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Sommaire

La technique des répliques est une technique formidable prenant ses origines de la
physique statistique, comme un moyen de calculer des quantités du type:

E
[

log
( ∑
i∈{1...q}N

e−βEi
)]
, Ei

iid∼ N (0,∆).

Dans le jargon de physique, cette quantité est connue sous le nom de l’énergie libre,
et toutes sortes de quantités utiles, telle que l’entropie, peuvent être obtenue de là
par des dérivées. Plus généralement, n’importe quel système qui peut être décrit par
la distribution de probabilité : µβ(i) ∝ e−βEi , avec [q]N ≡ {1, . . . , q}N comme
support, requiert la computation d’une constante de normalisation en sommant un
nombre exponentiel de termes : Z ≡

∑
i∈Σ e

−βEi . Cependant, ceci est un problème
NP difficile, qu’une bonne partie de statistique computationelle essaye de résoudre, et
qui apparâıt partout; de la théorie des codes, à la statistique en hautes dimensions, en
passant par les problèmes de satisfaction de contraintes. Dans chaque cas, la méthode
des répliques, et son extension par (Parisi et al., 1987), se sont prouvées fortes utiles
pour illuminer quelques aspects concernant la corrélation des variables dans µβ et
la nature fortement nonconvexe de − log(µβ()). Algorithmiquement, il existe deux
principales méthodologies adressant la difficulté de calcul que pose Z:

a). Le point de vue statique: dans cette approche, on reformule le problème en tant
que graphe dont les nœuds correspondent aux variables individuelles de µβ,
et dont les arêtes reflètent les dépendances entre celles-ci. Quand le graphe
en question est localement un arbre, les procédures de message-passing sont
garanties d’approximer arbitrairement bien les probabilités marginales de µβ
et de manière équivalente Z. Les prédictions de la physique concernant la
disparition des corrélations à longues portées se traduise donc, par le fait que le
graphe soit localement un arbre, ainsi permettant l’utilisation des algorithmes
locaux de passage de messages. Ceci va être le sujet du chapitre 4.

b). Le point de vue dynamique: dans une direction orthogonale, on peut contourner
le problème que pose le calcul de Z, en définissant une châıne de Markov le long
de laquelle, l’échantillonnage converge à celui selon µβ, tel qu’après un certain
nombre d’itérations (sous le nom de temps de relaxation), les échantillons sont
garanties d’être approximativement générés selon µβ.

Afin de discuter des conditions dans lesquelles chacune de ces approches échoue, il
est très utile d’être familier avec la méthode de replica symmetry breaking de Parisi.
Cependant, les calculs nécessaires sont assez compliqués, et requièrent des notions qui
sont typiquemment étrangères à ceux sans un entrainement en physique statistique. Ce
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mémoire a principalement deux objectifs : i) de fournir une introduction a la théorie
des répliques, ses prédictions, et ses conséquences algorithmiques pour les problèmes de
satisfaction de constraintes, et ii) de donner un survol des méthodes les plus récentes
adressant la transition de phase, prédite par la méthode des répliques, dans le cas du
problème k−SAT, à partir du point de vu statique et dynamique, et finir en proposant
un nouvel algorithme qui prend en considération la transition de phase en question.

Mots-clés: problémes de satisfaction de contraintes, k-SAT, transition de
phase, méthode des replicas, replica-symmetry-breaking, châınes de Markov
Monte Carlo, marche aléatoire
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Summary

The replica trick is a powerful analytic technique originating from statistical physics
as an attempt to compute otherwise intractable quantities of the type:

E
[

log
( ∑
i∈{1...q}N

e−βEi
)]
, Ei

iid∼ N (0,∆).

In physics jargon this quantity is known as the free energy, and all kinds of useful
quantities, such as the entropy, can be obtained from it using simple derivatives. More
generally, any system whose state can be described by a probability distribution of the
form: µβ(i) ∝ e−βEi , with [q]N ≡ {1, . . . , q}N as a support, requires computing
a normalizing constant by summing over an exponentially large state space: Z ≡∑

i∈[qN ] e
−βEi . This is however an NP-hard problem that a large part of computational

statistics attempts to deal with, and which shows up everywhere from coding theory, to
high dimensional statistics, compressed sensing, protein folding analysis and constraint
satisfaction problems. In each of these cases, the replica trick, and its extension
by (Parisi et al., 1987), have proven incredibly successful at shedding light on keys
aspects relating to the correlation structure of µβ and the highly non-convex nature
of − log(µβ()). Algorithmic speaking, there exists two main methodologies addressing
the intractability of Z :

a) Statics : in this approach, one casts the system as a graphical model whose ver-
tices represent individual variables, and whose edges reflect the dependencies
between them. When the underlying graph is locally tree-like, local message-
passing procedures are guaranteed to yield near-exact marginal probabilities or
equivalently compute Z. The physics predictions of vanishing long range cor-
relation in µβ, then translate into the associated graph being locally tree-like,
hence permitting the use message passing procedures. This will be the focus of
chapter 4.

b) Dynamics : in an orthogonal direction, we can altogether bypass the issue of
computing Z, by defining a Markov chain along which sampling converges to
µβ, such that after a number of iterations known as the relaxation-time, samples
are guaranteed to be approximately sampled according to µβ.

To get into the conditions in which each of the two approaches is likely to fail (strong
long range correlation, high energy barriers, etc..), it is very helpful to be familiar with
the so-called replica symmetry breaking picture of Parisi. The computations involved
are however quite involved, and come with a number of prescriptions and prerequisite
notions (s.a. large deviation principles, saddle-point approximations) that are typi-
cally foreign to those without a statistical physics background. The purpose of this
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thesis is then twofold: i) to provide a self-contained introduction to replica theory, its
predictions, and its algorithmic implications for constraint satisfaction problems, and
ii) to give an account of state of the art methods in addressing the predicted phase
transitions in the case of k−SAT, from both the statics and dynamics points of view,
and propose a new algorithm takes takes these into consideration.

Keywords: constraint satisfaction problems, k-SAT, phase transitions, com-
binatorial optimization, replica trick, replica-symmetry-breaking, Markov
chain Monte Carlo, self-avoiding-walk
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Introduction

0.1 A toy problem

We start with a geometric problem that is easy to visualize. Consider theN -dimensional
ball of radius

√
N, centered at the origin: SN ≡ {x ∈ RN : ||x||2 ≤

√
N}, and suppose

we would like to determine its intersection with some random half-space of RN , whose
supporting hyper-plane also passes though the origin. A straightforward way to do
this, is by generating a random vector g1 ∈ RN , and defining the corresponding half
space as the set of points whose coordinate vector’s angle with g1 has a positive cosine:
U1 ≡ {x ∈ RN : gT1 .x ≥ 0}.

Now, suppose we reiterate this procedure by generating another vector g2, and look-
ing at the intersection of its corresponding half-space with the previously generated
half-space inside the unit ball SN

⋂
k∈{1,2} Uk, (see the figure below). If we keep

on reiterating this procedure, we will ultimately come up a vector gm satisfying
gTm.x < 0, ∀x ∈ SN

⋂
k≤m−1 Uk, such that the intersection of its corresponding half-

space with all of the previous ones is the empty set.

Figure 1: The intersection of two random half spaces inside SN

The problem of characterizing SN
⋂

1≤k≤M Uk, is known as the perceptron problem, and
is one of many constraint satisfaction problems that have been fruitfully studied by
statistical physicists. To make matters more precise:
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Definition 1. Consider a random vector gk ∈ RN , where (gk)i
iid∼ Ψ for all 1 ≤ i ≤ N,

for some distribution Ψ. We define its corresponding half-space Uk as the set of points
whose angles with gk have a positive cosine (or dot product):

Uk ≡ {x ∈ RN : gTk .x ≥ 0}.

Given a realization of the random variables {(gk)i : 1 ≤ i ≤ N}1≤k≤M , we are
interested in the intersection of the M corresponding half spaces {Uk}1≤k≤N inside the
N dimensional ball of radius

√
N centered at the origin:

SN
⋂

1≤k≤M

Uk,

where

SN ≡ {x ∈ RN : ||x||2 ≤
√
N}, Uk ≡ {x ∈ RN : gTk .x ≥ 0} for all 1 ≤ k ≤M.

A fascinating result of (Derrida and Gardner, 1988) states that:

• For α ≡M/N > 2, SN
⋂

1≤k≤M Uk = ∅ with high probability (w.h.p.).

• For α ≤ 2, log
(
µN(SN

⋂
1≤k≤M Uk)

)
/N ≈ ζrs(α) w.h.p. for some explicitly

known function ζrs, where µN is the uniform measure on SN .

In other words, for N sufficiently large, a phase transition occurs at a threshold around
α ≡M/N = 2.

0.2 A classical constraint satisfaction problem

A more elementary constraint satisfaction problem is the random assignment problem.
Suppose you are throwing a dinner party on short notice, and there are only two tables
at your disposition. You are asked to assign a seat to each guest such that no pair of
guests that dislike each other are seated at the same table.

Let σi ∈ {−1, 1} denote the position of the ith guest, with minus one signifying a seat
at the first table, and plus one a seat at the second one. Moreover, let {Jij}1≤i<j≤N be
a set of independent zero-mean Gaussians with unit variance, representing the com-
patibility between guests, with Jij ≥ 0 signifying that the guests i and j get along
well, and Jij < 0 meaning that they do not. It is easy then to see that the assignment
problem is equivalent to determining:

argmax(σ1,...σN )∈{−1,1}N
∑

1≤i<j≤N

Jijσiσj, (1)

where N is the number of guests.

Since we are interested in the least conflicting assignment, it can be useful to in-
troduce a random probability measure over Σ ≡ {−1, 1}N assigning more weight to

2



those assignments with the least conflicting pairs:

µβ(σ) ≡ e−βH(σ)∑
σ∈Σ e

−βH(σ)
, (2)

where H(σ) ≡ −(1/
√
N)
∑

1≤i<j≤N Jijσiσj.

In (Talagrand, 2011), the author proposes the following high level argument. Since
H(σ) is about

√
N, if the random variables {H(σ)}σ∈Σ are ”not too correlated” (in

a sense that will be thoroughly explained in chapter 5), we get maxσ∈ΣH(σ) =
O(
√
N
√

log(2N)) = O(N), such that the normalizing constant at the denominator
of the random measure: Z ≡

∑
σ∈Σ e

−βH(σ) is dominated by a few summands that are
of the same order (in logarithmic scale) to the entire sum. This wide disparity between
the contributions of the summands in Z makes it considerably harder to approximate.

A central theme in this thesis, and in the study of constraint satisfaction problems
or spin systems in general, is the relationship between the correlation structure of µβ
and the geometry of the minima of H : Σ 7→ R in the metric space (Σ, dh) where
dh(σ, τ) ≡ |{k : σk = τk}| is the Hamming distance between the assignments σ, τ ∈ Σ.

To bear this fact to light, consider the correlation of the random function H(σ) whose
randomness comes from the distribution of {Jij}.

Proposition 1 (Talagrand, 2011). Consider the real valued function H : Σ 7→ R given

by: H(σ) = −(1/
√
N)
∑

i<j Jijσiσj, where Jij
iid∼ N (0, 1) for all 1 ≤ i < j ≤ N . We

define the overlap between two assignments as q(σ, τ) ≡
(∑

i≤N σiτi
)
/N . The overlap

is then related to the correlation of H(σ) through the following identity:

E
(
H(σ)H(τ)

)
=
Nq2(σ, τ)

2
− 1

2
. (3)

Proof. Since the compatibility variables are independent standard Gaussian, if
(ij) 6= (k, l), we have E[JijJkl] = E[Jij]E[Jkl] = 0, while in the other case we have
E[JijJij] = E[J2

ij] = V ar(Jij) = 1, such that:

E
(
H(σ)H(τ)

)
=

1

N
E
((∑

i<j

Jijσiσj
)
.
(∑
k<l

Jklτkτl
))

(4)

=
1

N

(∑
i<j

∑
k<l

(k,l)6=(i,j)

E(Jij)︸ ︷︷ ︸
=0

E(Jkl)︸ ︷︷ ︸
=0

σiσjτkτl +
∑
i<j

E(J2
ij)︸ ︷︷ ︸

=1

σiσjτiτj

)
(5)

=

∑
i<j σiσjτiτj

N
=
N

2

(∑
i≤N σiτi

N

)2

− 1

2
. � (6)

Moreover, it is easy to verify that the overlap satisfies:

q(σ, τ) = 1− 2dh(σ, τ)

N
. (7)

Hence, studying the distribution of the overlap can tell us a great deal about the typ-
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ical distance between least conflicting pairs of assignments, and is intimately related
to the study of the correlation structure of H(σ) and by extension of the correlation
between individual variables {σi}i≤N under µβ.

More importantly, another non-obvious way in which the overlap comes up, is when
trying to approximate the normalization constant Z ≡

∑
σ∈{−1,1}N e

−βH(σ). As we dis-
cussed, this task is very hard even for very simple spin systems such as the assignment
problem above, and no known rigorous technique is able to approximate Z in most
cases when β � 1. However, in the late eighties, a number of statistical physicists
have succeeded in doing so though a very powerful, yet non-rigorous, analytic tech-
nique known as the replica trick.

In this approach, one considers the harder problem of approximating E[logZ] by
reducing it, through a Taylor expansion, to the problem of computing limn→0 E[Zn].
When doing so, it is very useful to make a change of variables inside the sum in order
to express E[Zn] as a function of the overlap and approximate it by a few dominant
terms that are called saddle-points. Moreover, the choice of the correct saddle-point
depends crucially on a few assumption about the distribution of the overlap.

0.3 Thesis organization

In the first part of this thesis, we attempt to present a self-contained introduction to
replica theory and its predictions for a large class of constraint satisfaction problems,
mainly following (Mezard and Montanari, 2009) and (Mezard et al., 1987), while fill-
ing in the missing proofs to some of the presented results. Then, in the second part,
we focus on a classical NP-hard constraint satisfaction problem known as the k-SAT
problem, which consists of determining the satisfiability of a given boolean formula
and generating the set of solutions in the case in which the formula is satisfiable.

After having presented the algorithmic consequences of the physics predictions in the
case k-SAT, we survey the state of the art methods in generating satisfying assign-
ments, and the pros and cons of each approach. Finally, we present a novel algorithm
that we name SAW-SAT, that builds upon previous work, and addresses some of the
problems of alternative approaches. The organization of the thesis is then as follows:

• Chapter 1 & 2. We start by introducing some basic notions from spin glass
theory and the necessary physical jargon, building up to establishing the overlap
parameter as the central parameter to study a large class of disorder systems,
which encompasses q−coloring, k−SAT problem, etc.

• Chapter 3. We give a self contained account of the replica trick, where it fails,
and its extension by Parisi, on a toy model called the REM, then on a more
general model called the p−spin model, of which a large number of constraint
satisfaction problems are a special case.

• Chapter 4. We start by introducing the k−SAT problem and casting it in the
language of probabilistic graphical models, then go on to discuss the algorithmic
implications of the replica predictions regarding the uniform measure on satisfy-
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ing assignments, building up to a message passing algorithm under the name of
Survey propagation, that takes these into account.

• Chapter 5. After presenting the statics point of view in chapter 4, we start by
introducing Markov chain Monte Carlo methods (MCMC), their provable guar-
antees, and the physics prediction that result in exponential relaxation times
for single-flip dynamics. Finally, we survey some state of the art methods,
their uniformity-efficiency trade-off, and propose an algorithm under the name
of SAW-SAT which takes inspiration from some interesting ideas from computa-
tional physics, and overcomes some of the issue present in previous algorithms.
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Part I

Spin glass theory and the 1RSB
universality class
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Chapter 1

An informal introduction to spin
glasses

Chapter organization

We start by an introductory discussion of spin glasses as a physical object and their
main properties (1.1). Then, after introducing a physical model under the name of
the Gibbs measure that is used to describe it, we move on to describe its dependence
on a temperature parameter (1.1.1). Afterwards, we begin the discussion of phase
transitions and introduce the natural objects used to characterize it: thermodynamic
quantities (1.2.1), order parameters (1.2.2), and correlation length (1.2.3). Sub-
sequently, we describe a phenomenon that is widely known in statistical physics as
universality, that relates very different models by a set of constants called critical ex-
ponents (1.2.4), and move on to a brief historical note on experimental studies on spin
glasses that motivates the previous sections (1.3). Finally, we add an appendix for
some first-principles (non-rigorous) physical derivation of a central object of the thesis
called the free energy, in order to provide some intuition for the interested reader.
However, since there is no mention of this appendix later on in the thesis it can be
skipped without loss of continuity.

Referencing theorems

Since one of the main goals of this thesis is to provide a self-contained introduction to
the subject of replica theory and its connection with constraint satisfaction problems,
we have filled in some gaps in the literature by formalizing a number of definitions and
proving a number of theorems/lemmas/proposition left as exercises to the reader or
simply mentioned in passing. To distinguish the results whose proof can be found in
the mentioned reference from those we completed: If a theorem’s proof can be found in
the literature we will reference it inside the statement of the theorem, e.g.

(
Theorem

1 (Mezard and Montanari, 2009) Consider an arbitrary . . .
)

, and will only prove it
if it provides further intuition. On the other hand, if a result was left as an exercise
to the reader or whose proof is missing from the standard references, we will state the
theorem without the reference, e.g.

(
Theorem 1 Consider an arbitrary. . .

)
, but we

will mention the reference where we found the statement of the result in the preceding
paragraph (or just after it). The same goes for lemmas/propositions and definitions.
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1.1 Disorder and frustration

Consider a metal (such as Cu) with a small amount of a magnetic species (e.g. Mn)
diluted in it. Such a mixture is called a magnetic alloy. An important feature of mag-
netic alloys is that, while they keep the properties of the original metal, the magnetic
impurities are strong enough to create a peculiar magnetic behaviour.

Spin glasses (such as CuMn or AuFe) are a famous example of such alloys belong-
ing to the class of disordered systems with quenched disorder. A system is said to be
disordered if some parameters defining its behaviour are random.

In the case of a spin glass, the magnetic species form local moments or spins whose
location in the metal is random and the spatial distribution of spins drives the system
into a frustrated state which determines its magnetic behaviour.

As an example, consider a dilute solution of Mn in Cu. This can be modelled as
a grid of Cu with Mn spins located randomly on this grid, each pointing in a certain
direction. Now given the locations of the magnetic impurities in the metal, the con-

Figure 1.1: Magnetic moments in a metallic matrix (K.Binder, 1977a)

duction electrons at each spin scatter onto the neighboring sites, inducing a strongly
oscillating interaction potential between spins called the RKKY interaction (Ruder-
man and Kittel, 1954; Kasuya, 1956; Yosida, 1957):

Jij(rij) = J0
cos(2kF rij + φ0)

(kF rij)3
, (1.1)

where rij is the the distance between the pair of spins (i, j) while J0 and φ0 are con-
stant terms and kF is the Fermi wave number of the host metal.

Thus, if the spins are not too far apart, we can expect an effective interaction or cou-
pling between them. Moreover this interaction should oscillate between positive and
negative values depending on how far apart they are, as evident in the figure above.

A positive coupling Jij indicates that the system is favourable to the alignment of
the pair (i, j) while a negative coupling indicates that they should be in opposite di-
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Figure 1.2: Oscillating potential with R ≡ rij (K.Binder, 1977a)

rections.

The resulting optimization problem is then to find the most favorable spin directions
{σi}1≤i≤N subject to the sign of the couplings:

max
(σ1,...,σN )∈{−1,1}N

∑
1≤i<j≤N

sgn(Jij)σiσj, subject to {Jij} = J , (1.2)

where J is a symmetric RN×N matrix with zero diagonal entries representing the set
of couplings associated with the given spin system.

In a ferromagnetic system all coupling constants are positive such that the most
favourable state has all spins aligned, whereas in an antiferromagnetic one, the cou-
plings are all negative and so each pair of spins should point in opposite directions. A
spin glass is essentially a mixture of both situations and the basic physics arises as a
competition between ferro- and antiferromagnetic interactions.

Through the interaction potentials, the spins are encouraged by their neighboring
local moments to point in contradictory directions simultaneously such that the inter-
actions pertaining to a given spin cannot all be simultaneously satisfied. The resulting
failure to satisfy all couplings drives the system into a strange kind of quasi-equilibrium
referred to as frustration.

In a pure ferromagnetic system, all couplings can be satisfied by having all spins
point in the same direction and hence there can be no frustration, which is not the
case for an antiferromagnet. In particular, if we suppose that all spins interact with
each other, then any antiferromagnetic system of size N ≥ 3 spins cannot possibly
satisfy all negative couplings and hence it will invariably be in a frustrated state.

If a physical system depends on a large number of variables with many degrees of
freedom, an exact solution is often not possible and even if possible not very realistic.
Thus, it can be very useful to add stochasticity into the description of the system at
the miscroscopic level by specifying the physical picture for a miniature N−particle
system and then take the scaling limit N →∞ to deduce the macroscopic quantities
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of interest.

Historically, this statistical point of view started with Boltzmann who managed to
deduce the second law of thermodynamics by starting with a probabilistic description
of the individual particles and their interactions.

Here and throughout the thesis, we use the following notation: [N ] ≡ {1, 2, . . . N}
and we write i, j ∈ [N ]2 to mean {(i, j) : i ∈ [N ], j ∈ [N ]}.

Consider a system of N random variables or particles : σ = (σ1, . . . σN), each indi-
vidual particle σk takes value in X . The support of the system or the state space (as
in state of all possible states) is then given by Σ ≡ XN .

Equilibrium statistical mechanics (Fischer and Hertz, 1991) postulates that the prob-
ability that a system with a fixed number of particles, at a fixed temperature T , is in
a given state σ ∈ Σ, is given by the Gibbs-Boltzmann distribution:

µβ(σ) =
e−βH(σ)∑
σ∈Σ e

−βH(σ)
in the discrete case or

µβ(σ) =
e−βH(σ)∫

Σ
e−βH(σ)dσ

in the continuous case,

where β ≡ 1/T is the inverse temperature and H : Σ 7→ R is the energy function
or Hamiltonian. The Gibbs-Boltzmann distribution is used to model a wide array of
N−particle systems throughout statistical physics such as ideal gases, crystals, etc.
The choice of the Hamiltonian then differs depending on the system we are trying to
model.

For magnetic alloys, each system is identified with a single symmetric matrix with
zero diagonal entries representing the coupling: J ∈ RN×N . A rather general form
for the Hamiltonian of spin systems can be given by:

H(σ) = −
∑

1≤i<j≤N

Jijσiσj −B
∑
i∈[N ]

σi, (1.3)

where J is the coupling matrix whose entries {Jij} are supposed to model the RKKY
interactions noted above, and B is a global magnetic field acting uniformly on all spins
{σk}k∈[N ].

Note that in a given N−particle system, the values of the couplings {Jij} are fixed
(and assumed to be known) such that the system is associated with a unique Gibbs-
Boltzmann distribution that is a function of just σ = (σ1, . . . σN):

µβ(σ) =
exp

(
β
∑

1≤i<j≤N Jijσiσj + βB
∑

i∈[N ] σi

)
∑

σ∈Σ exp
(
β
∑

1≤i<j≤N Jijσiσj + βB
∑

i∈[N ] σi

) . (1.4)
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At B = 0, the proposed Hamiltonian closely resembles the optimization problem de-
scribed above, and finding the most likely configuration: maxσ∈Σ µβ(σ), in the low
temperature limit T → 0 (β → ∞), is in fact equivalent to the original hard con-
strained problem.

Oftentimes, µβ is simply referred to as a Gibbs measure, and denoted µβ(σ) ∝
e−βH(σ) up to a normalization constant called the partition function Z ≡

∑
σ∈Σ e

−βH(σ).

Definition 2. An N−particle spin system is a collection of dependent random vari-
ables: σ = (σ1, . . . σN), whose support is Σ and whose distribution is the Gibbs-
Boltzmann distribution, that is parameterized by a symmetric zero-diagonal matrix of
couplings J an inverse temperature parameter β, and a global magnetic field B:

σ ∼ µβ(σ) where µβ(σ) ∝ exp
(
β

∑
1≤i<j≤N

Jijσiσj + βB
∑
i∈[N ]

σi
)
. (1.5)

Following statistical physics convention, we will write the Gibbs measure with the in-
verse temperature β subscript but we will keep the other two parameters B and J
implicit, even though we do assume they are fixed (and known).

For a spin glass model with binary or Ising spins: X ≡ {−1, 1}, the state space
is given by Σ = {−1, 1}N where the value of an individual spin σk = +1 or −1 is
interpreted as the kth spin pointing up or down respectively.

Definition 3. Given an N−particle spin system σ ∼ µβ, the set of minimum en-
ergy configurations are called ground states, and correspond to those with the highest
probability:

σgs = argmax
σ∈Σ

{µβ(σ) ∝ exp(−βH(σ))} = argmin
σ∈Σ

{H(σ)}. (1.6)

Note that, computing the partition function Z cannot be done naively as it requires
summing over an exponential (|X |N) number of configurations. In fact, normalizing
discrete probability distributions over exponentially growing supports is a central prob-
lem in statistical inference, information theory and computational complexity theory.

The second part of this thesis (Part II ) deals with analytic and algorithmic ideas
originating from the physics literature which have proven very fruitful in approximat-
ing Z.

1.1.1 High vs low temperature regimes

An important observation regarding the temperature dependence of the Gibbs measure
and the correlation between individual spins can already be made:

• At high temperature, β ≈ 0 and therefore, µ0(σ) = 1/|Σ|,∀σ ∈ Σ, independently
of the energy function and hence of the signs of the couplings {Jij}. Thus,
in the high temperature regime, all states have nearly equal probability such
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that the energetically favourable states are as probable as those that do not
satisfy the couplings (i.e. those with relatively many individual spin pairs in
{(i, j) : Jijσiσj < 0}).

• On the other hand, at low temperature, β is large and therefore, a small change
in the energy corresponds to a large change in the probability of a given state,
such that nearly all of the probability mass is concentrated on the minima of the
energy function. Hence, the spins are locked together with high probability in a
few configuration and are thus strongly correlated.

In fact, as the temperature is lowered, the energy landscape undergoes a series of struc-
tural changes corresponding to multiple phase transitions, where each phase is charac-
terized by subtle changes in the correlation structure. The duality between the correla-
tion structure and the geometry of the minima of the energy function in the sense of the
Hamming distance between low energy configurations: d(σ, τ) ≡ |{i ∈ [N ] : σi 6= τi}|,
will be a major theme in later chapters where we will study the different spin glass
phases at length.

Furthermore, since the inverse temperature parameter β controls the sensitivity of
µβ w.r.t. changes in the energy, it allows one to consider smoothed versions of distri-
butions with zero probability events. As pointed out above, this is very useful when
considering models with hard constraints that have zero probability in a significant
portion of the state space, as it helps avoiding numerical issues in dynamical algo-
rithms, as we shall see in the last chapter, when discussing the use of Markov chains
for sampling

approx∼ µ∞(.).

1.2 Phase transitions

In the study of phase transitions, each phase exhibits a different kind of order, and
order parameters serve to delineate the boundaries of each phase.

For example, consider the gas-to-liquid phase transition. As the temperature is low-
ered at constant pressure, we reach a critical temperature where the liquid component
instantly becomes much denser than the gas (Simons, 1997), the difference between the
two densities can therefore serve as an order parameter that signals the gas-to-liquid
phase transition. As a rule, systems are ordered at low temperature and transition
into less ordered states upon heating. Boiling water is a well known example for this
phenomenon.

To shed some light on the low temperature ordered phase of a spin glass, i.e. the
spin glass phase, we will contrast it to the simpler case of a ferromagnet. In general,
the order parameter is defined such that it is zero below the transition temperature
and becomes nonzero at a critical temperature signaling the onset of a phase transition
(Castellani and Cavagna, 2005).

In spin systems, the magnetization is a central order parameter which describes the
orientation of spins. Physically speaking, each spin feels the combined effect of the
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global magnetic field produced by its neighbors through the couplings, which pushes
the spin to point in a specific direction completely determined by the Hamiltonian.
The resulting orientation is called the local magnetization and is denoted by mi. More
formally:

Definition 4 (Mezard and Montanari, 2009). Given an N−particle spin system, the
local magnetization at the ith spin is the expectation of σi with regards to µβ and is
denoted by mi:

mi ≡
∑

{σk}k 6=i∈XN−1

µβ(σ[N ]\i, σi = 1)− µβ(σ[N ]\i, σi = −1). (1.7)

Here and throughout the thesis, we will denote to the expectation with regards to µβ by
brackets such that: mi = 〈σi〉. Since we want to characterize the general orientation
of the entire system, we define a second order parameter: the total magnetization (or
simply the magnetization) as the arithmetic mean of local magnetizations:

m ≡ 1

N

N∑
i=1

〈σi〉. (1.8)

As pointed out above, a variation in the temperature redistributes the probability
mass by either flattening it over all states (at high temperature) or putting all the
mass on the the minima of the energy function.

In a ferromagnet, all spin couplings are positive and hence, at low temperature, the
system is ordered in the sense that all spins are aligned. As the temperature increases,
less favourable spin configurations gain probability mass. In the high temperature
regime, the system is in a disordered state and has spins pointing in apparently ran-
dom directions.

Consider an N−particle spin system with the above Hamiltonian and let µ
(i)
β (σi = .)

denote the marginal probability of the ith spin. Considering that, when β ≈ 0, the
probabilities of all states are nearly equal independently of the couplings, the marginal
probabilities that an individual spin be ±1 are equal, such that the magnetization is
zero:

m =
1

N

∑
i

µ
(i)
β (1)− µ(i)

β (−1) ≈ 0, when β ≈ 0. (1.9)

This results holds independently of the signs of the couplings. However, at low tem-
perature, ferromagnetic and glassy systems behave much differently. Consider the
Hamiltonian introduced above

H(σ) = −
∑

1≤i<j≤N

Jijσiσj −B
∑
i∈[N ]

σi, (1.10)

the lowest possible value this function can take is −
∑

1≤i<j≤N |Jij| −BN . In a ferro-
magnet it is possible to reach the lowest energy since Jij ≥ 0, ∀1 ≤ i < j ≤ N, there-
fore, depending on the sign of B, the ground state configuration is either σgs = (1, . . . 1)
if B > 0 or (−1, · · · − 1) if B < 0.
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In the low temperature regime, β is large, and the Gibbs measure is sensitive to
the slightest perturbation in energy, in which case, the ± symmetry is broken, and
all local magnetizations take a nonzero value with the same sign, this phenomenon is
called spontaneous symmetry breaking (Fischer and Hertz, 1991), and will be expanded
upon in the next chapter.

For a spin glass, the high temperature results still hold, since no matter the signs
of the couplings the probability of any state σ ∈ Σ will be µβ≈0(σ) = 1/Z, such that

µ
(i)
β (1) − µ(i)

β (−1) = 0, but the fact that the interaction is allowed to take negative
values complicates the analysis for the low temperature regime. The next chapter
will introduce the appropriate framework needed to discuss a more complex variant of
symmetry breaking characteristic of the spin glass phase.

1.2.1 Thermodynamic quantities

Since we’re ultimately interested in a macroscopic piece of spin glass material, after
specifying the behaviour at the microscopic scale (of an N−particle system) with an
appropriate Hamiltonian, we take the large N limit to derive quantities of interest.
This limit is often referred to as the thermodynamic limit, in reference to it’s original
use in Boltzmann’s work.

Definition 5 (Mezard and Montanari, 2009). Given an N−particle spin system, with
the Hamiltonian H(σ) = −

∑
1≤i<j≤N Jijσiσj −B

∑
i∈[N ] σi, its three thermodynamic

quantities (or potentials) are as follows:

• The free energy: F (β) = log(Z)/β.

• The internal energy: U(β) ≡ 〈H〉 =
∑

σ∈ΣH(σ) µβ(σ).

• The entropy: S(β) ≡ −
∑

σ∈Σ µβ(σ) log
(
µβ(σ)

)
.

The single most important thermodynamic quantity in a disordered system is the
free energy and all other quantities can be derived directly from it (as shown in the
appendix). Physically speaking, given a system in thermodynamic equilibrium, the
evolution of its state can be best described by the free energy. In particular, changes
in the value of the free energy can be used to pinpoint spontaneous changes in the
system and determine their direction (Simons, 1997).

Although, it is not directly related to the rest of the discussion, we have found it
illuminating to delve deeper into the thermodynamics of the free energy, and relate
it to the other two main thermodynamic potentials. We have therefore included an
appendix detailing the derivation of F (β) from first principles and it’s physical sig-
nificance, following (Claudius, 2017) and (Simons, 1997), as well as the simple proof
of the proposition below. Note that the rest of the thesis makes no further mention of
this appendix, and can therefore be skipped without loss of understanding, for those
not interested.

Proposition 2 (Mezard and Montanari, 2009). Given an N-particle spin system σ ∼
µβ, and F (β), U(β), S(β) as defined above, we then have:

F (β) = U(β)− S(β)

β
. (1.11)
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1.2.2 Order parameters

As previously discussed, at low enough temperatures β is large and the system be-
comes very sensitive to small perturbations. In particular, the slightest change in
energy in the vicinity of the critical temperature can cause dramatic changes in the
system. Hence, we can probe the existence of a phase transition by perturbing the
energy and monitoring its response (Simons, 1997).

These perturbations can be either local or global, depending on the information we are
seeking. In magnetic systems, we can either perturb the system globally by varying
a global parameter such as the temperature and look at some temperature dependent
observable such as the specific heat C(β) ≡ ∂H/∂β, or we can add a local magnetic
field acting on a given spin and look at the effect of this local perturbation on faraway
spins. If the system exhibits long range correlation, we expect local perturbations to
have an effect on far off spins (Fischer and Hertz, 1991).

Definition 6 (Mezard and Montanari, 2009). Consider an N−particle spin system
with the Hamiltonian H(σ) = −

∑
1≤i<j≤N Jijσiσj, and suppose we add a local mag-

netic field Bi at the ith spin, such that the new (perturbed) energy function of the
system becomes HBi

(σ) = H(σ) +Biσi. The spin glass susceptibility is then defined as

χSG ≡ β2

N

N∑
i=1

χ2
ji where χji ≡

dmj

dBi |Bi=0

. (1.12)

Physically speaking, if χji > 0, the perturbation induces a positive response in
the system such that the material is attracted by the local magnetic field Bi and the
jth spin’s orientation, characterized by mj, shifts towards sgn(Bi). This follows by
definition of the susceptibility, if χji = dmj/dBi > 0 then sgn(dmj) = sgn(Bi).
The following theorem is a classical result in statistical physics, called the fluctuation-
dissipation relation (Mezard and Montanari, 2009), as it relates the correlation between
spins within the unperturbed system with its response to an infinitesimal perturbation.

Theorem 1 (Mezard and Montanari, 2009). Consider an N−particle spin system with
the locally perturbed Hamiltonian HBi

(σ) = H(σ) + Biσi, the spin glass susceptibility
then satisfies the following ”fluctuation-dissipation” relation:

χSG =
β2

N

∑
ij

[〈σiσj〉 − 〈σi〉〈σj〉]2.
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Proof.

χji =
d

dBi

〈σj〉 =
d

dBi

[∑
σ σje

−βH(σ)+βBiσi

Z

]

=

∑
σ σj

d
dBi
e−βH(σ)+βBiσi

Z
−
∑

σ
d
dBi
e−βH(σ)+βBiσi

Z2

∑
σ

σje
−βH(σ)+βBiσi

= β

[∑
σ

σjσi
e−βH(σ)+βBiσi

Z
−

(∑
σ σi

d
dBi
e−βH(σ)+βBiσi

Z

)(∑
σ σj

d
dBi
e−βH(σ)+βBiσi

Z

)]
= β〈σiσj〉 − 〈σi〉〈σj〉.

Hence the spin glass susceptibility satisfies

χSG =
β2

N

∑
ij

[〈σiσj〉 − 〈σi〉〈σj〉]2. � (1.13)

In order to detect the transition to glassy phases, a necessary condition to be checked
is that χSG should diverge as N −→∞ (Mezard and Montanari, 2009).

1.2.3 Correlation length

Suppose we take a sample of spin glass, cut it in half and measure some observables
for each piece. Assuming the interactions taking place are identical in each piece and
that the temperature and magnetic field B are kept fixed, the two pieces will have the
same properties as the whole. However, if we keep repeating this process long enough,
at some point, we will reach a length scale where the magnetization, susceptibility
and other observables of the subsystems start to differ from the ones measured at the
previous iteration. Since the interactions arise from the scattering of electrons which
only happen within a certain reach, this length scale defines a correlation length below
which the spins are highly correlated within each subsystem (Simons, 1997).

An intuitive description of this phenomenon is to consider a spin system where the
spins are not independent under the Boltzmann measure but the correlation decays
above a certain length scale ξ, the idea proposed in (Mezard and Montanari 2009) is
to consider blocks of length ξ ∈ N, taking value in |X |ξ, that are nearly indepen-
dent under µβ. Since the system becomes more correlated at low temperatures, the
correlation length should be a function of β.

Theorem 2 (Mezard and Montanari, 2009). Consider the one-dimensional Ising
model where the state space is given by Σ ≡ {−1, 1N}, and with the following inter-
actions: J = {Ji,i+1 : i ∈ [N − 1]}, with the usual Hamiltonian at zero magnetic field
B = 0:

H(σ) = −
∑

i∈[N−1]

Jijσiσi+1 such that µβ(σ) ∝ exp
(
β
∑

i∈[N−1]

Jijσiσi+1

)
. (1.14)

Then, for all pairs of spins within a distance: δN < i < j < (1 − δ)N, for some
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δ > 0, we have:

lim
N→∞

〈σiσj〉 = exp
{
− |i− j|

ξ(β)

}
+ Θ(e−αN), ξ(β) ≡ − 1

log(tanh β)
. (1.15)

In other words, for certain models, the correlation between spins decreases expo-
nentially fast above a temperature-dependent critical distance ξ(β). Moreover, since
the susceptibility can be expressed in terms of correlations, this critical distance can
also be understood in terms of a fluctuation dissipation relation. In particular, in the
simpler case where B = 0 such that by symmetry we get 〈σi〉 = 0, we have the
following result (Mezard and Montanari, 2009):

χM(β) = β
∑
ij

〈σiσj〉 = β
+∞∑
i=−∞

exp(−|i|/ξ(β)) + Θ(e−αN) when N � 1. (1.16)

1.2.4 Universality

When undergoing a phase transition, the system is subject to dramatic changes in its
order parameters such that its response functions typically become singular (Simons,
1997):

• the compressibility in the liquid-to-gas phase transition: κT = − 1
V
∂V
∂P |T=Tc

=∞

• and the magnetic susceptibility in the paramagnetic-to-ferromagnetic phase tran-
sition in the case of a spin system with all positive couplings: χM = ∂m

∂B |T=Tc
=∞.

Since most of these observables can be written as derivatives of the free energy, phase
transitions typically correspond to singularities in the free energy.

Note that, since the partition function of finitely many particles is a sum of exponential
functions, it is always analytic in β, such that the free energy F (β) = − logZ/β is
analytic as well. Therefore, singularities corresponding to phase transitions can only
occur in the thermodynamic limit as N →∞.

Thus, the study of phase transitions is in large parts reducible to finding the origin of
singularities in the free energy and characterizing them by a set of critical exponents
(s.a. α, γ below).

For instance, consider a ferromagnetic N−particle spin system, i.e. one where all
coupling Jij are positive, and with the Hamiltonian H(σ) = −

∑
1≤i<j≤N Jijσiσj −

B
∑

i∈[N ] σi, and let t ≡ T−Tc
Tc

be the reduced temperature. The ferromagnetic phase

transition can then be characterized by a couple of critical exponents (α, γ) (Simons,
1997) relating to the magnetic susceptibility χM and the specific heat : C ≡ ∂H/∂β:

χM =
∂m

∂B |B=0+
∝ |t|−γ , C =

∂H
∂β
∝ |t|α. (1.17)

Surprisingly, some singularities in the free energy of very different systems (i.e. with
very different Hamiltonians) can be characterized by the same set of critical exponent.
For example the liquid-to-gas and para-to-ferromagnetic transitions are described by
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the same set of critical exponents and are therefore said to belong to the same Uni-
versality class (Simons, 1997).

1.3 Peculiar magnetic behaviour

Experimental studies of spin glasses started in the 70s, the basic question was whether
such systems display a phase transition at low enough temperatures, the high tem-
perature regime being trivially paramagnetic for all magnetic systems. The magnetic
susceptibility of CuMn was measured as a function of temperature, as shown in the
figure below.

Figure 1.3: A cusp in the susceptibility (Binder and Young, 1986).

At high temperature, experiments suggested that the magnetic susceptibility decreases,
as expected by the Curie law for paramagnetic materials χM ∝ T−1. Furthermore, at
some critical temperature we find a sharp peak in the susceptibility, which seem to
indicate a phase transition (Binder and Young, 1986).

Since the critical system is highly susceptible to perturbations, the susceptibility was
expected to diverge at some critical temperature, as in the ferromagnetic case. How-
ever, experiments demonstrated a cusp in the susceptibility at the critical temperature
rather than a full blown singularity. Moreover, the specific heat: C = ∂H/∂β, which
measures the change in energy induces by varying the temperature, was observed to
be smooth around the critical temperature with a broad maximum only at higher
temperatures, which is rarely the case in standard phase transitions.

Neutron-scattering experiments also revealed the absence of any kind of ferro- or an-
tiferromagnetic (i.e. Jij < 0,∀i, j) spatial ordering below the critical temperature,
but rather an irregular kind of equilibrium with strongly correlated local magnetic
moments (i.e. spins) frozen in apparently random directions.

The main reason for this type of behaviour was conjectured to be the indirect nature
of the RKKY interactions, whereby placing a magnetic impurity in a sea of conducting
electrons has a damping effect on the susceptibility.
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These observations, along with many other experimental studies uncovering strange
glassy phenomena, motivated an extensive amount of theoretical work with the goal
of understanding what would a phase transition look like in a solvable model of spin
glass.

1.4 Appendix: Thermodynamics of the free energy

1.4.1 Potentials of an ideal gas

Consider a system of N particles moving randomly in a space of volume V with internal
pressure P and colliding with each other in a perfectly elastic fashion, i.e. without
losing any kinetic energy. Such a system is called an ideal gas and is governed by the
the ideal gas law :

PV = nRT, (1.18)

with n being the quantity of gas in moles, R is the gas constant and T the temperature.

The internal energy of a disordered system is the microscopic energy resulting from
the random motion of molecules and their interactions, it is essentially the statistical
mechanics counterpart of the energy of moving objects in classical mechanics.

The internal energy is defined as a differential quantity rather than an absolute one.
More precisely, the first law of thermodynamics defines the change in internal energy
of a system as:

dU = δQ︸︷︷︸
energy flowing into the system as heat

+ δW︸︷︷︸
work done on the system

. (1.19)

In the case of pressure-volume work or PV-work, δW = −PdV and δQ = TdS, such
that the internal energy U is related to the entropy S through U = TdS − PdV .

If the gas is kept at constant temperature and volume with fixed number of particles
then its state can be described by the Boltzmann distribution, where the probability
of an eigenstate of energy Er is given by

µβ(r) =
e−βEr

Z
with β ≡ 1

kT
for some constant k. (1.20)

Since the state of the system is random, its internal energy is the expected value of
the energy with regards to the Boltzmann distribution:

U(β) ≡ 〈Er〉 =
∑
r∈Σ

µβ(r)Er. (1.21)

The rationale for this is that given a suitable distribution for the energy function,
the fluctuations of U(β) at fixed temperature will vanish in the thermodynamic limit
and the system will be associated with a unique internal energy potential with high
probability.
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1.4.2 The Legendre transform and the Helmholtz free energy

A neat way to shift variable dependencies in physics is through the Legendre transform.
Formally:

Definition 7. The Legendre transform of a function f : A 7→ R is given by

f ∗(t) = sup
x∈A
{tx− f(x)} where t ∈ {s ∈ R : f ∗(s) <∞}. (1.22)

However, in the physics literature (McKay et al., 2009), this technique is formulated
slightly differently while preserving the same aim of shifting the dependency of a
function from one variable to another. Consider a function of two variables f(x, y),
we define the conjugate variables u and v of x and y respectively, as follows:

df =
( df
dx

)
y︸ ︷︷ ︸

u

dx+
(df
dy

)
x︸ ︷︷ ︸

v

dy, (1.23)

Definition 8 (McKay et al., 2009). The Legendre transform g(., .) of a function of
two variables f(x, y) on one of its variables, e.g. y, is defined by fixing said variable
to some value y = y, and defining the transform as:

g(x, v) ≡ f(x, y = y)− vy. (1.24)

The Legendre transform of f(x, y) on one of its variables, e.g. y, then switches the
dependency from said variable to its conjugate:

dg = d(f − vy) = df − vdy − ydv = udx+ vdy − vdy − ydv
= udx− ydv

resulting in a function g(x, v) depending on v instead of y. The most classical example
of this formulation in statistical physics can be seen in the derivation of the Helmholtz
free energy.

The Helmholtz free energy of a system is defined as the Legendre transform of its
internal energy F ≡ U −TS (Claudius, 2017). Since S = −(∂F/∂T )V,N , we shift the
dependency of U on the entropy to its conjugate T :

dU = TdS−PdV, d(TS) = SdT +TdS hence dU = d(TS)−SdT −PdV, (1.25)

and therefore

dF ≡ d(U − TS) = dU − TdS︸ ︷︷ ︸
=−PdV

−SdT (1.26)

= −SdT − PdV. (1.27)

In the last section below, we present the physics derivation of this result from first
principles, expanding on the notes of (Claudius, 2017).

20



1.4.3 The free energy from first principles

The first law of thermodynamics stipulates that in a closed system, such as an ideal
gas with fixed number of particles, the internal energy of the system satisfies

dU = δQ︸︷︷︸
energy flowing into the system as heat

+ δW︸︷︷︸
work done on the system

, (1.28)

while the second law states that if the system is undergoing a reversible process, then
δQ = TdS and δW = −PdV, hence dU = TdS − PdV which yields a potential
with the entropy and volume as independent variables U(S, V ).

In a more general sense, we have the basic thermodynamic relation (BTR for short)

dU = TdS +
k∑
i

Fidqi (1.29)

where {Fi, qi} are the pairs of conjugate variables characterizing the system.

In a magnetic system such as a spin glass, we have {F, q} ≡ {B,m} where B
is the uniform magnetic field and m is the magnetization of the system, whereas in
a gas {F, q} ≡ {−P, V } (Claudius, 2017). Note that the pair of conjugates always
involve an intensive variable, independent of the size of the system (i.e. of order O(1)),
such as the pressure, and its extensive conjugate, such as the volume, which does de-
pend on the size and hence is generally of order O(N).

Back to the ideal gas scenario, as we have shown from first principles, {F, q} =
{−P, V }. Now suppose that the system depends on an external variable x, in the
sense that the energy function becomes E : R × X 7→ R where R is the state space
and X is the domain of the external variable x, hence

∂ logZ
∂x

=
1

Z
∑
r

−β∂Er,x
∂x

e−βE(r,x) =
1

β
〈∂Er,x
∂x
〉. (1.30)

Let X ≡ ∂Er,x
∂x

, then the log-partition function satisfies

dlogZ =
∂ logZ
∂β︸ ︷︷ ︸

=−U

dβ +
∂ logZ
∂x︸ ︷︷ ︸

=βX

dx. (1.31)

Hence,
Udβ = −dlogZ + βXdx (1.32)

and since d(βU) = βdU + Udβ, we have

− dlogZ + βXdx = d(βU)− Udβ (1.33)

Therefore

dU =
1

β
d(logZ + βU)−Xdx. (1.34)
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We recall that in the thermodynamic limit (as N −→∞), the following BTR holds

dU = TdS −Xdx and since dU =
1

β
d(logZ + βU)−Xdx, (1.35)

the entropy is given by

dS =
1

T

1

β︸︷︷︸
≡kT

dlogZ +
U

T
= klogZ +

U

T
. (1.36)

Now that we have all the ingredients we can straightforwardly compute the free
energy. By integrating over the differential of the entropy we have

S = k logZ +
U

T
+ c0︸︷︷︸

some constant

, (1.37)

culminating in the free energy relation

− kT logZ = U − TS ≡ F. (1.38)
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Chapter 2

Dynamics: the study of
time-evolution of glassy systems

Chapter organization

We start with a brief note on the historical development of the theory of spin glasses
building up to mean field models (2.1). Then, we discuss a crucial condition called
self-averaging, that any satisfactory theory of spin glasses needs to satisfy (2.2). After-
wards, we introduce a Markov chain called Glauber dynamics, that is meant to model
the time evolution of spin glasses (2.3.1), and briefly discuss a slowness (or freezing)
phenomenon that is characteristic of Glauber dynamics in the spin glass phase (2.3.2).
Subsequently, we give a preliminary discussion of a certain property of the Gibbs mea-
sure at low temperature, called the pure state decomposition, where the Gibbs measure
can be approximated by a convex combination of some quantities (2.3.3), while leav-
ing some details for the last two chapters. Then, building up on the discussion so far,
we introduce a new order parameter that is better suited for spin glass models than
those commonly used for other magnetic alloys, such as (anti)ferromagnets (2.4). Fi-
nally, we close the chapter with a brief discussion of different temperature-dependent
timescales in which the system reaches equilibrium (2.5).

2.1 Introduction

In contrast to crystals that are characterized by atoms located at regular intervals,
forming a lattice in Z3, the random locations of the magnetic moments in a real spin
glass are typically very irregular. Therefore, a physically realistic model would have
the spin locations distributed according to a Poisson point-process in R3 with spherical
spins i.e. with spin orientations in {σi ∈ R3 : ||σi||2 = 1}.

However, this model poses hard technical difficulties and is far from being approach-
able. Therefore, we resort to a series of simplifications, the first of which is to move from
euclidean space to the lattice Zd and start by considering the two dimensional case.
Fortunately, convincing experimental evidence points to the fact that quite different
glassy systems seem to exhibit the same qualitative critical behaviour: susceptibility
cusp, long-range correlation, frozen magnetization, etc...
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This apparent universality suggests that it is possible to capture the essential physics
of spin glasses by starting with a very simple model provided it incorporates two main
features present in all systems displaying glassy behaviour, namely disorder and com-
peting interactions.

The earliest attempt at a working model of spin glasses started by a simple description
where each spin sits at a random position and interacts with the others through the
oscillating RKKY interactions (Klein and Brout, 1963). The disorder is thus described
by a set of random variables {εij} indicating the presence of a spin in site (i, j) ∈ Z2.
Since these occupation variables allow us to determine the distances between spins and
hence the values of the interactions, each spin glass sample is completely determined
by the realization of {εij}.

And although this model incorporates both above features, it misses an important
property of physical spin glasses, namely isotropy. In a nutshell, isotropy measures
the dependence of the response of a system on the direction in which an external mag-
netic field is trying to steer it in.

More specifically, a system is isotropic if there is no preferential orientation for its
magnetic moment, upon the application of an external magnetic field, whereas in a
highly anisotropic system, there exists two equally favourable opposite orientations
forming the easy axis along which an external magnetic field will have an easier time
magnetizing the spins than along any other directions. Considering that most real
spin glasses are highly anisotropic, we can further simplify our model by considering
binary or Ising spins σij ∈ {±1} for all (i, j) ∈ Zd (Binder et al., 2008).

Glassy behaviour has been observed in a wide variety of systems with interactions
very different from the RKKY functions. If we aim to provide a toy model general
enough to describe an array of glassy systems, we should choose a more universal in-
teraction potential, one which preferably facilitates theoretical treatments while still
retaining the macroscopic features of the system. In this case, we can then consider the
location of the spins non-random, i.e. with spins occupying every point of the lattice,
and compensate for the loss of spatial disorder by the random oscillating interactions.

Since it is precisely the cooperative microscopic phenomena that give rise to the pe-
culiar macroscopic behaviour, this is a natural substitution. In fact, as far as the
magnetic behaviour is concerned, the spatial randomness of the spins comes into play
only through the deterministic RKKY interaction function. In this sense, the spatial
randomness of the spins is baked into the random interactions. Furthermore, given
that far off spins have vanishing interactions, we can restrict J to nearest neighbors
interactions, i.e. J = {Ja,b : a1 = b1 ± 1, .., ad = bd ± 1}, which leads us to the
Edwards-Anderson model. Here and throughout the thesis we will denote the Normal
distribution by N , and its variance by ∆.

Definition 9. Consider a sequence of consecutive integers of length N : BN ≡ {a, . . . , a+
N − 2, a + N − 1}, starting from an arbitrary integer a ∈ Z. The k−dimensional
Edwards-Anderson model is an N−particle spin system, where each individual spin σi
is identified with a vector i ∈ BkN locating its position inside the k−dimensional subset
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of the integer lattice BkN ⊂ Zk, such that the set of couplings J consists of:

Ji,j
iid∼ N (0,∆). 1

{
(i, j) ∈ BkN × BkN : ||i, j||2 = 1

}
, (2.1)

meaning that all the couplings are zero except for nearest neighbors pairs on the lattice.
The Hamiltonian of the system is then given by:

H(σ) = −
∑

i,j∈BkN

Ji,jσiσj −B
∑
i∈BkN

σi. (2.2)

In the large N limit, the system spans the entire k−dimensional integer lattice Zk.

If the aim is to provide a general model for glassy systems, the macroscopic ob-
servables should not depend strongly on the realization of the disorder J in a given
sample. This is what is referred to as self-averaging.

2.2 Self-averaging

To follow conventional statistical physics notation, we introduce the following termi-
nology:

• Observables are physical quantities which can measured though experiments.
Formally speaking, an observable is a real valued function on the state space
O : Σ 7→ R and its macroscopic limit is referred to as a thermodynamic obervable
and is defined on the large N limit of the state space, e.g. let ΣN ≡ XN ,ON :
ΣN 7→ R, we are ultimately interested in quantities like limN→∞ON(σ) for some
σ ∈ ΣN . If a quantity of interest cannot be observed through experiments,
we will instead refer to it as a potential. For example, the specific heat C ≡
∂H/∂β can be observed through experiments and is thus an observable, while
the entropy S(β) ≡ −

∑
σ∈Σ µβ(σ) log

(
µβ(σ)

)
cannot be inferred through purely

experimental means and is therefore referred to as a potential.

• Disorder (as in sample dependent disorder) is always meant to refer to the
randomness of the couplings {Jij}. As previously noted, when referring to an
N−particle spin system with a given Hamiltonian (that depends on {Jij}) we
always assume that the couplings are fixed such that H is a function of only
σ. However, as we discussed in the previous section, the N−particle system is
supposed to model a generic spin glass sample, whose characteristics (e.g. en-
ergy landscape, thermodynamic potentials, etc) are uniquely determined by a
set of fixed couplings {Jij}. Hence, we generate the couplings according to a
distribution that mirrors said characteristics and some more general conditions,
the most important of which is self-averaging, that we will expand upon below.

Given these 2 sources of randomness: i) the distribution of the couplings {Jij}, and
ii) the distribution of µβ with fixed J , to distinguish between the two, here and
throughout the thesis, we follow the standard statistical physics notation (Mezard et
al., 1987):

• We underline a variable (e.g. σ) to signal that it is fixed.
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• The expectation w.r.t. µβ with fixed couplings J will be denoted by brackets 〈〉.

• Moreover, the expectation of some observable over the distribution of the cou-

plings {Jij}
iid∼ Ψ will be denoted by an overline, and will be referred to as the

average over the disorder. For example, the disorder-averaged total magnetiza-
tion is denoted:

mk ≡ 〈σk〉 ≡ E
Jij

iid∼N (0,∆)

[
〈σk〉

]
≡ E

Jij
iid∼N (0,∆)

[ ∑
σk∈{−1,1}

σkµ
(i)
β (σk)

]
, (2.3)

where µ
(k)
β (σk = .) is the marginal probability of the kth spin, and N (0,∆) is the

zero-mean Gaussian distribution with variance ∆.

Since the entropy is an extensive potential (see appendix of ch1), the free energy F ≡
U − TS ∝ S is expected to be of order O(N) (Claudius, 2017). Given a N−particle
spin system with the usual Hamiltonian H(σ) = −

∑
1≤i<j≤N J ijσiσj − B

∑
i∈[N ] σi

and fixed (i.e. non random) interactions J , we define the free energy of the system to
be:

FN(β) = − 1

β
logZ ≡ − 1

β
log
(∑
σ∈Σ

e−βH(σ)
)
. (2.4)

The intensive (i.e. O(1)) version of the free energy is the free energy density, where
”density” is meant in the sense of the amount of free energy per spin, in the large N
limit:

f(β) = lim
N−→∞

1

Nβ
FN(β). (2.5)

In a satisfactory theory of spin glasses, the free energy density should be the same
across different sample realizations J . Since the goal is to characterize the behaviour
of a typical spin glass sample, the free energy should converge (in mean) to a unique
limit f(β), regardless of the realization of the sample-dependent disorder J . In that
case, the potential is said to be weakly dependent on the disorder or self-averaging
(Castellani and Cavagna, 2005).

The free energy is self-averaging if it is well concentrated around its mean. In other
words, the distribution of −logZ/β whose only source of randomness is from the cou-
plings {Jij}, should be sharply peaked around its mean FN(β) ≡ −logZ/β, with
vanishing fluctuations in the large N limit:

lim
N−→∞

FN(β)2 − FN(β)
2

= 0. (2.6)

Hence, we need to define a disorder distribution J ∼ Ψ such that FN(β) is well con-
centrated. Assuming that all interactions are independent and identically distributed,
an analytically convenient choice for Ψ is the zero mean Gaussian with 1/N variance,
or a binomial with Jij = ±1/N with equal probability for faster computations using
the multi-spin technique, for more details see chapter 4 in (Binder et al., 2008).

Either way, as long as the interactions are of order O(1/N
1
2 ), the existence of the lim-

iting free energy density should only depend on the first two moments of Jij (Mezard
et al., 1987).
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2.3 Time evolution of a spin system

2.3.1 Glauber dynamics

Definition 10. A discrete-time Markov chain is a sequence of random variables:
x1, x2, . . . xT , representing the state of the Markov chain at each time-step t, where
for all 1 < t ≤ T , the probability that xt is equal to some value xt depends only on the
previous state xt−1:

P[xt = xt| x1 = x1, x2 = x2, . . . xt−1 = xt−1] = P[xt = xt| xt−1 = xt−1]. (2.7)

We assume that the variables {xt}t∈[T ] share the same support Σ that we call the state
space of the Markov chain.

The simplest picture of the time evolution of an N -particle spin system can be
illustrated by a single-spin flip Markov chain called Glauber dynamics (also known as
the heat bath algorithm), that we describe below. Since we are considering a sequence
of states σ(t) ∈ Σ for 0 ≤ t ≤ T, to distinguish the individual spin indices k ∈ [N ] from

the time index t of the Markov chain, we will write σ
(t)
k to denote the value of the kth

spin of the state x(t) ∈ Σ, for the remainder of this section.

Definition 11 (Mezard and Montanari, 2009). Consider an N−particle spin system
σ ∼ µβ with some Hamiltonian H(σ) and whose state space is Σ. Glauber dynamics is
a discrete-time Markov chain that is conditioned on an initial state sampled from the
target distribution: σ(0) ∼ µβ. Given the current state of the Markov chain σ(t) = σ(t),
the next state is generated as follows:

1. Propose the next state uniformly at random from the set of immediate neighbors
of the current state: σ(t+1) ∼ U(N (σ(t))) where N (σ(t)) ≡ {y ∈ Σ : d(y, σ(t)) =
1}, with d(, ) begin the Hamming distance.

2. Accept the proposed state according to the probability:

α(σ(t+1), σ(t)) ≡ min
{

1, e−β(H(σ(t+1))−H(σ(t)))
}
.
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Algorithm 1: The heat bath algorithm

Result: σ(T ) approx∼ µβ(.)
σ(0) ← τ ;
for t = 1, ...T do

draw i ∼ {1 . . . N} uniformly at random;

γ ← (σ
(t)
1 . . . σ

(t)
i−1,−σ

(t)
i , σ

(t)
i+1 . . . σ

(t)
N );

∆Et ← H(γ)−H(σ(t−1));

α(γ, σ(t−1))← e−βmax
{

∆Et,0
}

;
draw u ∼ [0, 1] uniformly at random;

if u ≤ α(γ, σ(t−1)) then
σ(t) ← γ;

else
σ(t) ← σ(t−1)

end

end

Definition 12. Given an N-particle spin system σ ∼ µβ, and an observable O : Σ 7→
R, we define the time average of O(t) ≡ O(σ(t)) as its expectation w.r.t. Glauber
dynamics starting from σ(0) ∼ µβ, that we denote by brackets:

〈O(t)〉σ(0) = EGlauber

[
O(σ(t))|σ(0) = σ(0)

]
=
∑
σ(t)∈Σ

O(σ(t)) PGlauber

[
σ(t) = σ(t)|σ(0) = σ(0)

]
.

(2.8)

To make matters more explicit on a simple example, consider the time average of
the value of the kth spin after t Glauber steps starting from the realization of σ(0) ∼ µβ:

〈σk(t)〉σ(0) =
∑
σ(t)∈Σ

σ
(t)
k PGlauber

[
σ(t) = σ(t)|σ(0) = σ(0)

]
=
∑
σ(t)∈Σ

σ
(t)
k

PGlauber

[
σ(t) = σ(t), σ(0) = σ(0)

]
µβ(σ(0) = σ(0))

=
1

µβ(σ(0) = σ(0))

∑
σ(1)...σ(t)∈Σ

σ
(t)
k

[
t∏

s=2

pGb
[
σ(s)|σ(s−1)

]]
pGb
[
σ(1)|σ(0)

]
,

where the transition probability of the Markov chain along Glauber dynamic is as previ-
ously discussed: pGb(σ

(t)|σ(t−1)) ≡ k(σ(t) = σ(t)|σ(t−1) = σ(t−1)) =
(
1
{
d(σ(t), σ(t−1)) =

1
}
/N
)
. min{1, eβ(H(σ(t))−H(σ(t−1)))}.

2.3.2 Breaking of ergodicity in the spin glass phase

Definition 13 (Fischer and Hertz, 1991). Given an N-particle spin system, we define
the energy spectrum of a particular value e, as the number of states with the corre-
sponding energy that we denote by Nδ(e):

Nδ(e) ≡ |{σ ∈ Σ : e− δ ≤ H(σ) ≤ e+ δ}|, (2.9)
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for some δ > 0.

The ergodic hypothesis states that the amount of time spent in a given state (in
terms of visiting frequency) is proportional to the energy spectrum of that state. In
other words, given enough time, the system will explore the entirety of the state space
Σ in such a way that the average over time is equal to the average over states:

lim
T−→∞

∑T
t=0O(σ(t))

T
=
∑
σ∈Σ

µβ(σ)O(σ) for all O : Σ 7→ R. (2.10)

When this equality holds with T growing polynomially in N , we say that the system
is ergodic.

A glassy system is defined through its dynamical properties (i.e. changes over time).
In the spin glass phase, the relaxational dynamic (i.e. the speed in which the system
reaches equilibrium) is exponentially slow (Mezard et al., 1987), such that the system
is essentially frozen and the positions of spins change extremely slowly as a function
of time.

The exponentially slow convergence to equilibrium is caused by the fact that the en-
ergy landscape contains wells within wells of low energy, such that if we keep flipping
spins in an attempt to reach one of the global minima of H(σ), according to changes
in energy (as in Glauber dynamics), the system will keep running into energy barri-
ers (i.e. large differences in energy), such that the acceptance probability α(, ) stays
prohibitively small, and the system will keep rejecting proposal states thus remaining
stuck in local minima. These wells trap the system for large time scales, and are
therefore called metastable states.

The more critical points the Hamiltonian has, the more rugged or complex the en-
ergy landscape is (see figure below). Moreover, since the number of local minima
depends on the couplings, it is the frustration phenomenon that is responsible for the
proliferation of metastable states.

Figure 2.1: Rugged landscape (Dill and Chan, 1997).
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2.3.3 The pure state decomposition

Throughout the thesis, there will be two major points of view: statics and dynam-
ics. The statics perspective, that will be expanded upon further in chapter 4, deals
with the equilibrium properties of µβ, i.e. the study of the Gibbs measure in the zero
temperature limit, while the dynamics point of view (that we expand further in ch.5)
concerns the evolution of the system towards equilibrium. Although there are a num-
ber of models for the time evolution of spin systems (s.a. Langevin dynamics), for the
remainder of the discussion, we will assume that it transitions according to Glauber
dynamics. Following statistical physics terminology, we will refer to the Gibbs measure
at low temperature µβ, β � 1 as the equilibrium measure.

From the statics point of view, in the low temperature limit, the exponentially high
energy barriers correspond to the breaking of the support of the Gibbs distribution
into well separated high probability density regions taking almost all of the probability
mass, that we call pure states : Σ =

(⊔
i∈[η] αi

)⊔
S, where η is the number of pure

states {αi} and S are the configurations in between (Fischer and Hertz, 1991).

This phenomenon is called the pure state decomposition and is characteristic of the
low temperature spin glass phase. The technical definition of the pure state decom-
position lists a number of technical conditions that require prerequisite notions that
we have not introduced yet. That being said, we will give a hand-wavy definition in
terms of an approximation for the time being, and we will give the proper definition
in chapter 5.

Definition 14. Given an N-particle spin system σ ∼ µβ, whose state space can be
expressed as a disjoint union (t) of sets called pure states: αi for i ∈ [η] (where
each set is a connected component of Σ in Hamming space) and the remaining states
surrounding each pure state whose union is S, such that Σ =

(⊔
i∈[η] αi

)⊔
S. The

pure state decomposition refers to the exponential vanishing of µβ(S) when β � 1,
such that:

µβ(τ) ≈
∑

αi:i∈[η]

wαiµ
αi
β (τ), where µαiβ (τ) ≡ 1{τ ∈ αi}e−βH(τ)

Zαi
,

wαi =
Zαi∑

αi:i∈[η]Zαi
, and Zαi ≡

∑
σ∈αi

e−βH(σ).

Note that, the fact that the Gibbs measure can be approximated by a convex
combination of pure states weights {wαi} follows by conditioning on pure states:

µαkβ (τ) ≡ P∼µβ [σ = τ |τ ∈ αk] =
P∼µβ [σ = τ , τ ∈ αk]

P∼µβ [αk]
=

1{τ ∈ αk}.P∼µβ [σ = τ ]

P∼µβ [σ ∈ αk]

= 1{τ ∈ αk}.
e−βH(τ)

Z
1∑

σ∈αk
e−βH(σ)

Z

=
1{τ ∈ αk}.e−βH(τ)

Zαk
.

Under such conditions, we find that limT→∞
∑T

t=0O(σt)/T ≈
∑

σ∈αi µβ(σ)O(σ),
where αi is the pure state corresponding to the energy valley in which the system
is found originally σ(0) (Fischer and Hertz, 1991). This phenomenon is referred to as
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ergodicity breaking. In this case, we say that while the system is no longer ergodic on
Σ, it is ergodic within the pure state αi.

2.4 A new order parameter

As discussed in the previous chapter, the ferromagnetic phase transition is marked by
a nonzero value of all local magnetizations. Recall that in the low temperature regime,
the Gibbs measure is concentrated on the lowest energy configurations such that for
very low temperatures β∗ � 1, the marginal law of the ith spin is

µ
(i)
β∗(τi) ≈

1

Z
∑
τ [N ]\i

e−β
∗H(τ [N ]\i,τi). 1

{
(τ [N ]\i, τi) ∈ argmin

σ∈Σ
H(σ)

}
. (2.11)

We say that the system is symmetric with respect to a set of outcomes if they are
equally likely under µβ. In a ferromagnet with the general Hamiltonian H(σ) =
−
∑

1≤i<j≤N Jijσiσj −B
∑

i∈[N ] σi , if B 6= 0 , the ground state of the system is

argmin
σ∈Σ

H(σ) = argmin
σ∈Σ

[
−

∑
1≤i<j≤N

Jijσiσj −B
∑
i∈[N ]

σi

]
=
{
sgn(B)

}N
, (2.12)

Hence, as the temperature decreases below the critical temperature, the magnetiza-
tion, which was zero at large temperatures by virtue of the symmetry of µβ≈0(.) with

regards to all states, takes a nonzero value. Since µ
(i)
β∗β∗(τi) = δτi,sgn(B), we have

mi = sgn(B), thus the ± symmetry of the high temperature regime is broken .

At zero magnetic field, the situation is complicated by the fact that there are two
equally likely ground states:

minσ∈Σ HB=0(σ) = HB=0({+1}N) = HB=0({−1}N). (2.13)

From the dynamics point of view, as the temperature decreases, the energy landscape
which was essentially flat at high temperatures, takes the shape of a double well sep-
arated by an energy barrier of order O(eαN). Hence for N � 1, the landscape is
essentially partitioned into two pure states {α1, α2}.

At the critical temperature, the system can go into either well with equal proba-
bility and assume the order of whatever pure state it finds itself in, meaning that all
local magnetizations take the value of the corresponding ground state mαi

k ≡ 〈σk〉αi =
(argminσ∈αiH(σ))k and remain stable for arbitrarily long timescales. Considering
that the system is symmetric with respect to either outcome and only one of them can
occur, this phenomenon is referred to as spontaneous symmetry breaking.
Hence, in the case of the ferromagnet, ergodicity breaking simply corresponds to sym-
metry breaking of the overall magnetization. Therefore, we naively expect that the
same order parameter should detect the spin glass transition.

As discussed previously, a popular choice for the disorder distribution J iid∼ Ψ is the
zero mean Gaussian or a symmetric binomial sometimes referred to as the ±J model
where Jij = ±γ with equal probabilities. In both cases, we run into the same issue:
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Figure 2.2: Spontaneous symmetry breaking (Wikipedia, n.d.)

the order parameter stays zero below the critical temperature, failing to detect the
glassy transition (Castellani and Cavagna, 2005).

More precisely, we prove the following result, hinted at in (Mezard et al., 1987):

Theorem 3. Consider an N−particle spin system with the simplified Hamiltonian:
H(σ) = −

∑
1≤i<j≤N Jijσiσj, where the couplings are either: i) Gaussian with variance

∆ : Jij
iid∼ N (0,∆), or ii) symmetric binomial where Jij = ±γ with equal probabilities.

Then, the disorder-averaged local magnetization for any spin k ∈ [N ] in both cases
satisfies:

mk ≡ E
Jij

iid∼N (0,∆)

[ ∑
σk∈{−1,1}

σkµ
(i)
β (σk)

]
= 0, (2.14)

where µ
(k)
β (σk = .) is the marginal probability of the kth spin.

Proof. We will follow the conventional notation in spin glass theory (Mezard et al.,
1987; Fischer and Hertz, 1991) by denoting the expectation with regards to the distri-
bution of {Jij} with an overline:

mk =
∑

σ[N ]\{k}

µβ(σ[N ]\k, σi = 1)− µβ(σ[N ]\k, σi = −1) (2.15)

∝
∑

σ[N ]\{k}

∏
(i,j)∈J\(.,k)

∫
eβJijσiσjdJij

∏
l∈[N ]

(∫
eβJlkσldJlk −

∫
e−βJlkσldJlk

)
. (2.16)

Throughout the thesis, a useful identity that we will often apply is the Gaussian
identity:

EX∼N (0,∆)

[
e∆X

]
= exp

(∆λ2

2

)
.

In the Gaussian case, the term in parenthesis is zero∫
eβJlkσldJlk −

∫
e−βJlkσldJlk = e

β2

2
∆ − e

β2

2
∆ = 0 for all l ∈ [N ], (2.17)

32



as it is in the symmetric binomial case∫
eβJlkσldJlk −

∫
e−βJlkσldJlk =

e+γβσl

2
+
e−γβσl

2
− e−γβσl

2
− e+γβσl

2
= 0. � (2.18)

Therefore, the local magnetizations are equally zero and consequently the overall mag-
netization stays zero throughout both the high and low temperature regimes.

It is thus apparent that the site average of the expectation of individual spins with
respect to the Gibbs distribution can not be used as an order parameter when the
interaction distribution is an even function.

However, as discussed in the second chapter of (Fischer and Hertz, 1991), we can
still take inspiration from the ferromagnetic situation and make ad-hoc attempts at
breaking the ± symmetry of the marginals (i.e. make µ

(k)
β (1) 6= µ

(k)
β (−1)) by skewing

the thermal average in two (equally non-rigorous) ways. We denote the configuration
resulting from flipping the ith spin of σ by σ(i) ≡ (σ1, ..− σi, ..σN).

• We can restrict the expectation w.r.t. µβ : 〈.〉 to a portion of the state space
P ⊂ Σ with a relatively homogeneous general orientation, by defining a renor-
malized Gibbs measure measure νβ(σ) ≡ 1{σ ∈ P}.e−βH(σ)/

∑
σ∈P e

−βH(σ),
with respect to which the expectation produces a zero total magnetization:
mP ≡ 1/N

∑
i∈[N ]〈σi〉ν 6= 0, even if some of the local magnetizations 〈σi〉ν stay

zero.

• Or, suppose that the energy landscape, i.e. the graph of H with fixed β,B and
{Jij}, consists of a double well centered around two energetically equal minima
σ and τ = (σ1, . . . ,−σi, . . . , σN). Considering that mi = O(

√
N) (Mezard

et al., 1987), we can add an external magnetic field B � 1/β
√
N such that

exp
{
βB(mσ −mτ )

}
� 1 making µiβ(τi) negligible compared to µiβ(σi), which

would in turn make mi ≈ sgn(σi) , hence allowing us to make some local
magnetizations nonzero, as suggested in chapter 2 of (Fischer and Hertz, 1991).

This is, however, far too simplistic as it does not account for the remanence effects
observed in spin glass experiments (Binder and Young, 1986), which seem to suggest
the existence of a large number of pure states that are stable on very long timescales,
below the critical temperature (i.e. that their Glauber dynamics are exponentially
slow, this hand-wavy statement will be made formal in the last chapter).

Still from the statics point of view, we can accommodate this picture, that is, im-
pose the existence of many quasi-stable states, by formulating the free energy as a
function of the local magnetizations F : (m1, ..mN) 7→ R as in (Fischer and Hertz,
1991), such that we may have many local minima, each of them satisfying

∂F

∂mi

= 0 for at least one spin i ∈ [N ] and
∂2F

∂mi∂mj

≥ 0 for all j ∈ [N ]. (2.19)

This evidently prevents us from using simple methods for breaking the ± symmetry
such as skewing µβ in favour of one of two minima, considering that the energy land-
scape is now highly non-trivial.
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It is thus apparent that a linear combination of local magnetizations is not a suit-
able order parameter for the glass transition, which leads us to consider higher orders
such as the squared magnetization

q ≡ 〈σi〉2. (2.20)

Note that in the rigorous sense, the pure state decomposition is an asymptotic prop-
erty of the Gibbs measure (as we shall see in the ch.5), where µβ becomes equal to
the convex combination above as N → ∞. By sweeping things under the rug, we
write it as an approximation. However, for the remainder of this chapter, since we are
mainly following (Fischer and Hertz, 1991), we will take it to be an equality for finite
N, as is custom in the physics literature (see also (Mezard et al., 1987)). We show the
following result, whose proof was omitted from (Fischer and Hertz, 1991).

Lemma 1. Consider an N-particle spin system displaying a pure state decomposition
Σ =

(⊔
i∈[η] αi

)⊔
S, where η is the number of pure states {αi} and S are the con-

figurations in between, and let O : Σ 7→ R, the expectation of O(σ) w.r.t µβ that we
denote by brackets, then satisfies

〈O(σ)〉 =
∑

αi:i∈[η]

wαi〈O(σ)〉αi , where 〈O(σ)〉αi ≡
∑
σ∈Σ

µαiβ (σ)O(σ), (2.21)

with

µαiβ (τ) ≡ 1{τ ∈ αi}e−βH(τ)

Zαi
, wαi =

Zαi∑
αi:i∈[η]Zαi

, and Zαi ≡
∑
σ∈αi

e−βH(σ). (2.22)

Proof. Since we assume that µβ(S) = 0, we have:

〈O(σ)〉 =
∑
σ∈Σ

µβ(σ)O(σ) =
∑

αi:i∈[η]

(∑
σ∈αi

µβ(σ)O(σ)
)

=
∑

αi:i∈[η]

(∑
σ∈Σ

1{σ ∈ αi}.µβ(σ)O(σ)
)

=
∑

αi:i∈[η]

(∑
σ∈Σ

1{σ ∈ αi}.e−βH(σ)

Z
O(σ)

)
=
∑

αi:i∈[η]

(∑
σ∈Σ

1{σ ∈ αi}.e−βH(σ)

Zαi
Zαi
Z
O(σ)

)
=
∑

αi:i∈[η]

Zαi
Z

(∑
σ∈Σ

1{σ ∈ αi}.e−βH(σ)

Zαi
O(σ)

)
=
∑

αi:i∈[η]

wαi

(∑
σ∈Σ

µαiβ (σ)O(σ)
)

=
∑

αi:i∈[η]

wαi〈O(σ)〉αi . �
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It then follows (see ch.2 of (Fischer and Hertz, 1991)) that:

q ≡ 〈σi〉2 =
( ∑
αk:i∈[η]

wαk〈σi〉
)2

=
∑

αk,αl:1≤k<l≤η

wαkwαl〈σi 〉αk〈σi 〉αl . (2.23)

In (Edwards and Anderson, 1975), the authors formulated a slightly different order
parameter

qEA ≡
∑

αi:i∈[η]

wαi〈σi〉2αi . (2.24)

The difference being that while the sum in q compromises inter-valley contributions
in S, qEA does not. In fact, it only makes sense to speak of qEA if the ergodicity
is broken. When the system is ergodic, i.e. when there exists a unique pure state
compromising all of Σ, the two order parameters are equivalent (Fischer and Hertz,
1991). Hence, depending on the height of the energy barriers, the difference between
the two order parameters fluctuates between zero and some value, and can thus serve
as a measure of the extent to which ergodicity is broken:

∆q ≡ qEA − q. (2.25)

The physical significance of ∆q as a measure of broken ergodicity is most clearly exem-
plified from the dynamical point of view. Which leads to the dynamical formulation
of the Edwards-Anderson order parameter (Fischer and Hertz, 1991):

q∗EA ≡ lim
t−→∞

lim
N−→∞

〈σi(t+ t0)σi(t0)〉, (2.26)

where the overline signifies the expectation w.r.t. the distribution of the couplings
{Jij}. Since the ergodic system explores the entirety of the state with a frequency pro-
portional to the energy spectrum, it decorrelates from its initial state in finite time,
such that q∗EA = 0 (Fischer and Hertz, 1991).

Below the critical temperature, that is, at the onset of ergodicity breaking, the in-
finite (N = ∞) system is trapped by infinite energy barriers within the pure state
containing its initial value. As t → ∞, the system stays within a close Hamming
distance to its initial state to which it stays correlated, hence q∗EA 6= 0 (Mezard et
al., 1987).

Therefore, qEA can effectively serve as an order parameter for the spin glass transition,
considering that it is zero throughout the paramagnetic high temperature phase and
takes a nonzero value at the beginning of the spin glass phase, when the individual
spins’ values stay correlated with their initial values indefinitely. A sharper discussion
of how fast an N -particle spin system decorrelates can be formulated though the relax-
ation time (which will be discussed in ch.5), and which essentially describes how many
Glauber iterations it takes for the time average: 〈O(t)O(0)〉σ0

to become arbitrarily
small, thus permitting us to provide a quantitative characterization of the dynamics
in the spin glass phase.

The equivalence between the static and dynamic formulation of qEA comes from the
fact that while the system is trapped within a pure state αk 3 σ0, the ergodic hy-
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pothesis is still valid within it (Fischer and Hertz, 1991). Meaning that the system
explores each energy level in {H(τ) : τ ∈ αk} with frequencies proportional to their
energy spectrum such that

lim
T−→∞

∑T
t=0O(σ(t))

T
= 〈O〉αk . (2.27)

It can therefore be shown that qEA actually measures the squared local mangetization
within pure states (Fischer and Hertz, 1991):

lim
t−→∞

lim
N−→∞

〈σi(t+ t0)σi(t0)〉 =
∑

αk:k∈[η]

wαk〈σi〉2αk . (2.28)

Note that the order in which the limits are taken is crucial, since:

1. We are interested in the dynamics of the macroscopic system.

2. The decomposition of the state space due to infinite energy barriers is only
realized in the thermodynamic limit.

And although proper ergodicity breaking only takes place at N = ∞ and β ≥ βc
(the critical temperature), the introduction of ∆q and its dependence on N permits
discussing intermediate ergodicity regimes and their associated time-to-equilibrium
timescales.

A spin glass sample is constrained by its disorder J and as the temperature is lowered
the system essentially becomes more and more constrained. The important realization
is that, at fixed N , we can control the height of the energy barriers by varying β.

From an algorithmic perspective, the system’s evolution to equilibrium, along the
lines of Glauber dynamics, is essentially a stochastic local search for lower energy con-
figurations, guided by the slopes of the energy landscape. In the zero temperature
limit the stochastic problem reduces to a deterministic highly non-convex one of find-
ing the ground state, i.e. the global minimum of the Hamiltonian, subject to a set of
constraints instantiated by the sample dependant disorder J

argmin
σ∈Σ

β
[
−

∑
1≤i<j≤N

Jijσiσj −B
∑
i∈[N ]

σi

]
subject to {Jij} = J . (2.29)

Since the state of the system obeys µβ, the constraints are softened by the temperature
parameter, such that for high enough temperatures the system is satisfied by settling
in a less than optimal state. As the temperature is lowered the system becomes more
constrained by J and the energy landscape gets more complex forming valleys within
bigger valleys each centered around one of the many critical points of HJ .

That is to say, that the origin of broken ergodicity, the freezing of local magneti-
zations and the non-trivial correlation structure all relate back to the large number
of critical points of HJ , produced by the competing interactions (recall that positive
interactions result in at most two critical points), and the resulting highly non-convex
domain.
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2.5 Intermediate ergodicity regimes

In a large but finite system (1� N <∞) displaying pure state decomposition, energy
barriers are finite and therefore, the system is allowed to escape its original pure state
in finite time even below the critical temperature.

Considering the dramatic slowdown of dynamics caused by the pure state decom-
position, it can be useful to distinguish between short, intermediate and long size-
dependent timescales in order to characterize a finite system’s time-dependant be-
haviour. We distinguish the finite time versions of the order parameters ∆q and qEA
by adding the subscripts (a),(b) and (c) for short, intermediate and long timescales re-
spectively, as illustrated in the figure below by (Liu SQ et al., 2012).

Figure 2.3: Subvalleys within valleys (Liu SQ et al., 2012)

In most interesting cases, such as the mean field models introduced below, as the
temperature decreases the system transitions through a series of glassy phases where
the energy landscape acquires a hierarchical structure with deep valleys nested within
each pure state (Fischer and Hertz, 1991). These subvalleys are separated by high
enough energy barriers that it traps the system on a certain timescale as to function
as a quasi-pure state. If we assume a third-order hierarchy, then each quasi-pure state
will have subvalleys nested within. And so on and so forth, we can define an nth order
pure state decomposition.

Geometrically, the density of the Gibbs measure in Hamming space displays clus-
ters within clusters, as illustrated in the figure by (Berthier et al., 2019). Recall that
the energy spectrum of a given energy level E is defined as: Nε(E) ≡ |{σ ∈ Σ : E ≤
H(σ) ≤ E + ε}|, and that the ergodic system visits energy levels with frequencies
proportional to their respective spectra, such that the time average is equal to the
expectation w.r.t. µβ.

In a two-level hierarchy, the state space breaks into pure states Σ = S
⊔
i∈[η] αi

and each pure states breaks into quasi-pure states αi = Qi
⊔
k∈[κi] ζ

i
k where S and
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Figure 2.4: Hierarchical structure of the energy landscape (Berthier et al., 2019)

{Q
i∈[η]} are the spectra of the high energy barriers separating {αi∈[η]} and {ζ ik∈[κi]}

respectively with vanishing probability mass in the low temperature limit.

We can define the shortest timescale as the one during which the system roams in
its original quasi-pure state ζ ik, visiting energy levels with frequencies proportional to
their spectrum, that is to say ergodically, without having the time to climb the energy
barriers surrounding ζ ik, in which case ∆

(a)
q 6= 0 since q

(a)
EA = 〈σi〉2ζik .

On an intermediate timescale, the system has enough time to climb the energy barriers
within αi (whose spectrum is {Qi∈[η]} ) and roam its original pure state ergodically (i.e.
such that the ergodic hypothesis holds within αi), without having the time to climb
over {Hβ∗(s) : s ∈ S} to visit the other pure states {αj∈[η]\i}. In this intermediate

regime, ergodicty is less broken than on the smaller timescale: |∆(b)
q | ≤ |∆(a)

q | and the
Edwards-Anderson parameter measures the squared magnetization within pure states
q

(b)
EA = 〈σi〉2αi .

Finally within the longest timescale, the system is given enough time to climb over
the highest energy barriers {Hβ∗(s) : s ∈ S} statistically enough times that the time
average is equal to the expectation w.r.t. µβ on the entire state space Σ, the system

is then completely ergodic and ∆
(c)
q = 0, q

(c)
EA = 〈σi〉2Σ.
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Chapter 3

The overlap and the birth of replica
theory

Chapter organization

We start by showing some results concerning the distribution of the overlap parame-
ter (3.1), and move on to a brief discussion on two competing candidate theories for
spin glasses (3.1.1), and some history on the one which is relevant to our discussion
(3.1.2). Then, we introduce the main tool from which a number of prediction con-
cerning the low temperature correlation structure of the Gibbs measure follow, called
the Replica trick (3.2), starting with a brief introduction to the preliminary notion of
large deviations (3.2.1). Afterwards, we illustrate the Replica trick on a simple model
called the Random Energy model (3.3), discuss its failure and introduce an extended
version of the trick called the Replica Symmetry Breaking scheme (3.4). Then, after
introducing a very general model of spin systems, that encompasses a number of con-
straint satisfaction problems, under the name of the p-spin model and relating it to
the simpler model above (3.5), we use the extended tool to characterize what is called
the 1-Replica symmetry breaking scenario (3.5.1), which describes some important
properties of constraint satisfaction problems that we will explore further in the next
two chapters.

3.1 Introduction

Although the picture painted in chapter 2 gives a qualitative description of the pure
state decomposition, it lacks the right formalism needed to distinguish between the
various hierarchical scenarios or give a sharper quantitative characterization of the
pure states in terms of size, that is the distribution of their Gibbs weights {wαi∈[η]

}.

The central realization leading to the new order parameter, is that we can probe the
existence of pure states and their relative weight, simply by drawing two independent
configurations and looking at how similar they are or their overlap:

Definition 15. The (configuratinal) overlap between two states σ, τ ∈ Σ is defined as:

qα,τ ≡
∑

i∈[N ] σiτi

N
. (3.1)
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Given two independent states σ, τ
iid∼ µβ, their overlap measures how correlated they

are, in the extreme we distinguish 3 cases (Castellani and Cavagna, 2005):

qα,τ ≡
∑

i∈[N ] σiτi

N
=


−1 if σ, τ are anti-correlated,

0 if they are uncorrelated,

1 if they are completely correlated

(or identical).

(3.2)

Along the same lines, we can measure the similarity between pure state by introducing
the states overlap (whose definition is adapted from (Castellani and Cavagna, 2005)).

Definition 16. Supposing that α, γ are non overlapping subsets of Σ (that satisfy some
lengthy technical conditions listed in the last chapter permitting us to call them pure
states), the states overlap between the two is defined as:

qα,γ ≡
∑

i∈[N ]〈σi〉α〈σi〉γ
N

, (3.3)

where

〈O〉α ≡
∑
σ∈α

O(σ) µαβ(σ) with µαβ(σ) ≡ 1{σ ∈ α} e−βH(σ)∑
σ∈α e

−βH(σ)
, ∀O : Σ 7→ R. (3.4)

To avoid confusion, we will refer to
∑

i∈[N ] σiτi/N as the configurational overlap
or simply the overlap to distinguish it from the other kind that we always refer to
as states-overlap. It is useful to write the states overlap in terms of configurational
overlap, and simply focus characterizing the latter.

Theorem 4. The states overlap between α and γ, satisfies: qα,γ = 〈 qσ,τ 〉α,γ.

Proof.

qα,γ =
1

N

∑
i∈[N ]

(∑
σ∈α σi exp

[
− βH(σ)

]
Zα

∑
τ∈γ τ i exp

[
− βH(τ)

]
Zγ

)
(3.5)

=
1

ZαZγ

∑
σ∈α

∑
τ∈γ

exp
[
− βH(σ)

]
exp

[
− βH(τ)

]{∑i∈[N ] σiτ i

N

}
(3.6)

≡ 〈 qσ,τ 〉α,γ. � (3.7)

We can make sense of the size that a given pure state occupies in the state space Σ,
by thinking of the typical overlap between two configurations drawn independently
from said pure state. Note that the Hamming distance between two configurations
satisfies d(σ, τ) = N

2
(1− qσ,τ ), and therefore, if a given pure state is relatively large,

then the typical Hamming distance between σ, τ
iid∼ µαβ(.) won’t be bounded away

from N (Mezard and Montanari, 2009).

Thus, the smaller a pure state is, the closer two configurations draw from it are,
the larger their overlap and vice versa; the larger qα,α is, the smaller is α.
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Note that the self-overlap is given by the first moment of the configurational over-
lap independently of whether there is pure state decomposition, and is equal to the
site average of the squared magnetization:

Theorem 5. The configurational overlap between two arbitrary configurations σ, τ ∈ Σ
satisfies: 〈qσ,τ 〉Σ = 1

N

∑
i∈[N ] m

2
i .

Proof.

〈qσ,τ 〉Σ ≡
1

N

∑
σ∈Σ

∑
τ∈Σ

∑
i∈[N ]

σiτiµβ(σ)µβ(τ) (3.8)

=
1

N

∑
i∈[N ]

(∑
σ∈Σ

σiµβ(σ)

)(∑
τ∈Σ

τiµβ(τ)

)
=

1

N

∑
i∈[N ]

m2
i . � (3.9)

The above two theorems were hinted at (although not proven) in the second chapter
of (Fishcer and Hertz, 1991) where the authors expand on the physical significance of
the different overlap parameters.

Since, the Edwards-Anderson order parameter has the implicit assumption that the
local magnetization is site-independent (same across i ∈ [N ]), the first moment of the
overlap is also equal to the Edwards-Anderson order parameter:

〈qσ,τ 〉Σ =

∑
i∈[N ] m

2
i

N
= qEA. (3.10)

To compute higher moments of the configurational overlap, it is useful to derive a more
general result:

Theorem 6. Let γi ≡ σiτi , the rth moment of the overlap is then given by:

〈qrσ,τ 〉 =
∑

k1...kr∈[N ]r

〈 σk1 . . . σkr 〉2

N r
, (3.11)

where the sum
∑

k1...kr∈[N ]r runs over all possible
(
N
r

)
combinations of r spin indices

from {1 . . . N} (without replacement).
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Proof.

〈qrσ,τ 〉 =
1

N r

∑
σ,τ∈Σ2

r times

(σ1τ1 + . . . σNτN) . . . (σ1τ1 + . . . σNτN) µβ(σ)µβ(τ) (3.12)

=
1

N r

∑
σ,τ∈Σ2

( ∑
k1...kr∈[N ]r

r∏
l=1

γkl

)
µβ(σ)µβ(τ) (3.13)

=
1

N r

∑
k1...kr∈[N ]r

(∑
σ∈Σ

σk1 . . . σkr µβ(σ)︸ ︷︷ ︸
=〈 σk1

...σkr 〉

)(∑
τ∈Σ

τk1 . . . τkr µβ(τ)

)
same

(3.14)

=
∑

k1...kr∈[N ]r

〈 σk1 . . . σkr 〉2

N r
. � (3.15)

This result was pointed out in chapter 12 of (Mezard and Montanari, 2009) although
its proof was left as an exercise to the reader.

It follows then, that the variance of the overlap is equal to the rescaled spin glass
susceptibility

V ar(qα,τ ) = 〈q2
σ,τ 〉 − 〈qσ,τ 〉2 (3.16)

=
1

N

(∑
k1,k2∈[N ]2〈 σk1σk2 〉2

)
−
(∑

k1∈[N ]〈 σk1 〉2
)

N
(3.17)

≡ χSG
N

, (3.18)

noting that χSG is expected to diverge at the critical temperature of the glass transition
(Mezard and Montanari, 2009).

3.1.1 Intractability of the Edwards-Anderson model and the
replica symmetric solution

Still after more than four decades of the original paper by (Edwards and Anderson,
1975), the question of the existence of a phase transition at finite temperature is yet
to be settled. The nearest neighbors model being analytically intractable, the only
information available comes from principled numerical simulations.

After four decades, the consensus among physicists is that the two-dimensional EA
model (at zero magnetic field) shows no phase transition at finite temperature but
does in three dimensions and above.

Facing the intractability of the model on the grid, there are two competing theories;

a. The finite dimensional droplet picture, in which we analyse the grid model as it
is, by assuming that the low temperature phase is governed by the excitations
of finite blocks of the system, whose spins are reversed with respect to a given
ground state. These excitations would thermodynamically satisfy: ∆H ∝ lθ,
where l is the block size and θ is a critical exponent and ∆H is the induced
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change in energy. From there follows a methodology on how to go about com-
puting the free energy and derive a physically sound picture of the spin glass
phase, see chapter 4 of (Binder et al., 2008) for more details.

b. The second one, which has taken an enormous scope, way beyond spin glasses or
even physics, is Mean Field theory (Mezard et al., 1987), where we forget about
the geometry of the spins, and consider the system as a set of spins taking ±1
values. These models are called infinite range, since every spin is assumed to
interact with all of the others, and can be interpreted as the infinite dimensional
limit of the grid model, where as d→∞, every point on the grid has an infinite
number of nearest neighbors.

Hence, in the mean field approach, we relax the nearest neighbors condition, effec-
tively enlarging J to encompass {Jij : ∀ (i, j) ∈ [N ]2}, we then proceed, as in
the grid model, to identify the right order and figure out a way to solve it, then com-
pute the free energy, and finally study the fluctuation around the mean field prediction.

This is where things get muddy. The validity of the mean field solution depends
on a crucial assumption, namely that the critical dimension, above which fluctuations
become negligible, needs to be finite (Fischer and Hertz, 1991). And while the veracity
of this assumption in the case of the Edwards-Anderson model is a long debated ques-
tion, the intricate hierarchy in the support of the Gibbs measure at low temperature
in these mean field models, and its apparent universality in a wide range of disordered
systems, is nothing short of extraordinary.

But what was even more remarkable than the accuracy of the non-rigorous predic-
tions, that are now rigorously vindicated by the work of Guerra, Talagrand and then
Panchenko, among others, was the method used to derive it, namely; The Replica
Symmetry Breaking scheme (RSB) of Parisi (Mezard et al., 1987).

This general method, whose original intent was to derive an explicit expression of
the free energy F (β) = − logZ/β, is a very powerful method that has been success-
fully used to predict phase transitions in a range of classical computational problems
from the travelling salesman problem, to vertex covering, to the quintessential NP
hard problem, namely k-SAT, that we will explore in depth in the next chapter. A
very nice book that explores that surveys the use of the replica method in classical
NP hard problems is (Hartmann and Weigt, 2005).

And while the replica method is not entirely rigorous, and quite strange as it involves
the manipulation of matrices of half a row/column, the details of the computations are
entirely specified, and is an essentially automatic analytical tool. However, the compu-
tations involved are quite cumbersome, and we have found that most references tend
to skip key steps in deriving the end results, we have therefore attempted to derive
the missing steps from (Mezard and Montanari, 2009), and included two important
prerequisite notions, namely: large deviations and the saddle-point approximation, to
make the exposition as self-contained as possible.
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3.1.2 Some context and a summary for this chapter

A mean field variant of the Edwards-Anderson model was proposed by the authors
in the seminal paper (Sherrington and Kirkpatrick, 1975) under the name of the
Sherrington-Kirkpatrick (SK) model:

Definition 17 (Sherrington and Kirkpatrick, 1975). The Sherrington-Kirkpatrick
model or SK model is an N−particle spin system with the Hamiltonian H(σ) =
−
∑

1≤i<j≤N Jijσiσj −B
∑

i∈[N ] σi.

After proposing the model, the authors proceeded to solve it using the replica trick,
that we describe in detail below.

The solution given by the replica method, however, turns out to display negative
entropy at low temperature, and is thus physically nonsensical. Following this paper,
numerous attempts were made to amend the low temperature behaviour by proposing
variations of the static Edwards-Anderson order parameter, but have proven unsuc-
cessful, until the celebrated Replica Symmetry Breaking solution by Parisi (Mezard et
al., 1987).

In the next section, we will briefly go into some key steps in the replica trick without
going into details, then introduce the technical machinery involved in the full com-
putation, two key pieces are the saddle-point approximation and the large deviation
approach. Afterwards, to illustrate the replica trick in a simple example, we will carry
it on a toy model called the random energy model, and demonstrate the unphysical
nature of the predicted low temperature free energy density.

Finally, we will present Parisi’s replica symmetry breaking scheme as a solution to
the low temperature erroneous prediction of the simple replica trick, and demonstrate
it on a more complex model which generalizes the Sherrington-Kirkpatrick one, called
the the p-spin model whose Hamiltonian is given by:

H(σ) = −
∑

1≤i1<···<ip≤N

J i1...ipσ
a
i1
. . . σaip , (3.19)

and whose generality allows it to describe a large class of random constraint satis-
faction problems that fall into the same universality class; the discontinuous 1RSB
universality class.

The central aim of this thesis is to describe the physical meaning, as well as the
algorithmic implications, of pure state decomposition in the p−spin model, the nat-
ural way to do this is through the overlap parameter. The first chapter introduces
the necessary physical jargon, and the second chapter gives an informal qualitative
description of (multiple) pure state decompositions in terms of overlap. This chapter
revisits these same themes in the context of the replica method, which gives the right
tools to characterize the distribution of the overlap and hence a clearer description of
pure state decomposition.
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3.2 The Replica trick

Recall that the entropy, internal energy, susceptibility and all other potentials of in-
terest can be derived straightforwardly from the disorder-averaged free energy FN,β ≡
− 1
Nβ

logZ.

However, integrating a logarithm over the disorder distribution is especially difficult
and thus we have to resort to some kind of trick. The replica method, simply stated,
consists of using a Taylor expansion to rewrite logZ into a form that is easier to
integrate over the disorder distribution. Before establishing, the replica identity, we
have the following,

lim
n→0

xn − 1

n
= lim

n→0

elog xn − 1

n
(3.20)

= lim
n→0

n log x+ 1/2!(n log x)2 + . . .

n
(3.21)

= log x. (3.22)

Now, since log(1 + nx) ≈ nx, when n ≈ 0, we have for x = logZ,

logZ = lim
n→0

log
(
1 + nlogZ

)
n

and since logZ −→
n→0

Zn − 1

n
, (3.23)

= lim
n→0

log
(
1 + nZ

n−1
n

)
n

(3.24)

= lim
n→0

log
(
Zn
)

n
. (3.25)

The problem of deducing the free energy of an N particle system is then reduced to
studying the nth power of its partition function and then averaging over the disorder.

In the replica method, the central object of interest is Zn , which can be inter-
preted as the partition function of a larger n × N particle system , often called the

replicated system, a system of n copies or replicas {σa : a ∈ [n]} iid∼ µβ,J , where the
word replica is meant in the sense of having the same disorder J .

3.2.1 A preliminary: Large deviations

We start by introducing the saddle-point approximation, that we adapt from the
wikipedia entry.

Theorem 7. Consider an arbitrary function f : X 7→ R that is bounded and analytic
around its maximum x∗ ≡ argminx∈Xf(x). The saddle-point approximation is an
asymptotic approximation of the integral IN ≡

∫
X e

Nf(x)dx which satisfies

IN =

√
2π

N |f ′′(x∗)|
eNf(x∗) for N � 1 (3.26)

Proof. Since f(x) is analytic around its maximum x∗ ≡ argminx∈Xf(x), we have
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the following Taylor approximation around x∗:

f(x) ≈ f(x∗) + f
′
(x∗)(x− x∗) +

f
′′
(x∗)(x− x∗)2

2
+
f
′′′

(x∗)(x− x∗)3

6
(3.27)

Moreover, since x∗ is a maximum of f , the second term is zero and f
′′
(x∗) = −|f ′′(x∗)|.

Now, consider the change of variables y ≡ (x−x∗)
√
N , the above integral then satisfies

IN = eNf(x∗)

∫
Y

exp

{
y2

2
|f ′′(x∗)|+ y3

6
√
N
f
′′′

(x∗)

}
dy (3.28)

For N � 1, we have y3

6
√
N
f
′′′

(x∗) ≈ 0, and therefore, using the well known Gaussian

integral
∫
e−a(z+b)2

dz =
√

π
a

, we have the following saddle-point approximation:

IN =

√
2π

N |f ′′(x∗)|
eNf(x∗) for N � 1. � (3.29)

Definition 18 (Mezard and Montanari, 2009). We say that AN is up to leading

exponential order equal to BN , when lim
N−→∞

1
N
log
(
AN
BN

)
= 0 and denote it: AN =̇ BN .

Definition 19 (Mezard and Montanari, 2009). Suppose that the probability of a ran-
dom variable O is given by P[.], we say that O satisfies a large deviation principle with
a rate function I : X 7→ R+, if

P[O = O] =̇ e−NI(O). (3.30)

Now assuming that O is a random variable that does follow a large deviation principle,
the next step is to derive the rate function I. To this end, we introduce the logarithmic
cumulant generating function Ψ : R 7→ R:

ΨN(t) ≡ 1

N
log
(
E
[
eNtO

])
. (3.31)

We then have the following result from (Mezard and Montanari, 2009) of which we
complete the proof:

Theorem 8. Suppose O is a random variable that follows a large deviation principle
with the rate function I, then the large N limit of the logarithmic moment generating
function of O, ΨN(t) ≡ log

(
E
[
eNtO

])
/N is given by the Legendre transform of the

rate function:

lim
N−→∞

ΨN(t) = sup
O∈R

{
tO − I(O)

}
. (3.32)

Proof. To make use of the saddle-point approximation, relying on the large devia-
tion assumption, we rewrite the expectation as an integral over eNg(.):

lim
N−→∞

ΨN(t) = lim
N−→∞

1

N
log

(∫
exp

{
N(tO − I(O))

}
dO

)
(3.33)
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Let g : R×R 7→ R be
g(t,O) ≡ tO − I(O). (3.34)

The limiting moment generating function then becomes the logarithm of a simple
Gaussian integral

lim
N−→∞

ΨN(t) = lim
N−→∞

1

N
log

(∫
eNg(t,O)dO

)
(3.35)

Assuming that g is analytic in O around its maximum O∗ ≡ argmax
O∈R

g(t,O) , we

have the saddle-point approximation

lim
N−→∞

ΨN(t) = lim
N−→∞

c

N
log
[
eNg(t,O

∗)
]

for some constant c, (3.36)

which leads us to the Legendre transform of the rate function I:

lim
N−→∞

ΨN(t) = sup
O∈R

{
tO − I(O)

}
. � (3.37)

The use the aforementioned techniques come up in the last steps of the replica trick.
Before we go into details of the computation as carried in (Mezard and Montanari,
2009), we give a brief summary of the key steps:

1). We start by expanding the product of replicas (identical partitions) in Zn to
rewrite as a sum over 2Nn elements:

Zn =
n∏
k=1

( ∑
ik∈[2]N

e−βEik
)

=
∑

(i1...ik)∈[2]Nn

n∏
k=1

e−βEik .

2). We use the Gaussian identity EeλX = e∆λ2/2 for zero mean Gaussians with ∆2

variance, to compute the average over the randomness of the energy to get an
explicit formulation of Zn as a function of an overlap matrix Qab ≡ 1{ia = ib}
between the n replicas (i1, . . . , in), yielding:

Zn =
∑

(i1...ik)∈[2]Nn

exp
{Nβ2

4

∑
a,b∈[n]2

Qab

}
. (3.38)

3). We then define the spectrum of the overlap N (Q) to be the cardinality of the set
of n replicas: {ia}n whose overlap is equal to a specific value: Q:

N (Q) ≡
∣∣∣{(i1 . . . in) ∈ [2]Nn : {Qab(i1 . . . in)} = Q

}∣∣∣, (3.39)

and make the change of variables inside the summands from
∑

(i1,...in) to
∑
QN (Q).

Then, we assume that the overlap follow a large deviation principle such that
N (Q) =̇ eNs(Q), to get:

Zn=̇
∑
Q

eNg(Q).
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4). Finally, now that we have Zn written in saddle-point friendly form, we com-
pute the saddle-point of g(Q), and take the limit when n → 0 to ver-
ify the accuracy of the replica method in predicting the free energy density
f(β) ≡ limN→∞−log(Z)/Nβ.

Note that the precise definition of large deviation principles is given by the Gartner-
Ellis theorem, since we find that it is not directly relevant to understanding the replica
method more deeply, we have omitted it, a very nice survey of its use in statistical
mechanics is given in (Touchette, 2009).

3.3 The Random Energy Model

In (Derrida, 1980), the author introduced a toy model of spin glass, which simpli-
fies the SK model by replacing the Hamiltonian with a set of Gaussian energy levels

Ej
iid∼ N (0, N/2) for all j ∈ |Σ|, where Ej represents the energy level of the jth state

in Σ ≡ {−1, 1}N .

For this section, we follow the simpler notation of (Derrida, 1980; Mezard and Monta-
nari, 2009), and denote an arbitrary configuration in the state space by ik ∈ Σ instead
of the usual σ, such that (ik)p refers to the value of the pth spin in the N−dimensional
binary vector of the configuration ik ∈ {−1, 1}N ≡ Σ. Moreover, since we are not
interested in the particular value of a given state ik but just its index (to whom we as-
sociate the corresponding energy level Eik) which spans |Σ| = 2N , by abuse of notation,
we will replace the states in {−1, 1}N by their indices to write ik ∈ Σ ≡ [2]N .

Definition 20. The Random Energy Model (REM) is an N−particle system whose
state ik ∈ {−1, 1}N ≡ Σ is distributed according to:

µβ(ik) ≡
e−βEik∑

il∈[2]N e
−βEil

, (3.40)

where Eik
iid∼ N (0, N/2) for all ik ∈ [2]N .

Theorem 9 (Mezard and Montanari, 2009). The expectation w.r.t. {Eik} of the nth

power of the partition function of an N−particle REM satisfies:

Zn ≡ E
Eik

iid∼N (0,N/2)
[Zn] =

∑
(i1...ik)∈[2]Nn

exp
{Nβ2

4

∑
a,b∈[n]2

Qab

}
, (3.41)

where Qab ≡ 1{ia = ib} for all a, b ∈ [n] are the entries the overlap matrix.

Proof. By developing the product it is easy to see that:

Zn =
n∏
k=1

( ∑
ik∈[2]N

e−βEik
)

=
∑

(i1...ik)∈[2]Nn

n∏
k=1

e−βEik . (3.42)

To get rid of the dependence on the indices inside the product, we can encode {ik}
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using identity functions such that for all ik ∈ [2]Nn we have

e−βEik =
2N∏
j=1

exp{−βEj} 1{ik = j} (3.43)

Hence,

Zn =
∑

(i1...ik)∈[2]Nn

2N∏
j=1

exp
{
− βEj

n∑
k=1

1{ik = j}
}

(3.44)

Let λj ≡ −β
∑n

k=1 1{ik = j} , recalling that EeλX = e∆λ2/2 for zero mean Gaussians
with ∆2 variance, we get

EeλEj = exp
{N

4

(
− β

n∑
k=1

1{ik = j}
)2}

(3.45)

Hence the disorder average of the replicated partition is

Zn =
∑

(i1...ik)∈[2]Nn

2N∏
j=1

exp
{Nβ2

4

( n∑
k=1

1{ik = j}
)2}

(3.46)

=
∑

(i1...ik)∈[2]Nn

exp
{Nβ2

4

∑
j∈[2]N

( n∑
k=1

1{ik = j}
)2}

(3.47)

=
∑

(i1...ik)∈[2]Nn

exp
{Nβ2

4

∑
j∈[2]N

∑
a,b∈[n]2

1{ia = j}1{ib = j}
}
. (3.48)

Since the indices {ik} and their assignments j ∈ [2]N are analogous to configuration
in an Ising state space, i.e. ik ∈ {±1}N ∀k ∈ [n], we have∑

j∈[2]N

1{ia = j}1{ib = j}
}

= 1{ia = ib} (3.49)

defines an overlap matrix Qab ≡ 1{ia = ib};, that is symmetric (Qab = Qba) with
unit elements in its diagonal Qaa = 1, ∀a ∈ [n]. The averaged replicated partition
can thus be written as a function of the overlap

Zn =
∑

(i1...ik)∈[2]Nn

exp
{Nβ2

4

∑
a,b∈[n]2

Qab

}
. � (3.50)

Note that while ik and il are probabilistically independent conditional on the sample
realization {Eik} , once we average over the energy distribution, the replicas are
no longer independent as illustrated by the overlap parameter. In fact, as observed
in chapter 8 of (Mezard and Montanari, 2009), the exponent in the sum effectively
defines a Hamiltonian HREM(i1 . . . ik) ≡ Nβ

4

∑
a,b∈[n]2 Qab of a nN particle system

who is no longer disordered (deterministic energy), whose ground state is given by

min
(i1...in)∈[2]Nn

HREM(i1 . . . ik) = HREM(i∗1 . . . i
∗
n) =

−Nβn2

4
, (3.51)
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where the ground states of system formed by the replicated system given by {ia}a∈[n]

are the all equal assignments {(i∗1 . . . i∗n) : i∗1 = · · · = i∗n}. Moreover, after averag-
ing, the replicas as no longer independent as they were in the product measure in
Zn =

∑
(i1...in)

∏
a∈[n] e

−βEik , since the Hamiltonian has a unique minimum, as the

temperature is lowered µβ concentrates on the (i∗1 = · · · = i∗n) state where the
replicas are locked together in the same configuration with high probability and are
thus highly correlated.

The main strategy behind the replica method following (Mezard and Montanari, 2009)
is to formulate Zn as a function of a single variable; the overlap, and to find a suitable
saddle point {Q∗ab} approximation to derive an explicit expression. As we will see,
the crux of the problem lies in this key step, where the energy landscape determines
the suitability of the candidate saddle point.

In order to make the overlap matrix the only independent variable in Zn , we need
to make a change of variable where we replace the sum over the nN particle binary
state space

∑
(i1...in) by a sum over all possible values of the overlap with each term

multiplied by its frequency or spectrum
∑

QN (Q):

Definition 21. We define the spectrum of the overlap: N (Q) to be the cardinality of
the set of n replicas: {ia}n whose overlap is equal to a specific value Q:

N (Q) ≡
∣∣∣{(i1 . . . in) ∈ [2]Nn : {Qab(i1 . . . in)} = Q

}∣∣∣. (3.52)

Let the overlap matrix be such that its entries are given by: Qab ≡ 1{ia = ib} and

let f({Qab}) ≡ exp
{
Nβ2

4

∑
a,b∈[n]2 Qab

}
, we make the change of variable:∑

(i1...in)∈[2]Nn

f({Qab(i1 . . . in)}) =
∑

Q∈Bn×n

N (Q) f({Q
ab
}), (3.53)

where Bn×n is the set of symmetric {0, 1} matrices with unit diagonal.

Notice that in the right hand side, the sum goes over |Bn×n| = 2n(n−1)/2 matri-
ces while the one on the left sums over 2nN elements, we can thus expect N (Q) to
follow a large deviation principle, where most of the probability mass of the distribu-
tion of the overlap values is carried by a very small (� 2nN ) subset of configurations
(i1 . . . in) :

N (Q) =̇ exp
{
Ns(Q)

}
. (3.54)

The replicated partition is then up to leading exponential order equal to

Zn=̇
∑
Q

exp
{
Ng(Q)

}
where g(Q) ≡ β2

4

∑
a,b∈[n]2

Q
ab

+ s(Q). (3.55)

Now, consider the permutation group of n elements: Sn , for any permutation π ∈ Sn ,
π takes as input an ordered set of replica indices and permutes their order, π :
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(i1 . . . in) 7→ (π(i1) . . . π(in)). The central observation underlying the replica method
is that the function g : Bn×n 7→ R is invariant under permutation of replicas. We
make this observation formal and prove in the following lemma that was left implicit
in (Mezard and Montanari, 2009).

Lemma 2. Let Bn×n denote the set of n× n symmetric matrices with binary entries

and unit diagonal, and suppose that the overlap Qab ≡ 1{ia = ib} (where ia, ib
iid∼ µβ

with fixed {Eik}) follows a large deviation principle with rate function s(.). Then,

the function g : Bn×n 7→ R given by g(Q) ≡ β2

4

∑
a,b∈[n]2 Qab

+ s(Q) is invariant
under any permutation π ∈ Sn where Sn is the permutation group of n elements:
g ◦ π(Q) = g(Q), ∀π ∈ Sn for all Q ∈ Bn×n.

Proof. Since the replicas were assigned indices (a ∈ [n]) arbitrarily from the very
beginning when we rewrote the product (that is invariant under Sn) as a sum: Zn =∏n

k=1

(∑
ik∈[2]N e−βEik

)
=
∑

(i1...ik)∈[2]Nn

∏n
k=1 e

−βEik , the summands (i1 . . . in) are

invariant under any permutation π ∈ Sn:

Zn =
∑

(i1...ik)

exp
{Nβ2

4

∑
a,b∈[n]2

1{ia = ib}
}

=
∑

(π(i1)...π(ik))

exp
{Nβ2

4

∑
a,b∈[n]2

1{π(ia) = π(ib)}
}
.

(3.56)
That is to say, the value of Zn is unchanged by any permutation of (i1 . . . in) ,
and since Zn depends on the replica indices (a ∈ [n]) only through g(Qab) (where
Qab ≡ 1{ia = ib}), g : Bn×n 7→ R is also invariant under replica permutation. �

For a fixed permutation π ∈ Sn , let Qπ denote the permuted matrix whose el-
ements are Qπ(a)π(b) for all 1 ≤ a < b ≤ n,. Since the overlap matrix is defined as
Qab ≡ 1{ia = ib}, the permuted matrix Qπ is obtained simply by permuting pairs
of rows and columns of Q simultaneously.

To arrive at an explicit expression for Zn, our strategy is to approximate the sum
though a single dominant term, namely its saddle-point: Qsp = argmaxQ∈Bn×n g(Q).
Because of the asymmetry in the number of summands between

∑
(i1...in) and

∑
Q,

where |Bn×n| = 2n(n−1/2) � 2nN = |(i1 . . . in)| , we are lead to assume that the spec-
trum of the overlap N is highly concentrated on a relatively very small subset of
Bn×n , with exponential decay away from argmaxQs(Q).

One could argue that using a saddle-point for a discrete sum is inappropriate, hence
the importance of the order of the limits of the replica method where we take the
n −→ 0 is only taken after taking the thermodynamic limit N −→∞ :

log
(
Z
)

= lim
n−→0

lim
N−→∞

1

n
log
(
Zn
)
. (3.57)

With this caveat, as N −→ ∞ , the overlap’s limiting support is in the continuum
Qab ∈ [−1, 1], ∀ 1 ≤ a < b ≤ n, such that:

Zn =̇

∫
[−1,1]n(n−1)/2

eNg(Q)
∏
a<b

dQab (3.58)
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However, since we don’t have an explicit expression for the rate function, we are left
to guess which overlap matrix has the largest spectrum and work back from there.

The insight leading to the replica symmetric solution can be summarized in a simple
argument: Considering g is replica symmetric, we can try to guess that s(Qsp) is
also invariant under any π ∈ Sn, that is to say, that Qsp, π = Qsp, ∀π ∈ Sn,
which restricts the pool of saddle-point candidates from Bn×n to a tiny subset
A ≡ {Q ∈ Bn×n : Qπ = Q, ∀π ∈ Sn} :

Zn =̇ exp
{
N max

Q∈A
g(Q)

}
. (3.59)

If the saddle-point matrix is invariant under any simultaneous permutation of rows
and their corresponding columns, then Qab = q, ∀a 6= b. Since Q ∈ Bn×n, this leaves
us with only two options:

• Qab = 1, for all a 6= b and Qaa = 1 for all a ∈ [n].

• Qab = 0, for all a 6= b and Qaa = 1 for all a ∈ [n].

We will denote the first item by Qsp
1 and the second by Qsp

0 . The above saddle-point
then becomes:

Zn =̇ exp
{
N max

[
g(Qsp

0 ), g(Qsp
1 )
]}
. (3.60)

As a reassurance for our initial guess, the following result proven in (Mezard and Mon-
tanari, 2009) shows that both saddle-point matrices have a large spectrum N (Q), that
is at least exponential in the size of individual system.

Lemma 3 (Mezard and Montanari, 2009). Suppose that the overlap Qab ≡ 1{ia = ib}
follows a large deviation principle with rate function s(.), and let Qsp

0 , Q
sp
1 be as defined

above and g(Q) ≡ β2

4

∑
a,b∈[n]2 Qab

+ s(Q), we then have:

g(Qsp
0 ) =

n2β

4
+ log 2, and g(Qsp

1 ) =
n2β

4
+ n log 2. (3.61)

Proof. For replicated systems with zero overlap, each individual ik∈[n] need to
differ by at least one spin from the others. To count the number of such replicated sys-
tems, we can choose i1 from 2N possible states, for i2 , excluding the configuration
i1 , we have 2N − 1 remaining choices and so on, we arrive at:

N (Qsp
0 ) = 2N(2N − 1) . . . (2N − (n− 1)). (3.62)

Recalling the large deviation assumption on the overlap spectrum, we have

N (Q) =̇ eNs(Q) ⇐⇒ lim
N−→∞

1

N
log
[N (Qsp

0 )

eNs(Q
sp
0 )

]
= 0, (3.63)

hence

lim
N−→∞

1

N

[
log
(

2nN +O(1)
)
−Ns(Qsp

0 )

]
= 0 (3.64)
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such that

lim
N−→∞

nN log 2−Ns(Qsp
0 )

N
= n log 2− s(Qsp

0 ) = 0 (3.65)

and therefore
s(Qsp

0 ) = n log 2. (3.66)

And since Qsp
0, ab = 0 forall a 6= b,

∑
abQ

sp
0, ab = n , hence

g(Qsp
0 ) =

n2β

4
+ log 2. (3.67)

As for the Qsp
1 case, we choose one configuration from 2N options, identical among

all individual systems, such that

lim
N−→∞

1

N
log
[N (Qsp

1 )

eNs(Q
sp
1 )

]
= lim

N−→∞

1

N
log
[ 2N

eNs(Q
sp
1 )

]
= lim

N−→∞

N log 2−Ns(Qsp
1 )

N
= 0

(3.68)
hence, s(Qsp

1 ) = log 2. And since Qsp
1 has all unit elements,

∑
abQ

sp
1, ab = n2 , which

culminates in

g(Qsp
1 ) =

n2β

4
+ n log 2. � (3.69)

By abuse of notation, we have thus far omitted the temperature dependence in Zn ,
when the original intent of the whole exercise was to show the existence of a non-trivial
phase transition at a certain critical temperature. Now that we have laid out explicit
formulas for computing the free energy, we can address this central question.

As previously discussed, phase transitions can be recognized by dramatic changes
in the (thermodynamic) free energy. Let Q∗ denote the correct saddle-point, since
Zn is up leading exponential order exponential in g(Q∗) , we can safely assume that
the phase transition happens at the critical point of g : β, n 7→ R with fixed overlap.

To get rid of the overlap dependence and further highlight the dependence on the
temperature parameter, we define

g0(β, n) ≡ nβ2

4
+ n log 2 and g1(β, n) ≡ n2β2

4
+ log 2. (3.70)

Since we don’t know a priori which of the two quantities is the correct one, we choose
rather arbitrarily βc(n) ≡ 2

√
log 2/n as a point of comparison between g0 and g1

in different scenarios. By this, we mean to delineate two distinct cases; the integer
one n ≥ 1, and its analytic continuation n < 0 , which, as we shall see, display quite
different features.

In chapter 2 of (Mezard and Montanari, 2009), the authors introduce a result which
stipulates that if there exists a function s : R 7→ R+ such that the spectrum of a given

energy level N∆(E) ≡
∣∣{ik : E ≤ Eik ≤ E+∆}

∣∣, satisfies N∆(E) =̇ exp
[
Ns(E/N)

]
,

then the free energy density is given by

− βf(β) = max
e

[
s(e)− βe

]
. (3.71)
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A short computation shows that in the case of the random energy model, the free
energy density f(β) (≡ limN−→∞−logZ/Nβ) satisfies

f(β) = −β
4
− log 2

β
if β ≤ βc(1) and f(β) = −

√
log 2 otherwise. (3.72)

We start with a qualitative description of the physical picture painted by the replica
symmetric solution starting with integer n ≥ 1 above and below βc(n), and then
consider the trickier case of the analytic continuation n −→ 0. In each case, we begin
by sketching out the physical meaning of having one saddle-point dominate rather
than the other. If the predicted picture is physically sound, we take the analytic con-
tinuation to zero and derive the free energy density to check if the solution is exact,
i.e. agrees with the equation just above.

In the integer n ≥ 1 case, it is easy to see that g1(β, n) ≤ g0(β, n) for all β ≤ βc(n)
and g1(β, n) > g0(β, n) otherwise. Hence, the correct saddle-point shifts from being
Qsp

0 in the high temperature regime to Qsp
1 below the critical temperature.

This picture agrees with the physical expectations outlined in previous sections. In-
deed, viewing the collection of replicas of the same N−particle system as a single
larger nN−particle system with no disorder and an effective Hamiltonian given by
HREM(i1 . . . ik) ≡ Nβ

4

∑
a,b∈[n]2 Qab, , for high enough temperatures (small β), we ex-

pect to see its particles point in independently random directions.

Hence, for N � 1, the nN Ising state space, which is exponential in nN , be-
comes so large that replicas {ia∈[n]} point in completely different directions with high
probability and are therefore expected to have near zero overlap. The replica symmet-
ric solution then predicts the correct saddle-point Qsp

0 in the high temperature phase
for all integer n ≥ 1.

On the other hand, below the critical temperature µβ concentrates on the mini-
mum energy configuration of the HREM which has replicas locked together in the
same N−particle configuration (i∗1 = · · · = i∗n) , and therefore completely overlap
with each other. Hence, the replica symmetric solution predicts the right saddle-point
Qsp

1 which gives the correct physical picture, at least qualitatively, even if it is non
exact as we shall see below.

Once we consider the analytic continuation of Zn to non integer numbers of replicas
as n −→ 0 , things start getting tricky. For one, the order of comparison between
g0 and g1 , below and above βc(n) are reversed, and therefore the system becomes
physically nonsensical with long range correlation at large temperatures and indepen-
dent particles in the low temperature phase. The replica symmetric solution neither
make sense mathematically; for β ≤ βc(n), g1(β, n) dominates and thus Z becomes
nonlinear in n and hence does not go to 1 as n −→ 0.

In light of these observations, we can add the ad-hoc prescription, though mathe-
matically unjustified, of choosing argminQ∈A g(Q) instead of its maximum as the
correct saddle-point n < 1.
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With this caveat, the replica symmetric procedure paints a physically sound quali-
tative picture for all n and we can therefore go on to verify the exactitude of the
resulting free energy density. Recall that the saddle-point approximation only makes
sense for N � 1 , it is then imperative to start with the thermodynamic limit

lim
N−→∞

ZnN =̇ lim
N−→∞

∫
eNg(Q)

∏
a<b

dQab = exp
{
Ng(Qsp)

}
. (3.73)

and only then apply the replica trick f ∝ logZ∞ = limn→0 log(ZnN)/n where Z∞ is
the partition function of the infinite system.

With that said, the replica method does rest on the (unjustified) assumption that
the two limits limn→0, limN→∞ commute.

For all β > βc(1), g0(β, 1) > g1(β, n) and therefore Zn =̇ eNg0(β,n). In the high
temperature regime, the replica symmetric solution then predicts that the free energy
density satisfies

−βf(β) ≡ lim
N−→∞

logZ
N

(3.74)

= lim
n−→0

lim
N−→∞

log
(
Zn
)

nN
(3.75)

= lim
N−→∞

lim
n−→0

log
(
Zn
)

nN
(3.76)

= lim
n−→0

g0(β, n)

n
(3.77)

=
β2

4
+ log 2. (3.78)

Hence, the replica symmetric solution is exact for all β < βc(n). In the low tempera-
ture regime, since g1(β, n) dominates, by an identical computation we get

−βf(β) = lim
n−→0

n2 β2

4
+ log 2

n
6= −

√
log 2. (3.79)

And therefore, the replica symmetric solution while qualitatively sound, is only exact
in the high temperature phase.

3.4 Parisi’s Replica Symmetry Breaking scheme

As the temperature decreases, a disordered system typically goes through a series of
phase transitions, each characterized by a subtly different correlation structure. For
simplicity, we will only consider the first three, and denote their respective critical
points by βRS < β1RSB < β2RSB(or βcond), whose subscripts will be explained below;

0. β ≤ βRS : The high temperature paramagnetic or liquid phase is characterized
by nearly independent spins and very low energy barriers, such that the system is
strongly ergodic; in the sense of having a very short mixing time w.r.t. Glauber
dynamics, spins are therefore uncorrelated in time, hence the liquid quality.
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1. β ∈ [βRS, β1RSB) : The first glassy phase is induced by the forming of a deep
well in the energy landscape, delimited by infinite energy barriers, the system is
rapidly mixing within the well.

2. β ∈ [β1RSB, β2RSB/cond) : The second glassy phase, marked by the forming
of subvalleys or pure states, delimited by O(eN) energy barriers within the
well, is accompanied by the emergence of short range correlations between spins.
Moreover, the system is no longer rapidly mixing on the entire state space (i.e.
has an O(eN) mixing time), but is rapidly mixing when restricted to a pure state.

3. β ≥ β2RSB/cond : The third glassy phase can either consist of:

i. The appearance of ”sub-subvalleys” within sub-valleys, i.e. a further break-
ing of configuration space into short-correlated rapidly-mixing quasi-pure
states, grouped within well separated clouds corresponding to pure states,
thus defining a 2-level hierarchical landscape.

ii. Or, the onset of a condensation phenomenon, where the equally sized 1RSB-
pure states diverge in size, such that a linear number of clusters carry most
of the probability mass, and where spins become long range correlated, in
the correlation viewpoint subsection of chapter 4 we go into more details
about what is meant by ”short/long range” correlations.

Recall that a sample of the Random Energy model (REM) is given by a collection
of realizations of zero mean Gaussian energy levels; one for each configuration in an
N−particle Ising state space Σ ≡ {±1}N . For each pair of configurations (ik, il) ∈
Σ2, the overlap between the two is as previously defined qik,il ≡

∑
p∈[N ] ikpilp/N .

The replica symmetric (RS) framework, more generally conceived, assumes that the

overlap between any two replicas ik, il
iid∼ µβ must either be zero, if they are iden-

tical, or equal to a certain value q1 , naturally, for N � 1, they are unlikely to be
identical and will therefore have an overlap equal to q1 with high probability.

In essence, the replica symmetric assumption is a statement about the correlation
structure of µβ∗ for all βRS ≤ β∗ < β1RSB , which stipulates that the correlation or
susceptibility of the system χSG remains bounded as N →∞, such that

lim
N−→∞

χSG

N
= lim

N−→∞

β2

N2

∑
x,y∈[N ]2

[〈(il)x(ik)y〉 − 〈(il)x〉〈(ik)y〉]2 = 0, ∀ β < β1RSB.

(3.80)
What follows, is that the overlap distribution is tightly concentrated around a certain
value q1 ∈ [−1, 1] such that; limN→∞ P∼µβ,N [qik,il = q] = δq1,q.

Recall the pure state decomposition described above and the hierarchical energy land-
scape that ensues. The simplest possible scenario (case 1.) is one where there is no
pure state decomposition, such that the support of the Gibbs measure consists of a
large dense cluster, close in Hamming space, carrying almost all of the probability
mass with no high energy barriers within.

This simple scenario is precisely the one being described by the replica symmetric

56



solution, where ∀ β∗ ∈ [βRS, β1RSB) , as N →∞, the state space |Σ| = 2N growing
exponentially in N together with the vanishing correlation will make it such that
any two configurations under µβ∗,N will typically be very far in Hamming space, i.e.
differing by a large number of spins, and will consequently have zero overlap with high
probability.

As the temperature is lowered below the second critical point β∗ ≥ β1RSB, the
state space breaks into an exponential number of pure states Σ = S

⊔
i∈[η] αi with

η = O(eN) and S being the configuration space separating clusters with vanishing
probability mass below the critical temperature, allowing us to write µβ∗ as a convex
combination of pure state weights:

µβ∗(τ) =
∑

αi:i∈[η]

wαiµ
αi
β∗(τ) where µαiβ∗(τ) ≡ 1{τ ∈ αi} e−βH(τ)

Zαi
, wαi =

Zαi∑
αi:i∈[η]Zαi

.

(3.81)
In this temperature regime, clusters are assumed to be asymptotically at equal dis-
tance from each other as N →∞, and of equal size, i.e. having equal Gibbs weights
wαi = wαj ∀ i, j ∈ [η].

Figure 3.1: Clusters (Semerijan, 201X)

Hence, if we draw ik, il
iid∼ µβ∗ , the two configuration will be either in the same clus-

ter or a different one, and both event will have non negligible probability as N →∞ ,
i.e. there is no value of the overlap around which fluctuation under µβ∗≥βRSB are
vanishing in the thermodynamic limit, but rather two values that carry almost all
of the probability mass for N large enough such that limN→∞ P∼µβ,N (qik,il = q) =
δq1,qx(β) + δq0,q(1− x(β)), where x(β) is the Parisi 1RSB parameter, to be detailed
below.

In a 2-level hierarchical landscape, each cluster decomposes into quasi-pure states
αi = Qi

⊔
k∈[κi] ζ

i
k with {Q

i∈[η]} having vanishing probability mass at low temper-
ature. The RS assumption is supposed to hold within quasi-pure states, such that
the distribution of the overlap when restricted to any quasi-pure state has vanishing
fluctuation around a certain value qζ , as N → ∞. Thus, any two independently
random configurations from µβ are most likely to be:

• In the same quasi-pure state (ik, il) ∈ ζ ik, with overlap qζ .
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• In the same pure-state (ik, il) ∈ αi but different quasi-sates ik ∈ ζ ik, il ∈ ζ il
and hence typically have a smaller overlap qα < qζ .

• In altogether different pure states and thus have the smallest overlap of the likely
three values; qΣ < qα < qζ .

It is thus evident that to describe a k−level hierarchical landscape, we need k − 1
overlap values.

The failure of the replica symmetric solution in the case of the REM at low tem-
perature β ≥ βc = 2

√
log 2 , points to the fact that the sum Zn =̇

∑
Q eNg(Q) is

dominated by non-replica symmetric overlap matrices.

The issue then lies within the assumption that the saddle-point matrix is invariant
w.r.t. to permutation of indices, thus restricting the candidate pool from Bn×n to
matrices with equal off-diagonal elements; A ≡ {Qsp

0 , Q
sp
1 }, which amounts to assum-

ing that a single overlap value suffices to describe each of the two phases delimited by
βc, effectively ignoring the possibility of having more than one possible overlap value
for the low temperature phase, as is the case in a 1-level hierarchical energy landscape.

Parisi’s ingenious Replica Symmetry Breaking (RSB) scheme is an iterative procedure
which fixes this issue by recursively enlarging A to include non-replica symmetric
overlap matrices by considering one additional possible overlap value for off diagonal
elements at each iteration, as to account for the higher multiplicity of overlap values
inherent to higher level hierarchies.

In practice, given a disordered system with a specified Hamiltonian, we start by as-
suming the simplest energy landscape for the low temperature phase, with no pure
state decomposition, we write Zn in a saddle-point friendly form and assume that
the overlap distribution concentrates around a single value, apply the RS solution,
then carry out self-consistency checks. If the solution is not exact, we assume that the
low temperature phase displays a 1-level hierarchical energy landscape, best described
by an additional overlap (so 2 in total), this added overlap candidate breaks the sym-
metry of Q w.r.t Sn, since {Qab : a 6= b} can now take more than one value.

This first iteration of the RSB scheme is the so called 1-step Replica Symmetry Break-
ing scheme (1RSB), where we divide the n replicas into equally sized subsets and
assume that replica symmetry (Qab = Qπ(a)π(b)) still holds within subgroups. Intu-
itively, we can think of each subgroup as a sample from a different pure state, which
naturally defines two overlaps in the low temperature phase. Since the RS picture is
valid within pure states, the overlap between same-subgroup configurations should be
equal to one.

If the free energy density is still not exact for β ≥ βc , we assume a 2-level hierarchy,
add a third candidate overlap, thus breaking the replica symmetry within subgroups,
divide subgroups into ”sub-subgroups” and assume that replica symmetry holds within
”sub-subgroups”, which defines the 2nd step of RSB, and so on. Along the same lines,
we can define kRSB for all k ∈ N with ∞RSB as the solution for infinitely nested
clusters with in the limiting case.
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Figure 3.2: The saddle-point overlap matrix for the 1RSB (left) and 2RSB (right)
schemes (Mezard and Montanari, 2009)

Suppose that n is a multiple of x, such that we can partition the replicas into n/x
subsets of x elements each.

Back to the REM, in light of the failure of the RS solution, we assume that the
energy landscape displays a 1-level hierarchy with a single pure state decomposition
and consider as a saddle-point candidate, the following overlap matrix Q ∈ Bn×n :

• Qaa = 1, ∀ a ∈ [n].

• Qab = q1 if a and b are in the same subgroup.

• Qab = q0 if a and b are in different subgroups.

Note that the 1-step RSB scheme compromises the replica symmetric solution as a
special case for when x = 1.

As previously stated, each subgroup of replicas can be seen as sampled from a dif-
ferent 1RSB cluster, within which the RS assumption holds. More precisely, the 1-
RSB scenario presupposes that, if we restrict ourselves to a given pure state αi, the
correlation within said pure state is bounded, such that the overlap between any two

configurations ik, il
iid∼ µαiβ has vanishing fluctuation in the thermodynamic limit,

and therefore the distribution of the overlap distribution restricted to αi becomes a
δ− function at one; limN→∞ P∼µαiβ (qik,il = q) = δq,1.

Moreover, since clusters stay are supposed to be at equal distance in a Hamming
space that grows exponentially in N; |Σ| = 2N , any two configuration belonging to
different pure states will have zero overlap with high probability.

Which leads us to two overlap candidates for the low temperature phase: q1 = 1
and q0 = 0.
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Since the end goal is to approximate Zn up to leading exponential order, the next
step is to compute the spectrum of the above saddle-point, i.e. the number of config-
urations (i1 . . . in) with the above overlap. Considering that q1 = 1 and q0 = 0, the
n replicas would have to satisfy

i1 = · · · = ix 6= ix+1 = · · · = i2x 6= . . . (3.82)

Hence,

NRSB = 2N︸︷︷︸
#options for 1st group

(2N − 1)︸ ︷︷ ︸
2ndgroup

. . . (2N − n

x
+ 1)︸ ︷︷ ︸

xthgroup

. (3.83)

Using the same argument as before, the drastic drop in the number of summands after
the change of variable from Zn =

∑
(i1...in) to

∑
Q∈Bn×n NRSB(Q) leads us to assume

a large deviation principle of the form NRSB(Q) =̇eNs(Q), such that

lim
N−→∞

1

N

(nN
x

log 2−Ns(Q)
)

= 0 ⇐⇒ s(Q) =
n

x
log 2 (3.84)

Hence, the saddle-point satisfies gRSB(β, n, x) = β2

4
nx + n

x
log 2.

To summarize the steps taken thus far, using the Gaussian identity EE∼N (0,∆)[e
λE] =

eλ
2∆/2, we compute the average of Zn over the Gaussian energy levels {Eik}, thus

obtaining

Zn =
∑
i1...in

exp
{Nβ2

4

∑
1≤a<b≤n

1{ia = ib}
}
, N (Q) ≡

∣∣∣{(i1· · ·n) : Qab︸︷︷︸
1{ia=ib}

= Q
ab

}∣∣∣
=̇
∑
Q

N (Q) e
Nβ2

4

∑
a<bQab and suppose N (Q) =̇ eNs(Q)

=̇
∑
Q

exp
{
N
(β2

4

∑
a<b

Q
ab

+ s(Q)
)

︸ ︷︷ ︸
≡g(Q)

}
=

∫
[−1,1]

eNg(Q)
∏
a<b

Q
ab

for N � 1.

In the Replica Symmetric procedure we assumed Q to be symmetric w.r.t any per-
mutation π ∈ Sn where Sn is the permutation group of n elements, we now relax this
symmetry condition by assuming that replica symmetry holds only within subgroups,
i.e Qπ(a)π(b) = Qab, for all π ∈ Sx; a, b ∈ {px + 1, . . . (p+ 1)x} and p ∈ [n/x].

What is missing now, is how many subgroups should there be for gRSB(β, n, x∗)
to dominate the above sum, in other words; for what value of x does gRSB provide
the correct saddle-point, in the low temperature phase; β ≥ βc.

Following the same argument used to remediate the non-physically sensical case of
non-integer n < 1 in the RS picture, we take the minimum rather than the maximum
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Figure 3.3: argminx gRSB(β, n, x) at different temperatures (Mezard, Montanari,
2009)

as the saddle-point approximation of
∫

[−1,1]
eNg(Q)

∏
a<bQab

, wich yields

∂gRSB
∂x

=
β

4
n− n

x2
log 2 = 0 ⇐⇒ x∗(β) = 2

√
log 2︸ ︷︷ ︸

=βc(n=1)

/β. (3.85)

Again, assuming limn→0 and limN→∞ commute, we verify the exactitude of the
RSB saddle-point for the glassy low temperature phase β ≥ βc(1),

− βf = lim
n→0

1

n
gRSB(β, n, x) = lim

n→0

2
√

log 2 nβ2

4nβ
+

log 2 nβ

2n
√

log 2
= β

√
log 2, (3.86)

hence, the 1RSB solution is exact for all β ≥ βc(1) = 2
√

log 2.

Note that, while the RS free energy density is in fact correct for β < βc, it may
feel unsatisfying to have to use the RS scheme for high temperatures, then switch to
1RSB for the low temperature phase. This problem can be mended by fixing x = 1
for the high temperature phase, such that for all β < βc, we have:

− βf = lim
n→0

1

n
gRSB(β, n, 1) = lim

n→0

β
4
n.1− n

1
log 2

n
=
β2

4
+ log 2, (3.87)

thus, recovering the correct value of the free energy density for both the high and low
temperature regimes.

3.5 The p-spin model

Considering the failure of the Replica Symmetric solution to predict the low temper-
ature free energy density of the Sherrington Kirkpatrick (SK) model, (Derrida, 1980)
proposed a generalization of the SK model at zero magnetic field, which allows inter-
actions between any p−tuple of spins, called the p-spin model :

Definition 22. The p-spin model is an N−particle system where the set of couplings
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J consists of all
(
N
p

)
possible p−tuple of spin-interaction, and whose Hamiltonian is

given by:

H(σ) = −
∑

1≤i1<···<ip≤N

J i1...ipσ
a
i1
. . . σaip , (3.88)

where Ji1...ip
iid∼ N (0,∆2).

The SK model is then a p-spin model with p = 2.

After setting up this model, Derrida bypasses this difficult looking Hamiltonian, by
considering a much simpler object; the Random Energy Model, which turns out to be
the limiting case of the p-spin model when p→∞.

To see this, the trick is to consider the probability distribution of the pair of values
that a couple of Hamiltonian can take:

P∼µβ,p [E1, E2] = 〈δH(σ),E1 . δH(σ),E2〉, (3.89)

and introduce an overlap-like parameter, namely the Hamming distance between two
configurations in the Ising N−particle state space: xik,il ≡ |{p : (ik)p = (il)p}|. After
some standard manipulations, it follows that

P∼µβ,p [E1, E2] ∝ exp
{
− (E1 + E2)2

2N [1 + (2x− 1)p]∆2
− (E1 − E2)2

2N [1− (2x− 1)p]∆2

}
(3.90)

Depending on the value of this parameter, we distinguish two cases:

i. P∼µβ,p [E1, E2] −→
x→1

P∼µβ,p [E1].δE1,E2 , hence E1, E2 become strongly corre-

lated.

ii. If x ∈ (0, 1/2], limp→∞(2x − 1)p = 0 and therefore: limp→∞ P∼µβ,p [E1, E2] ∝
e−E

2
1/2N∆2

e−E
2
2/2N∆2

. Hence, limp→∞ P∼µβ,p [E1, E2] = P∼µβ,p [E1]. P∼µβ,p [E2],
the two energies are independent.

It is thus, apparent that when the number of interacting spins in the p−spin model
goes to infinity, we recover the REM. And while the REM is very insightful as a toy
model, the canonical mean field model for spin glasses is in fact the p−spin.

3.5.1 Breaking replica symmetry in the p-spin case

Definition 23. A set of n replicas is a set of configurations {σa}a∈[n] drawn indepen-
dently from the same distribution (i.e. with fixed couplings).

Theorem 10 (Mezard an Montanari, 2009). The expectation w.r.t. the distribution
of the couplings of the nth power of the partition function of an N−particle p−spin
model satisfies:

Zn =̇

∫
e
Nβ2n

4

∑
σ1...σn

exp
{Nβ2

4

∑
a,b

Qp

ab

}
.δ(qab −Qab

)
∏
a<b

dqab, (3.91)
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where Q
ab
≡
∑

i σ
a
i σ

b
i/N .

Proof. As we did before, to ease notation, we denote the expectation w.r.t. the
distribution of the couplings with an overline. We have

Zn =
n∏
a=1

( ∑
σa∈Σ

exp
{
β
∑

i1<···<ip

J i1...ipσ
a
i1
. . . σaip

})
(3.92)

∑
σ1...σn

n∏
a=1

exp
{
β
∑

i1<···<ip

J i1...ipσ
a
i1
. . . σaip

}
(3.93)

=
∑
σ1...σn

∏
i1<···<ip

exp
{
J i1...ipβ

( n∑
a=1

σai1 . . . σ
a
ip︸ ︷︷ ︸

≡γi1...ip

)}
(3.94)

=
∑
σ1...σn

∏
i1<···<ip

exp
{
J i1...ip

(
βγi1...ip

)}
(3.95)

Recall the Gaussian identity EZ∼N (0,∆2)e
λZ = e

∆λ2

2 . Since J2
i1...ip

= p!
2Np−1 and

λ ≡ βγi1...ip , we have

Zn =
∑
σ1...σn

∏
i1<···<ip

exp
{ p!

2Np−1

β2γ2
i1...ip

2

}
(3.96)

=
∑
σ1...σn

exp
{Nβ2

4

p!

Np

∑
i1<···<ip

γ2
i1...ip

}
(3.97)

And since

γ2
i1...ip

=
( n∑
a=1

σai1 . . . σ
a
ip

)2

=
∑

a,b ∈[n]2

σai1σ
b
i1
σai2σ

b
i2
. . . σaipσ

b
ip , (3.98)

we have

p!
∑

i1<···<ip

γ2
i1...ip

= p!
∑

i1<···<ip︸ ︷︷ ︸
(Np) terms

∑
a,b ∈[n]2

σai1σ
b
i1
σai2σ

b
i2
. . . σaipσ

b
ip (3.99)

=̇
∑

(i1...ip)∈[N ]p

∑
a,b ∈[n]2

σai1σ
b
i1
σai2σ

b
i2
. . . σaipσ

b
ip . (3.100)

The next step is to formulate Zn as a function of the overlap between fixed assign-
ments of replicas (σa, σb): Q

ab
≡
∑

i σ
a
i σ

b
i/N :

NpQp

ab
≡
( ∑
i∈[N ]

σai σ
b
i

)p
=
(
σa1σ

b
1 + · · ·+ σaNσ

b
N

)
p times. . .

(
σa1σ

b
1 + · · ·+ σaNσ

b
N

)
(3.101)

=
∑
i1...ip

σai1σ
b
i1
. . . σaipσ

b
ip . (3.102)
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Thus, ∑
a,b

Qp

ab
=̇

p!

Np

∑
i1<···<ip

γ2
i1...ip

(3.103)

And since, Qaa =
∑

i(σ
a
i )

2/N = 1 , we have∑
(a,b)∈[n]2

Qp

ab
= n+ 2

∑
1≤a<b≤b

Qp
ab. (3.104)

Such that,

Zn =̇
∑
σ1...σn

exp
{Nβ2

4

∑
a,b

Qp

ab

}
= e

Nβ2n
4

∑
σ1...σn

exp
{Nβ2

2

∑
a<b

Qp

ab

}
. (3.105)

Finally, to rid the exponential of its dependence (through Q
ab

) on the assignment of
the n replicas {σa}, we use the Dirac delta function to obtain:

Zn =̇

∫
e
Nβ2n

4

∑
σ1...σn

exp
{Nβ2

4

∑
a,b

Qp

ab

}
.δ(qab −Qab

)
∏
a<b

dqab. � (3.106)

Now, the next step is to write the above integral in a saddle-point friendly form (like∫
eNg(q)dq). To do this, we make use of the Laplace transform of the Dirac delta

function δ(s− t) = 1
2π

−iζ(s−t)
dζ such that, for all 1 ≤ a < b ≤ n we have

1 =

∫
δ
(
qab −

∑
i σ

a
i σ

b
i

N

)
dqab (3.107)

=

∫ [
1

2π

∫
exp

{
− iλab

(
Nqab −

∑
i

σai σ
b
i

)}
dλab

]
Ndqab, (3.108)

hence

Zn =̇ e
Nβ2n

4

∫ [∏
a<b

{
e
Nβ2

4
qpab
∑
σ1...σn

δ(qab −Qab
)
} ]∏

a<b

dqab (3.109)

=̇ e
Nβ2n

4

∫ [∏
a<b

{
e
Nβ2

4
qpab
∑
σ1...σn

∫
e−iλab(Nqab−

∑
i σ
a
i σ
b
i )dλab

} ]∏
a<b

dqab (3.110)

=̇ e
Nβ2n

4

∫ [∏
a<b

{
e
Nβ2

4
qpab e−iNλab qab

∑
σ1...σn

∫
eiλab

−→
σa
−→
σbdλab

} ]∏
a<b

dqab (3.111)

=̇ e
Nβ2n

4

∫ ∫
e
Nβ2

4

∑
a<b q

p
ab−iN

∑
a<b λab qab

∑
σ1...σn

ei
∑
a<b λab

−→
σa
−→
σb
∏
a<b

dqab dλab.

(3.112)
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Let G be a function of 2× n(n−1)
2

variables, mapping ({qab}, {λab}) 7→ R :

G({qab}, {λab}) ≡ −
nβ2

4
− β2

2

∑
a<b

Qp
ab + i

∑
a<b

λabQab − log
( ∑
σ1...σn

e
∑
a<b iλab

−→
σa.
−→
σb
)
,

(3.113)
such that

Zn =̇

∫
e−NG({qab},{λab})

∏
a<b

dqab λab. (3.114)

We can now approximate the integral by a saddle-point. Let wab ≡ iλab , since the
saddle-point must be a critical point of G, we have

∂G

∂qab
= −β

2

2
p qp−1

ab + wab ⇐⇒ w∗ab =
β2

2
p qp−1

ab . (3.115)

As for {q∗ab} ,

∂G

∂wab
= qab −

∑
σ1...σn

−→σ a−→σ b e
∑
a<b wab

−→σ a−→σ b∑
σ1...σn e

∑
a<b wab

−→σ a−→σ b . (3.116)

The second term on the right hand side defines a probability measure whose support
is (σ1, . . . σn) , with expectation

〈O〉n ≡
∑

σ1...σn O(σ1, . . . σn) e
∑
a<b wab

−→σ a−→σ b∑
σ1...σn e

∑
a<b wab

−→σ a−→σ b , for all O : Σn 7→ R. (3.117)

The saddle-point for {q∗ab} then satisfies

q∗ab = 〈
∑
i

σai σ
b
i 〉n, with σa, σb

iid∼ µβ,J . (3.118)

The next step is to find a candidate saddle-point satisfying the conditions above. As
a first step, we consider a RS solution in the set of symmetric matrices with unit
diagonal Bn×n, as sketched in the REM case,

qab = q, wab = w ∀a 6= b (3.119)

which yields

w =
β2p qp−1

2
(3.120)

and since, q = 〈
∑

i σ
a
i σ

b
i 〉n , using the Gaussian identity we get

q = Ez tanh2(z
√
w) where z ∼ N (0, 1). (3.121)

One possible solution for the above identities, is to take q = w = 0, which yields

lim
n→0

1

n
G({qab = 0}, {λab = 0}) = lim

n→0

1

n

[nβ2

4
− log

( ∑
σ1...σn

e0
)]

= −β
4
− log 2

β
.

(3.122)
An important detail that we omitted thus far, is the p−dependence of G, which, as

can be seen in the two graphs above, distinguishes two qualitatively different cases;
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Figure 3.4: The graph of r(q) ≡ Ez∼N (0,1) tanh2(z
√
pβ2qp−1/2) at β =

4, 3, 2, , 1.5, 1 and 0.5 for the SK model (left) and p = 3 (right), from
(Mezard and Montanari, 2009).

p = 2. which corresponds to the SK model, where G sees the appearance of a second
critical point at β = 1, which then depart continuously (as β = 1 + ε ) from
the first at q = 0.

p ≥ 3. for each p above 3, there exists a p−dependent critical temperature βc(p),
above which, a second critical point appears, and as β ↓ βc(p), the two critical
points merge into one.

Unfortunately, all of these RS saddle-points turn out to produce a highly inaccurate
physical picture, where the system’s entropy is allowed to decrease, which is actually
one of the biggest sins in physics.

Unlike in the REM case, which was a toy model whose main purpose was to show
when the RS(B) scheme does/fails to predict the correct value of f(β), that we a
priori knew, we do not have an explicit result for the free energy density to check the
veracity of the RS predictions, and hence we need to resort to a more fundamental
principle.

Recall that the entropy of a probability measure with discrete support is a function
of the temperature: S(β) =

∑
σ µβ(σ) log[µβ(σ]), in the large temperature limit it is

easy to see that S(β) = log |X |+ Θ(β), where X is the state space of a single spin,
and is equal to {±1} in the Ising case.

If we define the energy gap, i.e. the height of the energy of a given state σ, w.r.t a
ground state E0, as ∆E = minσ∈Σ{H(σ)−E0}, we can rewrite the entropy in a low
temperature expansion as S(β∗) = log |X |+ Θ(e−β∆E) for small β∗. Since ∆E ≥ 0
by definition, we see that, that at low temperature, the entropy essentially counts the
number of degrees of freedom |X | of the system.

This is known as the positivity of the entropy, and is a crucial condition to be sat-
isfied for any theory to be satisfactory. A direct consequence of which;

F (β) = U(β)− S(β)

β
= E0 −

log |X |
β

+ Θ(−β∆E)
β�1
≈ E0 −

log |X |
β

. (3.123)
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Hence, the free energy density f(β) ≡ limN→∞ FN(β)/N, must also be a increasing
function of β, which is not true in the RS prediction above.

The RS prediction is thus fundamentally flawed, hence the 1RSB solution. Just as
in the REM case, we partition the replicas into n/x subsets and consider the 1RSB
saddle-point:

• qaa = waa = 1, ∀ a ∈ [n].

• qab = q1, wab = w1 if a and b are in the same subgroup.

• qab = q0, wab = w0 if a and b are in different subgroups.

By repeated use of the Gaussian identity we get,

G1RSB({qab},{wab}) = −nβ
2

4
+
nβ2

4

(
(1− x)qp1 + xqp0

)
− n

2

(
(1− x)q1w1 + xq0w0

)
+
n

2
w1 − log

(
Ez0∼N (0,1)

[
Ez1∼N (0,1)2

x coshx
(√

w0z0 +
√
w1 − w0z1

)]nx)
,

where z0, z1 are, as suggested, two independent zero mean Gaussians with unit vari-
ance.

Proceeding as before, we set q0 = w0 = 0, and look for the critical points of G1RSB,
we find that

w1 =
1

2
p β2qp−1

1 , q1 =
Ez∼N (0,1)

[
2x coshx(

√
w1z) tanh2(

√
w1z)

]
Ez∼N (0,1)

[
2x coshx(

√
w1z)

] . (3.124)

One obvious solution to these equations is the replica symmetric q1 = w1 = 0 overlap
matrix, which as we said is erroneous, hence the need to look for other saddle-points.

Just like in the RS case, for p ≥ 3, the above identity (on the right) admits two
solutions away from q1 = 0. A local stability analysis, whose details are expanded
upon in the last section of chapter 8 in (Mezard and Montanari, 2009), reveals that
the larger one of the two solutions q∗1 > q∗∗1 ; is the suitable one.

With both (q1 = q∗1, q0 = 0) fixed, we minimize G1RSB w.r.t x, and what we
find is that; the unicity of a critical point x∗ ∈ [0, 1] holds only in the low temper-
ature regime β > βc(p).Notice, the strict inequality for β, more precisely, at the
critical temperature β = βc(p), we have

f1RSB = lim
n→0

1

nβc(p)
G1RSB = −β

4
− log 2

β
= fRS, (3.125)

which effectively means that, for all p ≥ 3, there exists a phase transition β = βc(p),
from the RS 1-level hierarchical picture to the 1RSB one characterized by a pure state
decomposition.

By some involved computations that we omit for concision, we find that for p � 1,
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we have

βc(p) = 2
√

log 2 + e−Θ(p), x∗(β) =
βc(p)

β
+ e−Θ(p), q1 = 1− e−Θ(p). (3.126)

Moreover, for β = βc(p) + ε, f1RSB(β) = −
√

log 2, thus painting essentially the same
picture as the REM at low temperature, hence reaffirming the validity of the REM as
a large p limit for the more complicated p−spin model.

A further stability analysis, by Gardner, reveals that for p ≥ 3, the 1RSB solu-
tion is only stable up to a certain βu(p), above which any kRSB for finite k < ∞
turn out to be unstable. In fact, at βu(p), the thermodynamic overlap distribution
becomes a combination of an infinite number of delta functions, thus signaling an in-
finitely nested hierarchical structure requiring an ∞−RSB scheme. As for the p = 2
case of the SK model, one finds that at the appearance of the second critical point
of G at β = 1, signals a phase transition, where ∀ β > 1, the system is full (∞)
Replica Symmetry Breaking.
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Part II

Statistical physics of random CSPs
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Chapter 4

Statics or the study of the
equilibrium measure

Chapter organization

We start by introducing a well known constraint satisfaction problem under the name
of k-SAT and its factor graph representation (4.1). Then, we introduce a crucial
result concerning the connectivity of random factor graphs (associated with random
k-SAT instances), that states that they are locally a tree (4.1.1). Afterwards, we
introduce the message passing approach to computing the normalization constant and
approximating marginals of high dimensional probability distributions, and show that
it is exact on tree factor graphs (4.1.2). Then, we introduce some definitions that
allow us to define a notion of a ”good marginal approximation”, and show that a
message passing algorithm under the name of Belief propagation satisfies it under
some conditions (4.2, 4.2.1). Subsequently, we describe the significance of the 1RSB
scenario discussed in the previous chapter in the case of k-SAT from two perspectives
(4.3.1 and 4.3.2), and move on to discuss a message passing approach that works
well beyond some critical variable/clause density threshold (where Belief propagation
fails), called Survey propagation (4.4). Finally, we discuss an inherent sampling bias in
Survey propagation, and the problem of sampling uniformly from the set of satisfying
assignments (4.5), that we address in the last remaining chapter.

4.1 The k-SAT problem

Definition 24. A logical conjunction over a set of binary variables ci ∈ {0, 1} for
i ∈ [M ], is an and operation between them that we denote by

∧
i∈[M ] ci. A logical

disconjunction over a set of binary variables xi ∈ {0, 1} for i ∈ [k], is an or operation
between them, that we denote by

∨
i∈[k] xi.

Definition 25. A k-SAT formula is a logical conjunction between M binary valued
clauses

∧
i∈[M ] ci, where each clause is given by a logical disjunction between a subset

of k variables (and/or their negations ¬) from {xi}i∈[N ] : ci =
∨
i∈[k](¬)xi, for some

k,N,M ∈ N.

Following the notation in (Mezard and Montanari, 2009), we denote the set of
variables involved in clause a by ∂a to mean a =

∨
i∈∂a xi, and the set of clauses in
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which the variables xi occurs by ∂i. A k−SAT formula is then uniquely determined
by the sets ∂ci, i ∈ [M ] and can thus be written as: Φ({xi}) =

∧
j∈[M ]

∨
i∈∂cj(¬)xi.

Note that we will often abuse notation to use interchangeably xi and i to refer to
the ith variable. Here is a simple example of a 2−SAT formula with N = 3,M = 2:

Φ(x1, x2, x3) = (x1 ∨ x2)︸ ︷︷ ︸
clause a

∧ (x1 ∨ ¬x3)︸ ︷︷ ︸
b

. (4.1)

To study random k-SAT formulas it is very useful to represent them as factor graphs
and study their corresponding random graph ensembles, since these have been studied
thoroughly in random graph theory. A nice introduction to the subject is the book of
(Bollobas, 2001).

Definition 26 (Mezard and Montanari, 2009). For a given k-SAT formula, we as-
sociate a factor graph: F = (V ,F , E), where V ≡ [N ], F ≡ [M ] are vertices (or
nodes) representing the variable and function nodes respectively, and E are the edges
relating elements across the two sets.

To simplify notation, we use i, j . . . and xi, xj . . . interchangeably to denote
variable nodes, and a.b . . . to denote function nodes. Consider the factor graph in
the figure below, we draw a full edge between a variable vertex i and a clause vertex
a whenever xi ∈ ∂a, and a dashed edge is drawn whenever ¬xi ∈ ∂a.

Figure 4.1: Mézard, Montanari 2009

Definition 27 (Mezard and Montanari, 2009). A random k-SAT instance is generated
as follows; let the number of clauses M be a Poisson random variable with parameter
π ≡ Nα, where α is the clause density. Conditioned on M, each clause can be
independently generated by sampling k elements uniformly from {x1,¬x1, ..xN ,¬xN}.

Given a k-SAT written in conjunctive normal form (CNF), i.e. written as a map-
ping Φ : Σ 7→ {0, 1} like the example above, the satisfiability problem consists of
determining whether the formula is satisfiable, i.e. whether S ≡ {x : Φ(x = 1)} 6= ∅,
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and if so, to give the set of solutions S. Unfortunately this problem is Polynomial for
k = 2 and NP-hard for k ≥ 3 (Mezard and Montanari, 2009).

However, as we will see towards the end of this chapter and in more details in the
next one, the k−SAT problem can be reformulated as a special case of the p−spin
model, where the RSB picture can be used to shed light on the correlation struc-
ture and geometry of the solution space of random k-SAT instances, thus inspiring
some clever message passing algorithms which prove to be able to solve large k-SAT
instances surprisingly fast.

4.1.1 Local convergence to a tree

To be more precise about the randomness of the k-SAT instances, we define a gen-
erative model of their factor graph distribution, following chapter 9 of (Mezard and
Montanari, 2009). Given, the number of variable nodes and a density parameter α,
we generate a number of clauses according to a Poisson r.v. with intensity parameter
π ≡ αN . The next step is then to determine the connectivity of the graph, to this
end, it is useful to describe two equivalent random graph distributions; GN(k,M)
and DN(P ,Q) ;

a. Given a fixed number of variables N and a realization of the random number of
clauses M ∼ Poiss(α), for every clause a ∈ [M ], we draw a fixed number of
variables |∂a| = k uniformly at random, from the set of possible

(
2N
k

)
k−tuples

in {x1,¬x1 . . . xN ,¬xN}, and connect their corresponding variable nodes to
the function node representing clause a, this defines the random factor graph
ensemble GN(k,M).

b. The second ensemble generalizes the above by introducing the notion of a degree
profile, describing the connectivity of the factor graph. More precisely, given a
set of variable nodes V drawn uniformly from {xi : i ∈ [N ]}, let qk, pk be
the fractions of variable and function nodes with degree k respectively, such
that a fixed set of fractions P ≡ {p

k
: k ∈ N}, Q ≡ {q

k
: k ∈ N} defines a

distribution over variable (and function) node degree profiles: Pr[|∂xi| = k] =
P(degxi = k) = p

k
and Pr[|∂a| = k] = Q(dega = k) = q

k
. This naturally

leads to the definition of a degree constrained factor graph DN(P ,Q) ; a random
factor graph, with fixed degree profile P ,Q. Note that we can give more weight
to certain degrees, for example; to generate an l-regular k-SAT instance, i.e. one
where each variable appears in exactly l clauses: |∂i| = l, ∀i ∈ [N ] , we fix
pl = 1, pj 6=l = 0 and qk = 1, qj 6=k = 0.

Both of these ensemble have been studied thoroughly in the mathematical literature
(Bender and Canfield, 1978), more specifically their limiting local tree-like structure
has been developed in the theory of local weak convergence of (Aldous and Steele, 2003).

Consider a randomly chosen edge in a factor graph, (i, a)
unif.∼ E , we can describe

the degree distribution of both of its ends using the generating functions P(x) ≡∑
k≥0 pkx

k and Q(x) ≡
∑

k≥0 qkx
k, this approach was developed by (Flajolet and

Sedgewick, 2008) to enumerate trees but we will only make superficial use of it, to
show the tree like structure of the limiting object of DN(P ,Q).
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More precisely, let I(x) ≡ P ′(x)/P ′(1), J (x) ≡ Q′(x)/Q′(1), we have

E∼P [deg(xi)] =
∑
k≥0

k pk 1k = P ′(1), (4.2)

the same goes for Q′(1). Moreover, we can see that the set I ≡ {k.pk/P
′
(1) : k ≥

0} (resp. J ≡ {k.qk/Q
′
(1) : k ≥ 0}) has positive elements that sum to one, thus

defining a probability distribution over the degree of the variable (resp. function) node
at the end of a randomly chosen edge.

To be more specific about the limiting object, consider the following random tree
ensemble:

Definition 28 (Mezard and Montanari, 2009). Given V ,F the set of variable and
function nodes respectively, we define the random tree ensemble Tr(P ,Q) as follows.
Let the distance between two variables nodes be the number of function nodes along the
shortest path between the two. Given this definition, let Br(xi) be the ball of radius
r around xi, i.e. the set of variable nodes whose distance from xi is less or equal
to r. The generative model for the tree ensemble is recursive, starting from the root
r = 0 consisting of a single variable node, to generate Tr(P ,Q), for each (r − 1)th

generation variable node xrk , we draw independently its degree ∂xrk from the edge
function connectivity distribution j ∼ J , and connect it to j added function nodes
below it. Then, for each of the j function nodes, we independently draw their degree
from the edge variable connectivity distribution i ∼ I, and connect each to their
descendent i variable nodes, thus defining the rth generation of the random tree.

We then have the following result:

Theorem 11 (Mezard Montanari, 2009). Consider a random factor graph with fixed
degree profile F ∼ DN(P ,Q) and let xi be a uniformly drawn variable node from V,
then Br(xi) −→

N→∞
Tr(P ,Q) in distribution.

4.1.2 Message passing on trees is exact

Many complex systems, such as social networks, biological neurons or genomes, de-
pend on a large number of variables that depend on each other in complex ways, these
dependencies are often known to domain experts, e.g. biologists. Therefore, in or-
der to model these systems accurately, it is very useful to encode the experts beliefs
about the dependency structure of these high dimensional probability distributions.
Throughout this section, we will write xi ⊥ xj to mean that the two random variables
are independent.

A very useful way to encode these dependencies is through Markov Networks :

Definition 29. A Markov Network is an undirected graph G = (V , E), where V is
the set of vertices representing the variables {xi}i∈V of a high dimensional probability
distribution that we denote by ν(x1, . . . x|V|), and E is the set of edges encoding the
dependency structure of ν, such that xi ⊥ xj | MG(i) where MG(i) ≡ {j ∈ V :
(i, j) ∈ E}, the Markov blanket of xi.
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Figure 4.2: Transforming Markov Networks into factor graphs.

We say that a set of variables SG(i, j) separates i from j, if by deleting all vari-
ables in SG(i, j) (and all edges attached to said variables), there does not remain any
path from i to j. Markov blankets are a special case of ”separation”, more generally,
in a Markov Network, any two variables i, j ∈ V are independent conditional on any
set of nodes that separates them: xi ⊥ xj | SG(i, j).

A recurring feature in biological systems and genotypes, is that certain subsets of
V tend to have variables that are highly correlated with those belonging to the same
subset, but largely independent with the others, in such cases it is very useful to use
a factor graph representation. Fortunately, Graph theory does provide the right lan-
guage for these notions, so the transition is very natural. A clique C is a connected
component of a graph C ⊆ V such that ∀ k, l ∈ C, (i, j) ∈ E .

To transform a Markov network into a factor graph, for each clique Ca ⊆ V , we
add a function node. Conventionally, we should also add a factor for each leaf, how-
ever for simplicity and all practical purposes relevant to constraint satisfaction type
problems, we can do without.

Once the dependency structure is assumed, we assign a compatibility measure be-
tween states or potentials, which are essentially unnormalized probability measures
over possible states within cliques ψa : X a 7→ R+ where V =

⊔
a∈[M ] Ca.

For example, if a certain function node a encodes the phenotype of a hidden trait
and i, j are the binary variables indicating the presence of some genetic information
correlated with the expression of said phenotype and likewise for another phenotype b
and its observed variables, given some expert information, e.g. the frequency of finding
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the hidden trait a or b in individuals, given the presence of genes i, j, k ;

(i, j, k) (0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 0) (0, 1, 1) (1, 0, 1) (1, 1, 1)
ψa(i, j) 1 2 2 2 3 3 3 5
ψb(j, k) 4 3 3 3 2 2 2 0

Table 4.1: Potentials as unnormalized probabilities

If the distance between any two variables belonging to different cliques is larger than
one, i.e. more than one function node along the shortest path, then the two vari-
ables are independent conditioned on their respective clique, which allows to factorize
ν(x1, . . . x|V|) into

ν(x) ∝
∏
a∈[M ]

ψa(x∂a), (4.3)

where M is the number of cliques in G and {ψa}a∈[M ] are the unnormalized marginal
probabilities of the set of variables x∂a.

The next step then is to estimate marginal probabilities of individual variables νi(xi),
but since the potential need not to sum to one, the target distribution ν is determined
only up to the normalization constant Z =

∑
(x1,...,xN )

∏
a∈[M ] ψa(x∂a), thus to be able

to make inference we need to normalize it.

Suppose all variables share the same support X , such that to compute the normaliza-
tion constant Z ≡

∑
x1...xN

∏
a∈[M ] ψa(x∂a) where N ≡ |V|, and M = |{C : C ⊂ V}|

is the number of non overlapping cliques spanning all the vertices of G , we need to
sum over an exponential number of terms: |X |N .

If the resulting factor graph is a tree, the following identity holds

Z =
∑
x1...xN

∏
a∈[M ]

ν(x∂a) =
∏
a∈[M ]

(∑
x∂a

ν(x∂a)
)

(4.4)

such that we can start summing variables at the leaves x∂a and taking the product,
all up to an arbitrary root.

We then have the following result that was left as an exercise in ch 14 of (Mezard
and Montanari, 2009), of which we sketch the proof on the simple case below to illus-
trate it.

Lemma 4. Given a tree factor graph F = (V ,F , E), suppose that all variables {xi}i∈V
share the same support X , and let LF ≡ {f ∈ F : |∂f | = 1} and LV ≡ {xi ∈ V :
∃a ∈ ∂i, a ∈ LF} denote the leaf function-nodes and leaf variable-nodes respectively.
The normalization constant Z then satisfies:

Z =
∑
xl∈X

ψf (xl)Zl→f (xl), (4.5)

for all l ∈ LV , f ∈ ∂l, where Zl→f (xl) =
∏

b∈∂l\f

(∑
x∂b\l

ψb(x∂b)
∏

k∈∂b\l Zk→b(xk)
)

.
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Figure 4.3: Factor graph adapted from (Mezard and Montanari, 2009)

Proof. Consider the factor graph in the figure above, where r is chosen to be the
root, such that the factor graph is a 2-generation tree. The clever way to compute
Z is to do so in a depth first search fashion. We have LV = {r, i, j, k, l}, since r is
the root, it is also the base case in the recursive computation that follows from the
definition of Zr→h(xr), we then have:

Zr→h(xr) =
∑
xs,xt

ψc(xs, xt, xr) Zs→c(xs)Zt→c(xt)

=
∑
xs,xt

{
ψc(xs, xt, xr) .

(∑
xi,xj

ψa(xi, xj, xs) Zi→a(xi) Zj→a(xj)

)

.
(∑
xk,xl

ψb(xk, xl, xt) Zk→b(xk) Zl→b(xl)
) }

=
∑
xs,xt

{
ψc(xs, xt, xr) .

(∑
xi,xj

ψa(xi, xj, xs) ψd(xi) ψe(xj)
)

.
(∑
xk,xl

ψb(xk, xl, xt) ψf (xk) ψg(xl)
) }

,

hence

∑
xr∈X

ψh(xr)Zr→h(xr) =
∑
xr

∑
xs,xt

∑
xi,xj

∑
xk,xl

(
ψh(xr) ψc(xs, xt, xr) ψa(xi, xj, xs)

ψb(xk, xl, xt)ψd(xi) ψe(xj)ψf (xk) ψg(xl)

)
=

∑
xr,xs,xt,xi,xj ,xk,xl

∏
c∈{a,b,c,d,e,f,g,h}

ψc(x∂c)

= Z. �
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A clearer description of the iterative marginalization of the probability distribution
ν(x1, . . . , x|V|) associated with F, is described by the Belief Propagation (BP) equa-
tions:

Definition 30 (Mezard and Montanari, 2009). Given a factor graph F = (V ,F , E),
suppose that all variables {xi}i∈V share the same support X , the BP equations or
updates are given by:

νta→j(xj) ∝
∑
x∂a\j

ψa(x∂a)
∏

k∈∂a\j

νtk→a(xk), (4.6)

νt+1
j→a(xj) ∝

∏
b∈∂j\a

νta→j(xj). (4.7)

Theorem 12 (Mezard and Montanari, 2009). Given a tree factor graph F = (V ,F , E),
let the maximum distance between any two variable nodes define its diameter: d∗ ≡
maxi,j∈V dist(i, j) where dist(i, j) is the number of function nodes along the shortest
path in F from i to j. Then, for any initial messages in the space of probability mea-
sures in the |X |−probability simplex: ν0

i→a(.) ∈M(X ), the BP equations converge to
a fixed point giving the correct marginals after at most d∗ iterations, such that for any
t ≥ d∗, νt+1

i (xi) ≡
∏

a∈∂i ν
t
a→i(xi) = µ(xi), where µ(x1, . . . , xN) ≡

∏
a∈[M ] ψa(x∂a)/Z

is the target distribution.

Instead of a technical proof, we will give expand on the remarks in ch 14 of (Mezard
and Montanari, 2009), as to why the BP equations yield the correct marginals. The
central idea is that the BP updates have a natural interpretation as marginal proba-
bilities in disconnected components of the original factor graph F = (V ,F , E), where:

1. νj→a(xj) is the marginal probability of xj in the connected component that
contains xj, of a modified factor graph obtained by deleting the function node
a: F∗ ≡ (V ,F\{a}, E\{(a, i) : ∀i ∈ ∂a}).

2. νa→j(xj) is the marginal probability of xj in the connected component obtained
by deleting all function nodes in ∂j\{a} in the original factor graph F.

1. The interpretation of νj→a:
More precisely, it is easy to see in the computation of Zr→h(xr) in the lemma above,
that

∑
xr∈X

Zr→h(xr) yields the normalization constant Z of a modified factor graph

where the function node h has been deleted: F∗ ≡ (V ,F\{h}, E\{(r, h)}).

Moreover, as pointed out in ch 14 of (Mezard and Montanari, 2009), it can be shown
that νj→a(xj) ≡ Zj→a(xj)/

∑
xj
Zj→a(xj). When xj is not a leaf node xj /∈ LV , delet-

ing a cuts the factor graph into |∂a| connected components, and νj→a is the marginal
probability of xj in the connected component containing it (xj).

2. The interpretation of νa→j:
As for νa→j, the interpretation of the messages as marginals, is a little more subtle.
Consider the tree factor graph illustrated in the figure below, since F is a tree, it
contains no loops and therefore ∀ a ∈ F , ∀ k, l ∈ ∂a, {∂k\a} ∩ {∂l\a}. It is easy
to see that by deleting any function node, e.g. {a}, F becomes a collection of |∂a|
non-connected trees each rooted at one of the variable nodes in ∂a.
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Figure 4.4: Messages from (Mezard and Montranari, 2009)

Hence, in the modified factor graph F∗ ≡
⊔
k∈∂a\j Bk, ∀ k, l ∈ ∂a, k ⊥ l. Moreover, in

each of these branches {Bk}:k∈∂a\j , νa→k(xk) = µkBk(xk) the marginal probability of
xk in Bk. Therefore, the product ψa(x∂a\j, xj)

∏
k∈∂a\j νa→k(xk) = µF′ (x∂a\j, xj) gives

the marginal probability of the set of variables in ∂a\j in the tree obtained by con-
necting the |∂a|−1 branches rooted at each of the variables in ∂a\{j} to the function
node a, thereby obtaining a third factor graph F

′ ≡
⊔
k∈∂a\j Bk

⋃
{(j), (a), (j, a)}.

Thus, by marginalizing out all variables of µF′ (x∂a) except xj we get the marginal
probability of xj in F

′
; νa→j ≡

∑
x∂a\j

ψa(x∂a\j, xj)
∏

k∈∂a\j νa→k(xk). In other words,

νa→j is the marginal law of xj in the connected component obtained by deleting all
function nodes in ∂j\{a} in the original factor graph F.

4.2 The Bethe approximation

In a tree factor graph, computing the normalization constant Z (a task that is compu-
tationally equivalent to computing marginals (Jordan and Wainwright, 2008)), amounts
to cleverly choosing the order in which we sum over the variables, just like we do in
other dynamical programs s.a. the Viterbi algorithm. However, when the factor graph
contains at least one loop, the recursive computation of

∑
xl∈X

ψf (xl)Zl→f (xl) for
l ∈ LV , f ∈ ∂l, no longer yields Z, as can be seen in the example of the tree factor
graph above when adding the edge (s, b).

Hence the need for a formalism in which we can assess the exactness of the BP
fixed points as approximations of µ(x) ∝

∏
a∈[M ] ψa(x∂a), when the factor graph is

no longer a tree. The cavity method, which originated from the theory of spin glasses
as an attempt to put the replica method on a firm probabilistic footing, does just that.

Definition 31 (Mezard and Montanari, 2009). Let U ⊂ V be a connected subset
of variable nodes, the cavity: U ≡ (U,FU , EU) is its induced subgraph, whose factor
nodes are precisely those whose all adjacent variables are in U, i.e. FU ≡ {a ∈ F :
∂a ⊂ U}, and EU ≡ {(a, j) ∈ E : a ∈ FU , j ∈ U}. Moreover, we define the boundary
of the cavity as ∂U ≡ {(b, k) ∈ E\ EU : k ∈ U, b ∈ F\ FU}.

Roughly speaking, the main idea goes as follows. Given a factor graph, consider
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some cavity U ≡ (U,FU , EU), and suppose we want to approximate the marginal
probability of the variables in U from the joint target distribution associated with the
original factor graph F. When F is a tree, the subgraph obtained by deleting the cavity
would be a collection of non-connected trees (or branches) F\ U =

⊔
k:(a,k)∈∂U Bk, each

rooted at the variable node at the end of every edge around the cavity’s boundary ∂U .
In (Mezard and Montanari, 2009) the authors observe that the marginal probability
of the variables in U satisfies:

µ̂U(xU) ∝
∏
a∈FU

ψa(x∂a)
∏

(j,a)∈∂U

νa→j(xj). (4.8)

Recalling (2. The interpretation of va→j), it is easy to see that the incoming
messages at the boundary {va→i(xi) : (a, i) ∈ ∂U} yield the marginal probability
of the boundary variable nodes in a modified factor graph where the cavity has been
erased. Therefore, we approximate the joint probability of the variables in U by taking
a product of the factors of its induced subgraph: {ψa : a ∈ FU} and multiply these
by the incoming boundary messages as an approximation of the joint distribution of
boundary variables, which results in the Bethe equation (or Bethe measure):

Definition 32 (Mezard and Montanari, 2009). µ is a Bethe measure if there exists a
set of messages {va→i : (a, i) ∈ E} such that, for ’almost all’ of the ’finite size’ cavities
U , we have:

µU(xU) ∝
∏
a∈FU

ψa(x∂a)
∏

(i,a)∈

va→i(xi) + err(xU),

where err(xU) is a small error term.

For a more formal definition of the Bethe approximation, we refer the reader to
(Dembo and Montanari, 2010) page 53.

The condition that a set of BP messages satisfies the Bethe equations for all finite
cavities U ∈ V in the large N limit, enforces very strong constraints on the messages,
leading to them being solution of the BP equations. The following result illustrating
this, was left as an exercise in (Mezard and Montanari, 2009).

Theorem 13. Consider 2 cavities U,W ⊆ V and let FW = FU ∪{a} and U ∩ ∂a =
{(j, a)}, then the consistency of the Bethe measure for these two cavities implies the
BP equation for νa→j(xj) for any j ∈ ∂a ∩ (V\U).

Proof. Since U,W ⊆ V , FW = FU ∪ {a} and U ∩ ∂a = {(j, a)}, we have:

∂W =
{
∂U\{(j, a)}

}⋃{
(f, k) : f ∈ ∂k\{a} for all k ∈

=W\U︷ ︸︸ ︷
∂a ∩ (V\U)

}
(4.9)

Following the definition of a Bethe measure we have:

µ̂W (xW ) ∝ ψa(x∂a)
∏
c∈FU

ψc(x∂c)
∏

(i,b)∈∂W

vb→i(xi), (4.10)
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Figure 4.5: Two cavities, from (Mezard and Montanari, 2009)

and

µ̂U(xU) ∝ va→j(xj)∏
k∈∂a\U

∏
b∈∂k\a vc→k(xk)

∏
c∈FU

ψc(x∂c)
∏

(i,b)∈∂W

vb→i(xi) (4.11)

∝ va→j(xj)∏
k∈∂a\U vk→a(xk)

µ̂W (xW )

ψa(x∂a)
. (4.12)

And since the above approximation can only be consistent between cavities if marginal-
izing µW over the variables in W\U yields µU , we obtain:

µ̂U(xU) =
∑
xW\U

µ̂W (xW\U , xU) (4.13)

∝
( ∑
xW\U

ψa(x∂a)
∏

k∈∂a\U

vk→a(xk)
) µ̂U(xU)

va→j(xj)
, (4.14)

thus recovering the correct BP equation:

va→j(xj) ∝
∑
xW\U

ψa(x∂a)
∏

k∈∂a\U

vk→a(xk). � (4.15)

4.2.1 Belief propagation in k−SAT

Definition 33 (Talagrand, 2011). A diluted p-spin model is an N−particle spin system
(σ1, . . . σN) ∼ µβ, with the Hamiltonian H(σ) =

∑
i1...ip

θi1...ip(σi1 . . . σip), where

θi1...ip : [N ]p 7→ {0, 1} is a {0, 1}−valued random function deciding whether the set of
spins {σik}ik∈[p] interact or not.

A large class of constraint satisfaction problems, compromising q-coloring, indepen-
dent set, XOR-SAT and many others, that come under the umbrella term of sparse
graphical models, can be formulated as diluted p-spin models, and have been shown to
display essentially the same qualitative behaviour corresponding to the discontinuous
1RSB scenario described in the previous chapter.

In the case of the random k-SAT, the corresponding p−spin model has p = k and
θi1...ik are given by the random factors determined by the k-SAT formula. More pre-
cisely,
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Definition 34 (Mezard and Montanari, 2009). A random k-SAT instance with N
variables and α as a clause density parameter, is generated as follows;

1. Generate the number of clauses M according to a Poisson distribution with pa-
rameter π ≡ Nα.

2. For each of the M clauses, we independently generate each clause’s variables ∂a
by sampling k elements uniformly at random from {x1,¬x1, ..xN ,¬xN}, which
results in the set of variables Ja,i = 1{xi is negated in a}, ∀i ∈ ∂a, ∀a ∈ [M ].

We can then explicitly express the factors in terms of the variables {Ja,i}, as illus-
trated below:

Proposition 3 (Mezard and Montanari, 2009). Given a realized k−SAT instance, let
S ≡ {x ∈ {0, 1}N : ψa(x∂a) = 1, ∀a ∈ F} be the set of satisfying assignments, the
uniform distribution on satisfying assignments is then given by µ(x) ∝

∏
a∈F ψa(x∂a)

with the normalization constant being equal to the number of satisfying assignments:
|S|.

Proof. Any unsatisfying assignment x∂a for clause a must have xi 6= Ja,i, hence
{∂a : a ∈ F}, ψa : x∂a 7→ 1−

∏
i∈∂a δxi,Ja,i , ∀ a ∈ F . �

Proposition 4 (Mezard and Montanari, 2009). Given a k-SAT instance and its set
of negation constants {Ja,i}, the BP updates (as previously defined) satisfy:

νi→a(xi = Ja,i) = ζia, νa→i(xi = Ja,i) ≡ ζ̂ai, (4.16)

where

ζia =

(∏
b∈∂∼a ζ̂bi

) (∏
b∈∂ 6∼a(1− ζ̂bi)

)
(∏

b∈∂∼a ζ̂bi

) (∏
b∈∂ 6∼a(1− ζ̂bi)

)
+
(∏

b∈∂ 6∼a ζ̂bi

) (∏
b∈∂∼a(1− ζ̂bi)

) ,
ζ̂ai =

1−
∏

j∈∂a\i ζja

2−
∏

j∈∂a\i ζja
.

Proof. If an assignment to variable xi satisfies a , it still might not satisfy other
clauses. More precisely, let ∂+i ≡ {a ∈ F : Ja,i = 0}, ∂−i ≡ ∂i\ ∂+i, ∂∼ai ≡
{b ∈ ∂i\ a : Ja,i = Jb,i}, ∂6∼ai ≡ {b ∈ ∂i\ a : Ja,i 6= Jb,i}, it is easy then to
see that if Ja,i = 0 then ∂∼ai = ∂+i\ a, ∂ 6∼ai = ∂−i, and if Ja,i = 1 then
∂∼ai = ∂−i\ a, ∂ 6∼ai = ∂+i.

Since the support of the BP messages are binary xi ∈ {0, 1}, each message is can
parameterized by a single value;

νi→a(xi = Ja,i) ≡ ζia, hence νi→a(xi = 1− Ja,i) = 1− ζia, (4.17)

νa→i(xi = Ja,i) ≡ ζ̂ai, νa→i(xi = 1− Ja,i) = 1− ζ̂ai. (4.18)

Moreover, since νi→a(xi) ∝
∏

b∈∂i\a νb→i(xi) up to Zi→a ≡
∑

xi∈{Ja,i,1−Ja,i}
νi→a(xi) =
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(∏
b∈∂∼a ζ̂bi

) (∏
b∈∂ 6∼a(1− ζ̂bi)

)
+
(∏

b∈∂ 6∼a ζ̂bi

) (∏
b∈∂∼a(1− ζ̂bi)

)
, it follows that:

ζia =

(∏
b∈∂∼a ζ̂bi

) (∏
b∈∂ 6∼a(1− ζ̂bi)

)
(∏

b∈∂∼a ζ̂bi

) (∏
b∈∂ 6∼a(1− ζ̂bi)

)
+
(∏

b∈∂ 6∼a ζ̂bi

) (∏
b∈∂∼a(1− ζ̂bi)

) , (4.19)

and νa→i(xi) ∝
∑

x∂a\i
ψa(x∂a)

∏
j∈∂a\i νj→a(xj). Thus, for xi = 1 − Ja,i, we get

ψa(x∂a) = 1 −
∏

i∈∂a δxi,Ja.i = 1 independently of x∂a\i, with some straightforward
algebra, we get

ζ̂ai =
1−

∏
j∈∂a\i ζja

2−
∏

j∈∂a\i ζja
, (4.20)

As for the leaf variables, where ∀i ∈ LV , |∂i| = 1, the product of zero terms is taken
to be equal to one. �

4.3 Evolution of the uniform measure on satisfying

assignments

Recall that the BP equations rest on the implicit assumption that short range corre-
lations vanish in the large N limit, such that any two close variables ∀ i, j ∈ ∂a for
some factor a ∈ F become locally separated by deleting a, such that the marginal
of xj in the factor graph induced by deleting a is a product measure on branches
νj→a(xj) ∝

∏
b∈∂j\a, as discussed in the previous section.

4.3.1 The correlation-length viewpoint

We distinguish between two different types of correlations, each characterizing the
clustering and condensation thresholds. In the replica symmetric regime, both short
and longer range correlation are absent, beyond the clustering transition the shorter
range one no longer decays in the thermodynamic limit while the other one does, hence
failure of BP, and finally above the condensation threshold both of them are present.
We begin by describing the long range type.

Recall the fluctuation-dissipation relation in the spin glass discussion, relating sen-
sitivity w.r.t. perturbations and the correlation between spins in the unperturbed
system given by the spin glass susceptibility:

χSG =
β2

N

∑
ij

[〈σiσj〉 − 〈σi〉〈σj〉]2 =
d

dBi

〈σj〉 (4.21)

As previously discussed, the emergence of long range correlations characteristic of the
spin glass phase can be detected from a divergence in the susceptibility, i.e. when
limN→∞ χ

SG = ∞ the system transitions to the glassy phase. More generally, in a
(diluted) p−spin model, we distinguish the following two glassy transitions:

Definition 35 (Mezard and Montanari, 2009). Given a k−SAT instance, we say that
the uniform distribution on the set of its satisfying assignments µ is stable w.r.t. small
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perturbation if for all l <∞, limN→∞ χ
(l)/N = 0, where

χ(l) ≡ 1

N l−1

∑
i1,...,il∈[N ]l

||µi1,...,il(. . . )− µi1(.) . . . µil(.)||, (4.22)

is the l-point correlation function.

The second type of correlation is a weaker condition, and can be best understood
as a statistical thought experiment.

Definition 36 (Mezard and Montanari, 2009). Suppose we draw a satisfying assign-
ment x ∼ µ, and that all of the values of its variables are revealed except for the
variables in the ball of radius r centered around xi, that we denote Bl(i) (and with an
overline for its complement in V). The uniform distribution on satisfying assignments
µ is said to be extremal or satisfy the non-reconstructibility condition if for any variable
xi ∈ V , we have

lim
l→∞

Gi(l) = 0, where Gi(l) ≡ ||µi,B̄l(i)(., .)− µi(.)µB̄l(i)(.)||. (4.23)

is the point-to-set correlation function. If there exists a variable for which Gi remains
bounded away from zero for arbitrarily large distances, µ is said to be reconstructible.

The rationale behind the reconstructability condition is that, if the correlation be-
come arbitrarily small beyond a certain distance l, then knowing the assignment of
all variables in B̄l(i) ≡ V\ Br(i) does not provide any information on the value of
xi, the assignment is then said to be non-reconstructible.

In (Montanari and Semerjian, 2006), the authors give a number of asymptotically
(in l) equivalent correlation vanishing criteria, and prove rigorous inequalities relating
correlation length to mixing time, some of which will be reviewed in the next chapter.

4.3.2 The complexity function viewpoint

Another way to characterize the clustering and condensation thresholds is to look at
the evolution of the number of clusters containing an up to leading exponential or-
der number of satisfying assignments. To do this, we derive a large deviation result,
whose rate function is called the complexity function that we discuss below. Recall
the large deviation principles of the spectrum of overlap values in the replica trick, the
complexity-function approach follows a similar vein by focusing on the distribution of
the free energy per cluster.

Consider the general case of the p-spin model where: µβ(σ) ∝ eβ
∑
i1...,ıp

Ji1,...,ipσi1 ...σip ,
and let the free energy of a given cluster be Fαi ≡ − log(Zαi)/β, for Zαi ≡∑

σ∈αi e
−βH(σ). The pure state decompostition then implies µ(x) =

∑
αk:k∈[η] wk µ

αk(x),

where wk ≡ eβFk/
∑

αl:l∈[η] e
βFl and µαk(x) = 1{x ∈ αk}/Zαk .

To get an idea of the distribution of cluster sizes, we study the cluster-spectrum of
Zαk as N (f) ≡ |{k : Fk = Nf ± δ}| for small some δ > 0, and derive a large
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deviation principle, for N � 1, such that

Z =
∑

αk:k∈[η]

e−βFk =
∑
f

N (f) e−βNf =
N�1

∫
eN(Σ(β,f)−βf) df =̇ eN(Σ(β,f∗)−βf∗),

(4.24)
where f ∗(β) is the Legendre transform of some function Σ(β, f) called the complexity
function.

Figure 4.6: Evolution of the set of satisfying assignments (Mezard and Montranari,
2009)

Given a k−SAT instance, its associated factor graph and the uniform measure on its
satisfying assignment, as the clause/variable density α goes up beyond the clustering
or dynamical 1RSB threshold αd, the space of solutions breaks into well separated
clusters in Hamming space. In this regime, there exists an exponential number of
quasi-solutions to the Bethe equations, each valid in a given cluster.

More precisely, let η be the number of clusters satisfying some ”pure state” con-
ditions that we describe in the next chapter, then for any k ∈ [η], there exist a set
of fixed point messages {νki→a, νka→i}i∈V,a∈F among the quasi-solutions of the Bethe
equations:

µU(xU) ∝
∏
a∈FU

ψa(x∂a)
∏

(i,a)∈

νka→i(xi) + err(xU) for all x ∈ αk. (4.25)

In other words, with each cluster, we can associate a Bethe measure among the BP
fixed points.

The 1RSB assumption: Let the free energy given by the kth BP fixed points be
denoted Fk ≡ F ({νki→a, νka→i}) = − log(Z(k))/β, where Z(k) is the normalization
constant of said fixed point. The 1RSB assumptions are then threefold:

1. There exists an exponential number of quasi-solutions to the BP equations, the
number of which having Fk ≈ Ns, is up to leading exponential order equal to
eNΣ(s).

2. The uniform measure on satisfying assignments breaks into a convex combination
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of extremal (in the sense of being short range correlated) Bethe measures:

µ(x) =
∑

αk:kin[η]

wk µ
k(x), wk ≡

eFk∑
lin[η] e

Fl
. (4.26)

3. The number of extremal Bethe measures is equal to the number of quasi-solutions
to the BP equation, and those whose free energy is approximately equal to Ns
is also given by eNΣ(s).

Suppose Fk satisfies a large deviation principle: N (s) =̇ eNΣ(s,α), where N (s) ≡
|{k : Fk = Ns± δ}| for some small positive δ, following along the same lines as the
computation above, we have

Z =
∑

αk:k∈[η]

eFk =
N�1

∫
N (s) eNsds =̇

∫
N (s) eNsds =̇ eN [Σ(s∗,α)+s].

Note that in the case of k−SAT, the clause/variable density plays the role of inverse
temperature parameter in the p−spin case, such that the complexity function depends
on both α and the value of the free energy per clause, that we denote by s.

The complexity function provides a neat way to describe the clustering and condensa-
tion regimes, here we follow the discussion in (Sun et al., 2014).

Definition 37 (Sun et al., 2014). Suppose that the number of clusters with approx-
imately Fk free energy: N (s) ≡ |{k : Fk = Ns ± δ}| for some δ > 0, satisfies
N (s) =̇ eNΣ(α,s). The clustering threshold αd and the condensation threshold αc are
then respectively given by:

αd ≡ inf
α
{α : ∃s ∈ [0, log 2], s.t. Σ(α, s) > 0 },

αc ≡ inf
α
{α : s1 6= s2},

where s1 ≡ argmaxs
{

Σ(α, s) + s : s ∈ [0, log 2]
}

and s2 ≡ argmaxs
{

Σ(α, s) + s :
s ∈ [0, log 2] and Σ(α, s) ≥ 0

}
.

The interpretation of these definitions become clearer if we think about the number
of exponentially large clusters N (s) as α goes up. Qualitatively speaking, the onset
of the clustering transition corresponds to the value of α at which the complexity
function Σ(α, s) becomes positive, such that there appears an exponential number of
clusters {αk} each carrying Zαk =̇ eNs solutions.

On the other hand, at the onset of the condensation transition, the number of these
clusters becomes drops drastically from O(eN) to O(1), i.e. bounded as N → ∞.
Again, this correspond to the definition of αd, where the complexity function becomes
zero: Σ(α, s) = 0, and the number of clusters carrying most of the probability mass
is then bounded in the thermodynamic limit.

85



4.4 Message passing beyond the replica symmetric

regime

In replica theoretic terms, the clustering or pure state decomposition, is a statement
about the distribution of the overlap. Recall the discussion in the third chapter of the
multiplicity of the overlap giving clues to the geometry of the support of the Gibbs
measure in different temperature regimes.

At the 1RSB level, given x, y
iid∼ µ, the overlap qx,y ≡

∑
i∈[N ] xiyi/N is con-

centrated on three values: (a). qx,y = 1 for the trivial all equal assignment x = y,
(b). qx,y = q0 if they belong to the different clusters, and (c). qx,y = q1 > q0 if x and
y belong to the same one.

In other words, for any pair of assignments belonging to the same cluster, there is
with high probability Nq0 variables having the same value, these variables are called
core variables or frozen variables. In each cluster there is a set of such variables that
we denote with Ck ⊂ V locked to some cluster-dependent value {zj : j ∈ Ck}.

Since these variable are frozen in a given cluster xi = zi ∀ x ∈ αk, for a Bethe measure
to be valid in said cluster, the marginals of core variables should be identity functions
of the frozen core assignments {zj : j ∈ Ck}, i.e. νkj (xj) ≡

∏
a∈∂j νka→j(xj) =

1{xj = zj}, ∀ j ∈ Ck. This defines a natural mapping from valid Bethe measures to
some cluster-dependent frozen assignments.

To recapitulate; in the clustering regime, there is an exponential number of BP fixed
points, an exponential number of Bethe measures, and an exponential number of clus-
ters. Every Bethe measure is a quasi-solution to the BP equations, while the converse
is not generally true, see counterexample in p.432 of (Mezard and Montanari, 2009).

Moreover, every cluster has a set of frozen variables posing strong constraints on the
set of valid marginals in the associated Bethe measure, this defines a natural mapping
from clusters to Bethe measures, whose bijective nature, while desirable, is unfortu-
nately not true, as we will see in the next section.

Survey propagation (SP) is a message-passing algorithm with the ambitious goal of
approximating marginals of a probability distribution defined over the set of Bethe
measures, i.e. to compute marginals of P[{νi→a, νa→i}i∈V,a∈F = {νki→a, νka→i}i∈V,a∈F ].

Recall the extremality condition on correlation decay introduced above. Since, valid
Bethe measures are good approximators of the extremal measures µαk() whose
convex combination yield the uniform measure on satisfying assignments: µ(.) =∑

αk:k∈[η] wk µ
αk(.), and that in the clustering regime, all clusters have equal weight

wk = 1/η, ∀k ∈ [η], the set of marginals that SP computes, e.g. P[νa→i = . ], are
statistical averages (or surveys) over all pure states {αk, k ∈ [η]} of the particular
message (νa→i in this case) whose marginal probability we are interested in.

Recall that νka→i(xi = 1) is the marginal probability (over satisfying assignments)
that xi takes the value 1, in the factor graph obtained by deleting the branch rooted
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at the edge (i, a). Hence, given a k−SAT instance with its set of negation specifica-
tions {Jai : i ∈ ∂a}a∈[M ] where Jai ≡ 1{xi is negated in a}, since frozen variable
have 0 − 1 marginals in the clustering regime, SP messages have a neat interpreta-
tion as probability distributions over a set of warnings between variable and function
nodes, where νka→i(xi = 1 − Jai) = 1, means that the variable xi is forced by all
clauses b ∈ ∂i\ a, to satisfy clause a, in every satisfying assignment x ∈ αk.

This defines a probability distribution over possible warnings, each associated with
a cluster, over which SP computes messages in the same way that BP does on assign-
ments, let:

i). QS
i→a ≡ P[νka→i(xi = 1− Jai) = 1] be the uniform probability over clusters that

xi be forced by b ∈ ∂i\ a to satisfy clause a.

ii). QU
i→a ≡ P[νka→i(xi = Jai) = 1] : the probability that xi is forced by b ∈ ∂i\ a

to violate clause a.

Since for a given cluster, free variables need not take specific values, we define Q∗i→a
as the probability that xi is not forced by b ∈ ∂i\ a to take any particular value.

The message-passing procedure then follows the same update-rules as BP, since valid
Bethe measures are extremal, i.e. are only short range correlated, frozen variables Ck
typically have loops of length O(logN), thus allowing us, much like in BP in the

replica symmetric case, to write marginals as a product of incoming messages Q
S(U)
i→a

from ∂a\ i :

Q̂a→i ∝
∏

j∈∂a\ i

QU
j→a. (4.27)

Now let W∼a(i) ⊂ ∂∼ai ≡ {b ∈ ∂i\ a : Jai = Jbi}, W�a(i) ⊂ ∂�ai ≡ {b ∈ ∂i\ a :
Jai 6= Jbi}, be the set of clauses forcing xi to either satisfy or violate them, xi is then
forced according to a majority vote, i.e. according to max{|W∼a(i)|, |W�a(i)|}, and
is not forced in the case of equality, hence the SP(y) equations:

QU
i→a ∝

∑
|W�a(i)|>|W∼a(i)|

e−y|W∼a(i)|
∏

b∈W∼a(i)∪Wn∼a(i)

Q̂b→i
∏

b/∈W∼a(i)∪Wn∼a(i)

(1− Q̂b→i).

QS
i→a ∝

∑
|W�a(i)|<|W∼a(i)|

e−y|W∼a(i)|
∏

b∈W∼a(i)∪Wn∼a(i)

Q̂b→i
∏

b/∈W∼a(i)∪Wn∼a(i)

(1− Q̂b→i).

Q∗i→a ∝
∑

|W�a(i)|=|W∼a(i)|

e−y|W∼a(i)|
∏

b∈W∼a(i)∪Wn∼a(i)

Q̂b→i
∏

b/∈W∼a(i)∪Wn∼a(i)

(1− Q̂b→i).

Looking back at the BP update rules,

νt+1
j→a(xj) ∝

∏
b∈∂j\a

νta→j(xj)

νta→j(xj) ∝
∑
x∂a\j

ψa(x∂a)
∏

k∈∂a\j

νtk→a(xk)

and reinterpreting messages as actual assignments, e.g. the probability that νa→i(xi =
z) = 1, as the assignment of xi = z, it is easy to see that SP can be seen as com-
puting marginals of the uniform distribution on a more general form of assignments in
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{0, 1, ∗}N . Note that the uniformity of this target distribution follows from the fact
that, in the clustering regime wk = 1/η. Some of the details are swept under the rug,
since they are not directly relevant to the rest of the discussion, for a more complete
discussion see the survey of (Braunstein et al., 2005) and the later chapters (18,19,20)
of (Mezard and Montanari, 2009).

In other words, if we replace the uniform distribution on satisfying assignments as
a target distribution for BP, by a uniform distribution over a particular type of gen-
eralized assignments in {0, 1, ∗}N , we recover the Survey propagation algorithm.

This equivalence between BP on this special class of generalized assignments and
classical SP was discovered in (Braunstein and Zecchina, 2004), and expanded upon
in an important paper by (Maneva et al., 2007), where the authors provide a formal
description of this particular type of objects in {0, 1, ∗}N which they call true covers.
Moreover, they show that Belief propagation with the uniform measure on true covers
as a target distribution, is equivalent to Survey Propagation.

Given a k−SAT instance, with its set of negation specifications {Jai : i ∈ ∂a}a∈[M ],
denote set of variables satisfying (resp. violating) clause a as ∂+a ≡ {i ∈ ∂a : Jai =
1− xi}, ∂−a ≡ {i ∈ ∂a : Jai = xi}.

Definition 38 (Kroc et al., 2007). A generalized assignment z ∈ {0, 1, ∗}N is
invalid for clause a if either:

i). ∂+a = ∅

ii). or that ∂a = ∂−a
⊔
{∗}, i.e. that all variables in ∂a do not satisfy clause a

except for one variable set to ∗.

If the above two conditions do not hold for any clause, the assignment is then said to
be valid.

Definition 39 (Kroc et al., 2007). xi is supported by clause a, iif xi is the only
satisfying variable for a : ∂+a = i. Moreover, xi is called a constrained variable
if there exists at least one clause which supports it, otherwise it is unconstrained.

Definition 40 (Kroc et al., 2007). A valid generalized assignment where all uncon-
strained variables are set to ∗ is a cover. Moreover, a cover z ∈ {0, 1, ∗}N is called
a true cover iif there exists at least one satisfying assignment x ∈ S, such that
∀i ∈ [N ], zi 6= ∗ =⇒ zi = xi.

.
We now motivate the above definitions:

• Condition (i). guarantees that any valid assignment is a satisfying one.

• And (ii). guarantees that there is ”slack” in each clause, so that no variable
with the ∗ assignment is forced to take to take a specific 0− 1 value.

• As for the second definition, constrained variables are meant to model frozen
variables in clusters, and are thus forbidden to be set to ∗, in order to identify
them.
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• Lastly, in the event that all clauses satisfy condition (ii) rather than (i),
a generalized assignment can still be a cover, while not being extendable to a
satisfying assignment through fixing its ∗ variables. Such covers are called fake
covers, they model all the properties of the cluster-representative frozen variables
Ck, without actually being associated to a cluster, hence the last condition, which
guarantees that there exists at least one satisfying assignment x ∈ S, in which
the true cover’s constrained variables assignments are frozen in xk = zk, ∀ k ∈ Ck.

4.5 Sampling uniformly from the solutions set

Although both of Survey propagation and Belief propagation have the uniform distri-
bution on covers (resp. on satisfying assignments) as target distributions, in practice
they do not sample uniformly from the solutions set.

Classically, for general, soft-constrained strictly positive probability distributions, mes-
sage passing procedures such as Belief-propagation and its loopy variants, start with
random initial messages and are terminated after a given maximum running time, then
used directly to draw maximum a posteriori samples.

On the other hand, hard constrained distributions, by having zero density in some
portions of their support cause numerical underflow in dynamical algorithm, such as
message passing procedures, and are therefore not as forgiving. Hence, they are gen-
erally cast as a backtrack search problem as in the classical DPLL decimation type
procedures, where, we iteratively fix variables according to the approximate marginals
computed via message passing, and backtrack as needed, until we find a satisfying
assignment, or terminate.

Algorithm 2: Survey Propagation

Result: Sol ⊂ S
Initialization: ρ = ρ, δ = δ;

Sol← ∅;
for t = 1, ...Tmax do
{µi(0), µi(1), µi(∗)} ← SP marginals;
Fix the first Nρ variables with largest marginal biases
maxi∈[N ]{|µi(1)− µi(0)|} ;

Simplify the k−SAT formula;
Do a random walk on the remaining variables;
if xt is a satisfying assignment then

Sol← Sol ∪ {xt}end
end

In other words, for each sampled solution we run SP (or BP) once, then use the
approximate marginals to fix variables starting with to the most biased ones. Note
that if the message-passing procedure converges to the same fixed point, then the same
solutions will be sampled over and over. In practice, this is however not a problem. In
fact, for SP, we the decimation procedure is done only for a fixed subset of variables,
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the rationale being that these should coincide with true covers’ marginals, the rest of
the variables are found via a random walk.

Rigorously speaking, SP has only been shown to compute exact marginals on instances
where the associated factor graph is a tree. For these instances, it can be shown that
there exists only one true cover; the trivial cover z = (∗, ∗, . . . , ∗). In practice SP is
one of the only algorithms capable of finding assignments in linear time w.h.p., deep
in the clustering regime, in 106−sized instances, whose factor graph contains many
loops. The surprising success of SP was hypothesized to be a result of SP being able
to approximate true cover marginals (Braunstein and Zecchina, 2004).

This hypothesis was however shortly put in question in (Maneva et al., 2007), where
the authors provided experimental evidence that the solutions sampled by SP typically
do not have any frozen variables, i.e. that random k−SAT formulas typically only have
the one trivial cover. The authors then proceeded to conclude that covers may not be
a successful route to put the 1RSB clustering picture on firm footing, and provided an
alternative way, based on a Markov random field with a smoothing parameter which
interpolates between BP and SP.

However, this conclusion was shortly disputed by (Kroc et al., 2007), where the au-
thors attribute the failure of SP to an inherent bias in the sampling procedure away
from non-trivial true covers, and show through extensive experiments that there exists
a significant number of non-trivial true covers in the clustering regime. More pre-
cisely, starting from an arbitrary assignment, if we alternate between random walk
and Simulated annealing moves, approximately 25% of the sampled solutions lead
back, through ∗-propagation, to a non-trivial cover.

Indeed, its a well known fact, that the problem of sampling uniformly from S is
much more challenging than that of just finding satisfying assignments. For instance,
random walk procedures have been proven to find solutions in polynomial time for
2−SAT instances, but they provably biased away with exponentially decaying prob-
ability from a portion of the state space. On the other hand, Markov Chain Monte
Carlo (MCMC) procedures can be proven to sample uniformly from the support of the
target distribution (provided the target is uniform).

In the next chapter, we will introduce general MCMC procedures, their provable guar-
antees, and relate them back to the discussion about dynamics in the second chapter.
Moreover, we will survey their use in the case of the k−SAT problem, and the pros
and cons of specific variations thereof. Finally we will present an alternative sampling
algorithm, which uses the observations about true covers to overcome some of the
limitations of previous work.
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Chapter 5

Dynamics and sampling

Chapter organization

Given the apparent bias towards coverless-solutions in Survey propagation, we discuss
an alternative method for sampling solutions uniformly from the solution set that falls
under the realm of Monte Carlo Markov Chain (MCMC) methods (5.1). Then, we
continue the discussion started in (2.3.2) concerning the speed of correlation decay
in spin systems and relate it to the k-SAT case (5.2). Afterwards, we provide the
complete definition of the pure state decomposition that we referred to (in a somewhat
hand-wavy manner) in (2.3.3), in the case of k-SAT (5.3), and discuss its implications
for MCMC algorithms (5.3.1). Subsequently, we begin a comparison between Simu-
lated annealing and random walk sampling, by stating two results; one taking account
the 1RSB prediction (5.3.3), and another that does not (5.3.2). Then, after introduc-
ing all the prerequisite notions, we delve deeper into the problem of sampling uniformly
from the set of satisfying assignments, with a discussion of: previous work (5.4.1),
a speed vs. uniformity trade-off (5.4.2), and a solution-time vs. coverless-solutions
trade-off (5.5). Finally, building on the insight of previous work, we introduce a novel
algorithm with the goal of improving the uniformity of sampling, whose main strategy
consists of avoiding a relapsing phenomenon that we discuss in (5.5) by: i) identi-
fying covers, and ii) taking a self-avoiding walk in the state space. After presenting
the algorithm that we name SAW-SAT, we discuss the results of some experiments
pointing to the success of strategy ii) and the failure of i). We close the chapter with
a discussion of a particular interesting avenue for future work, that takes into account
the symmetries of k-SAT instances.

5.1 An introduction

Facing the intractability of the partition function Z, we can use the RSB picture of
vanishing short range correlations to write variable marginals as products of BP fixed
points µ(xi) =

∏
j∈∂a ν

∗
a→j(xi) in the replica symmetric case, and analogously write

the marginals of the uniform distribution over BP messages as a product of fixed point
SP messages, at the onset of the clustering transition, to account for the non-vanishing
point set correlations. In this approach, we use the physics predictions regarding the
asymptotic correlation structure of µ, which, assuming some conditions, guarantees
that BP (or SP) yields good approximations for variable marginals, which is equivalent
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to computing Z.

Definition 41. A discrete-time Markov chain is a sequence of random variables:
x1, x2, . . . xT , representing the state of the Markov chain at each time-step t, where
for all 1 < t ≤ T , the probability that xt is equal to some value xt depends only on the
previous state xt−1:

P[xt = xt| x1 = x1, x2 = x2, . . . xt−1 = xt−1] = P[xt = xt| xt−1 = xt−1]. (5.1)

We assume that the variables {xt}t∈[T ] share the same support Σ that we call the state
space of the Markov chain.

In an orthogonal direction, we can altogether bypass the issue of computing Z,
by sampling according to some Markov chain, whose state space is Σ, and which
is guaranteed to converge in variation distance (which we shall define below) to µ
after a number of iterations t ≥ τr with τr being the relaxation time (or time-to-
equilibrium in the physics jargon). To do this, we define an energy based sampling
procedure, that takes into account the hierarchical landscape of the 1RSB picture,
and whose time average is equivalent to taking the expectation w.r.t µ, i.e. where:
1/T ∗

∑T ∗

t=1Ot =
∑

σ∈ΣO(σ)µβ(σ) holds true, for some observable O : Σ 7→ R.

This leads us to the large class sampling algorithms that come under the name of
Markov Chain Monte Carlo (MCMC). A nice introductory book on the subject is
(Brooks et al., 2011).

Definition 42. Given an initial assignment x0 = x, in each iteration 0 < t < Tmax,
the MCMC algorithm explores the state space by iterating between these two steps:

1). firstly proposing the next state xnew according to the proposal distribution
xnew ∼ q(. | xcurr),

2). and secondly deciding to accept or reject the move to xnew according to the
acceptance probability α(xcurr, xnew).

Together, these two steps form a Markov chain called the kernel of the MCMC proce-
dure:

k(xnew | xcurr) ≡ q(xnew | xcurr). α(xnew, xcurr).
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Algorithm 3: The Metropolis Hasting algorithm

Result: xT
approx∼ µβ(.)

x0 ← τ ;
for t = 1, ...Tmax do

xnew ∼ q(. | xt−1);

α(xt−1, x
new) ← min

{
1,

µβ(xnew) q(xt−1 | xnew)

µβ(xt−1) q(xnew | xt−1)

}
;

draw u ∼ U [0, 1] ;
if u ≥ α(xt−1, x

new): then
x
t
← xnew;

else
x
t
← xt−1;

end

end

Definition 43 (Mezard and Montanari, 2009). Consider an N−particle spin system
(x1, . . . xN) ∼ µβ with some Hamiltonian H(x) and whose state space is Σ. Glauber
dynamics is a discrete-time Markov chain that is conditioned on an initial state sampled
from the target distribution: x0 ∼ µβ, i.e. PGb[x1 = y] = k(x1|x0 = x0)µβ(x0) and
P[xt = xt| x1 = x1, x2 = x2, . . . xt−1 = xt−1] = P[xt = xt| xt−1 = xt−1] for t ≥ 2.
Given the current state of the Markov chain xt = xt, the next state is generated as
follows:

1. Propose the next state uniformly at random from the set of immediate neighbors
of the current state: xt+1 ∼ U(N (xt)) where N (xt) ≡ {y ∈ Σ : d(y, xt) = 1},
with d(, ) begin the Hamming distance.

2. Accept the proposed state according to the probability:

α(xt+1, xt) ≡ min
{

1, e−β(H(xt+1)−H(xt))
}
.

Definition 44. An MCMC procedure is said to have detailed balance w.r.t. the target
distribution µβ, if its kernel satisfies

µβ(xcurr). k(xnew | xcurr) = µβ(xnew). k(xcurr | xnew),

Definition 45 (Mezard and Montanari, 2009). The variation distance between two
discrete probability distributions ν, µ sharing the same support Σ, is defined as

||ν − µ||v ≡ 1/2
∑
x∈Σ

∣∣ν(x)− µ(x)
∣∣. (5.2)

Theorem 14 (Mezard and Montanari, 2009). If the probability of reaching x starting
from y in a finite number of steps, along the Markov chain defined by the kernel of
the MCMC procedure: k(.| .), is bounded away from zero, for any two states x, y in
Σ the support of the target distribution µβ, and the kernel satisfies detailed balance
w.r.t. µβ, then the MCMC procedure has µβ as a stationary distribution. In other
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words, the sampling procedure is guaranteed to converge arbitrarily close in variation
distance to the target distribution.

Since we will mainly discuss Glauber dynamics for the rest of the chapter, we will
show, using the above theorem, that is does converge to the target distribution.

Proposition 5. Given an N-particle spin system x ∼ µβ, its Glauber dynamics con-
verges to the target distribution µβ.

Proof. Since the transition probabilities are bounded away from zero for all β <∞,
we need to show the show the detailed balance equation:

i). If H(xt) ≤ H(xt+1), then: α(xt+1, xt) ≡ min{1, e−β(H(xt+1)−H(xt))} = 1, and
α(xt, xt+1) = min{1, e−β(H(xt)−H(xt+1))} = e−β(H(xt)−H(xt+1)), such that

µβ(xt). k(xt+1| xt) =
e−βH(xt)

Z
. q(xt+1| xt)α(xt+1, xt)

=
e−βH(xt)

Z
.

1{d(xt, xt+1) = 1}
N

. 1

=
e−βH(xt+1)

Z
.

1{d(xt, xt+1) = 1}
N

. e−β(H(xt)−H(xt+1))

= µβ(xt+1). q(xt| xt+1). α(xt, xt+1)

= µβ(xt+1). k(xt| xt+1).

ii). The second case H(xt) > H(xt+1) follows the exact same argument. �

5.2 Relaxation time: speed of convergence to the

target distribution

5.2.1 Glauber dynamics

For informative purposes, we will recall the meaning of time averages discussed in
chapter two. We have the following definition adapted from the comments of ch4 of
(Mezard and Montanari, 2009) that we make more explicit. Note that, to distinguish
the individual spin indices k ∈ [N ] from the time index t of the Markov chain, for the

remainder of this section, we will write x
(t)
k to denote the value of the kth spin of the

state x(t) ∈ Σ.

Definition 46. Given an N-particle spin system x ∼ µβ, and a function O : Σ 7→ R,
we define the time average of O(t) ≡ O(x(t)) as its expectation w.r.t. Glauber dynamics
starting from x(0) ∼ µβ, that we denote by brackets:

〈O(t)〉x(0) = EGlauber

[
O(x(t))|x(0) = x(0)

]
=
∑
x(t)∈Σ

O(x(t)) PGlauber

[
x(t) = x(t)|x(0) = x(0)

]
.

(5.3)
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To make matters more explicit on a simple example, consider the time average of
the value of the kth spin after t Glauber steps starting from the realization of x(0) ∼ µβ:

〈xk(t)〉x(0) =
∑
x(t)∈Σ

x
(t)
k PGlauber

[
x(t) = x(t)|x(0) = x(0)

]
=
∑
x(t)∈Σ

x
(t)
k

PGlauber

[
x(t) = x(t), x(0) = x(0)

]
µβ(x(0) = x(0))

=
1

µβ(x(0) = x(0))

∑
x(1)...x(t)∈Σ

x
(t)
k

[
t∏

s=2

pGb
[
x(s)|x(s−1)

]]
pGb
[
x(1)|x(0)

]
,

where the kernel of Glauber dynamic is as previously discussed: pGb(x
(t)|x(t−1)) ≡

k(x(t) = x(t)|x(t−1) = x(t−1)) =
(
1
{
d(x(t), x(t−1)) = 1

}
/N
)
. min{1, eβ(H(x(t))−H(x(t−1)))}.

One can object to the condition of starting from an equilibrium state τ ∼ µβ,
however it is quite standard in MCMC sampling to run the algorithm for a burned
in period, i.e. some prescribed number of iterations (see section [1.11] in (Brooks et
al., 2011)), to get to a low energy initial state such that it is approximately sampled
according to µβ.

The treatment of dynamics of constraint satisfaction problems is very analogous to
that of spin systems with the main difference being, is that in the case of hard con-
straints, only the states which satisfy a number of constraints carry probability mass,
which typically leaves a large portion of the state space with zero probability, effectively
separating it into highly disconnected regions delimited by infinite energy barriers, in-
tuitively this will cause a dramatic slowdown of relaxation time.

The goal of the current section is to describe the dependence of the relaxation time on
the relative density of these disconnected regions w.r.t. their immediate boundary in
the general case, and in the next section we will relate this dependence to the 1RSB
predictions and state some bounds on the relaxation time in the replica-symmetric
and clustering regimes.

Consider the temperature parameterized distribution µβ(x) ∝ e−βE(x), where as-
signments satisfying a larger number of clauses are associated with lower energies;
E(x) ≡ |{a ∈ [M ] : x∂a doesn’t satisfy a}|. In the case where a k-SAT instance is
satisfiable, the uniform measure measure on its satisfying assignments can thus be
seen as the low temperature limit of µβ. In this sense, the typically rugged energy
landscape of glassy system such as the REM or the p-spin model, is a smoothed out
version of that of hard constrained systems such as k−SAT.

Still, the analysis of the dynamics on rugged landscapes provides valuable insight into
the algorithmic consequences of the 1RSB predictions, that also hold in the p−spin
model for p ≥ 3, which as we will explain below, provided some conditions on the
number of interactions that a given spin is allowed to take part into, encompasses the
k-SAT and a multitude of random CSPs as special cases.
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5.2.2 Speed of correlation decay

Consider an N -particle system evolving according to Glauber dynamics, and suppose
that we want to study how fast the value of some observable O(x(t)),O : Σ 7→ R, be-
comes (nearly) uncorrelated with its initial value x(0). To get an idea of the timescale
over which correlations decay for arbitrary observables, it makes sense to look at the
observable with slowest correlation decay as to get a worst case upper bound for said
timescale, that we call the relaxation time τr.

Definition 47 (Mezard and Montanari, 2009). Consider an N-particle spin system
x ∼ µβ whose support is Σ, and an arbitrary function O : Σ 7→ R, and let O(t) ≡
O(x(t)), where x(t) is the state of the Glauber dynamic Markov chain defined above.
The exponential auto-correlation time (also known as the relaxation time) τr is defined
as:

τr ≡ sup
O
{τO,r} where τr ≡ − lim

t→∞

1

t
logCO(t), (5.4)

where CO(t) ≡ 〈O(0)O(t)〉 − 〈O(0)〉〈O(t)〉.

Theorem 15 (Mezard and Montanari, 2009). For any Markov Chain on Σ, that
satisfies detailed balance and whose transition probabilities {wx→y} are strictly positive,
for any two disjoint subsets A,B ⊂ Σ, let WA→B ≡

∑
x∈A,y∈B µ(x) wx→y, we have

τr ≥
µ(x ∈ A) µ(x /∈ A)

WA→Σ\A
. (5.5)

We will not prove this theorem since it is ubiquitous in statistics and computer
science, but we will instead illustrate its utility in the following informative example.

Figure 5.1: Periodic boundary conditions in a 2D Ising model with L = 4 (TensorNet-
work, n.d.)

Consider the 2D Ising model, where spins rest on a two dimensional L × L grid
G ≡ (VG, EG) where V = [L2], and EG ≡ {(i, j) : j ∈ N (i), ∀i ∈ V} with peri-
odic boundaries, such as the one in the figure above. Only nearest neighbor spins are
allowed to interact, hence J ≡ {Jij = 0 : ∀ (i, j) /∈ EG)}. The low temperature
behaviour of the 2D Ising model is different from that of mean field ones such as the
SK model, in the system may be in a ferromagnetic phase, such that its magnetization
M(σ) ≡

∑
i∈[N ] σi (which random as σ is ∼ µ) is concentrated around two symmetric
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values ±NM+(β) with N = L2 the total number of particles.

Let Σ, as usual, denote the state space of the N−particle system, and let A ≡
{σ ∈ Σ : M(σ) ≥ 1}, and suppose that L is odd such that the magnetization cannot
be zero, hence A = Σ\ A and µβ(A) = µβ(Σ\A) = 1/2. By the above theorem we
then have:

τr ≥
1/2. 1/2∑

x:M(x)=1

∑
y∈A: d(x,y)=1 µβ(x) wx→y

. (5.6)

Note that in the denominator of the lower bound of τr we always sum over the bound-
ary of A, which we can define as ∂A ≡ {x ∈ A : miny∈Σ\A d(y, x) = 1} i.e. the
portion of A from which we can escape A in one step, provided we follow single-flip
dynamics i.e. the transition probabilities {wx→y} are non-zero only for neighboring
states.

Hence, the relaxation time grows larger as the probability mass on the boundary of
A grow smaller, and since the above theorem holds for any subset A ⊂ Σ, it suffices
that there exists one portion of the state whose boundary carries a small enough prob-
ability mass that the lower bound of τr becomes quite large, rendering the relaxation
time much slower.

After some work we get a size dependent lower bound τr ≥ e2βσ(β)L+o(L), we re-
fer the reader to chapter 13 of (Mezard and Montanari, 2009) for details.

5.3 A further characterization of pure state decom-

position in the clustering regime

The description of the support of the uniform measure on satisfying assignments µ
beyond the clustering threshold has been rather informal, to relate its 1RSB picture
with the performance of MCMC algorithms, it is useful to go into further detail. This
subsection will be reminiscent of the treatment of pure state decomposition in chapter
two, and although it is self contained, it can be helpful to have read the second chapter
beforehand, as it gives some intuition from the dynamical point of view.

Recall that in the discussion of intermediate ergodicity regimes, ergodicity is really
only broken in the large N limit, however, in the low temperature regime as β � 1,
the growth of energy barriers ∆Eσ→τ ≡ H(τ) − H(σ), results in exponentially van-
ishing escaping probabilities WA→A, making the relaxation time prohibitively large
and thus the convergence of standard MCMC sampling to be approximate to µβ too
slow to be practically useful.

Since the breaking of ergodicity is size-dependent, the pure state decomposition (or
clustering) at the onset of the clustering phase can be characterized asymptotically.
Since we have situated the clustering in the 1RSB picture and discussed its qualitative
properties (see the second-last section of ch.4), here we give the complete definition.

Definition 48 (Mezard and Montanari, 2009). Consider a sequence of finite factor
graphs FN , each associated with a k−SAT instance and its set of negation spec-
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ifications {Jai : i ∈ ∂a}a∈[M ] that uniquely determine its set of satisfying assign-
ments SN . And let µN be the uniform measure on SN with support on the entire
state space ΣN = XN (but positive only on SN). The pure state decomposition can
be formalized by considering the partitioning of the state space into separate blocks,
ΣN =

⊔
k∈[ηN ] αk,N , where each containing a cluster. Moreover, clusters are sepa-

rated by bottlenecks ∂εαk,N ≡ {x ∈ ΣN : 1 ≤ miny∈αk d(x, y) ≤ Nε }. We say that
µN is in a pure state decomposition if the it satisfies the three following conditions:

1. maxk∈[ηN ]

{
µN(αk,N)

}
≤ 1− δ for some δ > 0.

2. limN→∞ maxk∈[ηN ]
µN(∂εαk,N)

µN(αk,N)
= 0 for some ε > 0.

3. The pure state measures µ
αk,N
N admit no further pure state decomposition of the

type above.

As we noted in chapter 2, the reformulation of µN into a convex combination of
measures with non-overlapping support, follows from conditioning it on clusters:

µαkN (x) ≡ P∼µN [x ∈ SN | x ∈ αk,N ] =
P∼µN [{x : x ∈ SN} ∩ {x : x ∈ αk,N ]}]

P∼µN [{x : x ∈ αk,N ]}]

=
µN(x) 1{x ∈ αk,N}

µN(αk,N)
.

Let the Gibbs weight of the kth cluster be wk ≡ µN(αk,N), the above equality then
yields: µN(x) 1{x ∈ αk,N} = wk µ

αk
N (x), such that

µN(x) =
∑
k∈[ηN ]

µN(x) 1{x ∈ αk,N} =
∑
k∈[ηN ]

wk µ
αk
N (x). (5.7)

Note that the clusters do not contain the entirety of the set of solutions, nor does
µαkN (z) = 1/|Zαk |, ∀z ∈ αk,N . Since the 2nd condition holds for arbitrarily ε−small
bottlenecks, the clusters are well delimited. This holds thermodynamically for all
clusters l ∈ [ηN ], since

lim
N→∞

µN(∂εαl,N)/µN(αl,N) ≤ lim
N→∞

max
k∈[ηN ]

µN(∂εαk,N)/µN(αk,N) = 0.

5.3.1 Algorithmic implications of pure state decomposition

Throughout, this subsection we will refer to regions of Σ with rapid mixing under
local Markov dynamics (e.g. Glauber) as being ergodic, and broken ergodicity is taken
to mean exponential energy barriers.

Recall that the satisfiability problem consists in answering whether the solution set
S of a given k−SAT instance is non-empty and if so, to generate samples from it.
Ideally we would like to sample ∼ µ, that is, uniformly from the solution set, the
uniformity criterion is however very costly; for instance, a result of (Papadimitriou,
1991) shows that biased random walk strategies yield solutions of 2−SAT instances in
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polynomial time O(N2), the issue however is that such biased random walks tend to
oversample from a portion of the solution space such that the sampling procedure is
highly non-uniform.

For target product measures such as µ(x) ∝
∏

a∈[M ] e
−E(x∂a), a common choice for

the acceptance probabilities is to take α(x, y) ≡ max{1, −β∆Ex→y}, and q(.|x) ≡
U(N (y)) as a proposal distribution. In the k−SAT case, E(x∂a) = − log(ψa(x∂a)).

However, since the convergence of such sampling procedures requires that the transi-
tion probabilities must be bounded away from zero, i.e. wx→y > 0, ∀ x, y ∈ Σ, such
that the system is able to explore all states with positive probability under the target
probability distribution µ, and that the uniform measure on satisfying assignment
is zero for large portion of the state space, effectively separating it into disconnected
clusters as α ≥ αcl, we need to introduce a smoothed out version of µβ which for
low enough temperature produces samples approximately ∼ µ.

To this end, we can define a Gibbs measure µβ(x) ∝ e−βE(x), where each state’s
energy is given by the number of clauses it violates. Recalling the notation above,
given a k−SAT formula, let Ja,i ≡ 1{xi is negated in a}, such that E(x) =∑

a∈[M ]

∏
i∈∂a δxi,Ja,i . Notice that the set of solution all have the same probability

under µβ, we can therefore produce uniform samples from S by using a Markov
chain whose target distribution is muβ, and discard all samples /∈ S using rejection
sampling.

Note that there is a trade-off in lowering β, for small β, states with E(x) ≥ 1 will
carry a substantial part of the probability mass of µβ. such that the MCMC proce-
dure will produce a large number of rejected samples, however, when β is too high,
we can get the target distribution µβ to be arbitrarily close to µ in variation distance
(||µβ −µ||v ≡ 1/2

∑
x∈Σ µβ(x)−µ(x) ≤ ε), but what we gain in reducing the number

of rejected samples is lost in the time spent stuck in local energy minima due to the
exponential vanishing of escaping probablities, more precisely; since in SA, the moves
out of subvalleys of energy are accepted with probability wx→y ≡ min{1, e−β∆Ex→y},
for β � 1, we have wx→y ≈ 0 ,∀ y ∈ {z ∈ Σ : E(z) ≥ 1}.

5.3.2 A 1RSB-independent result: Simulated annealing is uni-
form but very slow

Before discussing the slowdown of the relaxation time as a consequence of the 1RSB
picture in the case of the k−SAT for k ≥ 3, it is perhaps helpful to characterize the
solution time, i.e. the time it takes to find the first solution, in the simpler case of
k = 2. Consider a 2−SAT instance of the form

Φ(x) = (a ∨ c1) ∧ (a ∨ c2) ∧ . . . (a ∨ cn) ∧ (a ∨ b) ∧ (¬a ∨ ¬b), (5.8)

and suppose that the sampling procedure has the uniform distribution over N variables
as proposal distribution: q(xt | xt−1) ≡ U([N ]), and α(xt, xt−1) ≡ min{1, e−β∆Ext−1,xt}
as accepting probability, such that for β < ∞, the transition probabilities are
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bounded away from zero and the transition kernel k(xt | xt−1) = q(xt | xt−1) α(xt, xt−1)
satisfies detailed balance, and the resulting Markov chain is therefore guaranteed to
converge to the target distribution µβ(x) ∝ e−βE(x), with E counting the number of
unsatisfied clauses by assigning x. For high enough β, µβ ' µ in variation distance.

Theorem 16 (Wei et al., 2004). Fixed temperature Simulated annealing finds a solu-
tion to the above formula in O(eN) time with high probability.

The complete proof (Papadimitriou, 1991) is involved and rather long, we will how-
ever present the gist of the argument, as discussed in (Wei et al., 2004), for intuition’s
sake. Starting from an a uniformly chosen assignment, we would like to estimate the
number of iteration before finding the first satisfying assignment. Given x0 ∼ U(Σ),
there are two options:

a. a0 = 1 : let V denote the set of variables, it is easy to see that flipping any
variable x ∈ V\ {a}, will not increase the number of unsatisfied clauses, such
that, the change in energy induced by flipping x is greater or equal to zero, and
therefore e−β∆Ea,¬a ≥ 1, and will hence be flipped with probability one, since
the acceptance probability is α ≡ {1, e−β∆E} = 1.

Let N ≡ |V|, since the sampling procedure flips any variable uniformly at
random, if |V\ {a, b}| is large enough, it can be approximated by an unbiased
random walk on the (N − 2)−dimensional hypercube defined by the variables
in {ck}. The probability of reaching a region of the entire N−dimensional hy-
percube where only O(

√
N) of the variables in {ck} are set to zero (or false).

Suppose we are in a region of the state space where |{k : ck = 0}| = O
√
N

and a = 0, it is easy to see that the last two clauses enforce the constraint that
a = 1 in any solution. Hence to reach a satisfying assignment, we need to flip
the variable a, but since |{k : ck = 0}| = O

√
N this will result in a change

of energy of ∆Ea =
√
N, and therefore, the acceptance probability of flipping

a, will be α = min{1, e−β
√
N} = O(e−N).

b. a0 = 0 : a will be flipped in polynomial time with high probability, and then
we’re back in case (a).

On the other hand, one should note that the relaxation time on a full hyper cube
is O(N log(N)) (Wei et al., 2004), which would explain the experimentally uniform
sampling among solutions to the same cluster, however, the 1RSB picture does not
guarantee that clusters contain solutions exclusively, but rather that they are much
denser than their surrounding bottlenecks (see the inequality right down below).

5.3.3 The relaxation time in replica-symmetric vs. clustering
regimes

As previously discussed, in the clustering regime

µN(∂εΩr,N)

µN(Ωr,N)
≤ e−N

q

, (5.9)
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where q depends on the degree profile of the random graph ensemble from which the
k−SAT instance is generated (Mezard and Montanari, 2009).

Since we are considering single-flip Glauber dynamics, the set of moves out of a cluster
A ≡ αk,N , with nonzero probability are those with Hamming distance equal to one,
i.e. those whose end state is located at the immediate boundary of the cluster. It is
easy to see that the immediate boundary of the cluster αk,N is given by its bottleneck
of radius ε = 1/N, such that ∂1/Nαk,N = {x ∈ ΣN : miny∈αk,N d(x, y) = 1}. By

the inequality above, we have µN(∂εαk,N) eN
q ≤ µN(αk,N), and recalling the above

theorem regarding relaxation times, for A ≡ αk,N , we get

τr ≥
µN(x ∈ A) µN(x /∈ A)

WA→Σ\A
=

µ(αk,N) µ(∂εαk,N)∑
x∈αk,N

∑
y∈ ∂1/Nαk,N

µN(x) wx→y

≥ eN
q

(
µ2(∂εαk,N)∑

x∈αk,N

∑
y∈ ∂1/Nαk,N

µN(x) wx→y

)
︸ ︷︷ ︸

≡ γ(N)

,

with some work, we could upper bound γ(N) by an N−independent constant.
As pointed out in the last chapter in (Mezard and Montanari, 2009), in many fac-
tor graph ensembles, the constant q is equal to one, such that the relaxation time
beyond the clustering transition is of order τr ≥ cst1 e

N . As we will show below,
τr ≤ cst2 e

N , such that the relaxation time is exactly exponential in size; τr = eΘ(N).

Recall the non-reconstruction criterion of vanishing long range correlation, without
which it is possible to reconstruct the assignment from a limited number of known
variable assignments. A very analogous problem to k−SAT is q−coloring, since it can
be translated as a satisfiability problem and is believed to be in the same discontinuous
1RSB universality class described above.

Definition 49. We say that F ≡ (V ,F , E), is an l−regular factor graph, if all of its
variable nodes have the same degree: |∂i| = l, ∀i ∈ V.

Definition 50. Consider a d-regular graph G ≡ (V , E), and let K ≡ [k] be a set
of k colors and N ≡ |V|. A k-coloring of G is an assignment σ ∈ KN where
∀ (i, j) ∈ E , σi 6= σj. We denote by SG the set of all possible k−colorings of G.

Theorem 17 (Zhang, 2017). Consider the problem of sampling from the uniform
measure of k−coloring of d−regular trees µ(σ) ≡ 1{σ ∈ SG}/Z, where Z ≡ |SG|
and d ≤ drec the reconstructability threshold. Then, there exists a constant k0 such
that for k ≥ k0, lβ < 1 and d ≤ k.[log k+log(log k)+β], the mixing time of Glauber
dynamics is O(N logN).

.
A more complete description of mixing time below the non-reconstuctable regime is
detailed in chapter five of the PhD thesis of Yumeng Zhang (Zhang, 2017). A key
condition of rapid mixing is that correlation length be small, in fact (Montanari and
Semerijan, 2008) showed that the Glauber dynamics of p−spin glass models on ran-
dom regular graphs satisfies c1l ≤ τr ≤ exp{c2l

d} where l is the correlation length.
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More generally, consider an p−spin Ising model and its associated factor graph F ≡
(V ,F , E), and let N ≡ |V|, M ≡ |F|, and suppose that the p−spin model is
represented by an l−regular factor graph, such that all variable nodes have degree
l, and (by definition of the p-spin model) all factor nodes have degree p, such that
Nl = Mp. It is easy to see that the regular random k−SAT and regular k-coloring
are special cases of this model. Moreover, we recall that the energy of each state in
the p-spin case is given by the Hamiltonian H(σ) ≡ −

∑M
a=1 Ja

∏
i∈∂a σi, and it’s

probability by µβ(σ) ≡ e−βH(σ)/Z.

When p = 2, l ≥ 3, the system undergoes the statical phase transition (conden-
sation) without the dynamical one (clustering), and when p = l = 2, the system
experiences no phase transition in finite temperature. The situation becomes qualita-
tively different when p, l ≥ 3, as the system experiences both. The set of N -particle
spin system that fall into this case make up what is called the discontinuous 1RSB
universality class.

To be more specific about the notion of correlation length, much like the slowest
observable to equilibrium, we can define the most correlated observables to measure
the point-set correlation of a given variable xi with the set of variables at a distance
greater or equal than r that we denote by x∼i,r :

Definition 51. Consider a factor graph F ≡ (V ,F , E), we define the distance between
two variables d(i, j) for xi, xj ∈ V , as the number of function nodes along the shortest
path from xi to xj.

To avoid confusion, we note that while the Hamming distance takes as input two
states: dh : Σ×Σ 7→ {1 . . . N}, the distance between two variables takes as input two
variables indices d : {1 . . . N} × {1 . . . N} 7→ {1 . . .M}, where M ≡ |F|.

Definition 52 (Montanari and Semerijan, 2006). Let F be the space of bounded
functions of one variable: f : X 7→ [−1, 1]. We define the point-set correlation of xi
with x∼i,r ≡ {xj : d(i, j) ≥ r} as:

Gi(t) ≡ sup
f,F∈F

∣∣∣ 〈f(xi).F (x∼i,r)〉 − 〈f(xi)〉.〈F (x∼i,r)〉
∣∣∣.

Definition 53 (Montanari and Semerijan, 2006). Given a variable xi, we define its
correlation length as the radius (in terms of d(i, j)) beyond which, the sup point set
correlation between xi and all variables outside of the radius are arbitrarily small,
more precisely:

li(ε) ≡ min
{
l ≤ 0 : Gi(r) ≤ ε, ∀ r ≥ l

}
.

Note that, the correlation length provides a worst case guarantee, since we are con-
sidering the decay of the supremum point set correlation between xi and all variables
outside of the radius. As previously discussed, we can define the relaxation time via
a positive monotonically decreasing worst case time correlation function of a given
variable xi:
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Definition 54 (Montanari and Semerijan, 2006). Given a variable xi, we define the
worst-case time-correlation function as:

Ci(t) ≡ sup
f∈F

∣∣∣ 〈f(xi(0)).f(xi(t))〉 − 〈f(xi(0))〉.〈f(xi(t))〉
∣∣∣.

The relaxation time is then given by

τi(ε) ≡ inf
{
τ ≥ 0 : Ci(t) ≤ ε , ∀t ≥ τ

}
.

Let the set of variables at a distance (number of function nodes along the shortest
path) less or equal to k, be denoted by Bi(k) the ball of radius k centered around
xi, and let the Markov chain of the sampling procedure be such that, transition
probabilities from (x1, . . . , xi, . . . ) to (x1, . . . , x

new
i , . . . ), be denoted by κxi (x

new
i )

and satisfy κxi ≥ 0 ,
∑

y∈X κ
x
i (y) = 1, and let the Markov chain probabilities be

bounded away from zero by 0 < κ0 ≤ κxi (y), for all y ∈ X , x ∈ Σ. Along Glauber
dynamics κxi ≡ e−β∆iEx . We have the following result.

Theorem 18 (Montanari and Semerijan, 2006).

C1 li(|X |
√

2ε) ≤ τi(ε) ≤ 1 + A exp
{
C2

∣∣Bi(li(ε/2))
∣∣},

for A ≡ log(4/ε), C1 ≡ 1/2e∆2, C2 ≡ − log(κ0(1 − e−1)), where ∆ ≡
max{ |∂i|, |∂a| : ∀i ∈ [N ], a ∈ [M ]}, with the lower bound being true if li(|X |

√
2ε) >

log2(2/ε).

.
Let Tc < Td (βd < βc) be the critical (inverse) temperatures for the static (c) and
dynamic (d) phase transitions. In the high temperature regime, T > Td, the system
is rapidly mixing and the relaxation time is independent of size: τi = O(1), and the
correlation lengths li are therefore finite.

For T < Td, heuristic arguments based on energy barriers, using the quenched
potential method (Franz and Parisi, 1995) and (Franz, 2006), reveal an exponential
relaxation time: τi = O(eN), correlation lengths are therefore necessarily divergent
in N . The method is however non-rigorous, (Montanari and Semerijan, 2006) provide
a rigorous result in the proposition below.

Note that, since the ball of radius r of l−regular factor graph contains at most γ ≡
|Bi(r)| ≤ l(p−1)r(l−1)r ≤ l[(p−1)(l−1)]li(ε/2) variables, we have log(p−1)(l−1)(γ/l) ≤
li(ε/2), the local tree structure provides lower bound: cst1. log(N) ≤ log(p−1)(l−1)(γ/l) ≤
li(ε/2). Moreover, the correlation length li(ε) cannot possibly be larger than the di-
ameter the entire factor graph which is of order O(log(N)), hence

cst1. log(N) ≤ log(p−1)(l−1)(γ/l) ≤ li(ε/2) ≤ cst2. log(N).

In other words, when T < Td, the above theorem implies that the correlation length
is exactly linear in size, l = Θ(logN) and l = O(1) for T > Td. Moreover, since
|Bi(r)| ≤ N, we have τ ≤ ecst3N .
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Consider a p−spin model on an l−regular factor graph, with p, l ≥ 3 and suppose the
state of the system is evolving along Glauber dynamics, i.e. with transition probability
κσi ≡ ∆Ei(σ) it is easy to see that the change in energy induced by flipping the ith spin
is given by: ∆Ei(σ) = (1 + σi tanh βψi(σ))/2 with ψi(σ) ≡

∑
a∈∂i Ja,i

∏
j∈∂a\ i σj.

Rather than characterizing the relaxation time within epsilon distance of the criti-
cal points, which are computed by the cavity method, in (Montanari and Semerijan,
2008), the authors defined lower and upper bounds beyond which the correlation time
of the ith spin τi becomes of a different order. Let Tann be an upper bound on
Tc, and Tbarr, Tfast lower and upper bounds, respectively, on Td, such that
Tbarr < Td < Tfast < Tc < Tann.

Proposition 6 (Montanari and Semerijan, 2006). Let T fastp,l ≡ 1/arc tanh(1/l(p −
1)), and T barrp,l , T annp,l be as defined in appendix D of (Montanari and Semerijan,
2008), then

• If T > T fastp,l , we have

τi(ε) ≤ log(1/κε)/κ for κ ≡ 1− l(p− 1) tanh β.

• If T annp,l < T < T barrp,l then there exists q∗ and Υ > 0 such that, ∀ 0 < δ < 1/4,

τi(ε) ≥ eN(υ−δ) holds for at least N(q∗ − δ − ε) spins σi, w.h.p.

5.4 Uniform exploration of the solution space

5.4.1 Previous work and challenges

For the rest of this chapter, we will write x(i) to denote the assignment resulting from
flipping the value of the the ith variable xi (from 1 to 0 or vice versa), and leaving all
others unchanged. Moreover, we will abuse notation to write ∆E when referring to
the energy change in an MCMC procedure, from the current state x to the proposed
state y, that we denote by ∆Ex→y. Finally, we will refer to the set of assignment with
Hamming distance 1 from the current assignment as N (x) ≡ {y ∈ Σ : dh(x, y) = 1},
as we did in previous sections.

As a compromise between the speed of random walk approaches (such as Walk-SAT),
and the uniformity guarantee of MCMC sampling, (Wei et al., 2004) proposed a Hy-
brid approach named Sample-SAT, which alternates between random walk moves and
fixed temperature SA moves with probability prw.

The algorithm thus depends on two parameters; prw and β the fixed inverse tem-
perature of the SA moves. Extensive experiments showed optimal performance for
p∗rw = 0.5, β∗ = 100 (Wei et al, 2004). Now, let x(i) denote the assignment obtained
by flipping the ith variable of x, and let S be the set of satisfying assignments and
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Cu(xt) the set of clauses unsatisfied by xt, and recall that ψa(x∂a) = 1−
∏

j∈∂a δxi,Ja,i ,
the proposed algorithm is then as follows:

Algorithm 4: The Sample-SAT algorithm

Result: Sol ⊂ S
Initialization: p∗rw = 0.5, β∗ = 100;
Sol← ∅;
x0 ∼ U(Σ);
for t = 1, ...Tmax do

draw u ∼ U [0, 1] ;
if u ≥ prw: then
Cu(xt)← ∅;
while Cu(xt) 6= ∅ do

a ∼ U(Cu(xt));
i ∼ U(∂a);

xt ← x
(i)
t ;

if ψa(x∂a,t) = 1 then
Cu(xt)← Cu(xt)\ {a};

end

end
Sol← Sol t {xt};

else
Sol← Sol t SA(β) samples;

end

end

The uniformity of zero temperature SA on clusters was shown in (Wei et al., 2004), by
interchanging the detailed balance condition with stationarity and irreducibility of the
Markov chain w.r.t to µ. However, a careful consideration points to the fact that the
authors implicitly assume that clusters are connected components of solutions in Ham-
ming space, i.e. that they contain no unsatisfying assignments, such that excluding
states in the immediate boundary of the cluster, moves to any neighbor are accepted
with probability one.

This is however not very important, since for N � 1, pure state decomposition
implies that maxk∈[ν] µ(∂αk)/µαk = 0, such that the relative density of clusters to
their boundary is large enough, that for any x ∈ αk,

∑
j∈[N ] µ(x(i))/N ≈ 1 − o(1).

In other words, when starting inside a cluster, the proposed end state when chosen
uniformly i ∼ U([N ]), is with high probability a satisfying assignment.

Even though the random walk component throws out any convergence guarantee to
sampling

approx∼ µ, interweaving SA moves with a random walk, significantly im-
proves uniformity of sampling over the solution space compared to Walk-SAT. This
can be seen in the reduction of the difference in the frequency of each of the generated
solutions, from Walk-SAT to Sample-SAT in the left-side plots below. The uniformity
of SA is also reflected in the relative frequency between solutions belonging to the
same cluster, as can be observed from the plots in the right-side, showing generated
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solutions in a low dimensional projection of the N dimensional Hamming space (Wei
et al., 2004).

Figure 5.2: Right: Solution frequency in Hamming-space for Walk-SAT (top) vs.
Sample-SAT (bottom). Left : Variance of solutions frequencies (high variance signals
non-uniformity) (Wei et al., 2004).

In the clustering regime, the experiments show that the algorithm alternates between
two phases. Indeed, given an arbitrary initial assignment, the system moves according
to a random walk until it finds a cluster, once it does, it is locked within said cluster
sampling uniformly from it until ”equilibriation”, then reverting back to a random
walk, and so on.

This two-phase behaviour is not so surprising: since solutions are grouped into clus-
ters, all proposed single-flip end-states, inside a cluster (say αk), have zero unsatisfied

clauses, and hence ∆Ei(xt) ≡ E(xt) − E(x
(i)
t ) = 0 for all (xt, x

(i)
t ) ∈ αk, such

that the acceptance probability α(xt, x
(i)
t ) ≡ min{1, e−β∆Ei(xt)} is equal to one for

any such move, and the algorithm finds itself effectively locked into the SA phase as
soon as it hits a cluster, until it reaches the sparsely populated (in terms of number
of solutions) boundary of the cluster, where most proposed states are not solutions,

and have therefore higher energy, such that α(xt, x
(i)
t ) ≡ e−β∆Ei(xt) ≈ 0, for large

enough β, and are thus rejected, until the algorithm generates a long enough sequence
of u > prw that the random walk gets far away from the cluster and the algorithm
reverts back to performing a random walk in search of a new solution.
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5.4.2 Uneven visiting-frequency among clusters

As is clear from the right-side plots, while the sampling is uniform inside a given
cluster, some clusters are more frequently visited than others. More precisely, let
PS−SAT be the probability of reaching an assignment in S using Sample-SAT, then
for any satisfying assignment y, we have

PS−SAT [xt = y] =
∑

αk:k∈[η]

PS−SAT [xt = y] 1{y ∈ αk,N}

=
∑

αk:k∈[η]

PS−SAT [xt = y | y ∈ αk]. PS−SAT [y ∈ αk].

Let Zαk be the set of solution inside the cluster αk, since SA samples uniformly
from clusters, we have: PS−SAT [xt = y | y ∈ αk] = 1/Zαk , such that,

PS−SAT [xt = y] =
∑

αk:k∈[η]

1{y ∈ αk}
Zαk

. PS−SAT [y ∈ αk].

Recall that in the clustering regime, the Gibbs weight of the kth cluster is wk ≡
µN(αk)� µN(∂εαk), the number of assignments outside clusters carry exponentially

little probability mass, such that wk ≈
Zαk∑

k∈[ηN ] Zαk
, and the pure state decomposition

would then imply:

µN(y) =
∑
k∈[ηN ]

wk µ
αk
N (y) ≈

∑
k∈[ηN ]

1{y ∈ αk}
Zαk

.
Zαk∑

k∈[ηN ] Zαk
.

For the overall procedure to be uniform, the probability of the random walk to reach
an assignment in a given cluster needs to be: PS−SAT [xt ∈ αk] ≈ wk, but without
detailed balance w.r.t. µ, we have no guarantee of this being true. In fact, in (Wei
et al., 2004) the authors show that certain assignments in 2−SAT formulas have ex-

ponentially low probability to be found via a pure (Prrw[xt = x
(i)
t−1] = 1/N, ∀i ∈ [N ])

random walk.

Moreover, the difference in the frequency of visiting certain clusters can be explained
by the fact that, just after escaping a given cluster, that is, early on when reverting to
the random walk phase, if the current state is not too far from the cluster, the biased
random walk is very likely to lead right back to the cluster it just escaped from, and
get locked once again in the SA phase, revisiting each state a second time.

5.5 Greed, energy plateaus and bias towards core-

less assignments

5.5.1 Walk-SAT as a stochastic local search method

As previously discussed, it can be very useful to interweave energy-based moves in
a random walk (RW) approach. In the Sample-SAT case, since Simulated annealing
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(SA) accepts moves with probability e−β∆Ex→y , for low enough temperature, only
∆E ≤ 0 moves are accepted, in the clustering regime this leads to chaining SA moves,
and the algorithm is then locked intermittently into SA/RW phases.

SA is a very general optimization method, often used as a blackbox regardless of
the objective cost function, this generality however comes at a price. Firstly, there
is no control on the maximum descent in energy |∆E|, moreover, any convergence
guarantee to the target distribution is lost when switching between RW and SA moves.

Furthermore, any given solution sampled by Sample-SAT is either found completely
via a RW, or completely via SA, and the prw parameter merely acts to control the
uniformity/speed of solution-time trade-off in a set of samples, but does not control
the selection of intermediate states towards finding a single solution.

More precisely, we make the following distinction in the selection criteria: the transi-
tion kernel of SA selects end states globally, i.e. from all immediately adjacent states,
according to U({xt : d(xt−1, xt) = 1}), while the RW part chooses the flipped variable
uniformly from {∂a : a ∈ Cu(xt)}, where Cu(xt) is the set of unsatisfied clauses
under the current assignment.

In this sense, the problem of reaching a satisfying assignment can be cast as a knap-
sack problem with the number of satisfied clauses E(xt) as a cost function, and the
variables involved in a randomly selected clause set of currently unsatisfied clauses as
the candidate set: Kt = ∂a, a ∼ U(Cu(xt)), then the notion of greedy search becomes
more intuitive. It is well known that greedy algorithms are sub-optimal, a classical
example is the case of traveling salesman problem (Gutin et al., 2002).

Greed and circumspection in energy-descent, i.e. control of max |∆E|, have been
thoroughly studied in the theory of stochastic local search (SLS), while the combi-
nation of SA/RW of Sample-SAT does not lend itself to theoretical analysis. It is
therefore advantageous to consider a modified version of Sample-SAT, cast as a SLS
algorithm.
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Algorithm 5: A Stochastic (local) search variant

Result: Sol ⊂ S
Initialization: q ← pgreed, Tmax ← max samples;
Sol← ∅;
for t = 1, ...Tmax do

x0 ∼ U(Σ);
Cu(xt)← ∅;
while Cu(xt) 6= ∅ do

a ∼ U(Cu(xt));
draw q ∼ U [0, 1] ;
if u ≤ q: then

j ← argmini∈∂a f(xt, i) ≡ argmini∈∂a
∑

b∈F

∣∣ψb(x(i)
t,a)− ψb(xt,a)

∣∣;
xt+1 ← x

(j)
t ;

else
i ∼ U(∂a);

xt ← x
(i)
t ;

end
st ← {a ∈ F\Cu(t) : ψa(xt) = 1 };
Cu(t)← Cu(t)\ st;

end
Sol← Sol

⊔
{xt};

end

Note that, in the global search algorithms such as GSAT, we select the variable to
be flipped from the entire set of indices {1 . . . N} and not just from ∂a where a is uni-
formly selected from the set of unsatisfied clauses as we did in the algorithm above. In
previous discussions, the cost function was counting the number of unsatisfied clauses
under xt, f(xt, i) ≡ ∆E

xt→x
(i)
t
, but there are a number of other options. In Random-

Walk-SAT, the precursor of Walk-SAT, the algorithm chooses from Kt = ∂a, a ∼
U(Cu(xt)), the variable which annuls the least number of previously satisfied clauses,

the cost function is then given by f(xt, i) ≡
∑

b∈F\ Cu(xt)

∣∣ψb(x(i)
t,a)− ψb(xt,a)

∣∣.
Another popular choice is the Focused Metropolis search criterion which maximizes
energy-descent f(xt, i) ≡

∑
b∈Cu(xt)

∣∣ψb(x(i)
t,a)− ψb(xt,a)

∣∣ = ∆E
xt→x

(i)
t
, for the rest of

the discussion we will focus on this variant.

The greed parameter q allows us to interpolate from pure random walk at q = 0
to pure FMS at q = 1. In (Barthel et al., 2003), the authors show the existence of
a phase transition in solution-times of 3−SAT for a pure random walk search, that
occurs at a critical point below the clustering threshold αexp ≈ 2.7 ≤ αd = 3.92,
i.e. still in the replica symmetric regime, where the solution-time goes from linear to
exponential in N .

Moreover, they show experimentally, as well as analytically, though non-rigorously
(since they assume that the probability of annulling a satisfied clause by flipping a
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variable is variable-independent and time-independently equal to p = 1/(2k − 1)),
that below αexp ≈ 2.7, a pure random walk finds a solution in linear time, and
that above this threshold, the number of unsatisfied clauses |Cu(xt)| quickly goes
down to reach a non-zero plateau around which fluctuations are exponentially rare,
in this regime, |Cu(xt)| keeps fluctuating around an instance dependent (function of
{Jai : i ∈ ∂a}a∈[M ]) value, until an exponentially rare fluctuation is large enough that
|Cu(xt)| becomes equal to zero, and the search terminates.

Figure 5.3: (Left): time-evolution of the normalized number of unsatisfied clauses
αu(t) ≡ Cu(xt)/N, and (right) concentration effect around for large N , from (Barthel
et al., 2003).

For small sized systems, like the example in the left graph above: N = 140, a large
enough fluctuation results in a solution after just 148 sweeps i.e. ≈ 2.104 iterations,
while for larger systems N ≈ 5.104, such macroscopic fluctuations are exponentially
rare, and a simple pure RW approach is thus not feasible for 3−SAT instance with
α > αexp.

However, if we allow greedy steps, i.e. set q > 0, then the authors observe that:
(i). the energy plateau, around which |Cu(xt)| fluctuates, drops down to a lower non
zero value with the same qualitative behaviour (rare fluctuation around the mean),
and (ii). the experimental threshold αexp is slightly pushed back from 2.7 to 2.8.

Interestingly, in (Alava et al., 2008), the authors show that if we take q = 1, i.e. fol-
low a pure FMS search, then the search leads to all cover-less solutions, i.e. solutions
whose only cover is the all ∗ trivial cover, for k = 4, 5, 6 and 7. These experiments
seems to suggest, as is the case with the Survey propagation decimation algorithm,
that overly greedy search is strongly biased towards cover-less solutions.

Moreover, the authors show that using circumspection, i.e. bounding the maximum
allowed energy descent, in a pure FMS, results in O(N) solution-time almost surely,
futhermore, this was shown to hold well beyond the clustering and condensation thresh-
olds.

Contrasting these results with Sample-SAT who is shown to be able to find a sig-
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Figure 5.4: The effect of greed on lowering the energy plateau (Barthel et al., 2003).

nificant number of solutions with non-trivial true-covers simply through pure RW,
leads us to another trade-off; by reducing greed, we trade efficiency (linear solution-
time beyond the clustering and condensation thresholds) for a higher likelihood of
finding solutions with non-trivial covers.

In an orthogonal direction, in (Schoning, 2002) the author proves that a pure random
walk with restarts every 3N iterations when no solutions are found has a worst-case

solution time of Ω(4
3

N
). In other words, by just restarting x0 ∼ U(Σ), we gain

an exponential increase in the speed of finding solutions, moreover, we do not have to
worry about cover-less solutions since q = 0.

5.6 Large moves in the state space

To explore combinatorial state spaces of general spin systems efficiently, (Hamze et
al., 2013) developed an energy based self-avoiding random walk approach, which al-
lows large moves in the state space, while satisfying detailed balance w.r.t. the target
distribution µβ (in their paper the authors considered a 2d Ising model).

As discussed in the case of k-SAT, the exponentially vanishing probability of escaping
clusters Wαk→∂εαk is such that the relaxation time in the clustering regime is exponen-
tial in N . Practically speaking, in the 2d Ising case, single-flip Glauber dynamics at
low temperature take 1010 trials to leave a metastable state, i.e a deep local minimum
(which would be the β−smoothed equivalent of a cluster in the p−spin case), this
amounts to 1015 minutes of running time (Hamze et al., 2013).

In their paper, the authors propose an energy based proposal distribution which allows
moves between states with Hamming distance larger than one, then show that the in-
duced Markov chain is reversible and satisfies a stronger version of detailed balance
which implies the standard case, hence proving convergence. Moreover, the energy
based aspect of the proposal distribution’s main use consists in landing in typical (i.e.
low energy) states. However, as noted in their article, this approach becomes prob-
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lematic when the solution space is highly disconnected (as is the case in k-SAT).

Indeed, by defining the proposal distribution as: q(xt+1 = y | xt) ∝ e−βE(y) (where
E is the Hamiltonian of the target distribution µβ), with a support consisting of all
states with Hamming distance equal to l (the step length parameter) from the current
state: dh(y, xt) = l, if we start from a state located in a low probability region of
the state space, the proposal distribution will select the states with the lowest energy
relative to all those with Hamming distance equal to l, even if they actually result in a
low acceptance probability.

In the case of k-SAT beyond the clustering threshold, if we start with an assign-
ment located in one of the bottlenecks separating clusters, this choice of proposal
distribution might cause the algorithm to get stuck in local minima, by yielding states
that have a high probability under q(.|xt) but low acceptance probability α(., xt) ≡
min{1, e−β(E(.)−E(xt))}.

5.6.1 Avoiding covers

Recall that the main problem with Sample-SAT, is the disparity in the number of
visits among clusters. A heuristic way to solve this issue, is to keep track of the visited
solutions during the run of the SA phase, and drop their values from the support of
the random walk, this is however not practical for two main reasons:

a). Keeping track of all sampled solutions is memory-wise and computationally
costly.

b). Even if we do drop the assignments visited in the first run of SA, clusters are
very dense in solutions, such that the algorithm may still get locked into a second
SA phase in the same cluster, visiting different solutions. And while the overall
sampling will still be uniform, since the 1st round solutions are dropped and all
solutions are therefore visited once, the probability of reaching different clusters
is however not equal and hence the exploration of the state space remains non-
uniform.

We propose an algorithm that circumvents these problems, by alternating single-
flip moves with much larger jumps in the state space. In addition, we use the 1RSB
prediction of the existence of a bijection between clusters and true covers (Ding et
al., 2015), to encode all solutions within a given cluster by their representative core
variables assignment, and eliminate those from the space on which the random walk
moves along.

5.6.2 The SAW-SAT algorithm

To recapitulate, our goal is uniform exploration of the set of satisfying assignments in
the clustering regime. To this end, we surveyed a number of state of the art methods
for finding solutions, and found that Survey propagation as well as greedy search (s.a.
FMS) were found to be highly biased towards cover-less solutions (i.e. solutions whose
cover is the trivial all-∗ generalized assignment).
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To our knowledge, the most uniform sampling method beyond αd to date, seems
to be Sample-SAT (Kroc et al., 2007). However, it has also been established that
Sample-SAT seems to oversample from some clusters compared to others. Indeed, the
experiments in (Wei et al., 2004) suggest that the reason for this is that right after
terminating an SA phase, the random walk seems to lead right back to previously
visited cluster to sample from it again.

To prevent this very issue, we enforce faster exploration of the state space by proposing
a multi-flip Self-Avoiding-Walk (SAW), which allows us to avoid relapsing into clusters
upon escape. Moreover, we experiment with the option of avoiding visited clusters by
rejecting any end state whose true cover is that of their representative generalized
assignments (as defined towards the end of ch.4).

Starting from an arbitrary initial assignment, SAW-SAT alternates between single-flip
steps and larger self-avoiding moves, until it lands inside a cluster, where it gets locked
into the SA phase. To detect this ”phase change”, we keep track of the ratio of (single-
flip samples)/(SAW samples), above a threshold parameter that we denote by ρ, we
suppose that the system has effectively entered the SA phase and proceed to extract
the true cover that is representative of said cluster. Then, only after terminating the
SA phase, if the extracted true cover is non-trivial (i.e. not the all-∗ assignment), we
drop it from the state space by rejecting any move with said true cover as an end state.

In order to extract true-covers we use the peeling method proposed in (Maneva et
al., 2007), where we start by a satisfying assignment and iteratively set all of its un-
constrained variables to ∗, recall that a variable xi is constrained if there exists a
clause where all variables but xi are unsatisfying, or there are two variables in said
clause assigned to ∗.

Suppose, we have a function Constr(Φ, τ), which takes as input the k−SAT in-
stance and a generalized assignment τ ∈ {0, 1, ∗} and returns the set of constrained
variables, we can then obtain true covers from an arbitrary satisfying assignment as
follows:

Algorithm 6: Peeling

Input: The instance Φ and a satisfying assignment x ∈ S ;
Result: τ, the true cover of the input solution.
while ∃i ∈ [N ], τi 6= ∗ such that xi is not a constrained variable do
Cstr ← Constr(Φ, τ);
i ∼ U(Cstr);
τi ← ∗;

end

As discussed, the main idea of SAW-SAT is to alternate between single-flip steps
and larger self-avoiding moves. We call a SAW-path of length p, the sequence of in-
termediate states obtained by iteratively flipping the set of indices (i1, . . . , ip) ∈ [N ]p,
where ik 6= il ∀i, k ∈ [p]2, e.g. the SAW-path of length three given by (1, 3, 4) and
starting from xt = (0, 1, 1, 0) has xt+1 = (1, 1, 0, 1) as the end state.
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Just like in the single flip case, we can either use an energy based approach, in which
we would first propose the SAW-path by sampling without replacement p indices from
[N ], then accept the move with probability min{1, e−β∆E}, or we could take the
random walk (RW) approach where all SAW-moves are accepted with probability one.

Note that the latter case can be recovered by setting β = 0, such that we can
cast the procedure in the more general energy based approach and use βsaw, that we
differentiate from the single flip inverse temperature βsf , as a greed parameter.

Algorithm 7: SAW move(.)

Input: xt−1, βsaw, p;
Result: xt;
draw (i1, . . . , ip) without replacement from [N ];
α← min{1, e−βsaw∆Ext→z} ;
draw u ∼ U([0, 1]) ;
if u ≤ α: then

xt ← z;
else

xt ← xt−1;
end

Furthermore, following (Schonning, 2002), when the exploration fails to find a sat-
isfying assignment after 3N iterations, we restart from an arbitrary initial assignment,
selected uniformly from the entire state space; x0 ∼ U(Σ). The SAW-SAT algorithm
is then as follows:
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Algorithm 8: The SAW-SAT algorithm (with peeling and restarts)

Result: Sol ⊂ S
Input: prw, βsf , βsaw, max samples;
Sol← ∅;
while |Sol| ≤ max samples do

t← 0;
ρ← 0;
Σ0 ← Σ;
x0 ∼ U(Σ0);
while t < 3N do

draw q ∼ U [0, 1] ;
if q ≤ prw: then

xt+1 ← Glauber step(xt, βsf );
g ← True;

else
xt+1 ← SAW move(xt, βsaw, p);
g ← False;

end
t← t+ 1;
if E(xt+1) = 0 then
Sol← Sol t {xt+1};
if g == True then

ρ← ρ+ 1;
end
if ρ > ρ∗ then

τ ← Peeling(Φ, xt+1);
Σt+1 ← Σt\ {y ∈ Σ : yi = τi ∀ i ∈ Cstr(Φ, τ)};
ρ← 0;

end
break;

end

end

end

5.6.3 Experiments and discussion

To get some insight on the role of the different pieces in the above algorithm, we have
experimented with a number of variants, all of which use Schoning’s restarts:

a). p = 1, βsaw = βsf = 0 : i.e. a single-flip pure random walk search.

b). p = 1, βsaw = βsf = 100, which reduces to a pure Focused Metropolis search

c). p = dN/6e, βsaw = βsf = 0 : a pure single-flip random walk interweaved with
dN/6e−length SAW steps accepted with probability one, where d.e is the ceiling
function.
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d). p = dN/6e, βsaw = βsf = 100 : a fully energy based local search approach which
alternates between single-flip and dN/6e−length SAW steps, all accepted with
probability min{1, e−100∆E}.

e). p = dN/6e, βsaw = 0, βsf = 100 : a pure self-avoiding random walk interweaved
with single-flip Glauber steps.

f). p = dN/6e, βsaw = 60, βsf = 100 : a less greedy version of d) in the acceptance
of SAW moves.

Generating satisfiable 3−SAT instances for α > 3 is notoriously hard (Achlioptas et
al., 2000), in fact just finding a satisfiable 3−SAT instance with N = 25,M = 95 took
us about 38 minutes in CPU time. Fortunately there is an extensive library of bench-
mark instances referenced in (Hoos H., 2006), from which we retrieved an instance
(under the name of uf125-538) containing 125 variables and 538 clauses, i.e. at clause
density of α = 4.3, and then we subsequently sampled 492 clauses from the original
538, to get an instance just above the clustering threshold α ≈ 3.93 > αd = 3.92.

We start with the question of relative efficiency between the different variants. In
this part, we are more interested in the speed of finding solutions than assessing the
uniformity of the sampling procedure, and have therefore opted to do without peel-
ing/avoiding covers since these result in a considerable slowdown of solution-times.

In fact, a single lookup of constrained variables using Constr(Φ, x), requires checking
each of the αN clauses (a ∈ [M ]) to count the number of unsatisfying variables in ∂a,
which amounts NMk = O(N2), experimentally, for the instance considered above,
a sample of ten solutions found by pure FMS (b) (with peeling) yielded a median so-
lution time of 43 seconds in CPU time, which is more than twice as slow as without
peeling.

Some preliminary experiments confirmed the observation made in (Alava et al., 2008),
concerning the divergence of solution-times (in the sense of not being concentrated
around some mean value) at smaller sizes, which led us to consider the median (rather
than mean) solution-time as a measure of efficiency to compare the different variants,
and we found the following results:

Variants Median solution-times (in sec. CPU time)
p = 1, βsaw = βsf = 0 no convergence
p = 1, βsaw = βsf = 100 16.7
p = dN/6e, βsaw = βsf = 0 no convergence
p = dN/6e, βsaw = βsf = 100 74.4
p = dN/6e, βsaw = 0, βsf = 100 496.1
p = dN/6e, βsaw = 60, βsf = 100 28.7

Note that; for a given variant, if the algorithm does not converge to a solution after ten
minutes we terminate, this was the case for both non-energy based variants (a) and (c).

Moreover, when looking at the evolution of the number of unsatisfied assignments
|Cu(t)| for variants (b), (d) and (f). we observed the same behaviour noted in (Barthel
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et al., 2003), where |Cu(t)| descends quickly until it reaches an energy plateau, which
it leaves upon a Schoning restart or an unlikely deviation.

Figure 5.5: The evolution of the number of unsatisfied clauses every 500 iterations for
b), d), f). (with restarts) from left to right.

In order to examine the role of the SAW moves in escaping the energy plateau, we
also recorded the evolution of |Cu(t)| without restarts for pure FMS (b) vs the energy
based variant (f) of SAW-SAT, and found that interweaving energy based SAW moves
in a pure FMS has the effect of slowing down the arrival to an energy plateau, and
producing the unlikely deviation discussed in (Barthel et al., 2003) which results in
finding a solution, and which does not happen in the case of pure FMS search which
stays on the low energy plateau even after 600 iterations, as can be seen in the graph
below.

Figure 5.6: The evolution of the number of unsatisfied clauses every iteration for pure
FMS (left) and energy based SAW e).(right), both without restarts.

Lastly, to compare the uniformity of the different sampling procedures, for each of
(b), (d) and (e), we try 2 versions; one which peels above-threshold solutions (i.e.
those found when ρ > ρ∗) to their true covers and drops them from the state space
Σt, and another version which skip this part altogether. We sample 200 solutions and
count the number of duplicate solutions and find the following

Furthermore, keeping track of the number of non-trivial covers when sampling (without
peeling), we observed that all solutions found via pure FMS (b) have zero non-trivial
covers, which confirms the findings in (Alava et al., 2008), and explains why the num-
ber of duplicates does not improve when switching from sampling with peeling to
without. The number of duplicates actually slightly increases slightly in this case, but
this is just due to the randomness in the FMS.
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Variants Duplicates (with peeling) without
p = 1, βsaw = βsf = 0 23 25

p = dN/6e, βsaw = 0, βsf = 100 3 2
p = dN/6e, βsaw = 60, βsf = 100 0 0

Table 5.1: Number of duplicate solutions with peeling vs. without.

As for variants (e) and (f), we found that 34 and 22 solutions, respectively, have
a non-trivial cover, which makes about 17% and 11% resp. of the total sampled so-
lution, which is a bit less than expected considering the experiments in (Kroc et al.,
2007) where the authors find that about 26% of the sampled solutions have non-trivial
covers. However, a closer look at these covers reveals that while the underlying solu-
tions are non identical most of their covers are (that we compute through peeling). In
fact for both these samples we have only found 3 non-trivial covers, which may explain
why the uniformity of sampling did not improve by avoiding true covers.
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Conclusion and future work

Conclusion

To conclude, we find that SAW steps with βsaw = 60 significantly improve upon pure
single flip FMS in the uniformity of sampling, while still keeping a very competitive
solution time (28 sec vs. 16 for FMS) when contrasted with single flip random walk
approaches which do not seem to converge in less than ten minutes. Moreover, we
observed the same behaviour w.r.t. energy plateaus in (Barthel et al., 2003) and con-
cluded that energy based SAW steps bring about the unlikely deviation which leads
to finding a solution, which is not the case in pure FMS search without restarts.

Furthermore, we note that while SAW steps significantly decrease the number of du-
plicate solutions when compared to pure FMS, we unfortunately find that avoiding
covers does not result in any further improvement, mostly due to the very small num-
ber of true covers in the sampled solutions, the decrease in the number of duplicates
in SAW-SAT may be explained by the fact that larger moves in the state space get rid
of the cluster-relapse phenomenon observed in Sample-SAT.

Interesting avenue for future work: Large iso-energetic

moves in the state space

Another promising avenue for overcoming high energy barriers and faster exploration
of the state space in general spin systems, is the use of symmetries in the energy func-
tion. More specifically, the search for mappings M : Σ 7→ Σ under which the energy
function stays invariant: E ◦M(τ) = E(τ).

The cluster algorithm (Houdayer, 2001), was originally designed for the 2d Ising
model, and makes use of this simple idea to propose an algorithm that is able to
make large iso-energetic moves in the state space, and hence improve significantly
on previous algorithms in the speed of exploration of the state space. Let J consist
of nearest neighbors interactions on the 2 dimensional grid, and suppose we sample

σ1, σ2 iid∼ µβ(.) ∝ e−βH(.), where H(σ) ≡ −
∑
J Jijσiσj −

∑
i∈[N ] hiσi.

Moreover, let R ≡ (σ1, σ2) be the replicated system, and qi(R) ≡ σ1
i σ

2
i be its

local overlap, then, given an assignment R, the [N ] spin sites are split into two dis-
joint subsets; ones where spins have the same value and others where they differ:
C∼ ≡ {i : σ1

iσ
2
i = 1}, C� ≡ {i : σ1

iσ
2
i = −1}, where C∼

⊔
C� = [N ].
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Clusters (in the sense of Houdayer) are connected component in Hamming space in
either C∼ or C�. More precisely, given an assignment R and the resulting partition
of spin sites between C∼, C�, the algorithm goes as follows:

i). we sample k ∼ U(C�),

ii). we flip the cluster containing the kth in both systems σ1 and σ2, i.e. the flip

all variables connected to σ
1(2)
k through a chain of interactions Jjl → Jlp → Jpk

between spins (l, p, . . . , k) ∈ C�.

It is then easy to verify that the probability law of the replicated system P[σ1, σ2] ∝
eβ[H(σ1)+H(σ2)] is invariant to a cluster move (ii), and therefore that the two-step
algorithm proposed above satisfies detailed balance w.r.t. µβ. Note, that since cluster
moves are large (> 1) the resulting algorithm is not ergodic, in the sense that not all
states in Σ are accessible with positive probability, hence the need to alternate cluster
moves with single-flip Glauber updates.

For even faster mixing, cluster moves (along with single-flip Glauber moves) are in-
terweaved with Exchange Monte Carlo updates more commonly known as Parallel
tempering which originated from (Swendsen and Wang, 1986), where we run the algo-
rithm in parallel for m independent systems or replicas each at a different temperature
{βl : l ∈ [m]}, and exchange states between l−neighboring replicas with probability
ασl−1↔σl−1 ≡ min

{
1, e(βl−βl−1)[H(σl)−H(σl−1)]

}
.

By the time the Houdayer’s algorithm was proposed, Parallel tempering (PT) was
a staple ingredient for faster mixing in energy landscapes with high energy barriers,
and while the acceptance probability of PT is such that the exchanged pair’ states are
close in energy, their Hamming distance is typically Θ(N), and therefore, when clus-
ters become too large, cluster moves reduce to PT updates and thus become redundant.

The extent to which cluster moves improve upon PT (alternated with Glauber up-
dates), then depends heavily upon the typical size of clusters, more precisely, if the
bond-percolation threshold of the factor graph associated with the model’s Hamilto-
nian is pperc < 0.5, which as Houdayer explains, makes the cluster algorithm unusable
for the Ising model with d ≥ 3.

Going back to random CSPs, in (Alon et al., 2004) the authors prove that random
d−regular graphs display a phase transition at a critical bond-percolation threshold
given by pperc = 1/(d− 1) where the size of the giant component goes from O(logN)
to Θ(N). Cluster moves are thus system-sized for CSPs with d ≥ 3.

Nonetheless, some distinctions between k−SAT problems and the Ising model, need to
be made. While in the latter case, a replicated system’s probability P[R] is invariant
to a cluster moves, this is not true in the k−SAT case, more precisely, consider two sat-
isfying assignments x, y of the same k−SAT formula, if there exists a variable i ∈ C�
such that either xi (or yi) is a constrained variable (i.e. the only satisfying assignment
in some clause a), then the cluster move will yield a unsatisfying assignment for the
system with the constrained variable.
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However, one could suggest considering the subset of solutions whose negation −x
are also in S. The problem of finding such solutions is more commonly known as the
not all equal k-SAT problem or k−NAESAT, and requires, for an assignment to be
considred a solution, that:

i). Each clause a ∈ [M ] contains at least one variable i ∈ ∂a such that xi = 1−Jai
as in the k−SAT case.

ii). And comes with the further requirement that: (ii). each clause has not all equal
truth values, i.e. that ∀a ∈ [M ], i, j ∈ ∂a such that Jaixi 6= Jajxj.

Then by the second condition, any k−NAESAT solution remains in S under negation.
Unfortunately, for α > 2k−1 log 2, the set of NAE-solutions is empty w.h.p. (Coja-
Oghlan and Panagiotou, 2012), for 3−SAT, not-all-equal solutions vanish even below
the clustering threshold at αNAE ≈ 1.2 < αd = 3.92. Which leads us to consider other
mappings than M(x) ≡ −x under which E ◦M(τ) = E(τ).

One interesting avenue for such an endeavor is the use of basic group theory to find
not so obvious symmetries specific to a given k−SAT instance. In (Aloul, 2010), the
author surveys algebraic approaches to the k−SAT problems, and the way in which
symmetries induce equivalence classes between assignments related by different map-
pings, which permit to extend a sample of solutions to a larger set.

This approach is in a way orthogonal to the 1RSB picture, but it would be inter-
esting to see what we can gain by relaxing the condition that all variables must be
related in such symmetries, and look for mappings of subsets of variables, such that
E(M(xi1 , . . . , xik), xl∈[N ]\{i1,...,ik}) = E(x).
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