
Université de Montréal

Deep Reinforcement Learning for Multi-Modal
Embodied Navigation

par

Martin Weiss

Département de mathématiques et de statistique
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en Discipline

Orientation mathématiques appliquées

December 22, 2020

© Martin Weiss, 2020





Université de Montréal
Faculté des études supérieures et postdoctorales

Ce mémoire intitulé

Deep Reinforcement Learning for
Multi-Modal Embodied Navigation

présenté par

Martin Weiss

a été évalué par un jury composé des personnes suivantes :

Guillaume Rabusseau
(président-rapporteur)

Chris J. Pal
(directeur de recherche)

Gauthier Gidel
(membre du jury)





Résumé

Ce travail se concentre sur une tâche de micro-navigation en plein air où le but est de naviguer
vers une adresse de rue spécifiée en utilisant plusieurs modalités (par exemple, images, texte
de scène et GPS). La tâche de micro-navigation extérieure s’avère etre un défi important pour
de nombreuses personnes malvoyantes, ce que nous démontrons à travers des entretiens et
des études de marché, et nous limitons notre définition des problèmes à leurs besoins. Nous
expérimentons d’abord avec un monde en grille partiellement observable (Grid-Street et Grid
City) contenant des maisons, des numéros de rue et des régions navigables. Ensuite, nous
introduisons le Environnement de Trottoir pour la Navigation Visuelle (ETNV), qui contient
des images panoramiques avec des boîtes englobantes pour les numéros de maison, les portes
et les panneaux de nom de rue, et des formulations pour plusieurs tâches de navigation. Dans
SEVN, nous formons un modèle de politique pour fusionner des observations multimodales
sous la forme d’images à résolution variable, de texte visible et de données GPS simulées afin
de naviguer vers une porte d’objectif. Nous entraînons ce modèle en utilisant l’algorithme
d’apprentissage par renforcement, Proximal Policy Optimization (PPO). Nous espérons que
cette thèse fournira une base pour d’autres recherches sur la création d’agents pouvant aider
les membres de la communauté des gens malvoyantes à naviguer le monde.

Mots-Clés: Navigation Incarnée, Les Réseaux de Neurones, Apprentissage par Renforce-
ment, Représentations Multimodales, La Technologie d’Assistance, Aveugles et malvoyants
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Abstract

This work focuses on an Outdoor Micro-Navigation (OMN) task in which the goal is to
navigate to a specified street address using multiple modalities including images, scene-text,
and GPS. This task is a significant challenge to many Blind and Visually Impaired (BVI)
people, which we demonstrate through interviews and market research. To investigate the
feasibility of solving this task with Deep Reinforcement Learning (DRL), we first introduce
two partially observable grid-worlds, Grid-Street and Grid City, containing houses, street
numbers, and navigable regions. In these environments, we train an agent to find specific
houses using local observations under a variety of training procedures. We parameterize
our agent with a neural network and train using reinforcement learning methods. Next, we
introduce the Sidewalk Environment for Visual Navigation (SEVN), which contains panoramic
images with labels for house numbers, doors, and street name signs, and formulations for
several navigation tasks. In SEVN, we train another neural network model using Proximal
Policy Optimization (PPO) to fuse multi-modal observations in the form of variable resolution
images, visible text, and simulated GPS data, and to use this representation to navigate to
goal doors. Our best model used all available modalities and was able to navigate to over 100
goals with an 85% success rate. We found that models with access to only a subset of these
modalities performed significantly worse, supporting the need for a multi-modal approach to
the OMN task. We hope that this thesis provides a foundation for further research into the
creation of agents to assist members of the BVI community to safely navigate.

Keywords: Embodied Navigation, Neural Networks, Reinforcement Learning, Multimodal
Representations, Assistive Technology, Blind and Visually Impaired
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Chapter 1

Introduction

In this thesis, we propose an automated system to solve Outdoor Micro-Navigation (OMN)
problems of fewer than 50 meters terminating at a unique street address. This task is
motivated by the Blind and Visually Impaired (BVI) community, with whom we conducted
user interviews to establish the significance of this problem. The core of our solution is a
deep neural network trained with reinforcement learning that has access to inputs typically
available on a smartphone. We evaluate our proposed solution in simulation environments.

Some BVI people require assistance from sighted people to perform everyday tasks like
reading mail, finding objects, and navigating to new places [119]. Organizations like the U.S.
National Foundation for the Blind and Canadian National Institute for the Blind provide
programs to support the BVI community. Some of these programs teach Braille, cane travel,
and cooking; more broadly, they instill a sense that students will be able to live a full,
productive, independent life after losing their vision [83]. To complete the Blind Industries
and Services of Maryland (BISM) program, students must find their way around an unfamiliar
city, build something using power tools, and cook a formal meal for six. Still, many tasks
become more challenging without sight.

BVI people often use smartphones as assistive tools that enable more autonomy and
flexibility. Some apps like VizWiz Social [14] allow BVI users to connect with sighted
volunteers or friends for asynchronous image captioning and question answering. While
smartphone mediated question answering can provide significant benefits to many BVI
people, interviews with BVI people suggest that they are uncomfortable over-relying on social
connections for support due to high perceived social costs [15]. Research in psychology has
shown that people are often reluctant to ask for help if they believe it may incur costs to
themselves or the person asked, or if they are afraid of being judged incompetent [34]. While
this fear may be remedied through user interface design, an automated Visual Question
Answering (VQA) solution remains desirable. Automatic Visual Question Answering (VQA)
is an active field of research, and datasets created by VizWiz Social have proven useful for
VQA researchers. However, this technology has not yet fully matured as a reliable and
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commercially available assistive technology. We discuss the state of the VQA field briefly in
Section 2.3.3.

For complex tasks requiring multi-step reasoning, asynchronous remote support and VQA
models are ill-suited. Initiatives like BeMyEyes and Aira rely instead on live video calls with
volunteers and paid employees to provide a wider range of services. These applications are
better suited for tasks like reading the mail (with multiple pages of text and complex layouts)
or navigation. Still, it can be difficult to trust the competence and discretion of volunteers,
and for-profit services can be quite expensive. In both cases, significant internet bandwidth
is required which may constrain the availability of service in some areas. The goal of this
work is to lay the foundation for an alternative to existing human-in-the-loop services for
on-device navigation for the BVI.

Many mobile applications for the BVI community have already been developed, such as
BlindTool [28], BlindSight [67], SeeingAI [30] and EnvisionAI [60], which provide on-device
object identification, text extraction, and scene description for the BVI community. The
computer vision functionality in these apps takes in images and returns a label, object
segmentations, or text recognitions. These functionalities are generally implemented by
a multi-layer Convolutional Neural Network (CNN). This type of architecture has several
characteristics that suit them to vision tasks, including sparse interactions, parameter sharing
and equivariant representations [42]. Still, the most accurate of these models tend to be
computationally intensive, leading to a challenging trade-off between user-privacy, battery
usage, and execution time. Further, they require large amounts of training data, and great
care must be taken if they are to be used outside of the training data distribution. The latter
problem becomes very significant when applications are to be deployed in the real-world.

In contrast to static computer vision tasks like Optical Character Recognition (OCR) or
pixel-wise semantic object segmentation, our problem setting presents the significant challenge
of making multi-step predictions in a partially observable environment. While navigation
tasks have a broad range of possible formulations, we focus on the task where an agent must
move around an environment to find a unique target location specified by natural language.
Deep Reinforcement Learning (DRL) methods address this problem by jointly learning to
extract useful feature representations and to execute policies using these representations.
This strategy can also be applied to settings with multiple types of inputs.

Though fast progress is being made on DRL methods, the field is still in its adolescence. RL
algorithms require large amounts of experience to learn policies, and are prone to overfitting
and instability. This can make the transfer of policies learned in a simulator to reality quite
difficult. A large volume of work have been done on this subject, with strategies like using
intermediate representations [81] (e.g., policies which only see semantic segmentation masks)
and domain randomization to improve transfer [110]. We provide a background on RL
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in Section 2.1, which describes some of the many ways researchers are approaching these
problems. We focus specifically on multi-goal navigation strategies relevant to our setting.

Next, we describe the design process undergone at the beginning of this project to identify
and understand some problems facing the BVI community. We describe this process in detail
for several reasons: 1) to defend the novelty of our approach; 2) to promote the existence of
some important open problems facing the BVI; and 3) to validate the needs of the BVI and
understand the problem to be solved.

1.1. Design Process

Our goal with this design process was to verify the existence and significance of approach-
able problems affecting the BVI using a combination of market research and interviews with
BVI people and orientation and mobility specialists. Figure 1.1 shows what we consider an
approachable problem. This process revealed three candidate problems for the BVI, namely
intersection crossing, obstacle avoidance and navigating to addresses. In each of the following
sections, we illustrate our design process by discussing how it shaped this study and our
approach to the finding addresses problem. We hope that this case study can, for future
creators of assistive technology, serve as an illustration of how to begin an applied research
effort.

Fig. 1.1. Problem space. We define approachable problems as those which are useful
to the BVI community, can be solved with guidance from a sighted person via a device or
in-person, and those related to active research areas of computer science. It is risky to work
on problems that are not at least somewhat well-studied, or that you can not situate within
a well-studied domain.

Interviews: We conducted several interviews with BVI people, experts in the field
of accessibility, and developers of mobile apps for the BVI. We sought to understand the
problems BVI people encounter, how they solve them today, and which solutions experts
in the field are already investigating. We learned, with regards to navigation, that BVI
people typically use white canes or guide dogs to avoid obstacles, and navigation tools like
Google Maps and Blindsquare for route planning. For challenging visual tasks they use
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services like BeMyEyes or Aira which are human-in-the-loop systems that send images or
videos to assistants who can cost over $1/minute. We paid special attention to tasks which
induced high willingness to pay for real-time human assistance because this indicates they
are significant problems that may be solvable with machine learning methods. An example
interview focused on navigation is contained in the supplemental material Appendix A.

Market Research: The goal of our market research was to find out which commercial
solutions exist, which worked best, and why. We were also interested in the challenges faced
by developers. We began by compiling a dataset of several dozen available products and
services for the BVI community. While creating this list of services (available in Appendix B),
we created an informal ontology of provided features and recorded user feedback. We selected
the most relevant services from this list, contacted the developers, and were able to conduct
interviews with 12 of those. By doing so, we learned that many assistive technologies are made
by individuals and relatively small companies (like Aira.io). Though their attitudes varied,
the developers were generally very open to talking to us. The majority of the companies we
emailed were focused on providing solutions to text summarization, vision, and navigation
tasks. However, we did not see any applications providing an automated service for address
finding.

Approachable Problems: Our interviews and market research revealed three significant
problems which are not yet fully resolved by available services or methods. These problems
were constrained to sidewalk navigation. Intersection crossing happens when a person
arrives at an intersection and wants to cross it. To safely accomplish this task the user must
be aware of the spatial configuration of the intersection, the intersection’s signalling pattern,
the correct orientation to follow while crossing, (i.e., is there a crosswalk, underground
passage, pedestrian bridge?), and the time when it is safe to begin crossing. Obstacle
avoidance happens when a person is walking on a sidewalk or crosswalk and is confronted
by obstacles such as fire hydrants, parking meters, road work, stairs, etc. Today, this use
case is primarily solved with traditional assistive tools, such as guide-dogs or canes. Other
options like the BeAware app use a combination of beacons planted in the environment and
bluetooth. Outdoor micro-navigation happens when a person has a unique destination
such as a restaurant, physician’s office, or public transit station. The most difficult part of
this task is the last few meters of navigation. BVI people often use smartphone apps like
Google Maps that leverage GPS, but this only partially solves the problem. Once near the
desired location, BVI people usually have to consult a scene description application or nearby
people to make sure they are in the right place. However, objects of interest such as building
entrances, ramps, stairs, house numbers, bus stops, and subway entrances are often missing.

After investigating those problems, we decided to pursue the outdoor micro-navigation
problem because other groups [90, 35] had provided significant treatment for the intersection
crossing problem and the obstacle detection problem already has workable solutions in the
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form of white canes and guide dogs. Furthermore, the OMN address finding problem seemed
to have significant individual and commercial interest with limited prior work.

1.2. Problem Statement

Given the early stage of the technologies available for solving the OMN problem, we decided
to propose and evaluate a solution in simulation. Before embarking on the construction of
this simulator, we performed a literature review summarized here and in Chapter 2 that
showed that there were no existing simulators suitable to evaluating models for our problem
setting. Therefore, the two primary problems to overcome were (1) the construction of a
simulator allowing us to investigate and train an RL agent to accomplish OMN tasks, and
(2) the construction, training, and assessment of models on these tasks.

Construct an Outdoor Micro-Navigation Simulator: The pedestrian navigation
system is responsible for making a sequence of decisions to safely find their goal. In order to
navigate to an address in a way similar to sighted humans, we determined that the model
would need access to multi-modal inputs including images, scene-text, and gps. Further, we
would need an outdoor environment containing a realistic data distribution. This environment
could contain computer generated graphics or real-world imagery, but ideally the state
transitions, goal distributions, and environmental structure would closely mirror that of the
real world setting.

Visually realistic simulators for autonomous driving at first appear to be a useful setting
in which to train our agent, but the sidewalk and houses lack necessary details for our task
[37, 103, 95]. Real-world datasets that contain a realistic distribution of street names,
house numbers, and buildings are almost exclusively captured from vehicle-mounted cameras
on public roads [126, 29]. Other research into visual navigation has also generated many
simulators [21, 121, 107], but these are limited to indoor domains. Some specialized datasets
for street crossing and localization exist, but they are static and contain images only from
intersections [33, 90]. Though many adjacent RL simulators exist, we determine in Section
2.4 via a literature review that no suitable environment exists that contains the necessary
resolution, density, and modality of data for training RL agents for the desired task. Chapter
3 proposes several simple grid-world environments and initial experiments, while Chapter 4
explores an environment using real image data.

Learn a Multi-Modal Navigation Policy: Reinforcement learning methods [108] are
often used for navigation tasks. The specifics of these environments vary widely and tend to
require different algorithms. For example in settings where the agent’s goal is specified at the
beginning of an episode, methods like Universal Value Function Approximators (UVFA) [99]
and successor representations [6, 66, 13] can be effective. Deep Q-Networks [79, 51, 128]
with modifications like experience replay [79, 3, 20, 97], or policy improvement methods like
PPO [101] can be effective in settings with high dimensional observations. The vision and
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language navigation setting often features an agent that follows natural language instructions
to achieve a specified goal [2, 22, 52]. These agents often leverage prior information [124],
multi-modal sensor data [71], or expert demonstrations [25] to achieve the goal.

Learning a robust navigation policy is a difficult task. Classical computer vision meth-
ods like Simultaneous Localization and Mapping (SLAM) have traditionally been used in
autonomous robotics to create maps and plot the agent’s location on that map. These
methods can also be used to detect important task-relevant objects, like obstacles or roads or
goals. SLAM is often used in conjunction with planning and control algorithms to achieve
autonomous navigation. Learned models, on the other hand, do not use a rigid pre-defined
algorithms for achieving their goals. Instead, they learn a representation of the world, and
the effect their actions have on the world, from experience.

RL algorithms, or agents, learn by interacting with their environment. Their tasks
often take the form of sequential decision making problems, formalized by Markov Decision
Processes (MDPs). Generally, the goal of these algorithms is to maximize a reward, which
may be received from the environment or intrinsically determined. In this thesis, we focus on
discrete Partially Observable Markov Decision Processes (POMDPs), which are a challenging
setting that closely models the types of problems faced by agents in the real-world.

1.3. Thesis Statement

This work introduces a formulation for an Outdoor Micro-Navigation (OMN) task, and a
novel method for performing this task. To specify the task, we develop and release code for
several grid-world environments and a high-dimensional environment using real-world data
collected from a sidewalk perspective. To perform the task, we use reinforcement learning
and neural network methods to model the environment and execute the navigation task. By
combining three observation modalities (images, scene-text, and GPS), we see a significant
improvement over models utilizing only a subset of these modalities.

1.4. Statement of Contributions

The main contributions of this thesis are as follows:
• A review of reinforcement learning, multi-goal navigation methods, computer vision
literature, and vision and language navigation environments (chapter 2).
• Grid-world environments for RL that simulate sidewalk navigation (chapter 3).
• A visually realistic deep reinforcement learning simulator for pedestrian navigation
(chapter 4).

Certain aspects of this thesis are taken from works that are in preparation for publication
or have been published. In particular, the introduction includes modified parts of [119] and
[118]. The majority of Chapter 4 is reproduced from [118]. The author of this thesis was
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the lead author of all these works, and the collaborators acknowledge the use of these works
in this thesis.

27





Chapter 2

Background and Related Work

This chapter builds up the notation, background, and related literature for the Reinforcement
Learning and computer vision methods that are used and extended in chapters 3 and 4. The
multi-disciplinary nature of the problem setting requires a description of modern reinforcement
learning techniques (see Section 2.1), which includes a formalization of MDPs, POMDPs,
Deep Q-Network (DQN) models, and Proximal Policy Optimization (PPO). These last two
subsections describe two perspectives on the central problem of RL, namely that given an
observation we may either predict action values, or policies. These approaches are often called
value-based and policy-based methods. In Section 2.2 we focus on methods developed to learn
flexible models, capable of achieving different goals at run-time. Some of these methods focus
on explicitly disentangling the state and goal representations, as in Universal Value Function
Approximators [99] and the Successor Features [32] line of work. Others such as Hindsight
Experience Replay [3] focus on improving sample efficiently and learning in a domain where
rewards are sparse and binary. Section 2.3 discusses the history of computer vision, building
up to the three key domains relevant to the address finding task: object detection, scene-text
recognition, and visual question answering. In Section 2.4, we summarize the literature on
vision and language navigation simulators.

2.1. Reinforcement Learning (RL)

Reinforcement Learning (RL) is the study of how to behave in order to maximize rewards.
In RL parlance, we aim to learn a policy for getting large rewards given some interactions
with the environment. There are many kinds of environments that RL algorithms may be
applied to, including spatial, video game, economic, and text. The pre-requisites for using
RL methods are simple: a state space, a reward function, an action space, and a transition
function. As described in [108], a Markov Decision Process (MDP) is a 5-tuple:

(S,A,T,R, γ)



where S is a finite set of states, A is a finite set of actions, T is a transition matrix (S×A×S)
defining the probability that taking action a ∈ A from state s ∈ S will lead to s′ ∈ S, here
we refer to the reward taken at a specific timestep as Rt, R(s, a) is the expected immediate
reward generated by taking action a in s, and γ ∈ [0, 1] is the discount factor. Because the
experiments in Chapters 3 and 4 contain deterministic actions (i.e., there is no action noise),
we present a simplified version of the classic reinforcement learning equations.

The challenge with MDPs is to maximize the sum of future discounted rewards,

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...+ γT−1RT =
T∑
k=0

γkRt+k+1

where T is the last timestep in the episode. We only address finite trajectories here because
navigation tasks have an episodic nature; it is natural to think of them as a finite trajectory
of states and actions ending at a goal state. We say that a policy π maximizes the reward if
π(s) yields the action which maximizes the sum of future rewards ∀s ∈ S.

In reinforcement learning it sometimes makes sense to incorporate a predictive model of
the environment into the agent. We call these approaches model-based. In the model-based
setting, we either assume knowledge of environmental dynamics like transition and reward
functions or estimate them. Values can then be computed using methods like Monte Carlo
tree-search or dynamic programming. The alternative approach is model-free reinforcement
learning which learns value functions directly from the sampled trajectories. We discuss some
of each type of algorithm in later sections.

In order to compare policies we find it useful to employ state-value functions vπ(s) which
describe the expected value of the discounted return for a given policy π starting in some
state s:

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′,r|s, a) (r + γvπ(s′))

where π(a|s) is the probability of selecting action a while in s under the policy π, and r is the
reward for transitioning from s to s′. For environments with large state spaces, we typically
model value functions using a function approximator V (s, θ), such as a linear combination of
features or a neural network parameterized by θ.

It is also useful to define the action-value function, also known as the Q-function qπ(s, a),
as the value of taking an action a from state s as determined by the policy π:

qπ(s,a) =
∑
s′,r

p(s′, r|s, a)(r + γvπ(s′))

where p(s′, r|s, a) is the probability of transitioning from s to s′ and receiving reward r when
taking the action a from state s. The Q-function may also be represented by a function
approximator parameterized by some θ, as is discussed at length in Part II of [108].

30



In MDPs, we assume perfect information about the state of the environment. This is
a reasonable assumption for games like chess and go, but an unreasonable one for poker,
Starcraft, and many embodied tasks. To approach this sort of problem, we follow [51] to
define a Partially Observable Markov Decision Processes (POMDP) as a 7-tuple extension of
the MDP, (S,A,T,R,γ, Z,O), where Z defines a latent observation space with observations
drawn o ∈ Z and O is a set of observation probabilities conditioned on the state s ∈ S. For
navigation tasks, these observations generally take the form of sensor readings from cameras,
depth sensors, or ultrasonics.

2.1.1. Deep Q-Networks (DQNs)

A landmark work from 2013 demonstrated that one RL algorithm can solve multiple Atari
games from just pixels and rewards [79]. This work also showed that Atari game screens
with sufficient pre-processing become extremely high dimensional MDPs where each state is
comprised of four game-screen images resized to 84 by 84 pixels and converted to 256 level
gray-scale. This results in an intractable 25684×84×4 possible states. Clearly, it is infeasible to
sample each state-action pair, so to solve the problem of learning the Q-values the authors
passed these states to a deep convolution neural network function approximator, call this
parameterization θ, that output a Q-value for each action in the Atari action space. Because
Q-values take on real values we can view this as a regression task and use a squared loss:

L(s, a | θ) =
[
R(s, a) + max

a′

(
qπ(s′, a′ | θ)

)
− qπ(s, a | θ)

]2
where qπ(s, a|θ) is our prediction and R(s, a) +maxa′qπ(s′, a′|θ) is our target. This target is
not subject to optimization itself using the loss gradient, but provides the optimal action and
return for our learning signal.

It is important to note that another major contribution of this paper was experience replay,
which combats problems associated with correlated data and non-stationary distributions
by sampling past experiences to determine updates. There is a long history of combining
Q-learning with experience replay and simple neural networks [70] and more recent work
has showed that this technique can scale to high-dimensional state spaces [79]. Hindsight
Experience Replay (HER) [3] is a recent development that enables RL algorithms to learn
from sparse reward signals by retroactively imagining failed trajectories as successful ones.
Policies trained using HER take as input a current state and a goal state like UVFA [99],
but suffer an additional requirement that every state must satisfy some goal and does not
specify a universal goal representation.

DQNs were later applied to POMDPs in a new environment named Flickering Pong, a
modification of Atari Pong where the screen is either fully revealed or fully obscured with a
probability p = 0.5 [51]. This work also introduced Deep Recurrent Q-Networks (DRQN), a
model that adds a recurrent Long-Short Term Memory (LSTM) module at the end of the
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standard convolutional DQN model architecture. The proposed model recurrently integrated
arbitrarily long histories of observations to estimate a policy that was more robust to partial-
observability than DQN. When DQN and DRQN were compared on MDP environments their
performance was roughly equivalent.

Further work extended the DRQN model to take as input actions as well as the observation
history [127]. The action-based Deep Recurrent Q-Network (ADQRN) model encodes actions
via a fully connected layer, while in parallel passing the image observation through three
convolutional layers. The model then passes these embedded action-observation pairs to an
LSTM and fully connected layers to compute Q-values identical to the DQN model.

2.1.2. Proximal Policy Optimization (PPO)

In contrast to these value-based methods, PPO is a policy gradient method, which means
that instead of using a value function, we directly optimize the policy [101]. It is also
an example of an actor-critic architecture, where we have two networks: an actor which
controls the policy, and a critic which measures how good the policy’s actions are (essentially
approximating a Q-value).

We say that the probability ratio between the old and new policy is:

r(θ) = πθ(a|s)
πθold

(a|s) (2.1.1)

and the objective function we would like to maximize is

J(θ) = E[r(θ)Âθold
(s, a)] (2.1.2)

where Â is the advantage function A(s, a) = q(s,a)− v(s). Updating our parameters using
this object function can lead to policy instability and large changes in the distribution of
data generated by the environment because there is no limitation on the distance between
the old and new parameters θold and θ.

PPO solves this problem by using a clipped surrogate objective function [101]. This is a
constraint on the way we train the actor, requiring the policy updates to be small, specifically
within the bounds of some hyper-parameter, ε. Resulting in:

J(θ) = E
[

min(r(θ)Âθold
(s, a), clip(r(θ), 1− ε, 1 + ε)Âθold

(s, a))
]

(2.1.3)

A somewhat related concept for slowly modifying a policy is curriculum learning. The
idea is to start small and learn the easy aspects of a task, then gradually increase the difficulty
level [8]. Taking for example a navigation task, in curriculum learning we want our agent to
accurately navigate from a start position to any goal location in the environment. However,
if the initial task is too difficult, and a positive reward is only given upon completion of the
task, the agent may fail to learn. We would have to train the simulator for a very long time
before a random policy would ever find any gradient from which it may update its policy.
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Furthermore, a uniform random sampling of goal locations will on average yield goals that
are quite distant from the start location, and nearby goals would be infrequently sampled.

2.2. Methods of Multi-Goal Navigation

There are many ways to tailor RL methods for the multi-goal setting. Much work has
been done to learn models which can be tailored at runtime to achieve different tasks. A
naive solution would be to add world knowledge to the model, but this will restrict the space
of policies which may be learned and make it more difficult for the model to perform well
to different tasks or the real world. Instead, Universal Value Function Approximators [99]
proposes to learn state and goal embeddings which enables their method to better generalize
over goals. Automatically discovering and encapsulating the environmental dynamics is
perhaps an even more attractive option, and one which we discuss in the sub-section on
Successor Representations (Section 2.2.2). Playing back experiences that are relevant to
the agent’s level of knowledge is another way to more efficiently use interaction with the
environment, and to learn to achieve goals in a sparse reward setting. We discuss this
approach in more depth in our sub-section on Hindsight Experience Replay (Section 2.2.3).
The next sections will delve into these topics and lay the groundwork for future work.

2.2.1. Universal Value Function Approximators (UVFA)

Approximating value functions, the expected sum of discounted future rewards, is a core
concept in reinforcement learning. We often try to estimate the value function for a state
s using some model with parameters, vθ(s). This function can be extended to generalise
over goals, vθ(s, g). [99] formalized this concept and developed an efficient technique for
supervised learning of UVFAs by factoring observed values into embedding vectors for states
and goals, then learning a mapping from s and g to these factored embeddings.

One observation from this work was that there are many combinations of states and goals,
and while an agent usually will only see a small subset of these combinations we would like
to generalize across all combinations. A contribution of this paper was to propose a novel
architecture wherein they decompose this regression problem into two stages. They view the
data as a sparse matrix where each row contains data from a state and each column contains
data for each goal. First, the authors find a low-rank factorization of the matrix into state
embeddings φ(s) and goal embeddings ψ(g). In the second step, the authors learn a non-linear
mapping from states s to state embeddings φ(s) and from goal g to goal embeddings ψ(g).
This approach learned UVFAs an order of magnitude faster than naive regression in their
experiments.

In the navigation setting it is natural to generalize over goals. We can clearly see that
two goals should be similar if they are spatially close. For example, if we take two specific
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gates at an airport as our target locations, we can see that the ability to successfully navigate
from our home to one of these gates should help when navigating to the other. The next
chapter will develop several environments that enable us to further explore this intuition.

2.2.2. Successor Representations (SRs)

First proposed in [32], successor representations (SR) factor the value function into a
predictive representation of the environment and a reward function. This representation
of the environmental dynamics is generally a vector of expected discounted future state
occupancies. The reward associated with the transition (s, a, s′) can then be represented as
the dot product of a vector of features of the transition with a vector of weights, i.e.

R(s, a, s′) = φ(s, a, s′)>w

where φ(s, a, s′) ∈ Rd are features of (s, a, s′) and w ∈ Rd are weights. Now we follow [6] and
simplify the notation by letting φt = φ(st, at, st+1), and specify by Eπ[·] the expected value of
a random variable given that the agent follows policy π, and t is any time step. Here, we also
refer to rewards sampled at timestep t from R as rt. Then we can define our action-value
function as,

qπ(s, a) = Eπ [rt+1 + γrt+2 + . . . |St = s, At = a]

= Eπ
[
φ>t+1w + γφ>t+2w + . . . |St = s, At = a

]
= Eπ

[ ∞∑
i=t

γi−tφi+1|St = s, At = a

]>
w

= ψπ(s, a)>w
Where the ith component of ψπ(s, a) is equal to the discounted future sum of ψi when

following policy π starting with (s, a).
The SR paradigm was more recently extended to operate on high-dimensional observations

using a neural network architecture [66]. This approach, which we will call Successor Features
(SF), provides increased sensitivity to changes in the reward function and the ability to
extract bottleneck states, or candidate sub-goals, that improve exploration. This work was
theoretically grounded by [6]’s extension of the Bellman Policy Improvement theorem [7]
to the multi-task setting with several proposed models that combine SFs and Generalized
Policy Improvement (GPI). Most recently, [13] combined UVFAs and GPI to create Universal
Successor Feature Approximators (USFA) which generalize over both goals and policies.

2.2.3. Hindsight Experience Replay (HER)

In sparse-reward settings like our navigation task, we find reinforcement learning algorithms
struggle to learn policies [3]. A common solution is to engineer shaped reward functions that
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reflect the task, but also guide policy optimization. The goal of Hindsight Experience Replay
(HER) is to develop an algorithm that can learn directly from sparse reward signals, which it
accomplishes by retroactively imagining failed trajectories as successful ones.

HER follows UVFA [99] by training policies which take as input the current state and
a goal state. After experiencing some episode (s0, s1, . . . , sT ), we store every transition,
st −→ st+1, not only with the original goal but also with a subset of other goals. The authors
note that the goal being pursued changes the agent’s actions, but not the environment
dynamics, and therefore we can replay each trajectory with an arbitrary goal assuming the
use of an off-policy RL algorithm like DQN [79].

HER improves sample efficiency in this setting, and makes learning possible when the
reward is sparse and binary. The authors show that training an agent to perform multiple
tasks can be easier than training it to perform one task. Applications of HER may be seen
as an implicit curriculum as the goals used for replay naturally shift from ones which are
simple to achieve even by a random agent to more difficult ones.

The authors assume that “given a state s we can easily find a goal g which is satisfied in
this state” [99]. This requires a total map from goals to states which may not be easy to
define for some environments. The assumption made by HER does not hold in navigation
tasks, that each state visited can be viewed as a goal state. Navigation tasks naturally have
a sparse and binary reward, either you find your target location (or a location within the
equivalence class of your target) or you do not, and not all locations are desirable targets.

Recent work proposed an extension of HER that uses language to represent goals [20]. In
their framework, whenever an agent finishes an episode, a teacher gives advice in natural
language to the agent based on the episode. The agent takes the advice to form a new
experience with a corresponding reward, alleviating the sparse reward problem. To explicitly
apply this method to POMDPs, the authors ask the teacher to give advice based on the
history of states and actions during the episode, i.e., galt = T (s0, a0, ..., sT ). While language
provides a compact and universal representation for the goals it can sometimes be expensive
to obtain or unsuited to the task.

Visual Hindsight Experience Replay extends HER to a range of robotic and visual
tasks by using a Hallucinatory Generative Adversarial Network (HALGAN) to minimally
alter images along failed trajectories such that it appears to approach and achieve the goal
[97]. This method is best suited to tasks where we do not have an exact specification of the
goal during execution, and where many states may not easily map to goals. HALGAN is
trained using near goal images, where the relative location of the agent to the goal is known.

The network architecture for the generative model used in this work was an improved
Wasserstein Auxiliary Classifier GAN (W-ACGAN) [85, 45]. They selected this architecture
because W-ACGANs can create realistic looking outputs and have the ability to condition
the generated images on a desired class. Another requirement for this generative model is the
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ability to consistently hallucinate the goal in the same absolute position throughout the failed
trajectory. The authors of that work note that because UVFAs do not extend to the visual
setting where the goal location is unknown (and must be identified within the environment),
the agent’s policy in their work is solely condition on its state.

2.3. Computer Vision and Perception

One of the earliest computer vision projects was created by Seymour Papert in 1966 and
given to a group of students [86]. The goals of this project included basic foreground and
background segmentation, analysing scenes with simple non-overlapping objects of distinct
uniform color and texture, with future work to extend the system to more complex objects.
Over 50 years later, we continue to see rapid and significant improvements in computer vision
applications and models.

By the late 1960’s and early 1970’s, some of the foundational techniques for computer
vision were already being developed including the Sobel-Feldman operator [55] and Prewitt
operator [88] for edge detection. These operators are based on convolving the image with a
small filter which yields a gradient approximation for horizontal and vertical changes. While
these operators may result in crude approximations, and can show poor performance in
high-frequency regions, they are very fast to compute. Further, they laid the foundation for
new convolutional and learning-based methods that would follow.

Machine learning-based methods for computer vision have gone through many iterations.
Many of these use neural network models, and attempts to describe algorithms for motion
detection mimicking insect visual systems using hidden units extends at least as far back as
the first International Congress on Cybernetics in 1956 [50]. In the 1980’s, an ambitious
work attempted to integrate the fields of computation, psychophysics, physiology, and
biophysics [61]. They described the advances of object and motion detectors, the recovery
of 3-dimensional structure from motion, and how these models may explain the behavior
of animal visual cortices. In the early 2000’s, Viola and Jones published a method for face
detection using Haar-like features [115], while David Lowe published the Scale-Invariant
Feature Transform (SIFT) algorithm for extracting useful image features. These methods
rely heavily on hand-crafted features. In fact, the dominant image classification methods
relied on hand-crafted features until 2012, when AlexNet [65], a deep convolutional neural
network with 60 million parameters trained exclusively on RGB data outperformed all other
methods in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC2012) [96].
This breakthrough in computer vision set the stage for modern era of computer vision with
many tasks and deep neural network models.

In the following sections we discuss the sub-fields of computer vision relevant to the
perceptual aspects of the sidewalk navigation task. In particular, we discuss object detection
(Section 2.3.1), scene text recognition (Section 2.3.2), and visual question answering (Section
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2.3.3). Each is a significant sub-field of computer vision, and due to voluminous research done
in these areas we can only provide a short treatment of their state. We focus on recent works
which optimize deep neural network models and have generally shown strong performance.
Still, it is important to have a sense of what models are used for sensory perception and the
data structures for scene representation.

2.3.1. Object Detection

Unlike image classification tasks which simply require the model to output a label, object
detection tasks additionally require the model to indicate a localization in the form of a
bounding box composed of x and y pixel coordinates of the top-left corner, the width, and
the height of the box. Detecting objects like house numbers, doors and street name signs
is necessary in order to complete the navigation task of finding the entrance to a specific
address; ideally, solutions will be efficient enough to run in real-time on a mobile phone while
performant enough to feel reliable to users. Modern solutions to this sort of problem tend to
fall into two main categories: single-shot and two-stage methods.

The two-stage methods refer to the serial computation of region proposals, followed
by a classification of each proposed region, where regions are output if the classifier’s
feature response is large enough. These methods trade a high cost in computation for high
performance. Three models published in 2014 and 2015 popularized this style of model. The
first, R-CNN [41], used selective search [113] to generate a fixed size number of regions,
warped these regions into squares, used a CNN to extract features, then fed these features into
a Support Vector Machine to predict the presence of an object. Fast R-CNN [40], and Faster
R-CNN [94] made significant efficiency improvements to the R-CNN pipeline, replacing the
fixed selective search algorithm by a learned (faster) approach which did not rely on a fixed
number of regions and proposing a novel Region of Interest pooling layer.

One-shot object detectors like YOLO [92], SSD [73], SqueezeDet [120] and Detect-
Net [109] are faster and more suitable for mobile. They require only a single pass through
the neural network using fixed grid detectors that allow the prediction of all bounding boxes
at the same time. Those models are composed of a body network, usually pre-trained on
a large image classification dataset like ImageNet, that acts as a feature extractor and a
head network that detects objects. However, those networks can be too large for mobile
deployment. Instead, it will be preferred to use an architecture specifically designed for
mobile like SqueezeNet [56] that uses fire modules, SEP-NET [68] that uses filter convolu-
tions and pattern residual blocks, MobileNet V1 [54] that is based on depth-wise separable
convolutions or MobileNetV2 [98] that adds linear bottleneck and expansion convolution to
MobileNetV1[54]. SDDLite [98] has also been proposed as an object detection model and
uses separable convolutions.
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Both categories of object detection model can benefit from multi-task prediction [125],
including joint object detection, scene classification and semantic segmentation. Extensions
to PASCAL VOC 2010 detection with pixel-wise semantic categories, showed improvements
enabled the development of models that showed that adding a simple contextual feature
produces nearly as much improvement as more sophisticated methods [80]. Other extensions
to this task include 3-D bounding box prediction from RGB-D [69] and RGB images [24].

Armed with a plethora of vision models, we now turn to object detection datasets. An
examination of the classes covered in general object detection benchmarks datasets like
ImageNet [96] reveal that they lack those object classes necessary for pedestrian navigation.
Much work has focused on pedestrian detection [36] and surveillance [49], and datasets for
autonomous vehicles like ApolloScape [117] provide some classes of interest like sidewalks,
bridges, walls, fences, traffic signs and signals. However, these classes are not comprehensive
or fine-grained enough to achieve our tasks of interest and all these images are taken from a
raise perspective, not that of a pedestrian. For house numbers, there is also the Street View
House Number dataset, but the images are tightly cropped for text recognition tasks, not
text detection [84].

Different problems require models with different trade-offs between per-class accuracy,
speed, and size. High accuracy models like Yolo [92] are too large and slow for real-time
usage on mobile devices. Models specially designed for use on mobile devices, like MobileNet
[54, 98] and SSD [73] tend to be less accurate, but faster and smaller. Though these models
sometimes outperform human performance in the supervised learning setting, they continue
to struggle in a variety of situations which can expose high false-positive rates, difficulty with
small or out-of-distribution objects, and fine-grained classification.

Therefore, we decided to label in our Sidewalk Environment for Visual Navigation (Chapter
4) some of the relevant object classes for sidewalk navigation that are missing in other datasets,
e.g., doors, house numbers, and street name signs.

2.3.2. Scene Text Recognition

Optical Character Recognition (OCR) is the task of recognizing letters in images, thereby
converting this visual information into machine-encoded text. The classic setting focused
primarily on recognizing text in images of printed paper records with varying fonts. In
contrast, scene text detection and recognition is a much more difficult version of this task
which may require the model to overcome occlusion, curved and oriented text, as well as
numerous distractors.

Addresses usually contain a street name and house number that manifest as visible text
in the environment. This text, as well as other scene text like business names, are useful
landmarks for localization. Extracting incidental scene text can be quite difficult because
it appears in the scene without the user having taken any specific prior action to cause
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its appearance or improve its positioning in the frame. Datasets of annotated images with
real text [116, 89] and synthetically overlayed text [57, 46] have resulted in useful models,
but modest end-to-end performance on the ICDAR 2019 Large-Scale Street View Text with
Partial Labelling challenge indicates that this problem remains open [72, 129, 5].

Fig. 2.1. Scene text detections. A cropped image taken with the Vuze+ camera from
the SEVN dataset proposed in Chapter 4. Text and house numbers are clearly visible, with
rectangular bounding boxes for each house number. We also provide hand-annotated word
recognitions associated with each bounding box detection.

Models which perform well in this setting are usually composed of an object detection
model followed by an Optical Character Recognition (OCR) model, though there is growing
interest in single-stage methods [19]. Focusing on the OCR models in not incidental scene
text extraction tasks, [4] recently highlighted the fact that many of the OCR pipelines like
CRNN [104], Rosetta [12] and STAR-Net [74] were incomparable due to differences in their
evaluation settings and proposed a uniform four-part modular pipeline for OCR. Furthermore,
they show that those models struggle with the recognition of unusual fonts, vertical text,
special characters, occluded text, and low resolution images which often appears to be the
characteristics of the extracting incidental scene text that interest us. Some works have
proposed specialized scene text localization methods with the BVI in mind, like [38], which
focused on objects like license numbers of buses, traffic and store signs.

2.3.3. Visual Question Answering

Visual Question Answering (VQA) is a class of natural language question answering tasks
solved by searching and reasoning over the contents of an image. This setting grew from the
space of image-captioning, which joins machine translation and vision models [123]. When
correctly formulated, VQA is believed to require the model to understand certain aspects
of the scene. However, when poorly formulated these tasks often require large amounts of
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domain-specific knowledge that are outside the scope of the task. Datasets like VQA [44],
DAQUAR [75], and COCO QA [93] have enabled the development of VQA algorithms.
These datasets generally struggle to find the correct level of difficulty, often requiring general
world knowledge beyond that contained in the dataset. They can also fail to capture the
long tail of possible questions and images which appear in real world scenarios. Datasets like
CLEVR [58] and Visual Genome [64] are other challenging datasets which propose questions
that necessitate reasoning about relationships between objects in images. Very recently,
two datasets have been proposed for reasoning over images with text: TextVQA [105] and
Scene Text Visual Question Answering (ST-VQA) [11], but neither was designed taking into
account the needs of the blind.

One exceptional dataset was created about 10 years ago: VizWiz [9]. The team which
developed this dataset distributed an application to the BVI community which enabled them
to take an image, ask questions about it, and get timely spoken answers from a sighted
person. 31,000 of these questions, answers, and images compose the VizWiz dataset and
VizWiz grand challenge [47], which introduced notable new difficulties for VQA like images
of poor qualities, conversational questions, irrelevant questions due to out-of-focus images.

VQA models are usually composed of two networks [59]: one that extracts features
from the question using natural language processing methods like Bag-Of-Words or Long
Short Term Memory encoders [53] and another that extracts features from the image using
convolutional neural networks pre-trained models on ImageNet [96]. These two sets of
features may be combined together in different ways (e.g. concatenation, use of Bayesian
models to infer the relationship between the different modalities) to produce an answer.
Approaches based on attention can also be used and explore the spatial and logical relation
among objects presented in the data. More recently, FiLM [87] has also been proposed to
solve the VQA task. This model differs from classical VQA model because it relies solely on
a very simple feature-wise affine conditioning to use question information to influence the
behavior of the visual pipeline to answer questions. However, despite those recent advances
the current performance of those models are far from human-level on most real-world tasks,
making them unreliable for the BVI community.

2.4. Vision and Language Navigation Environments

Some of the primary contributions of this work are RL environments for multi-modal
sidewalk navigation. There is extensive literature on navigation tasks that require the use of
both vision and language, which we discuss briefly in this section. Additionally, there is work
focusing on outdoor navigation. However, neither area addresses the type of multi-modal
learning or provides an appropriate setting to investigate the learning of structures required
to perform our task of interest.
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Vision and language navigation tasks generally require agents to act in the environment
to achieve goals specified by natural language. This setting at the intersection of computer
vision, natural language processing, and reinforcement learning has generated many tasks and
a common framework for evaluation of embodied navigation agents [1]. The task defined in
“Vision and Language Navigation” [2] provides agents with 21,567 human-generated visually-
grounded natural language instructions for reaching target locations in the Matterport3D
environment [21], an environment which consists of 10,800 panoramic views from 90 building-
scale scenes connected by undirected spatial graphs. The success of [2] has also motivated the
development of systems to generate natural language instructions for navigation [39]. Many
environments focus on navigating apartment interiors, with continuous [121] or discrete [21]
action spaces and varying levels of interactivity [62], while relatively few have investigated
vision and language tasks in outdoor settings.

Outdoor RL environments often base their work on panoramic imagery and connectivity
graphs from Google Street View. A prominent example of such a work on outdoor navigation
is Learning to Navigate in Cities without a Map [77]. Outdoor environments support tasks
that range from navigating to the vicinity of arbitrary coordinates [77] and certain types of
locations (e.g. gas stations, high schools) [16], to following natural language instructions [52].
However, the sparsity of the nodes containing images (averaging 10 meters between connected
nodes in [77]) and the vehicle-mounted perspective imagery makes these environments
unsuitable for pedestrian navigation. Furthermore, such environments do not provide the
type of labelled information that is necessary to construct pedestrian navigation tasks (e.g.,
door numbers, street signs, door annotations). Nor is it possible to provide dense annotations
in the StreetLearn Google Street View data [76] because the resolution of that imagery is
too low (1664 x 832 pixels). As outlined in Section 4.1, SEVN provides the higher resolution
imagery that is necessary for agents that find and reason about scene text in order to navigate
to specified doors.

It is also important to note that the agent in [77] did not have access to high resolution
visual features. In that work, panoramic RGB images were cropped to 84× 84 pixels covering
a 60o field of view then input to a convolutional model, thereby losing much of the semantic
information that humans would use to perform the same task. Also, the goal location was
quite large, on the order of an entire block. In Chapter 4 we extract information from
high-resolution images and train an agent to navigate using these. Additionally, we focus on
navigating to very narrowly defined goal locations.
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Chapter 3

Grid World Experiments

In this chapter, we construct two grid world environments and show results from experiments
using Proximal Policy Optimization (PPO) to train a neural network to perform simple OMN
tasks. We analyze both the ability of this model to fit these environments as well as the
model’s generalization performance. Several experiments focus on training this agent under a
curriculum and under domain randomized environments. This work was largely conducted
during the Winter semester of 2018 in the McGill Reinforcement Learning course taught by
Doina Precup and Pierre Luc-Bacon. The author of this thesis was the sole author of that
work, which received the highest possible mark, but was not submitted for peer-review.

Grid worlds have been long used as a simple spatial abstraction because they are easy to
create, understand, and computationally inexpensive to experiment on with RL methods.
We were unable to find an environment which adequately suited our tasks of interest, thereby
motivating the development of this environment. An example of a related but unsuitable
environment is the 4-room environment used to demonstrate many algorithms including
UVFA [99]. In one popular task defined on this environment, the agent must learn to explore
different rooms to find a goal object. In UVFA, the task was slightly modified such that the
agent was provided a goal vector specifying which room contained the goal. The agent was
trained to perform the task in 3 of the 4 rooms as specified by a goal vector, then tasked with
generalizing to goals in the fourth room. Because our task of interest contains significantly
more structure (e.g. house numbers, goal distributions, distractors), we felt it inappropriate
to benchmark on an environment lacking these key elements.

The purpose of the proposed environments is to create a setting which contains realistic
structures that enable human navigation, but where current methods of DRL fall short.
Street addresses are a very common method of specifying locations. A fully-specified address
usually contains a house number and street name, postal code, city name, state name, and
country name, however in our simulation we only model local navigation tasks requiring the
specification of the street name and house number.



3.1. Grid Street and Grid City Environments

We propose a Grid Street and Grid City environment developed using the gym-minigrid
framework [26]. Both environments are static POMDP grid worlds. These POMDPs are
static both in the sense that the spatial distribution of houses and the numerical value of
addresses are constant between successive training episodes, and that there are no moving
objects in the environment. We also report experiments in a domain randomized version
of Grid Street with changing spatial and numerical distributions, but as we will see fitting
the static environments already provides significant challenges. Though these grid worlds
contain many of the characteristic elements of the outdoor micro-navigation task, we do not
address some challenges including safe street crossing, following sidewalks and footpaths, and
traversing courtyards. The more complex environment proposed in Chapter 4 shares many of
the same characteristics, but is modelled using real-world data.

Fig. 3.1. Grid Street. The Grid Street environment has 10 houses that are potential target
locations. The agent’s observations come as a 5×5 matrix (demarcated by the lighter grey
outlined with yellow) at each timestep. The center of the road is lava, and not traversable,
meaning that there are no actions from states adjacent to the lava to the lava states.

In Grid Street and Grid City, like the real-world, the agent can only see a small part of
the environment at any time. More specifically, while the state-space of the environment S is
modeled as a tensor of shape (X, Y, 3), where X, Y ∈ N, the agent only observes o ∈ Ω, where
the dimension of o is (5, 5, 3). o contains information about objects in a 5× 5 grid in front
of the agent, where the additional three dimensions represent object type, color, and door
number. In this task setting, the first dimension (object type) can only represent three types
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of objects: traversable, not traversable, and door. While we have not explicitly modelled
occlusions, objects come into and out of view as the agent moves around the environment.
Still, this is a much easier task than it would be in the real-world given that the agent has
perfect information about the position and identity of objects within its field of view.

The agent’s action space is as follows: A = {left, right, forward, done}. The left and
right actions turn the agent by 90◦, while the forward action moves the agent 1 tile in the
direction they are facing, unless that direction action would transition them off the edge of
the environment or onto an untraversable tile. In that case, the action is interpreted as a
no-operation, and agent stays in the same location. Upon executing the done action, the
episode is terminated and a reward is calculated. Here, the rewards are sparse, i.e. the agent
only receives positive reward for successfully terminating the trajectory on the correct tile.

At the beginning of each training episode m ∈M , the agent is provided with a natural
language sentence Im = w0, ..., wl as an instruction, where each wi is a token while the l is
the length of the sentence. Here, Im instructs the agent to navigate to a unique address, for
example “go to street 0 house 3”. The agent must then move to the unique grid location
specified by Im and select the done action. In these environments, the done action finishes
the trajectory, and if the agent is in the correct tile, returns a positive reward γi, where
γ = 0.99 and i is the number of steps the agent took to complete the trajectory. Otherwise
the agent receives a zero reward. We experimented with setting the reward to γ i

k where i
is the number of steps the agent takes and k is the shortest path length, but this did not
meaningfully alter the results.

There are many ways that we can modulate the difficulty of these environments. We can
start our agent in the same location, or have different starting locations; all experiments start
the agent in the same position. We can also provide the agent with a curriculum, asking
the agent to navigate to more distant doors as it learns to accomplish easier goals. We will
address these notions further in Section 3.3, Experimental Results.

The Grid City shown in Figure 3.2 is an extension of the Grid Street environment that
adds street signs at each street corner. Much like a real city, house numbers are even on
one side, odd on the other, and ascend (or descend) monotonically as you continue in one
direction. For our experiments, we will refer to the Static Grid City when each episode is
run on the same environment, and Domain Randomized Grid City when we randomize the
location of the house and house numbers at the start of each trajectory. The motivation
behind the Domain Randomized Grid City is that if we want our learned policy to work in
the real-world, we will want our policy to generalize to different spatial distributions of houses
and distributions of house numbers. This technique of domain randomization to improve
transfer has a long history in the literature [110].
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Fig. 3.2. Grid City. Here we see four horizontal streets and three vertical streets in the
Grid City environment. We can vary this parameter as well as the spatial distribution of
houses and the distribution of their numbers.

3.2. Model and Training

We apply a neural network model similar to that described in [63]. The model has
both an actor and critic head parameterized by two fully-connected layers with a tanh
non-linearity; the critic (vθ) estimates a value for the state, while the actor (πθ) outputs a
softmax distribution [10] over actions. These heads share a trunk fθ which takes in two
inputs at each timestep t: the observation ot and episodic instruction I. We train this model
with PPO, which has achieved state-of-the-art performance across a wide range of challenging
tasks and was required little hyper-parameter tuning in our experiments. Though PPO is
most commonly known as an algorithm for learning continuous policies, it can also work
in discrete settings by simply replacing the Gaussian distribution policy with a softmax
distributed one.

We parameterize fθ as a neural network with a 3-layer convolutional neural network
ψ embedding ot, and a Gated Recurrent Neural Network (GRU) [27] φ which embeds I.
We then concatenate these two equivalently sized embeddings s = ψ(ot)⊕ φ(I) and feed s
into both the actor and critic networks. The actor network outputs a stochastic softmax
distributed policy that is sampled during rollouts at ∼ πθ(st).

We train this model using Proximal Policy Optimization as described in Section 2.1.2.
We initialize the network fθ and begin doing rollouts of the policy in the environment. The
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score function we are maximizing is similar to that in equation 2.1.2:

J(θ) = E[r(θ)Âθold
(st, at)]

where Â is the estimated advantage function A(st, at) = qπ(st,at)− vπ(st). Advantage can be
defined as a way to measure the improvement we can get by taking some action when we are
in a particular state qπ(st, at) as compared to the average general action at that state v(s).
We weight the advantage of the old policy by the ratio r(θ) as we have defined in equation
2.1.1:

r(θ) = πθ(at|st)
πθold

(at|st)
An r(θ) > 1 means that the action at is more likely in the current policy than the previous
one. Again, following [101] we clip the policy updates, requiring that θold−θ < ε with epsilon
set to 0.2 in our experiments. This limits the rate of change in the policy to reduce instability
during training.

We have not opted to use a recurrent policy network, i.e., this network has no memory.
While one may expect performance on navigation tasks should improve with memory resulting
from localization and pattern identification, we opted instead to experiment with models
operating on stacked frames of experience. This strategy has the benefit of ensuring that
relevant information from the environment is available to the policy network, while avoiding
the challenges of training recurrent neural networks. During our hyperparameter search, we
tried models with framestacks containing 1, 8 and 16 frames.

In the time since this work was conducted, several works have been published at top-tier
machine learning venues proposing improvements on policy-based methods for reinforcement
learning. Notably [112], published at NeurIPS 2019, proposed a method for solving sparse
reward tasks using shaped rewards and a modified version of PPO. In contrast, our work
forgoes the use of any reward shaping. Instead, we focus exclusively on only the most
strict version of this task: a positive reward is received only when the agent has knowingly
completed its task (indicated by the done action). We set the magnitude of the sparse reward
as the ratio of the length of the path taken to the optimal path.

The choice to forego reward shaping here was made for several reasons. First, sparse
rewards are more reliable to implement on a physical platform than dense rewards. Works
experimenting with real-world training of RL agents include VICE-RAQ [106] which learns a
reward function on high-dimensional observations. Other methods have been proposed which
specify goals using images of the goal, and then train a goal classifier on this data [122, 114].
Because we would like to develop methods which may be transferred and fine-tuned in the
real-world, we opted to experiment with a sparse reward setting here. Second, it is relatively
“easy” to detect if you’re in a goal state by reading visible house numbers and matching
against the navigation instruction. However, determining if the model is making progress
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toward the goal is more difficult. The model needs to determine whether it is on the correct
street, and whether the house numbers are ascending or descending towards the target. Only
then would the model have some sort of unreliable but dense reward signal. As a result of
these challenges, we prefer to experiment here with sparse rewards.

3.3. Experimental Results

We begin by describing our experiments using PPO to explore the Static Grid Street
and Grid City environments. We then formalise our curriculum learning approach to these
environments as well as investigate the effect of framestacking. We then describe our hyper-
parameter search and close with the challenging domain randomized Grid City environment.

Static Grid Street and City: In Figure 3.3, we show the results of training 5 agents
using random seeds and PPO with no memory (framestack = 1) for 1 million frames. On
the left, we show results on the Static Grid Street environment, and on the right we show
results on Static Grid City. The PPO algorithm starts with a random policy that yields
near zero returns. This is expected, given that these environments produce sparse episodic
rewards. As training progresses its average episodic reward gradually increases to about 0.2.
The maximum average return over the trajectories in one update batch was 0.39, while the
average reward for acting optimally in this setting is about 0.84.

Fig. 3.3. Static Environments. Left shows the trajectory rewards during training on the
Static Grid Street. Right shows the trajectory rewards during training on the Static Grid
City. Both indicate the mean episodic discounted reward (Gt) with a dark blue line, while
the light blue indicates standard deviation. The X-axis indicates the number of parameter
updates that have taken place; in our experiments we had 32 processes performing rollouts
of a policy in the environment with the maximum number of actions in a trajectory set to
128. Both curves show the results of training our model with PPO in a static environment
without a curriculum for 1M frames of experience across 5 trials. As indicated in the legend,
the model used a Learning Rate (lr) of 7e−4 and had no frame stacking (recurrence = 1).
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As we can see in Figure 3.3 (Right), the model in the larger environment does not yield
strong results. This model had to contend with over 50 goals, with optimal trajectories
requiring over a dozen actions. Still, it was still able to achieve about 10% of its optimal
reward within 1 million frames of experience. Next, we present a curriculum learning approach,
and note that this naive approach to Static Grid City is equivalent to a curriculum setting
with maximal difficulty.

Curriculum Learning Approach: To simplify this challenge, we re-frame this OMN
navigation task as a curriculum of tasks C = 〈M1, . . . ,MN〉, where N is the number of target
addresses. Each task Mn where 0 < n ≤ N requires the agent to navigate to a different
location specified by an instruction I. We propose a partial ordering on the elements of C:
ascending by the length of the shortest traversable path from the starting location to the
goal. We also propose a set of training tasks, T = {M1, . . . ,Mk} where 1 ≤ k ≤ N , which
starts out containing only M1. We sample training tasks uniformly t ∼ U(M1,Mk).

When we train our agent, we sample training tasks and perform rollouts of our current
policy πθ in parallel across 32 processes until we have accrued 4096 frames of experience
(128 frames× 32 processes) then update parameters as described in the previous section. We
continue this process until the mean success rate is greater than 95% across all episodes in a
parameter update batch. At this point, we add the next task in C to T . Figure 3.4 shows
the results of the curriculum learned model on the Static Grid City environment. We see
that the model is able to quickly achieve a very high mean trajectory reward while learning
to navigate to new goals.

Hyper Parameter Search: We ran a hyper-parameter search over the Static Grid
Street and Static Grid City environments. We ran 20 experiments with 3 trials each out
to 1,000,000 frames, searching over two parameters: the learning rate was sampled from
a log-uniform distribution between 10−5 and 10−1.5 while the number of frames to stack
(equivalently referred to as recurrence) took on the values of 1, 8, and 16. The results of this
search are shown in Appendix C.

It appears that the best learning rates were on the order of 10−3 and that frame-stacking
did not have much effect. Perhaps a stronger prior or auxiliary tasks that encourages the
model to use house numbers as location features would differentiate frame-stacking approaches.
In Figure 3.5 (right), we provide additional evidence for this conclusion through another
experiment. In it, we keep the learning rate constant while varying the number of frames in
the stack with no appreciable change in performance.

Long-Running Curriculum Experiment: We were surprised to find the extent to
which PPO struggled to learn the structure of the static grid environments. One cause may
have been that the preferred actions in the starting region (going right/left only) along the
starting street differ significantly from the ones that are needed in the later regions (going
up/down only). Figure 3.5(left) hints at this possible issue. In particular, the first 7 levels
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Fig. 3.4. Static Environments with a Curriculum. Left shows the level of difficulty
of the curriculum during training on the Static Grid City for 5 runs. The difficulty level
increases when the success rate is above 95%, which happens quite often for nearby houses
and less frequently as the task grows more challenging. Right shows the trajectory rewards
during training on the Static Grid City under this curriculum. Both show the results of
training our model with PPO for 1 million frames of experience on the Static Grid City. The
X-axis indicates that nearly twice the number of parameter updates have taken place as
compared to the previous experiment using the same number of frames of experience. This is
because the episodes are shorter on average, and we update parameters after all 32 processes
have performed a rollout.

Fig. 3.5. Long-Running Curriculum Experiment and Framestacking. Left shows
the result of training a single agent on the Curriculum Static Grid City for 40 million frames
of experience. As before, the difficulty level increases when the success rate is above 95%.
Given the long-running nature of this model, we opted for a lower learning rate in the hope
that it would yield more stability. Right shows the trajectory rewards during training on
the Curriculum Static Grid City for models with varying amount of recurrence. The plot
suggests that memory is not a factor limiting our models performance.

involve navigating to goals which are placed along a horizontal line, while the next levels
require the agent to cross an intersection and begin going vertically; i.e., the agent starts
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in the middle of a block with doors to their left and right, but at difficulty 7 must learn to
round a corner onto a new street.

Another explanation is that PPO is an on-policy method being applied to a sparse reward
setting. While it is clear from the curriculum learning experiments that a random policy can
sometimes achieve the goal, it is possible that some task or tasks at difficulty 7 are much
more difficult to achieve. It’s possible that a method equipped with an experience replay
buffer may make better use of rare successful trajectories. Indubitably, models with access to
shaped rewards (increasing as it approached the target) would perform much better.

Domain Randomized Environments: In the Domain Randomized Grid City envi-
ronment we modify both the spatial distribution of houses and the address ranges for each
training episode. This domain randomization makes the task much more difficult to learn,
but should also makes the algorithm more robust to distributional shift. As seen in Figure
3.6, the agent struggles to learn navigate to even the nearest goal. In contrast with the static
curriculum environment where the agent was able to achieve a success rate above 95% when
navigating to 5 different goals after 1 million frames of training, in this domain randomized
environment the agent never achieves a success rate above the low 80%’s, and thereby never
moves on to the next level of difficulty.

Fig. 3.6. Domain Randomized Grid City. In the domain randomized setting our agent
never achieved a 95% success rate even on difficulty 1. It was much more difficult for the agent
to learn the structure of the environment under this condition. To solve such an environment,
we may require additional model biases and structure, conditioning information, or training
procedures to solve such an environment.

There are many possible explanations for this method’s poor performance under a domain
randomized setting. Most simply, the state space we are optimizing in becomes much larger
and may require more time to optimize as a result. As we will explore further in the next
section, the model appears to be learning to map its target to a specific navigation policy
without learning general concepts. While this type of learning can still lead to useful behavior,
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its limitations can be shown when testing on settings outside of the training distribution. We
will explore this concept further in the following chapter.

Another explanation for this result may be that because PPO is an on-policy RL algorithm
reward sparsity becomes a more important problem in this setting. Under a random policy
goals are rarely reached in any of these environments, and even when a goal is successfully
completed the policy will likely undergo many parameter updates before the same goal
and environment are sampled again. This suggests that a modified domain randomization
algorithm and curriculum may improve performance. For example, an alternative training
scheme would be to begin with a single environment and goal, then once that policy achieves
a high success rate to add an additional task in a domain randomized environment.

3.4. Conclusion

In this chapter we described two grid world environments, proposed a neural network
model, trained it using PPO, and analyzed the results. We found that this method was
unable to fit the Static Grid City or Static Grid Street environments after 1 million steps of
training. After proposing and running experiments using a curriculum learning approach,
our model learned policies capable of navigating with a greater than 95% success rate to 5
different goals after 1 million frames of experience (500 policy updates), and up to 9 goals
after 40 million frames of experience. Domain randomized environments were surprisingly
challenging, and this model was unable to learn to consistently complete even 1 goal.

The Grid Street and Grid City environments contain many of the challenges present
in the real outdoor micro-navigation setting. The environment addresses goals via natural
language, organizes house numbers and streets in a plausible way (odd numbers on one side,
even numbers on the other, monotonic change along a street), provides partial observations
of the environment, and contains a non-uniform distribution of house locations. However,
several important aspects of the OMN setting are not covered, for example dynamic obstacles
such as pedestrians and motor vehicles, or noise in the observation. Indeed, the problem of
accurately converting a sequence of images into the gridworld representation presented here
is a difficult one. In the next chapter, we will turn to the utilization of real-world image data
to populate an environment and train a navigation model using images, text and simulate
GPS information.

In the next chapter, we develop a simulator which uses real-world data to further our
investigation of OMN tasks. We also train models with shaped rewards and propose a suite
of additional tasks. Additionally, we evaluate our models capacity to generalize outside of its
training environment and consider ways to improve this performance as future work.
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Chapter 4

A Sidewalk Environment for Visual Navigation

This chapter largely consists of a reproduction of [118]:
Martin Weiss, Simon Chamorro, Roger Girgis, Margaux Luck, Samira E. Kahou, Joseph

P. Cohen, Derek Nowrouzezahrai, Doina Precup, Florian Golemo, and Chris Pal. “Navigation
agents for the visually impaired: A sidewalk simulator and experiments.” In Conference on
Robot Learning, pp. 1314-1327. 2020.

The author of this thesis was the primary author of the paper above. In this chapter, we
introduce a novel simulated environment for sidewalk navigation “SEVN” (read “seven”),
that supports the development of assistive technology for BVI pedestrian navigation. SEVN
contains 4,988 high resolution panoramas with 3,259 labels on house numbers, doors, and
street signs (see Figure 4.2 for an example). These panoramas are organized as an undirected
graph where each node contains geo-registered spatial coordinates and a 360° image.

Fig. 4.1. Example stitched equirectangular image. This image was shot on a Vuze+
camera with 8 synchronized Sony FHD image sensors each with a F/2.4 fish-eye lens. The
image was stitched using the Vuze VR Studio stitching algorithm, and then hand-annotated
with door, house number, and street sign detections and transcriptions.

We define several OMN tasks that may be completed using multi-modal observations in
the form of variable resolution images, extracted visible text, and simulated GPS data. Our
experiments focus on learning navigation policies that assume access to ground truth text



Fig. 4.2. Illustrated example of an agent trajectory. Left) An overhead view of the
trajectory. 1) The agent starts on the sidewalk with the goal door in view but out of reach;
the agent moves forward. 2) The goal door is beside the agent; the agent turns right. 3) The
correct door is visible and fully contained within the frame; the task is complete.

labels, and in this setting our multi-modal fusion model demonstrates strong performance
on a street segment navigation task. We hope that the release of this chapter, dataset, and
code-base will spark further development of agents that can support members of the BVI
community with outdoor navigation1.

The primary contributions of this chapter are:
• A benchmark dataset containing panoramic images from six kilometers of sidewalks
in Little Italy, Montreal, with annotated house numbers, street signs, and doors2.
• An OpenAI Gym-compatible environment [17] for RL agents with multi-resolution
real-world imagery, visible text, simulated GPS, and several task settings3.
• A novel neural architecture for RL trained with PPO [101] to fuse images, GPS, and
scene text for navigation, with results and ablations 4.

4.1. Overview

This section introduces SEVN, a visually realistic Deep Reinforcement Learning simulator
for pedestrian navigation in a typical urban setting. We first describe the process by which
we captured and annotated the data in SEVN before discussing the simulator’s interface.

The Data were first captured as 360° video using a Vuze+ camera attached to the top
of a monopod held slightly above the operator’s head. The Vuze+ has four synchronized
stereo cameras. Each stereo camera is composed of two image sensors with fisheye lenses that
each capture full high definition video (1920x1080) at 30 Frames Per Second. We used the
VuzeVR Studio software to stitch together the raw footage from each camera to obtain a 360°
stabilized video, from which we extracted 3840 × 1920 pixel equirectangular projections. We
then crop and remove the top and bottom sixth of these panoramas resulting in a 3840 ×
1280 image which contains about 3.5 times as many pixels as those in StreetLearn [76].

1 https://mweiss17.github.io/SEVN 2 https://github.com/mweiss17/SEVN-data 3 https:
//github.com/mweiss17/SEVN 4 https://github.com/mweiss17/SEVN-model
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Fig. 4.3. Data processing pipeline. We captured footage using a Vuze+ array of 4
stereo cameras. We then localized this footage with ORB-SLAM2 [82] yielding a spatial
graph of images and positions. We sparsified the graph, stitched the remaining images into
360° panoramas using VuzeVR Studio, and hand-annotated them.

We used ORB-SLAM2 [82], a Simultaneous Localization and Mapping (SLAM) pipeline,
to geo-localize the footage. As input to ORB-SLAM2, we provided an undistorted view of the
left front facing camera from the Vuze+ and obtained a camera pose for each localized frame
(3-D coordinate and quaternion). From these camera poses, we created a 2-D graph with
node connectivity determined by spatial location. The recording framerate (30 Hz) resulted
in very little distance between nodes - so we sparsified the graph to 1 node per meter. Finally,
we manually curated the connectivity of the graph and location of the nodes. Figure 4.3
summarizes the data processing pipeline.

Our dataset is split into a Large and Small dataset, where Small is a block containing
several urban zones (e.g. residential, commercial) bounded by St. Laurent, St. Zotique,
Baubien, and Clark. Montreal’s municipal zoning regulations are described in supplementary
section D.2. Figure 4.4 shows the full graph with these splits overlaid on a map. Each split
contains street segments and intersections. As part of this work, we released the code to
capture, SLAM, and filter the data5.

Fig. 4.4. SEVN Spatial Graph super-imposed on an OpenStreetMap Carto (Standard)
view of Little Italy, Montreal. The dataset is split into two sets: Large and Small. The Large
dataset street segments shown in green and the intersections are shown as purple. Street
segments in the Small dataset are shown in yellow and the intersections are shown in teal.
Visualizations of the goal locations and municipal zoning are contained in the supplemental
material, sections D.2 and D.2.

The Annotations we provide on the full-resolution panoramas are bounding boxes
around all visible street name signs and house numbers, and include ground truth text
5 https://github.com/mweiss17/SEVN-data
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annotations for both. Doors with clearly associated house numbers are annotated with
polygons. To create the annotations, we used the “RectLabel” software. The annotated
panoramas are publicly available with blurred faces and licence plates6. These annotations
and privacy blurs were added and verified by two authors. Table 4.1 shows some global
statistics about the dataset, the splits, and the annotations.

Name # Images # Streets Length # Doors # Signs # House Numbers
Large 3,831 8 5,000 1,017(355) 167 (11) 1,307 (367)
Small 1,157 4 1,300 286 (116) 46 (3) 436 (119)
Total 4,988 8 6,300 1,303 (470) 213 (11) 1,743 (485)
Table 4.1. Dataset statistics and number of annotations. We report the total amount
of house number, door, and street name sign annotations with the corresponding number of
unique physical objects that were annotated in parentheses. Inside the parentheses of the
“# Signs” column, we report the unique number of street names visible within the dataset,
not the unique number of street name signs. The “# Streets” column shows the number of
unique streets where we captured data. The length column represents the length in meters of
the region where data was captured.

The SEVN Simulator is based on the OpenAI Gym [17] environment. We chose a
similar action space to Learning to Navigate in Cities without a Map [77] with slight left
and right turns (±22.5°), sharp left and right turns (±67.5°), and a forward action that
transitions to the neighboring node nearest the agent’s current heading. If there is no node
within ± 45° of the agent’s current heading, then we do not change the agent’s position. We
also propose two other actions which are used in a subset of the tasks proposed in Section 4.2:
read and done. The read action is only used in the CostlyTxt task where the agent incurs a
small negative reward in order to access the scene text; the done action is only used in the
Sparse task to terminate the trajectory. The agent observes a 140° normalized image cropped
from a low-resolution (224× 84 px) version of the panorama, created during a pre-processing
step from the high-resolution panoramas (3840× 1280 px). At this low resolution, most text
becomes illegible. Therefore, at each timestep we check if any text which was labelled in the
full scale panorama is fully contained in the agent’s Field of View (FOV); we encode these
labels; and we pass them as observations to the agent (see Section 4.3). An instance of the
simulator running with low-resolution imagery can be run at 400-800 FPS on a machine with
2 CPU cores and 2 GB of RAM.

The Oracle was implemented to determine the shortest navigable trajectory between
any two poses. A pose is defined as the combination of an agent heading (discritized into
22.5° wedges) and a position (restricted to the set of localized panoramas). Our panorama
graph is implemented in NetworkX [48], which provides a function to find the shortest path
6 https://github.com/mweiss17/SEVN#dataset
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between two nodes (n1, n2) in graph G, i.e., nx.shortest_path(G, source = n1, target = n2).
For each node we calculated the most efficient way to turn in order to face the next node
before emitting a ’forward’ action. Once the agent is located in the goal node, we check the
direction of the target door and turn until it is entirely contained within the agent’s FOV.

4.2. Reinforcement Learning, Rewards & Tasks

In this work we are interested in exploring the use of Reinforcement Learning (RL)
techniques for learning agents that have the goal of assisting with navigation tasks. There are
many navigation policies which can be learned to assist the BVI, each with its own strengths
and weaknesses. This section proposes several reward structures and tasks for learning agents
within an RL framework that encourage agents to learn different navigation policies. These
are summarized in Table 4.2. Dense rewards are provided to the agent at each time-step.
We provide a +1 reward for each transition taking the agent closer to the goal, and a −1
for each transition that takes the agent further from the goal. For turn actions, we provide
a −.2 for turns away from the direction which enables a correct transition, and we provide
a +.1 reward for each turn towards this direction, unless the agent has already inhabited a
pose nearer the correct direction in which case the action returns a 0 reward. Within a goal
node the correct direction is a heading which fully contains the target door polygon.

Costly Read is a setting where a small negative reward, −.2, is provided to the agent
after taking the “read” action, returning the labelled text within the FOV. This reward would
encourage the agent to only take this action when it provides improved localization. In the
context of an expensive scene text recognition model, a policy trained with this reward could
be more computationally efficient.

Multi-Goal reward is a setting wherein the agent receives a positive reward, +1, for
each house number it “sees” during an episode. In this setup, the agent is encouraged to
navigate towards regions with many visible house numbers. This behaviour could be useful
in assistive navigation systems, helping the BVI person to find house numbers to augment
their own navigation ability.

Sparse rewards not only require the agent to complete the entire task before receiving
a reward, but also require the agent to emit a “done” action with the target door fully in
view. This task is quite challenging, but successful models should generalize better than
those trained with dense rewards.

In tasks 1-7, we require that the agent occupy the node closest to the goal door. We
identified the nearest panorama to a goal address through a proxy metric: the polygon with
the largest door area for a given house number. The success condition also requires the
target door to be entirely contained in the agent’s field of view. For all tasks, we first select a
valid terminal state by uniformly sampling over doors with addresses. Next, we identify the

57



street segment which contains this address and uniformly sample the agent’s start node and
direction from this segment.

Tasks 1 to 4 represent an ablation study wherein the agent is trained with different
combinations of sensor modalities to determine their relative contributions in a dense reward
setting. This task investigates the small-scale sidewalk navigation problem, with trajectories
terminating when the agent has navigated to the goal node and turned so that the goal door
is fully within view.

Task 5 does not restrict the start and end poses to the same street segment. Instead,
the agent must navigate through an intersection to find a goal on another segment.

Tasks 6, 7, and 8 are equivalent to task 1, but that the agent is trained with the costly
read reward structure, the sparse reward and a multi-goal reward, respectively.

Observations Rewards
ID Task Name Img GPS Txt Dense Costly Read Sparse Multi-Goal
1 AllObs X X X X · · ·
2 NoImg · X X X · · ·
3 NoGPS X · X X · · ·
4 ImgOnly X · · X · · ·
5 Intersection X X X X · · ·
6 CostlyTxt X X X X X · ·
7 Sparse X X X · · X ·
8 Explorer X X X · · · X

Table 4.2. Rewards & Tasks. The first four tasks examine combinations of observation
modalities. In the CostlyTxt task, the agent has access to a “read” action which yields the
scene text, but imposes a small negative reward. The Intersection tasks requires the agent
to cross static intersections to find goals on other street segments. The Explorer task gives
a reward for each unique house number the agent sees. The Sparse task, which is most
challenging, only gives the agent a reward once it reaches its target destination and emits a
“done” action to terminate the episode.

4.3. Observation Modalities

The agent has access to three types of observation modality and a reward signal. An
observation can contain an image, GPS, and visible text. Table 4.3 summarizes the available
modalities and formats.

The image is a forward-facing RGB image of shape (3, 84, 84) that contains a 135°
FOV which depends on the agent’s direction. Note that all tasks can also be run with high
resolution images of shape (3, 1280, 1280). The simulated GPS is a 2-dimensional ego-centric
vector indicating the relative x and y offset from the goal in meters. Finally, coordinates are
scaled to the range [−1,1].
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We study two kinds of incidental scene text: house numbers and street name signs.
At each timestep, we determine whether there are any house number or street name sign
bounding boxes within the FOV of the agent. If so, we pass them to the agent as encoded
observations. We encode the house numbers as four one-hot vectors of length 10 (since the
longest house numbers in our dataset contain 4 digits) flattened into a unique one hot vector
of size (40, 1) representing integers between 0-9999. Next, we stack up to three of these
vectors to create a vector of shape (120, 1) before passing them to the agent. This enables
the agent to see up to three house numbers simultaneously. Street name signs are similarly
encoded, but span the 11 street names contained in the dataset.

Observation Type Dimensions Description
Image (low-res) (3, 84, 84) Low-resolution RGB image observation with 135° FOV
Image (high-res) (3, 1280, 1280) High-resolution RGB image observation with 135° FOV
GPS Coordinates (4, 1) Absolute and relative goal coordinates
House Number (40, 1) One-hot encoding representing integers between 0-9999
Street Name (11, 1) One-hot encoding of street name signs
Table 4.3. Observation modalities and formats. The simulator provides three obser-
vation modalities: images, GPS, and text. Images can be provided in low resolution (84× 84
px) or high resolution (1280× 1280 px). The absolute coordinates of the goal are fed in as
two floating point values (x, y) scaled between -1 and 1, while the relative coordinates are
computed by taking the difference between the agent’s current position and the goal position.
Each character in a house number is represented by a (10, 1) one-hot vector; we concatenate
four of these together to represent the range of house numbers found in our dataset.

4.4. Method & Architecture

In this section, we describe a multi-modal fusion model that is at its core a CNN trained
with PPO [101]. To train our model, we chose the PPO algorithm for its reliability without
hyperparameter search7. For our policy network (see Figure 4.5), we take each modality in
its one-hot format (as described in Table 4.3) and tile it into a matrix of size (1, w, w), where
w is the width of the image. We then add any necessary padding. Performing this process
for each modality and appending all matrices to the input image yields a tensor of dimension
(8, w, w). If a model does not have access to a modality, then that matrix (or matrices) are
simply filled with zeros. This representation is fed through three convolutional layers with
kernel sizes 32, 64, 32, followed by a dense layer of size 256, all with ReLU nonlinearities.
This network outputs a probability vector of dimension (1, y), with y being the dimension of
the action space. To determine the agent’s next action, we sample from this distribution. The
critic network contains an additional dense network that converts the combined embeddings
7 https://github.com/mweiss17/SEVN-model

59

https://github.com/mweiss17/SEVN-model


into a single value. The PPO hyperparameters are mostly identical with the recommended
parameters for training in Atari gym environments [17]; the only difference being that we
increase the learning rate (from 2.5e−4 to 3e−4) and the training duration (from 1e6 steps
to 2e6). The full set of parameters can be found in the supplementary section D.1.

Fig. 4.5. Policy Network Architecture. We show the different input modalities in both
their human-readable format and their tiled format. The tiled format is then appended to
the RGB image matrix creating an (8, w, w) tensor, where w is the width of the square input
image. This tensor is then processed by 3 convolutional layers before being flattened and
processed by a dense layer. Finally, this dense layer outputs a vector over the agent’s action
space, from which we sample the agent’s action at that step.

4.5. Experimental Results

This section discusses the performance of our model which navigates to target doors with
a mean 74.9% success rate in the sidewalk navigation task. We also ablate this model to
investigate the contribution of each observation modality. See section 4.5.2 for ablations with
noisy GPS.

4.5.1. Sidewalk Navigation Experiment

Table 4.4 reports the mean and standard deviation of policies after 2M steps of experience
on the Small dataset. Results are averaged over 10 seeds. We also report the oracle and
random walk performance for comparison. In this setting, the agent has 253 timesteps to
navigate to its target location, the length of the longest optimal trajectory in the environment.
A random agent successfully completed this task within 253 actions in 5.7% of episodes, while
the oracle completed 100 % of tasks in 80.8 steps on average. Two seeds were removed because
our analysis indicated that they learned a degenerate solution, exploiting the environment.

As expected, the AllObs model which fuses image data, visible text, and GPS achieved the
highest rate of successful navigations. After 2M frames of experience, this model converged
to a policy that can navigate to the 116 goals in Small with success achieved in 74.9% of
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ID Task Name Success Rate Reward Trajectory Length
1 AllObs 74.9% (± 7.8%) 43.9 (± 65.9) 113.7 (± 89.7)
2 NoImg 0.8% (± 0.3%) -24.6 (± 2.3) 251.0 (± 22.0)
3 NoGPS 58.2% (± 3.2%) 32.8 (± 78.3) 147.6 (± 96.6)
4 ImgOnly 57.%(± 2.8%) 32.5 (± 79.8) 149.2 (± 96.6)
- Oracle 100% (± 0.0%) 58.1 (± 14.2) 80.8 (± 25.1)
- Random 5.7% (± 2.6%) -43.2 (± 4.9) 248.9 (± 15.1)

Table 4.4. PPO baseline performance on the Small dataset for the door finding
tasks. The maximum trajectory length was set to 253, the number of actions required by
the oracle to achieve the longest task. All metrics from training 10 seeds (except for AllObs
where we removed two outlier policies) for 2M frames, then averaging 1000 test episodes per
seed. The standard deviation reported here is across seeds and evaluation episodes. The two
bottom lines of the table corresponds to the mean optimal path length (as calculated by the
oracle) and random mean reward for comparison.

trajectories, with the best performing model achieving an 85% success rate. The performance
of the AllObs model also improved much more quickly than any other model. However,
some trajectories still failed to achieve the goal resulting in a mean trajectory length nearly
40% higher than the oracle. Upon inspection of the trained policies, we observed that the
agent sometimes tried to make a forward action when blocked by a wall or street. The agent
also sometimes repeated the same incorrect action, turning right and left. Still, the agent
often exhibited “intelligent” behaviour, turning to follow the sidewalk and looking for house
numbers.

Every model with access to image data had above 55% success rate on average, whereas
the model without access to images (NoImg) learned a degenerate policy that performed
even worse than a random walk. The poor performance of the NoImg model indicates the
importance of even down-scaled 84× 84 pixel images for sidewalk navigation. Judging from
the moderately reduced performance of ImgOnly and NoGPS, the AllObs model seems not
to rely solely on GPS or image data, but can use a combination of all input modalities to
achieve superior performance. The next best performing agent, ImgOnly, performed much
better, completing the task in more than half of episodes. Adding the visible text modality
(i.e., NoGPS model) seems to further improve performance when compared to the ImgOnly
model. Figure 4.6 shows the PPO training metrics for task 1 to 4 on Small.

4.5.2. Noisy GPS Experiment

Interested by the effect of noisy GPS sensors on navigation performance, we created a
setting where the agent had access to all types of observation modality, but we could add
varying levels of Gaussian noise to the GPS sensor. To construct this setting, on the first
timestep when we calculate the goal position by sampling the coordinates of a panorama
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(a) Success Rate (b) Trajectory length (c) Trajectory rewards

Fig. 4.6. Training curves over 2M frames of experience in the Small dataset. We report
the mean and standard deviation over 10 seeds of several metrics smoothed with a moving
average on 10 episodes. The oracle and random walk performances are also provided for
comparison. (a) shows the proportion of episodes which terminate at the target door. (b)
shows the length of an episode, which terminates after 253 actions or finding the target door.
(c) shows the mean dense reward as described in subsection 4.2.

which satisfies the goal conditions, we also sample a Gaussian noise (µ = 0,σ = x) where x is
the amount of noise in meters. Every time we compute a GPS-based goal offset, we take the
agent’s current position and add Gaussian Noise (µ = 0,σ = x) then subtract the noisy goal
coordinates. Results shown in Figure 4.7.

(a) Success Rate (b) Trajectory length (c) Trajectory rewards

Fig. 4.7. GPS Ablation Study. All: We report the mean and standard deviation over
10 seeds of several metrics smoothed with a moving average on 10 training episodes – similar
to that in Figure 4.6. (a) shows the proportion of episodes which terminate at the target
door. (b) shows the length of an episode, which terminates after 253 actions or finding the
target door. (c) shows the mean total trajectory reward.

These results, on the street segment task, indicate that GPS readings with large amounts
of noise (25, 100) unsurprisingly lead to worse performance and higher variance in our model.
This result is consistent with Figure 4.6, and provides evidence that a model with a highly
noisy GPS sensor performs as well as a model trained without a GPS sensor (NoGPS). Smaller
amounts of noise seem to have little impact on performance, and possibly even increase
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performance. However, the instability of DRL algorithms can make it difficult to recognize
small changes to performance.

4.5.3. Generalization Experiment

We hoped that our policy trained to perform navigation to goal doors would generalize to
other regions. This, sadly, does not appear to be the case. However, the trained policies are
still valuable within the training region. Further, we believe that given sufficient data these
policies may generalize. Also, the model proposed in section 4.5 was not specifically designed
for generalization. In table 4.5 we present results of the fusion model with all modalities
evaluated outside of the training data.

Evaluation Trained on Large Trained on Small
Success Rate on Large 21.1% (± 3.7%) 1.0% (± 0.3%)
Success Rate on Small 1.0% (± 0.4%) 74.9% (± 7.8%)
Rewards on Large 13.3 (± 70.4) -134.7 (± 110.9)
Rewards on Small -71.1 (± 92.9) 43.9 (± 65.9)
Episode Length on Large 213.5 (± 78.9) 250.5 (± 24.5)
Episode Length on Small 250.6 (± -24.2) 113.7 (± 89.7)

Table 4.5. Generalization Results: This is an extension of table 4.4, with the fusion
model trained on the Small dataset remaining the same. We also evaluated this model on
the Large set (all data except Small). We also evaluated the same model trained for 20M
frames of experience on Large.

We can see that the results of the model trained on the Small dataset and evaluated
on the Small dataset performed well, with the same 74.9% success rate seen in table 4.4.
When evaluated on the rest of the dataset, this model failed with a success rate of only
1.4%. Similarly poor performances are seen for the model trained on the (much larger) Large
dataset with 20M frames of experience.

4.6. Discussion and Future Work

The SEVN dataset and simulator is an RL environment for sidewalk navigation. The
codebase and dataset are open and extensible, providing a framework for future research into
BVI navigation. As with most machine learning models, deploying RL models trained in
this environment into the real-world presents significant challenges. Techniques like domain
randomization[110] can be used to improve model generalization, but our use of real-world
imagery presents a challenge for this approach. One alternative to improve performance would
be to gather additional imagery and annotations with better hardware and more sophisticated
methods. This could result in higher resolution, more precisely located images, with fewer
stitching artifacts common in panoramic images. Alternative methods for embedding scene
text as input for the policy model may also yield improved performance.
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Besides these approaches, there are several more ways we can imagine to modify and
improve this model. Curiosity driven approaches to RL have been explored since at least
the early 1990’s [100], and there is ongoing research using intrinsic rewards to improve the
performance of PPO in sparse reward settings [18, 23]. Task-specific rewards may be difficult
or undesirable to define in high-dimensional settings, which motivated the development of the
Random Network Distillation reward in [18]. In that work, PPO was modified to have two
additional neural network heads: a fixed and randomly initialized target head f : O → Rk

and a predictor head f̂ : O → Rk, where O is a high dimensional observation. Here, f̂
is trained to mimic the output of the randomly initialized network by minimizing MSE∥∥∥f̂(x, θ)− f(x)

∥∥∥2
with respect to the parameters of f̂ and where x is an input observation.

However, in our case with access to low-dimensional inputs in the form of house numbers, it
is possible to define an alternative observation prediction task.

A simple option would be to add an auxiliary head f that predicts the observable house
numbers in the next observation hnt+1 given the current observation xt, i.e., f(xt)→ hnt+1,
where x is the tiled multimodal input shown in Figure 4.5. This, however, would likely
be a challenging problem given that there are many thousands of possible house numbers,
that there can be several house numbers per observation (or none), and that scene text
detection and recognition in the wild remains a very challenging area [91]. Supporting this,
in 2013 Goodfellow trained CNNs to predict multi-digit house numbers on an internal Google
dataset with tens of millions of labelled examples [43]. Because these images did not contain
bounding boxes, the resulting accuracy of this method was only 91%, much lower than the
performance of methods on the publicly available cropped StreetView House Number [84]
which has an error rate of about 1% [31]. Still, training vision models on wide-angle images
to detect oriented or partially obscured text is a significant challenge.

To make things easier, we may also propose auxiliary tasks aimed at inducing the model
to learn the useful structures in the environment. At each timestep, we may have the head
f perform a binary classification task given some relational question q and relevant house
numbers binary encoded h1 and h2. For example, an important spatial question q would be
this: “Are h1 and h2 on the same side of the street?”, or, “If we were to continue ‘forward’
would we be moving ‘up’ the street?”. Though we may train the model to learn these
structures using a simple binary cross entropy loss, there remains the problem of identifying
a model capable of numerical reasoning and extrapolation.

One candidate is the model from Neural Arithmetic Logic Units (NALU) [111] which
proposed a learnable neural network architecture for numerical reasoning and extrapolation.
NALUs are composed of Neural Accumulators (NAC) which are a special case of a linear
layer whose transformation W consists of −1’s, 0’s, and 1’s. This means that its outputs are
constrained to be additions or subtractions instead of free transformations. The transformation
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matrix in a NAC unit is composed of an element-wise multiplication:

W = tanh(Ŵ)� σ(M̂)

where σ is the sigmoid function σ(x) = 1
1+e−x and tanh is the hyperbolic tangent function

which can be viewed as a rescaled sigmoid tanh(x) = 2σ(x)−1. The range of σ is [0, 1] (biasing
towards 0 and 1) and tanh ranges between [−1, 1] (biasing towards -1 and 1). Importantly,
the use of these activation functions biases the weights towards −1’s, 0’s, and 1’s during
optimization. The output, or accumulation vector a, is then computed as:

a = Wx

The efficacy of this bias on learning is demonstrated in several tasks; the most relevant being
a gridworld navigation task [102]. In the gridworld experiment, the task is to navigate to a
goal after a specific number of timesteps T . If the agent arrives at any timestep besides T ,
then it receives no reward. They train an LSTM model [53] with the on-policy RL algorithm
A3C [78] on the output of a CNN applied to a 56× 56 pixel image of the environment. In
one version, T is concatenated to the output of the CNN, while in another it is additionally
passed through an NAC unit before being passed back into the LSTM. The latter version
performed significantly better when extrapolating to regions of T greater than those it
had been trained on. The results on that modifying the activation functions and network
architecture to preserve numerical reasoning can improve navigation performance even in the
context high-resolution observations. Perhaps, modifying our architecture and introducing
some auxiliary tasks may enable better extrapolation and navigation.

Notwithstanding this chapter’s contributions, there remain many challenges ahead for
those who wish to create assistive pedestrian navigation systems. One major challenge is to
improve the efficiency of these systems, enabling deployment to edge devices while maintaining
accuracy and speed. Large-scale object detection, optical character recognition, and neural
networks in general remain computationally intensive despite recent advances. Another major
challenge is to design a communication strategy for these assistive technologies that respects
the user’s level of vision, comfort, and safety.
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Chapter 5

Conclusions & Future Work

This research defines the Outdoor Micro-Navigation (OMN) problem and attempts to solve
it using modern neural networks and reinforcement learning algorithms. The OMN problem
negatively effects people in the BVI community, to the extent that many are willing to pay
$1 per minute for remote support from a sighted human. Prior works on vision-and-language
navigation have focused mainly on indoor navigation [21] and large-scale gps-based outdoor
navigation [77]. We contribute several formulations for the OMN problem in the form of
grid world environments and the Sidewalk Environment for Visual Navigation (SEVN). We
benchmark modern DRL algorithms on these environments and identify weaknesses and areas
for future work.

We showed that we can train RL models on multi-modal data to perform multi-goal
navigation tasks. These results, while preliminary, indicate that there is significant value
in developing deep neural network models which navigate using scene text. In contrast to
other works focusing on outdoor navigation with very large goal regions (on the scale of a city
block) and action spaces (image observations are spaced 10 meters apart) [77], we produced
an environment and results in an outdoor micro-navigation setting which is of significant and
immediate use to the BVI community.

While the performance of the model trained in SEVN with the PPO algorithm does
not achieve perfect navigation performance, it does indicate that this is a fruitful direction
for future work. Some ideas for additional improvements include adding auxiliary tasks
incentivizing the model to learn the structure of the environment, or using an experience
replay mechanism. Another possible direction is to investigate a more UVFA-like approach
to leverage a rich goal representation for generalizing to new tasks. This approach may pair
nicely with the curriculum learning setup seen in Chapter 3. In particular, if the model can
use the instruction I to infer the rough location of a goal (i.e., further up the street than
these other goals), then it may perform better on what would otherwise be more difficult
tasks later in the curriculum.



An organizing principle of this work is to develop methods which can solve OMN problems
in the real-world. Several major aspects remain open, even after the tasks described in the
grid environments and SEVN are fully solved. First, there is the problem of path-planning in
irregular and/or complex environment. Figure 5.1 shows an example of the types of paths
necessary for completing OMN tasks to addresses in Montreal.

Fig. 5.1. Path Planning. This figure shows an a high-level representation of the path
planning problem present in an OMN task the ends off of the sidewalk. Blue rectangles
surround each building, purple boxes surround doors, an orange rectangle indicates the street
and sidewalk, and purple lines indicate the navigation trajectory that must be executed.

Second is the problem of transferring policies learned in simulation to the real-world.
This challenge is quite interesting in this situation (as opposed to others such as robotic
manipulation or self-driving cars) due to the proximity of the BVI person to the navigation
task. In fact, there are many simple computer vision utilities which can be used to aid them
achieve these goals such as optical character recognition and door detection devices. Indeed,
BVI people vary widely in the nature of their disability, and as a result any application
deployed to solve problems for the BVI should expend special focus on leveraging their ability.

A clear area for improvement beyond Sidewalk Environment for Visual Navigation (SEVN)
is to create a full 3-dimensional reconstruction of the environment where we wish to solve
the OMN task. A 3-D reconstruction, even a low-polygon count model as shown in 5.2,
would enable three interesting directions. First, we may imagine a setting in which we can
directly investigate the off-sidewalk navigation problem by generating novel views of the
scene. Second, in SEVN one input to our model were natural images. It may be the case
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that we will overfit to these images due to the somewhat limited nature of the input imagery.
With a full 3-D reconstruction, we could imagine applying domain randomization or training
on novel generated views. Third, we could learn a model to map real images to a low-poly
space, then use that representation in our planning and execution of navigation tasks. This
type of scheme has been used before in the literature by [81], to learn a navigation policy on
a semantic segmentation (the intermediate representation).

Fig. 5.2. 3-Dimensional Representations. Left: a natural image of a typical street in
Montreal, Quebec. Right, an image of a low-poly 3-D model of the same scene.

We hope that the findings of this thesis represent a useful building block for those who
aim to improve the lives of BVI people using technology. Though significant effort went into
the design process for this work, any conceivable deployed version of technology solving an
OMN problem in the real-world for BVI people must undergo much more scrutiny, including
extensive user-testing and safety functionality.
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Appendix A

Example Interview with an Accessibility Specialist

Maryse Legault is a visually impaired woman who works as an accessibility specialist at
HumanWare, a global leader in assistive technology for people who are blind or have low
vision needs. In this interview, we discussed her needs in order to feel comfortable travelling
to new locations.

Interviewer: How do you prepare for travelling or going outside?
Maryse: Like sighted people, I need to prepare myself when leaving the home. There

are some differences though, for example, I am more comfortable knowing which side of the
street the metro station door or the bus stop post is on. If I need to cross a boulevard to get
there, knowing if there is a crosswalk, traffic lights, an underground passage or a pedestrian
bridge can be very helpful. I also need to know about the direction of traffic and potential
obstacles like roadwork, especially if I know that I will not be able to reroute with a map on
my phone.

Interviewer: This seems to be a lot of preparation, but I hear that there are mobile
phone applications that can be used to help with those difficulties on the ground. Can you
give us examples of applications that you use?

Maryse: That’s true. When I take the bus I use the Navigation app’s vocal instruction
to know which street I am on. Sometimes it can be confusing, especially in the US where
you can be heading East on West Robert Smith Avenue. This app helps me to get off at the
correct stop. When I’m on a sidewalk, I must always ask other pedestrians question to figure
out where I am. Like, what is the current house number? I can sometimes ask for help to
cross intersections or even more.

Interviewer: Okay, so navigating the city seems to still be very challenging. What
would be helpful for you to know to make navigation easier between intersections, and at the
intersection?

Maryse: Well, between intersections I would like to know about obstacles to avoid like
traffic cones and bicycles. At the intersection, knowing if there is a crosswalk, how many
lanes I have to cross, if there are some traffic lights or not and if the light is green would be



very helpful! There is an application that can help with general object detection but there is
no feature that lets me select the kind of object I want to detect during navigation. I think I
would like an app where I can select a mode which does not overwhelm me with too much
information.

Interviewer: It sounds like these apps give you more information than you need and are
sometimes more annoying than helpful. I suppose that when you arrive at your destination
you will be looking for certain types of objects. Can you tell me more about that?

Maryse: First let’s give a bit of context. When I arrive at my destination I first need
to check that I am at the right place. I usually do that by asking people around and the
information I am asking for is very dependent on my destination. For example, if I am going
to a shopping mall the main issue is that it’s typically an open space. These are more difficult
to understand than streets and sidewalks. It is often difficult for me to walk between parking
lots and pedestrian areas. There are very often few or no sidewalks from the bus stop to the
shopping center door. So being able to detect those things would be very helpful. Knowing
the store’s location when arriving at the shopping center would also be a plus. Then I would
also need information about what’s on the storefront like the store logo, the signs, the opening
hours and the house number for example.

Interviewer: Okay, and when you are at the right location is the story over?
Maryse: Well unfortunately not, getting around inside is also very challenging. For

example, if I am at a restaurant I need to know if there are any available seats at the tables
and how to get to them. I might also need to know how to get to the counter. And I would
say even before that finding the entrance or the door of the restaurant is very challenging as
dogs are not really able to do that.
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Appendix B

Market Research

To understand the challenges of creating assistive technology for the BVI, we performed the
following market research. By using online indices of assistive applications for the BVI, we
identified several dozen interesting apps. We then exchanged emails and interviewed some,
asking questions about their development process, user-testing, and adoption.

Application Name URL Status
EnvisionAI https://www.letsenvision.com/ Interviewed
SeeingAI https://www.microsoft.com/en-us/ai/seeing-ai Interviewed
BlindSight https://play.google.com/store/apps/details?id=com.neuroxlabs.BlindSight Interviewed
IDentiFi https://itunes.apple.com/gb/app/identifi-object-recognition-for-visually-impaired Interviewed
TalkingGoggles http://sparklingapps.com/goggles/ Interviewed
Boop Light Detector http://arii.github.io/boop/ Interviewed
Third Eye https://thirdeyeglass.com/ Interviewed
Blindly https://play.google.com/store/apps/details?id=com.aicursor.blindly Interviewed
EyeCYou https://play.google.com/store/apps/details?id=com.eyecyoutech.apps.eyecyou Interviewed
YourEyes https://play.google.com/store/apps/details?id=org.opencv.sample.opencv_mobilenet Interviewed
Minerva https://play.google.com/store/apps/details?id=com.chcepe.minerva Interviewed
CosyRobo http://www.cosyrobo.com/ Interviewed
BeMyEyes https://www.bemyeyes.com/ Interviewed
SmartSight https://play.google.com/store/apps/details?id=com.esh.smartsight Emails Exchanged
Color Detector https://play.google.com/store/apps/details?id=com.keesadens.colordetector Emails Exchanged
vOICe https://play.google.com/store/apps/details?id=vOICe.vOICe Emails Exchanged
Vocal Eyes http://vocaleyes.ai/ Emails Exchanged
SeeingAssistant Home https://itunes.apple.com/us/app/seeingassistant-home-lite/id625110066 Emails Exchanged
LightDetector https://itunes.apple.com/us/app/light-detector/id420929143 Emails Exchanged
ColorVisor https://itunes.apple.com/us/app/colorvisor/id511093568 Emails Exchanged
ColorSay https://itunes.apple.com/us/app/colorsay/id605398028 Emails Exchanged
CamFind https://camfindapp.com/ Emails Exchanged
AIPoly https://itunes.apple.com/us/app/aipoly-vision/id1069166437 Emails Exchanged
Voiceye http://www.voiceye.com/eng/ Emails Exchanged
Eye-D https://eye-d.in/ Emails Exchanged
Looktel http://www.looktel.com/products Emails Exchanged
TaptapSee https://itunes.apple.com/ca/app/taptapsee/id567635020 Emails Exchanged
Object Recognition https://play.google.com/store/apps/details?id=com.hubble.space.cloud.vision Emails Exchanged
Bespecular https://play.google.com/store/apps/details?id=com.bespecular.specular Not a good fit
ColoredEye https://itunes.apple.com/us/app/coloredeye/id388886679 Not a good fit
Autour https://itunes.apple.com/us/app/autour/id887476373 Not a good fit
Voice: OCR https://apps.apple.com/us/app/voice-take-picture-have-it/id903772588 Not a good fit

Table B.1. Market Research. This table contains the names and website links for
assistive technology applications supporting the blind and visually impaired. The status
column indicates the manner of interaction with the developers of these applications.

https://www.letsenvision.com/
https://www.microsoft.com/en-us/ai/seeing-ai
https://play.google.com/store/apps/details?id=com.neuroxlabs.BlindSight
https://itunes.apple.com/gb/app/identifi-object-recognition-for-visually-impaired
http://sparklingapps.com/goggles/
http://arii.github.io/boop/
https://thirdeyeglass.com/
https://play.google.com/store/apps/details?id=com.aicursor.blindly
https://play.google.com/store/apps/details?id=com.eyecyoutech.apps.eyecyou
https://play.google.com/store/apps/details?id=org.opencv.sample.opencv_mobilenet
https://play.google.com/store/apps/details?id=com.chcepe.minerva
http://www.cosyrobo.com/
https://www.bemyeyes.com/
https://play.google.com/store/apps/details?id=com.esh.smartsight
https://play.google.com/store/apps/details?id=com.keesadens.colordetector
https://play.google.com/store/apps/details?id=vOICe.vOICe
http://vocaleyes.ai/
https://itunes.apple.com/us/app/seeingassistant-home-lite/id625110066
https://itunes.apple.com/us/app/light-detector/id420929143
https://itunes.apple.com/us/app/colorvisor/id511093568
https://itunes.apple.com/us/app/colorsay/id605398028
https://camfindapp.com/
https://itunes.apple.com/us/app/aipoly-vision/id1069166437
http://www.voiceye.com/eng/
https://eye-d.in/
http://www.looktel.com/products
https://itunes.apple.com/ca/app/taptapsee/id567635020
https://play.google.com/store/apps/details?id=com.hubble.space.cloud.vision
https://play.google.com/store/apps/details?id=com.bespecular.specular
https://itunes.apple.com/us/app/coloredeye/id388886679
https://itunes.apple.com/us/app/autour/id887476373
https://apps.apple.com/us/app/voice-take-picture-have-it/id903772588




Appendix C

Supplementary Material for the Grid World
Experiments

Mean Diff Max Diff Learning Rate Framestack
12.00 23.00 0.005126 1
11.67 21.00 0.003328 8
7.00 10.00 0.005393 16
6.33 9.00 0.006356 8
6.33 9.00 0.001522 16
5.67 8.00 0.008439 1
5.67 7.00 0.009014 8
5.00 6.00 0.008207 16
4.67 6.00 0.006960 16
4.00 4.00 0.000833 8
4.00 4.00 0.000973 8
3.33 4.00 0.000455 16
3.33 4.00 0.000671 1
3.00 3.00 0.000032 1
3.00 3.00 0.000220 16
3.00 3.00 0.000020 1
3.00 3.00 0.000340 16
3.00 3.00 0.000031 1
2.00 3.00 0.026617 1
1.00 1.00 0.000016 1

Table C.1. Hyper-parameter search on Grid City. We report the mean and max
difficulty achieved by models in a hyper-parameter search on the Curriculum Grid City
environment after 1 million frames of experience. It appears that frame-stacking was not
strongly correlated with an increased ability to perform the OMN task, perhaps as a result of
the static nature of the environment.





Appendix D

Supplementary Material for the Sidewalk Environment
for Visual Navigation

The hyperparameters used to train our PPO model are fairly standard, and we did not
find much sensitivity in the policy learned, training efficiency, or final performance. We
also provide several additional maps of the SEVN dataset showing goal locations and urban
zoning.

D.1. Hyperparameters

Hyperparameter Value
Learning Rate 3× 10−4

Number of Steps 2048
Value Loss Coefficient 0.5
Linear LR Decay Schedule True
Entropy Coefficient 0
Gamma (γ) 0.99
Generalized Advantage Estimation (λ) 0.95
Maximum Gradient Norm 0.5
Number of PPO Epochs 4
Number of PPO Mini-Batches 32
Clipping Parameter 0.2

Table D.1. Hyperparameters. We report the hyper-parameters used while training.
These settings are quite similar to those PPO parameters described in [101].

D.2. Goal Location and Zoning Maps

The maps shown in the body of the work represent one view on our dataset. Here, we
present several other visualizations of this geographic region.



Goal Locations: In SEVN, doors with visually identifiable house numbers are available
as goals. The distribution of these goals is dependent on many factors – visibility of the
house number, visibility of the door, clear relationship between the two, but most importantly
the type and distribution of buildings along the street. In figure D.1, we show the spatial
distribution of goals within SEVN.

Fig. D.1. Map with Goal Locations in the same orientation as previous maps, with the
Small data split being the top right block. We can see that the target locations are well
spread out, but still diverse, with some dense areas (often commercial or residential zones as
seen in Figure D.2), whereas parks and industrial zones are more sparsely populated with
addresses.

Zoning: Arguably the primary factor determining the distribution of goal locations is
Montreal’s urban zoning regulation. In figure D.2 we show the primary zone determined by
the municipality of Montreal around and within the region captured by SEVN.
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Fig. D.2. Usage and Zoning Map for the region covered by SEVN, outlined by the
dotted orange line. In this graphic, purple indicates commercial zones, yellow indicates
residential zones, green indicates parks and outdoor recreation areas, dark teal is industrial,
and red indicates collective or cultural institutions (in this case, a cathedral). Many areas
are mixed, in the sense that they can be commercial and residential. These zones are colored
based on their primary purpose. Zoning rules are complex and the details can be viewed on
the city of Montreal’s website (link). The basis of this map is the OpenStreetMap Carto
(Black and White), with zoning data courtesy of the city of Montreal (link).
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