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Résumé

Un objectif de longue date dans le domaine de la vision par ordinateur est de déduire le
contenu 3D d’une scène à partir d’une seule photo, une tâche connue sous le nom d’inverse
graphics. L’apprentissage automatique a, dans les dernières années, permis à de nombreuses
approches de faire de grands progrès vers la résolution de ce problème. Cependant, la plupart
de ces approches requièrent des données de supervision 3D qui sont coûteuses et parfois
impossible à obtenir, ce qui limite les capacités d’apprentissage de telles œuvres. Dans
ce travail, nous explorons l’architecture des méthodes d’inverse graphics non-supervisées
et proposons deux méthodes basées sur des représentations 3D et algorithmes de rendus
différentiables distincts: les surfels ainsi qu’une nouvelle représentation basée sur Voronoï.
Dans la première méthode basée sur les surfels, nous montrons que, bien qu’efficace pour
maintenir la cohérence visuelle, la production de surfels à l’aide d’une carte de profondeur
apprise entraîne des ambiguïtés car la relation entre la carte de profondeur et le rendu n’est
pas bijective. Dans notre deuxième méthode, nous introduisons une nouvelle représentation
3D basée sur les diagrammes de Voronoï qui modélise des objets/scènes à la fois explicitement
et implicitement, combinant ainsi les avantages des deux approches. Nous montrons comment
cette représentation peut être utilisée à la fois dans un contexte supervisé et non-supervisé
et discutons de ses avantages par rapport aux représentations 3D traditionnelles.

Mots clés: inverse graphics, vision par ordinateur, apprentissage non-supervisé, rendu
différentiable, modélisation 3D, réseaux de neuronnes génératifs, infographie, apprentissage
profond, apprentissage automatique.
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Abstract

A long standing goal of computer vision is to infer the underlying 3D content in a scene from
a single photograph, a task known as inverse graphics. Machine learning has, in recent years,
enabled many approaches to make great progress towards solving this problem. However,
most approaches rely on 3D supervision data which is expensive and sometimes impossible
to obtain and therefore limits the learning capabilities of such work. In this work, we explore
the deep unsupervised inverse graphics training pipeline and propose two methods based on
distinct 3D representations and associated differentiable rendering algorithms: namely surfels
and a novel Voronoi-based representation. In the first method based on surfels, we show that,
while effective at maintaining view-consistency, producing view-dependent surfels using a
learned depth map results in ambiguities as the mapping between depth map and rendering
is non-bijective. In our second method, we introduce a novel 3D representation based on
Voronoi diagrams which models objects/scenes both explicitly and implicitly simultaneously,
thereby combining the benefits of both. We show how this representation can be used in both
a supervised and unsupervised context and discuss its advantages compared to traditional
3D representations.

Keywords: inverse graphics, computer vision, unsupervised learning, differentiable ren-
dering, 3D modeling, generative neural networks, computer graphics, deep learning, machine
learning.
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Chapter 1

Introduction

In recent years, machine learning has had a big impact on the field of computer vision.
In particular, convolutional neural networks have proved to excel at image classification,
segmentation and object detection tasks. Nevertheless, these methods still struggle on tasks
related to 3D scene understanding. One such task that has gained a lot of attention in the
last couple of years is the task of inferring a 3D scene from a number — as low as one — of 2D
images. In the computer graphics field, this problem has been known and explored well before
convolutional neural networks gained popularity (e.g., Shape-from-Shading as introduced by
Horn in 1989 [21]). The arrival of machine learning and related algorithms enabled a new
wave of promising research and progress on this task through a process known as vision as
inverse graphics. In this setting, illustrated in Figure 1.1, rendering and neural networks are
combined in a single system enabling end-to-end unsupervised training using natural images.
The two key challenges to this method are: 1) to disentangle the learned camera parameters,
lighting, materials and scene geometry such that they are physically accurate and can be
individually manipulated, and 2) to ensure that every step of the process is differentiable to
allow gradient back-propagation from the loss computation to all learned parameters.

In this thesis we present a review of recent work on the issue of disentanglement and
discuss their shortcomings. We then propose a new method that leverages Generative Ad-
versarial Networks and a point cloud representation to attempt to disentangle the camera
parameters from the other scene parameters.

To address the second key challenge mentioned above, we also explore how the rendering
process of the inferred 3D scene can be made differentiable. We discuss recent work on
developing differentiable rendering algorithms and on developing 3D scene representations
for which rendering is trivially differentiable. We then take a close look at two such repre-
sentations: a point-cloud/surfel representation and a novel Voronoi-based representation.

Inverse graphics holds the promise for many exciting applications and a truly unsuper-
vised approach would enable learning on a large scale required for industrial applications.



Fig. 1.1. The vision as inverse graphics pipeline. In the first half of the process, computer
vision techniques such as convolutional neural networks are used to infer a scene description
from a 2D image. A differentiable renderer is then used to produce a rendering of that
scene. The process is self-supervised by computing a loss between the generated image to
the input image. Image from TensorFlow, “Introducing TensorFlow Graphics” page (https:
//blog.tensorflow.org/2019/05/introducing-tensorflow-graphics_9.html)

Some key examples of such applications include video editing and visual effects, image manip-
ulation, interactive 3D photo visualization, human pose estimation (Figure 1.2), better vision
and mapping systems for robotics and autonomous driving, photogrammetry, improved re-
alism in video games and many others. Additionally, there is evidence for vision as inverse
graphics and analysis-by-synthesis to be a key part of the functioning of the brain’s vision
system [71]. We hope that this work can provide some insights into potential paths towards
this compelling goal by not only exploring new ideas, but also by thoroughly analyzing both
their benefits and shortcomings.

This thesis is structured as follows: After presenting a review of relevant computer graph-
ics and machine learning concepts in Chapter 2, we introduce in Chapter 3 a method that
attempts to address the issue of disentangling camera position from 3D scene while allowing
novel-view synthesis. In Chapter 4, we present a new differentiable 3D representation based
on Voronoi diagrams and explore its benefits compared to other popular representations.
We conclude by restating our key contributions and discussing avenues for future work in
Chapter 5.

2
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Fig. 1.2. Example of an application of inverse graphics: Human pose estimation from a
single color image trained using a differentiable 3D mesh renderer by Pavlakos et al. [50]

3



Chapter 2

Background

In this chapter we present an overview of basic concepts in the fields of computer graphics
and machine learning related to our work on inverse graphics. We introduce a mathematical
foundation (and notation) that we will then build upon in later chapters. We begin by
summarizing core ideas in the field of 3D rendering, followed by a description and comparison
of common 3D representations with a particular focus on their applicability to deep learning
systems. We then finish with a summary of generative models for unsupervised learning,
including autoencoders and generative adversarial networks (GANs).

2.1. 3D Rendering
The field of 3D Rendering is vast, constantly evolving and spans many areas of applica-

tion with different constraints. In this section we cover only the basics of physically-based
rendering, differentiable rendering and volume rendering. Whenever possible, we provide
references to relevant books and surveys that we invite the reader to consult for further
details.

In rendering, the goal is to produce an accurate 2D image of a 3D scene as seen by a virtual
camera. It can be desired to achieve a photo-realistic image, but artistic visualizations or
stylized images are also often required for applications such as video games and 3D animation
movies. At its core, rendering is a light transport simulation that computes how light bounces
in a scene starting from emitters and eventually reaching the viewer’s eyes or camera’s sensor.
Although some specific applications deviate slightly from this definition, most rendering
techniques achieve their goal through some approximation of this light transport simulation.
Indeed, different applications put different constraints on the rendering algorithm which in
turn puts constraints on the quality of the simulation approximation. A video game, for
example, will usually require an image to be rendered at an interactive frame-rate such as 60
frames-per-second whereas a movie production may have access to a much larger time and
compute budget allowing for more complex simulations.



Fig. 2.1. Illustration of the different quantities involved in the rendering equation. The
outgoing radiance Lo is computed along the vector −→ωo and the incoming radiance Li along
the vector −→ωi . The BRDF function fr is defined on the hemisphere (in purple) around
normal n at point x. While in this simple example, the light path from the emitter to the
viewer/camera consists of a single bounce, it is usually the case that light paths consist of
many more bounces.

2.1.1. Physically-based Rendering

In his seminal 1986 paper [25], Kajiya introduced the rendering equation to generalize a
variety of rendering algorithms and to provide a mathematical foundation for the simulation
of light transport. The rendering equation proposed in that paper is as follows:

Lo(x,−→ωo) = Le(x,−→ωo) +
∫

Ω
fr(x,−→ωi ,−→ωo)Li(x,−→ωi) (−→ωi · n) d−→ωi (2.1.1)

Note that we ignore here and throughout this thesis the effect of varying light wavelengths
for clarity and simplicity. Computations are usually carried out at a specific wavelength.

This equation relates the outgoing radiance Lo at a surface point x in the direction −→ωo to
the emitted radiance Le at that point and to the integral of the incoming radiance Li over
a hemisphere Ω around the surface normal n. n, −→ωo and −→ωi are unit vectors representing
directions. The output Lo is a function of the surface point x and view direction −→ωo. In
practice, the surface point x is found by taking the first intersection with the scene of a
ray that starts from the viewer and that goes in the direction −−→ωo. Figure 2.1 illustrates
these quantities for a simple light path that connects an emitter with the viewer through a
single bounce on a flat surface. The integrand part of this equation represents the radiosity,
or in other words the flux (power) leaving the surface per unit area for a given direction
−→ωi . It consists of three terms that are multiplied together: the Bidirectional Reflectance
Distribution Function (BRDF), the incident radiance and the cosine foreshortening term.

The BRDF fr is a function that describes how light gets reflected off a surface. It varies
based on the material properties and albedo at the intersection point on an object. The
BRDF can be seen as describing the ratio of how much energy is absorbed versus reflected
by the surface for light coming in from direction −→ωi and leaving in direction −→ωo. Some
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Fig. 2.2. Illustration of the path tracing process. Paths from the viewer to the emitters are
traced by recursively finding intersection points of rays with the scene and tracing more rays
from those points. In this figure, black arrows represent rays traced on the first bounce while
green arrows represent rays traced on the second bounce. Usually the number of bounces is
not limited to two and path termination is instead determined through Russian Roulette.

examples of simple common BRDF functions include the Lambertian BRDF (where ρ is the
albedo)

fr = ρ

π
(2.1.2)

and the Phong BRDF (where α is a scalar that controls the specularity of the material and
· is the vector dot product)

fr = ρ(α + 2)
2π (−→ωi · (2(−→ωi · n)n−−→ωi))α (2.1.3)

The incident radiance Li, as described above, represents the light coming from the scene
to point x from direction −→ωi .

Finally, the cosine foreshortening term (−→ωi ·n) models Lambert’s cosine law which states
that the observed radiosity is proportional to the cosine of the angle between the normal n
and incident light direction −→ωi . Intuitively, this can be seen as the ratio of the projected area
of a flat surface seen at an angle by the eye over the actual area of that surface.

If a surface is not emissive then Le is simply 0.
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Assuming the scene is in a vacuum (i.e., there are no participating media that could
absorb or scatter light outside of object’s surfaces), then this equation can be seen as recur-
sive. Indeed, the incoming radiance Li at a point x from direction −−→ωi is itself the outgoing
radiance from a different surface point x′ that intersects the ray coming out of x in direction
−→ωi . We can therefore use this equation to model light propagation in a scene through any
number of bounces off surfaces which thus allows us to model how light coming from emitters
in the scene can reach the viewer or virtual camera. This process is shown in Figure 2.2.

To render an image from a given point of view, we first need to determine a model for
the virtual camera. In this thesis, we use a simple model where a camera’s position is the
focal point. A camera is then fully defined by its location in space, its vertical or horizontal
field of view (FoV), pixel resolution and a unit vector −→at indicating the direction the camera
is pointing towards. We always assume that the camera is oriented parallel to the ground.
The camera’s aspect ratio can be determined from the pixel resolution. This differs from a
physical pinhole camera where the focal point would be located at a different location than
the camera’s sensor.

The camera’s resolution determines how an image signal is discretized to be stored in a
regular 2D grid of pixels. In a physical camera, each pixel is captured by a light-sensitive
photosite. The same discretization effect is achieved in 3D rendering by integrating the
incoming radiance from the scene over the solid angle subtended by a pixel.

To render a full image, each pixel can therefore be rendered individually (potentially in
parallel) by estimating the integral over the pixel’s solid angle using a limited number of rays
and by estimating Equation 2.1.1 at the intersection of each ray with the scene. In practice,
different approximations are made depending on the application. We present here two of the
most common rendering techniques.

In the rendering technique known as Rasterization, very rough approximations are
made in order to achieve rendering speeds fast enough for real-time scenarios. The integral
over a pixel’s solid angle is estimated using a single ray through the center of the subtended
solid angle. In addition, the integral of incident radiance Li is usually estimated by consid-
ering only directions −→ωi that point towards emitters in the scene. No recursion is performed
and the number of bounces of each ray is therefore limited to 1. To further speed up the ren-
dering process, the scene’s geometry is projected onto the camera’s image plane which avoids
the expensive ray-scene intersection operation that would otherwise be performed for each
pixel of the image. Figure 2.3 illustrates the rasterization procedure. This process is usually
performed on a graphics processing unit (GPU), a device that supports hardware-accelerated
rasterization.

Path Tracing, on the other hand, is a technique that sacrifices speed for physical accu-
racy. Given enough time, a path tracer will converge to the exact solution to the rendering
equation. This is achieved through Monte Carlo integration with importance sampling, a
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Fig. 2.3. The rasterization process. Each triangle primitive in the scene is projected to
the camera plane before being rasterized to the regular grid of pixels. Image from https:
//mtrebi.github.io/2017/02/01/rasterization-i.html

numerical integration method which is used here to approximate both the incident radi-
ance integral and the pixel solid angle integral. This method states that an integral can be
approximated in the following way:

∫ 1

0
f(x) dx ≈ 1

N

N∑
i=1

f(xi)
p(xi)

xi ∼ p(x) (2.1.4)

usingN random xi sampled from the probability distribution function (PDF) p(x). Note that
in the limit whereN →∞ the right hand side of this equation converges to the exact solution.
In path tracing, Equation 2.1.1 is approximated using Monte Carlo integration for each ray
intersection with the scene’s geometry. This means that light paths consisting of multiple
bounces are supported, making path tracing a global illumination system. Nevertheless, this
leads to an infinitely recursive process; a problem that is solved in practice using a method
known as Russian Roulette. In Russian Roulette, each ray has a probability r ∈ [0, 1] of
being terminated after each bounce. The incident radiance computed for each ray that has
not been terminated is then multiplied by 1

1−r . Compared to simply setting a hard limit
on the number of bounces of each ray, this method does not add any bias to the rendered
image.

For more information on physically-based rendering, we refer the reader to the PBR book
by Pharr et al. [52].

8

https://mtrebi.github.io/2017/02/01/rasterization-i.html
https://mtrebi.github.io/2017/02/01/rasterization-i.html


2.1.2. Differentiable Rendering

While renderers solve the forward process of image synthesis, it is often desirable to go
in the reverse direction. A popular approach to solve this backward process is to define
differentiable rendering algorithms so that gradient-based optimization techniques can be
applied. Without any changes, both rasterization and path tracing renderers are naturally
differentiable with respect to material properties assuming a differentiable BRDF. Using an
automatic differentiation library like PyTorch [49], it is therefore straightforward to modify
an existing renderer implementation such that gradients can be computed with respect to
the appearance of objects in the scene. Nevertheless, in some rendering algorithms, this can
quickly become too computationally and memory intensive as the computation graphs that
are generated by automatic differentiation libraries can become very large. Furthermore,
more work is needed to address the problem of differentiability with respect to scene geom-
etry, also known as differentiable visibility. Solving this problem is also required to be able
to compute gradients with respect to camera and light parameters.

There are two sources of discontinuities in the rendering process that prevent computing
visibility gradients. The first is that ray-scene intersections are binary in nature, i.e., object
edges are discrete and can thus be seen as a step function (over which gradients are 0). This
means that the colour of each pixel in the rendered image is not a function of the position of
object vertices. The second source of discontinuity comes from the fact that surfaces being
rendered are usually fully opaque. Gradients with respect to objects occluded by other
objects from the point of view of the camera can therefore not be computed.

OpenDR [36] is the first work to show a general differentiable rasterizer that can dif-
ferentiate with respect to both visibility and material properties. They achieve this by
approximating the gradients with respect to vertex positions using a finite difference ap-
proach. This can be done by applying a Sobel filter on the rendered image while taking into
account extra considerations for pixels that lie on object boundaries.

Neural 3D Mesh Renderer (NMR) [29] proposes a different approximation that is better
suited for use in conjunction with neural networks. They use linear interpolation in the
backward pass only, as shown in Figure 2.4. This results in non-zero gradients to the object
geometry not just from pixels adjacent its boundary but from pixels that are in the general
proximity. The authors show that this is beneficial to neural network training dynamics as
it makes the loss landscape smoother.

Soft Rasterizer (SoftRas) [34] [35] takes this idea a step further by entirely replacing the
step function shown in Figure 2.4 (b) by a smooth approximation: the sigmoid function.
They achieve this by computing the signed distance between each pixel’s position and the
nearest mesh edge in the image plane. This distance is then passed through a sigmoid
function before using the result as an opacity weight. For pixels inside objects, the distance is
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Fig. 2.4. Approximation of the gradients in Neural 3D Mesh Renderer. The forward pass (a)
is the same as a standard rasterizer while in the backward pass, gradients (e) are computed
from a blurred image (d). Image from NMR [29].

positive meaning that surface point is more opaque, while for pixels outside object boundaries
the distance is negative and the surface point is more transparent. For pixels directly on the
boundary, the opacity weight is 0.5. The opacity weights at a given pixel are passed through
a softmax function to determine how much the radiance coming from each mesh polygon
contributes to that pixel’s final colour. This is the first method that addresses both sources
of visibility discontinuities since occluded objects can now also get a gradient signal. While
this process is slower than a traditional renderer since each polygon in the mesh contributes
to the colour of all pixels in the image, it provides non-zero gradients to the object geometry
at every pixel.

More recently, Differentiable Interpolation-based Renderer (DIB-R) [8] proposes a variant
of SoftRas that treats pixels on the inside of objects (foreground pixels) differently than
pixels outside of the objects’ boundary (background pixels) for rendering objects with vertex-
defined colours. Gradients for background pixels are computed using the same trick as
SoftRas except that the opacity weights are now computed by taking the exponential of the
negative distance to the nearest edge. This opacity weight is thus one on object boundaries
and decays to zero when moving away from the object. In DIB-R, foreground pixels are
naturally differentiable since a pixel’s colour is computed through barycentric interpolation
of the face’s vertex colours (a differentiable process itself).
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Similarly, numerous differentiable path-tracing algorithms that support differentiable vis-
ibility have been proposed in recent literature. Li et al. (Redner) [33] and Zhang et al. [73]
propose to split the incident radiance into an interior integral and a boundary integral where
the latter is explicitly sampled. In an approach integrated in the popular Mitsuba2 rendering
software [46], Loubet et al. [38] propose to reparameterize the integrand such that Monte
Carlo sampling is differentiable by performing it relative to an object’s boundary. These
approaches differ from some of the differentiable rasterizers in that all of them attempt to
perfectly match the ground-truth derivatives without considering the effect of a non-smooth
loss landscape on the optimization process and on neural network training.

Finally, some work has also been done to accelerate the gradient computation pass of
differentiable renderers. As discussed earlier, the efficiency of differentiable rendering is
memory-bound as the computation graphs can quickly get very large. This is especially true
of differentiable path-tracing algorithms. In Radiative backpropagation [45], Nimier-David et
al. propose to drastically lower the memory requirements of such algorithms by treating the
backward pass as a transport simulation of partial derivatives. This pass can be computed
in the same way as the forward rendering process, with the only difference that derivatives
are propagated instead of radiance. By removing the memory bottleneck, the authors show
that the rendering speed can be increased by almost two orders of magnitude on current
hardware. Nevertheless, this method does not support differentiable visibility and thus can
only be used to optimize material properties.

For more information on differentiable rendering, we refer the reader to Kato et al.’s
differentiable rendering survey [28] and to the 2020 SIGGRAPH course on the subject [74].

In this section we presented an overview of differentiable rendering techniques applicable
to mesh-based 3D representations. This is by far the most prominent type of representa-
tion used in the field of computer graphics. Nevertheless, as we will see in later sections,
other types of representations may be better suited to inverse graphics applications. Such
representations present different differentiable rendering challenges.

2.1.3. Volume Rendering

Up until this point we have only discussed rendering of scenes that are in a vacuum
and where objects are fully solid and opaque. When either of these two assumptions break,
for example to model smoke or atmospheric effects, one needs to use volume rendering
techniques.

When there is a participating medium in the scene, radiance changes along a ray as
opposed to changing only at intersecting points. There are four mechanisms by which this
change occurs. First, absorption is the process by which the participating medium absorbs
some of the radiance along the ray. Second is out-scattering, i.e., radiance along the ray that
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Fig. 2.5. Illustration of the various quantities involved in volume rendering (Equation 2.1.5).
Pictured here is a single light ray coming from a wall (on the right) towards the viewer/virtual
camera (on the left). The light goes through a participating medium shown with a cloud
icon. For all points along the ray within the cloud, one must compute an integral of the
incident radiance over the sphere S2 shown here in purple.

gets scattered in a different direction. Similarly, in-scattering is the third process where this
time radiance coming from directions other than the ray at hand gets scattered in the same
direction as that ray. Finally, the fourth and last mechanism by which radiance can change
along a ray is emission where the participating medium produces light itself.

Combining these four systems together we get the following volume rendering equation:

L(x,−→ω ) =Tr(x,xz)L(xz,−→ω )

+
∫ z

0
Tr(x,xt)σa(xt)Le(xt,−→ω )dt

+
∫ z

0
Tr(x,xt)σs(xt)

∫
S2
fp(xt,−→ω ′,−→ω )Li(xt,−→ω ′)d−→ω ′dt

(2.1.5)

where x and −→ω define the ray, z is the length of that ray, t is a distance along the ray,
L is the output radiance, Le is the emitted radiance, Li is the incident radiance, σa is the
absorption coefficient, σs is the scattering coefficient, S2 is the unit sphere and fp is the
phase function. The phase function is the volume equivalent of the BRDF on surfaces as it
defines the scattering behaviour of light in the medium. Tr(xi,xf ) is the transmission, or in
other words the ratio of how much light makes it through the path xi → xf . It is defined by
the following equation:

Tr(xi,xf ) = e−
∫ ||xi−xf ||

0 σt(t) dt (2.1.6)

where σt is the extinction coefficient and is the sum of the absorption coefficient σa and
the (out-)scattering coefficient σs. It therefore represents the total loss of radiance per unit
distance). In a homogeneous medium, σt is constant and Equation 2.1.6 can be simplified
to:
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Fig. 2.6. Illustration of the volumetric path tracing process. To estimate scattering, paths
are chosen in the volume by randomly sampling a direction and distance at each scattering
step.

Tr(xi,xf ) = e−σt||xi−xf || (2.1.7)

The first term in Equation 2.1.5 corresponds to the absorption and out-scattering mech-
anisms (the losses of light), the second to the emission of the participating medium and the
third to the in-scattered radiance. The various quantities in this equation are illustrated in
Figure 2.5.

In practice and similarly to surface rendering techniques presented in Section 2.1.1, this
equation is also approximated in various ways. For example, the scattering term can be
entirely omitted or an unbiased estimate can be obtained, although at significant computa-
tional cost, through Monte Carlo integration. This volumetric path tracing process is also
recursive, similarly to the traditional surface-only path tracing method described in Sec-
tion 2.1.1. Figure 2.6 illustrates the global view of volume rendering and how it can be
approximated using path tracing.

For more information on volume rendering, we refer the reader to the volume scattering
chapter of the PBR book [52].

In a scene made entirely of various participating media, the two sources of discontinuity
explored in section 2.1.2 that caused issues with differentiable rendering do not exist as there
are no sharp object edges. In this case, the rendering process is naturally differentiable.

2.2. 3D Representations for Deep Learning
As explained in the previous section, fully volumetric renderings are naturally differen-

tiable. For this reason, volume representations of scenes have been explored as alternatives to
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Fig. 2.7. Example of a bunny model represented using a triangle mesh.

mesh-based representations in deep learning applications. This raises the question: What is
the best 3D representation for inverse graphics tasks? In this section, we present an overview
of the most popular 3D representations in the recent literature and weigh their pros and cons
in the context of unsupervised 3D deep learning.

2.2.1. Meshes

Polygon meshes are by far the most common 3D representation in the field of computer
graphics. They are the default in the video game and computer animation industries, and
are the primary support focus of most rendering, animation and 3D modeling software.
More specifically, triangle meshes are the most widespread type of polygon mesh and most
hardware-accelerated rasterizers primarily support triangle primitives. Meshes are a surface
representation. They do not model volumetric quantities although the surface is typically
closed and thus contains a volume. An example of a model represented using a triangle mesh
is shown in Figure 2.7.

Meshes consist of three components: vertices, edges and faces. For example in a triangle
mesh, the triangles form the faces and share edges and vertices with neighbouring trian-
gles. These components are mathematically connected through Euler’s formula (for closed
surfaces):

V + F − E = 2− 2g (2.2.1)

where V is the number of vertices on the mesh, F is the number of faces and E is the number
of edges. g is the genus of the surface. In simple terms, this is an integer representing the
number of “holes/handles” the surface contains. For example, a sphere has genus 0 while a
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Fig. 2.8. Example of a chair model represented using a point cloud.

coffee mug has genus 1. All surfaces that share the same genus number can be reshaped into
each other. Following the same example, a coffee mug can be smoothly morphed into a torus
shape (which also has genus 1) without changing the connectivity/topology of the mesh. This
relationship is known as homeomorphy. Similarly, the genus of a surface cannot be changed
without changing the connectivity of the mesh. This follows from Equation 2.2.1.

Mathematically, the vertices and edges in a mesh form an embedded undirected graph.
The edges in the graph determine the connectivity of the mesh. This is unaffected by changes
in any or all of the vertices’ position in space.

Recent work such as SoftRas [34] [35] and DIB-R [8] have successfully used triangle
mesh representations in combination with differentiable rasterizers to infer a 3D model of an
object from a single color or silhouette image. They achieve this by using neural networks
that output vertex positions for a predefined mesh. Nevertheless, as discussed above, since
the connectivity of such a mesh does not change these models are limited to model objects
that have a fixed genus — usually 0. The main advantages of polygon mesh representations
is their very widespread support and number of pre-existing software and algorithms for
downstream tasks (including rasterization for real-time rendering). Furthermore, compared
to other types of representations, meshes explicitly model surfaces and thus directly provide
an object’s boundary.

2.2.2. Point Clouds

A different type of 3D representation is point clouds, a sparse representation where scene
information is stored in an unordered set of points. Typically, this is used as a surface
representation like polygon meshes by storing only surface points in the set. Nevertheless,
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point clouds can also be used to represent volumes. This comes at a very high memory
cost because of the curse of dimensionality — a much larger number of points is required
to achieve similar density in 3D as the surface (2D) representation. For this reason, we
only explore in this section point clouds used as to model surfaces. An example of a model
represented using a point cloud is shown in Figure 2.8.

With each point can be stored some additional data, typically in the form of a fixed-
length vector. This allows easy storage of the whole point cloud in a single matrix, and
makes it easily compatible with tensor computation libraries such as PyTorch [49]. For
example, points can store color or a set of material properties. In some machine learning
applications, a learned latent vector is associated to each point such as in PointNet [53] and
PointNet++ [55]. Both of these methods employ a special neural network architecture to
explicitly handle the unordered nature of points in the point clouds they use as input. Their
core idea is to process each point in parallel using a shared neural network and to then use
a permutation-invariant operator such as max() over the learned latent vectors produced as
outputs for each point. Other methods propose to attach latent descriptors to points in an
effort to learn a machine learning model that can render photo-realistic images from these
augmented point clouds [1].

Another useful property to store for each point is the normal vector of the surface at
that point. Having this value makes it much easier to then reconstruct the surface from
the sparse set of points with techniques such as Poisson Surface Reconstruction [30]. When
surface normal information is stored in point clouds, the points in the representation may
be named surfels [51].

Point clouds are a flexible representation as they are not limited by topology and genus
like meshes. They can represent any surface and are also easy to output from a neural
network since they can be stored as a fixed-size matrix. Nevertheless, this assumes that
the number of points in the set is predetermined and kept constant. In generative machine
learning models using this form of output, this means that all generated objects will be
represented using the same number of points. This method thus does not take into account
that objects with more complex geometry require a more dense sampling of points for an
accurate representation. Some methods get around this issue by modelling the surface as a
distribution from which points can be sampled. This is the case in PointFlow [69] where a
normalizing flow model is employed to learn a generative model of point clouds.

Compared to other types of representation, point clouds often require a lot of memory for
accurate representations. Additionally, it is expensive and not trivial to reconstruct surfaces
from a point cloud, particularly if the points are very sparse. They can, however, represent
surfaces of any topology and are neural-network friendly.

Rendering point clouds can easily be done in a similar fashion as rasterization of polygon
meshes. Each point in the set can individually be projected (splatted) to the camera plane
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Fig. 2.9. Example of an airplane model represented using a voxel grid.

to form the final image. Nevertheless, a size for each splat on the camera plane needs to be
determined. This can be a fixed constant or can be computed in order to ensure that there
are no holes in the final image, especially in more sparse regions. To make this rendering
process differentiable and therefore to allow the use of point cloud representations in inverse
graphics applications, several approaches have been explored. Insafutdinov et al. [22] propose
to model splats as gaussians instead of circles of fixed size that lead to discontinuities. In
Differentiable Surface Splatting, Yifan et al. [70] propose an alternative approach based on
screen space elliptical weighted average filtering.

Interestingly, an RGB-D image (an RGB image with an associated depth map) can be
seen as a point cloud. The depth value for each pixel can be used to back-project each
pixel along their corresponding camera ray to a separate point in 3D space. This is an idea
explored in Pix2Shape [56] where a generative model conditioned on the camera position
outputs a fixed number of points corresponding to the number of pixels in the target image.
This allows outputting a point cloud that is always the same size while making sure points
are visible from the camera point of view. Nevertheless, the fact that only part of the scene
geometry is modeled makes it hard to extract complete surfaces and to render while taking
global illumination into account.

For more information about point cloud representations in the field of computer graphics
we refer the reader to the survey by Kobbelt et al. [32].

2.2.3. Voxels

Another type of representation, and one of the first representations that were applied to
3D deep learning, is voxels. The term voxel refers to individual elements in a regular grid
that divides a space into box cells of identical size. The whole representation is thus often
referred to as a voxel grid. Each voxel element can store scalar data such as an occupancy
bit or vector values such as colors or abstract representations. Usually each element’s data
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has the same size as this allows for a particularly efficient storage management system (the
whole grid can be stored in a single dense Tensor). In 3D ShapeNets [68] for example, a
voxel grid is used to store a probability distribution of occupancy values. An example of a
model represented using a voxel grid is shown in Figure 2.9.

Voxel grids’ main advantage over other representations is their simplicity. Their fixed size
and regular grid pattern makes them particularly well suited for deep learning applications.
In particular, voxels are the natural extension to 3D space of 2D images and as such can be
easily used in a convolutional architecture, in this case a 3D CNN. This is exactly what was
done in VoxNet [39] in order to perform 3D object recognition.

The biggest drawback of this representation is the high memory and compute require-
ments. This is exemplified in VoxNet where the authors highlight that the maximum voxel
grid resolution that they were able to process was 323, and in 3D ShapeNets were the reso-
lution used was 303. Although it is now possible to run larger models on newer hardware,
at such a resolution only a very coarse shape can be represented by this grid.

Qi et al. [54] investigate the performance gap between 3D CNNs and multi-view CNNs
and propose multiple improvements to both approaches to bring them closer while improving
upon the state-of-the-art in object classification. In particular, they find that adding an
auxiliary task where the 3D CNN model has to perform classification from a subvolume in
the voxel grid provides a significant performance benefit.

Wang et al. [66] propose a more memory efficient approach by leveraging an Octree data
structure, drawing inspiration from the field of computer graphics. They further design a
convolutional architecture that is able to handle this type of representation.

A final benefit of voxels is that they natively represent volumetric quantities, which makes
them particularly well-suited for use in the inverse graphics pipeline alongside a (naturally
differentiable) volume renderer. Additionally, it is relatively easy to extract a surface out of
an occupancy voxel grid although still at a significant computational cost, especially at high
grid resolutions.

2.2.4. Implicit Representations

Finally, the last category of representations that we will present here is implicit repre-
sentations. This type of representation has gained a lot in popularity in the past couple
of years because of the visually impressive results it produced and because of its numerous
benefits. These include compactness in terms of memory, the fact that all topologies can be
represented and that it can efficiently model both volumetric quantities and surfaces.

More specifically, we are interested here in neural implicit representations, where the
representation is stored as the weights of a neural network. This neural network is typically
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a Multi-Layer Perceptron (MLP) with learned parameters θ and its storage requirement is
usually under 10MB.

Implicit representations can model surfaces as implicit surfaces. These are a well defined
and explored concept in both the fields of mathematics and computer graphics. A surface is
defined as the zero level-set of a function f : R3 → R that maps a coordinate in space x to
a real value and is thus defined by the following equation:

f(x) = 0 (2.2.2)

While the output value of this function outside of the zero level-set can be arbitrary, in
computer graphics this is usually interpreted as a signed distance, making f a signed distance
function (SDF). In this type of function, the output value at a point in space represents the
euclidean distance to the nearest surface. Assuming that the surface is closed, the value
is also given a positive sign if the point lies inside the surface, and a negative sign if the
point lies outside of it. This formulation is used in the work by Park et al. (DeepSDF)
[48] where a neural network is trained using direct 3D supervision to represent the signed
distance function of a given scene. Additionally, DeepSDF explores the use of an auto-
encoder architecture to create a generative shape model. In this model, the decoder neural
network f has learned parameters θ and the coordinate input x is augmented with a latent
code l ∈ L:

fθ : R3 × L → R (2.2.3)

In Sign Agnostic Learning (SAL), Atzmon et al. [3] [4] propose an alternative to the
problem that approaches such as DeepSDF requires ground truth signed distance functions
which are hard and expensive to compute. Their approach is able to accurately learn a signed
distance function only from a sparse surface point cloud input, with or without surface normal
information. Finally, Davies et al. [10] explore in more detail how a neural network can be
trained to overfit the SDF of a single object or scene.

Instead of a signed distance function, one can choose to model implicit surfaces using an
occupancy function f : R3 → {−1,1}, where the output is discrete and is either positive or
negative 1. A positive value means that the point lies inside of the surface. This function
definition can be slightly altered to allow for a continuous output in [−1,1] which makes
it better suited for use in neural networks. This is the formulation used in the Occupancy
Network (OccNet) paper by Mescheder et al. [41]. In OccNet, the neural network is trained
using 3D supervision in the form of a point cloud with ground truth occupancy values.
Using a dataset of 3D meshes from which they are able to extract occupancy values in
random points in space, OccNet is able to learn a variational autoencoder model for basic
shape categories like chairs. The use of 3D supervision made it possible to train this model
without having to perform any differentiable 3D rendering.
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Fig. 2.10. Example photo-realistic images rendered from viewpoints unseen during training
using the NeRF neural implicit representation. Image taken from NeRF [42].

Neural implicit representations can have more than one output and as such can be used to
additionally model various volumetric quantities. In Scene Representation Networks (SRN)
[63], the neural network outputs a latent vector that is used by a learned linear layer to
produce a final rendered colour for a given pixel in the target image. A similar final rendering
layer is applied in Pixel-Aligned Implicit Functions (PIFu) [58] but using the latent vector
is generated individually for each pixel in the input image of an autoencoder configuration.
In Neural Radiance Fields (NeRF) [42], the neural network f outputs the emitted radiance
Le in addition to the absorption coefficient σa at coordinate x. This makes it possible to
easily produce a differentiable rendering of the scene by solving the following equation using
numerical integration (ray marching):

L(x,−→ω ) =
∫ z

0
Tr(x,xt)σa(xt)Le(xt,−→ω )dt (2.2.4)

which corresponds to the second term in the volume rendering equation (2.1.5). Using this
technique, the authors of NeRF show that it is possible to learn a 3D representation of a full
scene using only a collection of RGB images as supervision and that it is possible to produce
photo-realistic renderings from this representation for novel viewpoints. See example images
rendered using NeRF in Figure 2.10. In Generative Radiance Fields (GRAF) [60], the
idea proposed by NeRF is further enhanced by incorporating it in a generative model, thus
making it possible to generate novel scenes and to store multiple scenes in the parameters of
a single neural network. In X-Fields by Bemana et al. [6], the neural network architecture
from NeRF is augmented to accept additional inputs such as time or light coordinates. By
training this network using a collection of images with time and light coordinate labels, it
is possible to store a full scene representation along with its animation over time and its
behaviour under light variations.

Another take on this representation is to use multiple neural networks, each representing
a different surface “patch”. The union of these patches can then be interpreted as the full
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surface of the represented object. This is explored in AtlasNet by Groueix et al. [18] and
subsequent work by Deprelle et al. [12].

Despite their numerous advantages, neural implicit representations have a few downsides.
Notably, as the name suggests, it is not straight-forward to extract an explicit surface from
this representation. In general, the problem of finding the zero level-set of a function repre-
sented by a neural network is non-trivial. Most work rely on a surface extraction technique
called marching cubes [37] for downstream tasks that require a mesh representation such
as real-time rendering. This method is computationally expensive and results in a mesh
with limited resolution. In addition, generating a rendering for this representation such as
in NeRF is very slow. On a modern top-of-the-line GPU, a single image can take over a
minute to render at full resolution because of the slow ray marching computation that needs
to be individually computed for each pixel (Equation 2.2.4). This makes neural implicit rep-
resentations more difficult to use in certain scenarios such as video games where one needs
to render the scene at an interactive frame-rate. In addition, it makes training these neural
networks very slow and computationally expensive.

2.3. Unsupervised Learning
Unsupervised (or self-supervised) learning differs from supervised learning in that the

data used for training does not require labels. In other words, only the inputs are used for
learning. This makes it possible to train models using vastly more data, especially in scenarios
where labelled data is costly to acquire. This is the case for inverse graphics applications,
where generating a large database of photo-realistic 3D renderings from complex 3D scene
descriptions requires very large amounts of compute power due to the use of expensive
unbiased rendering algorithms such as path tracing. Not only that, but just the process
of creating (diverse) realistic scene descriptions requires many work hours for 3D modeling
artists. For these reasons, we would like to find a solution to the inverse graphics that can
be trained in an unsupervised fashion, using one of the generative models described below.
Namely, in this section we present an overview of two of the most widely-used generative
models: autoencoders and generative adversarial networks.

Before moving any further however, it is important to have a discussion on the different
meanings of the word unsupervised. Indeed, not all unsupervised methods are equal as
not all methods described as unsupervised actually use no amount of supervision. This is
an unfortunate consequence of paper authors branding their inverse graphics approach as
“unsupervised” because it uses one less source of supervision than previous approaches. For
example, and referring back to the inverse graphics pipeline diagram in Figure 1.1, some
methods that improved upon predecessors by removing the need for direct 3D supervision
(images labelled with a full 3D model) were said to be unsupervised but actually still required
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camera information supervision like camera position and view direction. There are many
other ways that some varying amounts of supervision can be used during the learning process,
for example by using multiple views of the same scene during training. It is worth mentioning
that there is value in finding ways to remove any amount of supervision for the inverse
graphics task, although some types of supervision are more technically challenging to remove
than others. In fact, most methods to this day still require camera supervision and very few
are approaches that are actually fully unsupervised. In this thesis we refer to methods that
— while not fully unsupervised — use types of supervision that are either considered minimal
or easy to acquire as weakly supervised. The state of the art report on neural rendering by
Tewari et al. [65] compares an extensive list of inverse graphics approaches on the type of
supervision they use as well as their inputs, outputs and other useful categorizations.

We refer the reader to the Deep Learning book [16] for more information on unsupervised
learning and generative models.

2.3.1. Autoencoders

An autoencoder is a simple unsupervised machine learning model. Its architecture con-
sists of an encoder neural network E and a decoder neural network D. The input is passed
through the encoder before passing the result to the decoder. The system is trained to learn
to reproduce a given input according to the following objective:

min
E,D

E [L(x, D(E(x)))] (2.3.1)

The encoder E takes as input x and its output is passed as input to the decoder D. L
is the reconstruction loss we want to minimize and can for example be the MSE loss or – if
the input/output values are in the range [0,1] – the cross entropy loss.

Typically the size of the output of E is smaller than that of its input x. This creates
an information bottleneck which is not only useful for compression, but also for learning
meaningful representations.

A variational autoencoder (VAE) is a version of an autoencoder introduced by Kingma
and Welling [31] that better models the training set distribution and makes it possible to
generate new, unseen samples. The idea is that, in order to turn the autoencoder into a
generative model, we would like to be able to take random samples in the latent space of the
autoencoder and pass them through the decoder network to generate new data. Nevertheless,
in a regular autoencoder we do not have a mechanism for sampling the latent space. The
solution introduced in VAEs is to have the encoder output a distribution from which a
random sample is taken before passing through the decoder. This distribution is usually
chosen to be a diagonal Gaussian model, meaning that for each element in the latent space
the encoder needs to output two parameters: the mean µ and the standard deviation σ.
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Then, to be able to generate unseen samples, a regularizer is added to the loss function that
encourages the latent space to match a reference distribution. This reference distribution
can be sampled at test time to generate novel samples. The new objective is thus of the
form:

min
E,D

E [L(x, D(E(x)))− λDKL(E(x)||P)] (2.3.2)

DKL is the Kullback–Leibler (KL) divergence, a formula for computing the difference
between a given distribution and a reference distribution:

DKL(p(z)||q(z)) =
∫
q(z) log

(
q(z)
p(z)

)
dz (2.3.3)

where λ is a scalar hyperparameter used to control the importance of the KL divergence
term. P is the distribution of the latent space and is usually chosen to be a Gaussian
distribution N with mean 0 and variance 1. In this case, we want the encoder to also output
a normal distribution, defined by µ and σ. The KL divergence term can then be computed
analytically:

DKL(N (µ(x), σ(x))||N (0, 1)) = 1
2 E

[
σ(x) + µ(x)2 − 1− log(σ(x))

]
(2.3.4)

Additionally, the process of sampling the Gaussian distribution N (µ(x), σ(x)) can be
done differentiably using the “reparameterization trick”. This consists of taking a random
sample from the unit Gaussian distribution N (0, 1), then multiplying it by σ(x) before
adding µ(x). This allows backpropagating the gradients through µ and σ while still getting
unbiased samples.

Autoencoders can be useful for representation learning, but also other tasks such as com-
pression and denoising. They are also applicable in various settings, for example in computer
vision where the encoder and decoder models are typically convolutional neural networks such
as U-Net [57] that progressively shrink the feature map sizes through pooling layers in the
encoder before progressively re-expanding them back to the original image resolution in the
decoder. In the context of inverse graphics, one can see the training pipeline illustrated in
Figure 1.1 as a type of autoencoder where the decoder is a differentiable renderer and where
the hidden representation consists of a scene description and is thus easily interpretable.

2.3.2. Generative Adversarial Networks

Generative adversarial networks (GANs) [17] are another type of generative model that
has been shown to generate sharper images than VAEs which often suffer from blurriness
caused by the choice of loss function. This type of model relies on an adversarial game
between a generator and discriminator. The discriminator is trained to distinguish between
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real and fake (generated) data points. At the same time, the generator is trained to produce
data that fools the discriminator from random samples of a reference distribution. Therefore,
as the discriminator gets better at differentiating between real and fake data, the generator
also has to keep improving the quality of its output in order to deceive the discriminator.
This adversarial game can be formalized mathematically as the following minimax objective
function:

min
G

max
D

E
x∼Pr

[log(D(x))] + E
x̂∼Pg

[log(1−D(x̂)] (2.3.5)

where G is the generator, D is the discriminator, x is a data point from the training dataset
Pr and x̂ = G(z) is a sample created by the generator using a random sample z from a
reference distribution p(z). In practice, this objective is optimized by alternating updates
to the generator and to the discriminator networks. The following two objectives are thus
optimized in alternation:

max
D

E
x∼Pr

[log(D(x))] + E
x̂∼Pg

[log(1−D(x̂)] (2.3.6)

min
G

E
x̂∼Pg

[log(1−D(x̂))] (2.3.7)

GANs are not perfect, however, as they suffer from instability issues due to the careful
balance that needs to exist between the discriminator and generator networks. Additionally,
GANs can suffer from mode collapse where the generator learns to model only a subset of
the true data distribution and ignores other, perhaps more difficult to represent, data points.

To overcome mode collapse, Arjovsky et al. introduce WGAN [2] in which they derive a
new training objective based on Earth-Mover’s distance. The new objective is as follows:

min
G

max
D∈D

E
x∼Pr

[D(x)]− E
x̂∼Pg

[D(x̂)] (2.3.8)

where D is the set of 1-Lipschitz functions. To ensure this, the authors propose to clip the
weights of the discriminator to be within some compact space [−c, c].

Nevertheless, this weight clipping approach can lead to vanishing gradient problems, as
well as a skewed distribution of weights in the discriminator. For this reason, Gulrajani et
al. propose WGAN-GP [19] in which gradient clipping is removed in favour of a gradient
penalty term that is added to the objective:

λ E
x̃∼Px̃

[
(||∇x̃D(x̃)||2 − 1)2

]
(2.3.9)

where λ is a scalar hyperparameter used to control the impact of the gradient penalty term.
Px̃ is the set of points along the line segment connecting x and x̂. The sample x̃ is taken
with uniform probability.
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Fig. 2.11. Comparison of a traditional GAN architecture (a) with the approach proposed
in StyleGAN (b). The latent code z is first passed through a series of fully connected
layers FC before being introduced in the generator at each upsampling stage through AdaIN
normalization. The block A is a learned affine transformation and the block B is a learned
per-channel scaling factor. Image taken from StyleGAN [27].

Compared to VAEs, GANs do not have an efficient mechanism for inferring a latent code
from a data point and thus cannot be directly used for applications such as photo editing.
A solution to this is proposed in two concurrent works: Adversarially Learned Inference
(ALI) [14] and Adversarial Feature Learning (Bi-GAN) [13]. The idea is to add an encoder
network that takes a data point x as input and outputs its latent representation z. The
discriminator is also modified to take the latent representation z as an additional input. The
discriminator is therefore now tasked with determining whether a latent variable and data
point pair. Only in the case of a real data point (from the dataset) is the latent variable
inferred through the encoder network. This type of model can be trained with an additional
reconstruction loss similarly to how autoencoders are trained.

In StyleGAN, Karras et al. [27] propose a GAN architecture based on ideas from style
transfer approaches to produce high quality image outputs. Instead of using a traditional
architecture where the latent code is mapped to a small 2D feature before being upsampled in
multiple stages to reach the output resolution, their approach upsamples a learned constant
2D feature. The latent code is instead introduced through Adaptive Instance Normalization
(AdaIN) blocks, an idea from style transfer literature. This work builds on Progressive
GAN [26] and shares the idea of training the generator to output images at increasingly
higher resolutions, starting from something small like 4×4 or 8×8 and doubling at each step
by adding an upsampling+convolution block until reaching the desired output resolution.
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The full architecture of StyleGAN and comparison to traditional approaches are shown in
Figure 2.11.

One other aspect of GANs that is important to mention is the difficulty of finding good
performance metrics to evaluate and monitor them. Indeed, as the data generated cannot
be directly compared to the training dataset, and since the generator and discriminator
performance keeps shifting as both models train, it is non-trivial to get meaningful perfor-
mance scores. To address this problem, Salimans et al. propose the Inception score [59]
where a pretrained Inception model is used to evaluate the quality of the generated images
as well as their diversity. Heusel et al. propose the Fréchet Inception Distance [20] where,
as an improvement over the Inception score, the statistics of the real data are compared to
the statistic of the synthetic samples.

In this work we explore how unsupervised learning, differentiable rendering and the choice
of 3D representation can be combined to address the problem of unsupervised inverse graph-
ics. Over the next two chapters we describe two novel methods using different 3D represen-
tations (surfels and a new Voronoi-based representation), differentiable rendering algorithms
and unsupervised learning architectures (GAN and autoencoder).
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Chapter 3

Unsupervised Depth Estimation from Natural
Images

3.1. Introduction
While the goal of inverse graphics is to obtain an explicit 3D representation of a scene

from a single natural image, the explicit nature of the representation is not always required
for downstream tasks. Using an implicit representation in an architecture designed with a
specific task in mind can simplify the challenge at hand, at the cost of adaptability to other
applications. Inferring such a representation for a single natural image can therefore be seen
as a sub-problem of inverse graphics. If one can solve this problem, others can then think
about how to either 1) extract an explicit 3D representation out of the implicit one, or 2)
improve the architecture to directly output an explicit representation.

In this work, we explore a novel model architecture to perform both novel-view synthesis
and monocular depth estimation in a fully unsupervised manner. Our approach represents
the full scene implicitly as a latent code and the weights of a neural network which is decoded
for a given camera pose into an explicit representation (surfels) of the visible portion of the
scene. This mixture of implicit and explicit representations allows us to directly obtain a
depth map of the scene from a given point of view but makes it difficult to retrieve a full 3D
mesh model of the entire scene including occluded or out-of-view parts. We view this goal
as a significant step towards unsupervised inverse graphics.

Our approach, inspired by previous work, attempts to disentangle a scene’s identity from
its pose by forcing the network at training time to generate an image from a representation
that has been transformed through a random rigid-body transformation. Unfortunately,
while our approach is able to generate good novel views on a synthetic dataset consisting of
many images of the same scene, it fails at generating reasonable depth maps and novel views
on a more complex dataset of natural images of bedrooms. We explore possible explanations



for the failure modes of our approach and compare our work to the successes of concurrent
approaches.

In this chapter, we begin by situating our work in the context of previous works in
Section 3.2. We then present our method in Section 3.3, followed by our results in Section 3.4.
We conclude with a short discussion and conclusion of our findings in Section 3.5.

3.2. Preliminaries
Before delving into the project idea and method, we present where it comes from and

position it in the context of the state of the art in unsupervised inverse graphics (at the
time). This project idea stems from a couple of previous work, namely Pix2Shape [56] and
HoloGAN [44]. In this section we provide a detailed view of both of these papers. The
techniques used in these work and explained here are used as a starting point for us to build
and improve upon and are thus critical to understanding our contribution.

3.2.1. Pix2Shape

In Pix2Shape, Rajeswar et al. [56] propose a novel approach towards unsupervised 3D
scene understanding from a single image. Their method is based on a neural network that
is given a latent representation of a scene and a camera viewpoint to learn to output a
surfel representation of the visible part of scene from this viewpoint. This approach can
be categorized as weakly supervised since, although it does not require any 3D geometry
supervision, it requires the lighting and materials in the scene to be fixed and known as well
as the camera position to be given. Additionally, this method relies on the assumption that
the world is composed of piece-wise smooth 3D elements. Given all these limitations, the
authors only test their approach on synthetic scenes and leave a potential extension of this
work for natural images to future work.

Nonetheless, their method was a first step in the direction of 3D scene understanding
from natural 2D images. It showed that it is possible to leverage prior knowledge about the
image formation process by using a differentiably renderer to tackle the task of unsupervised
single image 3D understanding. Simply from lighting queues coming from the differentiable
renderer is the neural network able to learn an accurate 3D scene representation in order to
perform novel view synthesis and depth estimation from a single image.

The Pix2Shape approach is summarized in Figure 3.1. The architecture employs a GAN
with an inference mechanism based on ALI [14]. An input image can therefore be passed
to the encoder network from which a latent code is obtained. At test time, this latent code
can be passed to the decoder (generator) network and differentiable renderer along with a
camera viewpoint in order to obtain a novel view of the scene inferred from the input image.
This model is trained end-to-end on a synthetic dataset consisting of pairs of viewpoints
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Fig. 3.1. Overview of the training setup of Pix2Shape. The model is based on the ALI
framework [14] for adversarial inference and is trained end-to-end using a dataset of images
with camera pose labels. Image from Pix2Shape [56].

and images rendered from randomly generated scenes (without ever taking multiple images
from the same scene). These scenes consist of a room with random primitive shapes. A
second dataset generated using random ShapeNet [7] objects is also used to test the model
on more complicated geometry. The lighting and material properties for all scenes is fixed
and known.

The decoder is conditioned on the camera pose and generates an explicit surfels rep-
resentation of the visible part of scene from a given viewpoint. Surfels consist of a triple
(p,n, ρ) where p is the world position, n is the surface normal and ρ is the albedo of the
material, chosen to be diffuse. The surfels are generated in the camera coordinate system
meaning that only one surfel needs to be generated per pixel in the output image. Also,
since the material properties are constant and fixed throughout the scene, the decoder only
needs to output a depth value for each pixel (a depth map). From these values the position
p can be computed by taking the points along camera rays for each pixel at the distance
specified in the depth map. Additionally, surface normals n can be estimated using a first
order approximation, leveraging the assumption that surfaces are locally planar. This way
of estimating surface normals also removes a potential source of ambiguity since otherwise
a normal could be learned for each surfel that perfectly replicates the target image but that
is inconsistent with the output depth map.

The differentiable renderer takes the surfels representation, the camera pose and the scene
lighting as inputs and produces a rendering of the scene using a differentiable approximation
of the rendering equation (2.1.1). Since there is exactly one surfel per pixel in the output
image, each pixel can be rendered individually and in parallel, making this process really
fast.

This model has several possible applications. As previously mentioned, it can be used for
novel view synthesis, but also for 1) manifold exploration by taking random samples in the
latent space, 2) image interpolation in the scene domain by interpolating between the latent
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codes inferred from each image, 3) conditional scene generation by training, for example,
a model using the ShapeNet dataset [7] and conditioning the decoder on the shape class,
and 4) 3D scene understanding as demonstrated by the authors on a novel task akin to IQ
tests named 3D-IQTT in which the model has to correctly classify which of three images
corresponds to a rotated version of the object shown in a separate image.

Interestingly, in their work the (full) scene representation is actually the latent code,
which, when combined with a trained decoder network, can be used to visualize the envi-
ronment from any viewpoint. Surfels are only used as an intermediate representation for
the purpose of rendering the scene in a physically accurate fashion. This type of implicit
representation has the downside that the output view of the scene is not guaranteed to be
consistent between different views if the decoder network has not properly disentangled the
scene identity and camera pose.

Also of particular interest, a by-product of this method is an efficient depth estimation
method. Indeed, since the decoder effectively outputs a depth map, this model can be used
to perform single-image depth estimation (and compared to competing approaches on this
task), and can perform it in a weakly supervised setting, without the use of ground truth
depth maps or LiDAR point clouds as is often used in other work.

3.2.2. HoloGAN

In HoloGAN, Nguyen-Phuoc et al. [44] introduce the first fully unsupervised 3D scene
understanding generative model that works on natural images. Their approach is able to
generate novel views of a scene inferred from a single RGB image. The model is trained in an
end-to-end manner on a dataset of natural images of a certain object/shape. The authors did
not test their approach on a training set consisting of images from multiple different object
classes. Moreover, the models trained in their work only support camera poses that lie on
the surface of a spherical cap and that always look at the center of the object. Therefore,
for the models tested in this paper, it is not possible to generate novel views from arbitrary
viewpoints.

Despite these limitations, their work significantly pushed the boundaries of what was
possible to learn from a collection of unlabelled images of a certain type of object. This
is especially true since the model successfully learned a 3D understanding for these objects
without having access to multiple images of the exact same item viewed from different
viewpoints. Where a human would typically go through multiple steps of reasoning to
identify correspondences between images and disentangle the style from the shape, this
model learned everything implicitly in the weights of a single neural network.

Figure 3.2 shows the overall architecture of the HoloGAN approach. This is a generative
model without an inference mechanism that is based on the architecture of a popular and
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Fig. 3.2. Model architecture of HoloGAN. This generative model is based on the Style-
GAN [27] where the latent code is introduced through AdaIN layers similarly to style transfer
approaches. A voxel representation is first learned before being randomly rotated and pro-
jected down to 2D, from which a final image is generated. Image from HoloGAN [44].

effective GAN work: StyleGAN [27]. This means that the latent code z is introduced through
the use of adaptive instance normalization (AdaIN) layers at various layers in the model.
The architecture thus consists of a learned constant tensor of size 4×4×4×512 followed by
a series of upscaling 3D convolution with AdaIN blocks before going through a rigid-body
transformation block. The resulting rotated 3D representation is then passed through a
couple more 3D convolution layers to allow the model to learn perspective transformation
(enabling the use of images taken using different cameras and lenses). After that a learned
projection unit is employed to reduce the dimensionality of the hidden representation by one.
Finally, a series of 2D convolution blocks with AdaIN layers are used to generate the final
image.

As mentioned before, the only rigid-body transformation tested in this work is the rota-
tion around the origin although this process should be applicable to other transformations
such as translation. The rotation is achieved by rotating the voxel grid (which at this state
has reached size 16× 16× 16× 64) before performing trilinear resampling to get a new axis-
aligned grid. Note how the size of the voxel grid is limited (due to memory and computation
constraints of voxel grids). This limits the capacity of this approach to model fine details
prior to the 2D convolutional layers. The rotation parameters are randomly sampled within
a range that is hand-picked for each dataset. For example, using CelebA, a dataset of human
faces, the azimuth rotation range is chosen to be [220,320] degrees and the elevation range
[60,95] because there are no images of the backside or top of heads in this dataset. This ran-
dom rotation transformation, which is applied at training time, is what pushes the network
to disentangle between pose and identity as the model needs to learn a representation that
will result in an image that will fool the discriminator from any possible viewpoint.

Instead of using a differentiable renderer, this approach learns the rendering mechanism
implicitly through the neural network. This allows it to model arbitrarily complex scenes
and camera models. In particular, the differentiable projection unit is designed to project a
3D (4D tensor) representation down to 2D while reasoning about occlusion. This is achieved
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Fig. 3.3. Comparison of two different views of the same scene using a HoloGAN model
trained on the LSUN bedrooms dataset. The top row shows scenes at an elevation of 95
degrees and directly below are the same scenes at an elevation of 60 degrees. Note how some
details in the rooms such as the paintings and frames on the wall change between the two
views. In some cases such as in the left-most scene, more drastic changes can be seen such
as a change in the bed duvet cover.

by using a reshaping layer that takes the depth and channel dimensions of the 4D tensor
and merges them together, combined with a few fully-connected layers with non-linearities.

HoloGAN, while impressive, has a few limitations on top of the fact that it only works
with camera rotations and that a different model needs to be trained for each type of object.
Namely, it is limited by the variety and distribution of poses in the training dataset. It
also does not disentangle object appearance from lighting. Additionally, it is not possible
to extract an explicit 3D representation out of this model which greatly limits the potential
downstream applications of this technique. Finally, the method is limited by the quality of
images that generative adversarial networks can generate. The model also does not perfectly
disentangle identity and style from camera pose as this exhibits similar consistency issues to
Pix2Shape where changing the viewpoint for a fixed scene latent code. Figure 3.3 shows an
example of this when using HoloGAN.

It is interesting to note that the choice of using a GAN in HoloGAN is what made it
possible for this method to be fully unsupervised. Indeed, as GANs do not require direct
comparisons between real and generated images, one can generate images using random
camera poses without worrying about having a corresponding target image to compare to.

3.3. Method
Inspired by the success of both Pix2Shape and HoloGAN, we explore a new method

for unsupervised inverse graphics. We borrow the idea of using surfels as an intermediate
3D representation from Pix2Shape, but set a more ambitious goal of learning using a fully
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Fig. 3.4. Overview of the proposed architecture for unsupervised inverse graphics, inspired
by the approaches in Pix2Shape and HoloGAN. At test time, only a portion of this setup is
used: an image is passed as input to the encoder and the decoder is given a camera pose in
order to generate an output RGB-D image.

unsupervised setup and with a dataset consisting of natural images. Additionally, our ar-
chitecture is heavily inspired by HoloGAN and its rigid body transformation layer, however
we hope to achieve better view-consistency by using an explicit 3D representation such as
surfels. Our core idea is that by using surfels as an intermediate representation we can pro-
vide the network with a strong inductive bias about the world through a differentiable surfel
rotation and rendering (projection) layer. Such a representation would also allow us to more
easily extract 3D information from the architecture such as depth maps, thus making this
method suitable for unsupervised monocular depth estimation, another unsolved problem.

3.3.1. Architecture

A diagram of our architecture is shown in Figure 3.4. Similarly to Pix2Shape, we employ
the ALI framework for inference in a GAN architecture. At test time and when generating the
image and latent code pair for a real dataset sample, an input image is thus passed as input to
a CNN encoder from which a latent code z is obtained. This code is a representation for the
full scene and can be decoded into images from different viewpoints using the decoder. This
network is also convolutional and is conditioned (using Conditional Normalization [43]) on a
camera pose θ to output visible surfels (one per pixel like in Pix2Shape) as an N -dimensional
image where the first dimension represents a depth map and the other N − 1 dimensions
contain all necessary information for shading the surfels from any given point of view.

During training, in order to disentangle the camera pose from scene identity, we em-
ploy HoloGAN’s idea of applying random rotations to an intermediate 3D representation
before rendering it and passing it through the discriminator. Similarly to Pix2Shape, we
compute surfel positions from the decoded depth map and the camera pose before applying
the (naturally differentiable) rigid-body transformation that is rotation to the point cloud.
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We uniformly sample the camera pose θ from a range corresponding to the chosen dataset
and uniformly sample a random rotation angle ∆θ from a predetermined limited range. We
design a differentiable surfel projection layer that takes the 3D surfel representation and per-
forms a projection operation to obtain a 2D representation as seen from a reference camera
aligned along the −z axis. The fact that our projection layer is a physical process and is not
learned is a key difference between our architecture and HoloGAN. We hypothesize that this
difference will greatly help with view-consistency.

Since the decoder outputs only one surfel per pixel and thus represents only the visible
portion of the scene, parts of the scene need to be completed after rotating and projecting the
surfel representation. Concretely, this means that the output of the projection layer contains
some “empty” pixels that need to be filled in. These pixels are identified in a mask image
containing values between 0 and 1. This mask is chosen not to be binary and instead can be
interpreted as a confidence map of the pixel colors in the output of the projection. In order
to fill in the missing pixel values from this image, we use the decoder a second time using
the same scene representation code z but using a different camera pose that corresponds to
the rotated viewpoint θ′ = θ+ ∆θ. We opt for this approach instead of an image inpainting
architecture as we want to avoid giving the network the opportunity to learn the entire image
formation process in the inpainting layers. This second output from the decoder is used to
fill the missing pixel values in the output of the surfel projection layer using the following
formula:

m� P(R(Iθ, dθ)) + (1−m)� Iθ′ (3.3.1)

where m is the mask, � is the Hadamard product, R is the rotation layer, P is the projection
layer, Iθ is the image (of N − 1 channels) generated by the decoder from viewpoint θ, dθ is
the depth output from that same decoder pass and Iθ′ is the image generated by the decoder
from viewpoint θ′ = θ + ∆θ.

After the two images Iθ and Iθ′ have been merged using the mask, we obtain an image
of N − 1 channels where any “empty” pixels have been filled. These N − 1 dimensions are
assumed to contain all necessary information for shading the surfels from any point of view.
This information can be stored in an explicitly defined format, such as spherical harmonics
or can be stored implicitly by treating it as a hidden representation. When using the former
format, an RGB image can be generated analytically while in the latter case we add a few
convolutional layers similarly to HoloGAN to generate the final render while modeling view-
dependent effects. For scenes consisting only of diffuse surfaces, N can be set to four and
the last three channels are interpreted as pixel RGB values, thus removing the need for any
additional convolutional layers.
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At test time, the decoder is queried only once using the latent code obtained from the
encoder and a desired camera pose. The depth is removed from the output and the resulting
image of N − 1 channels is passed to the final few convolutional layers if there are any in
order to obtain a final RGB image. This process therefore outputs both a depth map for the
input image and a novel view of the inferred scene.

We implement our approach in PyTorch [49] for faster training times on GPU.

3.3.2. Differentiable Surfels Projection

We implement two very different differentiable surfel projection techniques and explore
which is better suited for our task and presents the smoother loss landscape. The first
method is inspired by the differentiable point cloud technique introduced by Insafutdinov et
al. [22] and relies on projecting each surfel to a Gaussian splat. The second is based on the
differentiable image sampling method from Spatial Transformer Networks by Jaderberg et
al. [23] in which a source image is sampled for each pixel of a warped output image. Because
of their opposite techniques, we refer to the differentiable point clouds and differentiable
image sampling techniques as the direct renderer and the reverse renderer, respectively.

In the direct renderer the first step is to compute the image coordinate x′i of each surfel
when projected onto the camera plane (after rotation). We use a perspective projection
matrix for this step. Note that these coordinates can exceed the image bounds, meaning
that these surfels are no longer in view after the rotation transformation. The projected
surfels cannot be directly rendered as individual pixels at their image coordinates as this
would create edge discontinuities similar to traditional triangle mesh rasterization. In a
traditional computer graphics point cloud rendering pipeline, the points would also be sorted
by depth using a z-buffer which would additionally create occlusion discontinuities. The idea
here is therefore similar to differentiable rasterizers such as SoftRas: each projected surfel is
smoothened by modeling it as a Gaussian with origin at the surfel’s image coordinate. These
Gaussian points are semi-transparent which also allows reasoning through occlusions. The
final projected value P for a pixel whose center has image coordinate p is therefore given by:

P(p) =
M∑
i=1

Ii exp
(
−1

2
||p− x′i||22

σ2

)
(3.3.2)

where Ii is the (N − 1)-dimensional vector containing the shading information for surfel i,
M is the number of surfels and σ is the standard deviation of the Gaussian that determines
the amount of blurring applied to each projected surfel.

The mask m is computed very similarly through the following equation:

m(p) = min
(
M∑
i=1

exp
(
−1

2
||p− x′i||22

σ2

)
, 1
)

(3.3.3)
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where the output is clipped using a min function to be at most 1.
We implement a more efficient version of this process that scales linearly instead of

quadratically with respect to the number of surfels. Instead of computing a sum over all
surfels for each output pixel, the projected surfels are first mapped to a cell in the pixel grid
using bilinear interpolation. The resulting 2D grid is then blurred using the same Gaussian
kernel as in Equation 3.3.2 and blurring is decomposed into two 1D convolutions along each
axis individually. When more than one surfel ends up in the same pixel cell, we employ a
surfel merging function, of which we explore many different versions.

The first surfel merging function we explore is simple averaging where each contributing
surfel is weighted equally. This method is the easiest to implement but does not take into
account the fact that some surfels within the cell have an image coordinate that is closer to
the pixel’s center coordinate compared to other surfels. For this reason we explore a second
version, distance-weighted averaging, where the averaging weights wdist

i are computed using
the following equation:

wdist
i = 1

2πσ2 exp
(
−1

2
||pi − x′i||22

σ2

)
(3.3.4)

where pi is the coordinate of the closest pixel center to x′i.
Both of these surfel merging functions ignore the effect of occlusion on the final rendering.

To rectify this, we design a surfel merging function inspired by fast, order-independent
transparency from the field of real-time computer graphics [40]. In this depth-weighted
averaging surfel merging technique the averaging weights wdepth

i take the form:

wdepth
i = exp(−µ ∗ z′i) (3.3.5)

where µ is a scalar controlling the prominence of depth on the weights and z′i is the depth of
surfel i from the camera plane, after rotation. Note that this equation comes from the Beer-
Lambert law and that the coefficient µ can thus be interpreted as the extinction coefficient.

Finally, we propose a final surfel merging function which is simply a combination of
the distance-weighted averaging and depth-weighted averaging functions. This dist+depth-
weighted averaging is taken to be simply the multiplication of the weights from Equations
3.3.4 and 3.3.5: wdist+depth

i = wdist
i � wdepth

i .
All weights wi are normalized to make sure that they sum to 1.
The reverse renderer approaches the projection problem from the other direction.

Instead of finding where each surfel/pixel in the image Iθ maps to in the rotated output
image, it finds the origin of pixels in the output image on the pre-rotation image plane of
Iθ. This is done by using a depth map dθ′ from the rotated viewpoint θ′, which we already
obtain from our approach when using the decoder with viewpoint input θ′. Using the same
process as in the direct renderer, we use this depth map to compute world positions for each
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surfel/pixel i seen from the output image before applying the reverse rotation and projecting
to the θ camera plane to obtain image coordinates x. Therefore, for each pixel in the output
image, we have a location in the input image Iθ from which we can sample a pixel value. We
perform this sampling differentiably by using bilinear interpolation:

Pi =
H∑
n

W∑
m

Inm max(0, 1− |xi −m|) max(0, 1− |yi − n|) (3.3.6)

where H and W are the height and width of the input image I = Iθ and xi and yi are the
x and y components of image coordinate vector xi for pixel i. In practice, this sampling
operation can be implemented efficiently on the GPU by looking only at the four closest
neighbours around a given point (instead of the sum over all pixels) and requires only a
single line of PyTorch code. Note that this limited region also means that each output
pixel is only locally differentiable with respect to those four neighbors in the input image.
Although we do not experiment with this, this issue can however be solved by first blurring
the input image using a Gaussian kernel.

While this reverse rendering process is simpler than the direct renderer, it is not as
straight-forward to compute a reasonable mask that reasons about occlusion. Without con-
sidering occlusion, the mask can be trivially computed for each output pixel i by evaluating
whether the image coordinate xi falls outside or inside of the bounds of the image image.
Nevertheless, to factor in occlusion, another step needs to be performed. One way to approx-
imate an occlusion mask would be to compare the depth of close neighbour image coordinates
xi from viewpoint θ. We instead make this process easier by leveraging the depth map dθ
from viewpoint θ. This way we can compare the depth computed from the projection step z
(as seen from viewpoint θ) to the depth generated by the decoder network dθ. Note, however,
that we do not have a direct correspondence between z and dθ as one is calculated for each
pixel in the θ′ image and the other for the θ image. To remedy this, we apply the same
operation as in Equation 3.3.6 to sample the depth map dθ using image coordinates x in
order to obtain a depth image d̂θ that is aligned with the z image. The mask m is thus
determined as follows for each pixel i:

mi = (zi ≤ d̂θi + ε) (3.3.7)

where ε is a small scalar to ensure that surfels that have a very similar depth are not marked
as occluded in the mask.

This occlusion mask is multiplied with the mask computed by looking at whether image
coordinates fall within image bounds to obtain the final mask. Figure 3.5 shows an example
set of inputs and outputs (including the mask) of the reverse renderer when given a ground
truth depth map.
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Fig. 3.5. Example inputs and outputs of the reverse renderer. This differentiable renderer
takes as input a source image (“pre-rotation image”) as well as a depth map from the target
rendering viewpoint (“post-rotation depth”). It outputs a rendering of the scene as seen
from the target rendering viewpoint by sampling the source image using the input depth
map. To account for occlusion and for elements moving in and out of view, a mask is also
computed and outputted to indicate which pixels still need to be filled in.

3.3.3. Losses

We train our model adversarially using the ALI framework. The GAN loss LGAN is com-
puted as in WGAN-GP [19]. In addition, we explore the effect of a couple of regularization
losses on the learning process.

We propose to use a reconstruction loss Lrecon that compares the output of the dif-
ferentiable projection layer after rotation by ∆θ with the direct output from the decoder
conditioned on θ + ∆θ using the MSE loss as follows:

Lrecon = LMSE (m� P(R(Iθ, dθ)),m� Iθ′) (3.3.8)

where the mask m is used to weigh the loss per pixel. This way the loss is 0 where the mask
indicates that there is an “empty” pixel in the projected image.

This loss encourages the network to generate view-consistent images and depth maps.
Additionally, we add a flattening loss Lflat to push the generated depth maps to be

locally planar and thus locally smooth. This is achieved by first estimating surface normals
n from the depth map before then comparing each pixel’s normal vector with the normals
of the ring of eight closest neighbours. The flattening loss is therefore computed as follows:

Lflat = 1
M

M∑
i

∑
j∈N (i)

(−(ni · nj) + 1)2 (3.3.9)

where N (i) is the set of eight direct neighbours of pixel i and · is the vector dot product.
This dot product computes the cosine of the angle between the two normals ni and nj which
we wish to minimize. Note that the dot product here is guaranteed to return a non-negative
value as the normals estimation process assumes that normals are all forward-facing relative
to the camera.
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The normals are estimated in the same way as in Pix2Shape by computing spatial finite-
difference derivatives of the depth map with the eight closest neighbours of each pixel.

All these losses are combined using scalar hyperparameters λrecon and λflat that help
control the impact of each loss on the overall training objective:

L = LGAN + λrecon Lrecon + λflat Lflat (3.3.10)

3.3.4. Datasets

We perform our experiments on two datasets. The first is LSUN bedrooms [72], a large
dataset of 3 million natural images of bedrooms without any associated labels. This dataset
allows us to test whether our model has achieved its goal of learning 3D reasoning in a
completely unsupervised manner. It also allows us to qualitatively compare our results to
those of HoloGAN as they also train a model on this dataset.

We also create a custom synthetic dataset in order to better analyze the learning dynamics
of our approach, but also to allow for quicker development and hyperparameter optimization
runs. This chair dataset serves as an easier test case and proof-of-concept for our model.
It contains of 100k images of the same synthetic scene rendered from random viewpoints.
This scene consists of a single chair object taken from the ShapeNet dataset [7] placed in
the middle of a cubic room. The chair is given a wood-like texture while the room is covered
in a checkerboard black and white pattern. The viewpoints are sampled on an arc parallel
to the ground floor, at a fixed elevation of 45◦ and therefore only a single axis of rotation
is sampled. This arc has a range of ±45◦ on either side of the canonical view of the chair
facing the camera. The entire scene is Lambertian and has no view-dependent effects. This
last fact allows us to store for each surfel only 3-dimensional RGB vectors and to remove the
final convolutional layers from the architecture shown in Figure 3.4. Additionally, since all
images in this dataset are taken from the same scene, we can remove the encoder network
and use a fixed latent code z.

3.3.5. Concurrent Work

Concurrently to our work, two other approaches have been proposed which share a lot
of similarities to ours.

First, RGBD-GAN by Noguchi et al. [47] shares our idea of using a view-consistency
loss on a decoder that is conditioned on the camera pose. Their approach is similar to
HoloGAN in that they train a generative model without an inference mechanism such as
ALI and their model can generate images for a given viewpoint. Their conditional decoder
outputs a depth map on top of an RGB image for a given camera pose. This depth map is
not passed to the discriminator and is instead learned through a 3D consistency loss. This
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Fig. 3.6. Model architecture of SynSin [67].

3D consistency loss is almost identical to our Lrecon loss and uses the same differentiable
image sampling technique taken from Spatial Transformer Networks. The only differences
between the loss we use and their 3D consistency loss are 1) that we make use of a mask to
reason about occlusion whereas they do not compute any mask, and 2) that they not only
compare the rotated and projected RGB images but also the rotated and projected depth
maps. Similarly to our work, their approach is fully unsupervised and generates explicit
depth maps. It is, however, limited to scenes without view-dependent effects and shows
limited success at both disentangling identity from pose and at depth map quality. They
also do not train with an inference mechanism and thus cannot compute a depth map for
a given RGB image and cannot infer a scene from an input image to perform novel-view
synthesis.

Second, Wiles et al. propose SynSin [67], an approach for end-to-end novel view syn-
thesis from a single image that is weakly supervised. They use a dataset of pair of images
of the same scene taken from different viewpoints where each image is labelled with the cor-
responding camera pose. This allows them to use an autoencoder instead of a GAN where
the model takes as input one of the two images in a pair and the camera transformation be-
tween the two viewpoints of that pair, and is trained to output the second image. Figure 3.6
shows an overview of the model architecture they use. Similarly to our approach, they use
as intermediate 3D representation a point cloud that is obtained by predicting a depth map
for the given input image. They apply the same rigid-body transformation operation to this
representation as we do and use a very similar differentiable rendering process, also based
on the paper by Insafutdinov et al. [22]. To fill any “empty” pixel as a result of this rotation
and projection operation, they opt for an image in-painting approach using a refinement
convolutional neural network. The biggest difference between our approach and theirs is
that we train in a fully unsupervised manner and thus do not require any label or image pair
in the datasets we use.

3.4. Results
We first test our approach on the simpler setting of the chair dataset to validate our

approach and to explore the effect of different hyperparameters, renderers, losses and other

40



Fig. 3.7. Initial results of the proposed architecture on a synthetic dataset consisting of
100k images of a scene of a chair in a room viewed from random angles. The top row shows
the depth (lighter values are closer) while the bottom row shows the RGB image generated
from the decoder at increasing azimuthal angles.

tricks. We start by running a version of our model without an encoder for inference. We
use a fixed latent code since this dataset consists of different views of the same scene. We
thus run a simple GAN with progressive growing as in StyleGAN from a starting resolution
of 8x8 pixels all the way up to 128x128 pixels. We also use the mixing regularization loss
proposed by StyleGAN. Since the scene in this dataset contains only diffuse surfaces, we
model the surfels as a simple RGB-D vector output from the decoder and do not use any
final convolutional layers after the differentiable projection layer. We constrain the depth to
be within the bounds of the scene by applying and scaling a sigmoid activation function to
the depth output. For each sample we generate during training, a random camera azimuth
angle θ is sampled uniformly in the range of the dataset, ±45◦ . The rotation angle ∆θ is
also sampled uniformly in a range that increases over training time as a form of curriculum
learning. This range starts at ±0◦ and caps at ±30◦ after 150k iterations. We train our
model for 3M iterations at each resolution level for a total of 15M iterations, which takes
approximately 6 days on a single Nvidia V100 GPU. We use a batch size of 128 at the 8x8
resolution level, followed by progressively smaller batch sizes of 64, 32, 16 and 16 again for
the resolutions 16x16, 32x32, 64x64 and 128x128, respectively. We train using the Adam
optimizer with a learning rate of 1e−3. In this first experiment we use the forward renderer
along with the simple averaging pixel merging function. We progressively decay the blurring
parameter σ of the forward renderer starting from 0.14 with decay factor of 0.25 per epoch
to generate progressively sharper images over training time. Finally, we first train without
any regularization losses and thus set λrecon and λflat to 0.

The results of this experiment can be seen in Figure 3.7. We only perform a qualitative
analysis of these results as there exist no good metrics for determining whether the identity
and pose are well disentangled by the model. It is also not possible to get a ground truth
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Fig. 3.8. Results of adding a flattening loss. The first two rows show the result when using
a weight of 0.5 while the last two rows show the result with a weight of 5.

depth map for an image generated by our approach since the angle passed as conditioning for
the decoder does not necessarily match the reference angle. The results of Figure 3.7 show
that our model is able to generate images of the scene from various viewpoints, although
the left-most image shows a discontinuity in the θ range. While the generated RGB images
look reasonable, the generated depth maps show some issues. The depth does not smoothly
increase on the walls and floor of the room from the camera to the back of the room.
Furthermore, some arbitrary regions on the flat surfaces of the chair have a different depth
than the rest of those surfaces. Since the RGB images generated are fine despite these flaws,
this indicates a potentially big issue not only for the task of monocular depth estimation,
but also for the application of our technique to datasets of natural images in general since
it indicates that there is ambiguity between the depth maps and the generated images. In
other words, there are many possible depth maps that can be used to generate the same
output image.

Following this first experiment we explore some other techniques and tricks to try to
improve our initial results and to remove the depth map ambiguity.
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First, we run the same experiment but add the flattening loss Lflat and experiment with
a couple values of λflat: 0.5 and 5 in the hopes of resolving the ambiguity issue. Figure 3.8
shows the same plot of increasing azimuth angle for this experiment. We notice a slight
improvement compared to our initial experiment when using this loss with a small scaling
factor λflat. The generated depth maps look better but still exhibit signs of ambiguity.

We then run a series of experiments to compare the different proposed surfel merging
techniques. This set of four runs examine the resulting differences in using the simple averag-
ing, distance-weighted averaging, depth-weighted averaging and dist+depth-weighted averag-
ing functions. The results, shown in Figure 3.9, demonstrate a significant improvement when
using the more involved dist+depth-weighted averaging technique. Given this performance
improvement, we decide to only use this method moving forward when using the forward
renderer.

Finally, we run some experiments using the reverse renderer to compare its performance
against the forward renderer. We also use this opportunity to run a couple more experiments
to determine the impact of curriculum learning on our architecture. We thus run three
experiments using the reverse renderer. The first uses a fixed ∆θ range that does not increase
over training time. The second uses a progressively increasing ∆θ range but does not use
the progressive GAN training trick of StyleGAN. The third experiment is a combination
of the other two where neither the ∆θ range nor the resolution of the generated images
change over training time. Results for these three experiments are presented in this order in
Figure 3.10. These results show that 1) the reverse renderer results is not only better depth
map quality, but also sharper output RGB images, and 2) curriculum learning leads to worse
performance for our model. We hypothesize that the progressive training trick of StyleGAN
might be negatively affecting our approach as the image and depth map need to have a high
enough resolution to provide a meaningful signal for small ∆θ rotations. Using the reverse
renderer has the additional benefit of having two less hyperparameters as we do not need to
worry about controlling the blur factor σ or choosing a surfel merging technique.

We combine these findings to train a new model on the more complex LSUN bedrooms
dataset which contains natural images of different bedroom scenes. We do not yet use an
encoder and the ALI inference framework. In comparison to our model trained on the chair
dataset, we use a random latent code sampled from a normal distribution and set the surfel
features’ number of dimensions to 32. A single 1× 1 convolutional layer is added at the end
of our network architecture to perform the final rendering step and to reduce the number of
output channels to three to output an RGB image. We use the same resolution and azimuth
and elevation angle ranges for this dataset as HoloGAN, namely a resolution of 128 × 128
pixels, an azimuth range of 220◦ − 320◦ and an elevation range of 60◦ − 95◦. Learning from
previous experiments, we use a flattening loss scaling λflat of 0.5, use the reverse renderer
instead of the forward renderer and do not use the progressive training trick of StyleGAN.
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Fig. 3.9. Comparison of different surfel merging techniques. From the top, in groups of
two rows, the results are presented in the following order: simple (non-weighted) averaging,
weighted averaging using the distance to the closest pixel center, weighted averaging using
the depth and finally weighted averaging using a combination of depth and distance to pixel
center.
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Fig. 3.10. Results using the reverse renderer. The first two rows show a direct comparison
to the experiment shown in Figure 3.7. The next two rows show the result using a progres-
sively increase ∆θ value over training time and the last two rows show the same experiment
but trained without the progressive training idea of StyleGAN.

We run two versions of this experiment, one where the ∆θ range progressively increases over
training time as in our initial experiment on the chair dataset, and one where this range is
fixed throughout training to ±30◦ for the azimuth angle and ±15◦ for the elevation.

Figure 3.11 shows example scenes generated using the two models trained as described
above. The first two rows show the generated depth maps and RGB images from the approach
that uses a fixed ∆θ range. The bottom two row show the other experiment where this range
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Fig. 3.11. Results of our best hyperparameter configuration on the LSUN bedrooms
dataset. The bottom two rows correspond to an experiment that differs from the one in
the first two rows in that ∆θ is progressively increased throughout training. These results
show that, in both cases, the quality of the generated depth map is lacking and that the
model seems to have found a way to make depth maps that lead to a reasonable final image
quality while limiting the perceived rotation of the scene.

is progressively increased over training time. When looking at the generated depth maps,
while we see that the network has a good understanding of object edges, we find that the
depth values are very far from realistic. For example, object edges should only barely be
visible in these images wherever both surfaces on either side of these edges are visible.
Furthermore, we find very little consistency in the depth values on walls and floor of the
bedrooms. This poor performance on depth map generation leads to significant issues in
the novel-view generation process. We notice in the visualizations of Figure 3.11 that the
camera pose does not appear to rotate as much as expected. This is especially obvious when
compared to HoloGAN on the same azimuth range of 220◦ − 320◦, as shown in Figure 3.12.
It appears that the depth ambiguity, as observed above, was exploited by the neural network
to more easily generate images by limiting the effect of the θ conditioning in the decoder
network. The learned depth maps lead to a minimal amount of rotation when passed through
the differentiable projection layer.
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Fig. 3.12. Example scenes generated by HoloGAN where the scene latent code is kept
fixed but the azimuth angle is progressively increased. Note that HoloGAN does not provide
a mechanism for obtaining depth maps.

These flaws identified in our results indicate some issues related to the depth map am-
biguity and possibly with the smoothness of the differentiable projection layer. For this
reason, we run additional experiments on the reverse renderer to determine how effective of
a gradient signal it provides to the decoder network given that differentiable renderers are
notorious for getting stuck in local minima easily. We render two viewpoints of a synthetic
scene consisting of a single pink ShapeNet chair in the middle of a room with random tex-
tures on the walls and floor. We note the angle difference between these two viewpoints and
additionally render two corresponding depth maps.

This allows us to run an experiment where we directly optimize a depth map image by
computing a loss comparing the output of our reverse renderer to the ground truth image;
the second viewpoint rendered using our synthetic scene. The reverse renderer is thus given
as input a randomly initialized depth map, a source image from the first viewpoint to sample
from and the rotation transformation between the two views. The random depth map is then
optimized iteratively using stochastic gradient descent from an MSE loss that compares the
rendered output to the ground truth image from the target viewpoint. Figure 3.13 shows
the final outputted image and learned depth map after 2000 iterations and compares them
to the ground truths. We find that this setup is unable to recover the target depth map
and thus to generate a reasonable rotated image. In addition, we monitor during training
the MSE loss between the learned and target depth maps and find that, while the depth
loss increases over training time, the depth barely changes over the course of optimization.
Quantitatively, while the image MSE loss decreases by approximately 0.03 the depth MSE
loss increases by 0.0006, suggesting that the gradient signal to the depth is too small to be
useful.
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Fig. 3.13. Direct optimization of the depth map through the reverse renderer. On the left,
the first row of images compares the ground truth target image with the rendered one while
the bottom row compares the ground truth depth map with the learned depth map. On the
right we plot the MSE loss between the target and generated images (the training signal) in
blue and plot the MSE loss between the ground truth depth and learned depth in red (this
loss is not used in training). Note that the image loss and depth loss y-axis scales are shown
on the left and right of the plot respectively. In this experiment, the depth map is randomly
initialized using uniform sampling in the bounds of the scene.

Fig. 3.14. Similar experiment as in Figure 3.13 but where the depth map is initialized by
adding noise to the ground truth depth map.

To validate our conclusions, we run a second test using the same setup but where the
depth map is initialized to the ground truth with some added Gaussian noise with standard
deviation corresponding to 5% of the scene’s bounding box length. As Figure 3.14 shows, this
experiment exhibits the same issues that the ground truth depth map is not recovered and
that the depth map is barely affected by the gradient signal (decreasing by approximately
0.001 while the image MSE loss decreases by over 0.02).
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3.5. Discussion and Conclusion
In conclusion, we find that, while promising, our approach does not achieve our two main

goals. First, for the task of unsupervised monocular depth estimation, we find that our
model fails to generate realistic depth maps and instead produces depth maps that are best
suited for the generator to maximize the training objective. Indeed, the produced depth
maps seem to minimize the amount of perceived rotation when rendering the surfel point
cloud from a rotated point of view. This, in turn, means that our model generates images
which do not appear to be from the correct input point of view and instead appear to be
from a viewpoint close to the canonical pose.

Exploring the dynamics of the gradients through our differentiable rendering layer, we
find that the magnitude of the training signal to the depth maps is too small for our model
to learn good depth estimation. This, coupled with the fact that differentiable renderers
are notorious for creating non-smooth optimization landscapes with many local minima,
leads us to conclude that using surfels as an intermediate representation is not suitable for
a HoloGAN-like architecture.

Nevertheless, the recent successes of approaches such as RGBD-GAN and SynSin seem
to indicate that there is some value in using point cloud representations as intermediate
representations in different contexts. It also indicates that the gradient values coming from
the differentiable renderer can contain some meaningful training signal. We thus believe
that our approach may find use in slightly different architectures, for example if trained in
an autoencoder setup with a dataset of labelled image pairs of scenes similarly to SynSin.
Our approach could also be used in a semi-supervised setting or in a transfer learning sce-
nario where only small refinements to the depths would need to be made using the pipeline
containing our differentiable surfels renderer.
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Chapter 4

A Voronoi-based 3D Representation for Deep
Learning

4.1. Introduction
Another sub-problem of unsupervised inverse graphics is the choice of scene represen-

tation. As explored in the previous chapter, while implicit representations provide some
benefits when it comes to training with neural networks, explicit representations constitute
the end goal for inverse graphics because of the wide range of downstream tasks they provide.
Nevertheless, it is hard to find an explicit representation that fits all the criteria of unsuper-
vised inverse graphics. Of those, one of the most important is that the representation can
be rendered in a differentiable manner as to fit in the unsupervised inverse graphics pipeline
highlighted in Figure 1.1. Additionally, the representation needs to be suitable for use in
a deep learning setup, meaning that there must exist a way for a neural network to effi-
ciently output this representation. Taking triangle meshes for example, outputting a graph
from a neural network is non trivial and requires either a graph neural network architecture
which typically performs worse than a regular neural network or a regular MLP but with a
fixed-topology mesh where the number of nodes and their connections are pre-determined.

We propose a novel 3D representation that combines the benefits of the most popular
representation types which makes it an ideal candidate for use in the inverse graphics pipeline.
This representation is based on Voronoi diagrams, is trivial to output from neural networks,
is explicit and can be used to model both surface and volumetric quantities. We perform
a methodical analysis of the performance of our representation by first evaluating it in the
supervised setting using the popular ShapeNet dataset. This allows us to compare our work
with the many other approaches recently proposed in the field.

We find that while our approach does not always outperform competing approaches, its
other numerous advantages over other representations make it a worthwhile consideration
for many unsupervised inverse graphics sub-tasks. We present here performance results of



our approach in the simpler supervised 2D setting, followed by an extensive comparison to
prior work in the supervised 3D setting, before finishing by presenting early results in the
more challenging weakly supervised 3D setting.

In this chapter, we first analyse existing explicit 3D representations and compare their
pros and cons in the preliminaries Section 4.2. We then present our method in Section 4.3
followed by our results in Section 4.4. We conclude by summarizing and discussing our
results in Section 4.5.

4.2. Preliminaries
While there exist many different types of 3D representations, no representation is free

of disadvantages. In this section, we highlight the most common 3D representations used in
deep learning and identify their flaws. This, in turn, positions our novel 3D representation
in the context of previous work as our approach is crafted specifically to address these
limitations.

The most popular 3D representation type in computer graphics is polygonal meshes.
These therefore have the advantage of being very widely-supported by common computer
graphics software. Additionally, this representation provides explicit surfaces and can model
any topology at arbitrary resolution by increase the number of vertices of the mesh. In
the context of deep learning, however, this representation is hard to obtain as an output
of a neural network due to its graph nature. For this reason, inverse graphics work such
as SoftRas [34] [35] that use this representation typically resort to using a neural network
that outputs a deformation vector for each vertex and applying it to a template mesh. This
means that the topology of the mesh is fixed (it corresponds to the template mesh), that the
genus of the learned shape can thus not be changed and that the mesh has limited resolution.

Point clouds, on the other hand, are easy to use in a neural network architecture and allow
the network to output shapes of arbitrary topology. Nevertheless, the network usually has a
fixed-size output, meaning that the number of points in the cloud needs to be pre-determined
and cannot vary between outputs. Additionally, this method can become computationally
intensive when generating a large number of points. Finally, it can be difficult to extract an
explicit surface out of this representation as the point cloud is not always dense enough to
recover small details. This representation is used in work such as PointNet and PointFlow
[53] [55] [69].

The representation that is easiest to use in a deep learning setting is voxel grids as it is
the direct equivalent of a 2D pixel grid in 3D. It can thus be easily generated/processed by a
3D convolutional neural network as is shown in VoxNet [39] and work by Qi et al. [54]. This
representation also has the added benefit of modeling volumetric data while making it very
easy to extract from it an explicit surface. Nevertheless, voxel grids are typically severely
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Fig. 4.1. Comparison of popular shape representations in 2D. Here, the large black points
and arrows constitute a target shape represented by a point cloud with normals.

computationally limited as their memory and processing requirements grow cubically in three
dimensions. In practice, approaches using this type of representation therefore keep the grid
resolution low, thus losing out on fine geometrical details.

On the other hand of the 3D representation spectrum, implicit representations model
surfaces as zero level sets of neural networks. This provides them many benefits, namely
the ability to model shapes of any topology and at infinitely fine resolution (provided the
neural network has enough capacity) all while having a relatively small memory footprint.
Since this representation is itself a neural network that takes as input a 3D coordinate, it
is trivial to use it in a deep autoencoder setup by conditioning this network on a latent
code representing the shape, as is done in OccNet [41]. Implicit representations have, as
their name suggests, the disadvantage that they do not model surfaces explicitly. Surface
extraction can be performed using techniques such as marching cubes [37], however this
algorithm is computationally expensive, not differentiable and can result in a loss of fine
details if run at too coarse of a resolution. A sub-category of implicit representations is
parametric representations. In this representation, many neural networks are usually used
to represent parametric surfaces that take as input a 2D coordinate in the range [0, 1] and
outputs a 3D coordinate. By taking the union of these surfaces one can obtain a full 3D
model with arbitrary topology. Nevertheless, this type of representation often results in
surfaces that are not coherent and that intersect with each other. In addition, it is not
trivial to produce a rendering of this representation as there is no reverse mapping from a
3D point on the surface to the corresponding 2D sample point. This representation is used
in work such as AtlasNet [18] [12].

Figure 4.1 shows a comparison of these representations in 2D using a target shape rep-
resented by a point cloud with normals.

Out of these, representations that model volumetric quantities also provide an additional
advantage. Indeed, in the context of deep unsupervised inverse graphics, volumetric rep-
resentations are much easier to learn than surface representations. This is because, in an
iterative gradient-based optimization scheme, it is much easier to achieve a target shape by
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making volume appear and disappear than by moving surfaces towards their target, espe-
cially when those surfaces have a fixed topology. This is exemplified in many recent work
that outperform surface-based techniques [41] [42] [11].

Inspired by these various types of representations, we explore a new representation based
on Voronoi diagrams that addresses a lot of the issues highlighted above. Our representation
was specifically designed to model both volumetric quantities and explicit surfaces. In addi-
tion, it also combines the benefits of point cloud representations as the Voronoi sites can be
seen as a point cloud. It has small memory requirements, is easy to output from a neural
network, can represent any topology, is simple to use and can be rendered differentiably as
we will show in the following section.

4.3. Method
In this section we describe our novel representation, how it can be rendered differentiably

and how it can be used in a deep learning architecture both with and without 3D supervision.

4.3.1. The Representation

Using a set of points in space called seeds, a Voronoi diagram partitions space into cells
in which the closest seed is shared. Mathematically, a cell Ci corresponding to seed pi ∈ P
is given by:

Ci =
{
x ∈ R3 | ||pi − x||2 < ||pj − x||2 for all i 6= j

}
(4.3.1)

where P is the set of Voronoi seeds. Note that Voronoi cells form convex polytopes.
This partition of plane, while well studied in the fields of mathematics and computational

geometry, cannot be directly used to model 3D shapes.
Our 3D representation consists of a Voronoi diagram where each Voronoi cell is given

an occupancy value. For scenes without participating media, the occupancy values are
binary and object surfaces correspond to the boundaries between Voronoi cells of opposing
occupancies. Since a Voronoi diagram is fully defined by a set of seed points p ∈ P , our
representation can be stored in a |P |×4 matrix, where the number of columns corresponds to
the dimensionality of the space (3) plus a dimension for the occupancy value. The occupancy
can be attached directly to the Voronoi seed as in a Voronoi diagram each seed maps to
exactly one Voronoi cell. An example of our representation is illustrated in Figure 4.2 in the
easier to visualize 2D setting. To the best of our knowledge we are the first to propose the
use of Voronoi diagrams for occupancy function representation.

An explicit surface can be easily obtained from a set of Voronoi seeds by computing the
Voronoi tesselation with fast algorithms such as Fortune’s algorithm [15]. By extracting
only faces which separate a cell with occupancy 0 from a cell with occupancy 1 we obtain an
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Fig. 4.2. Illustration of our Voronoi representation in 2D. Here, the orange and purple
points are the Voronoi seeds which form the Voronoi diagram marked with dotted and solid
lines. The resulting surface is illustrated with solid lines and corresponds to the edges of the
Voronoi diagram that lie between an orange seed (with occupancy w(p) = 1) and a purple
seed (with occupancy w(p) = 0). The black dots and arrows illustrate target point samples
and their normal.

explicit surface for the represented shape. This surface can easily be extracted differentiably
by computing the equation of the plane forming each face as a function of the two Voronoi
seeds it separates (perpendicularly).

This representation can be stored as a point cloud and thus shares the benefit that it is
easy to output from a neural network. Additionally, it models an occupancy function sim-
ilarly to implicit representations while also providing an explicit surface that can trivially
be (differentiably) converted to a triangle mesh for downstream applications. This represen-
tation is therefore guaranteed to generate watertight meshes. These advantages, combined
with the fact that this representation can model shapes or scenes of arbitrary topologies and
the fact that it is extremely compact makes it a great fit for 3D deep learning applications
and for unsupervised inverse graphics in particular.

4.3.2. Differentiable Rendering

To obtain the occupancy value o at a given point in space x, one simply needs to retrieve
the occupancy value stored for the closest Voronoi seed:

o(x) = w

(
arg min

p∈P
||x− p||22

)
(4.3.2)
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Fig. 4.3. Comparison of the effect of varying the softness parameter β on the rendering of
the Voronoi representation. A larger value of β results in an image with sharper edges. The
special case of β =∞ corresponds to the traditional non-differentiable Voronoi formulation.

For ease of notation, we represent the occupancy value associated with each Voronoi cell as
a function w() which takes as input a Voronoi seed as an index. We compute the squared
distance between x and p as it requires one fewer square root computation.

Note, however, that the process in Equation 4.3.2 is not differentiable with respect to the
Voronoi seeds’ positions p. To remedy this, we propose a soft Voronoi formulation which
replaces the non differentiable min operation with a differentiable Softmin:

osoft(x) =
∑
p∈P

w(p) e−β||x−p||22∑
p2∈P e

−β||x−p2||22
(4.3.3)

where β is a hyperparameter used to control the sharpness of the Voronoi cell edges. The
effect of this parameter is shown in a simple 2D example in Figure 4.3.

This equation makes it possible to use our representation in an optimization process
where we are given ground truth 3D occupancy values. Nevertheless, we are also interested
in unsupervised learning where this representation needs to be rendered as a 2D image. For
this we use the volume rendering Equation 2.1.5 but since we only model occupancy values
we only render a silhouette image which corresponds to the transmission term Tr:

Tr(x0,xf ) = exp
(
−
∫ xf

x0
osoft(x) d x

)
(4.3.4)

where x0 and xf correspond to the start and end points along a given camera ray, respec-
tively. In practice, Equation 4.3.4 is evaluated numerically by taking N uniformly distributed
samples along each ray between points x0 and xf .

Evaluating the distance between each queried point x and each Voronoi seed p can quickly
generate a very large computation graph for automatic differentiation. Taking into account
that only very few Voronoi seeds have a sizeable impact on the computed occupancy value
at any given point x, in practice we only compute the Softmin operation using the nearest
K neighbour seeds of x.
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Fig. 4.4. Diagram of our proposed architecture for learning an autoencoder model on the
ShapeNet dataset. We first pre-train a PointNet encoder and decoder before adding an offset
decoder and training with our full suite of losses.

4.3.3. Architecture

We apply this representation to a handful of applications involving deep learning. First,
we demonstrate the effectiveness of our representation in a 2D setting by learning an autoen-
coding model on a dataset of images of handwritten digits. For this experiment we create
a VAE model consisting of a convolutional encoder and a fully connected decoder which
outputs a set of Voronoi seeds.

Second, we test our approach against competing methods on the task of 3D shape recon-
struction from sparse point clouds. In this context a sparse point cloud of a shape is given as
input and the goal is to output the complete reconstructed 3D model. Direct 3D supervision
is given in the form of ground truth occupancy samples in space. To process the input point
cloud, we employ a PointNet architecture [55] identical to that of OccNet against which we
compare. We find that we get better results by first pre-training this PointNet autoencoder
to output approximately uniformly distributed surface points using only the Chamfer dis-
tance [5] as training signal. Following this step we train an additional offset decoder which
consists of an MLP that outputs two displacement vectors for each output of the pre-trained
PointNet decoder. For each output of the PointNet decoder, one displacement vector is used
to compute the position of a Voronoi seed with occupancy 0 while the other is used for a
Voronoi seed with occupancy 1. This encourages the Voronoi seeds to lie close to the object’s
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surface, therefore maximizing the representation capacity of the Voronoi diagram. This ar-
chitecture is detailed in Figure 4.4. We train this model using a suite of losses described in
the following section.

Third, we provide early results of our approach used in unsupervised setting by evaluating
it on a dataset of multiple images of a chair taken from many viewpoints (provided as labels)
with the goal of reconstructing a 3D model of the chair. For this experiment we directly
optimize a set of randomly initialized Voronoi seed positions and opacities and do not make
use of any neural network.

As illustrated in the difference between the second and third settings described above,
the occupancy values associated with each learned Voronoi seed can either also be learned or
can be fixed to match a pre-determined split. We find that in settings where we can easily
get Voronoi seeds to lie close to the object’s surface we get better results when using a fixed
50-50 split between cells of occupancy 0 and those of occupancy 1, especially in cases like in
our second experiment setting where we can generate a pair of opposing Voronoi seeds from
a surface point. In an unsupervised setting such as in our third application however, we find
that we get better results when also learning the Voronoi cell occupancies.

4.3.4. Losses

For the first and third experiment settings described in the previous section, we use
simple Chamfer and L1 losses, respectively. Nevertheless, in the second setting we find that
we get our best results by using a suite of losses simultaneously optimizing the positions of
Voronoi seeds, the resulting occupancy function and the resulting extracted surface. This
is only possible because some 3D supervision data is given in this setting. Using all three
of these losses also demonstrates the power of our approach as it is the only one which can
learn from point, surface and volume signals all at once, thus combining the benefits of all
three types of representations.

The point-based loss is the combination of a Chamfer distance and a level-set loss:

Lpoint = cham(P, Ŝ) + 1
|P |

∑
p∈P
|sdf(p) + α(2w(p)− 1)| (4.3.5)

where P is the set of Voronoi seeds, Ŝ is the set of ground truth surface points, α is a scalar
that determines the “height” of the level-set and sdf() is the ground truth signed distance
function. The Chamfer distance [5] between two point sets A and B is defined as follows:

cham(A,B) = 1
|A|

∑
xA∈A

min
xB∈B

||xA − xB||2 + 1
|B|

∑
xB∈B

min
xA∈A

||xA − xB||2 (4.3.6)

The Chamfer loss component of Equation 4.3.5 is the same as what is being used to pre-
train the PointNet autoencoder. After that pre-training step we add the second term of this
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equation which corresponds to a level-set loss. This loss pushes the Voronoi seeds to lie on
the ±α level-set, with the seeds with occupancy 1 lying on the −α level-set and the ones
with occupancy 0 on the +α level-set. This encourages Voronoi seeds to not only lie on the
correct side of the surface boundary but also to stay close to the surface, thereby ensuring
that no representation capacity is lost.

The occupancy-based loss is a simple L1 loss between the computed occupancy at points
in space and the ground truth occupancy:

Loccupancy = 1
|Ô|

∑
x∈Ô

|osoft(x)− ô(x)| (4.3.7)

where ô is the ground truth occupancy function and Ô is the set of ground truth occupancy
samples.

The surface-based loss is a simple Chamfer distance between ground truth surface samples
Ŝ and surface samples S drawn differentiably from the extracted Voronoi diagram surface:

Lsurface = cham(S, Ŝ) (4.3.8)

The final loss is a weighted sum of the three terms using hyperparameters λpoint, λoccupancy
and λsurface:

L = λpoint Lpoint + λoccupancy Loccupancy + λsurface Lsurface (4.3.9)

4.3.5. Post-processing

We find that some Voronoi cells of occupancy 1 outputted from the decoder can sometimes
take disproportionate dimensions, especially around areas of high curvature on the surface
of the object. Indeed, because our Voronoi seeds are trained to be concentrated around the
±α level-sets if the closest Voronoi seeds with occupancy 0 are slightly too far to the side
this can result in a Voronoi cell of occupancy 1 which “explodes” and becomes unbounded or
very large. To solve this problem, we employ a simple post-processing scheme that detects
such Voronoi cells and flips their occupancy value.

We first compute the Voronoi diagram of the output Voronoi seeds. We then flip the
occupancy bit of Voronoi cells with occupancy 1 that have infinite volume. For each cell, we
also label each vertex with the number of adjacent Voronoi cells with occupancy 1 it touches.
This essentially separates the vertices on the surface which are shared with adjacent cells
from those which are unique to the current cell. We use this to compute the maximum
distance (per cell) between the vertices with one occupancy 1 neighbour and vertices with
more than one of such neighbours. If this distance is above a given cut-off distance threshold
t1, we flip the occupancy bit of the current cell. Finally, we flip the occupancy of cells for
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Fig. 4.5. The BSP-Net representation in 2D. The set of planes is represented in the blue
squares while the learned convexes are shown in red. The final shape, shown in green, is the
union of the convexes. Image from BSP-Net [9].

which the ratio of Voronoi faces which form object faces is above a certain threshold t2. Note
that we evaluate this for all Voronoi cells before any occupancy flipping is applied.

4.3.6. Concurrent Work

Concurrently to our work, two other representations have been proposed that share the
property of being simultaneously implicit and explicit. Neither of these methods, however,
can leverage point-based, surface-based and volume-based supervision simultaneously like
our Voronoi representation.

Deng et al. propose CvxNet [11], a 3D representation and deep learning architecture
based on the union of a collection of convex shapes. In their proposed approach, a neural
network outputs a set of convexes, each of which defined by the intersection of a set of half
spaces. The occupancy function defined by these convexes is evaluated differentiably at a
given point by computing the perpendicular distance from this point to each plane. Each
distance is then passed through a sigmoid function before going through a Softmin operation
to differentiably model the half space intersection computation. While this approach can
also model shapes of arbitrary shape and topology, it suffers from self-intersection problems.
Indeed, each learned convex can overlap with adjacent convexes leading to problems when
extracting an explicit surface for downstream tasks. In contrast, our Voronoi-based approach
does not suffer from this problem as our convex cells are guaranteed to be non-overlapping.
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Chen et al. propose in BSP-Net [9] a novel representation based on binary space-
partitioning trees. Their representation consists of the union of a set of convex primitives,
where each of those convexes are defined by the intersection of a set of planes. In a deep
learning setting, they design a mechanism to learn this representation by making the shape
formation process differentiable. A set of space-partitioning planes is learned and each con-
vex is defined by a linear combination of those planes. The weights of the linear combination
are learned and are replaced at test time with binary weights to generate objects with sharp
and well-defined boundaries. This process is highlighted in Figure 4.5.

4.4. Results
We evaluate our representation on three different settings. We first validate our approach

in a 2D setting. We then compare our approach with recent work on a supervised 3D
reconstruction task. Finally, we show how our representation can be used in an unsupervised
3D setting. We implement our approach and all of our models in PyTorch [49]. The nearest-
neighbour queries are performed using FAISS [24] for fast inference speed on the GPU.

4.4.1. Supervised 2D Experiments

We first train a VAE model to output a 2D version of our Voronoi representation describ-
ing hand-written digits from the MNIST dataset. We refer to this experiment as “supervised”
since the gray-scale pixel values from the MNIST images are a form of ground truth occu-
pancy function. We use a fully convolutional encoder and an MLP decoder and train using
the Adam optimizer with a learning rate of 10−4. We use the L1 loss as training signal
to compare our rendered occupancy image to the ground truth digit image. The decoder
outputs the 2D coordinates for 128 Voronoi sites and the Voronoi cell occupancies are fixed
with a 50-50 split. We additionally compute a ground truth signed distance function dis-
cretized on a grid by calculating the distance to the closest pixel of opposing occupancy.
We use this SDF in an additional training signal consisting of the level-set loss described
in Equation 4.3.5 with an α parameter corresponding to 1% of the image width. We use
β = 104 for evaluating our soft occupancy function.

We compare our approach to a 2D implementation of OccNet [41] with a varying number
of parameters. Figure 4.6 shows a qualitative overview of our results and comparison to
OccNet models. Table 4.1 shows the quantitative results of this experiment. We find that
our approach performs similarly to OccNet with two orders of magnitude fewer parameters for
the representation and that our approach significantly outperforms OccNet when comparing
with equal number of parameters.
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Fig. 4.6. Qualitative results of our autoencoding approach on the MNIST dataset. Com-
pared to OccNet, we are able to achieve comparable accuracy with representations containing
two orders of magnitude less parameters (128 vs 16k).

Method Mean Std Med
OccNet 128 83.80 28.21 85.69
OccNet 512 76.17 28.21 75.42
OccNet 16k 52.66 14.33 53.04
Voronoi 128 58.00 17.02 58.29

Table 4.1. Quantitative results of our autoencoding approach on the MNIST dataset,
compared to OccNet. Here the mean, standard deviation (Std) and median (Med) are
computed by summing the absolute differences between the generated and target pixels.
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4.4.2. Supervised 3D Experiments

We then test our approach on a supervised 3D setting using the ShapeNet airplane dataset
[7]. This allows us to directly compare our results with OccNet and AtlasNet, two competing
approaches that require 3D supervision. The task explored here is 3D shape reconstruction
from a sparse point cloud of 300 surface points. We use surface point samples, an SDF
function and occupancy volume samples as ground truth. As described in Section 4.3.3, we
use the same PointNet architecture as OccNet to process the point cloud input. We train
two versions of our autoencoder model. One that outputs 1024 Voronoi seeds and one that
outputs 10000 seeds. We train our network in two stages. First, the PointNet autoencoder is
pre-trained using the Chamfer distance metric using each iteration a number of samples from
the ground truth set of surface points Ŝ equal to the number of generated Voronoi seeds. We
train until convergence using the Adam optimizer with a learning rate of 10−4 and with a
batch size of 32. Second, we train our full architecture using the same optimizer and learning
rate. We use a level-set distance parameter α of 0.01, a blurring parameter β of 104, and
hyperparameter values λpoint = 0.5, λoccupancy = 0.01 and λsurface = 0.001. Each iteration we
evaluate the occupancy loss Loccupancy using 10000 ground truth occupancy volume samples
and the surface loss using 1000 surface samples. We train until convergence which takes
around 5 days using a single V100 GPU.

Figure 4.7 shows qualitative results of our approach compared to OccNet. Table 4.2
shows quantitative results compared to both AtlasNet and OccNet. Note that we use the
Chamfer distance (a surface metric) to compare our results to AtlasNet and the IoU metric (a
volume metric) to compare to OccNet as AtlasNet does not output an occupancy function
and it is not easy to obtain surface samples from a trained OccNet model. We evaluate
both the Chamfer and IoU losses using 10k randomly sampled points on the surface and
volume, respectively. We find a similar conclusion to this experiment as in the supervised
2D setting. Our model performs well even using a small number of seeds which in this case
corresponds to four orders of magnitude fewer parameters required to model an object. We
find that our best model (using 10k seeds) performs slightly worse than OccNet and that the
standard deviation of the IoU metric specifically could be improved. We attribute this to
the cell explosion problem for which we designed the post-processing method. Despite the
small performance gap between our approach and OccNet, our method provides additional
benefits such as an explicit (and differentiable) surface.

Compared to AtlasNet, Table 4.2 shows that our approach again performs slightly worse
than AtlasNet with the exception of the median Chamfer distance metric for our 10k seeds
model. This indicates that if we can address the instability issue or design a better post-
processing method, we could bridge the gap between our approach and AtlasNet. This is an
interesting research direction that we leave as future work.
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Fig. 4.7. Results of our autoencoding approach on the ShapeNet airplanes dataset. We
show the results of two models, one trained with 1024 seeds and one with 10k seeds. Our
model is able to represent the shape well even using a low number of seeds.

Cham mean Cham std Cham med IoU mean IoU std IoU med
AtlasNet 0.00081 0.00060 0.00062 - - -
Ours (1024) 0.00487 0.01193 0.00190 0.69851 0.20030 0.73198
Ours (10k) 0.00142 0.00282 0.00048 0.70402 0.21565 0.74232
OccNet - - - 0.77297 0.12075 0.79915

Table 4.2. Quantitative results of our autoencoding approach on the ShapeNet airplanes
dataset. We compare with AtlasNet, a parametric representation approach, using the Cham-
fer distance with 2500 sampled surface points. We report the mean, standard deviation (std)
and median (med) for all metrics. We compare with OccNet, an implicit representation ap-
proach, using the IoU loss using 100k uniform volume samples. We observe that our model
with 10k Voronoi seeds performs slightly worse than both competing approaches while pro-
viding other advantages. Nevertheless, we note that our approach outperforms AtlasNet on
the median Chamfer distance metric.
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Fig. 4.8. Visualization of output Voronoi seeds of a model trained on ShapeNet airplanes.
The blue points represent the Voronoi seed with occupancy 0 while the red points represent
those with occupancy 1. Notice how the Voronoi seeds lie on two distinct level-sets of the
model.

We show an example learned airplane and its corresponding Voronoi sites in Figure 4.8.
The Voronoi seeds appear evenly distributed and lying on two distinct level sets of the shape.
This figure also shows that our approach could benefit from having more densely distributed
Voronoi seeds around thin structures and areas of high curvatures such as the wings and tail
of the plane.

We additionally run a simple direct optimization experiment to compare the capacity
of our representation to OccNet’s. We directly optimize our Voronoi representation using
varying size to match a 3D sphere using only the occupancy loss. We do the same with an
OccNet neural network. Figure 4.9 the results of this experiment and that our approach
performs a lot better than OccNet at low number of parameters.

4.4.3. Unsupervised 3D Experiments

Finally, we test our representation on an unsupervised 3D setting. We note, however,
that our results are on simple experiments and that further experimentation will be necessary
to thoroughly compare our approach to that of other 3D unsupervised methods.
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Fig. 4.9. Comparison of the representation capacity of our approach compared to OccNet
in a 3D setting. In this experiment, we overfit both our representation and an OccNet model
to a 3D unit sphere and show that our approach represents the model more accurately at
low parameter counts.

We directly optimize a set of Voronoi seeds p and their occupancies w(p) by rendering
this representation to a 2D silhouette image from various viewpoints and comparing those
against a dataset of ground truth silhouette renderings of a 3D chair model. We optimize
this using SGD with a momentum of 0.9 and a learning rate of 0.1 for the seed positions
p and 20 for the occupancies w(p). We compare the rendered silhouette with the ground
truth using the MSE loss. We use 1000 Voronoi seeds and constrain their positions to be
within the bounding box of the scene by passing them through a scaled sigmoid function. We
produce a silhouette rendering by computing the total transmission along each camera ray by
approximating Equation 4.3.4 numerically using 300 uniformly distributed samples per ray.
Additionally, since in this context w(p) corresponds to the extinction coefficient of each cell
rather than their occupancies, we pass these values through an exponential function prior to
using them in the rendering equation. We use β = 4× 102 for differentiable rendering.

The results of this experiment are shown in Figure 4.10. Below the ground truth silhouette
images of the chair model are shown rasterized renderings of the mesh model extracted
from the Voronoi representation at the end of training. We find that our model is able to
reconstruct a shape that closely matches the ground truth silhouettes. Nevertheless, without
any additional smoothness prior or regularization loss our representation tends to generate
blocky surfaces. Adding such a regularizer is a potential area of improvement for future
work.
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Fig. 4.10. 360 degree visualization of a learned chair represented using our Voronoi-based
representation. The top row shows the ground truth silhouette while the bottom row shows
the final learned 3D model for the same poses.

4.5. Discussion and Conclusion
Overall, our novel Voronoi-based representation provides many benefits over other types

of representations. Namely, it combines the benefits of point-based, surface-based and
volume-based representations. It can model shapes and scenes of arbitrary topology and
can be rendered differentiably, on top of simultaneously representing shapes implicitly and
explicitly. All these advantages make it particularly well suited for unsupervised inverse
graphics applications. Despite the slight performance gap when compared to OccNet (a
competing implicit representation approach), we believe our Voronoi-based representation
has a lot of potential for use in deep inverse graphics pipeline, especially since it makes it
possible to obtain an explicit differentiably for downstream tasks such as physics and lighting
simulations, something that OccNet does not support.

In an unsupervised setting, we demonstrated that our approach performs well on a simple
direct optimization experiment, but much still needs to be done to fully assess the perfor-
mance of our methods compared to other unsupervised approaches such as SoftRas [34] and
DIB-R [8]. In particular, we would like to see how this representation compares on the same
unsupervised ShapeNet object silhouettes as SoftRas. We also think that there is a lot of
potential in applying additional regularizers to this setting to encourage smoother output
surfaces.

As highlighted in the previous section, the biggest challenge with our approach is training
instability. Because small movements in Voronoi seeds can lead to very large changes in cell
surfaces, we found that our approach has more trouble training smoothly and generating
shapes with thin edges. This results in higher variance in our generated results which brings
down our overall accuracy. While the use of a hand crafted post-processing step mitigates
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this problem, it is far from perfect and we would like to see if this cannot be improved
through other means.
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Chapter 5

Conclusion

In this work, we explored the use of two different 3D representations in the context of deep
unsupervised inverse graphics: one novel use of an existing representation named surfels
and one novel representation based on Voronoi diagrams. Before explaining our approaches
and results in depth, we first explained the problem and goals in detail along with relevant
background information. Additionally, we provided an overview of the current state of the
art in the field and identified issues with current approaches.

The first method we presented combined the work of HoloGAN [44] and Pix2Shape [56]
in an attempt to improve upon the state of the art on the task of novel-view synthesis, a
sub-task of inverse graphics. In this project we reproduced the HoloGAN generative pipeline
while replacing the implicit intermediary 3D voxel representation with an explicit surfel
representation. We justified our approach by explaining that using an explicit representation
would guarantee view consistency, something that we found was an issue in HoloGAN. We
showed experiments qualitatively comparing our approach to that of HoloGAN and reached
the conclusion that our approach was unable to compete with other work on this setting.
To back our claim, we ran an extensive set of experiments to understand the impact of
our hyperparameters as well as potential causes for the poor performance we observed. We
concluded by stating that although our differentiable surfel renderer experienced training
issues, as significant as they were in the unsupervised setting we were targeting, it may still
hold value as it has shown to be successful in two concurrent work operating in the weakly
supervised setting [47] [67].

In the second method we presented, we introduced a novel 3D representation based on
Voronoi diagrams with an additional per-cell occupancy bit. We showed that this represen-
tation has many advantages compared to prior approaches, including that it models surfaces
both implicitly and explicitly simultaneously, that it is very compact in terms of memory,
that it can model shapes of arbitrary topology and that it can be rendered differentiably.
We showed results of this approach on a supervised 2D setting, supervised 3D setting and



unsupervised 3D setting. Although our approach did not perform as well as competing ap-
proaches on the supervised task of 3D shape reconstruction from sparse point clouds, our
approach is more amenable to downstream tasks as it can model surfaces explicitly. We con-
cluded by identifying interesting areas for future work, notably in the unsupervised setting
where more extensive experiments have yet to be performed to truly assess the performance
of our method compared to prior work.

The task of unsupervised inverse graphics holds the promise of a future where machine
learning models can better interpret 2D images by fully understanding the 3D content and
the image formation process behind them. In the short term, it could provide significant
benefits to content creation pipelines by making it much faster to capture real-world elements
for use in digital productions. In the long term, this technology could be used to improve
object detection and image segmentation for applications such as self-driving cars where
accuracy is critical for the safety of the system.

Every year, this research topic progresses at a faster and faster pace, which makes us
very excited for the future of inverse graphics. The choice of 3D representation is still an
area of critical importance within this rapidly evolving topic and we hope that our work can
provide insight and prove to be useful to the future of deep unsupervised inverse graphics.

5.1. Future Work
Over the past few months, the field of inverse graphics has shifted more and more towards

implicit representations. NeRF by Mildenhall et al. [42] was a catalyst in this transition as
this work showed impressive results that, when rendered, were barely distinguishable from
real photos. NeRF was one of the first few work to propose an implicit representation that
modeled not only shape, but also appearance by using an MLP to learn the mapping from
3D coordinates to an occupancy/opacity and emitted radiance. Using this representation,
they were able to realistically reconstruct a 3D scene from a small number (≤ 100) of posed
images by rendering images through volume rendering with ray marching and training the
MLP to overfit the scene.

Prior to NeRF, implicit representations typically suffered from blurriness issues, similarly
to VAE models on 2D images. The authors proposed a positional embedding layer to increase
the frequency content of the input coordinate which resulted in a great improvement to the
sharpness of the learned representation. This work was followed by similar ideas, notably
SIREN networks [62] and a follow-up to NeRF exploring Fourier features embedding [64].

These methods all approach the task of single scene reconstruction from multi-view im-
ages by directly optimizing the representation for a single scene. For unsupervised inverse
graphics from a single 2D image, however, using an autoencoding approach trained on a
dataset of multiple scenes is necessary. This was first done in OccNet [41] and DeepSDF [48]
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by conditioning the MLP implicit representation on a latent code representing the scene.
More recently, MetaSDF [61] explored how meta-learning can be used in this context to
output the weights of the MLP based on a latent code of the scene. These methods all
operate using 3D supervision or with silhouette images as they do not model appearance as
is done in NeRF. GRAF [60] is the first work to extend the NeRF model to a generative
model. Although it lacks an inference mechanism, it is a promising first step towards using
the full power of implicit representations in the context of unsupervised inverse graphics.

Implicit representations are really promising because of their simplicity but also because
of their training dynamics. Indeed, training neural networks as general function approxima-
tors is now a common task since the advent of deep learning and their effectiveness has been
shown through both theory and applications. The next challenge for neural implicit repre-
sentations is to improve the (volume) rendering speed as this ray-marching step is currently
a major bottleneck for training, but also at test time where rendering times are still three
orders of magnitude too slow for real-time applications. Additionally, more research will be
necessary to find ways to properly disentangle object identity from pose since the HoloGAN
approach is not applicable to a neural implicit representation.

Although it is difficult to obtain an explicit triangle mesh from an implicit representations,
it is possible that implicit representations will become the new standard in the future, thereby
removing the need for explicit representations in the first place. This is currently far-fetched,
however, as it would require new methods for scene manipulation, animation, rendering,
physics simulation, 3D modeling and many more. Nevertheless, this type of representation
is currently leading the way for improvements on some specific deep learning applications
such as novel-view synthesis and 3D scene understanding in the near future.

70



References

[1] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov et Victor Lempitsky :
Neural point-based graphics. arXiv preprint arXiv:1906.08240, 2019.

[2] Martin Arjovsky, Soumith Chintala et Léon Bottou : Wasserstein generative adversarial networks.
International Conference on Machine Learning (ICML), 2017.

[3] Matan Atzmon et Yaron Lipman : Sal: Sign agnostic learning of shapes from raw data. arXiv preprint
arXiv:1911.10414, 2019.

[4] Matan Atzmon et Yaron Lipman : Sal++: Sign agnostic learning with derivatives. arXiv preprint
arXiv:2006.05400, 2020.

[5] Harry G Barrow, Jay M Tenenbaum, Robert C Bolles et Helen C Wolf : Parametric corre-
spondence and chamfer matching: Two new techniques for image matching. Rapport technique, SRI
INTERNATIONAL MENLO PARK CA ARTIFICIAL INTELLIGENCE CENTER, 1977.

[6] Mojtaba Bemana, Karol Myszkowski, Hans-Peter Seidel et Tobias Ritschel : X-fields: Implicit
neural view-, light- and time-image interpolation. ACM Transactions on Graphics (Proc. SIGGRAPH
Asia 2020), 39(6), 2020.

[7] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo
Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi et Fisher Yu :
Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012, 2015.

[8] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith, Jaakko Lehtinen, Alec Jacobson et Sanja
Fidler : Learning to predict 3d objects with an interpolation-based differentiable renderer. In Advances
in Neural Information Processing Systems, pages 9609–9619, 2019.

[9] Zhiqin Chen, Andrea Tagliasacchi et Hao Zhang : Bsp-net: Generating compact meshes via binary
space partitioning. arXiv:1911.06971, 2019.

[10] Thomas Davies, Derek Nowrouzezahrai et Alec Jacobson : Overfit neural networks as a compact
shape representation. arXiv preprint arXiv:2009.09808, 2020.

[11] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton et Andrea
Tagliasacchi : Cvxnet: Learnable convex decomposition. arXiv:1909.05736, 2019.

[12] Theo Deprelle, Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell et Math-
ieu Aubry : Learning elementary structures for 3d shape generation and matching. arXiv preprint
arXiv:1908.04725, 2019.

[13] Jeff Donahue, Philipp Krähenbühl et Trevor Darrell : Adversarial feature learning. arXiv preprint
arXiv:1605.09782, 2016.

[14] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin
Arjovsky et Aaron Courville : Adversarially learned inference. arXiv preprint arXiv:1606.00704,
2016.



[15] S Fortune : A sweepline algorithm for voronoi diagrams. In Proceedings of the Second Annual Sym-
posium on Computational Geometry, SCG ’86, page 313–322, New York, NY, USA, 1986. Association
for Computing Machinery.

[16] Ian Goodfellow, Yoshua Bengio, Aaron Courville et Yoshua Bengio : Deep learning, volume 1.
MIT Press, 2016.

[17] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville et Yoshua Bengio : Generative adversarial nets. Advances in Neural
Information Processing Systems (NIPS), 2014.

[18] Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell et Mathieu Aubry : Atlas-
net: A papier-mache approach to learning 3d surface generation. arXiv:1802.05384, 2018.

[19] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin et Aaron C Courville
: Improved training of wasserstein gans. Advances in Neural Information Processing Systems (NIPS),
2017.

[20] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler et Sepp Hochreiter
: Gans trained by a two time-scale update rule converge to a local nash equilibrium. arXiv preprint
arXiv:1706.08500, 2017.

[21] Berthold K. P. Horn : Obtaining Shape from Shading Information, page 123–171. MIT Press, Cam-
bridge, MA, USA, 1989.

[22] Eldar Insafutdinov et Alexey Dosovitskiy : Unsupervised learning of shape and pose with differen-
tiable point clouds. CoRR, abs/1810.09381, 2018.

[23] Max Jaderberg, Karen Simonyan, Andrew Zisserman et Koray Kavukcuoglu : Spatial trans-
former networks. arXiv preprint arXiv:1506.02025, 2015.

[24] Jeff Johnson, Matthijs Douze et Hervé Jégou : Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734, 2017.

[25] James T. Kajiya : The rendering equation. SIGGRAPH Comput. Graph., 20(4):143–150, août 1986.
[26] Tero Karras, Timo Aila, Samuli Laine et Jaakko Lehtinen : Progressive growing of gans for im-

proved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.
[27] Tero Karras, Samuli Laine et Timo Aila : A style-based generator architecture for generative adver-

sarial networks. arXiv preprint arXiv:1812.04948, 2018.
[28] Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando, Toru Matsuoka, Wadim Kehl et

Adrien Gaidon : Differentiable rendering: A survey. arXiv preprint arXiv:2006.12057, 2020.
[29] Hiroharu Kato, Yoshitaka Ushiku et Tatsuya Harada : Neural 3d mesh renderer. In Proc. of Comp.

Vision and Pattern Recognition (CVPR), 2018.
[30] Michael Kazhdan, Matthew Bolitho et Hugues Hoppe : Poisson surface reconstruction. In Pro-

ceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP ’06, page 61–70, Goslar,
DEU, 2006. Eurographics Association.

[31] Diederik P Kingma et Max Welling : Auto-encoding variational bayes. arXiv preprint
arXiv:undefined, 2013.

[32] Leif Kobbelt et Mario Botsch : A survey of point-based techniques in computer graphics. Computers
& Graphics, 28(6):801–814, 2004.

[33] Tzu-Mao Li, Miika Aittala, Frédo Durand et Jaakko Lehtinen : Differentiable monte carlo ray
tracing through edge sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia), 37(6):222:1–222:11, 2018.

[34] Shichen Liu, Weikai Chen, Tianye Li et Hao Li : Soft rasterizer: Differentiable rendering for unsuper-
vised single-view mesh reconstruction. CoRR, abs/1901.05567, 2019.

72



[35] Shichen Liu, Tianye Li, Weikai Chen et Hao Li : Soft rasterizer: A differentiable renderer for image-
based 3d reasoning. CoRR, abs/1904.01786, 2019.

[36] Matthew M Loper et Michael J Black : Opendr: An approximate differentiable renderer. In European
Conference on Computer Vision, pages 154–169. Springer, 2014.

[37] William E Lorensen et Harvey E Cline : Marching cubes: A high resolution 3d surface construction
algorithm. In ACM Trans. on Graphics (Proc. of SIGGRAPH), 1987.

[38] Guillaume Loubet, Nicolas Holzschuch et Wenzel Jakob : Reparameterizing discontinuous inte-
grands for differentiable rendering. ACM Transactions on Graphics, décembre 2019.

[39] Daniel Maturana et Sebastian Scherer : Voxnet: A 3d convolutional neural network for real-time
object recognition. pages 922–928, 09 2015.

[40] Morgan McGuire et Louis Bavoil : Weighted blended order-independent transparency. Journal of
Computer Graphics Techniques (JCGT), 2(2):122–141, December 2013.

[41] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin et Andreas Geiger :
Occupancy networks: Learning 3d reconstruction in function space. arXiv:1812.03828, 2018.

[42] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoor-
thi et Ren Ng : Nerf: Representing scenes as neural radiance fields for view synthesis. arXiv preprint
arXiv:2003.08934, 2020.

[43] Mehdi Mirza et Simon Osindero : Conditional generative adversarial nets. Arxiv, 2014.
[44] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt et Yong-Liang Yang : Hologan:

Unsupervised learning of 3d representations from natural images. arXiv preprint arXiv:1904.01326,
2019.

[45] Merlin Nimier-David, Sébastien Speierer, Benoît Ruiz et Wenzel Jakob : Radiative backpropa-
gation: an adjoint method for lightning-fast differentiable rendering. ACM Transactions on Graphics
(TOG), 39(4):146–1, 2020.

[46] Merlin Nimier-David, Delio Vicini, Tizian Zeltner et Wenzel Jakob : Mitsuba 2: A retargetable for-
ward and inverse renderer. Transactions on Graphics (Proceedings of SIGGRAPH Asia), 38(6), novem-
bre 2019.

[47] Atsuhiro Noguchi et Tatsuya Harada : Rgbd-gan: Unsupervised 3d representation learning from
natural image datasets via rgbd image synthesis. arXiv preprint arXiv:1909.12573, 2019.

[48] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe et Steven Lovegrove :
Deepsdf: Learning continuous signed distance functions for shape representation. Proc. of Comp. Vision
and Pattern Recognition (CVPR), 2019.

[49] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai et Soumith Chintala : Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox et
R. Garnett, éditeurs : Proc. of Neural Information Processing Systems (NeurIPS), pages 8024–8035.
Curran Associates, Inc., 2019.

[50] Georgios Pavlakos, Luyang Zhu, Xiaowei Zhou et Kostas Daniilidis : Learning to estimate 3d human
pose and shape from a single color image. arXiv preprint arXiv:1805.04092, 2018.

[51] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar et Markus Gross : Surfels: Surface elements
as rendering primitives. In Annual Conference on Computer Graphics and Interactive Techniques, 2000.

73



[52] Matt Pharr, Wenzel Jakob et Greg Humphreys, éditeurs. Physically Based Rendering (Third Edi-
tion). Morgan Kaufmann, Boston, third edition édition, 2017.

[53] Charles R Qi, Hao Su, Kaichun Mo et Leonidas J Guibas : Pointnet: Deep learning on point sets for
3d classification and segmentation. In Proc. of Comp. Vision and Pattern Recognition (CVPR), 2017.

[54] Charles R. Qi, Hao Su, Matthias Niessner, Angela Dai, Mengyuan Yan et Leonidas J. Guibas :
Volumetric and multi-view cnns for object classification on 3d data. arXiv preprint arXiv:1604.03265,
2016.

[55] Charles Ruizhongtai Qi, Li Yi, Hao Su et Leonidas J. Guibas : Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. CoRR, abs/1706.02413, 2017.

[56] Sai Rajeswar, Fahim Mannan, Florian Golemo, Jérôme Parent-Lévesque, David Vazquez, Derek
Nowrouzezahrai et Aaron Courville : Pix2shape: Towards unsupervised learning of 3d scenes from
images using a view-based representation. arXiv preprint arXiv:2003.14166, 2020.

[57] Olaf Ronneberger, Philipp Fischer et Thomas Brox : U-net: Convolutional networks for biomedical
image segmentation. arXiv preprint arXiv:1505.04597, 2015.

[58] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo Kanazawa et Hao Li :
Pifu: Pixel-aligned implicit function for high-resolution clothed human digitization. arXiv:1905.05172,
2019.

[59] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford et Xi Chen :
Improved techniques for training gans. arXiv preprint arXiv:1606.03498, 2016.

[60] Katja Schwarz, Yiyi Liao, Michael Niemeyer et Andreas Geiger : Graf: Generative radiance fields
for 3d-aware image synthesis. arXiv preprint arXiv:2007.02442, 2020.

[61] Vincent Sitzmann, Eric R. Chan, Richard Tucker, Noah Snavely et Gordon Wetzstein : Metasdf:
Meta-learning signed distance functions. arXiv preprint arXiv:2006.09662, 2020.

[62] Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell et Gor-
don Wetzstein : Implicit neural representations with periodic activation functions. arXiv preprint
arXiv:2006.09661, 2020.

[63] Vincent Sitzmann, Michael Zollhöfer et Gordon Wetzstein : Scene representation networks: Con-
tinuous 3d-structure-aware neural scene representations. arXiv preprint arXiv:1906.01618, 2019.

[64] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron et Ren Ng : Fourier features let networks
learn high frequency functions in low dimensional domains. arXiv preprint arXiv:2006.10739, 2020.

[65] Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann, Stephen Lombardi, Kalyan
Sunkavalli, Ricardo Martin-Brualla, Tomas Simon, Jason Saragih, Matthias Nießner,
Rohit Pandey, Sean Fanello, Gordon Wetzstein, Jun-Yan Zhu, Christian Theobalt, Maneesh
Agrawala, Eli Shechtman, Dan B Goldman et Michael Zollhöfer : State of the art on neural
rendering. arXiv preprint arXiv:2004.03805, 2020.

[66] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun et Xin Tong : O-cnn: Octree-based
convolutional neural networks for 3d shape analysis. arXiv preprint arXiv:1712.01537, 2017.

[67] Olivia Wiles, Georgia Gkioxari, Richard Szeliski et Justin Johnson : Synsin: End-to-end view
synthesis from a single image. arXiv preprint arXiv:1912.08804, 2019.

[68] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang et Jianxiong
Xiao : 3d shapenets: A deep representation for volumetric shapes. arXiv preprint arXiv:undefined,
2014.

74



[69] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie et Bharath Hariha-
ran : Pointflow: 3d point cloud generation with continuous normalizing flows. arXiv preprint
arXiv:1906.12320, 2019.

[70] Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli et Olga Sorkine-Hornung : Differentiable
surface splatting for point-based geometry processing. arXiv preprint arXiv:1906.04173, 2019.

[71] Ilker Yildirim, Tejas Kulkarni, Winrich Freiwald et Joshua Tenenbaum : Efficient analysis-by-
synthesis in vision: A computational framework, behavioral tests, and comparison with neural repre-
sentations. 07 2015.

[72] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser et Jianxiong Xiao : Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365, 2015.

[73] Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas et Shuang Zhao : Path-space differen-
tiable rendering. ACM Transactions on Graphics (TOG), 39(4):143–1, 2020.

[74] Shuang Zhao, Wenzel Jakob et Tzu-Mao Li : Physics-based differentiable rendering: From theory to
implementation. In ACM SIGGRAPH 2020 Courses, SIGGRAPH 2020, New York, NY, USA, 2020.
Association for Computing Machinery.

75


	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Acknowledgments
	Chapter 1. Introduction
	Chapter 2. Background
	2.1. 3D Rendering
	2.1.1. Physically-based Rendering
	2.1.2. Differentiable Rendering
	2.1.3. Volume Rendering

	2.2. 3D Representations for Deep Learning
	2.2.1. Meshes
	2.2.2. Point Clouds
	2.2.3. Voxels
	2.2.4. Implicit Representations

	2.3. Unsupervised Learning
	2.3.1. Autoencoders
	2.3.2. Generative Adversarial Networks


	Chapter 3. Unsupervised Depth Estimation from Natural Images
	3.1. Introduction
	3.2. Preliminaries
	3.2.1. Pix2Shape
	3.2.2. HoloGAN

	3.3. Method
	3.3.1. Architecture
	3.3.2. Differentiable Surfels Projection
	3.3.3. Losses
	3.3.4. Datasets
	3.3.5. Concurrent Work

	3.4. Results
	3.5. Discussion and Conclusion

	Chapter 4. A Voronoi-based 3D Representation for Deep Learning
	4.1. Introduction
	4.2. Preliminaries
	4.3. Method
	4.3.1. The Representation
	4.3.2. Differentiable Rendering
	4.3.3. Architecture
	4.3.4. Losses
	4.3.5. Post-processing
	4.3.6. Concurrent Work

	4.4. Results
	4.4.1. Supervised 2D Experiments
	4.4.2. Supervised 3D Experiments
	4.4.3. Unsupervised 3D Experiments

	4.5. Discussion and Conclusion

	Chapter 5. Conclusion
	5.1. Future Work

	References

