing the proportion of the oxygenated and deoxygenated hemoglobin in the
blood. The entire pipeline of measurement is illustrated in Figure 2.3. Thus fMRI BOLD
signal is normally observed close to areas with active neurons and thus can be considered as
stimuli-driven activations.

Fig. 2.3. A schematic pipeline summarizing the phenomena involved in task-triggered hemo-
dynamic response and the eventual detection of BOLD signals during a fMRI recording
(from Arthurs et al. [4] © 2002, used with permission from Elsevier)
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Fig. 2.4. The shape of a typical BOLD Response. After the stimulus onset, there is an
initial dip, followed by a peak and a post stimulus undershoot seconds beyond which the
signal goes back to its usual level indicated by the dashed line.

It has been empirically established that the BOLD response is indicative of an increase in
neuronal activity [85]. The hemodynamics phenomena is characterized by a hemodynamic
response function (HRF) as seen in Figure 2.4 where it has a slow activation peak and
eventual fall. It can be seen that a stimulus that lasts for a brief period of few seconds acts
as an impulse to produce the response lasting till 25 s. It can be viewed as a general model
of the BOLD response to an impulse neural input (triggered by the stimulus).

2.4. fMRI Experiment
During scanning, the participant is in a lying position on a table inside the bore of an

MRI scanner with their head placed in a head coil. In a task-based fMRI experiment, the
participant takes part in a task paradigm and is well-equipped with the necessary tools
(screen, buttons, etc.) required to solve these tasks.

A session is a single-stretch of recording on a given day. Each functional session is divided
into a fixed number of runs. A run can be composed of many blocks of different task and
rest periods. The participant can be presented with some stimuli and/or asked to perform
some action with certain time intervals within each block.

After each fixed time interval called the repetition time (TR), a three-dimensional image
of the BOLD activity across the entire volume of the brain is captured by the scanner. fMRI
images are usually acquired as axial slices of certain thickness called the slice thickness. The
field of view (FOV) indicates the vertical extent of the brain that is present inside the image.
The matrix size is the number of grids in the axial slice images.

The individual units of recorded data are called the volume elements or voxels with their
intensities representing the strength of the BOLD signal at that location. The slice thickness,
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FOV and matrix size together determine the voxel dimensions (usually in mm). At the end
of each fMRI data recording session, the output produced is a time-series of image volumes
representing the intensities for each voxel that is part of the three-dimensional brain volume.
This is illustrated in Figure 2.5.

Fig. 2.5. An illustration of the BOLD time series corresponding to a single voxel from
the recorded spatial volumes across multiple time steps (TRs). The colorbar indicates dif-
ferent task conditions denoted by red and blue. ( © 2015 Tor D. Wager and Martin A.
Lindquist [73])

The main purpose of recording the fMRI data during experiments is to analyze the data
and explain brain function and behavior. One key goal of fMRI data analysis is the local-
ization of brain regions that are active during a specific task, to understand their cognitive
function.

2.5. Preprocessing
Recorded fMRI data is usually not directly usable for analysis. If the data does not

plausibly satisfy some conditions, it can cause many statistical methods to be inapplicable. A
sequence of appropriate preprocessing steps are required to be carried out to remove spurious
artifacts, enforce certain statistical assumptions and standardize the spatial locations of brain
regions. This is an essential step in assuring the quality of recorded data. A number of these
steps are usually implemented using some software packages like fMRIPRep [32, 31] while
few others need to be done programatically.

However, these steps need to be carefully chosen and used in the right way to make
the use of the data. Not all steps might be necessary in all cases and some might need to
be modified. While there is an exhaustive list of these steps, we briefly summarize some
important ones below.
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2.5.1. Slice-time Correction

It needs to be ensured that all the voxels contained in a particular brain volume were
acquired at the exactly the same time. However, this is not the case in many cases where the
activity is recorded as 2D axial slices of the brain volume with some delay between them.
This is fixed by interpolating the values for a common time point based on the values from
the entire time course [31]. However, this step is not needed in cases where we are able to
simultaneously acquire multiple slices fast.

2.5.2. Motion Correction

It is assumed that time course points from a particular voxel contains signals from only its
actual location. This is violated when there is head motion during and in between the scan
session and thus it needs to be corrected to ensure the consistency of the values represented by
the voxels. This is handled by applying a rigid body transformation (rotation and translation
parameters) to each volume to align them to remove the effects of any motion. This is carried
out based on a reference volume in the time course (usually the first) [55].

2.5.3. Susceptibility Distortion Correction

The magnetic field inside the scanner could not be very homogeneous in all cases. This
causes a spatial distortion in the imaged data due to the errors in the conversion from the
frequencies to spatial locations to map the value at each voxel. This method reduces the
effect of these distortions by estimating the inhomogeneity map of the field and adjusting
the mapping of locations by calculating the displacements of the voxels.

2.5.4. Co-registration

Registration of an image is the process of fitting it into another space. The fMRI BOLD
image volumes recorded from the scanner might not be well aligned to the structural features
of the brains. To address this, the recorded anatomical images are used as they have a clear
distinction of boundaries. Thus, the functional volumes are fitted to the anatomical image
and map the fMRI signal onto the surfaces generated in the anatomical images using a
regression.

2.5.5. Spatial Normalization

The shapes and sizes of brains of individuals is different and a common space of fixed
dimensions is very useful in analyses as they map to the same anatomical or functional
structures. This is achieved using spatial normalization, in which the data of each subject
is warped into a standard template space such as the ones [37] developed by the Montreal
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Neurological Institute. This step is essentially a warping algorithm that uses a complicated
nonlinear normalization with a large set of parameters. Nonlinear algorithms based on
diffeomorphic registration, which is an invertible transform that maps from subject space to
template space and back have been very successful. Advanced Normalization Tools (ANTs)
[5] algorithm is one such example.

2.5.6. Confounds Removal

The BOLD signal typically has a very small amplitude and when it that is measured
it can potentially be confounded by a variety of causes - physiological (breathing, cardiac
activity, etc.), hardware (coil heating up, frame displacement etc.) or other sources that can
contribute to the global noise signal. So, in order to address this, a set of confound time
series are estimated as noise components by performing methods such as ICA or CompCor
[12]. Finally these nuisance parameters are regressed out to remove their effects.

2.6. Spatial Orientations
fMRI data analysis often produces statistical maps of the brain that contain values in

each spacial location. As we deal with brains in a three dimensional space and with complex
structures present, having a common notion of orientations in space and names for different
parts is a useful thing. In this section, we will highlight the basic terminology used for this
purpose.

Fig. 2.6. A diagram of the human brain showing the different lobes and some important
cortices. The 4 lobes of the brain are occipital (pink), parietal (orange), temporal (green)
and frontal (blue). The two important cortices (among many other) that are highlighted are
the prefrontal coretex located in the frontal lobe and the visual cortex in the occipital lobe
(Colored and labelled on a sketch by Henry Vandyke Carter)

The brain surface is organized into high-level distinct structures called lobes. Figure 2.6
shows the names and locations of these lobes in the human brain. These are occipital,
parietal, temporal and frontal lobes that contain specialized areas for different cognitive
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functions. Figure 2.6 also shows some curved shape structures that are spread across the
surface of the brain and these can be used to locate areas on the surface. Each outward
folding is a gyrus and each inward fold is a sulcus.

The results in three dimensions consisting of values for each spatial location in the vol-
ume can only be displayed in two dimensions using cross-sectional planes along the three
directions. Figure 7.3 provides the names and basic orientation of those slices and their
spatial relation to the overall head and brain surface.

In the three dimensions of the space representing the brain, specific names are given to
different directions (axes) and these planes. The X axis is the standard brain coordinate
space that indicates the (lateral sides) left-to-right dimension (of the participant). The
back-to-front dimension is the Y axis which spans from posterior at the back of the brain
to anterior at the front. The Z axis is the bottom-to-top dimension extends from inferior
(bottom) to superior locations (top). These locations are sometimes also referred to as
ventral (top-to-bottom) and dorsal (bottom-to-top).

Fig. 2.7. A depiction of the three types of cross-sectional planes in a 3D brain volume,
along with the associated axes indicating the various terms associated with the directions
in brain anatomy (legend in gray box in the top). The images corresponding to the three
cross-sectional planes - sagittal, coronal and axial are also shown. ( © 2015 Tor D. Wager
and Martin A. Lindquist [73])

In the subsequent chapters, to associate certain terms used to identify positions or direc-
tions in the brain, it might be useful to refer to Figure 2.7 and Figure 2.6.
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Chapter 3

The N-back task and working memory

In this chapter, we outline the basic ideas of working memory and introduce the N-back task.
We also summarize some existing understandings about the brain areas relevant to working
memory, based on knowledge gained from many studies in Neuroscience.

3.1. Working memory (WM)
Working memory (WM) is an important resource for maintaining and manipulating small

sets of information online for a brief period of time, a critical ability that supports general
learning. The role WM acts as a link between perception, attention, and long-term memory
processing [78, 8]. Memory researchers have traditionally classified human memory systems
into three distinct types: sensory memory, short-term memory and long-term memory [78].

Sensory memory refers to the prolonged neural activations in the sensory areas as a
result of the stimulus. One such example is the response evoked by a visual stimulus in the
primary visual cortex V1. However, this is merely a buffer memory without directly being
used in decision making or action. It is meant for using sensory information at higher levels
of memory.

In short-term memory, the memory trace for information that is held decays quickly
within seconds, but if reinforced by active rehearsal, this information may be transferred into
long-term memory where it can be retained for much longer periods. It is not uncommon to
use the terms short-term memory and working memory interchangeably. A common notion
is to consider working memory as a mechanism for both maintenance and manipulation,
whereas short-term memory as only for temporary maintenance.

Previous research has also focused on different sensory modalities in the short-term mem-
ory. For visual short-term memory, object representations are created/encoded rapidly, are
maintained by means of an active mechanism and are terminated when active maintenance
ends. The storage capacity of this ability is limited to just a few simple objects. This function



is achieved by using different components in the visual system and a higher-level executive
control.

3.2. Models of working memory
Many theories about working memory have been proposed in several studies over the

years. A good number of them models have been extensively tested and studied [78].
Although many cognitive models exist for WM, the Baddeley model is a sufficient one

to understand the visual working memory. The original model, introduced by Alan Bad-
deley in 1986 [9], WM includes a central executive that monitors two modality-dependent
independent subsystems- the visuospatial sketchpad, and the phonological loop. The central
executive is an attentional control system that interacts with the remaining components.
Later, this model was expanded [6] with an additional sub-system was called the "episodic
buffer". Figure 3.1 shows the diagram of this model composed of these interacting compo-
nents.

Fig. 3.1. A schematic diagram of Baddeley’s multicomponent model of working memory
(based on [6]). The 3 components in the middle - Visuospatial sketchpad, Phonlogical Loop
and Episodic Buffer are controlled by the Central Executive and interact with the Long-Term
Memory.

The visuospatial sketchpad processes visual and spatial information while the phono-
logical loop takes care of verbal and auditory information through an articulatory control
process. Both the visuospatial sketchpad and phonological loop are comprised of an active
rehearsal and a passive storage component for their respective modalities of information.
The episodic buffer stores information in a multidimensional code and its helps in integrat-
ing the information from the three other components - visuospatial sketchpad, phonological
loop and long-term memory.
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3.3. The N-back Task
The N-back task, first described by Kirchner et al. [63] in 1958, involves presenting of

fast and continuously changing stimuli for measuring retention of information in this very
short duration. It was originally conceived to investigate the effect of age in the performance
among adults of different age groups. It is a standard technique used in several experimental
studies to quantify the capacity and analyze the properties of the working memory.

In the N-back task, individuals are presented with a continuous sequence of stimuli and
are required to recall if a stimulus was presented a specified number of steps back in the
sequence (N represents how far back in the past sequence the participant needs to remember).
The stimulus that needs to be remembered to solve the current trial is referred to as the
target. Solving the task essentially involves determining if the current stimulus is a target or
a non-target.

As shown in Figure 3.2, at an N of one, the target would be the stimulus that was
presented immediately prior to the current stimulus. At an N of two, the correct response is
to a repeat of the stimulus that was presented two prior to the current stimulus. The task
difficulty or the load increases correspond with the value of N. This task is very pertinent
in the study of WM due to the attentional and memory requirement where there is need to
maintain the target stimulus and to continuously update the stimuli held in the memory.

Fig. 3.2. Examples of a letter N-back task for N = 0, 1 and 2.
(Left) 0-back : The first letter in the sequence is the target and the subsequent letters are
matched with this. The target is the only letter that needs to be remembered.
(Middle) 1-back : Each letter is matched with the previous letter which is the target.
(Right) 2-back : Each letter is matched with the letter two-steps back and it is the target.
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There are many variants of this task based on various settings of the experiments: stimu-
lus type (verbal, visual, spatial, etc.), the target stimulus feature (eg. identity or the location
of stimulus), the length of the inter-stimulus delay, the amount of cognitive load (eg. value
of N), and interval of retention or distraction. The tasks designed for humans typically use
abstract objects, faces, letters, words, digits or common objects.

Although this task is seemingly simple, it involves multiple processes such as: perceiving
the stimulus one at a time, encoding of each stimulus in the working memory, maintaining
the representation of the target stimulus in memory, updating the representation at the next
step, deciding if new stimulus matches the target and pressing a button to indicate the match
or non-match.

Adult neuroimaging studies using the N-back task usually vary load between 1-back and
3-back, with 0-back typically serving as a control condition as done in [89].

3.4. Neural correlates of Visual Working Memory
(VWM)

In this section, we summarize the insights gained from many fMRI studies about the
brain areas that are activated during tasks involving working memory.

The most common method of modeling fMRI data is by fitting a General Linear Model
(GLM) to the time series of each voxel using some possible explanatory variables. In the
case of N-back tasks, these variables could be some settings of the experiment (duration,
onset, etc.), characteristic of the input (eg. target or non-target) or any other factor that
could explain the BOLD signal (eg. age). However, despite some success with this method
of modeling, it has many limitations and it has been widely criticized [81].

Most of the brain areas identified to be related to WM are based on meta-analysis that
combine the activation maps of many studies to identify the common ground. These stud-
ies mostly use a technique called Activation likelihood estimation (ALE) [111, 69], which
aims at determining areas with significant probabilities of being activated across several
experiments.

The broad results from the neuroimaging studies on adults about the neural basis of WM
have dominantly been linked to the frontal and parietal cortices [20].

Specifically, the prefrontal cortex (PFC) has been found to be one of the key areas as it
plays a crucial role in WM, by functioning as the central executive ([19, 14]).

Different parts of the frontal cortex have been explored in relation the types of stimuli
in the WM task. The dorsolateral PFC (dlPFC) was found to be dominant in manipulation
or updating of memory. [36] The ventrolateral PFC (vlPFC) is considered to be involved in
encoding and maintenance of memory in the WM [99, 28].
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The ventral and dorsal visual stream notion that is popular in Neuroscience associates
the dorsal stream with the processing of object location and motion, and the ventral stream
with object recognition. Some studies have confirmed this theory even for visual working
memory by highlighting the role of dorsolateral PFC in processing object location memory
[21] and associating the ventrolateral PFC with object identity memory [104]. Thus, the
dorsal frontal areas are more sensitive to spatial information and the ventral frontal areas are
related to visual non-verbal objects. Other studies also indicate the impact of the memory
load on the activations in the PFC [89].

The studies specific to visual working memory have also highlighted the involvement
of the temporal and occipital lobes. Areas in the occipital region were found to serve as
the visuospatial sketchpad according to [103]. The study in [115] discusses activities in
occipito-temporal areas for tasks involving longer sequences.

The work in [15] comprehensively analyzed the correspondence of areas in the brain with
components of Baddeley’s model seen in Sec. 3.2. Figure 3.3 summarizes these findings.

Fig. 3.3. A depiction of the components in Baddeley’s multicomponent working memory
model [8] mapped on to different brain regions. The control flow from the central execu-
tive and the information manipulation are indicated using the arrows. The ACC (Anterior
cingulate cortex) acts as the attention controller (from Jia Chai et al. [15])

Other meta analyses such as [92, 97, 89] have determined specific areas in the lobes that
are active in visual WM. Figure 3.4 highlights and lists these areas in the meta analysis of
visual working memory tasks.
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Fig. 3.4. A representation of the statistical map (group) of contrasts of functional activa-
tions observed in an fMRI visual working memory study [92].
The color bar shows uncorrected p values (yellow is better) and the labelled regions are :
DLPFC - dorsolateral prefrontal cortex, DO - dorsal occipital, FEF - frontal eye field, IPS -
intraparietal sulcus, ITG - inferior temporal gyrus, P. MFG - posterior middle frontal gyrus,
SPL - superior parietal lobule

Thus, from all these studies, we remark that the visual working memory areas that are
expected to activated are distributed over the frontal, temporal and occipital regions, forming
a distributed pattern.
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Chapter 4

Recurrent Neural Network Models

In this chapter, we describe the basic details about the various recurrent neural network
models that we considered in our study and ways to use their representations.

Recurrent neural networks (RNNs) are different from feed forward neural networks in
that they have additional lateral (self or temporal) connections in the hidden layers. These
lateral connections with the same hidden layers are supposed to be from a previoustime step
and this gives rise to the phenomenon of recurrence in these networks. This feature of these
networks enables them to model temporal dynamics of the inputs unlike the feed forward
networks.

4.1. Vanilla Recurrent Neural Network (RNN)

Fig. 4.1. A Simple RNN (with one hidden layer) shown along with an equivalent unfolded
network highlighting the temporal connections. U ,W and V are the input-to-hidden, hidden-
to-hidden and hidden-to-output parametric matrices.

RNNs are very useful for sequential prediction and modeling tasks as they have a hidden
state that allows them to integrate a good amount of information about the past in an
efficient and scalable manner, updating it using non-linear dynamics in a deterministic way.



The weight sharing implemented in the lateral (temporal hidden-to-hidden) connections
makes this possible and also makes the computation efficient.

Several hidden layers can be stacked together in a feed forward way with individual
recurrent in units across each layer. Thus, in each layer except the first hidden layer, the
inputs would be hidden states from the previous hidden layer. Such stacked networks are
referred to as Stacked RNNs and they are able to improve training and give a superior
performance while learning from inputs. The number of such layers can effectively function
as a hyperparameter.

The dynamics in a stacked RNN operates by using the hidden unit activations from
previous time steps and propagating it forward in time. It can be observed in Figure 4.1
that the parameters of the model are the input-hidden weight matrix W and hidden-hidden
weight matrix U . The dynamics is characterized by the change in the hidden unit activations
over time. This value is referred to as the hidden state or context vector. Each hidden state
at time step t is computed using the current input xt and the previous hidden state ht−1.

For an activation function f , this can be mathematically described by :

h
(1)
t = f(W (1)xt + U (1)h

(1)
t−1)) (4.1.1)

h
(l)
t = f(W (l)h

(l−1)
t + U (l)h

(l)
t−1)) for l ≥ 1 (4.1.2)

An RNN that has been time-unrolled for finite time steps produces a network that can
be considered as a feed forward network (as shown in Figure 4.1). The training of RNNs is
done just like feed forward networks on their equivalent networks that unrolled across time
[50, 90]. It is to be noted that the weight vector of the recurrent connections of the hidden
layers across multiple timesteps remains the same (weight sharing). Thus, backpropagation
happens through all these weights and as it is done across time (due to the presence of
these lateral connections) and this process is called backpropagation through time (BPTT)
[121, 43]. This unrolling is necessary in order to be able to train the network using back-
propagation. The number of timesteps to unroll before training (T ) is also a hyperparameter
that can be chosen during training.

These basic types of RNNs, called as Simple RNNs or Vanilla RNNs are useful but are
limited in capacity and are not very good at learning from input in the long-term past. This
is because they suffer from the problem of exploding and vanishing gradients [91], making
training difficult in scenarios requiring longer range memories from the past.

4.2. Long Short Term Memory (LSTM)
The LSTM (introduced in [51]) is a more complicated variant of an RNN with more pow-

erful dynamics to consolidate information over longer timesteps. The “long term” memory
is explicitly stored in a vector of memory cells referred to as cell state and denoted by ct.
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This is in addition to the hidden state ht that is output. These two variables - cell state and
hidden state constitute the overall state of each LSTM cell.

Although many LSTM architectures differ in their connectivity structure and activation
functions, all LSTM architectures have explicit memory cells for storing information for long
periods of time. The LSTM is able to overwrite the memory cell, retrieve it, or keep it for
the next time step. This is achieved with the help of a mechanism called gating which uses
additional parameters to operate gates to compute additional variables to control the flow
of information in the network.

Figure 4.2 shows a typical LSTM cell with 3 different gates - forget gate that controls
what part of information from the remembered past (previous cell state ct−1) needs to be
further remembered, input gate that controls what part of the current input (xt) needs
to be remembered and output gate that controls what part of the currently remembered
information (cell state ct) needs to be output as the hidden state ht.

Each LSTM cell uses a separate set of input-hidden parameters (W ) and hidden-hidden
parameters (U), in addition to non-linearity such as a sigmoid function to compute the gate
activation vectors (or states) ft, it and ot.

Fig. 4.2. Schematic diagram of a simple LSTM cell with a tanh activation function and gates
- input, forget and output gates that use a sigmoid function (σ) to compute the respective
gate activation vectors ft, it and ot; tanh for computing the cell activation vector c̃t using
the current input xt and previous hidden state ht−1. The flow of information through these
gates to compute the hidden state ht and cell state ct based on the previous cell state ct−1,
current cell activation vector ct−1 and the gate activations.

45



In addition, the cell has a set of parameters for computing a vector called the cell input
activation c̃t from the current input xt and the hidden state ht−1 from the previous timestep.

These equations below that describe the dynamics of a typical LSTM, where σ denotes
the sigmoid function and both σ and tanh are element-wise operations. � denotes the
element-wise product operation (Hadamard product).


it

ft

ot

c̃t

 =


σ

σ

σ

tanh

 (U (l) W (l))
h(l−1)

t

h
(l)
t−1

 (4.2.1)

c
(l)
t = ft � c(l)

t−1 + it � c̃t (4.2.2)

h
(l)
t = ot � tanh(c(l)

t ) for l ≥ 1 (4.2.3)

h
(0)
t = xt (4.2.4)

The parameters U and W can be considered to be the concatenated parameters of the
input, forget, output gates and the cell input activation. The computed gate activation
vectors are essentially act as mask to turn on or off different components of the cell state
vector and are thus combined in different ways to compute the current cell ct and hidden
state ht vectors.

As stated in Eq 4.2.2, the current cell state ct is computed by combining a part of the
previous cell state ct−1 (allowed to remember by the forget gate activation) and a part of
the current cell input activation c̃t (allowed to pass by the input gate activation). Finally,
Eq 4.2.3 uses the output gate activation to select the part of the current cell state ct to be
output from the cell as the current hidden state ht.

Thus, the gating mechanism allows for information from way back in the past to be stored
in the memory cell and used when required.

4.3. Long Short Term Memory - Sparse Attentive Back-
tracking (LSTM-SAB)

In several cases, all past states might not be relevant to make decisions during a given
time step. When recalling memories, the brain is known to be reminded of only selected
relevant memories from the past instead of all of them. A high-level approximation of this
idea can be implemented to learn a set of sparse weights over the past states. This idea
of weighing the past states by their level of relevance and combining them is referred to as
attention and it can be learned [10]. Sparse Attentive Backtracking (SAB) is a mechanism
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that is based on this idea and was introduced by Ke et al. [58] in 2018. It is an enhancement
that can be used in recurrent neural networks to allow them focus on relevant past states.

LSTM-SAB is a version of the LSTM network augmented with the SAB mechanism. In
terms of architecture, it is similar to LSTM but has an additional attention module which
is a Multi Layer Perceptron (MLP) to compute the attention weights and a sparsifier. This
type of network also maintains a macro-state or a set of memories M that are relevant.

(a) RNN-SAB Forward Pass : Sparse retrieval - The gray arrows show the compu-
tation of attention weight by the MLP through the broadcast and concatenation
of the current provisional hidden state ĥ(t) with all the memories. The sparsifier
selects and normalizes only the ktop greatest raw attention weights with some
weights having on-zero values shown in red.

(b) RNN-SAB Backward Pass : Sparse replay - The gradients are passed to the
hidden states selected in the forward pass and a local truncated backprop is per-
formed around those hidden states. Gradients flow along the blue arrows and their
truncation at the red crosses

Fig. 4.3. A schematic diagram depicting the operations of a SAB augmented RNN :
(a) Forward pass of an RNN-SAB (b) Backward pass of an RNN-SAB; from [58]

As shown in Figure 4.3(a), during the forward pass the usual LSTM cell and the pro-
visional hidden state ĥ(t) is computed. The MLP takes all the set of states in the stored

47



memoriesM and the current state as inputs and computes a vector of attention weights over
all the past states. This attention weight vector is sparsified (a number of weights become
zero) using a simple ReLU over the difference with the maximum attention weight among the
ktop memories. The sparsified attention enables the retrieval of the most relevant memories.
This sparse attention vector is weighted over the memory states in the set of stored memories
M to compute another state s. The hidden state of the LSTM-SAB cell ĥ(t) is computed as
the sum of the provisional hidden state and the state s. The output of the LSTM-SAB cell
is computed with separate set of weights for the LSTM hidden state ĥ and the state s. At
every katt time steps, the hidden state is added to the set of memories.

During the backward pass, the gradients are propagated along the paths to the subset of
memories selected during the forward pass and their temporal predecessors situated ktrunc

time steps before. This is indicated in Figure 4.3(b) where the sparse set of memories are
said to be replayed for the backpropagation to happen.

Thus, the sparse retrieval and sparse replay of memories are used in the forward and
backward passes respectively and these are the basic principles behind why the LSTM-SAB
network performs efficiently.

4.4. Convolutional Long Short Term Memory Network
(ConvLSTM)

The dynamics of the LSTM described above in Section 4.1 involve multiplication of the
hidden and input vectors with the respective weight matrices to compute the different gates
and cell states. However, Shi et al. [101] introduced a variant of LSTMs which replaced these
product operations with convolutions. They demonstrate that spatiotemporal correlations
are better captured in ConvLSTM network as observed with consistently better performance
compared to equivalent fully-connected LSTM networks for prediction tasks.

This modification causes the weights in the layers to be convolutional filters which are able
to localize on the hidden states. In addition, it also offers some computational advantages
by reducing the overall number of array multiplication operations.

Fig. 4.4. A visual representation of the operation happening inside a ConvLSTM cell (from
[101]). The convolution of the input at each timestep with separate kernels for the input
and hidden states to compute the hidden and cell states is illustrated.
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The following equations describe the computations happening in a ConvLSTM cell. W s,
Us and bs are the respective parameters. σg is the gate activation function which is usually
the sigmoid function and σc is the cell activation function which is usually the tanh function.
∗ denotes the convolution operation and � denotes the element-wise product operation.

it = σg(Wi ∗ xt + Ui ∗ ht−1 + bi) (4.4.1)

ft = σg(Wf ∗ xt + Uf ∗ ht−1 + bf ) (4.4.2)

ot = σg(Wo ∗ xt + Uo ∗ ht−1 + bo) (4.4.3)

c̃t = σc(Wc ∗ xt + Uc ∗ ht−1 + bc) (4.4.4)

ct = ft � ct−1 + it � c̃t (4.4.5)

ht = ot � σh(ct) (4.4.6)

These networks are used to incorporate a spatial structure in learning the long-term
dependencies in a set of sequential inputs. They have been proven to be useful in tracking
objects in video data and forecasting and predicting complex multivariate time-series [101,
106, 77].
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Chapter 5

Relating Representations of Models and
Brains

In this chapter, we highlight about how representations from computational models such as
deep neural networks can be useful. Then, we summarize some methods using which the
representations in computational models and the brain can be related with each other and
among themselves.

5.1. Learned Model Representations as features
Deep neural networks are parametric models that perform a sequence of computations

to produce outputs. Trained deep neural are essentially composed of the set of optimized
parameters and use them to compute some useful transformations of the data. The hidden
layers in deep neural networks learn high-level representations from the data that can be used
as features. These are referred to as features as they are meant to highlight some important
aspects of the data that is transformed. It is this aspect of these networks that eliminates
the need for explicit feature engineering. Thus, one useful advantage of trained deep neural
networks and an interesting application is their usage to extract features from their inputs.
These features can be used for analysis or other associated tasks [127, 128]. From a systems
perspective, they are equivalently viewed as the responses produced by individual units or
layers to the input data.

Neural networks that are trained using data samples can be used to understand the data
that they were used to model with. The representations formed in convolutional neural net-
works have been analyzed in many studies [72, 75, 11]. In the case of images, these networks
have been found to learn to process hierarchically organized visual representations such as
edges, contours, textures, object parts, etc [30, 129]. These network-derived representations
of images have also been found to be related to the processing of visual information in the
brain [66, 126].



Recurrent neural networks are good choices over other options such as Hidden Markov
Models for many sequential tasks also because of the rich representations that these networks
use for learning and the useful features that can be derived from these representations. The
representations capture statistical properties of the sequential data and can be analyzed
further as done in [76, 33]. There have also been some attempts in interpreting the repre-
sentations of RNNs [49, 53, 122] or using them as features for other tasks [16].

5.2. Comparing Model Representations
There have been studies that investigated the similarities between representations ob-

tained from deep neural network representations and have made attempts to quantify them
[71]. These consider data from two set of representations derived from models and use some
analysis on them to identify some mathematical relationship and produce a similarity score.

Canonical Correlation Analysis (CCA)[96] is classic technique in statistics that computes
a correlation metric by identifying a linear transformation that maximally correlates the two
vectors spaces. The benefits and downsides of this method in the context of deep neural net-
work representations have been studied [82, 64] and better variants such as Singular Vector
CCA (SVCCA [94]) have been developed. The work in [64] surveys different approaches
and introduces another method called Centered Kernel Alignment (CKA) to compute the
similarity.

5.3. Comparing Model and Brain Representations
Similar to computational models, the brain can also be viewed as a system that produces

responses as observed from its activity (electrical, magnetic, vascular, etc.) and behavior
(actions/decisions in the real world) on being stimulated with some input conditions [17].
Thus, these activity patterns can be used to compare with representations from other deep
neural networks (or computational models) or even from other patterns of brain activity.
In order to understand the similarities between any two representations (computational
models and brain activity) of the same or similar inputs, we need some standard ways to
compare them. Especially, with brain representations, there are challenges in corresponding
the patterns to one another. The methods listed in Sec. 5.2 may not always useful for this,
owing to the complex and noisy nature of brain recordings.

While many approaches exist for comparing representations with those of brain activity,
we briefly discuss two commonly used ways of comparing representations from neural net-
works (or any other computational models) and brains (response signals from recordings or
behavior). These are based on some methods used in computational neuroscience [27].
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5.3.1. Representational Similarity Analysis

Representational similarity analysis (RSA) as a general method was introduced in [67] to
conceptualize a notion of representational distance between two sets of patterns by making
use of the idea of second-level distances. For each set of activity patterns that need to
be compared, a representational dissimilarity matrix (RDM) is constructed to model the
distances between different subsets/samples in each set expressed by a dissimilarity metric.
This matrix of first-level distances consists of values computed based on the distances between
the patterns under each condition. The final similarity score is given by computing the
distance between these two RDMs corresponding to the two sets. Thus, this method uses
distances at two different levels to asses the similarity.

The distance (or dissimilarity) metrics at the two levels can be chosen according to the
nature of the data. The most commonly used dissimilarity metrics are 1 - Pearson’s correla-
tion, 1 - Spearman’s correlation and Euclidean distance. These RDMs capture the pattern
of the activity distributed across the different conditions [29]. Another distance metric is
chosen at the second level to compute using the two RDMs. Correlation-based metrics are
oftenly used convenient choices. The choice of the distance metrics is very important in the
application of this method and one needs to be very careful. The similarity needs to be
extensively tested and validated using good statistical tests to ensure generalization.

Fig. 5.1. A depiction of the construction of a representation dissimilarity matrix (RDM).
A brain or model is used to compute a dissimilarity score between activity patterns (middle)
obtained for all pairs of conditions (bottom) to feature in the respective matrix location (top).
This corresponds to a certain similarity relationship of each of these conditions (right).
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Many studies have successfully used this method to compare model and brain representa-
tions across many domains. Early work such as [65, 68] used RSA to compare representations
between models, human and monkey brains in a visual task. Another study [124] used this
method to establish the similarity between the visual areas in the brain of a monkey and con-
volutional neural network representations while in [95] this was extended to many different
architectures. The study in [18] used convolutional neural networks and MEG recordings of
object recognition to detect the hierarchy of visual areas in the brain. Whereas in [80] they
were identified to be similar to both fMRI and MEG.

Thus, the benefits of RSA is its simplicity and the flexibility that it offers in the com-
parison of representations among and across different entities - brains, models, brain areas,
model layers, individuals, species and modalities (eg. fMRI-MEG, EEG-fMRI).

The main disadvantage of RSA is that some feature dimensions in the representation
that may not be relevant to the input could weaken the effect of the important dimensions
in the similarity matrix and give an erroneous similarity. The remedy is to actually identify
the relevant dimensions through other means. Also, this method is only able to quantify
the representational similarity between two systems and it cannot be used to directly do
predictive modeling of activity patterns. However, there have been some recent advances
[2, 34] in attempting this.

5.3.2. Encoding Analysis

Encoding models have been long studied in Neuroscience [83, 119] and have resulted
in some good understanding about the brain in terms of its behavior and function from
this encoding perspective. This method is all about constructing an encoding model and
analyzing it to estimate the similarity of representations.

Encoding models, in general predict the brain (or model) response patterns from input
stimuli (or data). The space of all the possible input stimuli is considered as the input space.
The objective of these models is to essentially learn to transform the input space into the
representational space of the brain (or model), referred to as the activity space. Under this
hypothesis, the features derived from models are considered to be situated in a feature space
realized by the transformation of the input space by the model. So, the problem of encoding
is about using the model features to learn a mapping to the target activity space.

The feature space is assumed to essentially represent the code of the inputs and similarly
the brain activation patterns to contain a different code of the input stimuli. The basis
of this approach relies on the idea that studying the mapping of the feature space to the
activity space can reveal the similarity between these two codes. This similarity is measured
by using metrics to measure the goodness of the prediction as a score between the actual
and predicted activity patterns.
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As the model is required to map one vector space to another by learning from data,
this can be considered as a regression problem. Many statistical learning methods such as
those discussed in [107], can be employed to model this regression. However, using a linear
model to achieve this is very useful as it is a well-studied method [83, 74, 123, 57]. As a
linear relationship is the simplest one that two vector spaces can share, it is very useful in
identifying the similarities. Additionally, the lower capacity linear model offers an advantage
in requiring lesser data for the fit. This approach assumes a linearizing feature space [123]
as the non-linear mapping from the inputs linearizes the relationship between the features
and the activity patterns. Under this method of modeling, the notion is that the non-linear
transformed features of the inputs form the basis set of the activity subspace located inside
the feature space. An example of this is illustrated in Figure 5.2.

Fig. 5.2. An illustration of a linearizing encoding model that produces voxel responses from
image pixels through a feature space. The input space of pixels (left) in the stimuli (left)
are transformed using a nonlinear mapping to the features space by a computational model
(middle). A linear mapping transforms this feature space into the brain activity space (right)
of voxels.

In practice, regularized linear models have been found to be more advantageous for this
linear encoding [27] and have been employed in several analyses [54, 118, 60].

After performing the regression, the next step is to use some metrics to quantify the
generalization of the linear predictive model using validation strategies. Due to the limited
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availability of brain activity data, cross-validation could be used. Some commonly used met-
rics are Pearson’s correlation coefficient, coefficient of determination and mean absolute error.
This score on the validation set is the measure of similarity between the representations.

Many studies have used convolutional networks to train on object detection and predict
brain activity in visual regions of the brain activity for different modalities such as electro-
physiological recordings [125] and fMRI [48]. Image visual features extracted from a large
suite of visual tasks (segmentation, scene detection, etc.) were used to predict fMRI visual
activity in [118], giving promising results. Representations of sounds (from neural networks)
have been compared with the auditory cortex in [86] by predicting fMRI activity. Encoding
analysis was also used in [54] with features derived from language models based on LSTMs
to predict fMRI activity and analyze their similarities.

A good generalization in prediction is associated with the similarity in the receptive
fields of both the model and the brain activity. This aspect can be used in identifying the
computations happening in the brain areas that cause the changes in the activity (as in
[48, 61]). Thus, the predictive power of the features at different sites in the brain can help
reveal a computational hierarchy by matching different representations from the network to
these sites. In [48], this method of comparing representations of CNNs has been used to
detect the hierarchy of brain areas in the visual ventral stream. Similarly, in other studies,
the hierarchy of the areas involved in speech [23] and audition [61] have also been detected.

In addition to enabling us to estimate the similarity between two sets of representations,
this method helps us form hypotheses about the nature of these representations (neural code)
by making predictions. It also facilitates in the tracing of hierarchical dependencies in the
brain activity by corresponding brain areas with the elements in the network structure.
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Résumé. Ces dernières années, de nombreuses études ont pu relier les réseaux de neurones
artificiels au cerveau dans des tâches de perception, comme la vision. Avec le succès croissant
des réseaux de neurones dans le traitement des séquences et des souvenirs, nous les utilisons
pour étudier un type fondamental de mémoire appelé la mémoire de travail visuelle. Pour
cela, nous utilisons la tâche cognitive populaire appelée tâche N-back, dans laquelle les sujets
sont présentés avec une séquence d’images, dont chacune doit être identifiée pour savoir si
elle a déjà été vue ou non. Nous proposons une procédure de modélisation qui consiste à
entraîner des réseaux de neurones récurrents, en particulier des LSTM, pour résoudre la tâche
N-back en les entraînant sur des stimuli d’image. Nous utilisons les représentations apprises
de ces différents types de réseaux pour construire des modèles de codage de l’activité IRMf
BOLD enregistrés à partir de sujets qui ont résolu la même tâche. Enfin, nous analysons la
qualité de prédiction de l’activité cérébrale fonctionnelle dans ces modèles d’encodage pour
évaluer leur relation avec diverses zones cérébrales à différents niveaux. Dans l’ensemble,
les résultats suggèrent que les représentations apprises par les réseaux récurrents sont liées
à l’activité fonctionnelle de la mémoire visuelle de travail dans le cerveau, et certaines
propriétés architecturales de ces réseaux donnent des représentations plus alignées avec le
cerveau.
Mots clés : réseau de neurones récurrents à mémoire court et long terme (LSTM), mémoire
de travail, IRMf, modèle de codage, similarité de représentation

Abstract.
In recent years, many studies have been able to relate artificial neural networks with the

brain in tasks of perception, such as vision. With the increasing success of neural networks
in processing sequences and memories, we use them to study a fundamental type of memory
called the visual working memory. For this, we use the popular cognitive task called the
N-back task, in which the subjects are presented with a sequence of images, each of which
needs to be identified as to whether it was already seen or not. We propose a modeling
procedure that involves training recurrent neural networks, specifically LSTMs, to solve the
N-back task by training them on image stimuli. We use the learned representations of these
different types of networks to build encoding models of the fMRI BOLD activity recorded
from subjects who solved the same task. Finally, we analyze the quality of prediction of
brain activity in these encoding models to assess their relationship with various brain areas at
different levels. Overall, the results suggest that the representations learned by the recurrent
networks are related to the functional activity of the visual working memory in the brain,
and certain architectural properties of these networks yield representations that are more
aligned with the brain.
Keywords: long-short term memory (LSTM) networks, working memory, fMRI, encoding
model, representational similarity
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1. Introduction
Working memory is a system that enables an agent or an animal to maintain and ma-

nipulate information over a short period of time. It is a key aspect of intelligence and it is
essential for almost all cognitive tasks like imagination, planning, action or decision mak-
ing [78]. This type of memory has been extensively studied in Cognitive Neuroscience and
Psychology as it is an important aspect for understanding the processing of thoughts [8, 7].

The mechanisms of complex computations behind the functioning of the working memory
that enable its interfacing with other brain regions and its contribution to behavior are not
fully understood. A good paradigm to investigate this question is analyzing the functional
Magnetic Resonance Imaging (fMRI) activity of humans performing working memory (WM)
tasks [20, 89]. Traditional fMRI studies of memory tasks have identified some regions
associated with this function, based on group analyses [19, 14]. The modeling in these
studies has been mostly based on the task conditions rather than representations of the
stimuli [116, 89, 97, 109, 109]. There is a need for a computational model that explains
the WM function based on the change in the stimuli.

On the other side, in modern Artificial Intelligence, neural networks with temporal
(or lateral) connections are common architectures that have the capacity to operate with
memory-oriented sequential tasks [50]. This architectural aspect of recurrence is based on
the inductive biases from the brain. Lately, the rise of memory-augmented networks [51, 10]
is state-of-the-art. This study aims to bridge the gap between the fMRI study of working
memory and the development of deep neural networks that can inform on how the brain’s
WM works.

Visual Working Memory is used to refer to the short-term storage and manipulation of
perceived visual information in memory. It allows us to hold a visual snapshot for a few
seconds after we stopped seeing the stimuli. For a duration of a few seconds, a part of the
stimuli is transferred into visual working memory. Many cognitive tasks test this aspect of
the memory. The N-back task (introduced in [63]) is a very standard memory task where a
sequence of stimuli are presented one after the other and the participants identify a match
with the stimuli seen in the trial N steps back in time.

Among the variants of recurrent neural networks (RNNs) capable of remembering infor-
mation over time, we choose the long short-term memory network (LSTM) for this study. The
reason behind choosing LSTMs is because of the way they are parameterized and equipped
with an explicit memory cell that accumulates state information with the help of multiple
gates for efficiently carrying forward information over time by learning good representations
of the stimuli. This representation that encodes information about the stimuli is what we
attempt to leverage in the study.
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Many studies such as [60, 124, 79] have explored human/animal visual perception and
their similarity with artificial neural networks across various neuroimaging modalities. Stud-
ies such as [62] have highlighted the necessity of recurrent models for modeling vision tasks as
they are able to capture well the correlations over time. [47] have extensively used deep neu-
ral networks to model fMRI voxel responses in the visual stream. Visual stimuli in the brain
are relevant for functions beyond perceptual processing and the next step in this direction
is memory. While the modeling of visual tasks in fMRI have seen advances in incorporat-
ing representations of the stimuli, for memory it has not been significant. This is where
representations learned by recurrent neural networks could potentially offer an opportunity.

The principal objective of this study is to design and implement a pipeline to model
the patterns of functional activity in the human brain during a working memory (image
N-back) task using stimuli feature representations derived from various trained recurrent
neural networks. The model uses representations from neural networks that are trained to
solve the same tasks as the brain. We establish the better quality of prediction by this model
in regions relevant to working memory. Our approach offers a better strategy compared to
traditional modeling methods in fMRI [109, 38] by making use of features more relevant to
the stimuli.

The predictability of the functional activity from the recurrent neural network-derived
features is used to evaluate their alignment with the brain [83]. We demonstrate the supe-
riority of these features over (memory less) convolutional neural network features and study
their relationship with different brain regions. Overall, our study provides a recipe for a way
of modeling fMRI memory tasks and highlights the similarity of recurrent neural network
representations and brain activity for this (N-back) task.

2. Methods
In this section, we first present an overview of functional magnetic resonance imaging in

Sec. 2.1, then outline the neuroimaging experimental setup of our study in Sec. 2.2, followed
by the steps carried out to extract the BOLD time series data in Sec. 2.3.3. We then describe
the models of the task network used to learn artificial neural network representations in
Sec. 2.4 and finally the encoding model to relate these representations to the brain in Sec. 2.5.

2.1. Functional Magnetic Resonance Imaging

When the neurons in a certain region of the brain are active, there is change in the
metabolic activity in this region due to the energy needed by these cells. The concentration
of oxygenated blood increases in these active regions compared to the deoxygenated blood.
These two types of blood possess different magnetic properties because of the oxygenated
and deoxygenated hemoglobin that they carry respectively.
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Magnetic Resonance Imaging (MRI) is a technique that images tissues by aligning the
atomic nuclei to a magnetic field and measuring the electromagnetic signal emitted by them.
An MRI scanner can distinguish the magnetic properties of the oxygenated and deoxygenated
hemoglobin in the brain. Thus, with the help of an MRI scanner, it is possible to produce
images of the brain with these differing contrasts of such cerebral hemodynamic activity.
This method is called functional magnetic resonance imaging (fMRI). The signal that is
measured is referred to as the blood-oxygen-level-dependent (BOLD).

The fMRI BOLD signal measures the metabolic activity of neurons instead of directly
measuring the neuronal activity. Despite being an indirect measure of the actual neuronal
activity, it is a good choice for studying the functional activity of the brain as these two types
of activities are coupled. When compared to many other methods of functional imaging,
fMRI is non-invasive and offers an acceptable spatial resolution to localize brain activity. It
is particularly useful in our study as the visual working memory that we attempt to model is
distributed over many regions of the brain and as it allows for recording the activity across
the whole brain.

Typically, in studies of cognitive processes, participants are asked to perform certain
carefully designed tasks inside the scanner. A single stretch of recording is referred to as a
session. A session can be composed of many blocks of different task and rest periods. At
specific time intervals within each block, the participants are asked to perform a trial in
which they can be presented with some stimuli and/or be asked to do some action.

At every fixed time interval called the repetition time (TR), a three-dimensional image
of the BOLD activity across the entire volume of the brain is captured by the scanner.
The individual units of recorded data are called the volume elements or voxels with their
intensities representing the strength of the BOLD signal at that location. Thus, a single
session of fMRI data recording is a time-course of intensities for each voxel that is part of
the three-dimensional brain volume. The time series of voxels that are clustered to represent
some anatomical/functional structures called parcels can be combined to obtain the time
series corresponding to those parcels.

2.2. Experimental Setup and Design

The dataset used in this study, referred to as the Human Connectome Project test-
retest (hcptrt, 2020-alpha2 release1), was collected as a part of the Courtois Neuromod
Project [13]. Each participant performed the functional localizer tasks developed by the
Human Connectome Project [114] including the N-back task (working memory task) over
15 different sessions. The data corresponding to the cognitive tasks other than the working

1https://docs.cneuromod.ca/en/2020-alpha2/DATASETS.html#hcptrt
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memory (WM) task were not considered in our study. Before each task, participants were
given detailed instructions and examples, as well as a practice run.

In the WM task, the participants were presented sequences of images and were asked to
make associations based on the nature of images seen in the recent past. For example, in the
2-back task they had to respond whether each image matched the one that was seen 2 trials
back (referred to as the target). Whereas, in the 0-back task the very first image (cue in
Fig. 0.1) shown in the sequence is target and they had to indicate to indicate if each image
matched the target.

Each session was approximately 5 minutes long and was composed of two types of sub
tasks: a category specific representation (0-back) and a working memory task (2-back). The
participants were presented with task blocks of either places, tools, faces, and body parts.
Within each run, all 4 types of stimuli were presented in block, with each block being labelled
as a 2-back task (participants needed to indicate using button presses if they saw the same
image two images back), or a version of a 0-back task (participants were shown a target at
the start of the trial and they needed to indicate using button presses if the image that they
were seeing matched the target). There were thus 8 different event types for the stimulus
among : place, tools, face or body, and N-back type among 0-back and 2-back. Each stimulus
image was presented for 2 seconds, followed by a 500 ms inter-stimulus interval. Each of the
2 runs included 8 event types with 10 trials per type, as well as 4 fixations blocks (15 secs).

The data was recorded on a 3T MRI Siemens Prisma scanner at the Unité de Neuroim-
agerie Fonctionnelle (UNF2). The scanning settings used a repetition time (TR) of 1.49
seconds, 60 slices, an acquisition matrix of 96x96 and voxels of size 2 mm x 2 mm x 2 mm.
Figure 0.1 illustrates the schematic view of a recorded run. The protocol for the experi-
ments was approved by the local ethics institutional review board, the Comité d’éthique de
la recherche vieillissement-neuroimagerie and all participants provided informed consent to
participate to the study.

2.3. Data Preprocessing

As in all fMRI studies, the collected raw data is not directly usable for analysis and
required to be processed before use. It was preprocessed using a standard pipeline which
yielded many derivatives and files. Results included in this manuscript come from preprocess-
ing performed using fMRIPrep 20.1.1+38.g8480eabb ([32, 31]; RRID:SCR_016216), which
is based on Nipype 1.5.0 ([44, 45]; RRID:SCR_002502).

2https://unf-montreal.ca
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Fig. 0.1. Summary of the event structure in a session of the working memory (WM) task in
the Courtois Neuromod HCP test-retest (hcptrt) dataset. An example is shown of a 2-back
tools block composed of a cue and 10 trials in each of which an image is sown for 2 seconds
with a gap of 0.5 seconds.

2.3.1. Anatomical data preprocessing

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with
N4BiasFieldCorrection [112], distributed with ANTs 2.2.0 [[5], RRID:SCR_004757], and
used as T1w-reference throughout the workflow. The T1w-reference was then skull-stripped
with a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs),
using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid
(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted
T1w using fast [FSL 5.0.9, RRID:SCR_002823, [130]]. Volume-based spatial normaliza-
tion to one standard space (MNI152NLin2009cAsym) was performed through nonlinear reg-
istration with antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w
reference and the T1w template. The following template was selected for spatial normaliza-
tion: ICBM 152 Nonlinear Asymmetrical template version 2009c [[37], RRID:SCR_008796;
TemplateFlow ID: MNI152NLin2009cAsym].

2.3.2. Functional data preprocessing

For each of the BOLD runs found per subject (across all tasks and sessions), the follow-
ing preprocessing was performed. First, a reference volume and its skull-stripped version
were generated using a custom methodology of fMRIPrep. A deformation field to correct for
susceptibility distortions was estimated based on two echo-planar imaging (EPI) references
with opposing phase-encoding directions, using 3dQwarp [22] (AFNI 20160207). Based on
the estimated susceptibility distortion, an unwarped BOLD reference was calculated for a
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more accurate co-registration with the anatomical reference. The BOLD reference was then
co-registered to the T1w reference using flirt [FSL 5.0.9, [56]] with the boundary-based
registration [46] cost-function. Co-registration was configured with nine degrees of freedom
to account for distortions remaining in the BOLD reference. Head-motion parameters with
respect to the BOLD reference (transformation matrices, and six corresponding rotation and
translation parameters) are estimated before any spatiotemporal filtering using mcflirt
[FSL 5.0.9, [55]]. The BOLD time-series (including slice-timing correction when applied)
were resampled onto their original, native space by applying a single, composite transform
to correct for head-motion and susceptibility distortions. These resampled BOLD time-series
will be referred to as preprocessed BOLD in original space, or just preprocessed BOLD. The
BOLD time-series were resampled into standard space, generating a preprocessed BOLD run
in [’MNI152NLin2009cAsym’] space. First, a reference volume and its skull-stripped version
were generated using a custom methodology of fMRIPrep. Several confounding time-series
were calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS
and three region-wise global signals. FD and DVARS are calculated for each functional
run, both using their implementations in Nipype [following the definitions by [93]]. The
three global signals are extracted within the CSF, the WM, and the whole-brain masks.
Additionally, a set of physiological regressors were extracted to allow for component-based
noise correction [CompCor, [12]]. Principal components are estimated after high-pass filter-
ing the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off) for
the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor
components are then calculated from the top 5% variable voxels within a mask covering
the subcortical regions. This subcortical mask is obtained by heavily eroding the brain
mask, which ensures it does not include cortical GM regions. For aCompCor, components
are calculated within the intersection of the aforementioned mask and the union of CSF
and WM masks calculated in T1w space, after their projection to the native space of each
functional run (using the inverse BOLD-to-T1w transformation). Components are also cal-
culated separately within the WM and CSF masks. For each CompCor decomposition, the k
components with the largest singular values are retained, such that the retained components’
time series are sufficient to explain 50 percent of variance across the nuisance mask (CSF,
WM, combined, or temporal). The remaining components are dropped from consideration.
The head-motion estimates calculated in the correction step were also placed within the
corresponding confounds file. The confound time series derived from head motion estimates
and global signals were expanded with the inclusion of temporal derivatives and quadratic
terms for each [100]. Frames that exceeded a threshold of 0.5 mm FD or 1.5 standard-
ised DVARS were annotated as motion outliers. All resamplings can be performed with a
single interpolation step by composing all the pertinent transformations (i.e. head-motion
transform matrices, susceptibility distortion correction when available, and co-registrations

64



to anatomical and output spaces). Gridded (volumetric) resamplings were performed us-
ing antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the
smoothing effects of other kernels [70]. Non-gridded (surface) resamplings were performed
using mri_vol2surf (FreeSurfer).

2.3.3. BOLD time series extraction

The preprocessed BOLD data is not directly used by machine learning algorithms for the
purpose of modeling. Specific steps were carried out to further improve the signal-to-noise
ratio and remove unnecessary artifacts from the data. This was done using the packages
provided by Nilearn 0.6.2 [1]. These steps are very standard in fMRI data analysis and
have been used in several previous studies [116, 79, 47, 60, 54]. They help satisfy some
statistical assumptions about the data and seek to remove some aspects that are not useful,
enhancing the quality of the data analysis. They are summarized below:

• Masking : The anatomical mask derived from 2.3.1 was used to remove the voxels
from the non-brain regions (background and skull). The masked fMRI data that is
4-dimensional was converted into a data matrix composed of the BOLD time series
of each brain voxel.
• Detrending : A consistent linear trend was eliminated in the BOLD time series by
considering the residuals from the linear regression of the signal on its scan time.
• Spatial smoothing : A 3-dimensional Gaussian spatial smoothing filter was applied
with a full-width half-maximum (fwhm) of 6 mm.
• Normalization : The BOLD signals were then normalized by Z-scoring the time series
(subtracting each voxel value in the time series with the univariate mean and dividing
by the univariate standard deviation over a session) ensuring that the variance of the
time series is 1.
• Confounds Removal : The confounds of the 6 motion parameters (3 translation and 3
rotation generated by fMRIPrep) were used to regress on the signal and adjust them.
• Block Extraction : The BOLD time series of these voxels for the specific task blocks
(2-back body, 0-back face, etc.) were extracted from the BOLD signals of each session
based on the event onset timings provided as a part of the dataset.

The steps listed above preprocess and extract the time series of each voxel in the brain
data for each task condition. We also required to perform analysis on parcels in the brain.
So, we used Multiresolution Intrinsic Segmentation Template (MIST, developed by Urchs et
al. [113]) which is a brain atlas of different parcellated regions across various cortical and
subcortical regions labeled in a hierarchy. The MIST atlas was applied as a mask on the
BOLD images to obtain the time series of each parcel in the brain volume for the task blocks.
All the steps listed above were carried out on these parcels to obtain the parcel time series.
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Thus, the final preprocessed data for each subject is essentially a large set of time series
(of voxel or parcels) belonging to different task blocks corresponding to specific stimuli image
sequences.

2.4. Task Network Model

The task network model is a neural network that is trained to perform the N-back task
based on labelled sequences of images. It is composed of two blocks - recognition and memory
modules, as shown in Figure 0.2.

The number of pixels is very high in the stimuli images, making it hard for many recurrent
models to be trained directly on image sequences. The input images need to be converted to
a different representational space for easier training. Therefore, this modular setup with two
different blocks is necessary. The purpose of the recognition module is to extract necessary
features from the input images and effectively transform them to a form that is easier for
the memory module to use the input to solve the N-back task.

Different variants of recurrent network models, all with this general architecture, are used
to elucidate the effect of distinct computational mechanisms: LSTM has explicit memory
cell operations that are very relevant to a memory task like the N-back task, LSTM-SAB
offers a sparse selection of memories from the past, and ConvLSTM uses more efficient
convolution operations. In general, these networks differ only in the way in which they use
the information from the input and the past to solve the task.

All models trained for the task network use images from the ImageNet [25] dataset. This
dataset was chosen as it contained images close to the stimuli images used in the task from
[114]. A good subset of the ImageNet dataset was selected to match the distribution of the
stimuli dataset and achieve good generalization. Example images are shown in Sec. A.1.

The details about the training of the recognition module are outlined in Section 2.4.1 and
about training the memory module are explained in subsequent Section 2.4.2. Additional
details on the hyperparameters of the trained models are specified in Appendix A in Sec. A.2
for the recognition module and A.3 for the memory module.

2.4.1. Convolutional Neural Network

The network architecture used is popularly known as VGG-16 (adopted from [102]) and
is a very common one in computer vision. It is a very deep feed-forward network that consists
of convolutional and pooling layers stacked on top of each other in the fashion depicted in
the recognition module in Figure 0.2, followed by 3 layers of fully-connected layers.

A VGG-16 model pretrained on performing object categorization on the ImageNet dataset
(1000 categories) was taken initially, before fine tuning the network to a smaller set of
labels involving the super-categories that are related to the task stimuli: people, scenes and
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instrumentation. The 3 fully connected layers were truncated from this network before using
them with the memory modules in sequential N-back task. The features extracted from the
final layer activations (qt in Figure 0.2) for the stimuli images are used as a baseline in the
encoding models for comparing the effect of the memory module.

Fig. 0.2. The overall architecture of the task used in this study : It is composed of 2
components - (i) The Recognition Module composed of a truncated CNN that is pre-trained
and fine-tuned for image recognition and (ii) The Memory Module with multiple stacked
recurrent layers with a final linear layer (with sigmoid activation) for binary classification.
The intermediate representation between these two modules is flattened and passed through
a linear layer.

2.4.2. LSTM Recurrent Network

First introduced in [51], LSTMs are commonly used building blocks for using neural
networks to learn from sequential data.
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A 4-layered stacked LSTM with a hidden dimension of 512 between the layers was used as
shown in Figure 0.2. The truncated CNN (recognition module) is connected to the memory
module. For all the recurrent models, the training sequences were composed of the images
(xt) sampled from the ImageNet dataset from the super-categories: people, animals, scenes
and artefacts. These images were normalized with the mean and standard deviation of the
subset and also randomly gray scaled as the task stimulus consisted some gray scale images.
The labels were binary labels (yt) indicating 0 for no N-back match and 1 for N-back match
computed through code.

The task network predicts a sigmoid value ŷt at each time step indicating the probability
that the output is 1. As it is a sequential binary classification task, the network is optimized
to learn weights to minimize the binary cross-entropy (BCE) loss given by :

L =
T∑
t=0
−yt log(ŷt)− (1− yt)(1− log(ŷt))

T refers to the sequence length of time unrolled network which was set to 10 to match the N-
back task condition. The initial values of hidden state vectors h0

(l) were reset to all zeros at
the start of every sequence of images to refresh the context as the context from the previous
sequence is not relevant. The first 2 blocks of the recognition module were frozen during
the LSTM training to reduce computational cost due to backpropagation and the all the
remaining layers were trained.

2.4.3. LSTM-SAB Recurrent Network

This network is very similar to the LSTM but has an architectural enhancement that
offers advantages in the way of using the past hidden states.

SAB stands for Sparse Attentive Backtracking, and it uses a differentiable and sparse
attention mechanism to make selections from past states effectively by retrieving a minimum
possible number of them. It employs a dedicated memory for storing past hidden states. An
attention module made of a multilayer perceptron (MLP) that computes a set of attention
weights from the past states stored in memory and the current state. These attention weights
that are sparsified to select only a few memories (with non-zero attention weights). These
selected memories are weighted by the attention weights and combined to compute another
state vector that is added to the current hidden state. This is the mechanism used to retrieve
memories sparsely. During the backward pass, these sparsified attention weights are used
to identify the relevant past hidden states from memory store and propagate the gradients
only in their locality instead of all past states. This is referred to as the sparse replay. Thus,
in effect, this model strengthens the computational link between the hidden state with the
most relevant past hidden states.
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The additional parameters involved are the weights in the neural network corresponding
ot the attention module. The additional algorithmic hyperparameters involved are:
ktop - the number of relevant memories to choose, katt - the number of time steps to wait
for adding the state into memory, and ktrunc - the number of previous states of the se-
lected memories to propagate the gradient. These were chosen based on optimal validation
performance.

This network also used a 4-layer stacked LSTM with the hidden dimension of 512 for
each layer the network as shown in Figure 0.2. The data and loss function were exactly same
as the LSTM described in Section 2.4.2. The detailed algorithms for training a LSTM-SAB
are described in [58].

2.4.4. ConvLSTM Recurrent Network

ConvLSTM was initially proposed and used in [101] and popularly used to model the
visual system in [84]. This type of LSTM is very similar to the original, vanilla variant.
The difference is that the cell-level matrix product operations are replaced by convolution
operations for hidden and input vectors. All the inputs, cell outputs, hidden states and
gates of the ConvLSTM are 3D tensors with the first dimension indicating time and the
last two dimensions as spatial dimensions. The computations in the ConvLSTM determine
the current state of a certain cell in the grid of the input using the inputs and past states
of its local neighbors. This type of network is particularly useful in tracking objects across
sequences of images.

We use a ConvLSTM with a hidden vector of size 512 x 4 x 4 for the training of the
model similar to the LSTM described in Section 2.4.2.

2.4.5. Random Network

This is the same network as shown in the Figure 0.2 but without any training. The
weights present in this network are randomly initialized values. For each layer, the weights
are independently initialized using a normal distribution with zero mean and a very small
standard deviation chosen based on the dimensions of the current and previous layer ac-
cording to Xavier’s initialization [40]. Precisely, for a layer l this standard deviation used
is the value given by

√
2√

dim(h(l−1))+dim(h(l))
. The features extracted from the recurrent layer

activations for the stimuli images in this network are also used as a baseline in the encoding
models for understanding the effect of the trained network representations.

2.5. Encoding Model

The purpose of the encoding model is to use the trained task networks to derive features
and map them to the brain responses in the neuroimaging data. As with many studies
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using encoding analysis [83, 54, 118], this mapping is carried out using a regression model
to regress the task network-derived features on to the fMRI BOLD activity. It is done to
examine how these features are related to the BOLD activity (recorded during the WM task)
in different regions of the brain. It is a key step to determine how well the representations
learned by these artificial neural networks are able capture the dynamics of the brain activity.

Figure 0.3 shows the overall set of procedures carried out in this section. The end result
is to obtain statistical brain maps that indicate the predictability of the brain activity from
the task network-derived features correspondong to the stimuli used in the WM task.

Fig. 0.3. Schematic diagram of the encoding model. The stimuli images used while scanning
the human participant are evaluated using the trained ANNs (task networks) to extract
features. These features are reduced and resampled before performing a ridge regression
to predict BOLD signals. The R2 score between the predicted and actual BOLD signals is
computed for each voxel and mapped on to the brain volume to produce a brain map.

In Sec. 2.5.1, we discuss the extraction of features from the trained networks. However,
it is not possible to use the features from the trained task network to readily in the encoding
model (regression model). These extracted features are required to be reduced (Sec. 2.5.2)
and resampled (Sec. 2.5.3) before regressing them. The details about the regression model are
described in Sec. 2.5.4 and in Sec. 2.5.5, we highlight a way to account for the hemodynamic
delay in the BOLD signal.

2.5.1. Feature Extraction

The stimuli images data from the fMRI task were used in the trained task network models
to generate task-relevant features. The stimuli images used during the fMRI recording are
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resized to the image size 224 x 224 that is acceptable by the recognition module of the task
network.

The recurrent layer activations generated in the neural network are depicted as h(1)
t , h(2)

t ,
h

(3)
t and h

(4)
t in Figure 0.2. These hidden vectors can effectively serve as the contextual

embeddings to represent the summary of the task-relevant stimulus sequence (context seen
by the network) until that point t. The hidden vectors computed are transmitted to the next
timestep of the recurrent cells, as well as to the higher feed-forward layers for computing the
task output. Thus, the learning of weights in the recurrent network during backpropagation
conditions these hidden vectors to be task-relevant while carrying the information from the
past timesteps. This can be thought of as being similar to self-supervised word embeddings
learned using autoregressive models of words from a text corpus, except that this task needs
to be a supervised one.

2.5.2. Feature Reduction

The number of features dimensions (or components) in the contextual embeddings are
much higher than the number of samples. When these are directly used in a regression
model, it can affect stability of the regression. In addition, the contextual embeddings
derived from the stimuli presented during the same block of a session are correlated with
each other because of the dependence of each hidden vector in the recurrent neural network
on that of the previous timestep. Thus, it is useful to both reduce the dimensionality and
transform them to a different space oriented along the direction with the maximum variance.
We reduce the feature dimensions by performing a Principal Components Analysis (PCA)
decomposition on the set of embeddings from the same layer for all the data. We then choose
the top principal components (PCs) that explain 95% of the variance in the original data
(for example, about 127 components out of 512 feature dimensions in LSTM layer-3).

2.5.3. Resampling

The BOLD signal is a measure of vascular changes that are indirectly related to neural
activity, and is traditionally modeled as a convolution operation with an one-dimensional
kernel called the hemodynamic response function (HRF) [41, 38]. This function represents
the impulse response of the BOLD signal for a stimulus.
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Fig. 0.4. Convolution of the features with the canonical hemodynamic response function
(HRF) for upsampling them to ensure that the features match the timesteps of the BOLD
data. The features corresponding to the sequence of images are extracted from the task
network and each dimension are convolved with the HRF double gamma function aligned
with the event onset timings of the stimuli. The final resampled timeseries after this operation
corresponds one-on-one to the timecourse of the neuroimaging data.

The number of samples in the feature time series is lesser than the number of samples
(TRs) in the task blocks of the BOLD series to be predicted. Therefore, in order to upsample
the timescale of the extracted features with the timescale of the experiment, we convolve
each component of the features with the canonical hemodynamic response function (HRF)
which is a double gamma function expressed as a difference of two gamma functions [41].
Figure 0.4 depicts this operation. The series of features is now upsampled and the samples
corresponding to the TR of the BOLD series is aligned and matched. Thus, the HRF convo-
lution helps in upsampling the features and also in modeling the hemodynamics phenomena.

2.5.4. Ridge Regression Model : Mapping features to brain activity

The overall idea of an encoding model is to learn a parametric function f denoted by
f : S → R which maps stimuli in the set S to the brain responses in the set R.

The deep neural network features obtained after performing the steps till Sec. 2.5.3
can be considered to be in a vector space referred to as the feature space as these are
the features which are transformed versions of the actual inputs represented by the stimuli
image sequences that can be located in the input space. This transformation involving the
operations in the neural network, dimensionality reduction and resampling can be thought
of a φ(x) that is applied on the each of the inputs x from the input space. The target for
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this regression is the space of the functional brain activity given by the preprocessed fMRI
BOLD signals and it is referred to as the activity space in this case [83].

The feature space learned from the neural networks needs to be mapped on to the ac-
tivity space of the functional activity (fMRI BOLD) in order to build the encoding model.
Technically, it is desirable to use linear regression methods to achieve this. This choice is mo-
tivated by a variety of strong reasons [83]. Firstly, neuroscientists view the brain as a system
that takes the stimuli as input and uses high-level non-linear computations to form repre-
sentations of the brain activity. Consequently, we would require all the complex non-linear
transformations of the stimuli to be done by the powerful artificial neural networks if they
are also like the brain. The transformation from the feature space to activity space could
be any simple model in this case. In addition, the usage of this type of linearizing feature
space (non-linear mapping from the input space to feature space and linear mapping from
the feature space to activity space) is very common in computational neuroscience [83, 123]
and it can be considered that the non-linearly transformed stimuli form the basis of the sub-
space that embeds the activities [27]. Most of the work done in fMRI encoding studies use
this linear hypothesis [83, 74, 123, 57] and many theories have been developed around it.
We also remark that the number of data samples available in most neuroimaging studies for
the purpose of training the encoding model is limited. As most non-linear models (including
deep neural networks) generally require a higher number of samples for training [107], they
tend to underfit the data if the number of samples are low with respect to the capacity of the
model. Also, an analysis of linear relationship between the features and the activity in brain
regions is likely to inform how similar are the task network derived features and the brain
activity as we have a good statistical framework about linear dependencies [123]. Only if
there is a linear transformation from the feature space to the activity space, it makes sense
to think that these two spaces are aligned as it is the simplest possible transformation.

Among the linear regression methods, regularized models of regression are preferred.
Since the number of frames (TRs) in data recorded from humans is limited, the number of
features are very high compared to the number of training samples in most cases. Thus,
a sparse regression method such as ridge regression has been used in many similar studies
such as [54, 118, 60]. This method uses the L2-norm to avoid the poor fits of the data and
ensures that a good number the weights are zero (sparse). This is very useful in avoiding
the ill-conditioning of the regression and for better interpretability.

Figure 0.3 illustrates the schematic setup of the encoding model. It is necessary that the
features considered in the regression belong to the same feature space and thus they need to
be derived from the same layer of the same neural network.

The encoding model is fitted individually per voxel (mass univariate model). The feature
matrix H corresponding to the n number of frames (TRs) of p-dimensional stimulus vectors
that are available is constructed by concatenating the reduced and resampled feature vectors
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giving a dimension of n × p. The voxel values per frame (TR) are taken as a vector z(i).
Therefore, for each voxel i, we fit models to compute the parameter matrix β̂(i)

ridge such that :

β̂
(i)
ridge = arg min

β∈Rp
‖z(i) −Hβ‖2

2 + λ‖β‖2
2

The penalty λ is chosen using a 6-fold cross-validation using the best R2 score. The
coefficient of determination (R2) between the actual and predicted BOLD responses gives
the measure of how predictive the particular voxel is based on the regressed feature. This
value for each voxel is plotted on a brain volume in the respective location. For a predicted
signal ẑ(i)

test for the ground truth signal z(i)
test it can be expressed as:

R2(i) = 1− ‖z(i)
test − ẑ

(i)
test‖2

‖z(i)
test −mean(ẑ(i)

test)‖2

As a statistical check, permutation tests were carried out to quantify the significance of
the encoding model predictions. This was done by shuffling the target responses 5000 times
and obtaining the False Discovery Rate (FDR) corrected p-values for the encoding model
results using the Benjamini-Hochberg procedure, similar to [118]. The voxels with the FDR
corrected p > 0.05 in the fitted models were rejected and not considered as they are not
significant.

Here, it is worth highlighting that under this mass univariate approach, the set of pa-
rameters for each voxel β̂(i)

ridge are different for each voxel and the regularization penalty λ
is chosen individually for each voxel. The regression uses the same inputs (features) for all
voxels, and thus, it is these parameters that determine the mapping. The β̂(i)

ridge weights
taken together can be viewed as the linear transformation that transforms these features
ht(l) in the feature space to the activity space of the voxels z(i).

2.5.5. Hemodynamic Delay

fMRI BOLD is a slow signal due to the delay in the hemodynamic response in the brain.
So the timing of the response signal usually does not correspond to the stimulus onset timing
as it could as well be a response to a previous stimulus condition. The HRF convolution
described in Section 2.5.3 already models this hemodynamic delay with a fixed peak time.
So, the encoding model is likely to be trained and evaluated on mismatched signal peaks.
As we are interested in the quality of prediction, we handle this by fitting models on forward
time-shifted BOLD signals and cross-validating to identify the optimal shift. The search for
this shift is effectively to try and identify the peak of the signal.

The ridge regression model described in 2.5.4 was fitted on voxel time series shifted by
number of frames (TRs) in [1,2,3,4] and 6-fold cross-validation was used to select the best
delay hyperparameter for the data. This value was determined to be 2 in most cases in our
analysis.
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3. Results
In this section, we present the results of our experiments that we described in Sec. 2. First,

Sec. 3.1 details the performance of the trained task networks. Next, Sec. 3.2 presents the
analysis of the voxel-based encoding models using the R2 brain maps obtained (as described
in Sec. 2.5.4). Finally, Sec. 3.3 presents the R2 brain maps by encoding the parcel signals
and the analysis of performance of representations from different layers in the task networks.

3.1. Task network performance

We present the performances of the task networks that were trained as described in
Sec. 3.1 on the N-back tasks (2-back and 0-back that were trained independently). In this
section the results correspond only to the metrics obtained on validating the trained task
networks and the fMRI data was not considered at this stage.

The results with the held-out validation accuracy and binary cross entropy error (BCE)
for the task networks that were trained for the respective N-back task are given in Table 0.1
and 0.2. All trained networks (except the Random LSTM which is untrained), give a good
validation performance of more than 95% with early stopping.

2-back
accuracy

(validation)

2-back
BCE

(validation)
Random LSTM 49.32 % 0.869
LSTM 96.86 % 0.009
LSTM-SAB 98.29 % 0.006
ConvLSTM 99.16 % 0.002

Table 0.1. 2-back : Task network performance (classification accuracy and binary cross-
entropy error) on held-out validation set of image sequences for the different models consid-
ered.

0-back
accuracy

(validation)

0-back
BCE

(validation)
Random LSTM 52.65 % 0.794
LSTM 95.33 % 0.010
LSTM-SAB 98.90 % 0.008
ConvLSTM 97.36 % 0.012

Table 0.2. 0-back : Task network performance (classification accuracy % and binary cross-
entropy error) on held-out validation set of image sequences for the different models consid-
ered.
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3.2. Voxel-wise Encoding Analysis

The BOLD signals of the WM task (2-back), preprocessed as described in Sec. 2.3.3
represent time series for each voxel in the brain volume. These were used in the encoding
models (Sec. 2.5.4) based on the features extracted from the networks discussed in Section 2.4
by using the respective stimuli.

Figure 0.5 shows the volumetric R2 maps for the encoding models fitted for each voxel
as described in Section 2.5.4. Each voxel represents the R2 score which is the proportion of
variance in the BOLD data in that voxel that can be explained by the task network layer-
derived features used in the encoding. This value is represented by the color of the respective
voxel in the statistical brain map.

In Figure 0.5, we can note that, compared to the untrained Random LSTM layer activa-
tions, the other trained networks have given better performance as seen in the R2 maps for
the 2-back task. As we have a concrete difference in the predictability of the brain activity
from the untrained and trained network activations, we can be more confident about the
impact of the training of the task-network.

It can be clearly seen in Figure 0.5(b) that for the last layer (layer 7) of the CNN model,
the concentration of the encoded voxels with a high variance explained are predominantly
in the occipito-temporal regions. This is in conformance with prior studies such as [59].

For the other R2 maps of the recurrent models, there are more significant voxels in not
just the occipital and temporal regions but also distributed across the fronto-parietal region.

As seen in Figure 0.5 (b) and (c), for the CNN derived brain map and the LSTM derived
brain maps of encoding model performance (R2 score), it can be noted that the CNN model
has received less score compared to the LSTM in certain regions in the temporal, medial and
fronto-parietal regions.

It is also interesting to observe that there are a few voxels in the occipital and temporal
regions with a good score for both models (CNN and LSTM). These voxels are of interest
to potentially interpret the effect of the recurrent computations on the CNN features in
explaining the variance of the BOLD activity. We need to note that recurrent network-
derived features are merely non-linear transformations of the same CNN features used.
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(a) Random LSTM

(b) CNN (layer 7)

(c) LSTM (layer 2)

(d) LSTM-SAB (layer 2)

(e) Conv LSTM (layer 2)
Fig. 0.5. sub-03 - 2-back Voxel-wise performance: The brain maps of the encoding perfor-
mance for each voxel in terms of R2 value between predicted and actual BOLD responses
during the 2-back task for the features derived from the considered task-network models.
Random features in (a) yield a random map. CNN features in (b) give high performance in
areas involved in visual processing while the recurrent network features in (c), (d) and (e)
extend into areas involved in visual working memory.
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3.3. Parcel-wise Encoding Analysis

As described in Sec. 2.3.3, the BOLD signals of the working memory (WM) task blocks
were parcellated using the MIST ROI atlas [113]. They were then used in parcel-wise encod-
ing models (Sec. 2.5.4) based on features derived from the networks discussed in Section 2.4.

The results of fitting the parcel-wise encoding model on 2-back features are shown in
Figure 0.6. The colours of the individual parcels correspond to different R2 values which
can be interpreted as the proportion of variance in these parcels explained by the considered
features. We observe that in Figure 0.6(b), the CNN (layer 7) features show some level of
variance in the parcels from the occipital and temporal areas with the highest R2 in parcels
in the occipital region. Figure 0.6(c), (d) and (e) show a high R2 value in many areas of
the brain. This indicates that the features derived from the LSTM variants seem to explain
much more variance in occipital, temporal, frontal and parietal regions.

Based on the R2 score of the individual parcels of the brain maps generated by the
recurrent neural network features, 6 regions of interest (ROIs) have been chosen and listed
in Table 3.3. These are regions that have been found to be active during working memory
tasks as observed by many fMRI studies [116, 89, 97, 109].

ROI label Name
R_IPsul right_INTRAPARIETAL_SULCUS
L_FEF left_FRONTAL_EYE_FIELD
L_VLPFcor left_VENTROLATERAL_PREFRONTAL_CORTEX
L_ITgyr left_INFERIOR_TEMPORAL_GYRUS
L_OCCTgyr_l left_OCCIPITOTEMPORAL_GYRUS_lateral
R_FUSgyr_vl right_FUSIFORM_GYRUS_ventrolateral

Table 0.3. The ROIs from the MIST ROI atlas [113] selected for analysis based on the top
encoding model performances in these parcels in the atlas. The label corresponding to these
parcels are listed in the left column with their full names in the right column.

Figure 0.7 shows the encoding model performances R2 at each of these ROIs plotted for
different layers of the memory module in Figure 0.2 based on cross-validated performance.
The error bars indicate the standard deviation of the averaged model performance scores
during the cross-validation. The layer preference or selectivity is in favour of the layer whose
feature space gives a better performance for the encoding model.

There seem to be not much difference between the LSTM and LSTM-SAB model for
ROIs such as R_IPsul and L_VLPF. In many cases, the difference between the performance
of two consecutive layers are very close to each other. This is expected as they are correlated
with each other.

The layer preferences of the ConvLSTM seem to be different from the LSTMs in many
cases. It can be possibly attributed to the difference in dimensions of their feature spaces.
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(a) Random LSTM

(b) CNN (layer 7)

(c) LSTM (layer 2)

(d) LSTM-SAB (layer 2)

(e) Conv LSTM (layer 2)
Fig. 0.6. sub-03 - 2-back Parcel-wise performance: The brain maps of the encoding perfor-
mance for each MIST ROI parcel in terms of R2 value between predicted and actual BOLD
responses during the 2-back task for the features derived from the considered task-network
models. Random features in (a) yield a random map. CNN features in (b) are able to give
good performance only in parcels involved in visual processing, while the recurrent network
features in (c), (d) and (e) include parcels involved in visual working memory.
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Fig. 0.7. sub-03 - 2-back layer-wise encoding performance across ROIs : Figure (a) high-
lights (in red) the location of the selected ROIs in the brain volume (Table 3.3), shown as a
reference for the plots below. Figures (b),(c) and (d) depict the plots of R2 value between
predicted and actual BOLD responses in the 2-back task for the LSTM, LSTM-SAB and
ConvLSTM features respectively. Each color corresponds to the features derived from the
specific layers (final CNN layer and the 4 LSTM layers), plotted as a separate bar for each
region of interest. The plots compare the average test performance of features from different
layers in encoding fMRI BOLD activity.
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4. Discussion
The computational mechanisms of activations in the visual working memory of the brain

have been less understood. We trained different task networks with variants of LSTMs (from
Section 2.4) in the memory module to peform the N-back task, namely - LSTM, LSTM-SAB
and ConvLSTM. For each stimuli image in the 2-back sequence, features were extracted from
these networks as well as those from a Random (untrained) LSTM and the final layer of the
CNN (Recogniton Module). Each of these features were reduced, resampled and regressed on
to the fMRI BOLD signals corresponding to the stimuli sequence to obtain the performance
at voxel and parcel levels in terms of the variance explained R2 as described in Section 2.5.

Firstly, we observe that the representations derived from trained networks are able to
explain the variance better than that of untrained random networks.

We remark that the layer activations of recurrent models have performed better compared
to the CNN across the brain. Especially, the fronto-parietal areas have shown significant
improvements when compared against the CNN. It is in the these frontal areas that we find
the regions like the Frontal Eye Field (FEF), Prefrontal Cortex (PFC), etc. with structures
involved in executive control. Also, some voxels in the inferior temporal gyrus (ITG) have
a significantly higher explained variance for the recurrent models than the CNN model.
Various theories point to the prevalence of the visual working memory acting through the
inferior temporal regions from a frontal executive [116].

Previous studies like [47, 79, 62, 118] that have modeled CNN-derived visual features to
encode the brain responses found relationship of the initial layers of the CNN to the activity
in early visual areas and the later layers to the higher visual areas. One important difference
between our study and these previous works is the task that the network is optimized for:
while most of these studies largely use the object recognition task, our networks have been
optimized for the memory task. The LSTM-derived features that we employed were able
to explain more variance than the higher layer feature of the CNN baseline in the inferior
temporal and fusiform regions. While the predictions of the CNN are mostly in the early
visual areas, the LSTM-derived features are able to explain the variance better in higher vi-
sual areas (ITG) and working memory-related areas (PFC, FEF). The CNN-derived features
have not captured the variance in these higher areas sufficiently.

Among the LSTM and the LSTM-SAB models, the performance of the SAB models is
slightly better for the considered runs. One plausible reason is the focus of the credit on
the N-back target using the learned sparse attention increases the information captured in
the feature. Thus, this additional capacity of the LSTM-SAB model could help learn better
features.

The ConvLSTM features have marginally outperformed the LSTM-SAB possibly due to
the strength of the convolution filters as some spatial attributes are likely to be preserved
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through all the feature transformations happening in the network. The performance of these
features as seen as the variance explained by them (R2) on the visual areas in the temporal
region are better than the other LSTM features.

Deeper layers are preferred by some parcels in frontal and parietal regions while earlier
recurrent layers preferred inferior-temporal regions. This phenomenon is interesting because
even in the brain the lower layers of the network are mostly involved in perception and the
deeper layers are involved in higher cognitive functions. The temporal dynamics of the multi-
layer LSTM is the reason behind this. The lower layers act more like a buffer of the visual
features whereas the higher layer activations are more correlated with the (N-back) decision
made. However, there are many parcels which have an equal preference for multiple layers.
As the layer activations are correlated with one another as they are successively derived, this
is not surprising.

We see that predicting 0-back BOLD responses from features derived from a task network
optimized for the same task yields good results, but the impact of the recurrent models is not
that significant. The BOLD activations of the frontal regions are lesser in 0-back compared
to 2-back as there is only maintenance of the object in memory and there is no updating of
the memory as in the case of 2-back.

We emphasize that the similarity of these representations and the strengths of certain
type of representations of recurrent neural networks are due to the correlations gleaned from
the stimuli by the network as well the correlated responses evoked in the brain. It needs
to be further probed if there are computational similarities at different levels in addition to
these representational similarities.

5. Conclusion
We were able to train various task networks and optimize them for solving simple mem-

ory tasks. Overall, we outlined and demonstrated a procedure for explaining the functional
activity of working memory of the human brain from recurrent neural network representa-
tions that gave a fairly good performance compared to convolutional neural networks. Our
approach offers significant advantages to methods to Computer Science as well as Cognitive
Neuroscience by both demonstrating a way of computationally modeling brain activity dur-
ing a memory task and highlighting the similarity among different memory representations
(computational and brain activity).

Firstly,we have shown a useful application of the features extracted from recur-
rent neural networks. The task fMRI signals, as well as the representations of recurrent
neural networks are not interpretable. However, our findings seem to indicate a plausible
alignment between these two representations. This phenomenon can be potentially exploited
using appropriate statistical methods to analyze how relevant information is encoded and
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transformed in each of these domains (fMRI and recurrent networks) [39]. We observed
that the variability of the functional activity in brain areas involved in working memory
is related to the task-optimized recurrent neural network features. From a computational
perspective, this has an advantage in modeling a complex multivariate signals such as the
fMRI BOLD as it is better than the traditional methods [38, 116, 89, 109] as it considers as
much information possible from the stimuli. Our brain evolved to process memories through
some computations on the observed stimuli, but we have yet to fully understand these. The
observation of its similarity with the task network features suggests a possible universality
in the computational principles involved in consolidating short term memories.

Secondly, we have demonstrated that feature maps derived from recurrent
neural networks trained on the same working memory tasks as humans, display
localized activity corresponding the human brain regions known to be involved
in visual working memory. Specifically, the key areas involved in working memory func-
tion : the occipito-temporal (visual processing), inferior-temporal (visual understanding,
short term memory) and fronto-parietal (executive control) areas of the brain were highly
correlated with the features. In addition, from our parcel-wise analysis, we remark that the
representations from different layers of the task network uncover a hierarchy of parcels - late
convolutional and early recurrent layers are associated with visual areas; deeper recurrent
layers are related to more frontal and fronto-parietal areas. Thus, our models inform us
about the functional organization and information processing in working memory.

Thirdly, our experiments and analysis underscore the importance of the re-
current computations in modeling brain activity of a memory-related task. This
was observed by comparing the statistical brain maps of the control conditions that did not
involve recurrence where the predicted activity was limited to the visual stream. Also, it can
be argued that networks with richer and more useful representational power such as LSTMs
and its variants are able to explain the brain activity better for a distributed system such as
the working memory. The features obtained from these networks can be considered to rep-
resent correlations of inputs over multiple time scales that are computed using combinations
of feed-forward and temporal (lateral) connections. The relevance of these features with the
working memory of the brain can be used to test other hypotheses about this memory. Fur-
ther, our study seems to indicate that the architectural elements of recurrent neural networks
such as: gating, sparse attention, dedicated memory, spatial convolution, etc. could possibly
drive the RNN representations to be more aligned with the representations of functional
activity in the brain due to better capturing of temporal correlations by such models. Thus,
such networks can be utilized for designing good features for modeling as we have shown the
integration of specific computational models with the brain activity.

Finally, our approach attempts to offer a proof-of-concept that deep neural
networks can be used to model not just sensory processing but it also a promising
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way to model integrative cognition such as memory. This approach of fMRI modeling
can potentially be applied to other cognitive tasks, more specifically memory tasks or other
tasks which indirectly require a memory component. In the future, this coarse-grained
relationship between these representations needs to be further extended for more complex
recurrent architectures and training, for a solid theory to emerge.
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Appendix A

Task Network Models : Additional details

A.1. Training Dataset

(a) HCP stimulus images for the 4 categories in-
dicated on the left

(b) ImageNet images with the category (synset) labels
from the dataset indicated on the right

Fig. A.1. Sample images from the Human Connectome Project (HCP) [114] Working Mem-
ory (WM) task stimuli with their categories that are shown side-by-side with some ImageNet
[25] images used in the training that are related to the stimuli image distribution



A.2. Recognition Module Training
As stated in Section 2.4.1, a Convolutional Neural Network (CNN) called the VGG-

16 [102] that was pretrained on the ImageNet dataset was considered. The fully connected
layers of this network were removed and replaced by a new set of linear layers as shown in
Figure A.2.

Fig. A.2. The entire Convolutional Neural Network (CNN) used for training the Recog-
nition Module before truncation (Based on VGG-16)[102]. After training, the convolution
and pooling units (in the bottom, inside the box with the dashed line) are retained while
the linear units (in the top, shown in purple) that constitute the classifier are truncated.
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The last layer in Figure A.2 shows a linear layer of 4 units with softmax activation to
indicate the four categories in the task stimuli (face, body parts, place, tools). The actual
category labels of the images in the sampled dataset are encoded as one-hot vectors. The
predicted softmax values and actual labels are used to compute the cross-entropy loss for
training.

Hyperparameter Value used in CNN Training
Number of conv layers 13

Number of fully connected layers 3
Convolution Kernel Size, k

(all conv layers) 3x3

Batch Size, b 64
Optimizer Adam

Learning Rate, lr 0.003
Dropout probability in Fully Connected layers, p 0.5

Table A.1. The hyperparameter values used in training the Convolutional Neural Network
before using it as the Recognition Module in the task network

Table A.1 lists the hyperparameters used in this network for the object categorization
task. Dropout layers are used only in the linear layers to avoid overfitting to the training
set.

A.3. Memory Module Training
A.3.1. 2-back

Hyperparameter LSTM LSTM-SAB ConvLSTM
Number of recurrent layers, L 4 4 4
Hidden layer dimension, |h| 512 512 512 x 7 x 7

Sequence length, T 10 10 10
Batch size, b 32 32 16
Optimizer RMSProp RMSProp RMSProp

Learning rate, lr 0.0001 0.0001 0.00022
Optimizer decay rate, α 0.99 0.99 0.95

ktop - 3 -
katt - 1 -
ktrunc - 3 -

Hidden layer kernel size - - 3x3
Hidden layer padding - - 1

Table A.2. 2-back task : The hyperparameter values used in training the task network
which consists of both the Recognition and Memory Modules
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In the task networks for the 2-back task, the hyperparameters used are shown in Ta-
ble A.2. The batch size was determined by using a validation set to get the best performance.
The sequence length T is set to 10 to account for the 10 timesteps in the task block when
the stimuli are shown.

A.3.2. 0-back

The 0-back task networks were trained with the hyperparameters used shown in Ta-
ble A.3.

Hyperparameter LSTM LSTM-SAB ConvLSTM
Number of recurrent layers, L 4 4 4
Hidden layer dimension, |h| 512 512 512 x 7 x 7

Sequence length, T 11 11 11
Batch size, b 16 16 16
Optimizer RMSProp RMSProp RMSProp

Learning rate, lr 0.00025 0.00020 0.0001
Optimizer decay rate, α 0.99 0.99 0.90

ktop - 3 -
katt - 1 -

ktrunc (same as T above) - 11 -
Hidden Layer kernel size - - 3x3
Hidden layer padding - - 1

Table A.3. 0-back task : The hyperparameter values used in training the task network
which consists of both the Recognition and Memory Modules

The sequence length is 11 in the case of 0-back as opposed to 10 in 2-back is because of
the extra cue stimulus image.
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