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Résumé

L’établissement de clé quantique (abrégé QKD en anglais) permet à deux participants dis-
tants, Alice et Bob, d’établir une clé secrète commune (mais aléatoire) qui est connue uni-
quement de ces deux personnes (c’est-à-dire inconnue d’Ève et de tout autre tiers parti). La
clé secrète partagée est inconditionnellement privée et peut être plus tard utilisée, par Alice
et Bob, pour transmettre des messages en toute confidentialité, par exemple sous la forme
d’un masque jetable. 1 Le protocole d’établissement de clé quantique garantit la confidentia-
lité inconditionnelle du message en présence d’un adversaire (Ève) limité uniquement par les
lois de la mécanique quantique, et qui ne peut agir sur l’information que se partagent Alice
et Bob que lors de son transit à travers des canaux classiques et quantiques. Mais que se
passe-t-il lorsque Ève a le pouvoir supplémentaire de contraindre Alice et/ou Bob à révéler
toute information, jusqu’alors gardée secrète, générée lors de l’exécution (réussie) du pro-
tocole d’établissement de clé quantique (éventuellement suite à la transmission entre Alice
et Bob d’un ou plusieurs messages chiffrés classique à l’aide de cette clé), de manière à ce
qu’Ève puisse reproduire l’entièreté du protocole et retrouver la clé (et donc aussi le message
qu’elle a chiffré) ? Alice et Bob peuvent-ils nier la création de la clé de manière plausible
en révélant des informations mensongères pour qu’Ève aboutisse sur une fausse clé ? Les
protocoles d’établissement de clé quantiques peuvent-ils tels quels garantir la possibilité du
doute raisonnable ? Dans cette thèse, c’est sur cette énigme que nous nous penchons.

Dans le reste de ce document, nous empruntons le point de vue de la théorie de l’infor-
mation pour analyser la possibilité du doute raisonnable lors de l’application de protocoles
d’établissement de clé quantiques. Nous formalisons rigoureusement différents types et de-
grés de doute raisonnable en fonction de quel participant est contraint de révéler la clé, de
ce que l’adversaire peut demander, de la taille de l’ensemble de fausses clés qu’Alice et Bob
peuvent prétendre établir, de quand les parties doivent décider de la ou des clés fictives, de
quelle est la tolérance d’Ève aux événements moins probables, et du recours ou non à des
hypothèses de calcul.

1. Le masque jetable (abrégé OTP en anglais) est un protocole de chiffrage offrant une confidentialité
inconditionnelle, mais qui nécessite le partage préalable d’une clé à usage unique. La clé doit doit être au
moins de même entropie que le message envoyé.
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Nous définissons ensuite rigoureusement une classe générale de protocoles d’établissement
de clé quantiques, basée sur un canal quantique presque parfait, et prouvons que tout proto-
cole d’établissement de clé quantique appartenant à cette classe satisfait la définition la plus
générale de doute raisonnable : à savoir, le doute raisonnable universel. Nous en fournissons
quelques exemples. Ensuite, nous proposons un protocole hybride selon lequel tout protocole
QKD peut être au plus existentiellement déniable. De plus, nous définissons une vaste classe
de protocoles d’établissement de clé quantiques, que nous appelons préparation et mesure,
et prouvons l’impossibilité d’instiller lors de ceux-ci tout degré de doute raisonnable.

Ensuite, nous proposons une variante du protocole, que nous appelons préparation et
mesure floues qui offre un certain niveau de doute raisonnable lorsque Ève est juste. Par la
suite, nous proposons un protocole hybride en vertu duquel tout protocole d’établissement
de clé quantique ne peut offrir au mieux que l’option de doute raisonnable existentiel. Fi-
nalement, nous proposons une variante du protocole, que nous appelons mono-déniable qui
est seulement Alice déniable ou Bob déniable (mais pas les deux).

Mots clés: Éditée alternative, Doute raisonnable, Établissement de clé quan-
tique.
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Abstract

Quantum Key Establishment (QKD) 2 enables two distant parties Alice and Bob to es-
tablish a common random secret key known only to the two of them (i.e., unknown to Eve
and anyone else). The common secret key is information-theoretically secure. Later, Alice
and Bob may use this key to transmit messages securely, for example as a one-time pad. 3

The QKD protocol guarantees the confidentiality of the key from an information-theoretic
perspective against an adversary Eve who is only limited by the laws of quantum theory and
can act only on the signals as they pass through the classical and quantum channels. But
what if Eve has the extra power to coerce Alice and/or Bob after the successful execution
of the QKD protocol forcing either both or only one of them to reveal all their private in-
formation (possibly also after one or several (classical) ciphertexts encrypted with that key
have been transmitted between Alice and Bob) then Eve could go through the protocol and
obtain the key (hence also the message)? Can Alice and Bob deny establishment of the key
plausibly by revealing fake private information and hence also a fake key? Do QKD protocols
guarantee deniability for free in this case? In this Thesis, we investigate this conundrum.

In the rest of this document, we take an information-theoretic perspective on deniability
in quantum key establishment protocols. We rigorously formalize different levels and flavours
of deniability depending on which party is coerced, what the adversary may ask, what is the
size of the fake set that surreptitious parties can pretend to be established, when the parties
should decide on the fake key(s), and what is the coercer’s tolerance to less likely events and
possibly also computational assumptions.

We then rigorously define a general class of QKD protocols, based on an almost-perfect
quantum channel, and prove that any QKD protocol that belongs to this class satisfies the
most general flavour of deniability, i.e.,universal deniability. Moreover, we define a broad
class of QKD protocols, which we call prepare-and-measure, and prove that these protocols
are not deniable in any level or flavour.

2. Traditionally known as quantum key distribution, whence the common initialism QKD.
3. The one-time pad (OTP) is an encryption protocol that is information theoretically secure, but requires

the use of a one-time pre-shared key. The key must be random and at least as long as the entropy of the
message being sent.
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Moreover, we define a class of QKD protocols, which we refer to as fuzzy prepare-and-
measure, that provides a certain level of deniability conditioned on Eve being fair. Fur-
thermore, we propose a hybrid protocol under which any QKD protocol can be at most
existentially deniable. Finally, we define a class of QKD protocols, which we refer to as
mono-deniable, which is either Alice or Bob (but not both) deniable.

Keywords: Edited truth, Deniability, Quantum key establishment.
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Chapter 1

Introduction

1.1. Motivation
Since its inception in 1983, significant attention has been given to proving the security

of Quantum Key Establishment 1 (QKD) protocols. It is now well-established that several
QKD protocols, including the original BB84 [13], 2 are unconditionally secure. 3 Much less
attention has been given to the art of post-truth (a.k.a deniability), which is the topic of this
Thesis.

In the usual quantum cryptographic scenario, two legitimate parties (called Alice and
Bob) communicate through a quantum channel, whereas an opponent (called Eve) tries
to intercept as much of the quantum transmission as possible, while not causing so much
disturbance that Alice and Bob can detect her presence. In the context of QKD, the purpose
of Alice and Bob is to establish a shared secret key. Traditionally, Eve’s purpose is to
learn that key, or at least information about the key, while avoiding detection. However,
in the context of deniability, which we study here, Eve is not even trying to learn the key
from the information she obtains by eavesdropping (and/or tampering) since she knows
that it is impossible without causing the legitimate parties to abort the protocol. Rather,
she wants to learn just enough about the content of the quantum transmission to be able
subsequently to coerce one or both of the legitimate participants into revealing the key they
had established. Coercion could be applied by force (e.g. putting a gun to Alice’s head),
authority (e.g. a subpoena duces tecum), greed (e.g. offering money to Alice, possibly even
before she conducts a QKD session with Bob), or blackmail (give me your key or else. . . ).

1. Traditionally known as Quantum Key Distribution, whence the common initialism QKD.
2. A freshly typeset version of the original manuscript was published on the occasion of its 30th anniver-

sary [14].
3. For the practical security of implemented devices, one would need to make sure that implementations

follow the theoretical prescriptions in order not to be susceptible to quantum hacking. However, for simplicity,
we assume here that QKD protocols can be implemented sufficiently well that the theoretical proofs of
unconditional security apply, and concentrate on deniability issues.



To make it more interesting, we assume that the coerced party, say Bob, 4 would like to
lie about the key established with the other party. To verify if the coerced party is truly
revealing the key established with the other legitimate party, rather than a fake key, the
coerced party is required to hand over all the private information that he used during the
execution of the key establishment protocol, such as the outcome of all his coin tosses and
the result of all his measurements. For example, in the case of the BB84 protocol, Bob
would reveal all of his measurement results for the received photons. The purpose of light 5

eavesdropping (and/or tampering) on the quantum channel by the coercer (Eve) is to allow
her to detect if the coerced party is attempting to change that information surreptitiously
in the hope of pretending that a fake key had been established, but to do so without causing
so much disturbance that the protocol would be aborted.

In this Thesis, we address the following fundamental questions about deniable QKD
protocols. What are the levels and flavours of deniable QKD protocols? What is a sufficient
condition to achieve deniability? What is a sufficient condition for not achieving deniability
in any level or flavour? What are the modifications and extra assumptions that transform
any secure “standard” QKD protocol into a deniable one?

1.2. Deniable Quantum Key Establishment Protocols
Setting

We consider a setting where two separate legitimate parties, Alice and Bob, want to
establish a deniable identical secret key. Throughout this Thesis, we focus on information-
theoretic deniability, which is the strongest notion of deniability. 6 Information-theoretic
deniability guarantees that Eve cannot catch surreptitious Alice and Bob, except with neg-
ligible probability. In other words, with overwhelming probability, the deniable secure QKD
protocol we define in this Thesis cannot be broken even if Eve has unlimited computational
power. The secure QKD protocol is considered information-theoretic deniable if (with over-
whelming probability) Eve does not have enough information to catch upon coercion the
surreptitious party. Such a protocol is invulnerable to future developments in computing
power such as quantum computing. In this Thesis, we assume that coercion happens after
the protocol execution. Furthermore, we assume that Alice and Bob have executed a secure
QKD protocol and they are prohibited from deleting any information that they have used
through out the protocol execution. However, they are willing to cheat (i.e., deleting their

4. Let us say that it is Bob who is being coerced, so that we can use pronouns to distinguish “him”
conveniently from the opponent Eve, who is a “she”.

5. As opposed to heavy, not as opposed to dark!
6. An example of a weaker level of deniability is computational deniability, where one only requires that

it is difficult (i.e., time-consuming, but not impossible) for an adversary to catch the cheating parties in the
act at coercion time.
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private information) without being caught at the subsequent time of correction. Therefore,
upon coercion the coerced parties should provide some fake private information in away that
the coercer cannot catch the surreptitious parties in the act. In this Thesis, we study the
conventional secure QKD protocols as they are, to investigate if they provide deniability in
some levels or flavours without any extra assumptions unless otherwise noted. Therefore,
the only resources Alice and Bob have in hand are an authenticated public classical channel
and an (insecure) quantum channel.

We also assume that the description of the QKD protocol that Alice and Bob are per-
forming is publicly known, i.e., at the time of coercion, surreptitious Alice and Bob cannot
lie about the established key by claiming that they actually had performed a different QKD
protocol.

Note that in this Thesis, we assume that upon subsequent coercion the coerced party is
always honest about the public information and may only be dishonest about the private
information (in a way that does not contradict with the public information). This assumption
distinguish our work from what has recently appeared in politics as “alternative facts” where
politicians claim “utter a provable falsehood” as an alternative interpretation of a fact.

Our work is also distinct from political use of the term “post-truth”. According to Oxford
dictionaries, post-truth is an adjective and it is relating to circumstances in which people
respond more to feelings and beliefs than to facts. According to Wikipedia [52], post-truth
refers to circumstances in which politicians attempt to deceive/mislead public by shaping
the public opinion based on the use of emotion and personal belief instead of objective facts.
However, our goal of investigating the art of post-truth (a.k.a deniability) as a cryptographic
task is to protect privacy and secrecy of the legitimate parties against adversarial coercion
attacks. 7 We consider scenarios where two legitimate parties establish a secret key under
the nose of an adversary. We assume that the adversary may have an extra power to coerce
the legitimate parties after the successful execution of the protocol to suppress their privacy.
The art of post-truth (in cryptography world) enables the legitimate parties to protect their
privacy against adversarial coercion. Therefore, it can be argued that our work brings “the
art of post-truth” to unprecedented heights!

As any other cryptographic task, a deniable protocol can be both a curse and a blessing.
There might be scenarios under which the legitimate parties wish to run an especially “un-
deniable” protocol. That is why we investigate both classes of QKD protocols, i.e., the ones
that are universally deniable and the ones which are undeniable.

7. In all cryptographic tasks such as encryption, digital signature and authentication, we assume that the
legitimate parties are trying to protect their privacy from some adversarial attacks.
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1.3. Summery of Contributions
We provide formal definitions for deniability of QKD protocols, which by necessity have

to be completely different from their classical counterparts. For instance, a quantum oppo-
nent may find it useful to keep unmeasured quantum information that was obtained during
eavesdropping on the quantum channel, and wait until after coercion to decide how to mea-
sure it. As in the classical encryption case, deniability in key establishment protocols comes
in a variety of levels and flavours. Different flavours of deniability include universal deniable,
existential deniable, plausibly deniable and plan-ahead deniable. Deniability is universal if
the coerced party can successfully pretend upon coercion that any key of his choice was
established with the other legitimate party as a result of running the QKD protocol; it is
existential if the coerced party can pretend upon coercion that some key other than the real
one was established, but he may not be able to choose which one. It is plausibly deniable if
the coerced party can convince the coercer of a fake private information that results in es-
tablishment of a fake (but believable) key (this notion is informal), for example, if Alice and
Bob modify a secure QKD protocol to something totally inefficient but deniable, the coercer
may count this as a sign of dishonesty. In other words, a secure QKD protocol is plausibly
deniable if it is as efficient as if the legitimate parties knew they will never be coerced; it is
plan-ahead deniable if the choice of fake key (or, better, the choice of fake cleartext in the
case of the deniable encryption) must be made at the time the QKD protocol takes place
rather than at the subsequent time of coercion.

Different levels of deniability are sender-deniable, receiver-deniable, bi-deniable, mono-
deniable and deniability against a fair Eve. In a QKD scenario that the quantum channel
is only one way (the quantum state are transmitted only from Alice to Bob) Alice is also
known as sender and Bob is also known as receiver. A QKD protocol can be sender-deniable
if the sender can withstand coercion, receiver-deniable if the same is true of the receiver, or
bi-deniable if it can withstand simultaneous coercion of both legitimate parties. In the latter
case, they must be capable of pretending that the same fake key had been established, which
may require secret communication between them at the time of coercion (an implausible
scenario when they are coerced). A QKD protocol is mono-deniable if either Alice or Bob
(but not both) can withstand coercion. In other words, a mono-deniable QKD protocol
becomes undeniable as soon as Eve coerces both parties at the same time (even if she allows
them to communicate privately and deniably at the time of coercion). Similarly, in context
of QKD protocols that the quantum channel is bi-directional (both Alice and Bob transmit
some quantum state through the quantum channel), one may consider the following levels
of deniability namely Alice-deniable, Bob-deniable, Alice&Bob-deniable.

22



A QKD protocol is said to be deniable against a fair Eve if fake keys will be accepted as
real unless there is absolute certainty that the information obtained by Eve during the execu-
tion of the QKD protocol is incompatible with the information revealed during coercion. The
image here is that the coercer (Eve) goes to a judge with all her evidence before the coerced
party, let’s say Bob, can be declared guilty, and the judge will declare him innocent unless
there is absolute proof to the contrary. (Here, we assume that the coercer can be believed
to tell the truth to the judge concerning the information she obtained from eavesdropping
and coercion).

We propose a hybrid scheme for deniable QKD protocols that allows the legitimate parties
to share random secret information ahead of time (in addition to what may be needed for
authenticating the public classical channel). In that case however, the final key obtained
by the QKD protocol must be longer than the pre-shared secret since otherwise deniability
becomes trivial: the legitimate parties may run an arbitrary QKD protocol, throw away the
resulting key, and use their shared secret information as final key instead!

Of course, deniability should not come at the expense of secrecy in the usual sense
(i.e., before an eventual coercion). A QKD protocol is secrecy-preserving deniable if, after
coercion, Eve cannot learn anything more about the honest key other than what she could
have known before coercion whenever Alice and/or Bob decide to be surreptitious. This is a
crucial feature that might seem obvious at first glance. Protocols that rely on a pre-shared
secret to achieve deniability are unlikely to fulfil this condition by revealing a fake secret
(therefore not really pre-shared) because the coercer can always run through all possible
such secrets and see what final key would be obtained with each one of them, thus reducing
the entropy of the final key to no more than that of the pre-shared secret. Also, such
protocols are unlikely to be deniable in a plausible manner once the established key is used
in compose with other cryptographic primitives. Suppose that such a key has been used to
encrypt a text message. Since only the true secret can be expected to yield a key under
which the intercepted ciphertext gives rise to a plausible cleartext (unless extremely effective
data compression—close to the Shannon limit—is used before enciphering).

After formalizing all the definitions above, we formally define the two broad classes of
QKD protocols: those that allow the legitimate participants to establish an almost-perfect
quantum channel between them and those that we call prepare-and-measure. We prove that
the former are universal deniable while the latter cannot even be existential deniable. We give
examples of protocols in each category, such as protocols based on discretizing quantum error
correcting codes (such as CSS codes) and a modified Lo-and-Chau protocol defined by Shor
and Preskill [49] in the first category, and the BB84 [13, 14] as well as the B92 [12]
protocols in the second category. Note that the use of CSS codes illustrates the fact that a
protocol can be universally deniable without ever needing the two legitimate parties to share
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entanglement. Moreover, we propose a new class of QKD protocols that we call fuzzy prepare-
and-measure that in the context of a fair Eve, become deniable. Furthermore, we propose
a new class of QKD protocols (inspired by our definition of prepare-and-measure QKD
protocols) and prove that this class of protocols are universally (only) receiver deniable. We
also show how to achieve universally Alice deniable from a QKD protocol which is universally
(only) receiver deniable. Moreover, we propose a new QKD protocol which is universally
(only) sender deniable. Note that the existence of sender (only) deniable QKD protocol and
receiver (only) deniable QKD protocols illustrate an asymmetry in deniability property of a
QKD protocol. Finally, we propose a frame-work to achieve universal mono-deniability by
composing a QKD protocol which is universally (only) sender deniable with a QKD protocol
which is universally (only) receiver deniable.

It can be argued that this work brings the art of post-truth to unprecedented heights!

1.4. Applications
A part from being an interesting cryptographic primitive by itself, deniable key estab-

lishment protocols can assist in resolving other cryptographic conundrums such as deniable
encryption and deniable authentication.

Deniable Encryption: Deniable key establishment protocol can be used to achieve
deniable encryption protocols. For example, it is straightforward to see how one may
achieve a deniable encryption protocol from a deniable key establishment protocol
followed by a one-time pad (OTP) encryption. Some applications of deniable encryp-
tion protocols include prevention of vote-buying in electronic secret voting scheme,
incoercible multi-party computation and storing encrypted data in a deniable way.
In the avoiding vote-buying scenario, we assume that Alice is voting electronically
and a coercer e.g., a vote buyer, offers Alice money in exchange of her vote for some
candidate c. The coercer approaches Alice after hearing the corresponding ciphertext
and demands to see proof of her vote for candidate c. In context of electronic voting
via deniable encryption protocol the coercer cannot verify whether Alice indeed voted
for c or for some other candidate. More generally, deniable encryption might assist
in achieving incoercible multi-party computation protocol. In context of incoercible
multi-party computation a group of mutually distrustful parties want to apply some
joint computation of their inputs while keeping their individual input private even in
presence of a coercer adversary. Roughly speaking, incoercibility ensures that even
when some parties are coerced by adversary into executing a strategy other than what
is described in the protocol, e.g., coerced to use a different input or even a different
protocol, then the party can deceive the adversary, e.g., use its originally intended
input, without the coercer being able to detect it. In the storing encrypted data in a
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deniable way, one may assume that Bob who is an owner of a cloud server storing a
large corpus of encrypted data. Furthermore, assume that Bob saves the encryption
key on a separate device. When a client, Alice, requests Bob to store her data privately
on his server, first Alice and Bob establish a secret key (possibly under the nose of an
adversary Eve). Alice encrypts her data under the shared secret key with Bob and
send it over a public channel (possibly under the nose of Eve) to Bob. Suppose that
Eve seizes the server and ask Bob to reveal his secret key. If the encryption scheme is
deniable, Bob can freely lie about the encrypted data by pretending a suitable chosen
key was established in the key establishment step.

Deniable Authentication: A deniable key establishment protocol can be used to
achieve deniable message authentication, e.g., symmetric authentication. Deniable
message authentication enables Alice to send some messages m to Bob in a way that
Bob can authenticate the message origin and its content. However, Bob does not have
any evidence to prove to any third party who did not directly witness the communica-
tion that Alice send him the messagem. Deniable message authentication might assist
in resolving other cryptographic conundrum such as free speech and whistleblowing. 8

Please note that in some applications such as whistleblowing, one may need to apply both
a deniable encryption along with a deniable authentication protocol to achieve both secrecy
and authentication in a deniable way.

1.5. Related Work
In this section, we review some of the related work in the literature. First, we review

some of the results in classical deniable encryption. We next review the previous works done
on deniability in QKD protocols. It is important to note that in this Thesis, we investigate
a more general notion of deniability, i.e., deniable key establishment. It is straightforward to
see how one may achieve a deniable encryption protocol from a deniable key establishment
protocol using a One-time pad (OTP). (Likewise, given a deniable encryption scheme one
may exchange (establish) deniable secret keys).

1.5.1. Deniable Encryption in Classical Cryptography Setting

The problem of deniability has been studied extensively in classical cryptography, con-
sidering different levels and flavours. Here, we review some of the prior work on classical

8. According to Wikipedia, “a whistleblower is a person, usually an employee, who exposes information
or activity within a private, public, or government organization that is deemed illegal, illicit, unsafe, or a
waste, fraud, or abuse of taxpayer funds. Those who become whistleblowers can choose to bring information
or allegations to surface either internally or externally. Over 83% of whistleblowers report internally to a
supervisor, human resources, compliance or a neutral third party within the company, with the thought that
the company will address and correct the issues. Externally, a whistleblower can bring allegations to light
by contacting a third party outside of the organization such as the media, government, or law enforcement.”
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deniable encryption. In a classical encryption scenario, a sender (Alice) wants to transmit a
message to a receiver (Bob) over an insecure channel possibly under the control of an adver-
sary (Eve). In a deniable scenario, pioneered by Canetti, Dwork, Naor and Ostrovsky [21]
as well as Beaver [5], Eve has the additional ability to coerce Alice and/or Bob after the
transmission of the ciphertext to open all the private information that they have used. The
task Alice and Bob wish to accomplish, in addition to guaranteeing the confidentiality of the
encrypted message(s) while in transit, is to be able to deny the key and cleartext(s) plausibly
by “revealing” fake private information at the time of coercion, in a way that a different key
would be produced, thus opening the ciphertext(s) into something different.

Beaver introduced the notions of universal, existential and simple deniable encryption [5].
In the case of universal deniable encryption, given a secret key and a ciphertext, the coerced
party wants to generate a fake secret key that decrypts the ciphertext into an arbitrary
cleartext message of his choice. In the case of existential deniable encryption, given a secret
key and a ciphertext, the coerced party wants to generate at least one fake secret key that
decrypts the ciphertext into another message (different from the honest one). The simple
solution is for Alice and Bob to delete all their secrets before coercion, so that the coercer
cannot find any evidence. 9 Three different levels of deniable encryption have been considered
in Ref. [21]: i) a protocol in which only the sender is coerced is referred to as sender-deniable,
ii) if only the receiver is coerced, we have receiver-deniability, and iii) the case in which
both the sender and receiver are coerced at the same time, without coordination between
them, which was later called bi-deniable encryption by O’Neill, Peikert and Waters [41].
Subsequently, Sahai and Waters constructed the first protocol for sender-deniable public-key
encryption with negligible distinguishing advantage for adversary in distinguish surreptitious
sender from honest one [46]. The construction of the proposed protocol in Ref. [46] is based
on indistinguishability obfuscation.

In a noninteractive receiver-deniable encryption protocol, the size of the fake secret key
must be at least as large as the message size. Bendlin, Nielsen, Nordholt and Orlandi
proved that it is impossible to achieve negligible distinguishing advantage in the context of
receiver-deniable public-key encryption if, given a secret key and a ciphertext, the receiver
must be able to generate a fake secret key that decrypts the ciphertext into an arbitrary
message of his choice [11]. To circumvent these constraints, three different relaxations have

9. In this Thesis, to make things more interesting, we assume that Alice and Bob are prohibited from
deleting any information that was used in the key establishment protocol. In an attempt that the coercer
can ask Alice and Bob for their private information after the execution of the key establishment. However,
they are willing to cheat ,i.e., deleting their private information, without being caught at the subsequent time
of correction. Therefore, upon coercion the coerced parties should provide some fake private information in
away that the coercer cannot catch the surreptitious parties in the act. That is why the simple deniability
notion is not discussed further in this Thesis.

26



been introduced: plan-ahead deniability, multi-distributional protocols and dual key protocols,
which we briefly describe below.

(1) Plan-ahead deniable encryption protocol – Restricting the set of messages to which
a ciphertext can be decrypted reduces the size of the secret key. In this protocol,
a proper subset of all possible messages compatible with the fake opening of the
ciphertext is chosen by the coerced party at the time of encryption [21, 41, etc.].

(2) Multi-distributional protocol – There are two different encryption protocols: a default
protocol and a denying protocol. In this context, the denying protocol is indistin-
guishable from the default one. Most of the time, users run the default protocol. The
user will run the denying protocol only if he wants to deny later [24, 25, etc.].

(3) Dual key protocol – In this protocol, the key establishment protocol outputs two
different secret keys: a secret decryption key and a secret denying key [24, 25, etc.].

Some applications of deniability are electronic voting [10, 47], keeping information secret
when facing a coercer, secure multi-party computation in the presence of an adaptive adver-
sary [20].

1.5.2. Deniability in Quantum Cryptography

The quantum setting is fundamentally different since there is no classical counterpart
to the intricacy of eavesdropping on a quantum channel, which is the main tool used by
the coercer to verify if the coerced party delivers accurate (honest) information in the con-
text of QKD. Curiously, very little attention has been paid to deniability in the quantum
world. As early as 2002, Beaver’s pioneering work extended the concept of classical deniable
encryption to the quantum setting [6].

He defined the notion of deniable QKD protocols and suggested that the information-
theoretic security of QKD protocols (e.g. the protocol BB84 [13, 14]) does not imply denia-
bility. Moreover, he gave an intuition on why Mayers’ no-commitment theorem [38] does not
imply deniability. Beaver put forward a potentially deniable QKD protocol (without proofs).
We are not aware of any subsequent work on deniable QKD after Beaver’s 2002 paper [6] until
the late 2018, when Atashpendar, Policharla, Rønne and Ryan defined deniability for QKD
protocols [4] and claim that a protocol proposed by Gottesman [27] for QKD is deniable.
(In chapter 5, we prove that this claim is not correct.) Moreover, they showed that a covert
quantum communication protocol proposed by Arrazola and Scarani [2] is deniable. Finally,
they provided an intuition on how entanglement distillation and teleportation channels [15]
can be used to exchange qubits between Alice and Bob for establishing a secure deniable
key. The result of [4] has also been presented in Atashpendar’s 2019 PhD Thesis [3].

A summary of our improvements and novelties compared to previous work is presented
in Section 1.5.3.
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1.5.3. Comparison of Our Results with Related Works

In this Thesis, we investigate the more general notion of deniability, i.e., deniability in
secure QKD protocols in information-theoretic setting. Unlike the classical cryptography
deniable setting, our results do not depend for their effectiveness on unproven assumptions
about computational hardness of certain mathematical problems, and hence are not vul-
nerable to future developments in computational power and mathematics. Therefore, in
comparison to the classical cryptography setting, our definitions and theorems are stronger.
Moreover, a deniable key establishment protocol might be more general than deniable en-
cryption protocols, since it can be extended 10 to other deniable primitives (as a subprotocol)
such as deniable encryption, deniable file system and free speech. In particular, a deniable
QKD protocol followed by a one-time pad encryption achieves deniable secure encryption.
We show how to obtain universal bi-deniable encryption by using a universal bi-deniable
QKD protocol followed by a one-time pad. Bi-deniable encryption is not possible in classical
cryptography (even with computational assumption) without assuming pre-shared one-time
pads between Alice and Bob. In addition, as we mentioned in Section 1.5.1, the classical
deniable encryption protocols are based on the assumption that the coercer has uncertainty
about the encryption protocol that the legitimate parties performed. Hence, the coerced
party can deny the underlying message by pretending that the other protocol was performed
beside “ling” about the private randomness they used in the protocol. (Equivalently, Alice
and Bob have one bit of pre-shared secret that indicates which of the two possible proto-
cols to execute.) However, in this Thesis we assume that the executed QKD protocol is
publicly known. Therefore, the coerced party can only “lie” about the information trans-
mitted through the public quantum and public authenticated classical channels and not the
description of the protocol. In this sense, our proposed definitions, protocols and theorems
are stronger.

In comparison to other works on deniability in quantum key establishment, i.e., [6, 4, 3],
we consider for the first time different levels and flavours of deniability in QKD setting. We
formalize rigorous definitions for each level and flavour of deniability.

Beaver proposed a QKD protocol and claimed (without a proof) that it is deniable [6].
In Ref. [4], it is shown how one may use teleportation channels to achieve deniability. In this
Thesis, we go deeper and define a general class of QKD protocols based on almost-perfect
quantum channels and prove that any QKD protocol belonging to this class is universally
bi-deniable. The CSS codes QKD protocol, the modified Lo-Chau protocol as well as the
teleportation-based protocol belong to this general class.

10. The extension might be as straightforward as in case of using a universally deniable key establishment
protocol along with one-time pad encryption to achieve universally deniable encryption or more subtle and
probably computationally infeasible such as in the case of the Advanced Encryption Standard (AES).
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Although the references [6, 4, 3] show that the BB84 protocol is not deniable, we go
way further and distill the property that causes this. From determining the property, we
rigorously define a class of QKD protocols which we refer to as prepare-and-measure 11 and
prove that they are not deniable in any level or flavour. This class includes the BB84 [13],
B92 [12] and the six-state [7] protocols.

Moreover, we propose a new variation of BB84 to which we refer as B̃B84 and prove that
this class of practical implementation of QKD protocols is universally bi-deniable against fair
Eve. We also propose a general class of QKD protocols to which we refer as fuzzy prepare-and-
measure and prove that any QKD protocol that belongs to this class is universally bi-deniable
against fair Eve. We also propose another novel QKD protocol called memory assisted BB84,
and prove that this protocol is (only) receiver universally deniable against unfair Eve. Next,
we define a new class of QKD protocol to which we refer to as prepare-and-measure later and
prove that any protocol belongs to this class is (only) receiver universally deniable against
unfair Eve. Furthermore, we propose a QKD protocol called memory assisted BBM92 and
show that this protocol is (only) sender universally deniable against unfair Eve. We also
propose a framework to achieve mono-deniability.

Moreover, Ref. [4] showed that a covert quantum communication protocol proposed by
Arrazola and Scarani [2] is deniable. We argue that protocols based on covert communi-
cation such as [2] only allow for denying the existence of the shared secret keys, and not
for equivocating those keys. This is insufficient in a communication setting that the mere
transmission of data between parties indicates that they are communicating in some form.

It has been shown in Ref. [49] that the security view of BB84 is indistinguishable from
the modified Lo-Chau protocol. A natural question to ask is what is preventing the BB84
protocol to achieve deniability in contrast to its secure counterparts, i.e., modified Lo-Chau
and CSS codes QKD protocols. We give insight into the distinction.

1.6. Outline of the Thesis
The aim of this Thesis is to fill the gap between the deniability in quantum cryptography

and classical cryptography in a coherent way. In Chapter 2, we introduce some notations
and preliminaries from previous works. We rigorously formalize different levels and flavours
of deniability in the QKD setting in Chapter 3. Then, in Chapter 4, we investigate the
deniable QKD protocol. For this, first, we carefully define a class of QKD protocols called
QKD based on almost-perfect quantum channel, and prove that this class satisfies the most

11. “Prepare-and-measure QKD protocols” is a frequently used term in the quantum key establishment
community. However, to the best of our knowledge there is no rigorous definition on what are the properties
that a protocol should have to fit into this class. In the literature the term is commonly used as opposed
to the entanglement based QKD protocols. However, the CSS codes QKD protocol is a good example of a
protocol that does not belong to entanglement based or prepare-and-measure QKD protocols. In this Thesis,
we give a rigorous definition for this class of QKD protocols.
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general flavour of deniability, i.e., universal deniability, and provide some examples. Then,
in Chapter 5, we define a broad class of QKD protocols, which we call prepare-and-measure,
and prove that these protocols are not deniable in any level or flavour (the protocol BB84
belongs to this class.)

In Chapter 6, we introduce a new class of QKD protocols which we refer to as fuzzy
prepare-and-measure, that is universally bi-deniable against a fair Eve (see Section 3.4).
We also propose a hybrid protocol under which any QKD protocol is at least existentially
bi-deniable. Furthermore, we propose a new class of QKD protocols inspired by the prepare-
and-measure QKD protocols and prove that this class of protocols are universally (only)
receiver deniable. We also show how to achieve universal Alice deniability from universal
receiver deniable QKD protocol. Moreover, we propose a QKD protocol which is universal
(only) sender deniable. In Chapter 7, we propose a novel QKD protocol called memory
assisted BB84 protocol and prove that this protocol is receiver universally deniable and
sender undeniable. We also propose a new class of QKD protocols to which we refer to
as prepare-and-measure later and prove that any QKD protocol that belongs to this class
is sender universally deniable and receiver undeniable. Furthermore, we propose a novel
QKD protocol to which we refer to as memory assisted BBM92 protocol and prove that this
protocol is sender universal deniable. Finally, in Chapter 8, we conclude with a discussion
of our results, and the research in progress.
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Chapter 2

Preliminary Remarks and Notation

In this chapter, we review the different notions of quantum information theory as well
as basic QKD protocols such as BB84 [13, 14] which are required in the remainder of this
Thesis. For more thorough treatment, we refer the interested reader to Refs. [39, 40]. In
this Thesis, we restrict our study to finite dimensional systems.

2.1. Qubits and Qudits
Quantum computing is a paradigm of computation, which, merely by exploiting the laws

of quantum mechanics, can achieve exponential speedups compared to the best known clas-
sical algorithms for specific computational problems. Whereas classical computers operate
on bits for computing a function, quantum computers operate on qubits. The qubit is a
two-level system that can be described within a two dimensional complex Hilbert space H2.
A qubit can be described by either a pure state

H2 3 |ψ〉 = α|0〉+ β|1〉, (2.1.1)

where α and β are complex coefficients with |α|2 + |β|2 = 1 and {|0〉, |1〉} denotes the
canonical basis of H2, or by a mixed state or density operator

ρ ∈ D(H2), ρ > 0, (2.1.2)

with tr (ρ) = 1, where D(H2) denotes the set of positive operators of unit trace on H2 and
ρ > 0 denotes a positive-definite matrix (which, by definition, is Hermitian, i.e., ρ† = ρ). A
mixed state is pure if and only if tr(ρ2) = 1, or, equivalently, ρ2 = ρ. Throughout this Thesis
we denote the N ×N identity matrix as 1N .

A qudit is the D-level generalization of a qubit. The pure state of a qudit is a vector in
a D-dimensional complex Hilbert space HD

|ψ〉 =
D−1∑
i=0

αi|i〉, (2.1.3)



with ∑D−1
i=0 |αi|2 = 1. Similarly, the mixed state of a qudit is described by a density operator

ρ ∈ D(HD). A qubit is a qudit for which D = 2.

2.2. Composite Systems
The quantum state of a composite system is described by the tensor product of its

constituent Hilbert spaces. For example, the pure state of two qubits A and B can be
described by the vector |ψ〉AB ∈ H2 ⊗H2, with

|ψ〉AB = α|00〉+ β|01〉+ γ|10〉+ δ|11〉, (2.2.1)

where α, β, γ, δ ∈ C with |α|2 + |β|2 + |γ|2 + |δ|2 = 1. Here |00〉 is the short-hand notation
for |0〉 ⊗ |0〉, and similarly for the rest.

A pure state of two qubits is called a product state if and only if it can be written as the
tensor product |η〉A⊗|φ〉B, for some |η〉A ∈ HA and |φ〉B ∈ HB. It is called entagled if it is not
a product state. The generalization to multi-partite systems and qudits is straightforward
and it is omitted for the sake of simplicity.

Every bi-partite entangled state of two qudits admits the so-called Schmidt decomposi-
tion, i.e., given |ψ〉AB ∈ HA ⊗HB, there exist local orthonormal bases {|φi〉A} and {|ηi〉B}
and nonnegative numbers pi ≥ 0 that sum up to 1, such that

|ψ〉AB =
D−1∑
i=0

√
pi|φi〉A|ηi〉B, (2.2.2)

where D is the minimum of the dimensions of HA and HB. The number of strictly non-
zero coefficients pi is called the Schmidt rank of the state |ψ〉AB. Note that the Schmidt
decomposition does not hold for N > 2 multi-partite systems.

A bipartite pure state is called maximally entangled iff all its Schmidt coefficients are
equal. An example of a set of 2-qubit maximally entangled states are the Bell states

|Φ+〉 = 1√
2

(|00〉+ |11〉)

|Φ−〉 = 1√
2

(|00〉 − |11〉)

|Ψ+〉 = 1√
2

(|01〉+ |10〉)

|Ψ−〉 = 1√
2

(|01〉 − |10〉). (2.2.3)

2.3. Quantum Measurements, Evolution and Channels
Closed quantum systems evolve unitarily in time, i.e.,

|ψ〉 → U |ψ〉 (2.3.1)
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for pure states, where U is a unitary operator, that is

U †U = UU † = I,

corresponding to the time evolution, or

ρ→ UρU † (2.3.2)

for mixed states.
When a quantum system described by a state

|ψ〉 =
∑
i

αi|i〉 (2.3.3)

is measured in the computational basis {|i〉}i, then only one of the mutually exclusive results
i is obtained with probability pi = |αi|2 = |〈i|ψ〉|2. The final state “collapses” to |i〉. One
can measure a quantum system in an arbitrary orthonormal basis {|φi〉}i. The outcome i
is obtained with probability |〈φi|ψ〉|2. If the state is mixed, then one replaces |〈i|ψ〉|2 and
|〈φi|ψ〉|2 by tr (ρ|i〉〈i|) = 〈i|ρ|i〉 and tr (ρ|φi〉〈φi|) = 〈φi|ρ|φi〉, respectively.

The evolution of an open quantum system S can be described as the combined closed
evolution of the system and the environment E, where one can assume that the environment
starts always in a pure state, followed by discarding (tracing away) the environment.

More formally, the combined system-environment state evolves as

|ψ〉S|0〉E → USE(|ψ〉S|0〉E), (2.3.4)

where |0〉E represents the initial pure state of the environment. The final state ρfS of the
system is thus

ρfS = trE
[
USE(|ψ〉〈ψ|S ⊗ |0〉〈0|E)U †SE

]
, (2.3.5)

where tr (·)E denotes the partial trace over the environment of its argument.
A generalized measurement is operationally defined using a partial measurement (mea-

suring only the environment) of a system-environment unitary evolution; conditioned on the
measurement result (on the environment) being i, the final state of the system is

|ψfS〉 = Ki|ψ〉S√
tr(K†iKi|ψ〉〈ψ|S)

(2.3.6)

for pure states, or
ρfS = KiρK

†
i / tr(K†iKiρ) (2.3.7)

for mixed states, where Ki : HS → HS are called Kraus operators (or generalized mea-
surement operators). The Kraus operators depend on the joint system-environment unitary
evolution USE and must satisfy the closure condition

D−1∑
i=0

K†iKi = IS, (2.3.8)
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where D denotes the dimension of the environment. Note that there are no other restrictions
on the Kraus operators, such as hermiticity etc. The operator K†iKi is positive definite and
it is called a POVM (positive operator value measure) element.

The most general quantum evolution of an open quantum system can be described by

|ψ〉〈ψ|S →
∑
i

Ki(|ψ〉〈ψ|S)K†i (2.3.9)

for pure states (for mixed states, one simply replaces |ψ〉〈ψ|S by ρS). An evolution as the
one above is also called a quantum channel. Quantum channels are linear completely-positive
trace-preserving (CPTP) maps E : L(Hin) → L(Hout) that admit a Kraus decomposition,
that is

E(·) =
∑
i

Ki(·)K†i . (2.3.10)

Vice-versa, any set of Kraus operators define a valid quantum channel (CPTP map).

2.3.1. Distance Measures between Quantum States

We define the distance between two states ρ, σ ∈ D(H) in terms of their trace distance

∆(ρ, σ) def= 1
2 ‖ ρ− σ ‖1, (2.3.11)

where D(H) is the set of density matrices on H and ‖ · ‖1= tr | · | denotes the trace norm,
with the absolute value of an operator T being defined as |T | :=

√
T †T .

An alternative characterization of the similarity between two quantum states is the fi-
delity, defined as

F (ρ, σ) def= tr
√
ρ1/2σρ1/2, (2.3.12)

where ρ1/2 denotes the square root (in the operator sense) of ρ. When ρ is a pure state, e.g.
ρ = |ψ〉〈ψ|, the fidelity definition (2.3.12) simplifies to

F (|ψ〉, σ) =
√
〈ψ|ρ|ψ〉. (2.3.13)

For pure states, the trace distance and fidelity are equivalent [40], i.e., one determines
the other and vice-versa, since

∆(|ψ〉, |φ〉) =
√

1− F (|ψ〉, |φ〉)2. (2.3.14)

For arbitrary mixed states,

1− F (ρ, σ) ≤ ∆(ρ, σ) ≤
√

1− F (ρ, σ)2, (2.3.15)

hence if the fidelity between two states is close to one then the states are also close in trace
distance and conversely, see Ch. 9.2.3 of [40] for more details.
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2.4. Quantum Error Correcting Codes
Quantum information is susceptible to noise (or decoherence). To protect the quantum

system against the noise, one may encode the quantum state into a larger Hilbert space.
Such an encoding is called Quantum Error Correction Code (QECC). An [[n, k, δ]]D denotes
a QECC that encodes k qudits of dimension D into n carrier qubits, where δ is the distance
of the code. For brevity, for qubit codes we drop the subscript D and simply denote the
quantum code by [[n, k, δ]], where the double bracket denotes an additive (a.k.a. stabilizer)
QECC [26]. There also exists non-additive QECC, denoted by ((n,K, δ))D, whereK denotes
the total number of codewords, not necessary equal to kD for some k as in the stabilizer case.
However, in practice the additive codes are the most common due to their nice compact rep-
resentation in terms of a logarithmic number (w.r.t. the number of codewords) of generators
and well understood properties, non-linear error correcting codes are less understood. The
stabilizer/linear QECC are the natural generalization to the quantum domain of classical
linear error correction codes [34].

The CSS (Calderbank-Shor-Steane) [18, 50] family of QECC codes are an example of
stabilizer codes which we will use later in this Thesis. They are constructed as follows. Let
C1 and C2 be [n, k1] and [n, k2] classical linear error correcting codes with the property that
C2 ⊂ C1 and both C1 and C⊥2 correct t errors, where C⊥2 is the dual of C2. The dual C⊥ of
a linear code C with parity check matrix H and generator matrix G is defined as the code
with generator matrix HT and parity check matrix GT , see e.g. [34] or Subsection 10.4.1
of [40] for more details. The CSS quantum error correcting code Q(C1, C2) is defined as

Q(C1, C2) := Spana∈C1

|a+ C2〉 := 1√
|C2|

∑
b∈C2

|a+ b〉

 , (2.4.1)

where |C2| denotes the size (number of codewords) of the classical linear code C2. The CSS
code Q(C1, C2) is an [[n, k1 − k2]] quantum error correcting code and can correct up to t
errors (hence its distance is δ = 2t+ 1).

For arbitrary n-bit strings x, z ∈ Zn
2 , we define the modified CSS code Qx,z(C1, C2) as

Qx,z(C1, C2) := Spana∈C1

 1√
|C2|

∑
b∈C2

(−1)x·b|a+ b+ z〉

 , (2.4.2)

where x·b denotes the inner product of the bit strings x and b modulo 2. Note that Q(C1, C2)
and Qx,z(C1, C2) are equivalent in terms of their error-correcting properties; we will use the
latter in Chapter 4. For sake of simplicity we often drop the explicit dependence on C1 and
C2 and denote the modified CSS code as Qx,z.
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2.5. Quantum Key Establishment Protocols
Since the invention of the first QKD protocol in 1983, a considerable effort has been

made to get a better understanding of its theoretical foundations as well as to make it
more practical. In the course of this research, a large variety of alternative QKD protocols
have been proposed, which can be succinctly grouped (but not limited) in the following
classes: prepare-and-measure protocols [13, 12], entangled based protocols such as the Lo-
Chau protocol [32] and modified Lo-Chau protocol [49], measurement-device independent
protocols [33] and device-independent protocols [37, 1, 51]. In this section, we give a general
definition of a QKD protocol.

A QKD protocol enables two distant parties, Alice and Bob, to establish a common secret
key, using only an authenticated classical channel and an insecure quantum channel. The
common secret key is information-theoretically secure 1 under the assumptions of i) the exis-
tence of an authenticated classical channel and a quantum channel between Alice and Bob,
ii) the availability of a QKD implementation that is faithful to the theoretical protocols, and
iii) the correctness of quantum theory. The QKD protocol guarantees the confidentiality
of the established key from an information-theoretic perspective against an adversary Eve
who is only limited by the laws of quantum theory and can act only on the signals as they
pass through the classical and quantum channels. The sub-protocols used in all conventional
QKD protocols include some or all of the following [44]:

Quantum Operations: In a QKD protocol, Alice and/or Bob may apply the following
quantum operations:

(1) Preparation and transmission of the quantum state: Alice prepares some quantum
states. Alice keeps a note of the classical description of each state prepared. Next,
Alice transmits either all of them (for example, in case of the prepare-and-measure
QKD protocols) or a part of them (for example, in case of the entanglement based
QKD) through the quantum channel to Bob.

(2) Quantum post-processing: Alice and/or Bob perform some quantum post-
processing operations on their quantum states such as quantum error correction
and entanglement distillation.

(3) Block-wise measurement and processing: The goal of the block-wise measurement
and processing is to increase correlation or secrecy. This subprotocol acts on blocks
of certain size individually. For example, Alice and Bob might invoke a so-called
advantage distillation protocol [35, 36]. The purpose of advantage distillation is
to establish blocks of the raw keys that are highly correlated. This operation may

1. A key establishment protocol with information-theoretic security is a protocol whose security derives
purely from information theory; the protocol cannot be broken even if the adversary has unlimited computing
power.
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be done by Alice, Bob or both. Another example of quantum post-processing is
quantum error correction and entanglement distillations.

(4) Measurement of the quantum state: Alice and/or Bob apply some measurements
on the quantum states and keep a note of the applied measurements and their
outcomes. The measurements transform the quantum state into classical data.

Classical post-processing: Alice and Bob perform classical post-processing using the
descriptions of what was sent during the quantum transmission, what measurement
was applied on each quantum state, all outcomes obtained, and the classical commu-
nication having taken place so far. The classical post-processing may include: 2

(1) Sifting: Alice and Bob publicly announce something about either the applied mea-
surements or the outcome of their measurements (and keep the other one private
to establish a secret key using that) depending on the protocol. 3 Based on this an-
nouncement, Alice and Bob discard some of the pairs of the applied measurement
and their outcome. 4

(2) Parameter estimation: The goal of the parameter estimation stage is to estimate
the average correlation between what Alice had sent through the quantum channel
and what Bob had received in order to verify whether they can derive a secret key.
To estimate the error, one party, for example Alice, selects a subset of her private
information and announces the subset publicly through the authenticated classical
channel. Bob compares the announcement with his private information. If the
correlation is more than a certain threshold, they proceed to the next stage of the
protocol. Otherwise, they abort the protocol.

(3) Key map: The goal of this stage is to assign the descriptions of the prepared states
as well as the applied measurements and their outcomes to a binary string of zeros
and ones. The assignment should be done in such a way that the resulting string
(known as raw key) is indistinguishable from the uniformly-random one.

(4) Error correction: The goal of the error correction protocol is to transform the
(possibly only weakly correlated) pair of Alice’s and Bob’s raw keys into a pair of
shared (identical) keys which we refer to as reconciled key.

(5) Privacy amplification: The goal of the privacy amplification is to transform the
reconciled key into a private key. Alice and Bob each apply a two-universal hash

2. The order of the Classical post-processing might differ in various protocols
3. In case of prepare and measure QKD protocols, Alice announces one of the classical description of the

quantum state she prepared for example in case of BB84 she announces the basis she prepared each qubit
in.).

4. In case of prepare and measure QKD protocols, Alice discards the classical description of the quantum
state where her prepared basis does not matches Bob measurements.).
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function protocol to their reconciled keys to establish the final identical secret key
refer to as secret key.

Bennet and Brassard [13, 14] were the first to propose a QKD protocol. The protocol is
commonly known as BB84 protocol, named after its inventors and described briefly below.

2.5.1. The BB84 QKD Protocol

In this subsection, we briefly give an intuition on the BB84 QKD protocol as a simple
QKD protocol. A more precise description of the BB84 protocol is provided in Chapter 5.

The BB84 protocol can be divided into two phase: a quantum phases and a classical
phase. During the quantum phase, Alice and Bob take advantage of transferring quantum
states over the quantum channel and applying measurements on the quantum states. How-
ever, at the classical phase, Alice and Bob communicate through the authenticated public
channel to execute some classical communication protocols on the classical information ob-
tained from the quantum phase.

(1) In the first step of the protocol, Alice chooses two random strings of N bits b1, . . . ,bN

and θ1, . . . ,θN . For each bi she encodes its value into the standard basis (if θi = 0) or
Hadamard basis (if θi = 1) and transmits them to Bob using the quantum channel.

(2) Bob measures each of the qubits he receives randomly and independently from Alice’s
choice either in the standard or Hadamard basis to obtain classical bits string b′i. In
addition, he also records the basis he chose for the measurement in θ′i. The classical
bit strings b1, . . . , bN and b′1, . . . , b′N held by Alice and Bob, respectively, is called the
raw key pair.
The remainder of the protocol is purely classical, i.e., done using the classical authen-
ticated channel.

(3) Alice and Bob announce over an authenticated public channel their choices of bases
used for the encoding and the measurement, respectively. They do not disclose the
bit value they prepared or the measurement outcomes. Alice and Bob discard all
bits of their raw key where the encoding and measurement bases do not match. The
remaining classical string after this step is called sifted key pair. Then Alice and
Bob proceed to the error rate estimation step. (Note that if all the apparatuses were
perfect, and there would be no eavesdropping, the sifted key would be the same for
Alice and for Bob)

(4) They compare a small (randomly chosen) fraction of bits of their sifted key in order
to estimate the error rate. If the error rate is too large–which might be due to the
presence of an adversary–they abort the protocol. Otherwise, they proceed to the
next step.
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(5) Based on the error rate estimated in the previous step, Alice and Bob apply a classical
error correction 5 to reconcile the remainder of the sifted key (all the bits of the sifted
key that were not used in the previous step). For this purpose, they need to transmit
some additional information about their respective data over the public authenticated
channel. 6 As a result of this protocol Alice and Bob establish an identical shared key
called the reconciled key.

(6) The shared reconciled key is not necessarily private since Eve may have some informa-
tion about it from eavesdropping on the quantum channel and from the information
leaked to Eve through the error correction protocol. They can eliminate the cor-
relations between their reconciled key and Eve by applying some classical privacy
amplification and establish a shared secret key between Alice and Bob.

2.5.2. Security of the QKD Protocols

Before defining the security of the QKD protocols, we define the notion of negligible
success probabilities and security parameters.

Roughly speaking, a negligible function is one that is asymptotically smaller than any
inverse polynomial function.
Definition 1 (Negligible function). A function f : N+ → R+ ∪ {0} is negligible if for every
positive polynomial p : N+ → R+ ∪ {0} there is an N ∈ N such that for all integers n > N

it holds that f(n) < 1
p(n) .

The Definition. 1 is also stated as follows: for every polynomial p and all sufficiently
large values of n it holds that f(n) < 1

p(n) . An equivalent formulation of the Definition. 1
is to require that for all constants c there exists an N such that for all n > N it holds that
f(n) < n−c. We typically denote an arbitrary negligible function by negl(n).

We consider the asymptotic security approach in this Thesis. Asymptotic security ap-
proach, rooted in complexity theory, introduces an integer-valued security parameter (usually
denoted by n) that parameterizes both cryptographic protocol as well as all involved par-
ties (namely, the honest parties Alice and Bob, as well as the attacker Eve). When honest
parties initialize a protocol (i.e., when they establish keys), they choose some value n ∈ N+,
where N+ denotes the positive natural number, for the security parameter; for the purposes
of this Thesis, one can think of the security parameter as corresponding to the length of the
established key. The security parameter is assumed to be known to any adversary attacking
the protocol. We accept a failure probability (the probability that Eve successfully attack the

5. Also termed an “information reconciliation” in the literature. Hence, Alice’s and Bob’s key at the end
of this stage is called “reconciled key”.

6. In the error correction stage, Alice and Bob exchange some classical information about their remaining
string that should help the legitimate parties agree on the same key. However, by sending classical information
about the key over the authenticated public channel, the uncertainty of the adversary regarding the key
decreases.
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protocol) for our cryptographic protocol that can be made arbitrarily small in the security
parameter. In other words, we view Eve’s success probability, as a function of the security
parameter rather than as concrete numbers. We equate the notion of “small probabilities
of success” with success probabilities smaller than any inverse polynomial in the security
parameter n (see Definition 1). Such probabilities are called negligible.

Let us begin by fixing some notation. Let Π`(·) = {Π`(·)
n }n>0 be a family of secure QKD

protocols where n ∈ N is the security parameter and the length of the established key is given
by `(n). Intuitively, a QKD protocol is secure in an ideal world if it satisfies two requirements
namely correctness and secrecy. A QKD protocol satisfies the correctness property if after
a successful execution of the protocol, the established keys possessed by Alice and Bob be
identical. A QKD protocol satisfies the secrecy requirement if after a successful execution of
the protocol the established key is uniformly distributed to the adversary Eve (and everybody
else other than Alice and Bob). However, in a real world, Alice and Bob cannot establish an
ideal key due to practical issues such as non-ideal error correction and privacy amplification
protocols. In reality, we allow QKD protocols to have a small failure probability εn (note
that the failure probability is parametrized by the security parameter n). For some εsec and
εcor, we say that the QKD protocol is εn-secure with εn = εsec + εcor [8, 45].

Let kA and kB (with the same length m := `(n)) be the secret keys established by Alice
and Bob, respectively after a successful execution of a QKD protocol. The secret key might
be correlated to a (possibly) quantum state ρE hold by Eve. The joint state ρABE is a
ccq-state, in other words the views of Alice and Bob are classical while Eve’s view can be a
quantum state,

ρABE =
∑
k,k′

Pr[kA = k, kB = k′]|k〉〈k|A ⊗ |k′〉〈k′|B ⊗ ρE(kA,kB), (2.5.1)

where kA, kB ∈ {0,1}m. The ideal state hold by Alice, Bob and Eve is denoted by a private
state,

ρABEideal = 2−m
∑
k

|k〉〈k|A ⊗ |k〉〈k|B ⊗ ρE, (2.5.2)

where kA = kB = k, and it implies that Alice’s and Bob’s keys are identical (i.e., correctness).
Eve’s state ρE is independent of Alice’s and Bob’s keys (i.e. secrecy).

A QKD protocol Π`(·)
n is εcor-correct if the probability distribution of the final state in

Eq. 2.5.3 satisfies,

Pr[kA 6= kB] ≤ εcor. (2.5.3)

A QKD protocol Π`(·)
n satisfies the εsec-secrecy property if after a successful execution of the

protocol, for all adversary E, the state ρAE is close in trace distance to the single-party
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private state ρAEideal = 2−m∑k |k〉〈k|
A ⊗ ρE, i.e.,

min
ρE

(1− pabort)∆(ρAE, ρAEideal) ≤ εsec, (2.5.4)

where pabort is the probability that the protocol aborts.
Definition 2 (εn-security of QKD protocols). A QKD protocol Π`(·)

n is εn-secure if for
sufficiently large n, and for all adversary E, there exist an ideal state ρABEideal defined in Eq. 2.5.2
such that the established state after a successful execution of the of the protocol, ρABE, is
εn-close to the ideal key state ρABEideal with the proper chosen ρE, i.e.,

min
ρE

(1− pabort)∆(ρABE, ρABEideal ) ≤ εn, (2.5.5)

where ρABEideal is the private state as defined in Eq. 2.5.2. If εn ≤ 2−αn for some α > 0, then
we say that Π`(·)

n is statistically indistinguishable from an ideal protocol.
It is important to note that if the established state at the end of the protocol ρABE

saticfies Eq. 2.5.5 then Eve’s guessing probability on the final established key is also bounded
by εn. If Π`(·)

n is an εn-secure QKD protocol, then by the basic requirements of εn-secure key
establishment it follows that for a successful run of the protocol that results into the key k,
the key should be uniquely determined given the description of the protocol Π`(·)

n and Alice’s
and/or Bob’s view.
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Chapter 3

Levels and Flavours of Deniability
in QKD Protocols

In this chapter, we define different levels and flavours of deniability in QKD protocols.
It is important to note that throughout this Thesis we do not allow pre-shared secrets
(other than what may be used to authenticate the classical public channel) or pre-shared
entanglement between Alice and Bob unless explicitly mentioned.

Let us begin by fixing some notation. Let Π`(·) = {Π`(·)
n }n>0 be a family of secure QKD

protocols where n ∈ N+ is the security parameter and the length of the established key is
given by `(n). Suppose that ρABPE (where register A is Alice’s view, register B is Bob’s view,
register P is the classical public information transmitted between Alice and Bob during the
execution of the protocol, and register E is Eve’s view, respectively) is the state generated
by a random execution of a QKD protocol Π`(·)

n under the nose of an eavesdropper. Let the
variable VIEW be the random variable over all the possible views of an execution of a QKD
protocol Π`(·)

n when a specific eavesdropping strategy is considered. The random variable
VIEW contains the set of all random choices made by Alice and Bob during the protocol
execution, all applied measurements, and their outcomes. For any view v, PVIEW(v) ∈ [0,1]
is the probability that the global view is v. The random variable VIEW is global and
includes Alice’s and Bob’s random choices and measurement outcomes in the protocol Π`(·)

n

conditioned on the action of the eavesdropper. We also assume that given v, the functions
Alice(v), Bob(v) and Public(v) extract the corresponding views of each party. We assume that
Public(v) is contained in both Alice(v) and Bob(v) (although redundant, it comes handy later
in our definition). Therefore, we have that for v ∈ VIEW, v = Alice(v)‖Bob(v)‖Public(v),
where ‖ denotes concatenation. (When concatenation is in index we replace “‖” with “,” for
ease of notation.) The global state of a successful run of the protocol is a cccq-state, in other
words the views of Alice and Bob 1 as well as the public discussion are classical, but Eve’s

1. It might be useful for deniability purposes that Alice and/or Bob keep some quantum register alive
after the key has been established and wait until coercion to measure it. However, in this Thesis we assume



view is quantum,

ρABPE =
∑

PVIEW(v)|Alice(v)〉〈Alice(v)| ⊗ |Bob(v)〉〈Bob(v)|

⊗ |Public(v)〉〈Public(v)| ⊗ ρE(v).

Furthermore, let the random variables SA and SB denote the set of all possible private
information for Alice and Bob, respectively. Let C denote the set of all possible public
information, i.e., C = {Public(v) | v ∈ VIEW}. Moreover, let K be the set of all possible
keys. Furthermore, Alice(v) = sAk ‖c, Bob(v) = sBk ‖c, sAk ∈ SA, sBk ∈ SB and k ∈ K. We
assume that given Alice(v), Alice can extract sAk , and similarly for Bob. Let P denote the
set that contain all the possible QKD protocol descriptions that Alice and Bob may execute,
i.e., P := {P i}i. Let VA and VB be the set that contains all of Alice’s and Bob’s possible
views, respectively. Let Key : VA×P −→ K∪{⊥} (Key : VB×P −→ K∪{⊥}) be a function
that takes as input Alice’s (or Bob’s) views, the protocol description Π`(·)

n and outputs the
corresponding established key k ∈ K or {⊥} if no key exist for the given view and protocol
description.
Example 1. Suppose Alice and Bob run the BB84 QKD protocol, and v = (θ, b, θ′, b′, s, d, h)
is the global view that has been chosen from a probability distribution and let Pi denote
the protocol description. The instance v of the view includes all the information: Alice’s
and Bob’s choice of bases θ, θ′, Alice’s random choice of the bit string b, Bob’s measurement
outcomes b′, sampling set 2 s, the error correcting information d and the choice of privacy
amplification function h. The final state is given by

ρABPEBB84 =
∑
θ,b

∑
θ′,b′

∑
s,d

∑
h∈H

PVIEW((θ, b, θ′, b′, s, d, h))|θ, b, s, d, h〉〈θ, b, s, d, h|

⊗ |θ′, b′, s, d, h〉〈θ′, b′, s, d, h| ⊗ |s, d, h〉〈s, d, h|

⊗ ρE(θ, b, θ′, b′, s, d, h).

Let ρABPEv be the global state after the execution of an εn-secure QKD protocol Π`(·)
n and

establishment of the key k with global view v ∈ VIEW :

ρABPEv := Pv ρ
ABPE Pv

tr(ρABPEPv)
, (3.0.1)

where Pv denotes the projection onto the space parametrized by v.
Let ρABPEc be the generic state of all the states with a specific public view c ∈ C :

ρABPEc := Pc ρ
ABPE Pc

tr(ρABPEPc)
, (3.0.2)

that Alice and Bob hold only classical information at the end of the QKD protocol. The question of whether
retaining quantum information changes the situation needs to be studied in more detail.

2. A random subset of the sifted key chosen for comparison by Alice and Bob and estimation of the error
rate, which is conservatively blamed entirely on Eve’s potential disturbance.
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where Pc denotes the projection onto the space parametrized by c.
Furthermore, Eve’s state is ρE(v) := trABP(ρABPEv ) and consider ρAPEv := trB(ρABPEv ). Let

ρAPEAlice(v) be the state representing Alice’s view Alice(v):

ρAPEAlice(v) := PAlice(v) ρ
APE PAlice(v)

tr(ρAPEPAlice(v))
, (3.0.3)

where PAlice(v) denotes the projection onto the space parametrized by Alice(v). One can
define ρBPEBob(v) analogously.

Moreover, let Alice’s faking operator, FakeA, be an operator that takes as input
(Alice(v), k′) and outputs Alice(v′) (where v′ ∈ VIEW) such that k′ = Key(Alice(v′),Pi).
One can define Bob’s faking operator, FakeB and Alice & Bob’s faking operators, FakeA,B
similarly. Looking ahead, the operator FakeA,B can be defined in two different way. First,
FakeA,B := FakeB ⊗ FakeA where each legitimate party can execute its own faking operator
independently. Second, the faking operator FakeA,B is a single operator that takes as input
Alice’s and Bob’s view at the same time. Such faking operators require coordination between
Alice and Bob for computing the fake view upon consecutive coercion. We elaborate on the
bi-deniability faking operator further in Section. 3.1.3.

3.1. Universally Deniable QKD Protocols
In this section, we give a formal definition of universally deniable QKD protocols.

Roughly speaking, a universally sender deniable QKD protocol is an εn-secure QKD proto-
col that enables Alice and Bob to transform the execution of the εn-secure QKD protocol
that has resulted in the establishment of the key k with public view c into an independent
execution with the same c that results in the establishment of any key of Alice’s choice
upon coercion. In other words, after the successful execution of the protocol and at the
subsequent time of coercion, Alice can convince Eve 3 that any other key of her choice was
established by just claiming that she had used a different set of private information. That
is, for a given εn-secure QKD protocol Π`(·)

n and its specification of the protocol Pi there
exist a faking operator that takes as input Alice’s view Alice(v) and her desired fake key
k′ and outputs a fake view Alice(vfake) such that Eve cannot distinguish it from the honest
view with more than negligible probability and k′ = Key(Alice(vfake),Pi). Next, we formally
define sender/receiver universally deniable QKD.

3. In this section by Eve we mean unfair Eve. Please refer to Section 3.4 for the definition of unfair Eve.
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3.1.1. Sender/Receiver Universally Deniable QKD protocols

Let consider the class of εn-secure QKD protocols for which the quantum channel is only
from Alice to Bob (Alice is the only party who can send quantum state). In this context, we
can also refer to Alice as sender and Bob as receiver.
Definition 3 (Sender universally deniable QKD protocol). An εn-secure QKD protocol Π`(·)

n

between two parties Alice and Bob (sender and receiver, respectively) with the protocol
specification Pi is called a sender universally deniable QKD protocol if there exist a faking
operation FakeA that after a successful execution of the protocol which results into the
establishment of some key k ∈ K (where K is the set of all the possible secure keys that the
QKD protocol could establish) then for all fake keys k′ ∈ K, global views v ∈ VIEW and
Alice’s views Alice(v), the following condition is satisfied:

∆(FakeA [Alice(v), k′]⊗ ρPEv , ρAPEv′ ) ≤ negl(n) , (3.1.1)

where FakeA takes as input (Alice(v), k′) and outputs Alice(v′) (where v′ ∈ VIEW) such that
k′ = Key(Alice(v′),Pi). 4

Intuitively, if Eq. (3.1.1) holds, then no process can distinguish between ρAPEAlice(v′)

and FakeA [Alice(v), k′] ⊗ ρPEv with a probability larger than negl(n). If negl(n) ≤ 2−αn for
some α > 0 then these two states are statistically indistinguishable. Let Π`(·)

n be a sender
universally deniable εn-secure QKD protocol. Let us assume that Alice and Bob run a
successful execution of Π`(·)

n that results into the establishment of some key k. Next, we
investigate the property of this execution of Π`(·)

n .
Remark 1. Since trace-preserving quantum operations, such as partial trace, are contrac-
tive, partially tracing out the subsystem P in Eq. (3.1.1) yields

∆(FakeA
[
ρAsA

k
,c, k

′
]
⊗ ρE(v), ρAEsA

k′ ,c
) ≤ negl(n) . (3.1.2)

Note that Alice(v) = sAk ‖c. If Π`(·)
n satisfies Eq. (3.1.1), then Alice can query FakeA with

input (Alice(v), k′), which will map Alice’s view into another view Alice(v′) = sAk′‖c such that

∆(|sAk′〉〈sAk′| ⊗ ρE(v), ρAEsA
k′ ,c

) ≤ negl(n) . (3.1.3)

Remark 2. By Definition 3, Alice could (at least in principle) construct a subset of her
views, S̃A, by a local operation, i.e., querying FakeA on all possible k′, where S̃A satisfies the
following two properties. First,

∀k′ ∈ K, ∃sAk′ ∈ S̃A s.t. k′ = Key
[
(sAk′‖c),Π`(·)

n

]
, (3.1.4)

4. Note that in Eq. 3.1.1, the state FakeA [Alice(v), k′]⊗ ρP E
v is a separable state since after a successful

execution of the QKD protocol Alice’s view is classical.
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and second,

∀sAk′ ∈ S̃A, ∆(|sAk′〉〈sAk′ | ⊗ ρE(v), ρAEk′,c) ≤ negl(n) . (3.1.5)

The size of S̃A is 2m where m = `(n). Loosely speaking, Alice can compare her honest
private information sAk with each element of S̃A and mark the positions where the bit value
in the string sAk are different from the bit value in at least one of the element of set S̃A –
these are the positions that Eve (with overwhelming probability) has no-information about
their value.
Definition 4 (Receiver universally deniable QKD protocols). For the case of receiver uni-
versally deniable QKD it is sufficient to assume that in Definition 3 instead of Alice, it is
Bob (a.k.a. receiver) who locally transforms his view.

3.1.2. Alice/Bob Universally Deniable QKD protocols

Let consider the class of εn-secure QKD protocol that the quantum channel between
Alice and Bob is bi-directional (i.e. Alice and Bob both transmit quantum state through the
quantum channel to each other). In this context, Alice and Bob are both sender and receiver.
Then one can consider a class of QKD protocol which are Alice universally deniable and the
other class of QKD protocols which are Bob universally deniable. These two classes can de
defined analogously to their counterpart in sender and receiver universally deniable.

3.1.3. Universally Mono-/Bi-deniable QKD protocols

Definition 5 (Universally bi-deniable QKD protocols). A εn-secure QKD protocol Π`(·)
n

between two parties Alice and Bob is called a universally bi-deniable QKD protocol if there
exist a faking operation FakeA,B that after a successful execution of the QKD protocol which
results into the establishment of some key k ∈ K (where K is the set of all the possible secure
key that the QKD protocol could establish) then for all fake keys k′ ∈ K and for all global
views v ∈ VIEW, the following criterial is satisfied

∆(FakeA,B
[
ρAv , ρ

B
v , k

′, r
]
⊗ ρPEv , ρABPEv′ ) ≤ negl(n) , (3.1.6)

where the faking operation FakeA,B takes as input Alice’s view, Bob’s view, their desired fake
key and potentially some other randomness

(
ρAv , ρ

B
v , k

′, r
)
and outputs (Alice(v′),Bob(v′))

where v′ ∈ VIEW such that k′ = Key
[
Alice(v′),Π`(·)

n

]
and k′ = Key

[
Bob(v′),Π`(·)

n

]
. In other

words, Alice and Bob can safely hand in Alice(v′) and Bob(v′) to the coercer Eve, respectively.
The case of a universally bi-deniable QKD protocol is more subtle. If we extend sender

universal deniability (or similarly Alice universal deniability) to the bi-deniable case, it means
that at the time of coercion Alice and Bob can convince Eve that any other key of their choice
has been established. Obviously, the key that Alice chooses as her fake key should match
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Bob’s. We know that due to no signalling, Alice and Bob will not be able to agree on the
same fake key unless Eve allows them to communicate privately (by sending at least a qubit
or a classical bit privately) or they have pre-agreed on a key before coercion.

Private communication at the time of coercion: If Eve allows private communica-
tion between Alice and Bob 5 (an admittedly unlikely scenario) then Alice and Bob
may communicate to negotiate on the fake key and also (if needed) fake view that
each will reveal to Eve so that their views (and therefore the fake key) will be consis-
tent with each other. It is important to note that the negotiation (communication)
must be deniable as well. There are two possible resources that the parties may have
at their disposal to make this private (deniable) communication possible. First, they
may possess some pre-shared entanglement and an authenticated classical channel
(we will see in the next chapter that communication via these resources is universally
deniable). Second, they may have access to a private deniable classical channel via
one-time pad. This raises the following valid objection: if Alice and Bob have access
to those private communication resources why didn’t they use it in the first place to
communicate? We may consider scenarios where Alice and Bob will be coerced only
for a proper subset of their communication set. Of course, they do not know this
subset before the coercion. Moreover, since the above private channels are expensive,
they will only use those channels at the time of coercion (provided that Eve allows
communication at that time). Under this condition the faking operator in Definition 4
can be redefined as FakeA,B

[
ρAv , ρ

B
v , k

′, r
]

:= FakeA
[
ρAv , k

′, rA
]
⊗FakeB

[
ρBv , k

′,rB
]
where

k′ ∈ K and rA and rB are some potential randomness that may help Alice and Bob
to produce consistence views individually.

Pre-agree on a key before coercion: Alice and Bob are able to meet privately in per-
son after a successful execution of a QKD protocol (possibly also after one or several
classical ciphertexts encrypted with that key have been transmitted between Alice
and Bob) but before the coercion. They can agree on some fake view v′ ∈ VIEW (and
hence a fake key). Similarly to the previous case, the faking operator in Definition 4
can be redefined as FakeA,B

[
ρAv , ρ

B
v , k

′, r
]

:= FakeA
[
ρAv , k

′, rA
]
⊗FakeB

[
ρBv , k

′,rB
]
where

k′ ∈ K and rA and rB are some potential randomness that may help Alice and Bob
to produce consistence views individually. This raises the following valid question: if
Alice and Bob are able to meet privately in person why didn’t they wait to exchange
the message in person in the first place? Well, we may consider that they really need
to exchange the message at a specific time or location for which in person private
meeting at that location or time is not possible. This is a realistic assumption for
applications such as deniable encryption for purpose of whistleblowing. Note that by

5. We shall see in Chapter 6 that Fuzzy prepare-and-measure achieves bi-deniability under the condition
of Eve being fair without need of communication between Alice and Bob.
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Definition 5, Alice and Bob must be able to choose any key of their desire to fake into
at the time of coercion (and not before coercion). So this assumption contradicts the
definition since Alice and Bob agree on the possibly fake key after the successful exe-
cution of the protocol but before the coercion. It is important to be able to delay the
choice of a fake key to the coercion time because some acts/messages that are totally
fine at certain point of time and place might be seen as wrong later in future or at
a different place. In some applications such as preventing vote-buying, the coerced
parties need to know which candidate is coercing her/him before choosing a possibly
fake key (and therefore fake vote).

Eve’s tolerance: Depending on application and Eve’s tolerance one may consider sce-
narios under which a protocol is considered universally bi-deniable even if at the time
of coercion Alice’s and Bob’s revealed private information (and therefore revealed
keys) does not consistent as long as the coercer Eve does not have any evidence that
prove which party (if not both) is surreptitious. Under this condition, we can rede-
fine the faking operation FakeA,B

[
ρAv , ρ

B
v , k

′, r
]

:= FakeA
[
ρAv , k

′
]
⊗FakeB

[
ρBv , k

′′
]
where

k′, k′′ ∈ K are Alice’s and Bob’s desired faking key respectively. We will elaborate on
this remark later in Chapter 6.

It is important to note that in bi-deniability Alice and Bob have a joint faking operation.
This models the fact that after an initial stage where the parties can agree on the fake key,
Alice and Bob can only communicate over a channel that is under the full control of Eve. A bi-
deniable key establishment protocol can be trivially turn into one party deniable protocol: if
both parties can deny independently then they should be able to deny individually. Curiously,
however, the reverse does not hold, i.e., if a protocol is sender deniable and receiver deniable
(or equivalently, Alice deniable and Bob deniable) it might not be bi-deniable. We will
elaborate on this remark later in Chapter 6.
Definition 6 (Universally mono-deniable QKD protocols). A εn-secure QKD protocol is
universally mono-deniable if after a successful execution of the QKD protocol either Alice
or Bob (but not both) can universally deny the establishment of some keys k.

It is important to note that in Definition 6, even under the assumption of Eve allowing
for private deniable communication between Alice and Bob at the time of coercion, still the
protocol will not be bi-deniable.

3.2. Existential Deniable QKD Protocols
In this section, we provide a formal definition of existential deniable QKD protocols.

Existential deniable QKD protocols can be defined similarly to their universal deniable QKD
protocols counterpart, with two major differences. The first difference concerns the size of
the fake key set that Alice and/or Bob have at their disposal upon coercion. In the context
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of universally deniable QKD protocol, this fake key set is identical to the set of all possible
keys that could have been established. However, in existential deniable QKD protocols, it
is sufficient that the fake key set has at least one member, a key different from the honest
key. The other difference between existential and universal deniability is that in existential
deniability the coerced party is not necessarily able to choose the fake key, the latter being
generated by the Fake operation. Next, we define sender existential deniable QKD protocols.
Please note that in this section, by Eve we mean unfair Eve. Please refer to Section 3.4 for
the definition of unfair Eve.
Definition 7 (Sender existential deniable QKD protocols). An εn-secure QKD protocol Π`(·)

n

between two parties Alice and Bob (sender and receiver, respectively) with the protocol de-
scription Pi is called a sender existential deniable QKD protocol if there exist a faking
operation FakeA that after a successful execution of the protocol that results into the estab-
lishment of some key k ∈ K (where K is the set of all the possible secure keys that the QKD
protocol could establish) then for all global view v ∈ VIEW and Alice’s view Alice(v), there
exist a faking operation such that the following condition is satisfied:

∆(FakeA [Alice(v), k′]⊗ ρPEv , ρAPEv′ ) ≤ negl(n) , (3.2.1)

where FakeA takes as input Alice(v) and outputs Alice(v′) (where v′ ∈ VIEW) such that
k′ = Key(Alice(v′),Pi) with k 6= k′. 6

One can define the receiver/Alice/Bob existential deniable, bi/uni existential deniable
QKD protocols analogously.

3.3. Plan-ahead Deniable QKD Protocols
An εn-secure QKD protocol is plan-ahead deniable if the choice of fake key must be

made at the time that the QKD protocol takes place rather than at the subsequent time of
coercion. In other words, if the coerced party needs to choose a proper subset of the keys
as the possible fake keys at the time of the execution of the εn-secure QKD protocol, the
protocol is called plan-ahead deniable. There are more levels to this flavour of deniability
depending on which party is coerced, what the adversary may ask, the size of the fake set
from which surreptitious party can choose the fake key set, and the coercer tolerance to less
likely events. These levels can be defined analogously to their counterpart in the previous
subsections. Curiously, if the size of the fake key set on which Alice and/or Bob plan-ahead
is as large as the key space, then the protocol is equivalent to a universally deniable one. We
leave the rigorous definitions and conditions of this level for future work.

6. Note that in Eq. 3.1.1, the state FakeA [Alice(v), k′]⊗ ρP E
v is a separable state since after a successful

execution of the QKD protocol Alice’s view is classical.

50



3.4. Deniable QKD Protocols with Fair Eve
In this subsection, we give a formal definition of deniable QKD protocols with fair Eve. 7

In the context of deniability, we call an Eve fair if she never accuses Alice and/or Bob of
being surreptitious unless she has definitive proof that allows her to certify that Alice and/or
Bob lied. Roughly speaking, a deniable QKD protocol with fair Eve is an εn-secure protocol
that enables Alice and/or Bob to transform a successful execution of the QKD protocol that
has established the key k with public view c to an execution of QKD with the same c in a
way that Eve cannot prove that Alice and/or Bob are being surreptitious. An example of
such evidence would be where Eve’s data could exclude with certainty a particular signal
choice made by Alice as claimed in her disclosure of the private information. An Eve is called
unfair if after a successful execution of an εn-secure QKD protocol and at the subsequent
time of coercion Eve has no tolerance for discrepancies between the private information that
the coerced party revealed and the information she collects through eavesdropping during
the protocol execution. In this Thesis, we assume that Eve is always unfair unless specifically
mentioned. 8 Below we only define sender universally deniable QKD with fair Eve.
Definition 8 (Sender universally deniable QKD protocols with fair Eve). A secure QKD
protocol Π`(·)

n between two parties Alice and Bob (sender and receiver, respectively) is called a
sender universally deniable QKD protocol with fair Eve if there exist a faking operation FakeA
that after a successful execution of the protocol which results into the establishment of some
key k ∈ K (where K is the set of all the possible secure key that the QKD protocol could
establish) then for all fake keys k′ ∈ K, global view v ∈ VIEW and Alice’s view Alice(v), the
faking operator, FakeA, takes as input (Alice(v), k′) and outputs Alice(v′), where v′ ∈ VIEW
and the probability of Alice(v′) given Eve’s state ρE(v) is non zero.

One can define the receiver/Alice/Bob/bi/uni universal/existential deniable QKD pro-
tocol with fair Eve analogously to their counterpart in Subsection 3.1.

By restricting Eve to be fair, a new dimension appears in bi-deniability. Let us assume
that Alice and Bob execute a successful run of a universally mono-deniable QKD protocol
with fair Eve. This means that each of the legitimate parties, i.e., Alice and Bob, can pretend
any other key has been established. Suppose that Eve coerces both parties at the same time.
Alice claims that the execution resulted into the key kA and Bob claims that it resulted into
the key kB 6= kA. Eve can’t bring proof that Alice is lying. She can’t find any evidence
that Bob is lying either. Nevertheless, Eve knows at least one is dishonest. However, since
Eve is not absolutely sure which one is lying (if not both), she (Eve) can’t accuse either

7. To the best of our knowledge, the first paper that introduced the concept of fair judge (which is
analogous to fair Eve) is Ref. [6]. However, that paper did not differentiate between the universal, existential
and plan-ahead (Section 3.3) levels.

8. Also sometimes we are sloppy and refer to unfair Eve as Eve.
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one of them! 9 Therefore, to achieve bi-deniability against fair Eve there is no need for the
far-fetched assumption of Eve allowing private deniable communication between Alice and
Bob at the time of coercion.

3.5. Secrecy-preserving Deniable QKD Protocols
Another issue arises in case of coercion: the information revealed by the coerced party

when pretending that a fake key had been established should not help a (rightfully) in-
credulous coercer guess what the real key was more successfully than she could have before
coercion. A QKD protocol is secrecy-preserving deniable if, after coercion, Eve cannot learn
anything about the honest key other than what she could have known before coercion had
the coerced party(ies) decided to be surreptitious. This is a crucial feature that might seem
obvious at first glance but it is more subtle than it looks.

The universally deniable QKD protocols are secrecy-preserving deniable as shown in
Remark 2. However, not all levels and flavours of deniable QKD protocols are necessar-
ily secrecy-preserving. We shall touch upon the subtleties of this flavour of deniability in
Chapter 6.

3.6. Plausible Deniable QKD Protocols
We call an εn-secure QKD protocol plausible deniable, if the “behaviour” of the legitimate

parties does not imply dishonesty. In other words, an εn-secure QKD protocol is plausible
deniable if it is as efficient as if the legitimate parties knew they will never be coerced.
Moreover, the claimed fake key should be “acceptable”. This means that not only the claimed
secret information should be consistent with the public information and Eve’s knowledge,
but also believable. Suppose that the legitimate parties had used the established secret key
(that they are being coerced for) to encrypt a message that has also been intercepted by
Eve. The coerced party must claim a fake key under which the intercepted ciphertext gives
rise to a plausible cleartext. We shall give more intuition on this notion later in Chapter 6.

In Fig. 1, we schematically depict all the levels and flavours of deniable key establishment
protocols defined in this chapter (for the sake of compactness, the last level of the leaves are
not fully displayed).

9. We shall see in Chapter 6 that Fuzzy prepare-and-measure achieves bi-deniability under the condition
of Eve being fair without need of communication between Alice and Bob.

52



Deniable QKD
Protocols

Unfair Eve

Plausible

Secrecy
preserving

Universal

Sender

Receiver

Bi-deniable

Mono-
deniable

Alice deniable

Bob deniable

Existential

Sender

Receiver

Bi-deniable

Mono-
deniable

Alice deniable

Bob deniable

Plan-ahead

Secrecy
leaking

Universal

Existential

Plan-ahead

Implausible

Secrecy
preserving

Universal

Existential

Plan-ahead

Secrecy
leaking

Universal

Existential

Plan-ahead

Fair Eve

Plausible

Secrecy
preserving

Universal

Existential

Plan-ahead

Secrecy
leaking

Universal

Existential

Plan-ahead

Implausible

Secrecy
preserving

Universal

Existential

Plan-ahead

Secrecy
leaking

Universal

Existential

Plan-ahead

Figure 1. Summary of the protocols discussed in this chapter
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Chapter 4

Plausible Universally Bi-deniable
QKD Protocols

In this chapter, we begin by showing that the modified Lo-Chau QKD protocol and CSS
codes QKD protocol (proposed by Shor and Preskill for their simple proof of security for the
BB84 protocol [49]) allow Alice and Bob to establish a secure key that is universally deniable
at the coercion time. Afterwards, we present the condition that gives rise to the property
that guarantees universal deniability in both the Lo-Chau and CSS codes QKD protocols,
and some other QKD protocols. In fact, we prove that any QKD protocol that satisfies this
condition is universally bi-deniable.

4.1. Conventional Universally Bi-deniable QKD Proto-
cols Exist

In this section, we investigate the deniability of the modified Lo-Chau and CSS codes
QKD protocols as two examples of “standard” secure QKD protocols that provide universal
deniability property for free 1 (and therefore they are plausible deniable as well). For a
detailed explanation of the protocols we refer the curious reader to the Shor and Preskill
paper [49].

1. Here by “free” we mean that no extra assumption or modification is applied to the protocol to provide
deniability, i.e., all the steps are what was originally proposed for the mere purpose of information theoretic
security.



Protocol 1. Modified Lo-Chau QKD Protocol

1: Alice creates 2n EPR pairs in the state |Φ+〉⊗2n.
2: Alice selects a random 2n bit string b, and performs a Hadamard transform on

the second half of each EPR pair for which the corresponding component in b is 1.
3: Alice sends the second half of each EPR pair to Bob.
4: Bob receives the qubits and publicly announces this fact.
5: Alice selects n of the 2n encoded EPR pairs to serve as check bits to test for Eve’s

interference.
6: Alice announces the bit string b, and which n EPR pairs are to be check bits.
7: Bob performs Hadamards on the qubits for which the corresponding components

in b are 1.
8: Alice and Bob each measure their halves of the n check EPR pairs in the |0〉, |1〉

basis and share the results. If too many of these measurements disagree, they
abort the protocol.

9: Alice and Bob apply entanglement distillation on the remaining EPR pairs and
transform their state so as to obtain m nearly perfect EPR pairs.

10: Alice and Bob measure the EPR pairs in the |0〉, |1〉 basis to obtain a shared
secret key.

Let condition what is followed on the even that Alice and Bob run a successful execution
of the modified Lo-Chau protocol Pmodified Lo-Chau as described in Protocol 1. It has been
shown in Ref. [49] that if the execution of the protocol passes Step 9 with success, we have

F (ρABPE,|Φ+〉〈Φ+|⊗mAB ⊗ ρ
PE) ≥ 1− negl(n) , (4.1.1)

where ρABPE is the state Alice and Bob hold just before applying the measurement and
establishment of the key with the public conversation ρP and Eve’s view ρE. Recall from
Chapter 2 that the following bound applies to the trace distance and the fidelity between
two quantum states ρ, σ ∈ D(H)

1−
√
F (ρ, σ) 6‖ ρ− σ ‖16

√
1− F (ρ, σ). (4.1.2)

We can derive from Eq. (4.1.1) and Eq. (4.1.2) that

‖ ρABPE − |Φ+〉〈Φ+|⊗mAB ⊗ ρ
PE ‖1≤ negl(n) , (4.1.3)

hence Eve is decoupled from Alice and Bob’s joint state ρAB. Having the above means that
we have almost perfect EPR pairs between Alice and Bob (that are almost uncorrelated
to Eve and therefore almost uncorrelated to the public transmission or any other system)
because of the monogamy of entanglement. Monogamy of entanglement states that if Alice
and Bob share maximally entanglement states (MESs), those MESs cannot be entangled
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at all with any third state E. (This can be expressed by the Coffman-Kundu-Wootters
monogamy inequality [22].)

Therefore, just before the measurement, according to Eq. (4.1.3), we have

ρABPE ' |Φ+〉〈Φ+|⊗nAB ⊗ ρ
PE. (4.1.4)

After Alice and Bob measure their states, which results in the establishment of a key k,
the global view is

ρABPE ' 1
2m

∑
k

|k〉〈k|A⊗|k〉〈k|B ⊗ ρ
PE, (4.1.5)

where m is the length of the established key and k ∈ {0,1}m. As one can see in Eq. (4.1.5),
from (even unfair) Eve’s perspective, any other key could have been established with an
(almost) uniform probability distribution. Now, we show how Alice and Bob can universally
deny the established key at the time of coercion. Let k0 be the established key after a
successful run of a modified Lo-Chau QKD protocol.Then

ρABPEk0 = |k0〉〈k0|A⊗|k0〉〈k0|B ⊗ ρ
PE. (4.1.6)

Next, we define a faking operator that Alice and Bob can execute which enables them to
bi-deny 2 the established key universally upon subsequent coercion by (unfair) Eve. 3 Let
k′ ∈ {0,1}m be the fake key that Alice and Bob want to unveil upon subsequent coercion.
Furthermore, let FakeA and FakeB be Alice’s and Bob’s faking operators, respectively, which
are some quantum operator (CPTP map) defined as below.

FakeA(ρAk , k′) = XSρAkX
S, (4.1.7)

FakeB(ρBk , k′) = XSρBkX
S, (4.1.8)

where XS is a multi-partite bit flip operator, which for S = k0 ⊕ k′ ∈ {0,1}m is defined as

XS := Xs1
1 ⊗Xs2

2 ⊗...⊗Xsm
m .

Therefore,

FakeA(ρAk , k′)⊗ FakeB(ρBk , k′)⊗ ρPE = |k0⊕S〉〈k0⊕S|A⊗|k0⊕S〉〈k0⊕S|B⊗ρ
PE. (4.1.9)

Let FakeA,B(ρABk , k′) = FakeA(ρAk , k′)⊗ FakeB(ρBk , k′). By Eq. (4.1.5) we have,

∆(FakeA,B(ρABv , k′)⊗ ρPEv , ρABPEv′ ) ≤ negl(n) , (4.1.10)

2. Assuming that Eve allows private communication between Alice and Bob or Alice and Bob are able to
meet privately in person after the successful execution of the QKD but before coercion. Refer to Section 3.1.3
for discussion over this assumption.

3. As mentioned in Chapter 3, in this Thesis whenever we talk about Eve we mean unfair Eve unless
explicitly mentioned that Eve is fair.
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where k′ = Key(v′,Pmodified Lo-Chau) and k = Key(v,Pmodified Lo-Chau).
Let us take a closer look at the faking operator. It is important to note that the universal

deniability property of the modified Lo-Chau protocol derives from the fact that given all
the randomness that has been used through the protocol, and Eve and public conversation’s
view ρPE, the established secure key k remains fully indeterministic. In other words, having
direct access to Alice’s brain just before the measurement of the EPR pairs at step 10 (as
described in Protocol 1) does not change Eve’s view from Eq. (4.1.5). It turns out that, in
principle, that the faking operator does depend on any private information from the coerced
party to produce the desired fake randomness. Curiously, the coerced party does not need
to execute a faking operator! It follows that not just the coerced party but any other party
who even did not take part into the execution of the protocol and does not have access to
the coerced party private information may execute the faking operator. As we observed in
the example above, the output of the faking operator is the coerced party desired fake key
k′ ∈ {0,1}m. Furthermore, there is no way that Alice can convince anyone that some key
k0 ∈ {0,1}m is the honest key that has been established after the successful execution of the
modified Lo-Chau protocol, even if she (Alice) is willing to hand in a copy of her brain 4 just
before the measurement. Therefore, there is no point for Eve to coerce Alice or Bob in the
first place.

Next, let us explore the levels and flavours of deniability that the modified Lo-Chau QKD
protocol satisfies. Given that the modified Lo-Chau QKD protocol is universally bi-deniable,
it is straightforward to see that this protocol is universally deniable if Eve coerces only one
party, i.e. universally sender deniable as well as universally receiver deniable. Given above
discussion, it is straightforward to see that the modified Lo-Chau protocol is universally
bi-deniable as well as sender/receiver deniable against a fair Eve. Furthermore, the modified
Lo-Chau protocol is secrecy preserving since upon coercion, the information revealed by the
coerced party when pretending that a fake key had been established, does not help Eve
guess what the honest key was more successfully than she could have before. It is important
to note that the modified Lo-Chau protocol is plausible deniable 5 as well since there is no
additional overload in the protocol: all the steps in the protocol description are necessary
for achieving information-theoretic security.

In Chapter 5, we shall show that this argument does not hold for all secure QKD protocols.
For example, in case of the BB84 protocol, once Alice hands in a copy of her memory
(assuming that she has a perfect one), Eve can use the ρPE and the random string Alice
has picked at the initialization step (the string of N bit b1,...,bN as defined in Chapter 2) to
obtain the honest opening (honest key).

4. Since the information is classical she can hand in a copy of it!
5. Refer to Section 3.6 for definition of plausible deniable QKD protocols.
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Note that the modified Lo-Chau protocol requires Alice to actually have access to an
entanglement source. If the execution of the modified Lo-Chau protocol succeeds, the steps
5-9 have certified that the quantum states shared between Alice and Bob (just before the
measurements) are actually MESs. Entanglement sources can be deployed successfully given
todays technology, and their speed 6 is increasing; however, they are still too slow for realiza-
tion of high-speed QKD protocols. Is it possible to achieve universal bi-deniability without
relying on establishment of entanglement between the legitimate parties? Below, we an-
swer this question affirmatively by showing that the CSS codes QKD protocol can achieve
universal deniability without ever establishing any shared MESs between Alice and Bob.
Protocol 2. CSS codes QKD protocol

1: Alice creates n random check bits a ∈R {0,1}n, a random m-bit key k ∈R {0,1}m,
and a random 2n-bit string b ∈R {0,1}2n.

2: Alice chooses n-bit strings x ∈R {0,1}n and z ∈R {0,1}n.
3: Alice encodes her key into |ψk〉 ∈ Qx,z using the modified CSS code Qx,z (see

Section 2.4 for the definition).
4: Alice chooses n positions (out of 2n) and puts the check bits in these positions

and the encoded key |ψk〉 in the remaining positions.
5: Alice applies a Hadamard transform to those qubits in the positions for which the

corresponding components in b are 1.
6: Alice sends the resulting state to Bob. Bob acknowledges receipt of the qubits.
7: Alice announces b, the positions of the check bits, the values of the check bits, and

the x and z determining the modified CSS code Qx,z.
8: Bob applies Hadamards on the qubits where the corresponding components in b

are 1.
9: Bob measures the check qubit in the |0〉 and |1〉 basis and compares the results

with a if too many of the check bits have been corrupted, he aborts the protocol.
10: Bob decodes the remaining qubits (measure them in the computational basis) to

establish the secret key.

Let us assume that Alice and Bob run a successful execution of the CSS codes QKD
protocol PCSS-codes (as described in Protocol 2) that results into the establishment of some
secret key k ∈ {0,1}m under Eve’s nose. Security of the CSS codes QKD protocol implies
that at step 6 when Alice transmits the quantum state to Bob, Eve cannot mount a successful
intercept resend attack and learn the encoded key k since she does not know x and z as well
as the location of the check bits yet. Therefore, Eve cannot mount the decoding/encoding
man-in-the-middle attacks.

6. Speed is measured by the rate of photon-pair generation.
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The question then arises: can Eve learn just enough information during the protocol ex-
ecution to caught surreptitious Alice and Bob upon subsequent coercion? If Step 9 succeeds,
it certifies that with high probability Eve did not disturb more than t qubits, where t is
the maximum number of errors the CSS code can correct. Moreover, Griffiths in Ref. [29],
proved that no information about |ψk〉 can be presented in less than t qubits. Consequently,
the public conversation and Eve’s state are independent from the established key k, there-
fore, at the time of coercion Eve has no information about |ψk〉 to verify if the claimed key
k′ (and therefore the corresponding encoded state |ψ′k〉) by the coerced parties, is fake or
not. Curiously, the only information that Eve may coerce Alice and Bob into unveiling is
their established key (since all the other classical information is publicly announce during the
protocol.). Therefore, since Eve has no information about the established key k Alice and
Bob can simply claim that they had established any key k′ ∈ {0,1}m. Eve cannot challenge
this, unless she had disturbed more than t qubits, but in that case Alice and Bob would
have aborted the protocol with high probability. Similarly to the case of modified Lo-Chau
protocol, in case of universally bi-deniable CSS codes QKD protocol the faking operator
takes as input the coerced party view and the desired fake key k′ and outputs k′, i.e.,

k′ = FakeA(ρA, k′) (4.1.11)

k′ = FakeB(ρB, k′) (4.1.12)

FakeA,B = FakeA ⊗ FakeB (4.1.13)

∆(FakeA,B(ρABv , k′)⊗ ρPEv , ρABPEv′ ) ≤ negl(n) , (4.1.14)

where k′ = Key(v′,PCSS codes) and k = Key(v,PCSS codes).
Now let’s investigate the levels and flavours of deniability of the CSS code QKD protocol.

The CSS coeds QKD protocol is universally deniable if Eve coerces either Alice or Bob as
well. In other words, the CSS codes QKD protocol is universally sender deniable as well as
universally receiver deniable. Moreover, this protocol is plausible deniable since the protocol
is as efficient as if Alice and Bob knew they will never be coerced. All the steps of the
protocol are necessary for achieving information-theoretic security. Therefore, this protocol
is plausibly universally bi-deniable, sender receiver against a fair/unfair Eve. It turns out
that the CSS Codes QKD protocol is secrecy preserving since upon coercion, the information
revealed by the coerced party when pretending that a fake key had been established does
not help Eve guess what the honest key was more successfully than she could have before.

Curiously, universal bi-deniability of the CSS codes QKD protocol illustrates the fact
that a protocol can be universally deniable without ever needing Alice and Bob to share
entanglement. This raises the following valid question: what is the subtle property that
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these two protocols have in common which, enables them to achieve universal deniability?
In Section 4.2, we shall determine and present this condition.

4.2. A Sufficient Condition for Universal Deniability in
QKD Protocols

What is the property that the modified Lo-Chau and CSS codes QKD protocols have
in-common that enables them to be universally bi-deniable? The answer is simple, once
explained. A careful investigation into modified Lo-Chau and CSS codes QKD protocols
reveals that the universal deniability in these protocol is due to the establishment of an
effective perfect quantum channel between Alice and Bob, which is used to establish the
secure key. In this subsection, we show that any protocol by which Alice and Bob can
establish a perfect quantum channel (Definition 9) can be turned into a universally deniable
QKD protocol almost immediately. Let us define first what we mean by perfect quantum
channels.
Definition 9 (Perfect quantum channels). A quantum channel E : D(Hin) → D(Hout) is
said to be perfect iff for all |ψ〉, |φ〉 ∈ Hin such that 〈ψ|φ〉 = 0, tr(E(|ψ〉〈ψ|)E(|φ〉〈φ|)) = 0.
For any ε ≥ 0, a quantum channel E : D(Hin) → D(Hout) is said to be ε–almost-perfect if
for all |ψ〉,|φ〉 ∈ Hin such that 〈ψ|φ〉 = 0, tr(E(|ψ〉〈ψ|)E(|φ〉〈φ|)) ≤ ε.

Intuitively, a perfect quantum channel is one that transmits any quantum state perfectly,
i.e., for any two perfectly distinguishable quantum states |ψ〉 and |φ〉, with 〈ψ|φ〉 = 0,
their corresponding channel outputs E(|ψ〉〈ψ|) and E(|φ〉〈φ|), respectively, remain perfectly
distinguishable, that is tr(E(|ψ〉〈ψ|)E(|φ〉〈φ|)) = 0.

Griffiths in Ref. [29] proved that a perfect quantum channel, as defined in Definition 9,
never leaks any information about the quantum state transmitted through it to the environ-
ment. This implies that an adversary can never get access to what is transmitted through a
perfect quantum channel.

An example of a perfect quantum channel is the channel implemented in a teleportation
protocol; at no point during the protocol there is any information about the teleported state
leaking to the environment. The subtle point to keep in mind is that a quantum channel is
not perfect if an adversary can tamper with the transmitted states, as it will contradict the
consequence Ref. [29] of Definition 9.

Therefore, this channel can be simply transformed into a secure QKD protocol since the
environment (including Eve) is decoupled from the channel. In this section, we show how
a perfect quantum channel allows also the establishment of a universally bi-deniable QKD
protocol.

We call optimistic any implementation of a perfect quantum channel that is guaranteed
to work only when the quantum channel is not too noisy. An implementation that also
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guarantees that, when the quantum channel is too noisy, Alice and Bob will notice it and
abort is called reactive. Alice and Bob can implement a reactive perfect quantum channel
using a noisy quantum channel and an authenticated noiseless classical channel.
Definition 10. We say that a protocol Π`(·) = {Π`(·)

n }n>0 with security parameter n enables
Alice and Bob to implement a reactive negl(n)–almost-perfect quantum channel if at the end
of the protocol Alice and Bob notice that either the protocol succeeds and they implement
a negl(n)–almost-perfect quantum channel or it aborts. 7

An almost-perfect quantum channel can be implemented by an (interactive) protocol
between Alice and Bob over a (not too) noisy quantum channel. Quantum error correcting
codes and interactive entanglement distillation [16] together with quantum teleportation are
two familiar ways to implement a reactive negl(n)–almost-perfect quantum channel. While
quantum error correcting is non-interactive, entanglement purification can require several
rounds of interaction, such as in the simplest protocol of [16]. It is important to note that
all these prevailing implementations of a reactive negl(n)–almost-perfect quantum channel
will only work when the quantum channel is guaranteed to have a low enough error rate.
Replacing the quantum channel with a noisier one may not result in an negl(n)–almost-
perfect quantum channel anymore. In fact, these methods will certainly fail to implement
a negl(n)–almost-perfect quantum channel as soon as the error rate reaches some critical
value. Eve’s presence may increase arbitrarily the error rate of a quantum channel while
Alice and Bob try to agree on a secret key over it. However, Alice and Bob will notice this
and abort the protocol.

We can convert any protocol establishing a reactive negl(n)–almost-perfect quantum
channel into a secure QKD protocol.
Definition 11 (QKD protocol derived from an implementation of a reactive
negl (n)–almost-perfect quantum channel). Let H be a Hilbert space of dimension N

and let {|ei〉}Ni=1 be an orthonormal basis for H. Furthermore, let ΠE = {ΠEn}n>0 be a proto-
col that establishes a reactive negl(n)–almost-perfect quantum channel E : D(H) → D(H).
We can derive a QKD protocol from ΠE as follows. Alice creates a random key k ∈R [N ].
Alice prepares a state |ek〉 and sends |ek〉 to Bob by ΠE . If the protocol ΠE did not abort
then Bob measures the state received E(|ek〉〈ek|), and obtains k. We call this QKD protocol
the protocol derived from an implementation of a reactive negl(n)–almost-perfect quantum
channel.

Next, we show that the QKD protocol derived from an implementation of a reactive
negl(n)–almost-perfect quantum channel is secure. We actually show that this QKD protocol
is universally bi-deniable.

7. It is straightforward to see that in CSS codes 2 QKD protocol, Alice and Bob implement a reactive
negl(n)–almost-perfect quantum channel using a noisy quantum channel and classical channel.
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Theorem 1. Let ΠE be a protocol allowing Alice and Bob to establish a reactive negl(n)–
almost-perfect quantum channel. The QKD protocol derived from ΠE is secure and univer-
sally bi-deniable.

Proof. First, assume for simplicity that ΠE establishes a reactive 0–almost-perfect (i.e., per-
fect) quantum channel. Griffiths in Ref. [29] proved that transmission of |ek〉 ∈ H through
a perfect quantum channel guarantees that no information leaks to the environment. There-
fore, the established key k ∈R [N ] by Alice and Bob is completely independent from Eve’s
quantum memory. The QKD protocol derived from ΠE is certainly secure. It is also univer-
sally bi-deniable since nothing in Eve’s quantum memory or in Public view in ΠE depends
on k. Alice and Bob can deny any key established simply by claiming another key of their
liking. Therefore, the protocol is universally bi-deniable. (Refer to Chapter 3 for definition
of universally bi-deniable QKD protocol).

Moreover, Coles, Yu, Gheorghiu, and Griffiths in Ref. [23] proved that if Alice transmits
|ek〉 through an negl(n)–almost-perfect quantum channel then the transmission of |ek〉 can
only leak a negligible amount of information to the environment. Therefore, if ΠE establishes
a reactive negl(n)–almost-perfect quantum channel then this could only allow Eve to caught
surreptitious Alice and Bob with negligible probability in the security parameter. Conse-
quently, a QKD protocol derived from a reactive negl(n)–almost-perfect quantum channel
is secure and bi-deniable. �

As mentioned above, an optimistic perfect quantum channel can be established in a straight-
forward way using quantum error correcting codes. However, Alice and Bob have no guaran-
tee that the quantum channel will be reliable enough for the error correcting code to do its
job. Therefore, codewords must be further encoded to allow detection when the error rate
is too high to allow successful error correction. If the error sampling does its job properly,
Alice and Bob can make sure that the quantum state sent through the noisy channel remains
isolated from the environment (including Eve) conditioned on successful error sampling. The
resulting protocol establishes a reactive negl(n)–almost-perfect quantum channel, roughly
described in Protocol 3.
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Protocol 3. QKD protocol based on establishment of a reactive negl(n)–almost-perfect
quantum channel

(1) Alice and Bob agree on an [[n, k, t]] – quantum error correcting code C encoding k
qubits into n and recovering from any errors acting upon no more than t qubits.

(2) Alice encodes the k-qubit state |ϕ〉 she wants to send into the n-qubit codeword
|ϕR〉.

(3) Alice encodes the codestates |ϕR〉 into an extra encoding |Φ(ϕR)〉 (this encoding
is for error sampling).

(4) Alice sends |Φ(ϕR)〉 to Bob through the noisy quantum channel.

(5) Bob receives E(|Φ(ϕR)〉〈Φ(ϕR)|) and acknowledges that fact to Alice.

(6) Alice publicly announces how to recover |ϕR〉 from |Φ(ϕR)〉 (this announcement
also allows Bob to determine if too many errors occurred for successful decoding).

(7) Bob recovers |ϕR〉 from what he received from Alice according to her instructions.
Bob aborts if too many errors are detected and announces that fact. Otherwise,
|ϕR〉 is decoded to recover |ϕ〉.

Definition 12 (QECC-based perfect quantum channel). Any perfect quantum channel for k
qubits established through the use of a quantum error correcting code as described above is
called a reactive QECC-based almost-perfect quantum channel. Error sampling is possible in
these implementations by hiding the codeword among random check qubits; see for example
the CSS codes QKD protocol proposed in Ref. [49].

The following Corollary to Theorem 1 then follows.
Corollary 4.2.1. Any reactive QECC-based almost-perfect quantum channel can be turned
into a secure and universally deniable QKD protocol for both Alice and Bob.

For example, the two QKD protocols studied in Section 4.1 can easily be seen as derived
from the establishment of a reactive almost-perfect quantum channel. First, the Lo-Chau
protocol [32] as modified by Shor and Preskill for their simple proof of security for the BB84
protocol [49] allows Alice and Bob to distill noise-free EPR pairs, which implies a perfect
quantum channel by teleportation. The secret key is obtained by measuring the EPR pairs
in the computational basis rather than teleporting it, but this is essentially equivalent.

Second, the CSS codes QKD protocol [49] is simply derived from a QECC-based almost-
perfect quantum channel using CSS codes and Pauli error sampling. Notice that the modified
Lo-Chau protocol transmits half EPR pairs requiring the other halves to be kept by the
sender, so quantum memory is needed to run the protocol. Entanglement purification can
be performed using an interactive process like the state distillation protocol of [16, 42]. In
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Ref. [42], the entanglement distillation process relies only on linear optics, which can be
considered simpler than a full-scale quantum computer. The CSS codes protocol does not
require any quantum memory, except for state preparation, but does require a full-scale
quantum computer at least capable of Clifford group operations [28, 18, 50].

Notice that implementing a reactive almost-perfect quantum channel is elusive using
current technology, since it seems to require high fidelity quantum memory. Nevertheless,
Ref. [42] shows that a quantum computer is not required for entanglement distillation.

Chapter 5 addresses the problem of deniability for practical QKD protocols such as those
we call prepare-and-measure (Definition 13). Further, in Chapter 6, we shall see how one
can modify the class of (standard) prepare-and-measure QKD protocols to achieve at best
universal deniability by restricting Eve to be fair. We leave for future works, the question
of whether it is possible to have a practical plausible universally deniable QKD protocol
without any restriction on Eve.

In Fig. 1, we schematically depict the levels and flavours of the protocols discussed in
this chapter.
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Figure 1. Summary of the protocols discussed in this chapter
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Chapter 5

Information Theoretic Security Does Not
Imply Deniability– Undeniable QKD

Protocols

In this chapter, we prove that deniability is not necessarily a direct consequence of the
information theoretic security of the QKD protocols. For this, we first give two examples
of conventional QKD protocols that are not even existentially deniable even against a fair
Eve. 1 We prove this by describing an attack that Eve may mount that enables her to catch
surreptitious Alice and Bob. Next, we distill the condition that these protocols have in
common, which enables Eve to distinguish between the fake key and the honest key with
more than negligible probability. For this purpose, we rigorously define a class of QKD
protocols to which we refer as prepare-and-measure and prove that any QKD protocol that
belongs to this class cannot be even existentially deniable even by restricting Eve to be fair.
Finally, we give intuition into the natural question of why the BB84 protocol [13, 14] is not
deniable whereas the modified Lo-Chau and CSS QKD protocols are.

5.1. Eavesdropping & Undeniability of the BB84 and
B92 Protocols

In this section, we provide two examples of conventional QKD protocols that come short
in satisfying even the weakest notion of deniability, i.e., existential deniability with fair Eve.
We show a simple attack that Eve may mount to catch surreptitious Alice with a non-
negligible probability. We describe a similar attack that Eve may mount to catch surrepti-
tious Bob upon coercion. Next, we show that the protocol B92 also cannot be existentially
deniable against a fair Eve. We show an attack that Eve may mount to catch surreptitious

1. Recall the definition of unfair Eve from Chapter 3. It is straightforward from the definitions of unfair
Eve and unfair Eve that if a QKD protocol is not deniable against a fair Eve, it is not (definitely) deniable
against an unfair Eve.



Bob with a non-negligible probability. Eve can mount a similar attack to catch surreptitious
Alice whenever she (Alice) lies about the established key via the B92 QKD protocol.

Let us first define the BB84 protocol. 2 For a detailed explanation on the BB84 protocol
we refer the curious reader to the original paper [13, 14].

Protocol 4. The BB84 protocol

1: Alice creates a random (4 + δ)n-bit string θ.
2: Alice chooses a random (4 + δ)n-bit string b. For each bit bi, she creates a state

in the standard (|0〉, |1〉) basis (if the corresponding bit θi is 0) or the Hadamard
(|+〉, |−〉) basis (if the corresponding bit θi is 1).

3: Alice sends the resulting qubits to Bob (one by one or all at once).
4: Bob receives the qubits (some of the states might get lost so that Bob will never

receive them), and acknowledges this to Alice. Bob measures each state in the
standard basis or the Hadamard basis at random and keeps a note of his choices.

5: Alice announces θ.
6: Bob compares θ with his-own choice of bases and announces those positions where

he measured the state in a different basis than Alice prepared. Alice and Bob
discard those states. The states Alice and Bob hold at this point form the sifted
keys. With overwhelming probability, there are at least 2n bits left (if not, abort
the protocol).

7: Alice chooses at random n positions in the sifted key to be check bits. Alice
announces the check bit positions.

8: Alice and Bob announce the values of their check bits. If too few of these values
agree, they abort the protocol.

9: Classical error correction and Privacy amplification protocols are applied to pro-
duce the final key.

Example 2 (Sender-undeniability of the BB84 QKD protocol). Let us assume that Alice
and Bob run a successful execution of the BB84 protocol (as defined in Protocol 4) under
Eve’s nose. Here, we present a weak attack that Eve may mount so that she can catch
surreptitious Alice 3 with non-negligible probability upon subsequent coercion.

2. An intuitive description on the BB84 protocol is provided in Chapter 2.
3. Eve may mount a stronger attack by which she learns much more about the state. However, for the

purpose of undeniability, it is sufficient to show that the protocol cannot tolerate this weaker attack.
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Let us assume that Eve intercepts only one position `∗ ∈ {1, . . . ,(4+δ)n} picked uniformly
at random among the (4 + δ)n states Alice sends to Bob. 4 Eve blocks the `∗–th state sent
by Alice.

Let S := {(1
4 , |0〉), (

1
4 , |1〉), (

1
4 , |+〉), (

1
4 , |−〉)} be the finite ensemble of the states Alice

sends over the quantum channel as defined in Protocol 4. Eve picks |ψ〉 ∈ {|0〉, |1〉, |+〉, |−〉}
uniformly at random and applies the projective measurementM := {|ψ〉〈ψ|, I − |ψ〉〈ψ|} to
the `∗–th state sent by Alice. With probability 1

2 independent of the security parameter, Eve
obtains the outcome corresponding to I − |ψ〉〈ψ|. She records her measurement outcome. In
this case she knows with certainty that the state Alice prepared was not |ψ〉; let’s condition
what follows on the event that Eve has obtained the outcome corresponding to I − |ψ〉〈ψ|
(which happens with probability 1

2).
Eve sends |ψ′〉 ∈ {|0〉, |1〉, |+〉, |−〉} picked uniformly at random to Bob. With probabil-

ity 1
4 , Eve got lucky (i.e., the state sent by Alice in position `∗ was |ψ′〉) hence the quantum

channel stays noiseless. Therefore, the probability that Eve’s intercept resend attack is
successful is 1

2 ×
1
4 = 1

8 . No information about |ψ〉 and `∗ is available to Alice and Bob.
Consequently, if Alice wants to deny the secret key upon subsequant coercion, she has to

claim a different state sent for at least one position and, with probability 1
2n , that position

will be `∗.
With probability at least 1

3 , the state announced by Alice will be |ψ〉, which will be
detected by Eve given that she had excluded with certainty |ψ〉 from the set of plausible
states for the position `∗ (hence Eve is fair). Thus, the probability that surreptitious Alice
choose to lie about the `∗–th position by pretending it was |ψ〉 is at least 1

3 ×
1

2n = 1
6n .

Therefore, the scenario above results in Eve catching surreptitious Alice (i.e. the probability
that the described intercept resend attack is successful and surreptitious Alice chooses to lie
about the `∗ position by pretending it was |ψ〉) with probability at least 1

48n ∈ Ω( 1
poly(n)).

Note that in the attack above, we considered the worst case scenario for Eve, i.e., we
considered Eve attacks only one position and at the coercion time Alice modifies only one
position. However, ideally Eve can attack more than one position and Alice needs to flip
more than one bit depending on the channel’s error tolerance and the size of the random
string b.
Example 3 (Receiver-undeniability of the BB84 QKD protocol). Let us assume that Alice
and Bob run a successful execution of the BB84 protocol (as defined in Protocol 4) under
Eve’s nose. Here, we present a weak attack that Eve may mount so that she can catch
surreptitious Bob 5 with non-negligible probability upon subsequent coercion.

4. Eve may attack more than one position, which will increase her chance of catching surreptitious
Alice/Bob.

5. Eve may mount a stronger attack by which she learns much more about the state. However, for the
purpose of undeniability, it is sufficient to show that the protocol cannot tolerate this weaker attack.
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Eve’s attack is as follows: she picks a position `∗ ∈ {1, . . . ,(4 + δ)n} at random. Eve
blocks the `∗–th state sent by Alice. Eve sends |ψ′〉 ∈ {|0〉, |1〉, |+〉, |−〉} (picked uniformly
at random) to Bob. Let us condition what follows on the event that Eve was lucky and sent
Bob exactly what Alice had prepared in position `∗, which happens with probability 1

4 , so
that the whole protocol is executed noise free 6 and as if Eve were not present (but Eve does
not know if she was lucky or not yet). Note that contrary to example 2, Eve does not need
to measure the state sent by Alice!

Recall Step 6 from the Protocol 4: Bob announces publicly all the positions of the
transmissions that take part in the secret key generation. These transmissions have the
property that (under the condition that the channel is noise free) Bob’s measurement result
is deterministic given the state Alice transmitted and the measurement Bob applied. Note
that each state (received by Bob) has probability 1

2 of taking part in the secret key generation,
hence this is the case of `∗ in particular. Let us condition what follows on the event that
`∗ is one of the positions that take part in the secret key generation, which happens with
probability of at least 1

2 . Therefore, the probability that Eve’s interception does not introduce
noise on the channel and the `∗–th state takes part into key generation is 1

4 ×
1
2 = 1

8 .
Now, we compute the probability of Eve catching Bob upon subsequent coercion whenever

he attempts to be surreptitious. To change the secret key, surreptitious Bob has only two
options:

First, changing the set of positions that took part in the key generation. However, since
in Step 6 Bob has publicly announced all the positions that took part into the key generation,
if Bob 7 lies about them then it will be detected with certainty by Eve.

Second, changing the outcome of the applied measurements or its outcome for at least
one of the positions that took part into the key generation. Recall from Step 5 that Alice has
announced publicly the basis she has prepared the transmitted state for all the transmissions.
And in Step 6, Bob has announced all the positions that he has measured the state in the basis
that Alice has prepared the transmission in. Moreover, these states are the only ones that
take part in key generation. Therefore, Bob must be honest about the applied measurement.
Let us condition what follows on the event that Bob chooses to lie about the measurement
outcome obtained in position `∗, which happens with probability at least 1

2n .
Let i be the result of his measurement in position `∗. Recall that the measurement result

is deterministic given the applied measurement and the transmitted state (since we had
already conditioned on the event that Eve retransmitted actually the state that Alice had
prepared). Recall that Eve was the one who sent the state in position `∗, therefore, she can
always catch Bob lying whenever he claims a fake measurement outcome different from the
honest measurement result i.

6. We assume all the noise on the channel is introduced by Eve.
7. Assuming he has the minimum required intelligence for not putting his life on fire on purpose.
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Putting things together, we obtain that with probability at least 1
8 ×

1
2n = 1

16n Eve can
caught surreptitious Bob upon consequent coercion. Therefore, with at least 1

16n ∈ Ω( 1
poly(n)),

Eve will catch Bob trying to deny the key established with Alice.

As described in the above examples, the coerced party has no information about the
location of the state Eve has information on, therefore, the BB84 QKD protocol is not even
sender or receiver existentially deniable. It is important to note that the Eves we consider
in the Example 2 and Example 3 are fair since they only call the coerced party guilty
if they know with certainty that the revealed information is not true. Given the attacks
described in the Examples 2 and 3, it is straightforward to see that the BB84 QKD protocol
is not existential bi-deniable against fair Eve neither. A careful investigation in the attacks
described in the Example 2 and the Example 3 reveals that the BB84 QKD protocol is not
either sender plan-ahead or receiver plan-ahead deniable even under the assumption of Eve
being fair. Therefore, the BB84 QKD protocol is undeniable.
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Protocol 5. The B92 QKD Protocol
The main idea of the B92 protocol is that key distribution is possible in principle us-

ing any two nonorthogonal states of a quantum system. Let |u0〉 and |u1〉 be two distinct,
nonorthogonal states, i.e. |〈u0|u1〉|2 > 0, and let P0 = I − |u1〉〈u1| and P1 = I − |u0〉〈u0|
be (non-commuting) projection operators onto subspaces orthogonal to |u1〉 and |u0〉, re-
spectively. Therefore, P0 annihilates |u1〉, but triggers (i.e., yields a non-zero result) with
probability 1− |〈u0|u1〉|2 > 0 when applied to |u0〉, and vice versa for P1.

1: Alice prepares and sends Bob ( 4
1−|〈u0|u1〉|2 + δ)n random binary sequences of quan-

tum systems, using states |u0〉, |u1〉 to represent the bits 0 and 1, respectively.
2: For each system, Bob decides, randomly and independently of Alice, whether to

subject it to a measurement of P0 or P1.
3: Bob publicly tells Alice in which instances his measurement triggered (but not, of

course, which measurement he applied), and the two parties agree to discard all
of the other instances.

4: If there has been no eavesdropping, the remaining instances, i.e., a fraction approx-
imately 1−|〈u0|u1〉|2

2 of the original trials, should be perfectly correlated, consisting
entirely of instances in which Alice sent |u0〉 and Bob measured P0, or Alice sent
|u1〉 and Bob measured P1. With high probability there are at least 2n bits left,
if not abort the protocol.

5: Alice chooses at random n positions in the sifted key to be check bits. Alice
announces the check bit positions.

6: Alice and Bob announce the values of their check bits. If too few of these values
agree, they abort the protocol.

7: Classical error correction and Privacy amplification are applied to establish the
final key.

Example 4 (Sender-undeniability of the B92 QKD protocol). Let us assume that Alice and
Bob run a successful execution of the B92 protocol (as defined in Protocol 5) under Eve’s
nose. Here we present a weak attack that Eve may mount so that she can catch surreptitious
Alice 8 with non-negligible probability upon subsequence coercion.

Let us assume that Eve intercepts only one position `∗ ∈ {1, . . . ,( 4
1−|〈u0|u1〉|2 + δ)n} picked

uniformly at random among all the ( 4
1−|〈u0|u1〉|2 +δ)n states Alice sends to Bob. Eve blocks the

`∗–th state (denotes as |ψ`∗〉) sent by Alice. Let S := {(1
2 , |u0〉), (1

2 , |u1〉)} be the ensemble of
the states Alice sends over the quantum channel. Eve picks i ∈ {0, 1} (uniformly at random)
and applies the projective measurementMi := {|ui〉〈ui|, I − |ui〉〈ui|} to the `∗–th state sent

8. Eve may mount a stronger attack by which she learns much more about the state. However, for the
purpose of undeniability, it is sufficient to show that the protocol cannot tolerate this weaker attack.
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by Alice. With probability 1 − |〈ui|ψ`∗〉|2 ≥ 0 independent of the security parameter (but
depending on i), Eve obtains the outcome corresponding to I − |ui〉〈ui| . Let us condition
what follows on the event that Eve obtaining the measurement outcome corresponding to
I − |ui〉〈ui| which happens with probability 1− |〈ui|ψ`∗〉|2 > 0, i.e., κ = 1− |〈ui|ui−1〉|2 > 0.
Eve records her measurement outcome. In this case she (Eve) knows with certainty that the
state Alice prepared was |u1−i〉. Eve sends |u1−i〉 to Bob hence the quantum channel stays
noiseless. 9 Therefore, the probability that Eve’s intercept resend attack be successful is κκκ.

Recall from step 3 that Bob announces publicly the positions of the transmitted states
where his measurements triggered (i.e. Bob announces which transmissions takes part in the
secret key generation). Furthermore, let us assume that the number of such states is 2n.
Let us condition what follows on the event that `∗ is one of these positions, which happens
with probability 1

2 . Consequently, after the successful execution of the protocol and upon
subsequent coercion, if Alice wants to deny the secret key at the time of coercion, she (Alice)
has two options:

First, changing the set of positions that took part in the key generation. However, since
in Step 3 Bob has already announced these positions, if Alice 10 lies about them then it will
be detected with certainty by Eve.

Second, changing the state she prepared for at least one of the positions that took part
into the key generation. With probability 1

2n , that position will be `∗. Alice will announce
that she prepared state |ui〉 in the `∗–th transmission. Therefore, the probability that the
`∗–th position takes part into key generation and Alice decide to lie about the state she
prepared at that position is 1

2 ×
1

2n = 1
4n . This will be detected by Eve since Eve already

knows (with certainty) that the state in the `∗–th transmission was |u1−i〉.
Putting things together, we obtain that the probability that Eve intercept and resend

attack is successful and the `∗–th state take part into the key generation and surreptitious
Alice decide to lie about that state is 1

2 ×
1

2n × κ = κ
4n
κ

4n
κ

4n . Therefore, the scenario above results
in Eve catching surreptitious Alice with probability at least κ

4n ∈ Ω( 1
poly(n)).

Example 5 (Receiver-undeniability of the QKD protocol B92). Let us assume that Alice
and Bob run a successful execution of the protocol B92 (as defined in Protocol 5) under Eve’s
nose. Here we present a weak attack that Eve may mount so that she can catch surreptitious
Bob 11 with non-negligible probability upon subsequence coercion.

9. We assume all the noise on the channel is introduced by Eve.
10. Assuming she (Alice) has the minimum required intelligence for not putting her life on fire on purpose.
11. Eve may mount a stronger attack by which she learns much more about the state. However, for the

purpose of undeniability, it is sufficient to show that the protocol cannot tolerate this weaker attack.
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We assume all the noise on the channel is introduced by Eve. Eve’s attack 12 is as follows:
she picks a position `∗ ∈ {1, . . . ,( 4

1−|〈u0|u1〉|2 + δ)n} at random. Eve blocks the `∗–th state
sent by Alice. Eve picks i ∈ {0, 1} (uniformly at random) and sends |ui〉 ∈ {|u0〉, |u1〉} to
Bob. Let us condition what follows on the event that Eve was lucky and sent Bob exactly
what Alice had prepared in the position `∗, which happens with probability 1

2 , so that the
whole protocol is executed as if Eve were not present (but Eve does not know if she was
lucky, or not yet).

Recall from step 3 that Bob will announce publicly the positions of the transmitted
states where his measurements triggered (which transmissions takes part in the secret key
generation). Let us assume that the number of such states is 2n. Let us condition what
follows on the event that `∗ is one of these positions, which happens with probability of
at least 1

2 . Now, we compute the probability of Eve catching Bob at the time of coercion
whenever he attempts to be surreptitious. To change the secret key, surreptitious Bob has
only two options:

First, changing the set of positions that took part in the key generation. However, since
in Step 3 he has already announced these positions, if Bob 13 lies about them, it will be
detected with certainty by Eve.

Second, changing the applied measurement (and therefore its outcome) for at least one
of the positions that took part into the key generation. Let us condition what follows on the
event that Bob chooses to lie about the applied measurement in position `∗, which happens
with probability at least 1

2n . Let (Pi, u1−i), i ∈ {0,1} be the pair of the applied measurement
and its outcome consistent with Public and different from (P1−i, ui) that Bob will claim
for `∗–th transmission, where Pi denote the projectors defined in Protocol 5. Recall that P0

annihilates |u1〉, but triggers (i.e., yields a non-zero result) with probability 1−|〈u0|u1〉|2 > 0
when applied to |u0〉, and vice versa for P1. Consequently, since Eve knows with certainty
that the state Bob received on the position `∗, she will catch Bob whenever he claims a
different measurement (and therefore state) for the transmission in position `∗.

Putting things together, we obtain that the probability that Eve intercept and resend
attack is successful and the `∗–th position takes part into key generation and surreptitious
Bob lie about the `∗–th position is at least 1

2 ×
1
2 ×

1
2n = 1

8n . Therefore, the probability that
the fair Eve catches surreptitious Bob is at least 1

8n ∈ Ω( 1
poly(n)).

As described in the above examples, the coerced party has no information about the
position of the state Eve has information on, therefore, the B92 QKD protocol is not even
sender or receiver existentially deniable. It is important to note that the Eves we consider

12. Eve may mount a stronger attack by which she gets much higher probability on catching Bob. However,
for the purpose of undeniability, it is sufficient to show that the protocol cannot tolerate this weaker attack.
13. Assuming he has the minimum intelligence required for not putting his life on fire on purpose.
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in the Example 4 and Example 5 are fair since they only call the coerced party guilty
if they know with certainty that the revealed information is not true. Given the attacks
described in the Examples 4 and 5, it is straightforward to see that the B92 QKD protocol
is not existential bi-deniable against fair Eve neither. A careful investigation in the attacks
described in the Example 4 and the Example 5 reveals that the B92 QKD protocol is not
either sender plan-ahead or receiver plan-ahead deniable even under the assumption of Eve
being fair. Therefore, the B92 QKD protocol is undeniable.

5.2. A Class of Undeniable QKD Protocols
In this section, we introduce a general class of QKD protocols to which we refer as

prepare-and-measure. 14 We show that this prevailing practical implementation of QKD
protocols cannot even be existentially deniable even if we restrict Eve to be fair. In this
subsection, we assume that Alice’s and Bob’s apparatuses are fully characterized and error
free. Moreover, the channel is under the full control of Eve and any possible error on the
channel is introduced by Eve. Let us first define what we mean by a prepare-and-measure
QKD protocol.
Definition 13 (Prepare-and-measure QKD protocol). Suppose that Alice and Bob run a
secure QKD protocol that falls into the model described below. The only resources they
have at their disposal are a noisy (but not too noisy) quantum channel and a perfect clas-
sical authenticated public channel. They do not have any pre-shared secret nor pre-shared
entanglement. Let n be the security parameter chosen by Alice and Bob and let Public 15

be the random variable for the public discussion in the protocol. Consider the following
properties:

Independent source states: Let S := {|ψj〉}Nj=1 be the finite set of possible states
Alice chooses the state from and transmit over the quantum channel, where |ψj〉 ∈ H,
with dim (H) = d independent of the security parameter n. furthermore, let S :=
{(pj, |ψj〉)}Nj=1 be the set of the source states, and pj > 0 for all 1 ≤ j ≤ N , with∑
j pj = 1. Each quantum transmission is picked independently by Alice according

to the distribution S, (i.e., Alice knows exactly which state is transmitted in each
position.) Let N (n) denote a polynomial upper bound on the total number of states
from S sent by Alice during the protocol.

14. “Prepare-and-measure QKD protocols” is a frequently used term in the quantum key establishment
community. However, to the best of our knowledge, there is no rigorous definition of what properties a
protocol should have to fit into this class. In the literature, the term is commonly used as opposed to the
entanglement-based QKD protocols. However, the CSS codes QKD protocol is a good example of a protocol
that does not belong to entanglement based or prepare-and-measure QKD protocols. In this Thesis, we give
a rigorous definition for this class of QKD protocols.
15. See Chapter 3 for the details on the definition of variable Public.
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Classical post-processing: Alice and Bob apply classical post processing using their
descriptions of what was sent during the quantum transmission, what measurement
was applied on each transmission, the all outcomes obtained, and the classical com-
munication having taken place so far. We require the following:
Public positions: The public discussion Public identifies completely the set of trans-

missions used to generate the secret key (i.e., which independent source transmis-
sions are used to generate the secret key).

No-entropy extraction: The secret key is computed from Public, the set of mea-
surements, and measurement outcomes for which Bob, in the ideal scenario that
the quantum channel is error free, has no uncertainty about the state he received
in each position.

We call a protocol that satisfies the above conditions a prepare-and-measure QKD protocol.
Definition 14 (Easy-to-prepare QKD protocol). A protocol that satisfies independent
source states, as introduced in Definition 13, but not necessarily the classical post-processing
conditions, is called an easy-to-prepare QKD protocol.
Definition 15 (Easy-to-measure QKD protocol). A protocol that satisfies the independent
source state and the classical post-processing conditions, as introduced in Definition 13, is
called an easy-to-measure QKD protocol.

It turns out that the definition of easy-to-measure QKD protocols is equivalent to prepare-
and-measure! In a Prepare-and-measure QKD protocol, Alice sends Bob a bunch of qudits,
each in a pure state of dimension d where d is independent of the security parameter. Note
that since d is independent from the security parameter Alice and Bob cannot establish an
almost perfect quantum channel using QECC 16 since they require encoding their state into
larger Hilbert space and the dimension of the Hilbert space depends on the security parameter
n. Alice and Bob cannot establish an almost perfect quantum channel by distributing and
distilling entangled state since the state Alice transmits through the quantum channel must
be pure.

In fact, we shall now see how the independent source states condition is sufficient to
enable Eve to catch surreptitious Alice (whenever she (Alice) denies the secret key) with a
non-negligible probability.
Theorem 2. An easy-to-prepare secure QKD protocol is not sender existentially deniable
even on a noiseless quantum channel and even against a fair Eve.

Proof. Here we present a weak attack that Eve may mount so that she can catch surrepti-
tious Alice. 17 Let us assume that Eve intercepts only one position `∗ ∈ {1, . . . ,N (n)} picked

16. See Chapter 4 for the details on the definition of almost perfect quantum channel.
17. Eve may mount a stronger attack by which she learns much more about the transmitted states.

However, for the purpose of undeniability, it is sufficient to show that the protocol cannot tolerate this
weaker attack.
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uniformly at random among all the N (n) states Alice sends to Bob. Eve blocks the `∗–th
state sent by Alice.

Let S := {(pj, |ψj〉)}Nj=1 be the finite ensemble of the states Alice can send over the
quantum channel as defined in Definition 13. Eve picks i ∈ [N ] with probability pi and applies
the projective measurement Mi := {|ψi〉〈ψi|, I − |ψi〉〈ψi|} to the `∗–th state sent by Alice.
Let condition what follows on the event that Eve’s attack was successful i.e. Eve obtains
the outcome corresponding to I − |ψi〉〈ψi| which happens with probability κκκ := 1 − pi > 0
independent of the security parameter (but depending on i). Eve records her measurement
outcome. In this case, she (Eve) knows with certainty that the state Alice prepared was not
|ψi〉.

Let J ∈ [N ] be the random variable for Alice’s choice of state (i.e., Pr [J = j] = pj) in
position `∗. Let J ′ be the random variable for Eve’s choice of j′, with the same underlying
probability distribution as Alice’s J . Eve sends |ψj′〉 with probability pj′ to Bob. With
probability pcoll := Pr [J = J ′] = ∑

j p
2
j ≥ 1

N
, Eve got lucky (i.e., the state sent by Alice

in position `∗ was |ψj′ 〉) hence the quantum channel stays noiseless. Let us condition what
follows on the event that Eve got lucky, i.e. her attack was successful and the quantum
channel stays noiseless which happens with probability at least 1

N
× κ = κ

N
κ
N
κ
N
. Under this

condition, no information about i and `∗ is available to Alice and Bob.
Consequently, if Alice wants to deny the secret key at the time of coercion, she (Alice)

has to claim a different state sent for at least one position and, with probability 1
N (n) ,

that position will be `∗. Let J ′′ ∈ [N ] be the random variable for the state announced
by surreptitious Alice (i.e., Pr [J ′′ = j] = p

′′
j ) in position `∗. Note that J ′′ have a different

underlying probability distribution than J since Alice wants to announce a different state
other than the honest one. With probability p′′i := Pr [J ′′ = i] ≥ 1

N−1 , the state announced by
Alice will coincide with |ψi〉, which will be detected by Eve given that she had excluded with
certainty |ψi〉 from the set of plausible states for the position `∗. Putting things together,
we obtain that the probability that Eve’s attack is successful, the `∗–th state take part
into the key generation and surreptitious Alice decide to lie about that state is at least
κ
N
× 1
N (n) ×

1
N−1 = κ

N.N (n).(N−1) . Therefore, the scenario above results in Eve catching
surreptitious Alice with probability at least κ

N.N (n).(N−1) ∈ Ω( 1
poly(n)).

�

We shall now see that any QKD protocol that belongs to the class of easy-to-measure QKD
protocols (as defined in Definition 15) prevent Bob from denying a secret key with a non-
negligible probability of being caught.
Theorem 3. An easy-to-measure secure QKD protocol cannot be receiver existentially de-
niable even on a noiseless quantum channel and even against a fair Eve.
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Proof. Eve’s attack 18 is as follows: she picks a position `∗ ∈ {1, . . . ,N (n)} at random. She
blocks the `∗–th state sent by Alice. Let J ∈ [N ] be the random variable for Alice’s choice of
state (i.e., Pr [J = j] = pj) in position `∗ and let J ′ be the random variable for Eve’s choice
of j′, where we assume that J ′ has the same underlying probability distribution as J . Eve
sends |ψj′〉 ∈ S with probability pj′ to Bob. Let us condition what follows on the event that
J ′ = J (i.e., Eve was lucky and sent Bob exactly what Alice had prepared in the position
`∗), which happens with probability pcoll := Pr [J = J ′] = ∑

j p
2
j ≥ 1

N
1
N
1
N
, so that the whole

protocol is executed as if Eve were not present (but Eve does not know if she was lucky or
not yet).

Recall the first condition in the classical post-processing term of Definition 13: the vari-
able Public identifies uniquely all the positions of the transmitted states that take part in
the secret key generation (i.e., public positions condition). Let us assume that the number
of such states is t(n). Let us condition what follows on the event that `∗ is one of these
positions, which happens with probability of at least t(n)

N (n)
t(n)
N (n)
t(n)
N (n) .

Now, we compute the probability of Eve catching Bob at the time of coercion whenever
he attempts to be surreptitious. To change the secret key, surreptitious Bob has only two
options:

First, changing the set of positions that took part in the key generation. However, since
Public identifies uniquely all the positions that took part into the key generation, if Bob 19

lies about them then it will be detected with certainty by Eve.
Second, changing the applied measurement and/or its outcome for at least one of the

positions that took part into the key generation. Let us condition what follows on the event
that Bob chooses to lie about the applied measurement and/or the outcome obtained in
position `∗, which happens with probability at least 1

t(n) . Let (Mi′ , h
′) be the pair of the

applied measurement and its outcome that Bob will claim for position `∗ (note that Bob
chooses (Mi′ , h

′) in a way that is consistent with Public and different from (Mi, h)). Recall
the no entropy extraction condition in the classical post-processing term of Definition 13: for
each transmission that takes part into the key generation, Bob has no entropy on the state
sent by Alice given the measurement he applied, its outcome and Public. Consequently, Eve
can compute the state transmitted by Alice (for each position that takes part into the key
generation) given Bob’s applied measurement, its outcome and Public. It follows that the
two conditions of the classical post-processing require that H(J |(I,H) = (i, h),Public) = 0,
where H denotes the entropy, I is the random variable for Bob’s measurement choice and
H is the random variable for its outcome. (i.e., Public, Bob’s measurement choice i and
its outcome h identifies uniquely the `∗-th state received by Bob). Let (Mi, h) and Public

18. Eve may mount a stronger attack by which she get much higher probability on catching Bob. However,
for the purpose of undeniability, it is sufficient to show that the protocol cannot tolerate this weaker attack.
19. Assuming he has the minimum intelligence required for not putting his life on fire on purpose.
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correspond to the state |ψj〉 = |ψj′〉 transmitted by Alice and (Mi′ , h
′) and Public correspond

to a state |φ〉. Now two cases are possible:

Case 1: If |ψj′〉 = |φ〉, it means that the change Bob made did not modify the secret
key.

Case 2: If |ψj′〉 6= |φ〉 then Eve can catch Bob lying since she knows (with certainty and
therefore Eve is fair) the state Bob received in position `∗ since she set it herself. In
this case, Eve will always catch Bob.

Putting things together, the probability that Eve’s attack was successful and the state in
the position `∗ takes part into the key generation and surreptitious Bob lie about that state
upon coercion is at least 1

N
× t(n)
N (n) ×

1
n

= 1
N (n).N . We obtain that with probability at least

1
N (n).N ∈ Ω( 1

poly(n)), (since pcoll is a constant by the independence source condition), Eve will
catch Bob trying to deny the key agreed upon with Alice. �

Theorems 2 and 3 together show that prepare-and-measure secure QKD protocols cannot
be existentially deniable for any participant. Furthermore, no prepare-and-measure secure
QKD protocol can be existentially deniable for any participant even if Eve only accuses a
cheating party only when she is sure that party is lying, i.e., against a fair Eve.
Remark 3. It is straightforward to see that the attacks described in Theorems 2 and 3 hold
also in the case of bi-deniability. Therefore, a secure prepare-and-measure QKD protocol of
the form defined in Definition 13 is not existentially bi-deniable even against a fair Eve.

The protocols BB84 and B92 [12] (and the six-state protocol [7]) are probably the best-
known prepare-and-measure QKD protocols. The protocol SARG04 [48] is also of that form.
By Theorems 2 and 3, all these protocols are necessarily undeniable with no easy fix, even
against a fair Eve who is not equipped with a long-lived quantum memory.

5.3. Comparing the CSS Codes QKD Protocol, the
Modified Lo-Chau Protocol and the BB84 Proto-
col Deniability-wise

Shor and Preskill proved the security of the BB84 protocol by a reduction of the modified
Lo-Chau protocol [32] in [49]. In this subsection, we show what makes the BB84 protocol to
come short of satisfying even the weakest notion of deniability, i.e., existential deniability with
fair Eve (although both modified Lo-Chau and CSS codes QKD protocols are universally
deniable).

First we provide intuitions into what is making the BB84 protocol standing apart from the
other two protocols from a deniability perspective. Next, we explain why it is not plausible
for Alice and Bob to fake the underlying protocol that they were executing. For instance,
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can they run the BB84 protocol but at the time of coercion they tell Eve that they were
executing the modified Lo-Chau QKD protocol?

Let Eve’s view of a secure QKD protocol be all the public discussion Eve gathered during
the protocol execution as well as the information Eve captured by possibly eavesdropping
on the quantum channel. Moreover, let Eve’s deniability view of a secure QKD protocol be
the security view plus all the private information Alice and Bob revealed upon coercion.

It is important to note that the Eve’s deniability view of the BB84 protocol is different
from its security view. Roughly speaking, in the security view of the BB84 protocol we
assume that if the protocol succeeded the sampling phase, Alice and Bob know with certainty
that Eve has at least a certain amount of uncertainty (min-entropy) about the state that
was prepared by Alice and the measurement results obtained by Bob. Therefore, Alice and
Bob can apply some classical post-processing to extract secure randomness from the “raw
key”, i.e., share a secure key. When it comes to deniability, things are different. This is
due to the extra power Eve has to coerce Alice/Bob after the successful execution of the
key establishment protocol to reveal any private information the parties used in their key
establishment. In a sender deniable key establishment protocol 20, Eve should not be able to
distinguish between the honest prepared values and some other fake strings with probability
more than negligible. Therefore, there must exist a faking algorithm that, for each possible
key, outputs a fake private information corresponding to Alice’s desired fake key in a way
that Eve is not able to catch surreptitious Alice with more than negligible probability. As
we proved in the Section 5.1 such an algorithm can’t exist for BB84 protocol.

However, things are different in case of the modified Lo-Chau and CSS codes QKD
protocols. In those protocols, Eve’s deniability view of the protocol is exactly the same
as the security view. The reason is that in this context, there does not exist any private
information on either parties other than the established secret key. Hence, even honest Alice
cannot prove to anyone (not even to Bob) that the key k has been established after the
execution of the modified Lo-Chau protocol (or CSS codes QKD protocol), even if Alice is
ready to hand in a copy of her brain (assuming that she has a perfect one) related to the
protocol execution 21 just before the measurement that results into the secret key.

The next natural question one may ask is “is it plausible” for Alice/Bob to run a BB84
protocol which results into the establishment of a key k, but later at the coercion time for
them to claim that they were actually executing the modified Lo-Chau or CSS codes QKD
protocol and therefore they have no private information to hand in?” The short answer is
“no”. Why? As seen in Chapter 3, each level or flavour of deniability is defined for a QKD
protocol whose specification is publicly known. Given a publicly known description of a
protocol and conditioned on the successful execution, then one may investigate the different

20. Similar analogy can be conducted for the case of receiver deniable and bi-deniable QKD protocol.
21. Let us assume this can be done since the information related to this is classical.

80



levels or flavours of deniability for that protocol specification. This problem can be overcome
by assuming that the specification of the executed protocol is not public.

In addition to publicly known specification of the protocol, the technology needed for
the execution of the modified Lo-Chau and CSS codes QKD protocols is way more advanced
(more expensive, if not impossible to be widely available) than the one needed to execute
the BB84 protocol. If Eve enter Alice’s or Bob’s lab after the execution of their protocol she
might be able to verify that they don’t have the required technology. Moreover, the public
view (what is transmitted between Alice and Bob via the public authenticated classical
channel) of the BB84 protocol is different from the other two protocols.

However, assuming that the description of the protocol is not publicly known and Eve is
not allowed to enter Alice’s or Bob’s lab (or equivalently, Alice and Bob have the technology
needed for CSS codes QKD available in their lab and send some superfluous messages.), it
is possible to make some modifications to the BB84 protocol (by adding some superfluous
(waste) messages) so that the transcript of the protocol is indistinguishable from the CSS
codes QKD protocol.
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Chapter 6

Practical Bi-deniable QKD Protocols

Suppose that Alice and Bob have a quantum channel and a classical authenticated public
channel at their disposal. Furthermore, suppose the coercer Eve is fair according to Defi-
nition 8. Let us assume that Eve does not have access to Alice and Bob’s lab and Alice’
and Bob’s apparatuses are noisy. We shall refer to the error caused by Alice’s and Bobs
apparatuses as trusted error since it does not introduce from malicious Eve. Given these
conditions, in this chapter, we first show how Alice and Bob can make a slight change to
the BB84 protocol in order to achieve universal deniability against a fair Eve. Next, we
generalize this modification and define a class of QKD protocols that we refer to as fuzzy
prepare-and-measure. Moreover, we introduce a hybrid deniable key establishment protocol,
which we show to be at best existential deniable.

6.1. Practical Universally Deniable QKD Protocols
Exist; Conditions Apply

In this section, we show how loosening some of the conditions of the prepare-and-measure
QKD protocols can enable Alice and Bob to deny their key universally conditioned on Eve
being fair. We refer to this class of QKD protocols as fuzzy prepare-and-measure. Before
introducing the formal definition of this class of protocols, let us give an example of a simple
protocol which we refer to as B̃B84 QKD protocol.

6.1.1. The B̃B84 QKD Protocol & Fair Eve

Let B̃B84 QKD protocol be the same protocol as the standard BB84 protocol, except that
each state prepared by Alice and each measurement performed by Bob, with independent
probability 1

2 , be slightly off the BB84 bases by a tiny angle θ. Although θ is publicly
known, neither Alice nor anybody else has any knowledge of each state she prepared with
her apparatus, whether the state was prepared θ degree off the basis or not. Similarly for



Bob, for each state he receives, he decides randomly and independently to subject it to a
measurement in the basis defined by θb (i.e., either the standard basis or the Hadamard basis)
and he makes a note of that (as in the standard BB84 protocol). However, in practice when
he applies the measurement, with independent probability 1

2 , his apparatus measures the
state slightly off the basis by a tiny −θ degree angle. This will slightly increase the expected
error rate, but not prevent successful completion of the protocol unless eavesdropping is too
severe.

The first thing to notice is that this QKD protocol is not easy-to-prepare or prepare-and-
measure (and obviously not easy-to-measure), according to Definitions 14 and 13 (and 15).
Indeed, the set S of possible states that can be prepared is finite. However, Alice does not
know the precise state transmitted over the quantum channel, therefore the protocol does
not fit into the easy-to-prepare class. Moreover, for each position that takes part in the key
generation, Bob has some uncertainty about the state prepared by Alice given Public 1, its
applied measurements, and the outcome of his measurements. Hence, this protocol cannot
belong to the easy-to-measure class neither. It follows that this protocol escapes the proofs
of Theorem 2 and 3, and therefore it could be deniable. But is it really?

Now, suppose Alice and Bob establish a key k by a successful execution of the B̃B84
QKD protocol in the presence of a fair Eve. Let us assume that the fair Eve coerces Bob to
reveal his raw key 2. Bob can pretend that any other key of his choice has been established
by simply changing arbitrary positions in the raw key (and therefore revealing a fake raw
key of his desire). Since Eve is fair, she needs to prove to Bob (or to a judge) that the
specific position(s) in his claimed raw key contradict her observations. But since it is not
possible for Eve to know with certainty what are the precise bases used by Alice and Bob,
she cannot know with certainty what should be the true values that Bob would reveal had he
been honest. Note that since Bob has had no knowledge about the precise measurements his
device applied, Eve cannot gain any extra information in this regard by coercing him. The
only thing Eve can ask Bob to reveal is the measurement outcomes. Hence, any discrepancy
between Eve’s observations and Bob’s revealed information can be blamed (with very small
but non-negligable probability) on her having not performed the exact proper measurements.
The same argument holds if fair Eve coerces Alice.

Note that even if Eve keeps some of Alice’s states in a quantum memory, and waits
until Alice reveals under coercion the states she claims to have sent before measuring in the
correct bases those she (Eve) had kept, this can’t allow her (Eve) to obtain proof that she
(Alice) is cheating. That is due to Alice’s lack of knowledge about the precise state that
had been transmitted by her apparatus through the quantum channel. Similarly, by sending
Bob half of Bell states and keeping the other halves in a quantum memory, Eve could wait

1. See Chapter 3 for the details on the definition of variable Public.
2. See Chapter 2 for definition of raw key.
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until Bob has revealed under coercion his precise measurement results before making her
own measurements, in hope that this could allow her to obtain proof that he is cheating.
However, since Bob has had no knowledge about the precise measurement applied, this attack
cannot help a fair Eve either. Next, we show how one can generalize this strategy to any
prepare-and-measure QKD protocol to achieve universal deniability under the assumption
of Eve being fair.

6.1.2. Fuzzy Prepare-and-measure & Fair Eve

In this subsection, we shall see how loosening some of the conditions of the prepare-and-
measure QKD protocols can enable Alice and Bob to deny their key universally conditioned
on Eve being fair. We refer to this class of protocols as fuzzy prepare-and-measure. Before
giving the formal definition of this class of QKD protocols, let us explain the main differences
between this class and the prepare-and-measure QKD protocols defined in Chapter 5. The
two major differences are in the independent source states and the no-entropy extraction
conditions.

First, the independent source states condition of prepare-and-measure QKD protocols,
requires that the state Alice transfers via the quantum channel must belong to the set S of
states Alice prepares (see Chapter 5 for the details on the definition of variable S). However,
in the fuzzy prepare-and-measure QKD protocol Alice randomly selects a state |ψi〉 ∈ S;
with independent probability 1

2 this state is exposed to a tiny perturbation and therefore
Alice does not know what the prepared states are.

Second, the no-entropy extraction condition in the classical post-processing step of a
prepare-and-measure QKD protocol requires that the secret key be computed from a set of
measurement outcomes for which Bob has no uncertainty (and therefore no entropy) given
Public, its private information, and the outcome of his measurements about the state Alice
has transmitted. Whereas in the fuzzy prepare-and-measure QKD protocol Bob always has
some uncertainty about the transmitted states (and also the state Alice prepared in each
position) given Public, chosen measurements, and its outcomes (even if the quantum channel
is noise free). This is due to the trusted error 3 that the apparatuses are adding.
Definition 16 (Fuzzy prepare-and-measure QKD protocol). Suppose that Alice and Bob
run a secure QKD protocol that falls into the model described below. The only resources
they have at their disposal are a noisy (but not too noisy) quantum channel and a perfect
classical authenticated public channel. They do not have any pre-shared secret nor pre-
shared entanglement. Let Public 4 be the random variable for the public discussion in the
protocol. Consider the following properties:

3. We refer to an error which is due to the imperfection of the devices or channel (and not caused by
Eve) as trusted error.

4. See Chapter 3 for the details on the definition of variable Public.

85



Independent fuzzy source states: Let n be the security parameter chosen by Alice
and Bob and let S := {(pj, |ψj〉)}Nj=1, where |ψj〉 ∈ H, with dim (H) = d independent
of n, be the finite ensemble from which Alice can choose to prepare, and pj > 0 for
all 1 ≤ j ≤ N , with ∑j pj = 1. Let S = {|ψj〉}Nj=1 be the corresponding set of states.
Each of the quantum states (chosen by Alice) is picked independently according to
the ensemble S – each |ψj〉 is chosen with probability pj. However, before sending the
state through the quantum channel, with probability 1

2 , Alice’s apparatus subjects
her quantum state to a unitary transformation U defined in such a way that

∀|ψ〉 ∈ S,∀|φ〉, |η〉 ∈ S, |φ〉 6= |η〉

1− |〈ψ|U |ψ〉|2 ≤ 1− |〈φ|η〉|2

c
,

where c is a large constant. In other words, Alice’s apparatus transmits (through the
quantum channel) a state that may be slightly shifted from the chosen one in S, yet
much closer to that state than any other states in S. Notice that the set of state
transmitted through the channel is S ′ = S ∪ {U |ψ〉j}j, which is not the source state
since Alice does not know the transmitted states.
The transformation U is publicly known (and is not the identity transformation).
However, it is unknown to Alice and everybody else whether or not that transforma-
tion has been applied for any given position. Let N (n) denote a polynomial upper
bound on the total number of states from S sent by Alice during the protocol.

Independent fuzzy measurements: Let M := {(qi,Λ(i))}Mi=1 be a probability space
over POVMs (generalized measurements). Each POVM Λ(i) is described by its ele-
ments Λ(i) := {K(i)

m }m such that ∑mK
(i)
m = Id. For each state received from Alice,

Bob picks a POVM Λ(i) with probability qi. However, Bob’s measurement appara-
tus first subjects the state with probability 1

2 to U † before appling the measurement
chosen by Bob. 5

Classical post-processing: Alice and Bob perform classical post processing using their
descriptions of the prepared states during the quantum transmission, what measure-
ment was chosen for each transmission, all outcomes obtained, and the classical com-
munication having taken place so far. We require the following:
Public positions: The public discussion Public identifies completely the subset of

the positions 6 (from the set of transmissions) for secret key generation.

5. Another way to model this trusted noise is to assume that the measurement applied by the apparatus
is slightly noisy. However, the deniability argument will remain the same.

6. One may think of a QKD protocol in which the public positions have some uncertainty in the set of the
independent source transmissions used to generate the secret key; those can be distilled into a completely
known subset using error correcting protocols.

86



Low-entropy extraction: The secret key is computed from Public, the set of mea-
surements and the measurement outcomes for which Bob has low uncertainty 7

about the state Alice transmitted in each position via the quantum channel.

We call a protocol that abides to the description above a fuzzy prepare-and-measure QKD
protocol.

6.1.2.1. Thought experiment: Fuzzy Prepare-and-measure with the fair Eve. Suppose
Alice and Bob establish a secure key by a successful execution of a QKD protocol that
belongs to the class of fuzzy prepare-and-measure QKD protocols in the presence of a Fair
Eve. Let us assume that the fair Eve coerces Bob after the execution of the protocol to
reveal all his private information. Bob can pretend that any other key of his choice has been
established by simply changing arbitrary positions in the private information. Since Eve is
fair, she needs to prove to Bob (or to a judge) that the specific position(s) in his claimed
private information contradict her observations. But since it is not possible for Eve to know
with certainty what are the precise states transmitted by Alice’s apparatus or measured by
Bob’s apparatus, she cannot know with certainty what should be the true values that Bob
would reveal had he been honest. Note that since for each state Bob received, he has had
no knowledge whether the apparatus applied the unitary transformation to the state before
the measurement or not, Eve cannot gain any extra information in this regard by coercing
him. The only thing Eve can ask Bob to reveal is the measurement outcomes. Hence, any
discrepancy between Eve’s observations and Bob’s revealed information can be blamed (with
very small but non-negligible probability) on her not having applied the exact proper unitary
before the measurements. The same argument holds if the fair Eve coerces Alice.

Note that even if Eve keeps some of Alice’s states in a quantum memory, and waits
until Alice reveals under coercion the states she claims to have sent before measuring in the
correct bases those she (Eve) had kept, this can’t allow her (Eve) to obtain proof that she
(Alice) is cheating. That is due to Alice’s lack of knowledge about the precise state that
had been transmitted by her apparatus through the quantum channel. Similarly, by sending
Bob half of Bell states and keeping the other halves in a quantum memory, Eve could wait
until Bob has revealed under coercion his precise applied measurements and their outcomes
before making her own measurements, in hope that this could allow her to obtain proof that
he is cheating. However, since Bob has had no knowledge about the precise unitary applied
on each state before the measurement, this attack cannot help a fair Eve either.

7. The level of uncertainty depends on the maximum tolerable error rate which depends on the expected
trusted error rate and malicious (untrusted) error tolerance of the protocol.
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6.2. Hybrid Deniable Key Establishment Protocols
Let us assume that Alice and Bob have an authenticated classical channel, a quantum

channel and a pre-shared random secret r at their disposal. Furthermore, assume that they
have run ms successful executions of a secure QKD protocol Π`(·)

n , which resulted in the
establishment of keys K = {ki}ms

i=1. Assume that the length of each key is equal to the
length of the pre-shared secret. Then for all i ∈ {1,...,ms} Alice and Bob can define the set
of their final keys to be K ′ = {k′i | k′i = r ⊕ ki}ms

i=1 where ⊕ denotes the bitwise XOR. At the
time of coercion, Alice/Bob can fake the final key by being honest about the key established
via the QKD protocol while changing the secret r into r′ 6= r. To investigate this hybrid
protocol from a deniability perspective, one may consider two cases.

Case 1. If there was only one successful execution of the QKD protocol, i.e., ms = 1,
then universal deniability becomes trivial: the legitimate parties run an arbitrary QKD
protocol, throw away the resulting key, and use their shared secret instead!

Case 2. Suppose that Alice and Bob use the hybrid protocol described above to establish
a set of keys K where ms > 1. Let us assume that Alice and Bob are always honest about
the private information they have had through the QKD protocol while lying about the pre-
shared secret r. Furthermore, assume that Eve coerces Alice or Bob to reveal the private
information (pre-shared secret) for the key set K. Therefore, once Alice announces the fake
pre-shared secret to be r′ for one key, she is bound to that value for the rest of the keys in
K. Note that the framework is existential deniable since for all keys established with the
use of r there exists at least one fake key.

Here the following natural question may arise: how can Alice and Bob obtain the pre-
shared secret? There are two different approaches. First, they could run a universally
deniable QKD protocol and establish a secret key r. Since the only class of universally
deniable QKD protocols we know of need extensive quantum information processing resources
such as quantum memory, it is reasonable to assume that Alice and Bob do not use such
protocols as their primary key establishment protocol. Instead they may optimize over the
deniability level and the cost of their communication. Second, they could have already met
previously and exchanged some secrets for future use. However, since they could not have
saved a long secret key for direct use in deniable communication in the future (otherwise
there is no point in using QKD in the first place), but only some short secret to provide
them existential deniability in the framework above.

What if the pre-shared secret is shorter than the key established by the QKD protocol?
In that case, of course, the formula that defines k′i from ki and r would not be a simple bit-
wise XOR. A subtler issue arises in case of coercion. The information revealed by the coerced
party when pretending that a fake key had been established should not help a (rightfully)
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incredulous coercer guess what the real key was more successfully than she could have be-
fore coercion (we called this condition secrecy preserving deniability; refer to Chapter 3 for
the definition). Protocols that rely on a short pre-shared secret to achieve deniability are
unlikely to fulfill this condition by revealing a fake (therefore not really pre-shared) secret
because the coercer can always run through all possible such secrets and see what final key
would be obtained with each one of them, thus reducing the entropy of the final key to no
more than that of the pre-shared secret. Also, such protocols are unlikely to be deniable in
a plausible manner (see Chapter 3 for definition of plausible deniability) since only the true
one-time secret is likely to yield a key under which the intercepted ciphertext gives rise to a
plausible cleartext. The later concern holds for the case where the length of the pre-shared
secret is the same as the key established by QKD, if the pre-shared secret key is to be used
for multiple QKD keys.

6.3. Deniable QKD Protocol by Obfuscation–
Deniability Through Obscurity

One might be tempted to attain deniability by hardware obfuscation, but should any
user trust a device based on hardware obfuscation? Hardware obfuscation is an approach
that prevents an adversary (and everybody else) from reverse engineering integrated circuits.
Let us assume that a company produces sealed QKD devices with hardware obfuscation in
a way that it is not possible to reverse engineer its circuits. The only output Alice and Bob
get at the end of the day is either that the execution failed or the established key. This type
of QKD protocols might seem deniable but definitely they are not secure! It is important to
note that these protocols are not deniable according to our deniability definitions since we
require the QKD protocol to be secure. However, there is no way that the legitimate parties
can verify if the established key by the execution of the QKD protocol 8 is secure.

In Fig. 1, we schematically depict the levels and flavours of the protocols discussed in
this chapter.

8. If any protocol has been implemented! It might be that the devices are outputting some predefined
numbers which have been saved by the (malicious) device producer. And therefore, not secure at all! But
not verifiable neither.
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Figure 1. Summary of the protocols discussed in this chapter
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Chapter 7

Mono-deniable Key Establishment Protocols

In this chapter, we assume that Alice’s and Bob’s apparatuses are fully characterized.
Moreover, the channel is under the full control of Eve and any possible error on the channel is
introduced by Eve. We remarked in Chapter 3 that if a QKD protocol is sender universally
deniable according to Definition 4 and is receiver deniable according to Definition 3, it
cannot be concluded that the protocol is bi-deniable. To address this remark, we defined a
new notation called mono-deniability. Recall from Chapter 3 that a εn- secure QKD protocol
is universally mono-deniable if after a successful execution of the QKD protocol either Alice
or Bob (but not both) can universally deny establishment of some key k ∈ K, where K is
the set of all possible keys, even if Eve allows private deniable communication between Alice
and Bob at the time of coercion. In this chapter, we first define a novel QKD protocol which
is inspired by the BB84 QKD protocol and prove that this protocol is sender undeniable
but it is universally receiver deniable. Next, we show how to generalize this idea to the
class of prepare-and-measure QKD protocols by defining a new class of QKD protocol which
we refer to as prepare-and-measure later. Moreover, we define another novel QKD protocol
inspired by BBM92 QKD protocol [12] and prove that it is universally sender deniable but
it is receiver undeniable. Finally, we propose a framework to achieve mono-deniability from
these proposed protocols and elaborate on the notion of mono-deniable.

7.1. Memory assisted BB84 QKD protocol
In this section, we use the fact that unitarily evolving a state followed by a measurement

has the same effect as doing a different, yet related, measurement on the initial state (the
principle of deferred measurement [30]).

In Chapter 5, we proved that the original BB84 protocol is sender undeniable as well as
receiver undeniable. Here, we modify the protocol so that it can achieve receiver deniability.
Let the memory assisted BB84 QKD protocol be the same protocol as the standard BB84
protocol, except for those three differences outlined next. First, Bob instead of measuring



each qubit at receival, saves all the states send by Alice in his quantum memory. Second,
Bob chooses the positions that serve as check-bits and measures only those positions in some
randomly chosen basis. Bob announces publicly those positions, the measurement he applies
and their outcomes. Third, Bob defers the measurement of the rest of the quantum states
until after applying a suitably chosen quantum operation realized by a unitary Uw,s,θ followed
by measurement in standard basis. This protocol is described in Protocol 6.
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Protocol 6. The memory assisted BB84 protocol

1: Alice creates a random (3 + δ)n-bit string θ.
2: Alice chooses a random (3 + δ)n-bit string b. For each bit bi, she creates a state

in the standard (|0〉, |1〉) basis (if the corresponding bit θi is 0) or the Hadamard
(|+〉, |−〉) basis (if the corresponding bit θi is 1).

3: Alice sends the resulting qubits to Bob one by one.
4: Bob receives the qubits (some of the states might get lost so that Bob will never

receive them), and acknowledges this to Alice. Bob stores the received qubits in
his quantum memory.

5: Bob chooses at random 2n positions from the quantum state received from Alice
to serve as check bits. Bob measures each state in the standard or the Hadamard
basis at random and keeps a note of his choices and measurement results. The
rest of the quantum states that didn’t take part in the sampling process remain
undisturbed in his quantum memory. Bob announces the check bit positions, his
basis choices for those positions θ′ and their measurement outcomes.

6: Alice compares Bob’s basis choice for each check bit with her-own choice of bases
for the corresponding positions and discard those positions where Bob measured
the state in a different basis than she prepared. Alice compares the remaining
check bit values with hers. If too few of these values agree, they abort the protocol.

7: Alice and Bob discard the 2n positions that served as check bits. The remaining
bits on Alice’s side is called the raw key. With overwhelming probability, there
are at least n bits left (if not, abort the protocol).

8: Alice applies classical error correction and privacy amplification protocols on her
raw key to establish some secret key k.

9: Alice announces θ, the information for the classical post-processing (namely, clas-
sical error correction and privacy amplification).

10: Bob embeds the classical-post processing into a suitably chosen quantum opera-
tion realized by an unitary UW,S,θ, followed by measurement in the standard basis,
hence establishing an identical secret key k.

The first thing to notice is that the Protocol 6 is easy-to-prepare according to Defini-
tions 14 therefore, it cannot be sender deniable according to Theorem 2. Obviously, the
Protocol 6 cannot be bi-deniable. However, this Protocol is not easy-to-measure according
to the Definition 15. For each position that takes part in the key generation, Bob has some
uncertainty about the state prepared by Alice given Public 1, its applied measurements, and

1. See Chapter 3 for the details on the definition of the variable Public.
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the outcome of his measurements. Hence, this protocol does not belong to the easy-to-
measure class. It follows that this protocol escapes the proof of Theorem 3, and therefore
it could be receiver deniable. But is it really? Let assume that Alice and Bob run a suc-
cessful execution of the Protocol 6 under the nose of Eve and establish an identical secret
key k ∈ K, where K is the set of all possible keys. After the protocol execution Eve coerces
Bob to reveal all his private information. Curiously, the only private information Bob has is
the established secret key k. Bob can successfully pretend that any secret key k′ ∈ K of his
desire has been established by only handing over that key. Therefore, similarly to the case
of the modified Lo-Chau protocol, in case of receiver universal deniability of the memory
assisted BB84 QKD protocol, the faking operator takes as input Bob’s view and the desired
(possibly fake) key k′ and outputs k′, i.e.,

k′ = FakeB(ρBk , k′) (7.1.1)

∆(FakeB [Bob(v), k′]⊗ ρPEv , ρBPEv′ ) ≤ negl(n) , (7.1.2)

where k′ = Key(v′,Pmemory assisted BB84) and k = Key(Bob(v),Pmemory assisted BB84). Therefore,
the protocol is receiver universal deniable according to Definition 4. It follows from Eq. 7.1.1
and the protocol description in Protocol 6, that Bob’s faking operator FakeB takes as input
the public information and Bob’s desired key and outputs the desired (possibly fake) key,
i.e. k′ = FakeB(Public, k′). Curiously, any other party who did not even take part into the
protocol can perform the faking operation for Bob!

Now let’s investigate the levels and flavours of deniability of the memory assisted BB84
QKD protocol. The memory assisted BB84 QKD protocol is receiver universally plausible
deniable since the protocol is as efficient as if Alice and Bob knew they will never be coerced.
Alice and Bob can justify the use of the quantum memory on Bob’s side by arguing that
it increases their secret key rate. All the steps of the protocol are necessary for achieving
information-theoretic security. Therefore, this protocol is plausibly receiver deniable against
a fair/unfair Eve. It turns out that the memory assisted BB84 QKD protocol is secrecy
preserving since upon coercion, the information revealed by Bob when pretending that a
fake key had been established does not help Eve to guess what the honest key was more
successfully than she could have before.

7.2. Prepare-and-measure later QKD Protocols
In this section, we introduce a general class of QKD protocols to which we refer as

prepare-and-measure later. Roughly speaking, a prepare-and-measure later QKD protocol
is a quantum key establishment protocol in which Alice prepares some pure quantum state
in a small dimension independent from the security parameter, and send that state through
the quantum channel to Bob. Bob stores the quantum state in his quantum memory. Alice
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and Bob run some classical post-processing to estimate Eve’s disturbance. Finally, Bob
applies some quantum operation followed by a measurement that results into establishment
of some secret key k. We show that this class of QKD protocols cannot be existentially
sender deniable even if we restrict Eve to be fair. Curiously, this class of QKD protocols are
universally receiver deniable! Let us first define what we mean by a prepare-and-measure
later QKD protocol.
Definition 17 (Prepare-and-measure later QKD protocol). Suppose that Alice and Bob
run a secure QKD protocol that falls into the model described below. The only resources
they have at their disposal are a noisy (but not too noisy) quantum channel and a perfect
classical authenticated public channel. They do not have any pre-shared secret nor pre-
shared entanglement. Furthermore, we assume that Bob has a quantum memory at his
disposal. Let n be the security parameter chosen by Alice and Bob and let Public 2 be the
random variable for the public discussion in the protocol. Consider the following properties:

Independent source states: Let S := {|ψj〉}Nj=1 be the finite set of possible states
Alice chooses the state from and transmit over the quantum channel, where |ψj〉 ∈ H,
with dim (H) = d independent of the security parameter n. furthermore, let S :=
{(pj, |ψj〉)}Nj=1 be the set of the source states, and pj > 0 for all 1 ≤ j ≤ N , with∑
j pj = 1. Each quantum transmission is picked independently by Alice according

to the distribution S, (i.e., Alice knows exactly which state is transmitted in each
position.) Let N (n) denote a polynomial upper bound on the total number of states
from S sent by Alice during the protocol.

Post-processing: Alice apply classical post processing using her descriptions of what
was sent during the quantum transmission and the classical communication having
taken place for estimating the error to establish a secret key. Bob apply some quantum
operation on some of the quantum state sent by Alice followed by some measurements
to establish a secret key. We require the following:
Public positions: The public discussion Public identifies completely the set of trans-

missions used to generate the secret key (i.e., which independent source transmis-
sions are used to generate the secret key).

Full-entropy extraction: The secret key is computed from Public and the set of the
transmitted quantum states, for which Bob does not know with certainty the state
he received in any of those positions.

We call a protocol that satisfies the above conditions a prepare-and-measure later QKD
protocol.

It turns out that the prepare-and-measure later QKD protocols as defined above are easy-
to-measure according to Definition 14. It follows from Theorem 2 that prepare-and-measure

2. See Chapter 3 for the details on the definition of variable Public.
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later QKD protocols are sender undeniable . In a prepare-and-measure later QKD protocol,
Alice sends Bob a bunch of qudits, each in a pure state of dimension d where d is independent
of the security parameter. 3 Note that since d is independent from the security parameter
Alice and Bob cannot establish an almost perfect quantum channel using QECC 4 as they
require encoding their state into larger Hilbert space and the dimension of the Hilbert space
depends on the security parameter n. Moreover, Alice and Bob cannot establish an almost
perfect quantum channel by distributing and distilling entangled states since the states Alice
transmits through the quantum channel must be pure.
Definition 18 (Measure later QKD protocol). A QKD protocol that satisfies the indepen-
dent source state and the post-processing conditions, as introduced in Definition 17, is called
a measure later QKD protocol.

Note that the measure later protocols as defined in Definition 18 are equivalent to prepare-
and-measure later QKD protocols.
Remark 4. It follows immediately from the definition of prepare-and-measure later Defini-
tion 18 that any QKD protocol that belongs to the class of measure later QKD protocols is
universally receiver deniable.

7.3. Memory assisted BBM92 QKD protocol
In this section, we use the fact that unitarily evolving a state followed by a measurement

has the same effect as doing a different, yet related, measurement on the initial state (the
principle of deferred measurement [30]). We propose a new QKD protocol that is only
sender deniable. This protocol is inspired by BBM92 [12] and our memory assisted BB84
(proposed in Protocol 6) QKD protocols and uses Bell states to switch Alice’s and Bob’s
role in Protocol 6 to achieve sender universal deniability.

3. Note the similarity of this step with the prepare-and-measure protocol described in Definition 13.
4. See Chapter 4 for the details on the definition of almost perfect quantum channel.
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Protocol 7. The memory assisted BBM92 protocol

1: Alice creates (2 + δ)n EPR pairs in the state |Φ+〉⊗(2+δ)n. Alice sends the second
half of each EPR pair to Bob.

2: Bob receives the qubits (some of the states might get lost so that Bob will never
receive them), and acknowledges this to Alice. Bob measures each state in the
standard basis or the Hadamard basis at random and keeps a note of his choices
and the measurement outcomes. The string corresponding to the applied mea-
surements is denoted as θ.

3: Bob selects randomly n position in the raw key to serve as check bits to test for
Eve’s interference. Bob announces which n EPR pairs are to be check bits and
the basis he applied the measurement in each of those positions.

4: For each of the check bits, Alice applies the same measurement as Bob announced
and keeps a note of the outcomes. Alice announces the measurement outcome.
The rest of the quantum states that didn’t take part in the sampling process
remain undisturbed in her quantum memory.

5: Bob compares Alice’s check bit values with his own. If too few of these values
agree, they abort the protocol.

6: Alice and Bob discard the n positions that served as check bits. The remaining
bits on Bob’s side is called the raw key. With overwhelming probability, there are
at least n bits left (if not, abort the protocol).

7: Bob applies classical error correction and privacy amplification protocols on his
raw key to establish some secret key k.

8: Bob announces θ, the information for the classical post-processing (namely, clas-
sical error correction and privacy amplification).

9: Alice embeds the classical-post processing into a suitably chosen quantum opera-
tion realized by an unitary UW,S,θ, followed by measurement in the standard basis,
therefore establishing an identical secret key k.

The first thing to notice is that this QKD protocol is not easy-to-prepare or prepare-and-
measure (and obviously not easy-to-measure), according to Definitions 14 and 13 (and 15).
The states sent through the quantum channel by Alice are not pure, therefore this protocol
cannot belong to the easy-to-prepare class or easy-to-measure class. It follows that this
protocol escapes the proofs of Theorem 2 and 3, and therefore it could be deniable. But is
it really? It is important to note that Alice and Bob cannot establish an almost perfect
quantum channel by distilling entangled states since Bob is measuring a quantum state as
received.
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Let’s assume that Alice and Bob run a successful execution of the memory as-
sisted BBM92 QKD protocol under the nose of an adversary Eve that results into
establishment of some secret key k ∈ K, where K is the set of all possible keys. Note that
after the protocol execution, the established secret key is the only private information Alice
has. If Eve coerces Alice after the protocol execution to reveal all her private information,
Alice can simply deny the establishment of the key k by revealing any key of her desire.
In other words, the faking operator is simply k′ = FakeA(ρAk , k′). Hence, as we saw in
Section 7.1, in principle Alice does not need any faking operator. So this protocol is sender
universally deniable. Note the similarity of Bob operations in the memory assisted BBM92
with the BB84 protocol. Even though the memory assisted BBM92 protocol is not easy to
measure, a similar attack to the receiver deniability of the BB84 protocol can be applied
here. Therefore, this protocol is receiver undeniable.

Curiously, receiver (only) universal deniability of the memory assisted BB84 QKD proto-
col and sender (only) universal deniability of the memory assisted BBM94 protocol illustrate
the possibility of having asymmetry in the deniability property of a protocol (i.e. the
protocol can only tolerate coercion of one specific party, here receiver).

7.4. Mono-deniable QKD Protocols
In this section, we propose a framework to achieve a mono-deniable QKD protocol by

composing a sender (only) universally deniable QKD protocol with a receiver (only) univer-
sally deniable QKD protocol.

As an example, consider the following setup. Let Π1 denote the memory assisted BB84
protocol as defined in Protocol 6 and let Π2 denote the memory assisted BBM92 protocol
as defined in Protocol 7. Let us assume that Alice and Bob run a successful execution
of the protocol Π1 that results into establishment of some secret key k1 under the nose of
Eve. Furthermore, suppose that followed by establishment of the key k1, Alice and Bob run a
successful execution of the protocol Π2 under the nose of Eve that results into establishment
of some secret key k2. Alice and Bob define their secret key to be k := k1 ⊕ k1 where ⊕
denotes the bitwise XOR operation. Next, we show that this protocol is universally mono-
deniable, i.e. it is either sender universally deniable or receiver universally deniable, but not
bi-deniable.

Eve coerces Alice: If Eve coerces Alice, since Π1 is sender undeniable, Alice must re-
veal all her private information regarding this execution of the QKD protocol honestly.
However, she can universally deny the establishment of the final key k by pretending
any other key of her desire was established as a result of the execution of protocol Π2.

Eve coerces Bob: If Eve coerces Bob, since Π2 is receiver undeniable, Bob must reveal
all his private information regarding this execution of the QKD protocol honestly.
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However, he can universally deny the establishment of the final key k by pretending
any other key of his desire was established as a result of the execution of protocol Π1.

Eve coerces both Alice & Bob at the same time: It turns out that if Eve coerces
Alice and Bob at the same time and allow them to communicate deniably and pri-
vately, there is no way that they can deny their established key without Eve being
able to catch them with an overwhelming probability. Therefore, this protocol is not
bi-deniable even against a fair Eve.

7.5. Prepare-and-measure later QKD Protocols vs CSS
Codes QKD Protocol

In comparison to the CSS codes QKD protocol, which requires only Clifford gates for
encoding the CSS codewords, the “prepare-and-measure later” and memory assisted BBM92
QKD protocols are significantly more demanding. That is because for the later one must
reversibly “embed” in a quantum circuit the classical operation representing the error cor-
rection and privacy amplification. In general, such an embedding requires implementing
non-reversible gates such as AND in a reversible manner, which necessitate in addition (to
Clifford gates) non-Clifford gates (e.g. Toffoli). In conclusion, the “prepare-and-measure
later” and memory assisted BBM92 QKD protocols require access to a universal quantum
computer!

It seems that not all the prepare-and-measure QKD protocol have a memory assisted
deniable counter part. For example, we are not aware of how to modify the B92 protocol so
that the new protocol is sender/receiver deniable without assuming pre-shared secret keys
or trusted noise in Alice’s/Bob’s apparatus. In Fig. 1, we schematically depict the levels and
flavours of the protocols discussed in this chapter.
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Figure 1. Summary of the protocols discussed in this chapter
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Chapter 8

Conclusions, Work in Progress
and Future Directions

In this Thesis, we investigated the art of post-truth in quantum key establishment. In
Chapter 3, we rigorously defined different levels and flavours of deniability in the context of
QKD protocols. Different levels of deniable QKD protocols depend on which party is coerced,
what is the coercer’s tolerance to less likely events, and they include sender deniable, receiver
deniable, Alice/Bob deniable, Mono-deniable, bi-deniable, deniability against fair Eve and
deniability against unfair Eve. Different flavours of deniability depend on what is the size
of the set of the fake keys that surreptitious parties can pretend to be established, when
the parties should decide on the fake key(s), and if the information the legitimate party
reveals during the coercion provides any extra knowledge about the honest key; they include
universal deniable, existential deniable, plan-ahead deniable and secrecy preserving.

After formalizing those definitions rigorously, in Chapter 4 we defined a class of QKD
protocols called QKD protocol based on an almost-perfect quantum channel and proved that
this class of protocols is sender/receiver universally (and all other levels) deniable and gave
two examples of it. It can be argued that universal deniable QKD protocols bring the art
of post-truth to unprecedented height! That is because the legitimate parties are able to
deny the established key into any key of their desire plausibly by “revealing” fake private
information at the time of coercion, as if a different key of their desire has been produced. In
this case, Eve is not able to distinguish between the established (honest) key and any other
fake key. So that there is no point to coerce Alice and Bob 1 in the first place! To the best
of our knowledge such a strong deniability property has not been achieved classically.

Furthermore, in Chapter 5, we introduced a class of QKD protocols that we called prepare-
and-measure 2 and proved that this class cannot be deniable in any level or flavour. The BB84

1. Assuming that Alice and Bob are wise enough to use the deniability property of the protocol to change
their key into something “approvable” by Eve.

2. “Prepare-and-measure QKD protocols” is a frequently used term in the quantum key establishment
community. However, to the best of our knowledge there is no rigorous definition on what are the properties



and B92 QKD protocols belong to this class. We also provided some insight about what is
keeping the BB84 QKD protocol from achieving any level and flavour of deniability while
both of its secure counterparts, i.e., modified Lo-Chau and CSS codes QKD protocols, are
universally deniable.

Moreover, in Chapter 6, we proposed a variation of the BB84 QKD protocol to which
we refer to as B̃B84 and proved that this practical implementation of the BB84 protocol
is universally deniable against a fair Eve. Then we generalized this idea by defining a class
of QKD protocols to which we referred to as Fuzzy prepare-and-measure and showed that
this practical class of QKD protocols is universally deniable against a fair Eve. Perhaps the
fuzzy prepare-and-measure QKD protocols can be seen as practical QKD protocols in which
Alice and Bob are given some apparatus that are not fully characterized 3 (are noisy but not
too noisy), and were not manufactured by Eve. Also, Eve does not have access to Alice and
Bob’s laboratories.

Finally, in Chapter 7, we propose a QKD protocol inspired by the original BB84 protocol
to which we refer to as memory assisted BB84 and proved that this protocol is receiver (only)
deniable. Next, we generalized this inspiration and define a new class of QKD protocols to
which we referred to as prepare-and-measure later QKD protocols and prove that this class of
protocols are universally sender deniable but they are not receiver deniable. We also propose
a QKD protocol inspired by BBM92 protocol to which we refer to as memory assisted BBM92
protocol and prove that this protocol is sender (only) universally deniable. Furthermore, we
propose a framework to achieve Mono-deniability from combing a sender only deniable QKD
protocol with receiver (only) deniable QKD protocol.

Moreover, we proposed a hybrid protocol under which any QKD protocol can be exis-
tential deniable.

Ongoing research on the art of post-truth in quantum cryptography consists in generaliz-
ing the class of universal deniable QKD protocols and the class of undeniable QKD protocols
as well as finding further proof techniques. Next, we mention some of our work in progress
and future directions in this area.

8.1. Work in Progress
• On one hand, the universal deniability against a fair Eve is too strong. On the other
hand, the universal deniability with unfair Eve seems unrealistic. Indeed, it is totally
unreasonable to require Alice and Bob to have perfect apparatus at their disposal

that a protocol should have to fit into this class. In the literature the term is commonly used as opposed
to the entanglement based QKD protocols. However, the CSS codes QKD protocol is a good example of a
protocol that does not belong to entanglement based or prepare-and-measure QKD protocols. In this Thesis
we gave a rigorous definition for this class of QKD protocols.

3. In practice it is almost impossible to have fully characterized devices.
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and too harsh to condemn them if they do not. In a sense, the fuzzy QKD protocols
should be the norm, not the “unrealistically” perfect implementations considered in
Chapter 5. That is why we suggest a trade-off between those two by defining a
new flavour: universal δ-deniable QKD Protocols against an unfair Eve. Let us first
define this new flavour of deniability. The universal δ-deniable QKD protocols can be
defined similarly to the universal deniable counterpart. The only difference between
universal δ-deniable and universally deniable QKD protocols is that the probability
of Eve catching surreptitious Alice/Bob in the case of universal δ-deniable is at most
δ where 0 < δ < 1

2 .

Definition 19 (Sender Universal δ-deniable QKD protocol). A secure QKD proto-
col Π`(·)

n between two parties Alice and Bob (sender and receiver, respectively) is called
sender universal δ-deniable if after a successful execution of the protocol that results
into the establishment of some key k ∈ K (where K is the set of all the possible secure
key that the QKD protocol would establish), then for all fake keys k′ ∈ K, global
view v ∈ VIEW and Alice’s view Alice(v), there exist a faking operation that takes as
input (Alice(v),k′) and outputs Alice(v′) = sAk′‖c, where v′ ∈ VIEW, and the following
condition is satisfied:

1
m

∑
k′∈K

∆(FakeA(ρAPEAlice(v),k
′), ρAPEAlice(v′)) ≤ δ, (8.1.1)

where 0 ≤ δ < 1
2 . For the sake of simplicity the identity operators are omitted.

Intuitively, if Eq. (8.1.1) holds, then no process can distinguish between
FakeA(ρAPEAlice(v),k

′) and ρAPEAlice(v′) with a probability larger than δ.
One can define other levels and flavours of δ-deniable similar to their counterpart in
this Thesis.
We proved that for any prepare-and-measure QKD protocol the probability that a fair
Eve will catch the surreptitious party is non-negligible. However, finding upper and
lower bounds on deniability of the prepare-and-measure QKD protocols are interesting
open problems. It seems that any secure QKD protocol is δ-deniable where δ depends
on the maximum amount of information Eve learned about Alice’s and Bob’s raw
keys. (We refer the curious reader to Renner’s Thesis [44] to learn how to calculate
the parameter δ.) Let R be the QKD protocol key rate. Then, one may define
the probability of Eve catching the surreptitious Alice/Bob on the act to be upper
bounded by δ := 1−R.
• The techniques described in this Thesis can be extended to mount an attack against
deniability of the so-called Measurement-Device-Independent (MDI) and Device-
Independent (DI) QKD protocols. Moreover, if we assume that the apparatus was
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manufactured by Eve (coercer) then there is a straightforward attack against deni-
ability: Eve may design the device in such a way that results into a predefined (by
Eve) output, which does not depend on the input provided by Alice and Bob.
Now, we give intuition on why the MDI-QKD protocol is not deniable. The attack
Eve/Charlie may mount is very similar to the one described in Chapter 5. Let us
assume that Charlie intercepts only one position picked uniformly at random among
all the N states Alice and Bob each send to him.
For the sake of simplicity, let us assume that Charlie will measure each of those
states in the standard basis separately. Charlie records his measurement result. Then
he announces either |ψ+〉 or |ψ−〉 to Alice and Bob. Let us condition what follows
on the event that Charlie’s choice of measurement coincides with Alice’s and Bob’s
preparation basis, let κ be the probability of this event happening. No information
about the position where Charlie mounted his attack is available to Alice or Bob. The
rest of the argument is similar to the one made in Chapter 5. The rigorous general
definition for each of these two classes and the the precise attacks are among our
ongoing research.
• Similar attacks to the ones we described in this Thesis can be mounted against de-
niability of the so-called Round Robin Differential Phase-Shift QKD [31] and Semi-
quantum Key Distribution (SQKD) [17]. An interesting area of research is to distill
the property that these two protocols have in common with the class of prepare-and-
measure QKD protocols that prevents them from achieving deniability?
• Another area of research is to investigate the relation between the different levels and
flavours of deniable QKD protocol in combination with other cryptographic primitives.
It is straightforward to see how one can obtain universal deniable encryption using a
universally deniable QKD protocol along with OTP. Can a deniable QKD protocol
assist us in achieving deniability in other (both classical and quantum) cryptographic
primitives such as secure multi-party computation in the presence of an adaptive
adversary, keeping information secret when facing coercer and avoiding electronic
vote buying?
• Another interesting area of research is to investigate the possibility of achieving deni-
able encryption via three-pass encryption protocol [53] 4 in classical cryptography. It
seems that if there exist two secure Fully Homomorphic Encryption protocols (FHE)
of which their decrypting operations commute, then Alice and Bob may achieve some
flavours of deniable encryption without ever needing to have any shared secret key
(and only using the secure FHE). 5

4. The first three-pass protocol (a.k.a. Shamir No-Key protocol because the sender and the receiver do
not exchange any keys) was invented by Adi Shamir as early as 1980.

5. The FHE protocol may be quantum or classical depending on if Alice is interested in transferring
classical or quantum messages.
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The recipe of the protocol seems simple: Let’s say that Alice has a message m that
she wishes to transmit securely to Bob via a public authenticated channel. She will
execute the encryption protocol CA = EncA(m) of a FHE scheme and transmit the
CA via the authenticated public channel to Bob. Bob will use his own FHE in order
to encrypt the cypher text CA, CB = EncB(CA) and transmit the CB to Alice. Now,
Alice may proceed by applying the decryption protocol C ′A = DecA(CB) and transmit
C ′A to Bob. Then Bob can get the message by applying his decryption protocol
m = DecB(C ′A).
We are not aware of the possibility or impossibility of such FHE protocols. 6 The
security of the protocol requires that an adversary Eve who can see the CA, CB and
C ′A should not learn anything more about the underlying message other than what
she might have known before seeing them. 7 Of course, if Alice and Bob do not have
access to an authenticated channel, then the proposed protocol will be vulnerable to
man-in-the-middle attack. The level and flavour of deniability that such a scheme
may achieve it an interesting open problem.
• Finally, rigorous definitions and conditions on the plan-ahead deniable QKD protocols
are yet to be investigated.

8.2. Future Directions
• In this Thesis, we proposed some sufficient conditions for deniability and undenia-
bility in QKD protocols. However, the question of what are necessary and sufficient
conditions for achieving each level and flavour of deniability in QKD (without any
extra assumption on pre-shared entanglement and/or a secret key between Alice and
Bob) remains open.
• We proved that the class of fuzzy prepare-and-measure QKD protocols is universally
deniable against a fair Eve. It seems that in the case of unfair Eve, the fuzzy prepare-
and-measure QKD protocols will become undeniable. However, the rigorous proof of
this statement is ongoing research.
• We leave for further work analysing the deniability of continuous-variable QKD pro-
tocols.
• We defined different levels and flavours of deniability in QKD protocols by assuming
that at the end of the QKD protocol, all of Alice and Bob’s information is classical.
In case of the QKD protocols, this assumption seems rational since the purpose of the
protocol is to establish a secure (classical) key (therefore no need for keeping anything
quantum). In this Thesis, our main focus was on investigating the conventional QKD
protocols as they are from a deniability perspective. We assumed that it is not

6. Secure FHE schemes do exist under the the hardness assumption of certain mathematical problems.
7. It might be sufficient that the two protocols are identical and still satisfies these requirements.
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plausible to keep any quantum state for the legitimate parties (as this action implies
a strong desire for denying the key later at the time of coercion using those quantum
states). However, it would be interesting to investigate if it is helpful for Alice and/or
Bob to delay measuring some of their quantum states up to the coercion time to
achieve some levels or flavours of deniability.
• In Chapter 6, we argued on why hardware/software obfuscation cannot provide de-
niability. However, attaining a highly secure program obfuscation is still an open
problem in quantum cryptography. If such a secure key establishment protocol is
possible then Alice and Bob may achieve simple deniability using it.
• We make the following remark regarding the composability of deniable QKD proto-
col 8: a deniable QKD protocol is said to be composable if the protocol can be used
arbitrarily in composition with other deniable protocols, without compromising the
deniability. This is an important area of research since if Alice and Bob wish to use
the keys they established in a deniable QKD protocol in some other deniable cryp-
tographic protocol (i.e., they compose the protocols), it is essential for them to use
protocols that were proven to have composable deniability.

This Thesis brings the art of post-truth to unprecedented heights!

8. We refer the curious reader to references [19, 9, 43] to learn more about composability in QKD.
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