
Université de Montréal

Evolution of Domain-Specific Languages Depending on
External Libraries

par

Khady FALL

Département d’informatique et de recherche opérationnelle (DIRO)
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en Informatique

Orientation Génie logiciel

November 5, 2020

c© Khady FALL, 2020

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

Evolution of Domain-Specific Languages
Depending on External Libraries

présenté par

Khady FALL

a été évalué par un jury composé des personnes suivantes :

Michalis Famelis
(président-rapporteur)

Eugène Syriani
(directeur de recherche)

Abdelhakim Hafid
(membre du jury)

Résumé

L’ingénierie dirigée par les modèles est une approche qui s’appuie sur l’abstraction pour
exprimer davantage les concepts du domaine. Ainsi, les ingénieurs logiciels développent des
langages dédiés (LD) qui encapsulent la structure, les contraintes et le comportement du
domaine. Comme tout logiciel, les LDs évoluent régulièrement. Cette évolution peut se
produire lorsque l’un de ses composants ou le domaine évolue. L’évolution du domaine ainsi
que l’évolution des composants du LD et l’impact de cette évolution sur ceux-ci ont été
largement étudiés. Cependant, un LD peut également dépendre sur d’éléments externes qui
ne sont pas modélisées. Par conséquent, l’évolution de ces dépendances externes affecte le LD
et ses composants. Actuellement, les ingénieurs logiciels doivent évoluer le LD manuellement
lorsque les dépendances externes évoluent. Dans ce mémoire, nous nous concentrons sur
l’évolution des librairies externes. Plus spécifiquement, le but de cette thèse est d’aider les
ingénieurs logiciels dans la tâche d’évolution. À cette fin, nous proposons une approche qui
intègre automatiquement les changements des librairies externes dans le LD. De plus, nous
offrons un LD qui supporte l’évolution des librairies Arduino. Nous évaluons également notre
approche en faisant évoluer un éditeur de modélisation interactif qui dépend d’un LD. Cette
étude nous permet de montrer la faisabilité et l’utilité de notre approche.

Mots-clés: Ingénierie dirigée par les modèles, langage dédié, évolution auto-
matique, librairies externes

5

Abstract

Model-driven engineering (MDE) is an approach that relies on abstraction to further express
domain concepts. Hence, language engineers develop domain-specific languages (DSLs) that
encapsulates the domain structure, constraints, and behavior. Like any software, DSLs evolve
regularly. This evolution can occur when one of its components or the domain evolves. The
domain evolution as well as the evolution of DSL components and the impact of such evo-
lution on them has been widely investigated. However, a DSL may also rely on external
dependencies that are not modeled. As a result, the evolution of these external dependen-
cies affects the DSL and its components. This evolution problem has yet to be addressed.
Currently, language engineers must manually evolve the DSL when the external dependen-
cies evolve. In this thesis, we focus on the evolution of external libraries. More specifically,
our goal is to assist language engineers in the task of evolution. To this end, we propose an
approach that automatically integrates the changes of the external libraries into the DSL.
In addition, we offer a DSL that supports the evolution of the Arduino libraries. We also
evaluate our approach by evolving an interactive modeling editor that depends on a DSL.
This study allows us to demonstrate the feasibility and usefulness of our approach.

Keywords: Model-driven engineering, domain-specific language, automatic
evolution, external libraries

7

Contents

Résumé . 5

Abstract . 7

List of figures . 13

List of acronyms and abbreviations . 15

Acknowledgements . 17

Chapter 1. Introduction. 19

1.1. Context. 19

1.2. Problem statement and thesis proposition . 19

1.3. Contributions . 21

1.4. Outline . 21

Chapter 2. Background and state of the art . 23

2.1. Modeling editors . 23
2.1.1. Domain-specific languages . 23

2.1.1.1. Abstract syntax . 23
2.1.1.2. Concrete syntax . 25
2.1.1.3. Semantics . 27

2.1.2. Code generation . 27
2.1.3. Editor generation . 28

2.2. Modeling language evolution . 29
2.2.1. Model co-evolution. 30
2.2.2. Concrete syntax evolution. 32
2.2.3. Constraint evolution . 33

2.3. API evolution. 34

9

2.4. Arduino . 35
2.4.1. Arduino board . 36
2.4.2. Arduino IDE. 37

2.4.2.1. The command buttons . 38
2.4.2.2. The sketch editor . 38
2.4.2.3. The output pane . 38

2.4.3. Arduino language . 38
2.4.4. Arduino libraries . 40
2.4.5. Grove base shield . 40
2.4.6. Grove devices . 42

2.4.6.1. Environmental sensors . 42
2.4.6.2. Motion sensors . 42
2.4.6.3. Wireless devices . 42
2.4.6.4. User interface devices. 42
2.4.6.5. Physical sensors . 42

2.5. Modeling for Arduino . 42

Chapter 3. The ArduinoDSL modeling language. 45

3.1. Presentation of the ArduinoDSL language . 45

3.2. Conceptual aspect . 45
3.2.1. Metamodel . 45
3.2.2. Graphical concrete syntax. 47

3.3. Behavioral aspect . 49
3.3.1. Metamodel . 49
3.3.2. Textual concrete syntax . 50

3.4. IDE generation and Arduino code generation . 50
3.4.1. The graphical editor of ArduinoDSL . 50
3.4.2. The textual editor of ArduinoDSL . 51
3.4.3. Arduino code generation . 52

3.5. Anticipated evolution issues . 54

Chapter 4. Architecture of the evolutionary process . 55

4.1. Specifying the extension library . 56

10

4.1.1. The extension specification. 56
4.1.2. The extension functions . 56

4.2. Extending the domain-specific language syntax . 57
4.2.1. The extension metamodel . 57
4.2.2. The extension concrete syntax . 58

4.3. Extending the domain-specific semantics . 58
4.3.1. The code generator . 58
4.3.2. The extension mapping . 58

Chapter 5. Evolving DSLs with extension libraries . 61

5.1. Extracting the information . 61
5.1.1. Creating the extension specification model . 61
5.1.2. Extracting and encapsulating the extension functions. 63

5.2. Extending the syntax . 64
5.2.1. Extending the conceptual metamodel . 65
5.2.2. Extending the behavioral metamodel . 65
5.2.3. Extending the concrete syntax . 66
5.2.4. Merging the extension and the core . 67

5.3. Extending the semantics . 67
5.3.1. Generating the extension mapping . 68
5.3.2. Evolving the code generator . 68

Chapter 6. Validation . 71

6.1. Case study. 71
6.1.1. Synthesis of interactive modeling editors . 71
6.1.2. Setup . 71
6.1.3. Incremental evolution . 73

6.1.3.1. Creating and moving Pac-Man elements . 73
6.1.3.2. Creating food elements randomly . 76
6.1.3.3. Notifying the user of the creation of food . 76
6.1.3.4. Alternating the concrete syntax . 77
6.1.3.5. Changing the size of the language elements . 77

6.1.4. Applicability, feasibility, usefulness . 77
6.1.4.1. Applicability . 77

11

6.1.4.2. Feasibility . 78
6.1.4.3. Usefulness . 78

6.2. Discussion . 78
6.2.1. Extracting functions . 78
6.2.2. Generating the artifacts . 79
6.2.3. Merging the artifacts. 79

6.2.3.1. Textual grammar . 79
6.2.3.2. Conceptual metamodel . 80
6.2.3.3. Graphical concrete syntax . 80

Chapter 7. Conclusion . 81

7.1. Summary . 81

7.2. Outlook . 82

Bibliography . 83

Appendix A. Conceptual metamodel . 89

Appendix B. Behavioral metamodel . 93

Appendix C. The board code generator . 99

Appendix D. The sketch code generator. 101

Appendix E. Helper class . 113

Appendix F. Pac-Man game sketch model . 115

12

List of figures

2.1 The textual editor generated from Listing 2.3 using Xtext . 29
2.2 The graphical editor generated from Listing 2.4 using EuGENia 30
2.3 Caption for LOF. 36
2.4 The Arduino IDE. 37
2.5 Caption for LOF. 41

3.1 The metamodel of the conceptual aspect of ArduinoDSL . 46
3.2 A sample board model in ArduinoDSL showing the configuration of a Grove with

an RFID sensor and an LED. 48
3.3 The graphical editor of ArduinoDSL . 51
3.4 The textual editor of ArduinoDSL . 52

4.1 The overall process to evolve a DSL from external libraries . 55

6.1 The Pac-man modeling editor in action . 72
6.2 The Arduino configuration for the Pac-man modeling editor . 73

13

List of acronyms and abbreviations

API Application Programming Interface

CIM Computation-Independent Model

COM Communication port

DSL Domain-Specific Language

EEPROM Electrically-Erasable Programmable Read-Only Memory

EGL Epsilon Generation Language

EMF Eclipse Modeling Framework

I/O Input/Output

I2C Inter-Integrated Circuit

LED Light-Emitting Diode

15

M2M Model-to-model transformation

M2T Model-to-text transformation

MDA Model-Driven Architecture

MDE Model-Driven Engineering

OCL Object Constraint Language

PIM Platform-Independent Model

PCB Printed Circuit Board

PSM Platform-Specific Model

PWM Pulse Width Modulation

RFID Radio-Frequency IDentification

SE Software Engineering

TBCG Template-Based Code Generation

UML Unified Modeling Language

16

Acknowledgements

I would like to take this opportunity to express my sincere gratitude and my appreciation
to my supervisor Prof. Eugène Syriani. He was very present during the last two years of my
bachelor and throughout my master. He has been an invaluable support during my anxious
periods and has been very understanding and patient with me.

I would also like to take this opportunity to thank my colleagues at the GEODES lab for
their help, their advice and their support. In particular, I would like to thank Vasco Sousa
who never hesitated to help me and share his great knowledge.

I dedicate this thesis to my parents, brothers and sister. I have been blessed with their
wise advice, unwavering support and prayers throughout my life.

17

Chapter 1

Introduction

1.1. Context
Software engineers have always sought to improve productivity during software develop-

ment by improving abstraction. Therefore, many approaches have been proposed through-
out the years. Model-driven engineering (MDE) [74] is one of such approaches. It promotes
models and transformations (which themselves can be represented as models) as first class
entities. MDE technologies combine domain-specific languages (DSLs), transformations en-
gines, and generators. DSLs [89] often represent an abstraction of a combination of function
invocation at the generated code level in a syntax and semantics closer to the domain than
to the code. Transformation engines (e.g., [42, 44]) are used to generate models from a
source language to a target language while generators (e.g., [27, 73]) are used to generate
source code from models.

Like any software, systems built using model-driven approaches need to evolve. In par-
ticular, since the specifications and requirements of domains evolve over time, DSLs are
bound to evolve. Therefore, many evolution and co-evolution scenarios of DSL components
have been investigated [59]. As a result, many metamodel-model co-evolution approaches
have been proposed [37]. As metamodels and models are not the only components likely to
change, research has also been done on the evolution of other DSL components such as the
concrete syntax of the language [20, 64], the constraints or the static semantics [9, 16], and
the transformations [19, 54].

1.2. Problem statement and thesis proposition
In the literature, the evolution of a DSL is only tied to the evolution of its components

(typically those components that rely on the metamodel). However, a DSL is a restricted
modeling language. Hence, it often relies on dependencies that are not explicitly modeled,
such as compilers, libraries, and debuggers. Therefore, their evolution can also affect the

DSL. In particular, many DSLs nowadays rely on external libraries which are in constant
evolution. For example, suppose a DSL is used to specify the coordination of micro-services
and that a new version of one micro-service is available. If the new version only provides
refactoring to improve the performance and has no impact on the concepts it represents,
then the DSL itself will not be impacted. If some of its remote functions changed signature,
the code generator of the DSL would need to be updated accordingly. Another situation is
if a new micro-service is available providing functionalities for a new concept, then the DSL
needs to evolve to offer this concept to the user, and the code generator would also need to
evolve accordingly. Thus, the evolution of an external library may affect the syntax and the
semantics of a DSL.

Evolving a DSL with non-modeled artifacts has yet to be considered [65]. In current
DSL evolution practices [59], the language engineer must evolve manually the metamodel,
rebuild, and regenerate all DSL components whenever external libraries are updated or new
ones appear. There are four main problems we foresee in this practice.

• New errors may be introduced when manually modifying the metamodel or concrete
syntax. For example, adding the new concept to the class diagram of the metamodel
may require extensive refactoring of the metamodel, instead of simply adding a sub-
class at the right location.
• Inconsistencies may occur between the new metamodel and associated artifacts, such
as editors, code generators, test suites or model transformations that must take into
account the new meta-concepts and make the correct function invocations to the
external library.
• This may also lead to incompatibilities between the new DSL and models defined
with the previous version of the DSL.
• The language becomes static and inflexible since representing library functions in a
metamodel is like hardwiring function calls in the syntax of the language.

Therefore, automating the integration of the new functionalities and concepts is a possible
solution to reduce the manual changes to the current structure of the DSL and its associated
components.

To this end, we propose, in this thesis, a process that minimizes the language engineer’s
manual effort of evolving the DSL when a library it depends on evolves. This process is
completely transparent to the DSL user. As functionalities available in an external library
are independent of the core of the DSL, we opt to separate the language in two parts: the
core and the extension. The core language regroups the stable concepts, with respect to
evolution of the language, while the extension language is composed of the functionalities
from external libraries. Our process does not modify the syntax nor the semantics of the
language manually constructed by the language engineer, but only extends it.

20

1.3. Contributions
The goal of this thesis is to help language engineers cope with the evolution of external

libraries on which DSLs depend on by automatically integrating the changes in the DSLs.
The contributions of this thesis are the following:

• An approach to evolve DSLs automatically when changes occur in the external li-
braries they depend on in three key steps: specifying the extension library, extending
the DSL syntax, and extending the DSL semantics.
• ArduinoDSL, a modeling language to generate Arduino configurations and programs
from high-level specifications.
• A case study automatically evolving ArduinoDSL when new Arduino devices and/or
new Arduino libraries are available.

1.4. Outline
This thesis is organized as follows. In Chapter 2, we introduce modeling editors and

present existing works on language evolution. We also present the Arduino environment.
In Chapter 3, we present ArduinoDSL, our first contribution. In Chapter 4, we depict the
overall architecture of our evolutionary process. The implementation of our approach is
detailed in Chapter 5. In Chapter 6, we show the feasibility, usefulness, and applicability of
our approach based on a case study. Finally, we conclude in Chapter 7.

21

Chapter 2

Background and state of the art

In this chapter, we review different notions of modeling languages. We also discuss related
works on modeling language evolution and on application programming interface (API) evo-
lution.

2.1. Modeling editors
From a practical point of view, MDE is a generative process. The most used tools that

are generated are the modeling editors. They rely on a modeling language specification
and allow users to manipulate models. Modeling editors are an integral part of language
workbenches [31] which are the set of tools needed to define, reuse, and combine languages
and their editors.

2.1.1. Domain-specific languages

A DSL is a modeling language defined for a specific type of problems called domain.
Thus, the user is a domain expert who defines domain-specific models using the concepts
and notations of the DSL. A DSL is composed of three main components: an abstract syntax,
a concrete syntax, and a semantics.

2.1.1.1. Abstract syntax. The abstract syntax of a DSL defines the concepts of the
language and their relations. Additionally, the abstract syntax may define constraints of the
domain. An abstract syntax is usually specified by a metamodel using UML class diagrams
notation [58]. Therefore, the metamodel is mainly composed of classes, attributes, and
associations. Classes represent the concepts of the domain and the types of the model
elements. The properties of the concepts are encapsulated in the attributes of the classes.
The relations between the concepts are expressed using associations.

The metamodel restricts the allowed types in valid instances. It is possible to further
constraint models by defining static semantics typically expressed as Object Constraint Lan-
guage (OCL) constraints [68]. For example, constraints may specify that the value of the
name attribute of a class must be unique across all its instances. Many tools exist to describe
metamodels, such as Emfatic [14].
1 package drawing;

2 class Toolbar {

3 val Shape[*] shapes;

4 val Pencil[*] pencils;

5 }

6 abstract class Shape {

7 unique attr String name;

8 ref Pencil drawingTool;

9 }

10 class Rectangle extends Shape {

11 attr int width;

12 attr int height;

13 }

14 class Pencil {

15 attr String lead;

16 }

Listing 2.1. Definition in Emfatic of the Toolbar, Shape, Rectangle, and Pencil classes
inside the package drawing

Listing 2.1 shows the definition of the classes Toolbar, Shape, Rectangle, and Pencil in
Emfatic. A Toolbar contains multiple Shapes and Pencils. To express the containment
relation between classes, the val keyword is used. The Shape class is abstract which means
that it is not instantiable. It has one attribute which is its name. The name attribute should
be unique to the Shape which is why the keyword unique is used. As to draw a shape, a
pencil is needed. Thus, there is an association from Shape to Pencil. This simple association
is expressed using the keyword ref. The Rectangle class has two attributes that defines its
width and height. Since a rectangle is a type of shape, Rectangle inherits from Shape. The
inheritance link is represented by the extends keyword. As the width and height cannot be
negative, we add some static semantics using the Epsilon Validation Language (EVL) [52]
in Listing 2.2. The constraint PositiveLengths checks that the attributes rows and columns

of every instance of the class Rectangle have positive values. If not, the message on line 4
in will be displayed.
1 context Rectangle {

2 constraint PositiveLengths {

3 check : self.width >= 0 and self.height >= 0

4 message : "The width and the height cannot be negative."

24

5 }

6 }

Listing 2.2. Constraints defined in EVL for the class diagram in Listing 2.1

There exist other textual tools to describe class diagrams like TCD [92] which allows to
describe class diagrams with ASCII [40] text, PlantUML [71] which supports the description
of class diagrams directly within the source code of the software with specialized comments.
Tools such as AToMPM [83], Visual Paradigm (VP)1, and GMF [33] allow users to describe
graphical metamodels using a combination of shapes, symbols, and text.

2.1.1.2. Concrete syntax. The concrete syntax of a language is the representation of
the abstract syntax of the language. Typically, the concrete syntax of a DSL is either textual
or graphical. A textual concrete syntax is commonly defined by grammars [11, 26, 43].
1 grammar org.xtext.example.xtextexample.XtextExample with org.eclipse.xtext.common.Terminals

2 generate xtextExample "http://www.xtext.org/example/xtextexample/XtextExample"

3 Toolbar:

4 ’Toolbar’ ’{’

5 (’pencils’ ’{’pencils+=Pencil ("," pencils+=Pencil)* ’}’)?

6 (’shapes’ ’{’ shapes+=Shape ("," shapes+=Shape)* ’}’)?

7 ’}’;

8 Shape: Rectangle;

9 Pencil: ’Pencil’ ’with’ ’lead’ name=STRING;

10 Rectangle:

11 ’Rectangle’ name=STRING ’{’

12 (’width’ width=INT)?

13 (’height’ height=INT)?

14 (’drawingTool’ drawingTool=[Pencil|STRING])?

15 ’}’;

Listing 2.3. Textual concrete syntax of the Toolbar, Shape, Rectangle, and Pencil classes
using Xtext

Listing 2.3 is a grammar developed in Xtext to represent the metamodel in Listing 2.1. The
containment reference is expressed using the notation « variable+=ClassName » as seen on
line 3. Classes are represented by production rules. The attribute name is defined in the
subclasses. The variable name is also a keyword in Xtext. Using it ensures the unicity of the
attribute. Moreover, it allows easy cross-referencing which is why it is used instead of lead

as seen on line 9. The association relation is expressed by referencing the associated class as
seen on line 13. This grammar allows to specify the textual concrete syntax of the DSL.

When the concrete syntax is graphical, it takes form of shapes, symbols, and texts. The
concrete syntax should be unambiguous. To help researchers and designers, the authors in
1Visual Paradigm: https://www.visual-paradigm.com/

25

https://www.visual-paradigm.com/

[61] provide a set of principles for visual notations. There are many tools (e.g., GMF [1],
EuGENia [51], Sirius [88], Graphiti [2], AToMPM [83]) available that support graphical
notation for the concrete syntax.

1 @namespace(uri="drawing", prefix="drawing")

2 @gmf

3 package drawing;

4 @gmf.diagram

5 class Toolbar {

6 @gmf.compartment

7 val Shape[*] shapes;

8 @gmf.compartment

9 val Pencil pencil;

10 }

11 abstract class Shape {

12 @gmf.label(label.pattern="name = {0}")

13 unique attr String name;

14 @gmf.link(width="2")

15 ref Pencil drawingTool;

16 }

17 @gmf.node(figure="rectangle", color="0,128,255", size="150,100", label.placement="none")

18 class Rectangle extends Shape {

19 @gmf.label(label.pattern="width = {0}")

20 attr int width;

21 @gmf.label(label.pattern="height = {0}")

22 attr int height;

23 }

24 @gmf.node(figure="svg", svg.uri="platform:/plugin/org.eugenia.example.eugeniaexample/svg/pencil.

svg", size="150,150", label.placement="none")

25 class Pencil {

26 @gmf.label(label.pattern="lead = {0}")

27 attr String lead;

28 }

Listing 2.4. Graphical concrete syntax of the Toolbar, Shape, Rectangle, and Pencil classes
using EuGENia

Listing 2.4 is the annotated version of Listing 2.1 using EuGENia. On line 2, we apply the
annotation @gmf to the package to mention that GMF-related annotations are to be expected
in the package. The root of the metamodel is specified using the annotation @gmf.diagram.
As a Toolbar instance contains Shape (resp. Pencil) instances, we denote this containment
by creating compartments in the Toolbar instance which will contain Shape (resp. Pencil)
instances. The Shape class does not have a concrete representation since it is an abstract
class. However, its attribute name, which will be inherited by the class Rectangle, has a

26

concrete representation. It is represented as a text. The association between Shape and
Pencil is represented by a solid line with a width of 2 pixels. The source of the association
is an instance of Shape and the target is an instance of Pencil. The concrete syntax of the
Rectangle class is a blue rectangular shape with a width of 150 pixels and a height of 100
pixels. Both of its attributes are represented as texts. The Pencil class is represented by
a Scalable Vector Graphics (SVG) [10] image. With the EuGENia annotations, a graphical
concrete syntax has been defined for this DSL.

2.1.1.3. Semantics. The semantics of a language [35] is expressed by using a semantic
mapping to link the abstract syntax of the language to a semantic domain. The semantic
domain is a well-defined formalism with well-defined semantics. The semantic mapping as-
sociates an element from the language’s syntax to its meaning in the domain. Every element
of the language must have exactly one meaning. The semantics of a DSL is typically defined
by operational or translational semantics. Operational semantics defines the behavior of
the language. In operational semantics, computations are explicitly modeled. Translational
semantics is a type of semantics where the meaning of the language’s elements are given in
terms of another language. In this thesis, we focus on translational semantics defined by
means of a code generator.

2.1.2. Code generation

Code generation refers to the process by which a model is transformed into source code
using a code generator. The MDE approach promotes the abstraction of the systems to
help domain experts to model using domain terms. In 2001, the Object Management Group
launched the Model-Driven Architecture (MDA) initiative [78] which is a framework for stan-
dardizing MDE. At the top level of abstraction, we have the computation-independent model
(CIM) which is transformed to a platform-independent model (PIM) through a model-to-
model transformation (M2M). Using another M2M, the PIM is transformed into a platform-
specific model (PSM). Finally, the PSM is converted to source code with the help of a code
generator.

There exists many code generation approaches, such as code annotations and template-
based. A tool that uses the code annotations approach allows its users to add elements using
annotations or comments in the source code or in the metamodel. Examples of such ap-
proach are JavaDoc [53] which generates documentation from annotations, C++ attributes
[76] which provide additional information to the compiler, or Doxygen [86] which generates
documentation from comment blocks. Template-based code generation (TBCG) uses tem-
plates which describe the structure of the target source code. Templates have two parts:
a static part and a dynamic part. The static part is composed of fragments of the source
code that will be produced in the output file. The dynamic part acts like a placeholder. It

27

contains some meta-code that evaluates and selects the different elements to be put in the
placeholder. There are several available tools [82] using the TBCG approach such, as Xtend
[27], Xpand [28], Acceleo [62] and the Epsilon Generation Language (EGL) [73].

1 [% operation Board!Rectangle create_rectangle() {%]

2 Rectangle [%self.name.first()%] = new Rectangle([%self.width.first()%],[%self.height.first()%]

);

3 [% } %]

Listing 2.5. A template in EGL to instantiate a Rectangle object from the metamodel in
Listing 2.1 in Java

In Listing 2.5, we have an excerpt of a template in EGL to instantiate Rectangle objects.
The template mixes static and dynamic contents. On line 1, we create a new function in
EGL that will be called for every instance of the Rectangle class in the Board model. On
line 2, we get the name, width, and height of the object by using a dynamic placeholder.

2.1.3. Editor generation

As the use of DSLs became more prominent, a need to have tools supporting and sim-
plifying their creation and reuse arised. A model editor allows DSL users to create and edit
domain-specific models. Additionally, some tools support the combination of multiple DSLs,
M2M transformations and code generation. The model editor is generated from the abstract
and concrete syntax. The generation process also produces other artifacts related to the
editor, such as an analyzer that tokenizes the elements, a parser that exposes the underlying
structure in a form of an abstract syntax tree, a serializer that converts the model into a
persistent format, an API that describes the language, code generators to transform the
model in a target language, etc.

Most editor generators are either textual or graphical.
Textual editor generators, such as Xtext [11], Rascal [85], Spoofax [46] and SugarJ [29]

are the most popular type as they are not limited by the available technologies. Most of
the times, the domain model is defined by means of grammars and programming languages.
From the grammar or source code defined by the user, the editor generator derives a full-
fledged editor including a parser. The parser can complicate the composition of languages
as, for example, composition of two LR parsers [50] does not necessarily result in a valid LR
parser.

Figure 2.1 shows the textual editor generated from Listing 2.3 using Xtext. The editor
is composed of a text area. The reserved words of the grammar are highlighted in purple.
Xtext provides also a content-assist as seen on Figure 2.1. The content-assist combined with
the cross-referencing allow us to choose one of the Pencil instances previously created.

28

Fig. 2.1. The textual editor generated from Listing 2.3 using Xtext

Many graphical tools were developed (MetaEdit+ [77], AToMPM [83], Eugenia [51],
GMF [33]) to allow users to manipulate graphical representations of models. Several tools
allow the user to describe the domain model using a metamodel. The graphical definition
can be specified by adding annotations in the metamodel, drawing the different shapes
or by defining a metamodel. Depending on the graphical tool, the user may also need
to define a mapping model between the graphical definition and the domain model and a
tooling model to be able to use the different shapes. From the models defined, the editor
generator will produce the components of the graphical editor. Similarly to textual tools,
the generator will produce an API, a static analyzer, etc. Additionally, the graphical editor
generator will produce components for the graphical definition, such as a tool palette and a
canvas. Since a same shape can be used across different DSLs for different elements, language
composition may lead to ambiguity. Figure 2.2 shows the generated editor from Listing 2.4
using EuGENia. On the far right, there is the tool palette with all the model elements. The
canvas is where the model elements will be placed. Three elements were added: a Pencil and
two Rectangles. The Pencil has a lead of type 2B. The two Rectangles, named Rectangle
1 and Rectangle 2, use the 2B Pencil as a drawing tool. The shapes and leads created on
the canvas are strongly typed by the metamodel. Both the textual and graphical editor
generators produce editors that are conform to the metamodel and the static semantics.

2.2. Modeling language evolution
In MDE, the metamodel evolution and model co-evolution problem is one of the most

researched subject. Many approaches were proposed in the literature mostly based on meta-
model differences, traces, or transformation. However, the evolution of a language is not only

29

Fig. 2.2. The graphical editor generated from Listing 2.4 using EuGENia

triggered by the evolution of its metamodel. In [59], the authors identified four basic scenar-
ios of evolution which can be combined to create new evolution scenarios: model evolution,
image evolution, domain evolution, and transformation evolution. A model evolution occurs
when a model evolves. Such an evolution does not impact other elements of the language.
But, if the model is used as the input of a transformation, the transformation has to be ex-
ecuted again. When the metamodel of a transformation model evolves, the transformation
itself has to co-evolve to conform to the new metamodel. A domain evolution is triggered by
the evolution of the DSL metamodel. Metamodel evolution impacts the model that has to co-
evolve to conform to the new metamodel. Evolving the metamodel also requires evolving all
the components that depend on it: the concrete syntax, the constraints, the transformations,
the code generators, and the artifacts generated like the modeling editor.

In the following sections, we will look at different approaches proposed in the literature
for different language artifacts’ evolution.

2.2.1. Model co-evolution

One evolution problem is the metamodel-model co-evolution. The goal is to evolve the
models so that they conform to the new version of their metamodel. We can identify three
atomic changes that are applied to elements in metamodel evolution: addition, deletion, and
modification. These atomic changes can be aggregated to compose a complex change. The
approaches proposed in [49, 87] use difference models to detect and reconstruct complex
evolution traces. The changes applied to a metamodel can be classified in three groups: non-
breaking changes, breaking and resolvable changes, and breaking and unresolvable changes
[13]. Non-breaking changes are changes that do not affect the conformance of models to their
metamodels. When there is a non-breaking change, all the models that conformed to the

30

original version of the metamodel are still compliant to the new version. Breaking changes
affect the conformance of the models. If the models can be co-evolved automatically using
some migration strategies, the changes are resolvable. However, if no migration strategy
can be applied and the language engineer has to manually give additional information, the
changes are considered unresolvable.

Many approaches for model co-evolution are proposed in the literature. A classification
was proposed in [37] based on the resolution strategy: whether they use predefined resolution
strategies [13, 91], learn from user-specified strategies [7], use transformation languages [63,
72, 80], generate resolution strategies [15, 60], apply constrained-based searches [18, 47], or
identify complex metamodel changes [49, 87]. However, at a higher level, we can distinguish
two main types of approaches: comparison approaches and pattern-based approaches.

A comparison approach analyzes the original version of the metamodel and its evolved
version, then it compares them. By matching the two (2) versions, it creates a difference
model. The difference model is a record of the changes and it will be used to generate migra-
tion strategies. Such migration strategy is used in [13]. The authors proposed an automatic
model co-evolution approach which is based on difference models. The difference model is
conform to a difference metamodel derived from the Kernel MetaMetaModel (KM3) [43].
The difference metamodel consists of new constructs representing the possible modifications
according to a list of possible changes. Two difference models are generated, one for break-
ing resolvable changes and the other for breaking unresolvable changes. Using each model
as input (in any order) of a high-order transformation, the co-evolved model is generated.
Similarly to [13], the approach proposed in [32] use difference models. However, in [13] they
have a predefined list of possible change while in [32] the changes that may occur are not
known. Tools such as EMFCompare [84] and SiDiff [75] are used to generate the difference
models.

Pattern-based approaches rely on patterns that map the elements of the old version of
the metamodel to elements of its new version. As the metamodel evolves, the changes are
recorded to create traces. These traces are then used to generate migration strategies that
will be applied to the models so that they can conform to the evolved metamodel. COPE
[39] is one of the pattern-based approaches proposed in the literature. COPE supports
the reuse of migration strategies since it differentiates between metamodel-only changes,
metamodel-independent changes, metamodel-specific changes and model-specific changes.
When the changes applied to the metamodel do not affect the models, they are classified
as metamodel-only changes. In that case, no migration strategy is generated since those
changes do not require the migration of the models. Metamodel-independent changes such
as renaming a class are changes that can be applied to any metamodel. Therefore, the
migration strategies generated from such changes can be reused for any model co-evolution.
On the other hand, the migration strategies generated from metamodel-specific changes

31

cannot be reused as they are only relevant for a given metamodel. When the language
engineer has to specify additional information during the migration process, the changes are
model-specific. Thus, the migration strategies generated are not reusable. Another patten-
based approach is the Model Change Language (MCL) [63]. It provides migration rules for
the models. A migration rule is composed of a left-hand side (LHS) and a right-hand side
(RHS). The LHS consists of an element of the old metamodel while the RHS is an element
of the new metamodel. The LHS and the RHS are linked by a MapsTo relation which means
that the LHS has evolved to the RHS. To specify that an element was previously evolved, a
WasMappedTo link is added.

For comparison and pattern-based approaches, the conformance of the co-evolved model
to the evolved metamodel is verified at the end of the migration process.

2.2.2. Concrete syntax evolution

Few approaches focused on concrete syntax evolution. In [80], the authors considered
that changes to the concrete syntax do not require domain evolution. They argue that
the concrete syntax is used only for display purposes, and carries no semantic information.
However, this is not always the case as the concrete syntax can be used to deduce partially
or entirely the abstract syntax. Such approach was taken by the authors of [45, 64, 93].

In [93], the authors proposed an algorithm that uses the existing textual concrete syntax
of the domain to induce the abstract syntax. The heuristic conversion process is done by
hand and transforms from YACC [41] to C++. Therefore, whenever the concrete syntax
changes, the domain has to evolve accordingly.

In [45], the authors developed a tool designed to simplify the development of the abstract
and concrete syntax. It allows users to specify each of them only partially as long as the
sum of the fragments allows deduction of the complete syntax. Therefore, the abstract and
concrete syntax should be complementary.

In [64], the authors proposed an approach to generate rewritable abstract syntaxes from
textual concrete syntaxes by means of annotations. They defined six annotations to refine the
abstract syntax: omission for tokens that can be omitted or elided, labeling to distinguish,
merge or rename fields or node classes, boolean access to indicate that a field should be of
type boolean, list formation to indicate that the productions for a non-terminal rule describe
a list, inlining to insert some fields directly into a class, and superclass formation to model
inheritance.

The authors of [20] also addressed the problem of propagating metamodel changes to
textual concrete syntax but, unlike the previous approaches, they provided an automated
support. They focused on TCS (Textual Concrete Syntax) [43] which is a tool for speci-
fying the textual concrete syntaxes of DSLs. They proposed an approach based on model

32

differencing and model transformations. The approach follows three key steps: (1) identify
the dependencies between the metamodel and the concrete syntax definition, (2) classify
the metamodel changes according to their consequences over the syntax definition, and (3)
define for each category of changes the corresponding adaptations to be operated over the
syntax definition in order to restore its consistency with the metamodel.

To the best of our knowledge, only [21] focused on graphical concrete syntax evolution.
In [21], the authors looked at how to adapt GMF editors when changes are applied to the
metamodel. The authors argue that manually changing the graphical concrete syntax in
GMF is error-prone and labor-intensive. Their approach consists of three elements: (1)
Difference calculation to identify the changes between two version of a same model, (2)
Difference representation to represent the previously identified differences in a manipulable
way (e.g., a difference model), and (3) Generation of the adapted GMF models by inputting
the previous difference model to a model-to-model transformation.

2.2.3. Constraint evolution

As metamodels evolve, the artifacts that are related to them have to evolve accordingly.
This is also the case of the constraints. Even if constraints are static semantics of a language,
their evolution and co-evolution with other DSL components have not been sufficiently in-
vestigated.

The Cross-Layer Modeler (XLM) [16, 17] is an approach that relies on manually defined
template constraints to automatically update the model with the new constraints whenever
the metamodel evolves. The constraint templates are composed of a generic part, which
contains the common aspects between constraints, and of a variable part that defines the
variable points in the template. XLM incrementally evolves the constraints whenever there
is a modification in the metamodel. When a modification is detected, the template engine
is notified and it uses the information in that notification to determine the actions to adapt
the constraints to the new metamodel. XLM defines an evolution action for each of the
atomic changes discussed in Section 2.2.1. For an element added in the metamodel, the
template engine looks through the constraint templates and instantiate the relevant ones.
For a deleted element in the metamodel, the template engine deletes all the constraints
related to that element. When an element is updated in the metamodel, the template engine
finds all the constraints affected by the modification and replace the outdated values by the
new ones.

In [48], the authors propose an approach that considers alternative resolutions per im-
pacted part of an OCL constraint and let the user choose which resolution strategies are
to be applied. The resolution strategies proposed depend on three key factors: the type
of metamodel change, the location of the impacted element in the OCL constraint (in the

33

context or in the body of the constraint) and the context of the impacted constraint. The
changes supported by the approach are at the atomic (add, delete and update) and complex
(any combination of the atomic changes) levels. To propose the most suitable resolution
strategies in respect to the OCL constraint, the tool first identifies the type of changes that
were made. After the user confirms the list of complex changes, an ordered trace of the
changes is generated. For each element in the metamodel, a list of the related contraints is
generated. Using the trace of changes, the impacted OCL constraints are identified. The
influencing factors are determined and resolution strategies are proposed. The atomic and
complex changes that do not impact the OCL constraints are ignored.

In [9], the authors used a meta-heuristic search based on genetic algorithms for the co-
evolution of metamodels and OCL constraints. Their approach, similarly to [48], proposes a
set of potential candidate solutions to the user who has to manually choose the appropriate
evolution. However, instead of identifying the changes of the metamodel that were made,
the approach compares two versions of the metamodel and computes a set of the atomic
differences. Then, crossover and mutation operations are applied to generate a set of solu-
tions. As the set may be large, a recommendation system based on two strategies is used:
a ranking strategy which rank the solutions by using objective functions, and a clustering
strategy which produces subsets of similar solutions and choose one solution in each cluster.

2.3. API evolution
In the programming world, programs evolve. This is often reflected by the evolution of

their API. An API is a set of methods that allow communication between applications. It
also provides documentation on those methods, such as how to create and call them. Often,
the terms API and library are used interchangeably. However, even if they are related, they
are different. An API only describes the methods while a library is an implementation of
those methods. In the rest of this thesis, we use the terms API and library indiscriminately
since the approach presented applies to both. We can distinguish two types of APIs: local
APIs and web APIs. A local API is an API without network interactions while a web API
is accessible through the network.

Many works addressed API evolution and the impact of that evolution on the consumers.
In [55], the authors identified 16 change patterns that can be divided in two categories:
changes that cause compile-time errors and changes that cause run-time errors. The authors
found that 80% of API changes are refactorings as they are related to renaming, changing
or splitting methods and/or variables. Therefore, another classification [22, 23] which also
consists in two categories can be identified: changes that are for refactoring and those that
are not for refactoring.

34

As the use of APIs became prominent, tools were developed to help automate their
evolution process. CatchUp! [38], a plugin for the Eclipse IDE, is one of such tools. It
is only focused on refactorings and performs the evolution in two steps: recording then
replaying the changes. First, it records how the library developer changes the API. To do
so, a trace of the changes performed by the library developer is collected by the IDE. Then,
the trace and the old and new versions of the library are used by the plugin to evolve the
client application. The tool generates source code stubs for all the classes in the library
then deletes the old version of the library. Finally, it replays the evolution of the library
by performing the changes in the client application. All the refactorings are done in the
client application by using Eclipse’s refactoring objects2. Another tool that also automates
the evolution of APIs is ReBA [24]. Similarly to CatchUp!, it only supports changes that
are refactorings and is implemented as an Eclipse plugin. ReBA and CatchUp! share also
a similar approach as they both record and replay the changes performed in the library.
However, instead of updating all the artifacts to the newer version as CatchUp! does, ReBA
creates an adapted-library which will contain all the the APIs that the old client requires.
By doing so, ReBA supports both the old and the new version of the library.

Some authors [30, 70] focused on the evolution of web APIs which present unique char-
acteristics and new challenges [55]. One of the main differences and challenges is the man-
agement of deleted methods. The existing approaches for local APIs evolution either support
both versions of the library or keep a copy of the deleted method. However, this option is
not available to web APIs. After a certain time, the older version of the API will not be
provided as a service anymore and the developers have no access to deleted methods. In
[30], the authors looked at the evolution of Web Services Description Language (WSDL) [12]
specifications. They developed VTracker which is a tree-differencing algorithm. To be able
to analyze WSDL documents, XML representations are produced. The XML documents can
then be inspected and compared by VTracker. The authors of [70] also look at the evolution
of web APIs defined in WSDL. Their tool WSDLDiff extracts and parses two versions of
the WSDL interface to create two EMF models, one for each version. By matching the two
models, their differences are detected and reported to the user. The differences can take the
form of additions, removals, moves and modifications.

2.4. Arduino
Arduino [8] started as a research project by Massimo Banzi, David Cuartielles, Tom Igoe,

Gianluca Martino, and David Mellis at the Interaction Design Institute of Ivrea (IDII). It
is based on two other projects: Processing and Wiring. Wiring and Processing were aimed
at non-programmers, more specifically to artists, architects and designers. In 2005, Arduino
2Eclipse Refactor Actions: https://help.eclipse.org/2019-12/topic/org.eclipse.jdt.doc.user/
reference/ref-menu-refactor.htm?cp=1_4_6_0

35

https://help.eclipse.org/2019-12/topic/org.eclipse.jdt.doc.user/reference/ref-menu-refactor.htm?cp=1_4_6_0
https://help.eclipse.org/2019-12/topic/org.eclipse.jdt.doc.user/reference/ref-menu-refactor.htm?cp=1_4_6_0

was forked from Wiring to support the ATmega8 microcontroller3 which was cheaper than
the ATmega168 microcontroller4 on which Wiring is based. As its precursors, Arduino is
aimed at a non-technical audience. It was intended to help design students to create working
prototypes connecting the physical world to the digital world.

2.4.1. Arduino board

The Arduino board is an electronic board with a microcontroller. The microcontroller has
the advantage of being easily transportable due to its small size, has a low power consumption
and an affordable price. The microcontroller is an integrated circuit mainly used in embedded
systems. It consists of a microprocessor, data memory, programmable memory and auxiliary
resources such as input/output (I/O) ports, converters and timers. The microprocessor
will process the information and send instructions. The data memory is a volatile memory
for storing temporary data while the programmable memory is a non-volatile memory. It
contains the program instructions and is of the EEPROM type, i.e., it can be reprogrammed.

The Arduino board has the advantage of being inexpensive and works on all platforms.
In addition, the software and the plans of the board are open-source and extensible.

The board used in the examples in the remainder of this thesis is the Arduino Leonardo
board.

Fig. 2.3. The Arduino Leonardo microcontroller board5

3ATmega8 microcontroller: https://www.microchip.com/wwwproducts/en/ATmega8
4ATmega168 microcontroller : https://www.theengineeringprojects.com/2018/09/introduction-to-atmega168.
html
5Image taken from https://store.arduino.cc/usa/leonardo

36

https://www.microchip.com/wwwproducts/en/ATmega8
https://www.theengineeringprojects.com/2018/09/introduction-to-atmega168.html
https://www.theengineeringprojects.com/2018/09/introduction-to-atmega168.html
https://store.arduino.cc/usa/leonardo

The Arduino Leonardo board6 is based on an ATMega32u4 clocked at 16 MHz allowing
the USB port to be managed by a single processor, which increases the flexibility of com-
munication with the computer. The Arduino Leonardo board can appear on a connected
computer in the form of a mouse, a keyboard or a virtual serial/COM port.

I/O pins on the outer edges of the PCB allow a series of add-on devices to be plugged
in. There are 20 I/O pins, 12 of which can be used as analog inputs and seven of which
can be used as PWM outputs. Pulse width modulation (PWM), is a technique for obtaining
analog results with digital means. Digital control is used to create a signal that is processed
by components that act as open and closed switches.

The Arduino Leonardo board also has a reset button, a power socket and a USB port.

2.4.2. Arduino IDE

The Arduino IDE7 is an open-source platform-independent application written in func-
tions from C and C++. It allows the user to write an Arduino code, compile it and upload

Fig. 2.4. The Arduino IDE

it to an Arduino board.
The Arduino IDE interface can be divided in three main parts: the command buttons,

the sketch editor, and the output pane.
6Arduino Leonardo: https://www.arduino.cc/en/Main/Arduino_BoardLeonardo
7Arduino IDE: https://www.arduino.cc/en/main/software

37

https://www.arduino.cc/en/Main/Arduino_BoardLeonardo
https://www.arduino.cc/en/main/software

2.4.2.1. The command buttons. There are six buttons under the menu bar. The check
mark appearing in the circular button is used to verify the code. The arrow key will upload
and transfer the required code to the Arduino board. The dotted paper is used for creating
a new file. The upward arrow is reserved for opening an existing Arduino project. The
downward arrow is used to save the current running code. The button appearing on the
top right corner is a Serial Monitor. It will open separate pop-up window that acts as an
independent terminal and plays a vital role for sending and receiving serial data.

2.4.2.2. The sketch editor. In this area, the user writes its Arduino code. Arduino
programs are called sketch and are written in a simplified C/C++ language [67]. An Arduino
program has at least two functions: the setup() function and the loop() function. In the
setup() function, the user specifies the code to configure the devices and any code that must
run once at startup. The loop() function will have the code of the behavior that runs in an
infinite loop. It is possible to add some user-defined functions.

2.4.2.3. The output pane. The message window area will display the memory used by
the code and errors occurred in the program while compiling it.

On October 19, 2019, the Arduino Pro IDE8 was introduced. This new IDE supports
Arduino, Javascript, and Python code and has a debugger.

2.4.3. Arduino language

The Arduino Language Reference9 regroups the structure, the values and the functions
of the Arduino programming language. The structure of the Arduino programming language
combines the different elements of the Arduino code including control structures and opera-
tors. The values of the Arduino programming language are mostly the data types and their
conversion functions, and the constants of the language. One of the constants is LED_BUILTIN

which represent the number of the pin on which the on-board LED is connected. The on-
board LED is present in almost all Arduino boards. Arduino pins can be configured either as
INPUT or OUTPUT. The pin configured as INPUT pins are said to be in a high impedance state
while those configured as OUTPUT are in a low impedance state. Pins in a high impedance
state only allow a small amount of current through whereas those in a low impedance state
provide a larger amount of current to the electrical circuit. More precisely, a pin is configured
as an INPUT if it is used to read values from a device, and as an OUTPUT when it is used
to write values to a device. Arduino digital pins can only read or write two values: HIGH

and LOW. The meaning of the two values depend if the pin is configured as an INPUT or an
OUTPUT. If the pin is configured as an OUTPUT, LOW means the lowest voltage of the

8Arduino Pro IDE: https://www.arduino.cc/pro/arduino-pro-ide
9Arduino Language Reference: https://www.arduino.cc/reference/en/

38

https://www.arduino.cc/pro/arduino-pro-ide
https://www.arduino.cc/reference/en/

board (0V), and HIGH means the highest voltage of the board (5.5V or 3.3V depending on
the board).

In the following, we present the functions at the core of the Arduino language and the
declaration of functions.

In its core, the Arduino language is composed of functions that are independent of any
device. The functions are used to control the Arduino boards, the devices and to perform
computations.

The most used functions are the ones for controlling the input and the output of ana-
log and digital pins: analogRead(), analogWrite(), digitalRead(), digitalWrite() and
pinMode(). The pinMode() function is used to configure the pin to be either as INPUT or
OUTPUT. The analogRead() and digitalRead() are used to read the values from a pin,
respectively an analog pin and a digital pin. As mentioned before, the value read from a
digital pin is either HIGH or LOW. The analogRead() function will outup an integer value
between 0 and 1023. The functions analogWrite() and digitalWrite() are used to write a
value to a pin. Similarly to digitalRead(), digitalWrite() can only write HIGH and LOW
to a digital pin. The analogWrite() function allows integer ranging from 0 to 255 and is not
limited to analog pins.

It is possible for the user to create her own functions. There are two ways to create
functions: use a function prototype or not. A function prototype is a type of function
declaration that does not contain the body of the function. It only has the function’s
name, return type and the type of its arguments. A function prototype always ends with
a semicolon. When a function prototype is used, it has to be declared before the loop()

function while the usual function declaration containing the body of the function has to
be declared after the loop() function. If a function prototype is not used, the function is
declared before the loop() function.

1 int add(int, int);

2 int sub(int x, int y) {

3 return (x - y);

4 }

5 void setup(){

6 int sub_result = sub(87,65);

7 }

8 void loop() {

9 int add_result = add(4,987);

10 }

11 int add(int x, int y) {

12 return (x + y);

13 }

Listing 2.6. Declaration of the functions add() and sub()

39

Listing 2.6 shows an example with the both declaration methods. The add() function is
declared using a prototype while the sub() function is declared directly.

2.4.4. Arduino libraries

In this section, we look through the creation and use of Arduino libraries as well as the
standard Arduino libraries since the Arduino language relies heavily on external libraries.

In Arduino, an external library consists of a header file (like in Listing 2.7) and a class
file that implements the library.

1 class RFID125 {

2 public:

3 void branch(int8_t pin1, int8_t pin2=-1);

4 String readCode();

5 void writeCodes(String code);

6 bool codeIsPresent(String code, bool lowLevel=false);

7 };

Listing 2.7. Excerpt of the RFID125 library

Arduino libraries are used to extend the language. They allow the user to create and/or
use functions not available in the standard Arduino language. One of the most common
libraries used in Arduino is the Serial library which is built-in the Arduino framework. It
offers functions to communicate with devices and peripherals through serial ports. The Ar-
duino language allows the user to create new libraries (following the structure in Listing 2.7)
and integrate them in the Arduino code using the #include statement. Arduino libraries
are often used to integrate and manipulate new devices. When a new device is developed,
it may not be possible to configure it with existing Arduino functions. Therefore, the devel-
oper creates a library using C++ to allow the user to perform actions with the device. The
user can also create her own libraries to be able, for example, to reuse functions in multiple
sketches.

2.4.5. Grove base shield

There are two ways to connect devices to the Arduino board: use a breadboard or use a
Grove shield.

The breadboard is a device that does not need soldering. It is used for making and testing
the prototype of an electrical circuit. Most electronic components of electrical circuits can be
interconnected by inserting their conductors or terminals into the holes in the breadboard,
and then making connections through cables if necessary. The holes in the breadboard are
connected to each other by metal strips.

40

To use the breadboard with an Arduino board, you need to have some knowledge of
electronics. For example, when connecting devices to the breadboard, it is necessary to
think about putting the right resistors to avoid the devices overheating.

Grove10 makes the connection easier. It is a modular and easy to use system designed
to easily connect a processor, such as an Arduino, to a wide range of modules. Unlike the
breadboard, using Grove does not require any knowledge of electronics.

The heart of the Grove system is the Base Shield.

Fig. 2.5. Grove Base Shield v2.0 for Arduino11

At the time of writing, the latest version for Arduino is the Grove base shield v2.012.
Each module can be connected to the base shield through the appropriate pin which are
general purpose input/output (GPIO) ports. The Grove Base Shield includes :

• Seven digital pins which can be used for both digital input (e.g., check a button’s
state) and digital output (e.g., power a light). Digital sensors can only output 0 or
1. However some of the digital pins can function as PWM outputs which allows to
get analog results.
• Four analog pins which can read the signal from an analog sensor (e.g., temperature
sensor) and convert it into a digital value that we can read. Analog sensors can return
readings ranging from 0 to 1024.
• One universal asynchronous receiver-transmitter (UART) pin which is the
Arduino’s default port for serial communication with the computer.
• Four inter-integrated circuit (I2C) pins which enable communication between
devices on a single circuit board.

10Grove: https://www.seeedstudio.com/category/Grove-c-1003.html
11Image taken from https://wiki.seeedstudio.com/Base_Shield_V2/
12Grove Base Shield v2.0: https://www.seeedstudio.com/Base-Shield-V2.html

41

https://www.seeedstudio.com/category/Grove-c-1003.html
https://wiki.seeedstudio.com/Base_Shield_V2/
https://www.seeedstudio.com/Base-Shield-V2.html

The Grove Base Shield also integrates a green light emitting diode (LED) to indicate power
status, a reset button and a power toggle switch to select the suitable voltage (5V or 3.3V)
depending on the microcontroller card used. In the remaining of this thesis, when the context
may be potentially ambiguous, we will use the term device to refer to Grove modules since
the term module is overloaded in software engineering.

2.4.6. Grove devices

At the time of writing, Grove had developed over 300 different devices13 that can be
grouped into five categories: environmental sensors, motion sensors, wireless devices, user
interface devices and physical sensors.

2.4.6.1. Environmental sensors. Environmental sensors are used to monitor and report
on the environment. Two examples of environmental sensors are light sensors to sense light
and air quality sensors to measure air quality.

2.4.6.2. Motion sensors. Motion sensors such as the 3-Axis Compass or the 6-Axis
Accelerometer&Gyroscope allow the microcontroller to detect motion, location and direction.

2.4.6.3. Wireless devices. Wireless devices enable wireless communication ability such
as radio-frequency (e.g., Serial RF Pro) and Bluetooth (e.g., Serial Bluetooth).

2.4.6.4. User interface devices. User interface devices are used to interact with the
microcontroller. They can be input devices such as the Thumb Joystick and the Touch
Sensor, or output devices like the LED and the LCD RGB Backlight.

2.4.6.5. Physical sensors. Physical sensors are designed to help analyze the physical
word. For example, the Ear-clip Heart Rate Sensor is used to measure the heart rate while
the PIR (Passive Infrared Sensor) Motion Sensor allows to sense human movement in its
range.

2.5. Modeling for Arduino
As the popularity of Arduino grew, many tools were developed to help programmers to

write Arduino code. In the following section, we look through some of them.
Arduino Designer14 is a graphical DSL based on Sirius [88], mainly aimed at novice

programmers. It only supports modeling for the Arduino DFRduino UNO R315. It only
allows for ten (10) predefined devices to be plugged. However, it allows creating custom
functions meaning that extension functions can be added.

13Grove devices: https://wiki.seeedstudio.com/Grove/
14Arduino Designer: https://github.com/mbats/arduino
15DFRduino UNO R3: https://www.dfrobot.com/product-838.html

42

https://wiki.seeedstudio.com/Grove/
https://github.com/mbats/arduino
https://www.dfrobot.com/product-838.html

Unlike Arduino Designer, YAKINDU Statecharts Tools (SCT) for Arduino16 supports
many boards thanks to its generic implementation. It is a tool that allows the programmer
to develop Arduino code by using Statecharts [34]. YAKINDU SCT is based on Eclipse
[33] and to be able to develop Arduino code, the user has to integrate the Sloeber plugin17.
Sloeber can also be used on its own. Differently from the Arduino IDE, Sloeber allows to
directly manipulate the libraries since any library added to the project, if not found in the
source folder, will be downloaded.

Another tool based on Statecharts is QP-Arduino18. It is an event-driven framework that
was developed to allow Arduino programs to handle multiple events at once. Traditionally,
Arduino programs are executed sequentially. Therefore, while waiting for a specific event
to occur, Arduino programs are not responsive to any other event. Since QP-Arduino and
YAKINDU SCT for Arduino have a generic implementation, the connection between the
hardware and the Statecharts model must be added manually in the generated code. There-
fore, this can be considered as an alternative solution to integrate external libraries. They
do not represent concepts and functions explicitly. The evolution resides in changing the
Statecharts model manually, by importing external libraries and invoking the functions of
the APIs.

ThingML [36] is also a tool based on Statecharts. The ThingML framework is platform-
independent. It has two components: a textual modeling editor and a family of code gen-
erators. The editor allows its users to model distributed systems using Statecharts. The
code generators are in the form of model-to-text transformations and each is aimed at a
specific language such as Java, Javascript, and Arduino. When building an Arduino Stat-
echart model, the users write the Arduino code directly in the states. Then, the Arduino
code will be added as-is in the generated sketch file. The ThingML framework only sup-
ports the evolution of its family of code generators. New functionalities of a language can
be integrated by creating a ThingML API (the code in the target language wrapped using
ThingML structures) for existing code generators or by using the HEADS19 code generation
framework to create a new code generator. Adding the functionalities of a specific language
in the ThingML DSL will defeat the purpose of the framework as it will not be platform-
independent anymore. It can only be done by creating sub-languages for each target platform
(e.g., ThingML Arduino, ThingML Java) as seen with QP and YAKINDU SCT.

Arduino CLI20 is a command line application which can be used to configure Arduino
boards, compile and upload sketches to them. However, it only creates the skeleton of the
sketch files with empty setup() and loop() functions. The user has to add the Arduino code

16YAKINDU Statecharts Tools (SCT) for Arduino: https://github.com/wendehals/arduino_sct_tools
17Sloeber: https://github.com/Sloeber/arduino-eclipse-plugin
18QP-Arduino: http://www.state-machine.com/arduino/
19HEADS: http://heads-project.eu/
20Arduino CLI: https://github.com/arduino/arduino-cli

43

https://github.com/wendehals/arduino_sct_tools
https://github.com/Sloeber/arduino-eclipse-plugin
http://www.state-machine.com/arduino/
http://heads-project.eu/
https://github.com/arduino/arduino-cli

using another editor. To use external libraries, the user specifies a keyword in Arduino CLI
library search command line. Arduino CLI will search through GitHub repositories.

ArduinoDroid21 is an Arduino IDE for Android. The user can create, compile and upload
sketches to Arduino boards. External libraries can be added manually by importing a zipped
library or by downloading it.

21ArduinoDroid: https://www.arduinodroid.info/

44

https://www.arduinodroid.info/

Chapter 3

The ArduinoDSL modeling language

In this chapter, we present our first contribution, ArduinoDSL.

3.1. Presentation of the ArduinoDSL language
ArduinoDSL is a DSL for Arduino that runs on the Eclipse Modeling Framework (EMF)

[81]. The goal of ArduinoDSL is to help novice programmers to write and reason about
Arduino code and facilitate the implementation. To this end, ArduinoDSL abstracts away
the C++ code as much as possible and generates the code to be deployed on an Arduino
board.

ArduinoDSL is a combination of two sub-languages: a conceptual part and a behavioral
part. The conceptual aspect of ArduinoDSL is a graphical DSL to model the board con-
figuration and the devices, while the behavioral aspect is a textual DSL used to model the
behavior and the device interaction.

3.2. Conceptual aspect
The conceptual part of ArduinoDSL is a graphical DSL that allows users to configure

the board and the devices. They can specify which devices will be used and on which pins
they will be plugged. Additionally, the user can define the properties of the devices and the
libraries that should be used, as well as their default values.

3.2.1. Metamodel

In ArduinoDSL, the conceptual metamodel defines the language for the board part. We
depict its class diagram in Figure 3.1. The root of the metamodel is the Project class in
which we define the project name. This name will be used as the name of the Arduino file
when generating the Arduino code. Projects are deployed on a board. At the time of writing,
only Arduino boards are supported.

Fig. 3.1. The metamodel of the conceptual aspect of ArduinoDSL

We consider the devices as the main concepts in the conceptual metamodel. Therefore,
since the Arduino board is an integral part of an Arduino project, it is represented in the
metamodel. From an Arduino board point of view, devices only differ by the pins they
are connected to. Hence, instead of dividing the devices in the categories defined in Sec-
tion 2.4.6, they are grouped according to the pins they can be plugged to. As mentioned in
Section 2.4.5, we have four types of pins. However, the UART and the I2C pins are both
used for communication. Therefore, we combine them in one category. We then have the
three categories of pins and, by extension, three categories of devices: digital, analog, and
communication. The Pin class has three attributes: pinNumber, pinName, and type. The
pinNumber attribute is the name or list of names of the physical pins (e.g., A0). Instead of
referring to a pin by its number, the user can define a user-friendly pinName. It can be used
to identify the device connected to the pin (e.g., rfidSensor). The type attribute can be
either INPUT or OUTPUT (ref. Section 2.4.3).

46

We only show the light-emitting diode (LED) and the radio frequency identification
(RFID) reader as digital devices in the metamodel since they are going to be used for our
examples. An RFID reader is a device to identify and track tags. A tag defines a unique
identifier (UID) to attach to objects, such as RFID cards. An LED emits light when current
flows through it.

External libraries are used to connect and use almost any device in Arduino (ref.
Section 2.4.3). This is why, the ArduinoModule class defines a library attribute. Its
default value is NONE which means that the device does not use any external library. When
generating the Arduino code, the library will be imported.

We constructed the class diagram implementing this metamodel in an extensible way
so that further concepts can be added later on. For instance, following SOLID princi-
ples [57], the pin classes contain abstract classes representing types of Arduino devices.
We can see that adding, say, an LED device could simply be achieved by specializing the
ArduinoDigitalModule class. Similarly, new types of boards like Raspberry Pi1 boards can
be added by specializing the abstract class Board.

3.2.2. Graphical concrete syntax

We implemented a graphical concrete syntax using Emfatic for the conceptual meta-
model. More specifically, we use EuGENia annotations in the Emfatic specification (ref.
Section 2.1.3).
1 @gmf

2 @namespace(uri="http://www.example.org/arduinoConfiguration", prefix="arduinoConfiguration")

3 package arduinoConfiguration;

4 @gmf.diagram

5 class Project {

6 @gmf.label(label.pattern="projectName = {0}")

7 attr String projectName;

8 val Board board;

9 }

10 abstract class Board {

11 }

12 @gmf.node(figure="svg", svg.uri="platform:/plugin/ca.iro.umontreal.geodes.arduino.editor.

configuration/svg/arduinoBoard.svg",

13 size="150,150", label.placement="none", margin="0")

14 class ArduinoBoard extends Board {

15 @gmf.link(label="analogPin")

16 val AnalogPin[*] analogPins;

17 @gmf.link(label="digitalPin")

1Raspberry Pi: https://www.raspberrypi.org/

47

https://www.raspberrypi.org/

18 val DigitalPin[*] digitalPins;

19 @gmf.link(label="communicationPin")

20 val CommunicationPin[*] communicationPins;

21 }

Listing 3.1. Excerpt of the annotated conceptual metamodel of ArduinoDSL

Listing 3.1 shows the annotated version of the classes Project, Board and ArduinoBoard of
the metamodel in Figure 3.1. Project is annotated as the root of the metamodel by using
the gmf.diagram annotation. As we wanted to add the display format (ref. Section 2.1.1.2)
of each attribute in the metamodel, we used the gmf.label annotation for each of them and
defined a pattern as shown on line 8. As defined in Section 3.2.1, the pins are contained in
the board. However, we did not want to add them in the diagram as compartments in the
ArduinoBoard object but linked to it. Hence why we used the gmf.link annotation. We used
SVG images to represent the devices since they can be scaled without any quality loss. The
complete annotated metamodel is shown in Appendix A.

Fig. 3.2. A sample board model in ArduinoDSL showing the configuration of a Grove with
an RFID sensor and an LED

Figure 3.2 shows the model of a board where an RFID is connected to digital pins 8 and
9 of a Grove shield. Also, an LED is connected to the digital pin 5 of the Grove shield.

Since the concrete syntax definition maps each metamodel element to a representation, an
extensible design of the conceptual metamodel entails an extensible design of the conceptual
concrete syntax.

48

3.3. Behavioral aspect
In ArduinoDSL, the behavioral aspect contains statements that can be expressed in

the setup and loop sections, such as variable assignments, function invocations, loops, and
conditionals. It defines the language for the sketch part.

3.3.1. Metamodel

The current implementation of ArduinoDSL does not support all the functions provided
by the Arduino language because the goal of this thesis is to showcase evolution rather
than re-implementing the whole Arduino language. Hence, the functions to manipulate
numbers, bits, or characters are not supported. The behavioral metamodel also defines basic
control structures: if, else, for, while and do...while. Additionally, it supports user-
defined function declarations and invocations. The Serial library has also been included in
the behavioral metamodel since it’s a common library (ref. Section 2.4.3). More complex
statements, such as Boolean conditions and basic operations supported by the Arduino
language, can be defined in unparsed strings.

In ArduinoDSL, we implemented the behavioral metamodel in the form of a grammar
using Xtext [11]. The metamodel is implicitly defined in the grammar. The grammar is
available in Appendix B

Similarly to the board part, the root of the metamodel is Project. The Setup production
rule is used to set the statements that will be in the setup function, while the InfiniteLoop is
used for the loop function. Since the board model should have already been defined, the Setup

production rule may not be used in a sketch model. As the only difference between the setup

function and the loop function is that the first runs only once while the latter runs infinitely,
we created two different rules to emphasize on the setup function. The functions from the
Arduino Reference are represented as production rules. Additionally, we added six other
production rules to implement other functionalities of the Arduino language. As mentioned,
complex statements are not supported. Hence, we added the production rule CustomCode to
allow the user to add C++ code. The statements in a CustomCode are not evaluated by the
code generator and are added as is in the generated Arduino code. The Comments production
rule allows the user to add comments in the Arduino code. The Declaration production rule
is used to declare a new variable and the AssignmentValues production rule can be used to
assign it a value. The FunctionDeclaration and FunctionCall production rules are used to
declare a new function and call it, respectively. We limited the data types to String, int,
char, and bool.

Unlike the LED, the RFID reader needs an external library to communicate with the
RFID tags. Therefore, we added five functions of the RFID125 library (ref. Section 2.4.3)
in the behavioral metamodel: branch to specify the pin or the two pins on which the RFID

49

reader is plugged to, readCode to read the UID of an RFID tag, writeCodes to register UIDs,
codeIsPresent to check if an UID was registered, and clearCodes to delete the list of the
registered UIDs. Their production rules are on lines 14 to 32 of Appendix B.

3.3.2. Textual concrete syntax

Since Xtext was used for the behavioral metamodel, the concrete syntax is textual.

1 SETUP {

2 SERIAL begin 9600

3 }

4 FUNCTION blink {

5 DIGITAL write HIGH on led

6 TIME waitMilliseconds 2000

7 DIGITAL write LOW on led

8 }

9 RFID125 readCard on rfidSensor -> String code

10 IF ’code!=""’

11 SERIAL print code

12 CALL blink

13 END:IF

14 RFID125 registerCards "07871946 07388281" on rfidSensor

Listing 3.2. A sample sketch model in ArduinoDSL showing an interaction with an RFID
and an LED

Listing 3.2 is the sketch part of the board model shown in Figure 3.2. On line 2, we first
initialize the serial communication built-in the Grove at a specific baud rate. On lines 4 to
8, we declare a new function blink which turns on the LED for 2 seconds. On line 9, when
an RFID sensor reads an RFID card, it stores its UID in the variable code. On lines 10 to
13, when a card is read, the UID is output through the serial port and the blink function is
called. On line 14, we register the UID of two RFID cards. The sketch then loops back to
line 4.

3.4. IDE generation and Arduino code generation
With the metamodel and concrete syntax defined in the previous sections, we generate

the IDE of ArduinoDSL. As ArduinoDSL has two aspects, we have in fact two editors: a
graphical one for the board part and a textual one for the sketch part. The pair of models
created from these two editors are used to generate the Arduino code.

3.4.1. The graphical editor of ArduinoDSL

The graphical editor is a GMF-based editor generated using EuGENia.

50

Fig. 3.3. The graphical editor of ArduinoDSL

Figure 3.3 shows an instance of the graphical editor. It is composed of the canvas on
which the elements are added and the palette which have the different elements that can
be added to the canvas. The palette only contains the elements defined in the conceptual
metamodel. Hence, they are only six objects and three connections. The pin objects (Analog-
Pin, CommunicationPin, and DigitalPin) are containers. Devices can only be placed inside
corresponding containers. For instance, the objects RFID and LED are devices that should
be plugged to a digital pin. Therefore, they are each placed inside a DigitalPin container.
The only device that will not be placed in a container is the ArduinoBoard. It can be placed
anywhere in the canvas. To connect the devices to the board, the connections are used.
There is a connection for each type of pin. As shown on Figure 3.1, the project should have
a name. It can be assigned in the Properties tab at the bottom of the figure.

3.4.2. The textual editor of ArduinoDSL

The textual editor is generated using Xtext. Figure 3.4 shows an instance of the textual
editor of ArduinoDSL. The command Ctrl+Space allows to have a list of suggestions. The
keywords are highlighted in purple. To reduce errors, we only allow the use of the names
of the devices already defined in the board model (ref. Figure 3.3). As the board model
was not developed using Xtext, cross-referencing is not possible. Therefore, we created a
Python script which will add the names of the devices in the Xtext grammar. That is why
the devices names are highlighted, as seen on lines 5, 7, 9, and 14 in Figure 3.4.

51

Fig. 3.4. The textual editor of ArduinoDSL

3.4.3. Arduino code generation

We implemented a code generator in EGL for each aspect of the metamodel and used
the EGL Coordination Language (EGX) [73] to automate the execution.

To map the sketch model to the board model, the sketch model should have the same
name as the project name in the board model. The board model code generator is shown in
Appendix C.

Since a part of the setup function can be defined in the sketch model, the function is not
closed in the board model code generator.

Hence, the first lines (lines 1 to 7) from the sketch model code generator in Listing D
are to complete the setup function. As the setup function in the sketch model has the same
characteristics as the loop function, they are handled in similar ways. Using templates,
we define the code to be generated depending on the production rules defined in the Xtext
grammar in Appendix B.

1 [% operation Sketch!ReadCodeRFID recursive_op() {

2 var fonction = ’’;

3 if(self.variableName.first().isDefined()){

4 if(self.variableType.isDefined()){

5 fonction = fonction + self.variableType + ’ ’ + self.variableName.first() + ’ = ’ + self.

pin.pins.first() + ’.readCode();’;

6 } else {

52

7 fonction = fonction + self.variableName.first() + ’ = ’ + self.pin.pins.first() + ’.

readCode();’;

8 }

9 } else {

10 fonction = fonction + self.pin.pins.first() + ’.readCode();’;

11 }%]

12 [%=fonction%]

13 [% } %]

Listing 3.3. The template in EGL for the ReadCodeRFID production rule which represents
the function readCode defined in the RFID125 library

Listing 3.3 is the template that is used to generate the Arduino code when the Read-
CodeRFID production rule is used. As the function readCode returns the UID of the RFID
tag that has been read, the user may have have affected the return value to a variable. The
variable may have already been declared or not. If is a newly declared variable, that means
that its data type (which can only be String) has been given. This is the case evaluated on
lines 4 to 6. If the variable was already declared, we branch to lines 7 to 9 for the execution.
If no variable was affected to the return value, the lines 11 to 13 are executed.

1 #include <RFID125.h>

2 #include <SoftwareSerial.h>

3 RFID125 rfidSensor;

4 const int led = 5;

5 void setup() {

6 Serial.begin(9600);

7 rfidSensor.branch(8,9);

8 pinMode(led, OUTPUT);

9 }

10 void blink() {

11 digitalWrite(led, HIGH);

12 delay(2000);

13 digitalWrite(led, LOW);

14 }

15 void loop() {

16 String code = rfidSensor.readCode();

17 if(code != "") {

18 Serial.println(code);

19 blink();

20 }

21 rfidSensor.writeCodes("07871946 07388281");

22 }

Listing 3.4. Arduino code generated from the models in Figure 3.3 and Figure 3.4

53

The Arduino code generated from the board model in Figure 3.3 and the sketch model in
Figure 3.4 is listed in Listing 3.4. This code can be directly uploaded on the Arduino board.

3.5. Anticipated evolution issues
New Arduino devices are added and updated regularly2. Therefore, the language engineer

will have to add the new devices and libraries in the conceptual metamodel and behavioral
metamodel, respectively. However, updating all the artifacts of the DSL for every existing
device and library is not scalable. Since external libraries are in constant evolution, we must
support evolving APIs and devices. Thus, this also impacts other components of the DSL,
such as the code generator. Function invocation and even logic of the generated statements
may need to change. Furthermore, the language engineer may want to simplify some function
calls for better abstraction by, for example, renaming a function like println to print or
readCode to readCard.

In the current state of practice in MDE [59], the language engineer has to modify the
metamodel and concrete syntax and regenerate the DSL every time there is a change in
a library or a device. It is not conceivable to manually change the DSL at this rate for
every new device or function available. Additionally, representing library functions in a
metamodel is like hardwiring function calls in the syntax of a language, which is overly
static and inflexible. Therefore, we need to bind the libraries dynamically to the metamodel
and automate the evolution process.

2List of Arduino devices: https://arduinomodules.info/

54

https://arduinomodules.info/

Chapter 4

Architecture of the evolutionary process

The evolution of an external library is often synonymous with the evolution of the DSLs
that depend on it. Rebuilding the DSLs and regenerating their artifacts manually may lead
to errors and inconsistencies.

Therefore, automating the integration of the new functionalities and concepts is a possible
solution to reduce the manual changes to the current structure of the DSL and its associated
artifacts. To this end, we propose a process that minimizes the language engineer’s manual
effort and is completely transparent to the DSL user.

In our approach, depicted in Figure 4.1, the language engineer defines the specification
of the external library in the form of a model and/or encapsulates the functionalities of the
external library. This extension library represents the concepts to extend the metamodel of
the DSL, its associated concrete syntax, as well as any functions the language engineer wishes
to expose in the DSL. From the extension library, we generate the different components
required for the DSL and associated artifacts to automatically use the library.

In this chapter, we present an overview of the different concepts (represented as boxes in
Figure 4.1) used in the architecture of our approach. We will detail each step (represented
as arrows in Figure 4.1) in Chapter 5.

Extension library

Concrete syntax

External
library

Domain-specific language

Extension
specificationLanguage

engineer

Artifact

Extension
function

{ name,
 parameters,
 context }

generate

generate

encapsulates
functionalities

creates model

extracts
information

Concrete syntax

Metamodel

Extension
metamodel

Core
metamodel

Extension
concrete syntax

Core
concrete syntax

Metamodel

Code
generator

DSL editor

Domain-specific
model

DSL user

generate

manipulates

automatic

manual

dependency

correspondence

generate

generate

Extension
mapping

0

0

1

2

2 3

3

3

4

5

Fig. 4.1. The overall process to evolve a DSL from external libraries

4.1. Specifying the extension library
As shown in Figure 4.1, the language engineer has first to analyze the external library

to extract the information relevant to the DSL. She then defines the extension library
that serves as specification for integrating the external library into the DSL and associated
artifacts. The extension library comprises two parts: the extension specification and the
extension functions.

4.1.1. The extension specification

The extension specification represents the new concepts that will be part of the DSL.
The language engineer specifies the extension at the abstract and concrete syntax levels.
Aside from the concepts, the metamodel of the extension specification may contain the set
of attributes of the extension concept and the set of relations between the extension concept
and existing concepts in the core language. The extension concept can be a sub-type, the
target of an association to a core concept or be contained in a core concept. The extension
concrete syntax defines the textual and/or the graphical representation of the extension
metamodel. It is specific to the technology adopted.

To illustrate, let’s take the example defined in Figure 3.2 of a board model in Ardui-
noDSL. As mentioned in Section 3.2.1, the devices are considered as the main concepts
in ArduinoDSL. Therefore, the language engineer can define an extension specification for
the RFID and the LED. The creation process of the extension specification models will be
detailed in Section 5.1.1.

4.1.2. The extension functions

The second component of the extension library is the set of extension functions
that encapsulate the functionalities of the concept. However, these functionalities are
often implicitly defined in the API of the external library. For example, the RFID can
read and write the codes of the cards. Therefore, the language engineer must specify
which functions will be available in the DSL so they can be properly invoked via the code
generator. Extension functions encapsulate all the necessary information to invoke the
corresponding function from the API. Therefore, the language engineer has to extract its
name, arguments and context to create the extension function. It is intuitive to know what
the name and parameters of a function are. However, it may be a little more complex to
grasp what the context of a function entails. The context element is a set of constraints.
These constraints are a necessary condition to be allowed to use the function. The context
information varies from one domain to another and even from one external library to
another. Therefore, we let the language engineer define the context of extension functions.
For example, in Arduino, when an external library is related to a specific type of device

56

(e.g., the RFID125 library is specific to RFID sensors), the pin is declared in the constructor
of the library. The functions of that external library are then associated with an instance
of a class (e.g., rfidSensor.readCode()). Hence, in ArduinoDSL, we use the context to hint
the code generator on how the external function should be invoked. Context information
is useful in other domains as well. For example, suppose a DSL is used to define the
communication with micro-services. In this case, each REST API function may require
a context specifying the address of the server where the micro-service is deployed. The
extraction and encapsulation of the extension functions will be detailed in Section 5.1.2.

The extension functions and extension specification are used to extend the DSL and its
associated artifacts automatically.

4.2. Extending the domain-specific language syntax
To extend the DSL, we focus on the two main components of its definition: the metamodel

and the concrete syntax.

4.2.1. The extension metamodel

Although DSLs are prone to evolve more frequently than general-purpose languages [90],
we consider the part of the language that is independent from external libraries to be more
stable, with respect to evolution, than the part related to external libraries. For example,
the sketch part of ArduinoDSL depends on the Arduino programming language based on
C++. On average, there is a new version of C++ every four years, and most changes do not
concern the subset used by Arduino. On the contrary, new Arduino libraries appear much
more frequently. Therefore, we separate the definition of the DSL into the core metamodel
and the extension metamodel. The former gathers all stable concepts, while the latter
gathers all the new concepts that depend on external libraries. For example, in ArduinoDSL,
the RFID concept will be part of the extension metamodel, while the concept of TIME (TIME

waitMilliseconds in Listing 3.2) is part of the core metamodel. The extension metamodel
can be generated automatically from the extension specification and extension functions
described in Section 4.1. The generation process of the extension metamodel is detailed in
Section 5.2.1 and Section 5.2.2.

Ultimately, the DSL must have one metamodel, which is the merge of the core and ex-
tension metamodels. Here, we assume the metamodels are described in a meta-language
capable of composing metamodels [6], such as UML package merge [25] or importing a
grammar in Xtext. Merging the two metamodels will not yield to conflicts since they do not
share overlapping concepts: the extension metamodel simply adds new concepts to the core

57

metamodel. This requires that the core metamodel is structured in a way to be extended fol-
lowing SOLID design principles. The merged metamodel should not make breaking changes
to the core metamodel. It is important to note that our process does not modify the core
metamodel that was manually constructed by the language engineer. The merge operation
is detailed in Section 5.2.4.

4.2.2. The extension concrete syntax

Similarly to the metamodel, we separate the core from the extension concrete syntax.
Since a concrete syntax is the representation of a metamodel, the non-overlapping com-
position property also holds. The extension concrete syntax can be generated from the
extension specification. The generation process is detailed in Section 5.2.3.

The new metamodel and concrete syntax of the evolved DSL can then be used to syn-
thesize a new version of the DSL editor. In this process, the backward compatibility of all
models developed by a DSL user is guaranteed by construction. The only exception is when
there is a change in the API of the external library that is used by a model. Errors will only
be detected when the genereated code from the model will be used.

4.3. Extending the domain-specific semantics
Section 4.2 gave an overview of how the syntax of the DSL is extended. However, the

external library also enriches the semantics of the DSL. The semantics of the DSL can be
defined in several ways [35]. In this paper, we focus on translational semantics defined by
means of a code generator.

4.3.1. The code generator

The code generator embeds the semantics of each concept of the DSL and their com-
binations. For example, in ArduinoDSL, it translates a model to C++ code executable in
Arduino. The code generator should not only define the semantics of concepts found in the
core metamodel, but also those in the extension metamodel. Therefore, it must be aware of
the extension functions.

Our process does not modify the code generator that was manually constructed by the
language engineer. However, it must be extensible to be able to handle the extension func-
tions. The generation process of the evolved code generator is detailed in Section 5.3.2.

4.3.2. The extension mapping

To keep the code generator independent from external libraries, we generate an ex-
tension mapping model from the extension functions. This model maps each extension

58

function to the corresponding API function to be invoked with all the necessary parameters.
Essentially, the extension mapping encodes the semantic mapping between the extension
metamodel and the external library. Its construction will be described in Section 5.3.1.

59

Chapter 5

Evolving DSLs with extension libraries

In Chapter 4, we presented the architecture of our evolutionary process. It is composed of five
steps (ref. Figure 4.1). First, the language engineer has to extract the relevant information
from the external libraries and create an extension library based on the information collected.
From the extension library, the extension metamodel and extension concrete syntax are
generated. An extension mapping is also generated that will be used by the code generator
to evolve and integrate the extension functions. Each of these steps will be detailed in this
chapter using ArduinoDSL as a running example.

5.1. Extracting the information
As mentioned before, the first step to evolve the DSL is to extract the information from

the external libraries and create an extension library. The extension library serves as the
specification to generate the extension metamodel and concrete syntax to be integrated into
the DSL. It is composed of the extension specification, which focuses on the conceptual aspect
of the language, and the extension functions, primarily focusing on the behavioral aspect
of the language. For each external library, the language engineer shall define an extension
specification and encapsulate the extension functions.

5.1.1. Creating the extension specification model

The extension specification defines the domain concept that the external library con-
tributes to in the DSL. It also specifies how the new concept integrates with the core meta-
model. Furthermore, it defines the concrete syntax of the concept.

1 Concept:

2 ’CONCEPT’ conceptName = ID ’{’

3 (’ATTRIBUTES {’ ((attributes += Attribute)(’,’)?)+ ’}’)?

4 ’RELATION’ relation = (SubType | Reference | Containment)

5 (’REPRESENTATION’ representation = (Textual | Graphical))?;

6 ’}’(’,’)?;

7 Attribute: attrName = STRING ’:’ attrType = AttributeType;

8 SubType: ’EXTENDS’ super = STRING;

9 Reference: ’REFERS_FROM’ ref_from = STRING;

10 Containment: ’CONTAINED_IN’ container = STRING;

Listing 5.1. Excerpt of the grammar for the extension specification

We have created a small DSL using Xtext, depicted in Listing 5.1, to help the language
engineer in this task. The conceptName is a unique identifier that represents the concept Ce of
the external library. A concept can hold an arbitrary number of attributes. There are three
(3) ways to relate the concept Ce to a concept Cc of the core metamodel. SubType allows
Ce to extend Cc through sub-typing. Reference allows Ce to be the target of an association
from Cc. Containment allows Ce to be composed within Cc. These three types of relations
ensure that integrating the extension metamodel with the core metamodel follows SOLID
principles. Note that Ce must be related with Cc using exactly one relation type. Finally,
the representation specifies the concrete syntax definition for Ce. We currently support a
textual concrete syntax through an Xtext grammar or a graphical concrete syntax by means
of EuGENia annotations.

1 CONCEPT "RFID" {

2 ATTRIBUTES { "cards" : String[*] }

3 RELATION EXTENDS "ArduinoDigitalModule"

4 REPRESENTATION SVG(SVG_URI : "platform:/plugin/svg/rfid.svg")

5 }

6 CONCEPT "LED" {

7 ATTRIBUTES { "brightness" : int }

8 RELATION EXTENDS "ArduinoDigitalModule"

9 REPRESENTATION SVG(SVG_URI : "platform:/plugin/svg/led.svg")

10 }

Listing 5.2. Extension specification of RFID125

In ArduinoDSL, the extension specification extends the core metamodel and concrete
syntax of the board. Listing 5.2 shows the extension specification for the RFID and LED
concepts in ArduinoDSL. To add the new concept RFID, the language engineer defines its
name on line 1. She then defines on line 2 the properties associated to the concept. In the case
of an RFID, a list of cards can be registered. As an RFID reader is an input device that can
be connected via two digital pins to the board, it is a sub-type of the ArduinoDigitalModule

class, as shown on line 3. Finally, on line 4, the language engineer defines the concrete syntax
of the RFID concept as the path to an SVG image. Similarly, she defines the concept of
LED, adds the property brightess and a concrete syntax (lines 6 to 10).

62

5.1.2. Extracting and encapsulating the extension functions

The external library may also offer an API as a set of external functions. The language
engineer may wish to extend the DSL with an abstraction of the external functions. Thus,
she must capture her selection of the external functions in the API that will be integrated
into the behavioral aspect of the DSL. Since other systems very likely use the external library
than the DSL at hand, the information extraction method from the API to the extension
functions should be non-intrusive. One way to extract the information from the API without
changing its behavior would be to add annotations or comments ignored by the compiler.
For example, for open-source libraries defined in a progamming language like C++, we can
rely on C++ attributes [76] to annotate each external library function and capture the
information needed. Since C++17, all attributes unknown to an implementation are ignored
without compilation or run-time error. Alternatively, if the API is not directly modifiable
(e.g., the language engineer does not have write access to it, or it is stored on a third-party
server), a script can read the API and output the required information for each function.
Tools such as cURL [3], HTTPie [4], and Hurl.it [5] allow developers to query APIs.

We define an extension function to be in the form EF = 〈function, name, parameters,

context〉 following the requirements given in Section 4.1.2. function is a pointer to the
external function EF represents. The name is a label that identifies EF uniquely within the
extension library. If the language engineer desires to offer some or all of the parameters of
function, she can define parameters as a set of couples consisting of the name and type of
each parameter. If there is a certain context in which function has to be ultimately invoked
in the final generated code, it must be specified.

As explained in Section 4.1.2, the definition of a context is specific to the DSL. For
ArduinoDSL, we use the context to hint the code generator on how the external function
should be invoked. Some functions can be invoked directly by name, like digitalWrite

on line 14 of Listing 3.4. Others require to be invoked in the scope of an object, like
rfidSensor.branch(8,9) on line 9 of Listing 3.4. In the former case, we consider the function
to be explicitly invokable. In contrast, in the latter case, it is implicitly invokable through
an object. Additionally, some functions do not depend on any device (e.g., delay(2000)

on line 15 of Listing 3.4). Therefore, for ArduinoDSL, there are three possibilities for the
context: either there is no context, or it is specified with a Boolean value where true means
the function is implicit and false means it is explicit.

1 class RFID125 {

2 public:

3 [[name(’plug’), param(’pin1’,’int’), param(’pin2’,’int’), implicit(true)]]

4 void branch(int8_t pin1, int8_t pin2=-1);

5 [[name(’readCard’), implicit(true)]]

6 String readCode();

63

7 void writeCodes(String code);

8 bool codeIsPresent(String code, bool lowLevel=false);

9 };

Listing 5.3. Excerpt of the annotated RFID125 library

Listing 5.3 is the annotated version of the RFID125 library in Listing 2.7. All functions
of the library require a pin to be called implicitly. Line 3 shows the branch function that
requires pins as parameters. Line 5 is an example of a function with no parameters. On line
9, the codeIsPresent function is not annotated because the language engineer did not wish
to offer this function to the DSL.

In Arduino, when an external library is related to a specific type of device (e.g., the
RFID125 library is specific to RFID sensors), the pin is declared in the constructor of the
library. Therefore, the context can only be implicit in those cases. However, the functions
defined in the core behavioral metamodel are all independent from the devices. Hence, they
either have an explicit context or no context at all. Thus, in ArduinoDSL, a function does
not have a context if it is not related to a device.

1 [[name(’begin’), param(’speed’,’int’)]]

2 void begin(long speed);

3 [[name(’print’), param(’message’,’String’)]]

4 String print(String message);

5 [[name(’waitMilliseconds’), param(’time’,’int’)]]

6 void delay(unsigned long ms);

7 [[name(’write’), param(’pin’,’int’), param(’value’,’int’), implicit(false)]]

8 void digitalWrite(int pin, int value);

Listing 5.4. Some annotated functions from the default Arduino Reference library

Recall from Section 3.3 that the core metamodel already includes common libraries.
Hence, there wasn’t a need to annotate them. However, to show how they can be annotated.
Listing 5.4 lists the annotated functions from the core metamodel used in Listing 3.2. The
function begin on line 2 is an example of a function without a context. It is a function
from the Serial library, which is independent of all devices. The behavior of the function
digitalWrite on line 8 depends on the pin but it is not tied to one type of device. Thus, it
has an explicit context, and the pin is declared as a parameter.

5.2. Extending the syntax
In Section 5.1.1, we explained what the language engineer must perform to create the

extension library. The extension library is the input to the automated process of evolving
the DSL to include external libraries. This section explains how the extension metamodel

64

and extension concrete syntax can be created automatically and integrated with the core
metamodel and core concrete syntax of the DSL.

5.2.1. Extending the conceptual metamodel

The extension metamodel is generated from the extension specification and the extension
functions. To easily integrate with the core metamodel, we implement the conceptual aspect
of the extension metamodel in Emfatic. We implemented code generation templates in EGL
to generate the Emfatic code from an extension specification model conforming to Listing 5.1.
The code generator creates a concrete class for the concept. If the concept is a sub-type of a
core concept, the code generator adds an inheritance relation to the specified concept using
the extends keyword in Emfatic. If the concept is the target of an association with a core
concept, it adds a relation using the ref keyword from the core concept to the concept. In
the case of a containment relation, it uses the val keyword. The attributes of the concept
are added to the class using the attr keyword.

1 @gmf.node(figure="svg", svg.uri="platform:/plugin/svg/rfid.svg", size="150,150", label.placement

="none", margin="0")

2 class RFID125 extends ArduinoDigitalModule {

3 @gmf.label(label.pattern="cards = {0}")

4 attr String[*] cards;

5 }

Listing 5.5. Generated extension metamodel and concrete syntax for the concept RFID125

Listing 5.5 shows the generated Emfatic code for the extension specification defined
in Listing 5.2. On line 2, a class represents the RFID125 concept and extends the
ArduinoDigitalModule class. Line 4 shows the only attribute defined for the concept.

5.2.2. Extending the behavioral metamodel

We generate the behavioral aspect of the extension metamodel from the extension func-
tions. To easily integrate with the core metamodel, we implement the behavioral aspect of
the extension metamodel in Xtext because it is most often used for textual DSLs emulating
the invokation of functions of the external library. The order in which the files and the
extension functions are processed is unimportant. Since the specification of the extension
functions depends on the DSL, a custom code generator to produce the Xtext grammar
is needed. For ArduinoDSL, we developed a custom code generator in Python that reads
annotated C++ header files representing the extension functions of the library and outputs
an Xtext grammar. Recall that for ArduinoDSL, the behavioral aspect is defined in the
sketch. The code generator fetches all header files in the Arduino external library directory.

65

It captures all the C++ attributes it finds, assuming they conform to the notation presented
in Listings 5.3 and 5.4.

1 Function: RFID125;

2 RFID125: BranchRFID125 | ReadCodeRFID125 | WriteCodesRFID125;

3 BranchRFID125: ’RFID125’ ’plug’ pin1=INT ’and’ pin2=INT ’on’ pin=Pins;

4 WriteCodesRFID125: ’RFID125’ ’writeCodes’ codes=STRING ’on’ pin=Pins;

5 ReadCodeRFID125: ’RFID125’ ’readCard’ ’on’ pin=Pins;

Listing 5.6. Generated extension metamodel and concrete syntax from the extension
function for the RFID125 library

Listing 5.6 shows the generated Xtext grammar for the extension functions defined in
Listing 5.3. The code generator creates production rules for each external library. In Sec-
tion 4.3.1, we mentioned that the language engineer should prepare hooks in the core meta-
model to allow the integration of extensions. In our implementation, it suffices to have a
class named Function which will regroup all extension functions. This translates into a pro-
duction rule Function in Xtext, which lists all the extension functions that are annotated
in the external library. To avoid ambiguities in the grammar, we ensure each function is
unique by transforming each function name as follows: we capitalize the first letter of the
function name and suffixed it with the name of the external library. In our implementation,
parameters are simply concatenated with the and keyword. Also, we generate the context of
the extension function only if it is specified. When it is the case, we add the context to the
production rule of the extension function using the on keyword.

5.2.3. Extending the concrete syntax

We generate a generic extension concrete syntax that the language engineer can customize
as she sees fit for her DSL. The extension specification specifies the concrete syntax. For
the conceptual aspect, the concrete syntax is not mandatory (see line 5 in Listing 5.1). If it
is not provided, a default Xtext grammar is generated from the specification in Listing 5.1.
Otherwise, if representation is set to textual, the language engineer has to provide an Xtext
grammar. For a graphical concrete syntax, the code generator adds EuGENia annotations
into the Emfatic code like in Listing 5.5. For RFID125, the concrete syntax specified is in
Listing 5.2 and Figure 3.2 shows the result on a sample model using it.

As for the behavioral aspect, thanks to Xtext, the metamodel and textual concrete syntax
are defined from the grammar. Lines 4 and 11 in Listing 3.2 show the grammar in action on
a sample model using the extension functions of RFID125.

66

5.2.4. Merging the extension and the core

The generated extension metamodel and concrete must be integrated with the core DSL
components. In general, the integration can take various forms depending on the formalism
for core and extension specifications, and how they should be integrated. As described in [6],
there are different techniques to compose DSLs. In our implementation, the integration is
performed by merging the extension and core metamodels and concrete syntaxes, as outlined
in Section 4.2.

As outlined in Section 4.2, concepts of the extension metamodel should not overlap with
concepts of the core metamodel. Typically, the external library adds new concepts or func-
tionality to the core language. However, an external library may redefine a function already
available in the core language. In this case, we must ensure the user can unambiguously refer
to either implementations. It is possible that conflicts arise between concepts or functions
of two external libraries. For example, in Arduino, there are multiple libraries available to
manipulate an RFID sensor.

In our implementation, we prevent conflicts between concepts by enforcing a unique con-
cept name to each extension specification (Listing 5.1). To merge the extension specification
with the core metamodel and other extensions, we append the newly generated classes to the
Emfatic model. With EuGENia annotations, the Emfatic model is also contains the merge
of the concrete syntax. For the behavioral aspect, we merge the generated Xtext grammar
from the annotated external library with the core grammar using the import operation. The
language engineer must ensure that she annotates each extension function with a unique
name within the same library.

With the merge completed, the result is an evolved DSL extended with concepts and
functionalities from selected external libraries. The language engineer can then rely on
the usual generators of the language workbench, like EMF, to generate an editor for domain
users. Users can then create and edit domain-specific models seamlessly: all previous models
are compatible with the evolved DSL, as long as no changes to existing external libraries
have been introduced.

5.3. Extending the semantics
As outlined in Section 4.3, the extension specification has an impact on the semantics

of the DSL. The extension mapping defines the relation between the extension specification
and the semantics of the external library. For ArduinoDSL, it is used to evolve the code
generator to invoke the appropriate API of the new external library.

67

5.3.1. Generating the extension mapping

The extension mapping is composed of the concept mapping, the function mapping, and
the parameter mapping. The concept mapping maps the concept name to the external library
path. The function mapping maps each extension function to the external function name.
The parameter mapping maps each parameter name and type of the extension function to
the corresponding parameter in the external library. Note that the parameter mappings are
ordered following the signature of the external function.
1 <concept name="RFID125" library="path/RFID125.h">

2 <function implicit="true" grammarName="BranchRFID125" name="branch">

3 <parameter grammarName="pin1" grammarType="int" name="pin1" type="int8_t" />

4 <parameter grammarName="pin1" grammarType="int" name="pin2" type="int8_t" />

5 </function>

6 </concept>

Listing 5.7. Excerpt of the extension mapping for the RFID125 library

Listing 5.7 illustrates the extension mapping generated from the annotated library in
Listing 5.3 for the branch function. In our implementation, we represent this mapping in an
XML file. It can be generated during the generation of the extension metamodel.

5.3.2. Evolving the code generator

Evolving the semantics of the DSL is specific to each DSL. We implemented the code
generator in EGL. We chose this tool because it is a template-based code generator that
allows for polymorphism [56]. This is a useful feature so that the language engineer does not
have to rewrite the templates for each extension. In Section 5.2.2, we showed that extensions
are integrated by sub-typing the Function abstract class which is the hook to connect to
the core metamodel as mentioned in Section 4.3.1. Thanks to polymorphic templates, any
template applicable to Function is also applicable to its sub-types. The code generator relies
on the extension mapping to determine which external function to print when it encounters
an extension function. Therefore, for each extension function encountered in a given model,
the code generator searches for the concept and function name in the extension mapping.

For ArduinoDSL, the semantics of a model is defined by the Arduino code it corresponds
to. Recall from Section 3.4.3 that ArduinoDSL ships with a C++ code generator. This
code generator is implemented for the behavioral aspect of the core metamodel. However,
now that new concepts and functionalities are added to the DSL, it must also generate the
appropriate code for the extension metamodel.

In Listing 5.7, the grammarName corresponds to the production rule name parsed by Xtext.
Then, the code generator uses the name that corresponds to the external function. If the
function requires parameters, they are processed in the same order as they appear in the

68

extension mapping. When the context is implicit (on line 2), the code generator uses the dot
notation when printing the external function invocation. For instance, on line 4 of Listing 3.2,
the readCard function is used from RFID125. Since this function has an implicit context,
the corresponding invocation is rfidSensor.readCode(), as shown on line 13 of Listing 3.4.

The code generator does not only depend on the behavioral extensions. For example,
the model in Figure 3.2 shows that the RFID sensor is connected to pins 8 and 9. The code
generator outputs line 9 in Listing 3.4, which shows the call to the branch function in the
setup block.

69

Chapter 6

Validation

In this chapter, we show the feasibility and usefulness of our approach with a case study on
evolving interactive modeling editors that rely on ArduinoDSL. We also discuss the limita-
tions of our approach.

6.1. Case study
We wanted to verify that our evolution approach is applicable in a real setting. Therefore,

we validate the feasibility, applicability and usefulness of our approach with a case study on
incrementally developing a domain-specific modeling editor.

6.1.1. Synthesis of interactive modeling editors

In previous work [79], Sousa et al. proposed a methodology to define modeling editors
with customizable user interactions. One of the possible customizations concerns the choice
of I/O devices used to interact with the editor. Traditionally, users interact with modeling
editors via keystrokes or mouse movements and clicks. However, this may not be optimal
for some domains where a dedicated interaction device helps improve the domain user’s
productivity. The technique in [79] proposes multiple viewpoints to customize the editor:
the interface model, the interaction model, and the event mapping model. The interface
model defines the layout as well as interaction streams and devices that can be used. The
interaction model defines the behavior of each interaction in terms of actions on the editor,
the model, and the devices. The event mapping model maps each interaction defined in the
interaction model to a specific device operation. The three models are then used to generate
a web-based editor. For now, only the Google Chrome web browser is supported.

6.1.2. Setup

For our case study, we present the development of a simple editor to configure Pac-
Man games where pac-man navigates through grid nodes searching for food to eat, while

Fig. 6.1. The Pac-man modeling editor in action

ghosts try to kill him [69]. Figure 6.1 shows a snapshot of the modeling editor in action.
We developed a simple DSL for Pac-Man game configurations, from which we generate the
web-based editor. The editor consists of a canvas where language elements can be created,
removed, and moved around. However, instead of creating a Pac-Man model with a mouse
and keyboard, we built a custom Arduino device for users to interact more naturally with
the editor. The editor runs on a web browser communicating with a Node.js server. The
Arduino device communicates with the server via a serial port following a simple protocol
relying on the Socket.IO library1. The device is configured with an Arduino Leonardo board
mounted with a Grove shield to simplify the connection with other devices.

Figure 6.2 shows the final Arduino configuration we have built after the last increment.
We used ArduinoDSL to develop the reactive behavior of the Arduino (see Appendix F),
from which we generated the code to be deployed on the device.

To simplify the case study description, we assume there are three people involved in the
project. A gaming expert, Charlie, is the target user of the Pac-Man modeling editor who
interacts with the Arduino device to manipulate Pac-Man game models. The language en-
gineer, Bob, has defined the Pac-Man DSL and has developed the ArduinoDSL model that
is used by the generated Pac-Man modeling editor. However, Bob is a user of ArduinoDSL
and requires using devices and libraries not included in the default Arduino library. Thus,

1Socket.IO: https://socket.io/docs/

72

https://socket.io/docs/

Fig. 6.2. The Arduino configuration for the Pac-man modeling editor

another language engineer, Alice, has developed ArduinoDSL and needs to evolve it accord-
ing to the devices and external libraries Bob needs. In this case study, we focus on the
development of the ArduinoDSL model. Therefore, according to the terminology presented
in Figure 4.1, Alice is the language engineer, and Bob is the DSL user.

6.1.3. Incremental evolution

Knowing the devices available to him, Bob developed the model incrementally. Each
increment introduces a new device to enhance the feature of the user interaction with the
editor. Therefore, at each increment, the ArduinoDSL language needed to evolve, integrating
a new concept or external library that was not already available in the language. In the
following, we present how they are integrated using our approach.

6.1.3.1. Creating and moving Pac-Man elements. In the first increment, Bob
wanted to provide the basic ability to create a Pac-Man game model. The Pac-Man DSL
consists of four element types: pacman, ghost, food, and grid nodes. Therefore, Charlie does
not need a full keyboard to create each type of element. Instead, Bob built an Arduino board
with only four buttons to select which element type to create. Since the button device is not
part of ArduinoDSL, he asks Alice to provide this feature. Following the procedure defined in
Section 5.1.1, Alice creates an extension specification for the Button concept (see Listing 6.1).

73

1 CONCEPT "Button" {

2 RELATION EXTENDS "ArduinoDigitalModule"

3 REPRESENTATION SVG(SVG_URI : "platform:/plugin/svg/button.svg")

4 }

Listing 6.1. Extension specification for the Button concept

Since the functions needed to use a button are already part of the core ArduinoDSL, she
does not need to specify extension functions. Alice then generates a new ArduinoDSL editor
extended with buttons. Now Bob can create four buttons in his board model and specify
their behavior in the sketch model. When, for example, the button corresponding to ghosts is
pressed, the device sends a unique message to the editor via the serial port. In the interaction
model Bob created, this instantiates a ghost on the cell where the cursor is at the moment.
Figure 6.1 shows a grid node created where the cursor (red box) is located.

In the Pac-Man game, elements can move on locations defined by the grid. Therefore,
moving elements freely with a mouse is counter-intuitive. This is why Bob requires the use
of a 2-axis joystick to move the cursor left or right and up or down. Joysticks are not part
of the Arduino default language. Consequently, Alice creates an extension specification for
the Joystick concept (see Listing 6.2).
1 CONCEPT "Joystick" {

2 RELATION EXTENDS "ArduinoAnalogModule"

3 REPRESENTATION SVG(SVG_URI : "platform:/plugin/svg/joystick.svg")

4 }

Listing 6.2. Extension specification for the Button concept

She then selects an external library, like the Mouse library2, to operate the joystick. She
annotates the library to define the extension functions required.
1 class Mouse_ {

2 public:

3 [[name(’enable’), implicit(true)]]

4 void begin(void);

5 [[name(’disable’), implicit(true)]]

6 void end(void);

7 [[name(’move’), param(’xValue’,’Character’), param(’yValue’,’Character’), implicit(true)]]

8 void move(signed char x, signed char y, signed char wheel = 0);

9 [[name(’readAxis’), param(’axis’,’int’), implicit(true)]]

10 void readAxis(signed char x, signed char y, signed char wheel = 0);

11 [[name(’pressed’), param(’event’,’Character’), implicit(true)]]

12 bool isPressed(uint8_t b = MOUSE_LEFT);

13 };

Listing 6.3. Excerpt of the annotated Mouse library
2https://www.arduino.cc/reference/en/language/functions/usb/mouse/

74

https://www.arduino.cc/reference/en/language/functions/usb/mouse/

Alice can then generate an evolved ArduinoDSL editor now offering functionalities for but-
tons and joysticks. Bob added the joystick in its board model and was able to define the
behavior in the sketch model.

1 SETUP {

2 SERIAL begin 9600

3 MOUSE enable

4 }

5 DIGITAL read on pacmanButton -> pacmanPressed

6 DIGITAL read on ghostButton -> ghostPressed

7 DIGITAL read on foodButton -> foodPressed

8 DIGITAL read on gridButton -> gridPressed

9 IF ’pacmanPressed’

10 SERIAL print "addPacman"

11 TIME waitMilliseconds 500

12 ELSEIF ’ghostPressed’

13 SERIAL print "addGhost"

14 TIME waitMilliseconds 500

15 ELSEIF ’foodPressed’

16 SERIAL print "addFood"

17 TIME waitMilliseconds 500

18 ELSEIF ’gridPressed’

19 SERIAL print "addGrid"

20 TIME waitMilliseconds 500

21 END:IF

22 MOUSE readAxis on A1 -> int xValue

23 MOUSE readAxis on A0 -> int yValue

24 MOUSE move xValue and yValue and 0

25 MOUSE pressed "MOUSE_LEFT" -> mousePressed

26 IF ’mousePressed’

27 SERIAL print "selectElement"

28 TIME waitMilliseconds 500

29 WHILE ’mousePressed’

30 END:WHILE

31 SERIAL print "moveElement"

32 TIME waitMilliseconds 500

33 END:IF

Listing 6.4. The sketch model defining the behavior of the Pac-Man game after the first
increment

Listing 6.4 shows the sketch model after the first increment. Charlie can press on the buttons
to create language elements. To move a language element, he can use the joystick to move
to the element, select it by using the joystick button, then move the element to the desired
place. By releasing the joystick button, Charlie has successfully moved the element.

75

6.1.3.2. Creating food elements randomly. Food is one of the most created elements
when configuring a Pac-Man game. Thus, using the button and joystick becomes repetitive.
Therefore, Bob desires to define a new interaction that creates food randomly on available
grid nodes. He wants to use a light sensor that measures the brightness level of the ambient
light. Alice extends ArduinoDSL with the LightSensor concept by defining it in an extension
specification (see Listing 6.5). Since the light sensor only needs to read from an analog pin,
no API from an external library is necessary.

1 CONCEPT "LightSensor" {

2 ATTRIBUTES {"threshold" : int}

3 RELATION EXTENDS "ArduinoAnalogModule"

4 REPRESENTATION SVG(SVG_URI : "platform:/plugin/svg/lightsensor.svg")

5 }

Listing 6.5. Extension specification for the LightSensor concept

With the evolved DSL, Bob decides to add a light sensor to the board model and creates
food on a random grid node as long as the brightness level is under a certain threshold.

6.1.3.3. Notifying the user of the creation of food. Bob wishes to give audible
feedback to the user every time food is created in the model. He has a piezo speaker
available that produces a tone when an electric current passes through it. Therefore, Alice
evolves ArduinoDSL with a Buzzer concept for which the functions are already available in
the language. Since food can be created manually or automatically, the specification in the
sketch model must appear twice. Bob encapsulates these instructions into a function called
scream, which can be invoked where appropriate to avoid duplication (see Listing 6.6). As
opposed to the previous increments, this evolution of ArduinoDSL allows for output devices
to receive a trigger from the Pac-Man modeling editor.

1 FUNCTION scream {

2 SERIAL available -> int freeSerial

3 IF ’freeSerial > 0’

4 SERIAL read -> String message

5 IF ’message=="scream"’

6 TONE play 1000 on buzzerPin

7 TIME waitMilliseconds 500

8 TONE stop on buzzerPin

9 END:IF

10 END:IF

11 }

Listing 6.6. The scream function to play a sound whenever a food element is added on the
grid

76

6.1.3.4. Alternating the concrete syntax. Another game expert, David, is also using
the Pac-Man editor. David prefers to model a game in a three-dimensional setting. Therefore,
Bob creates a new concrete syntax for the Pac-Man DSL. In the Arduino model, he adds
an RFID sensor and assigns one card tag per concrete syntax. This way, Charlie and David
can switch between the two concrete syntaxes by tapping the corresponding card on the
sensor. Therefore, Alice extended the ArduinoDSL with the RFID concept offering the
functionalities from the RFID125 library, as illustrated in Section 5.1. This increment shows
how the evolved ArduinoDSL can also control the behavior of the editor.

6.1.3.5. Changing the size of the language elements. Charlie would like to enlarge
or shrink language elements. Bob provides a potentiometer that is equipped with a knob
that can be turned, providing a variable resistance. Alice adds the new concept with an
extension specification. Although its values can be read through the analog pin, Alice wants
to allow the potentiometer to return sizes from 0 to 10, instead of values between 0 to 1023.
The map function available in the built-in Arduino library can achieve this transformation.
However, advanced mathematical operators are not part of the core behavioral metamodel
of ArduinoDSL. Therefore, Alice adds the online Math external library3, which re-implements
these advanced mathematical functions, and annotates its map function. This last increment
shows that the DSL can evolve to cover functionalities it did not include even if its semantical
domain already did, as shown in Listing 6.7.
1 MATH map potentioValue and 0 and 1023 and 1 and 10 -> potentioValue

2 IF ’potentioValue != oldPotentioValue’

3 oldPotentioValue = potentioValue

4 String zoom = "zoom" + potentioValue

5 SERIAL print zoom

6 TIME waitMilliseconds 500

7 END:IF

Listing 6.7. The scream function to play a sound whenever a food element is added on the
grid

6.1.4. Applicability, feasibility, usefulness

The goal of this case study is to evaluate our approach on three dimensions: its applica-
bility, its feasibility, and its usefulness.

6.1.4.1. Applicability. The implementation of this case study shows that the approach
is applicable in a real setting. The language engineer can successfully integrate external
libraries in the DSL. For ArduinoDSL, these evolutions are those of the conceptual and
behavioral metamodels. The approach can manage to add new concepts and behavior,
3https://github.com/arduino/reference-en/tree/master/Language/Functions/Math

77

https://github.com/arduino/reference-en/tree/master/Language/Functions/Math

and their modifications. The case study also demonstrates that the language engineer can
effectively build a custom I/O device that allows the DSL user to interact with a modeling
editor. Nevertheless, our approach is applicable to ArduinoDSL only because its variable
part depends exclusively on external libraries. Furthermore, since ArduinoDSL relies on
Xtext and Emfatic, it is straightforward to merge the core and the extension DSLs.

6.1.4.2. Feasibility. We measure the feasibility of our approach with the easiness of
its applicability in a given DSL. As shown in the case study, the needs of the DSL user
only require the language engineer to create extension specification models and extract the
relevant functions. As defined in Section 5.1.1, the DSL to create extension specification
models helps reducing the effort of the language engineer as she does not need to develop
a new solution. However, the accessibility of the external libraries impacts the feasibility of
the approach.

6.1.4.3. Usefulness. The usefulness of our approach is measured by its relevance. As
mentioned in Section 3.5, new Arduino devices are added regularly and, to be able to use
them, new libraries are developed. At the time of writing, 3 460 external libraries were
registered in the Arduino Library Manager4. Adding manually each external function in
the DSL is laborious, time-consuming, and error-prone. Using our approach, as shown in
this case study, the language engineer has to add only the functions in a semi-automatic
way. This applies to most DSLs since they are more prone to evolution than general-purpose
languages.

6.2. Discussion
We now discuss alternative designs and practical concerns of our approach.

6.2.1. Extracting functions

A primary concern when dealing with external libraries is their accessibility. For Arduino,
most libraries are available in open-source. Hence, the language engineer can easily download
them on a local server and annotate them, as we have shown in this paper. However, in many
practical settings, external libraries remain on a third-party remote server (e.g., Javascript
libraries). Therefore, unless the language engineer obtains a local copy of a library, it is not
feasible to annotate it through uncompiled attributes or comments. Furthermore, even if a
local copy is available, the library may have many other dependencies that would complicate
its local build. This is also true for legacy libraries. In this case, the language engineer
should seek alternative ways to extract the extension functions from the API. For example,

4Arduino Library List: https://www.arduinolibraries.info/

78

https://www.arduinolibraries.info/

as we mentioned in Section 5.1.2, she could develop a script that connects to the remote
server, parses the API, and outputs the extension functions in the expected format.

6.2.2. Generating the artifacts

As we have seen with the case study, DSL extensions can be generated at will. In
our implementation, there is one extension metamodel (which may be separated for the
conceptual and behavioral aspects), one extension concrete syntax (for each aspect), and
one extension mapping. This means each time an extension is generated, it is lumped with
previous extensions. For example, in the case study, all the new concepts are stored in
a single Emfatic model, and all the new extension functions are stored in a single Xtext
grammar. Consequently, every time there is a change in an external library or a new one
is added, all these artifacts are regenerated. Alternatively, it may be more modular and
efficient to generate these artifacts incrementally. In this case, each extension library has its
own set of generated artifacts. However, this proliferation of artifacts may require additional
effort to manage a log of their location and relations.

6.2.3. Merging the artifacts

One assumption of our approach is that the formalisms to define metamodels and con-
crete syntax must allow for a merge operation as described in Sections 4.2 and 5.2.4. For
example, in our implementation, we use the import operator of Xtext to merge extension and
core grammars, and the UML package merge operator to merge extension and core meta-
models. The concrete syntax and extension mappings are merged by appending EuGENia
annotation and XML elements, respectively. However, the choice of the formalism and its
merge operation may impose limitations on how the language engineer can express extension
libraries.

6.2.3.1. Textual grammar. Using a grammar specification like Xtext imposes some re-
strictions on the textual concrete syntax. The name of each production rule must be unique,
meaning that the name of each external library must be unique. For example, extending
ArduinoDSL with two libraries called RFID will create a conflict. This is why, in the running
example, we called it RFID125 to distinguish it from others. Another restriction of Xtext
is that it is based on an LL(*) parser [66], which imposes a specific ambiguity resolution.
In particular, this means that extension functions cannot have the same name. Suppose an
external function f1 is overloaded by another function f2 in the external library. Assume f2

has one more parameter than f1. Then, we must ensure that their corresponding extension
functions have distinct names. The language engineer should be aware of such restrictions
when annotating the functions.

79

6.2.3.2. Conceptual metamodel. In UML, classes with the same name are considered
aliases. In Emfatic, classes must have unique names. Since each class represents a concept, a
conflict arises if two external libraries share the same concept. For example, the RFID125 and
SeeedRFID5 are two external Arduino libraries that provide an API for an RFID sensor and
tags. In our implementation, the extension specification of each external library must have
a unique conceptName (see Listing 5.1), even if, conceptually, they refer to the same RFID
concept. The specification of relations may also be a source of conflict. Since each relation
type is transformed into a UML association, we must ensure well-formedness rules are still
satisfied. For instance, sub-type and containment relations must be transitive and cannot be
circular. In principle, each relation should connect a class from the core metamodel and a
class from the extension metamodel. Relations between classes of the core metamodel should
be prohibited as they do not express an extension from a new concept. A relation between
classes of the extension metamodel means that their corresponding external libraries depend
on each other. In the current implementation, we assumed external libraries are independent
of each other.

6.2.3.3. Graphical concrete syntax. For graphical concrete syntax, one requirement
is that each concept from the core and extension metamodel has a distinguishable represen-
tation to avoid ambiguities. Moody [61] defines an extensive set of principles for designing
an adequate graphical concrete syntax, which the language engineer should follow.

5SeeedRFID library: https://github.com/Seeed-Studio/RFID_Library

80

https://github.com/Seeed-Studio/RFID_Library

Chapter 7

Conclusion

We conclude by summarizing the contributions of this thesis and outlining future work. The
work presented in this thesis makes several contributions to the field of automation in MDE.

7.1. Summary
A DSL represents the concepts of a specific domain. As the domain evolves, the DSL has

to evolve accordingly. Many approaches were proposed in the literature for the evolution
and co-evolution of DSL components (ref. Section 2.2). Since DSLs are restricted languages,
they often rely on external dependencies which are not necessarily modeled like external
libraries. The evolution of the external libraries may impact the DSL. However, no research
has been done in integrating the evolution of external libraries in the DSL. The language
engineer could only manually add the new features in the DSL.

In our work, we first developed a DSL for modeling with Arduino, ArduinoDSL (ref.
Chapter 3). Analyzing the Arduino language and the modeling tools provided (ref. Sec-
tion 2.4), we have seen that the language heavily relies on external libraries. By developing
ArduinoDSL, we could grasp its evolution limits as seen in Section 3.5.

To tackle those limitations, we formulated, in Chapter 4, an approach to integrate the
evolution of external libraries in DSLs. The approach separates the DSL in two aspects: the
core and the extension. The core regroups the stable concepts while the extension contains
the functionalities from the external libraries. By separating the language, we avoid creating
a static language since adding library functions in a metamodel is equivalent to hardwiring
function calls in the syntax of the language. We minimize the language engineer’s manual
effort as she will have to perform two tasks: (i) specify the external library by annotating
it and creating a specification model for the concepts, and (ii) develop a code generator to
produce an Xtext grammar from annotations. The extended language will be generated from
that specification resulting in an evolved DSL.

We described the implementation of our approach in Chapter 5. We created an Xtext
DSL to help the language engineer define the concepts of the external libraries. As the code
generator to produce the grammar from the annotations depends on the DSL, we provide a
code generator that generates the grammar from C++ attributes.

In Chapter 6, we show the feasibility of our approach with a case study on evolving
interactive modeling editors that rely on ArduinoDSL. The approach can manage to add
new concepts and behavior, and their modifications. Thus, we demonstrated that language
engineers can successfully integrate external libraries in the DSL.

7.2. Outlook
Currently in ArduinoDSL, the conditions in a conditional structure are strings since

complex statements are not supported. A potential extension is to handle boolean constructs.
This also ties to the user-defined functions as the return value of a function can be a boolean
or used in a condition. However, in its actual state, ArduinoDSL does not allow return
values for the functions. Thus, another potential improvement would be the addition of
return values for the functions as well as parameters.

Our approach deals with non-breaking changes in external libraries. A potential extension
is to handle breaking changes in external libraries, such as the removal of external functions or
libraries used in a model. As we currently assume external libraries are independent of each
other, another improvement would be to relax this assumption to apply our approach in more
complex domains, such as programming languages. For example, the Java API1 contains
multiple inter-library dependencies with libraries using structures from other libraries. In
Section 5.2.2, we mentioned that a custom code generator is needed to produce the Xtext
grammar. We developed a code generator that creates the grammar from C++ attributes. A
potential extension is to have a family of code generators each aimed at a popular language.

1Java API Documentation: https://docs.oracle.com/en/java/javase/15/docs/api/index.html

82

https://docs.oracle.com/en/java/javase/15/docs/api/index.html

Bibliography

[1] https://www.eclipse.org/gmf-tooling/. Last access: 11-10-2020.
[2] https://wiki.eclipse.org/Graphiti. Last access: 11-10-2020.
[3] https://curl.haxx.se/. Last access: 22-09-2020.
[4] https://httpie.org/. Last access: 22-09-2020.
[5] https://www.hurl.it/. Last access: 22-09-2020.
[6] Abouzahra, A., Sabraoui, A., and Afdel, K. Model composition in model driven engineering: A

systematic literature review. Information and Software Technology 125 (2020).
[7] Anguel, F., Amirat, A., and Bounour, N. Towards models and metamodels co-evolution approach.

In 2013 11th International Symposium on Programming and Systems (ISPS) (2013), IEEE, pp. 163–167.
[8] Banzi, M., and Shiloh, M. Getting Started with Arduino: The Open Source Electronics Prototyping

Platform. Maker Media, Inc., 2014.
[9] Batot, E., Kessentini, W., Sahraoui, H., and Famelis, M. Heuristic-based recommendation

for metamodel-ocl coevolution. In 2017 ACM/IEEE 20th International Conference on Model Driven
Engineering Languages and Systems (MODELS) (2017), IEEE, pp. 210–220.

[10] Bellamy-Royds, A., Bah, T., Lilley, C., Schulze, D., and Willigers, E. Scalable vector
graphics (svg) 2. s Draft. https://svgwg.org/svg2-draft/ (2020).

[11] Bettini, L. Implementing Domain Specific Languages with Xtext and Xtend - Second Edition, 2nd ed.
Packt Publishing, 2016.

[12] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., et al. Web services descrip-
tion language (wsdl) 1.1, 2001.

[13] Cicchetti, A., Di Ruscio, D., Eramo, R., and Pierantonio, A. Automating co-evolution in
model-driven engineering. In 2008 12th International IEEE Enterprise Distributed Object Computing
Conference (2008), IEEE, pp. 222–231.

[14] Daly, C. Emfatic language reference. IBM alphaWorks (2004).
[15] Del Fabro, M. D., and Valduriez, P. Semi-automatic model integration using matching transfor-

mations and weaving models. In Proceedings of the 2007 ACM symposium on Applied computing (2007),
pp. 963–970.

[16] Demuth, A., Lopez-Herrejon, R. E., and Egyed, A. Cross-layer modeler: a tool for flexible
multilevel modeling with consistency checking. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering (2011), pp. 452–455.

[17] Demuth, A., Lopez-Herrejon, R. E., and Egyed, A. Supporting the co-evolution of metamodels
and constraints through incremental constraint management. In International Conference on Model
Driven Engineering Languages and Systems (2013), Springer, pp. 287–303.

https://www.eclipse.org/gmf-tooling/
https://wiki.eclipse.org/Graphiti
https://curl.haxx.se/
https://httpie.org/
https://www.hurl.it/

[18] Demuth, A., Riedl-Ehrenleitner, M., Lopez-Herrejon, R. E., and Egyed, A. Co-evolution
of metamodels and models through consistent change propagation. Journal of Systems and Software
111 (2016), 281–297.

[19] Di Ruscio, D., Iovino, L., and Pierantonio, A. What is needed for managing co-evolution in mde?
In Proceedings of the 2nd International Workshop on Model Comparison in Practice (2011), pp. 30–38.

[20] Di Ruscio, D., Iovino, L., and Pierantonio, A. Managing the coupled evolution of metamodels
and textual concrete syntax specifications. In 2013 39th Euromicro Conference on Software Engineering
and Advanced Applications (2013), IEEE, pp. 114–121.

[21] Di Ruscio, D., Lämmel, R., and Pierantonio, A. Automated co-evolution of gmf editor models.
In International Conference on Software Language Engineering (2010), Springer, pp. 143–162.

[22] Dig, D., and Johnson, R. The role of refactorings in api evolution. In 21st IEEE International
Conference on Software Maintenance (ICSM’05) (2005), IEEE, pp. 389–398.

[23] Dig, D., and Johnson, R. How do apis evolve? a story of refactoring. Journal of software maintenance
and evolution: Research and Practice 18, 2 (2006), 83–107.

[24] Dig, D., Negara, S., Mohindra, V., and Johnson, R. Reba: Refactoring-aware binary adaptation
of evolving libraries. In Proceedings of the 30th international conference on Software engineering (2008),
pp. 441–450.

[25] Dingel, J., Diskin, Z., and Zito, A. Understanding and improving UML package merge. Software
and Systems Modeling 7 (2008), 443–467.

[26] Dresden, T. Software technology group: Emftext, 2009.
[27] Efftinge, S. Xtend.URL: https://eclipse. org/xtend/index. html. Developed by: openArchitectureWare-

Eclipse M2T (2015).
[28] Efftinge, S., Friese, P., Hase, A., Hübner, D., Kadura, C., Kolb, B., Köhnlein, J., Mo-

roff, D., Thoms, K., Völter, M., et al. Xpand documentation. Eclipse Foundation, Ottawa,
Canada, Tech. Rep (2004).

[29] Erdweg, S., Rendel, T., Kästner, C., and Ostermann, K. Sugarj: library-based syntactic
language extensibility. In Proceedings of the 2011 ACM international conference on Object oriented
programming systems languages and applications (2011), pp. 391–406.

[30] Fokaefs, M., Mikhaiel, R., Tsantalis, N., Stroulia, E., and Lau, A. An empirical study on
web service evolution. In International Conference on Web Services (2011), IEEE, pp. 49–56.

[31] Fowler, M. Language workbenches: The killer-app for domain specific languages?, 2005.
[32] Garcés, K., Jouault, F., Cointe, P., and Bézivin, J. Managing model adaptation by precise

detection of metamodel changes. In European Conference on Model Driven Architecture-Foundations
and Applications (2009), Springer, pp. 34–49.

[33] Gronback, R. C. Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit. Pearson
Education, 2009.

[34] Harel, D. Statecharts: A visual formalism for complex systems. Science of computer programming 8,
3 (1987), 231–274.

[35] Harel, D., and Rumpe, B. Meaningful Modeling: What’s the Semantics of "Semantics"? IEEE
Computer 37, 10 (2004), 64–72.

[36] Harrand, N., Fleurey, F., Morin, B., and Husa, K. E. Thingml: a language and code generation
framework for heterogeneous targets. In Proceedings of the ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems (2016), pp. 125–135.

84

[37] Hebig, R., Khelladi, D. E., and Bendraou, R. Approaches to co-evolution of metamodels and
models: A survey. IEEE Transactions on Software Engineering 43, 5 (2016), 396–414.

[38] Henkel, J., and Diwan, A. Catchup! capturing and replaying refactorings to support api evolution.
In Proceedings of the 27th international conference on Software engineering (2005), pp. 274–283.

[39] Herrmannsdoerfer, M., Benz, S., and Juergens, E. Cope-automating coupled evolution of meta-
models and models. In European Conference on Object-Oriented Programming (2009), Springer, pp. 52–
76.

[40] Hieronymus, J. L. Ascii phonetic symbols for the world’s languages: Worldbet. Journal of the Inter-
national Phonetic Association 23 (1993), 72.

[41] Johnson, S. C., et al. Yacc: Yet Another Compiler-Compiler, vol. 32. Bell Laboratories Murray Hill,
NJ, 1975.

[42] Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. Atl: A model transformation tool. Science
of computer programming 72, 1-2 (2008), 31–39.

[43] Jouault, F., Bézivin, J., and Kurtev, I. Tcs: a dsl for the specification of textual concrete syntaxes
in model engineering. In Proceedings of the 5th international conference on Generative programming and
component engineering (2006), pp. 249–254.

[44] Judson, S. R., France, R. B., and Carver, D. L. Specifying model transformations at the meta-
model level. In Proceedings of the Workshop in Software Model Engineering (WiSME2003), San Fran-
cisco, CA, USA (2003).

[45] Kadhim, B. M., and Waite, W. M. Maptool — supporting modular syntax development. In Inter-
national Conference on Compiler Construction (1996), Springer, pp. 268–280.

[46] Kalleberg, K. T., and Visser, E. Spoofax: An extensible, interactive development environment for
program transformation with stratego/xt. Technical Report Series TUD-SERG-2007-018 (2007).

[47] Kessentini, W., Sahraoui, H., and Wimmer, M. Automated metamodel/model co-evolution us-
ing a multi-objective optimization approach. In European Conference on Modelling Foundations and
Applications (2016), Springer, pp. 138–155.

[48] Khelladi, D. E., Bendraou, R., Hebig, R., and Gervais, M.-P. A semi-automatic maintenance
and co-evolution of ocl constraints with (meta) model evolution. Journal of Systems and Software 134
(2017), 242–260.

[49] Khelladi, D. E., Hebig, R., Bendraou, R., Robin, J., and Gervais, M.-P. Detecting complex
changes during metamodel evolution. In International Conference on Advanced Information Systems
Engineering (2015), Springer, pp. 263–278.

[50] Knuth, D. E. On the translation of languages from left to right. Information and control 8, 6 (1965),
607–639.

[51] Kolovos, D. S., García-Domínguez, A., Rose, L. M., and Paige, R. F. Eugenia: towards
disciplined and automated development of gmf-based graphical model editors. Software and Systems
Modeling 16 (2017), 229–255.

[52] Kolovos, D. S., Paige, R. F., and Polack, F. A. Eclipse development tools for epsilon. In Eclipse
Summit Europe, Eclipse Modeling Symposium (2006), vol. 20062, Citeseer, p. 200.

[53] Kramer, D. Api documentation from source code comments: a case study of javadoc. In Proceedings
of the 17th annual international conference on Computer documentation (1999), pp. 147–153.

[54] Levendovszky, T., Balasubramanian, D., Narayanan, A., and Karsai, G. A novel approach
to semi-automated evolution of dsml model transformation. In International Conference on Software
Language Engineering (2009), Springer, pp. 23–41.

85

[55] Li, J., Xiong, Y., Liu, X., and Zhang, L. How does web service api evolution affect clients? In
International Conference on Web Services (2013), IEEE, pp. 300–307.

[56] Luhunu, L., and Syriani, E. Comparison of the expressiveness and performance of template-based
code generation tools. In Proceedings of the 10th ACM SIGPLAN International Conference on Software
Language Engineering (2017), pp. 206–216.

[57] Martin, R. C. Design principles and design patterns. Object Mentor 1, 34 (2000), 597.
[58] McGill, M. J. Uml class diagram syntax: An empirical study of comprehension.
[59] Meyers, B., and Vangheluwe, H. A Framework for Evolution of Modelling Languages. Science of

Computer Programming 76, 12 (2011), 1223–1246.
[60] Meyers, B., Wimmer, M., Cicchetti, A., and Sprinkle, J. A generic in-place transformation-

based approach to structured model co-evolution. Electronic Communications of the EASST 42 (2012).
[61] Moody, D. The “physics” of notations: toward a scientific basis for constructing visual notations in

software engineering. IEEE Transactions on software engineering 35, 6 (2009), 756–779.
[62] Musset, J., Juliot, É., Lacrampe, S., Piers, W., Brun, C., Goubet, L., Lussaud, Y., and

Allilaire, F. Acceleo user guide. See also http://acceleo. org/doc/obeo/en/acceleo-2.6-user-guide. pdf
2 (2006), 157.

[63] Narayanan, A., Levendovszky, T., Balasubramanian, D., and Karsai, G. Automatic do-
main model migration to manage metamodel evolution. In International Conference on Model Driven
Engineering Languages and Systems (2009), Springer, pp. 706–711.

[64] Overbey, J. L., and Johnson, R. E. Generating rewritable abstract syntax trees. In International
Conference on Software Language Engineering (2008), Springer, pp. 114–133.

[65] Paige, R. F., Matragkas, N., and Rose, L. M. Evolving models in model-driven engineering:
State-of-the-art and future challenges. Journal of Systems and Software 111 (2016), 272–280.

[66] Parr, T., and Fisher, K. Ll(*): The foundation of the antlr parser generator. ACM Sigplan Notices
46, 6 (2011), 425–436.

[67] Purdum, J. Beginning c for arduino: Learn c programming for the arduino and compatible microcon-
troller, 2014.

[68] Richters, M., and Gogolla, M. Ocl: Syntax, semantics, and tools. In Object Modeling with the
OCL. Springer, 2002, pp. 42–68.

[69] Rohlfshagen, P., Liu, J., Perez-Liebana, D., and Lucas, S. M. Pac-Man Conquers Academia:
Two Decades of Research Using a Classic Arcade Game. IEEE Transactions on Games 10, 3 (2018),
233–256.

[70] Romano, D., and Pinzger, M. Analyzing the evolution of web services using fine-grained changes.
In 2012 IEEE 19th international conference on web services (2012), IEEE, pp. 392–399.

[71] Roques, A. Plantuml: Open-source tool that uses simple textual descriptions to draw uml diagrams,
2015.

[72] Rose, L., Etien, A., Mendez, D., Kolovos, D., Paige, R., and Polack, F. Comparing model-
metamodel and transformation-metamodel coevolution. In International workshop on models and evo-
lutions (2010).

[73] Rose, L. M., Paige, R. F., Kolovos, D. S., and Polack, F. A. The epsilon generation language.
In European Conference on Model Driven Architecture-Foundations and Applications (2008), Springer,
pp. 1–16.

[74] Schmidt, D. C. Model-driven engineering. Computer-IEEE Computer Society- 39, 2 (2006), 25.

86

[75] Schmidt, M., and Gloetzner, T. Constructing difference tools for models using the sidiff framework.
In Companion of the 30th international conference on Software engineering (2008), pp. 947–948.

[76] Smith, R., Koeppe, T., Maurer, J., and Perchik, D. Working draft, standard for programming
language c++. ISO/IEC JTC1/SC22/WG21 document N 4861 (2020).

[77] Smolander, K., Lyytinen, K., Tahvanainen, V.-P., and Marttiin, P. Metaedit—a flexible
graphical environment for methodology modelling. In International Conference on Advanced Information
Systems Engineering (1991), Springer, pp. 168–193.

[78] Soley, R., et al. Model driven architecture. OMG white paper 308, 308 (2000), 5.
[79] Sousa, V., Syriani, E., and Fall, K. Operationalizing the integration of user interaction specifica-

tions in the synthesis of modeling editors. In Software Language Engineering (2019), ACM, pp. 42–54.
[80] Sprinkle, J., and Karsai, G. A domain-specific visual language for domain model evolution. Journal

of Visual Languages & Computing 15, 3-4 (2004), 291–307.
[81] Steinberg, D., Budinsky, F., Merks, E., and Paternostro, M. EMF: eclipse modeling frame-

work. Pearson Education, 2008.
[82] Syriani, E., Luhunu, L., and Sahraoui, H. Systematic mapping study of template-based code

generation. Computer Languages, Systems & Structures 52 (2018), 43–62.
[83] Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Van Mierlo, S., and Ergin,

H. Atompm: A web-based modeling environment. Demos/Posters/StudentResearch@ MoDELS 2013
(2013), 21–25.

[84] Toulmé, A., and Inc, I. Presentation of emf compare utility. In Eclipse Modeling Symposium (2006),
pp. 1–8.

[85] van der Storm, T. The rascal language workbench. CWI. Software Engineering [SEN] 13 (2011), 14.
[86] Van Heesch, D. Doxygen: Source code documentation generator tool. URL: http://www. doxygen.

org (2008).
[87] Vermolen, S. D., Wachsmuth, G., and Visser, E. Reconstructing complex metamodel evolution.

In International Conference on Software Language Engineering (2011), Springer, pp. 201–221.
[88] Viyović, V., Maksimović, M., and Perisić, B. Sirius: A rapid development of dsm graphical editor.

In IEEE 18th International Conference on Intelligent Engineering Systems INES 2014 (2014), IEEE,
pp. 233–238.

[89] Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L. C., Visser,
E., Wachsmuth, G., et al. DSL engineering: Designing, implementing and using domain-specific
languages. dslbook. org, 2013.

[90] Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L. C. L., Visser,
E., and Wachsmuth, G. DSL Engineering - Designing, Implementing and Using Domain-Specific
Languages. dslbook.org, 2013.

[91] Wachsmuth, G. Metamodel adaptation and model co-adaptation. In European Conference on Object-
Oriented Programming (2007), Springer, pp. 600–624.

[92] Washizaki, H., Akimoto, M., Hasebe, A., Kubo, A., and Fukazawa, Y. Tcd: a text-based uml
class diagram notation and its model converters. In International Conference on Advanced Software
Engineering and Its Applications (2010), Springer, pp. 296–302.

[93] Wile, D. S. Abstract syntax from concrete syntax. In Proceedings of the 19th international conference
on Software engineering (1997), pp. 472–480.

87

Appendix A

Conceptual metamodel

The annotated metamodel of the conceptual aspect of ArduinoDSL

1 @gmf

2 @namespace(uri="http://www.example.org/arduinoConfiguration", prefix="arduinoConfiguration")

3 package arduinoConfiguration;

4

5 @gmf.diagram

6 class Project {

7 @gmf.label(label.pattern="projectName = {0}")

8 attr String projectName;

9 val Board board;

10 }

11

12 abstract class Board {

13 }

14

15 @gmf.node(figure="svg", svg.uri="platform:/plugin/ca.iro.umontreal.geodes.arduino.editor.

configuration/svg/arduinoBoard.svg", size="150,150", label.placement="none", margin="0")

16 class ArduinoBoard extends Board {

17 @gmf.link(label="analogPin")

18 val AnalogPin[*] analogPins;

19 @gmf.link(label="digitalPin")

20 val DigitalPin[*] digitalPins;

21 @gmf.link(label="communicationPin")

22 val CommunicationPin[*] communicationPins;

23 }

24

25 abstract class Pin {

26 @gmf.label(label.pattern="pinNumber = {0}")

27 unique attr String pinNumber;

28 @gmf.label(label.pattern="pinName = {0}")

29 unique attr String pinName;

30 @gmf.label(label.pattern="pinType = {0}")

31 unique attr PinType type;

32 }

33

34 @gmf.node(label.placement="none", phantom="true")

35 class AnalogPin extends Pin {

36 @gmf.compartment

37 val ArduinoAnalogModule arduinoAnalogModule;

38 }

39

40 @gmf.node(label.placement="none", phantom="true")

41 class DigitalPin extends Pin {

42 @gmf.compartment

43 val ArduinoDigitalModule arduinoDigitalModule;

44 }

45

46 @gmf.node(label.placement="none", phantom="true")

47 class CommunicationPin extends Pin {

48 @gmf.compartment

49 val ArduinoCommunicationModule arduinoCommunicationModule;

50 }

51

52 abstract class Module {

53 }

54

55 abstract class ArduinoModule extends Module {

56 @gmf.label(label.pattern="library = {0}", label.icon="false")

57 unique attr String library;

58 }

59

60 enum PinType {

61 INPUT = 0;

62 OUTPUT = 1;

63 }

64

65 abstract class ArduinoCommunicationModule extends ArduinoModule {

66 }

67

68 abstract class ArduinoDigitalModule extends ArduinoModule {

69 }

70

71 abstract class ArduinoAnalogModule extends ArduinoModule {

72 }

73

90

74 @gmf.node(figure="svg", svg.uri="platform:/plugin/ca.iro.umontreal.geodes.arduino.editor.

configuration/svg/rfid.svg",

75 size="150,150", label.placement="external", label="cards", label.pattern="cards = {0}", margin="

0")

76 class RFID extends ArduinoDigitalModule {

77 attr String[*] cards;

78 }

79

80 @gmf.node(figure="svg", svg.uri="platform:/plugin/ca.iro.umontreal.geodes.arduino.editor.

configuration/svg/blueLed.svg",

81 size="150,150", label.placement="none", margin="0")

82 class LED extends ArduinoDigitalModule {

83 @gmf.label(label.pattern="brightness = {0}")

84 attr int brightness;

85 }

91

Appendix B

Behavioral metamodel

The Xtext grammar representing the behavioral metamodel of ArduinoDSL

1 grammar ca.iro.umontreal.geodes.arduino.editor.interaction.FixedGrammar with ca.iro.umontreal.

geodes.arduino.editor.interaction.DynamicGrammar

2 generate fixedGrammar "http://www.iro.ca/umontreal/geodes/arduino/editor/interaction/

FixedGrammar"

3 Project:

4 project += InfiniteLoop | Setup;

5

6 InfiniteLoop:

7 infiniteLoop += Loop | CustomIf | CustomCode | Declaration | ArduinoFunctions | Comments |

CustomAssignment | FunctionDeclaration | FunctionCall | RFID125Functions;

8

9 RFID125Functions: BranchRFID125 | ReadCodeRFID125 | CheckCardRegistrationRFID125 |

WriteCodesRFID125 | ClearCodesRFID125;

10

11 CheckCardRegistrationRFID125: ’RFID125’ ’checkRegistration’ card+=STRING ’on’ pin=Pins;

12

13 ClearCodesRFID125: ’RFID125’ ’clearCards’ ’on’ pin=Pins;

14

15 WriteCodesRFID125: ’RFID125’ ’registerCards’ codes+=STRING ’on’ pin=Pins;

16

17 ReadCodeRFID125: ’RFID125’ ’readCard’ ’on’ pin=Pins (’->’ (variableType=’String’)? variableName

+=ID)?;

18

19 FunctionDeclaration:

20 ’FUNCTION’ functionName=ID ’{’

21 (functionBody+=InfiniteLoop)+

22 ’}’;

23

24 FunctionCall: ’CALL’ functionName=ID;

25

26 Comments: ’BEGIN:COMMENTS’ comments+=STRING ’END:COMMENTS’;

27

28 Setup:

29 ’SETUP’ ’{’

30 (setup+=InfiniteLoop)+

31 ’}’;

32

33 ArduinoFunctions: DigitalFunctions| AnalogFunctions | AdvancedFunctions | TimeFunctions |

SerialFunctions;

34

35 SerialFunctions: SerialPrint | SerialBegin | SerialRead | SerialAvailable;

36

37 SerialRead: ’SERIAL’ ’read’ (’->’ (variableType=’string’)? variableName=ID)?;

38

39 SerialAvailable: ’SERIAL’ ’available’ (’->’ (variableType=’int’)? variableName=ID)?;

40

41 SerialPrint: ’SERIAL’ ’print’ message+=STRING;

42

43 SerialBegin:

44 ’SERIAL’ ’begin’ speed=INT (’withConfig’ config=(’SERIAL_5N1’ | ’SERIAL_6N1’ | ’SERIAL_7N1’ |

’SERIAL_8N1’ | ’SERIAL_5N2’ | ’SERIAL_6N2’ | ’SERIAL_7N2’ | ’SERIAL_8N2’ | ’SERIAL_5E1’ |

’SERIAL_6E1’ | ’SERIAL_7E1’ | ’SERIAL_8E1’ | ’SERIAL_5E2’ | ’SERIAL_6E2’ | ’SERIAL_7E2’ |

’SERIAL_8E2’ | ’SERIAL_5O1’ | ’SERIAL_6O1’ | ’SERIAL_7O1’ | ’SERIAL_8O1’ | ’SERIAL_5O2’ |

’SERIAL_6O2’ | ’SERIAL_7O2’ | ’SERIAL_8O2’))?

45 ;

46

47 AdvancedFunctions:

48 ShiftIn | PulseIn | PulseInLong | NoTone | ShiftOut | Tone

49 ;

50

51 ShiftOut:

52 ’SHIFT’ ’out’ value=INT ’from’ clockPin=Pins ’to’ dataPin=Pins ’inOrder’ order=(’MSBFIRST’ | ’

LSBFIRST’)

53 ;

54

55 ShiftIn:

56 ’SHIFT’ ’in’ ’from’ clockPin=Pins ’to’ dataPin=Pins ’inOrder’ order=(’MSBFIRST’ | ’LSBFIRST’)

(’->’ (variableType=’byte’)? variableName=ID)?

57 ;

58

59 NoTone:

60 ’TONE’ ’stop’ ’on’ pin=Pins

61 ;

62

63 Tone:

94

64 ’TONE’ ’play’ frequency=INT (’during’ time=INT)? ’on’ pin=Pins

65 ;

66

67 PulseIn:

68 ’PULSE’ ’read’ pulseType=(’HIGH’ | ’LOW’) ’on’ pin=Pins (’STOP_IF_NO_PULSE’ ’in’ time=INT)? (’

->’ (variableType=’long’)? variableName=ID)?

69 ;

70

71 PulseInLong:

72 ’PULSE’ ’readLong’ pulseType=(’HIGH’ | ’LOW’) ’on’ pin=Pins (’STOP_IF_NO_PULSE’ ’in’ time=INT)

? (’->’ (variableType=’long’)? variableName=ID)?

73 ;

74

75

76 TimeFunctions:

77 Micros | Millis | Delay | DelayMicroseconds

78 ;

79

80 Millis:

81 time+=’GET_RUNNING_TIME_IN_MILLISECONDS’ (’->’ (variableType=’long’)? variableName=ID)?

82 ;

83

84 Micros:

85 time+=’GET_RUNNING_TIME_IN_MICROSECONDS’ (’->’ (variableType=’long’)? variableName=ID)?

86 ;

87

88 DelayMicroseconds:

89 ’WAIT’ time=INT ’MICROSECONDS’;

90

91 Delay: ’WAIT’ time=INT ’MILLISECONDS’;

92

93 AnalogFunctions: AnalogRead | AnalogWrite | AnalogReference;

94

95 AnalogReference: ’ANALOG’ ’reference’ voltage=(’DEFAULT’ | ’INTERNAL’ | ’INTERNAL1V1’ | ’

INTERNAL2V56’ | ’EXTERNAL’);

96

97 AnalogRead: ’ANALOG’ ’read’ pin=Pins (’->’ (variableType=’int’)? variableName=ID)?;

98

99 AnalogWrite: ’ANALOG’ ’write’ (intValue=INT | idValue=ID) ’on’ pin=Pins;

100

101 DigitalFunctions: DigitalRead | DigitalWrite | PinMode;

102

103 DigitalRead: ’DIGITAL’ ’read’ pin=Pins (’->’ (variableType=’int’)? variableName=ID)?;

104

105 DigitalWrite: ’DIGITAL’ ’write’ value=(’HIGH’ | ’LOW’) ’on’ pin=Pins;

95

106

107 PinMode: ’MODE’ ’set’ mode=(’INPUT’ | ’OUTPUT’ | ’INPUT_PULLUP’) ’on’ pin=Pins;

108

109 CustomCode: customCode+=STRING;

110

111 Loop: CustomFor | CustomWhile | CustomDoWhile;

112

113 CustomFor:

114 ’BEGINNING_FROM’ begin=INT ’TO’ end=INT ’JUMPING_BY’ step=INT ’REPEAT:’

115 (action+=Action)+

116 ’END:REPEAT’;

117

118 CustomWhile:

119 ’WHILE’ whileCondition=CustomCode ’DO:’

120 (whileAction+=Action)+

121 ’END:WHILE’;

122

123 CustomDoWhile:

124 ’DO:’

125 (dowhileAction+=Action)+

126 ’WHILE’ dowhileCondition=CustomCode

127 ’END:DOWHILE’;

128

129 CustomCondition: CustomElif | CustomElse;

130

131 CustomIf:

132 ’IF’ ifCondition=CustomCode

133 (ifAction+=Action)+

134 (ifElse+=CustomCondition)*

135 ’END:IF’;

136

137 Action: action+=InfiniteLoop;

138

139 CustomElif:

140 ’ELSEIF’ elifCondition+=CustomCode

141 (elifAction+=Action)+;

142

143 CustomElse:

144 ’ELSE’

145 (elseAction+=Action)+;

146

147 CustomDeclaration: (variableType=VariableType) (nom=ID) (’=’ assignmentValues+=AssignmentValues)

?;

148

149 AssignmentValues: valeur+=Values (operateur+=(’+’ | ’-’ | ’*’ | ’/’) operationValues+=Values)*;

96

150

151 CustomAssignment: nom=ID ’=’ assignmentValues+=AssignmentValues;

152

153 VariableType: variableType=(’String’ | ’int’ | ’char’ | ’bool’);

154

155 FunctionType: functionType=(’String’ | ’int’ | ’char’ | ’bool’ | ’void’);

156

157 Values: stringValue=STRING | intValue+=INT | constantValue=(’HIGH’ | ’LOW’ | ’true’ | ’false’) |

variableValue=ID;

97

Appendix C

The board code generator

The Arduino code generator for the ArduinoDSL board model

1 // libraries imported here

2 \#include <SoftwareSerial.h> // Serial library

3 [% for(aModule in Board!Module) {

4 if(aModule.library.isDefined()) { %]

5 \#include "[%=aModule.library%].h"

6 [% }

7 } %]

8

9 // pins defined here

10 [% for(aPin in Board!Pin) {

11 if(aPin.pinNumber.isDefined() and aPin.pinName.isDefined()) { %]

12 const int [%=aPin.pinName%] = [%=aPin.pinNumber%];

13 [% }

14 } %]

15

16 // initial configuration defined here

17 // will run just once

18 void setup() {

19 [% for(aPin in Board!Pin) {

20 if(aPin.pinName.isDefined()){

21 if (aPin.type == "OUTPUT") { %]

22 pinMode([%=aPin.pinName%], [%=aPin.type%]);

23 [% }

24 else { %]

25 pinMode([%=aPin.pinName%], INPUT);

26 [% }

27 }

28 else if(aPin.pinNumber.isDefined()){

29 if (aPin.type == "OUTPUT") { %]

30 pinMode([%=aPin.pinNumber%], [%=aPin.type%]);

31 [% }

32 else { %]

33 pinMode([%=aPin.pinNumber%], INPUT);

34 [% }

35 }

36 } %]

On line 2, we import the SoftwareSerial library1 which allows serial communication on
the digital pins and not only on the UART pin. On lines 3 to 7, we import the libraries
defined in the board model. On lines 10 to 15, we declare and assign names to the pins
used in the board model, if it was defined. To complete the configuration of the modules,
we generate their mode (either INPUT or OUTPUT), on lines 19 to 37.

1SoftwareSerial library: https://www.arduino.cc/en/Reference/softwareSerial

100

https://www.arduino.cc/en/Reference/softwareSerial

Appendix D

The sketch code generator

The Arduino code generator for the ArduinoDSL sketch model

1 [% // find the setup if it exists

2 for (aSetup in Sketch!Setup) {

3 for(anInstance in aSetup.setup) { %]

4 [%=anInstance.recursive_op()%]

5 [% }

6 } %]

7 }

8

9 // the behavior of an infinite loop

10 // will always run unless a reboot is done

11 void loop()

12 {

13 [% for (aProject in Sketch!Project) {

14 for(anInstance in aProject.project) {

15 if(not anInstance.isTypeOf(Sketch!InfiniteLoop)) {%]

16 [%=anInstance.recursive_op()%]

17 [% }

18 else { %]

19 [%=anInstance.infiniteLoop.first().recursive_op()%]

20 [% }

21 }

22 } %]

23 }

24

25

26 [* Operation template *]

27

28

29 [% operation Sketch!Comments recursive_op() { %]

30 /*

31 [%=self.comments.first()%]

32 */

33 [% } %]

34

35 [% operation Sketch!CheckCardRegistrationRFID recursive_op() {

36 var fonction = ’’ + self.pin.pins.first() + ’.testerCode("’ + self.card.first() + ’");’;%]

37 [%=fonction%]

38 [% } %]

39

40 [% operation Sketch!ClearCodesRFID recursive_op() {

41 var fonction = ’’ + self.pin.pins.first() + ’.effacerCodes();’;%]

42 [%=fonction%]

43 [% } %]

44

45 [% operation Sketch!WriteCodesRFID recursive_op() {

46 var fonction = ’’ + self.pin.pins.first() + ’.ecrireCodes("’ + self.codes.first() + ’");’;%]

47 [%=fonction%]

48 [% } %]

49

50 [% operation Sketch!ReadCodeRFID recursive_op() {

51 var fonction = ’’;

52 if(self.variableName.first().isDefined()){

53 if(self.variableType.isDefined()){

54 fonction = fonction + self.variableType + ’ ’ + self.variableName.first() + ’ = ’ + self.pin.

pins.first() + ’.lireCode();’;

55 }

56 else {

57 fonction = fonction + self.variableName.first() + ’ = ’ + self.pin.pins.first() + ’.lireCode();’

;

58 }

59 }

60 else{

61 fonction = fonction + self.pin.pins.first() + ’.lireCode();’;

62 }%]

63 [%=fonction%]

64 [% } %]

65

66 [% operation Sketch!SerialInfosRFID recursive_op() {

67 var fonction = ’’;

68 if(self.state=’ON’) {

69 fonction = fonction + self.pin.pins.first() + ’.activerSerialInfos();’;

70 }

71 else{

72 fonction = fonction + self.pin.pins.first() + ’.desactiverSerialInfos();’;

73 }%]

102

74 [%=fonction%]

75 [% } %]

76

77 [% operation Sketch!BeginLCD recursive_op() {

78 var fonction = ’’ + self.pin.pins.first() + ’.begin(’ + self.columns + ’,’ + self.rows + ’);’;%]

79 [%=fonction%]

80 [% } %]

81

82

83 [% operation Sketch!PrintLCD recursive_op() {

84 var fonction = ’’ + self.pin.pins.first() + ’.print("’ + self.message.first() + ’");’;%]

85 [%=fonction%]

86 [% } %]

87

88

89 [% operation Sketch!SetCursorLCD recursive_op() {

90 var fonction = ’’ + self.pin.pins.first() + ’.setCursor(’ + self.column + ’,’ + self.row + ’);’

;%]

91 [%=fonction%]

92 [% } %]

93

94

95 [% operation Sketch!SetRGBLCD recursive_op() {

96 var blue = 0;

97 var red = 0;

98 var green = 0;

99 if(self.blue.isDefined()) {

100 blue = self.blue;

101 }

102 if(self.red.isDefined()) {

103 red = self.red;

104 }

105 if(self.green.isDefined()) {

106 green = self.green;

107 }

108 var fonction = ’’ + self.pin.pins.first() + ’.setRGB(’ + red + ’,’ + green + ’,’ + blue + ’);’

;%]

109 [%=fonction%]

110 [% } %]

111

112

113 [% operation Sketch!SerialRead recursive_op() {

114 if(self.variableName.first().isDefined()) {

115 if(self.variableType.isDefined()) {%]

116 String [%=self.variableName.first()%] = Serial.readString();

103

117 [% } else {%]

118 [%=self.variableName.first()%] = Serial.readString();

119 [%}

120 }

121 else {%]

122 Serial.readString();

123 [% }

124 } %]

125

126

127 [% operation Sketch!SerialAvailable recursive_op() {

128 if(self.variableName.first().isDefined()) {

129 if(self.variableType.isDefined()) {%]

130 int [%=self.variableName.first()%] = Serial.available();

131 [% }

132 else {%]

133 [%=self.variableName.first()%] = Serial.available();

134 [%}

135 }

136 else {%]

137 Serial.available();

138 [% }

139 } %]

140

141

142 [% operation Sketch!SerialPrint recursive_op() { %]

143 Serial.println("[%=self.message.first()%]");

144 [% } %]

145

146

147 [% operation Sketch!SerialBegin recursive_op() {

148 if(self.config.isDefined()) { %]

149 Serial.begin([%=self.speed%], [%=self.config%]);

150 [% }

151 else { %]

152 Serial.begin([%=self.speed%]);

153 [% }

154 } %]

155

156

157 [% operation Sketch!ShiftOut recursive_op() { %]

158 shiftOut([%=self.dataPin.pins.first()%], [%=self.clockPin.pins.first()%], [%=self.order%], [%=

self.value%]);

159 [% } %]

160

104

161

162 [% operation Sketch!ShiftIn recursive_op() {

163 if(self.variableName.first().isDefined()) {

164 if(self.variableType.first().isDefined()) {%]

165 byte [%=self.variableName.first()%] = shiftIn([%=self.dataPin.pins.first()%], [%=self.clockPin.

pins.first()%], [%=self.order%]);

166 [% }

167 else {%]

168 [%=self.variableName.first()%] = shiftIn([%=self.dataPin.pins.first()%], [%=self.clockPin.pins.

first()%], [%=self.order%]);

169 [%}

170 }

171 else {%]

172 shiftIn([%=self.dataPin.pins.first()%], [%=self.clockPin.pins.first()%], [%=self.order%]);

173 [% }

174 } %]

175

176

177 [% operation Sketch!NoTone recursive_op() { %]

178 noTone([%=self.pin.pins.first()%]);

179 [% } %]

180

181

182 [% operation Sketch!Tone recursive_op() {

183 if(self.time > 0) {%]

184 tone([%=self.pin.pins.first()%], [%=self.frequency%], [%=self.time%]);

185 [% }

186 else{%]

187 tone([%=self.pin.pins.first()%], [%=self.frequency%]);

188 [%}

189 } %]

190

191

192 [% operation Sketch!PulseIn recursive_op() {

193 if(self.time > 0) {

194 if(self.variableName.first().isDefined()) {

195 if(self.variableType.first().isDefined()) {%]

196 unsigned long [%=self.variableName.first()%] = pulseIn([%=self.pin.pins.first()%], [%=self.

pulseType%], [%=self.time%]);

197 [% }

198 else {%]

199 [%=self.variableName.first()%] = pulseIn([%=self.pin.pins.first()%], [%=self.pulseType%], [%=

self.time%]);

200 [%}

201 }

105

202 else {%]

203 pulseIn([%=self.pin.pins.first()%], [%=self.pulseType%], [%=self.time%]);

204 [%}

205 }

206 else {

207 if(self.variableName.first().isDefined()) {

208 if(self.variableType.first().isDefined()) { %]

209 unsigned long [%=self.variableName.first()%] = pulseIn([%=self.pin.pins.first()%], [%=self.

pulseType%]);

210 [% }

211 else {%]

212 [%=self.variableName.first()%] = pulseIn([%=self.pin.pins.first()%], [%=self.pulseType%]);

213 [%}

214 }

215 else {%]

216 pulseIn([%=self.pin.pins.first()%], [%=self.pulseType%]);

217 [%}

218 }

219 } %]

220

221

222 [% operation Sketch!PulseInLong recursive_op() {

223 if(self.time > 0) {

224 if(self.variableName.first().isDefined()) {

225 if(self.variableType.first().isDefined()) {%]

226 unsigned long [%=self.variableName.first()%] = pulseInLong([%=self.pin.pins.first()%], [%=self.

pulseType%], [%=self.time%]);

227 [% }

228 else {%]

229 [%=self.variableName.first()%] = pulseInLong([%=self.pin.pins.first()%], [%=self.type%], [%=self

.time%]);

230 [%}

231 }

232 else {%]

233 pulseInLong([%=self.pin.pins.first()%], [%=self.pulseType%], [%=self.time%]);

234 [%}

235 }

236 else {

237 if(self.variableName.first().isDefined()) {

238 if(self.variableType.first().isDefined()) {%]

239 unsigned long [%=self.variableName.first()%] = pulseInLong([%=self.pin.pins.first()%], [%=self.

pulseType%]);

240 [% }

241 else {%]

242 [%=self.variableName.first()%] = pulseInLong([%=self.pin.pins.first()%], [%=self.pulseType%]);

106

243 [%}

244 }

245 else {%]

246 pulseInLong([%=self.pin.pins.first()%], [%=self.pulseType%]);

247 [%}

248 }

249 } %]

250

251

252 [% operation Sketch!Millis recursive_op() {

253 if(self.variableName.first().isDefined()) {

254 if(self.variableType.first().isDefined()) {%]

255 unsigned long [%=self.variableName.first()%] = millis();

256 [% }

257 else {%]

258 [%=self.variableName.first()%] = millis();

259 [%}

260 }

261 else {%]

262 millis();

263 [%}

264 } %]

265

266

267 [% operation Sketch!Micros recursive_op() {

268 if(self.variableName.first().isDefined()) {

269 if(self.variableType.first().isDefined()) {%]

270 unsigned long [%=self.variableName.first()%] = micros();

271 [% }

272 else {%]

273 [%=self.variableName.first()%] = micros();

274 [%}

275 }

276 else {%]

277 micros();

278 [% }

279 } %]

280

281

282 [% operation Sketch!Delay recursive_op() { %]

283 delay([%=self.time%]);

284 [% } %]

285

286

287 [% operation Sketch!DelayMicroseconds recursive_op() { %]

107

288 delayMicroseconds([%=self.time%]);

289 [% } %]

290

291

292 [% operation Sketch!AnalogReference recursive_op() { %]

293 analogReference([%=self.voltage%]);

294 [% } %]

295

296

297 [% operation Sketch!AnalogRead recursive_op() {

298 if(self.variableName.first().isDefined()){

299 if(self.variableType.first().isDefined()){%]

300 int [%=self.variableName.first()%] = analogRead([%=self.pin.pins.first()%]);

301 [% }

302 else{%]

303 [%=self.variableName.first()%] = analogRead([%=self.pin.pins.first()%]);

304 [%}

305 }

306 else{%]

307 analogRead([%=self.pin.pins.first()%]);

308 [%}

309 } %]

310

311

312 [% operation Sketch!AnalogWrite recursive_op() {

313 if(self.idValue.first().isDefined()) {%]

314 analogWrite([%=self.pin.pins.first()%], [%=self.idValue.first()%]);

315 [% }

316 else {%]

317 analogWrite([%=self.pin.pins.first()%], [%=self.intValue.first()%]);

318 [%}

319 } %]

320

321 [% operation Sketch!DigitalRead recursive_op() {

322 if(self.variableName.first().isDefined()){

323 if(self.variableType.first().isDefined()){%]

324 int [%=self.variableName.first()%] = digitalRead([%=self.pin.pins.first()%]);

325 [% }

326 else{%]

327 [%=self.variableName.first()%] = digitalRead([%=self.pin.pins.first()%]);

328 [%}

329 }

330 else{%]

331 digitalRead([%=self.pin.pins.first()%]);

332 [%}

108

333 } %]

334

335

336 [% operation Sketch!DigitalWrite recursive_op() { %]

337 digitalWrite([%=self.pin.pins.first()%], [%=self.value%]);

338 [% } %]

339

340

341 [% operation Sketch!PinMode recursive_op() { %]

342 pinMode([%=self.pin.pins.first()%], [%=self.mode%]);

343 [% } %]

344

345

346 [%

347 operation Sketch!CustomCode recursive_op() { %]

348 [%=self.customCode.first()%]

349 [% }

350 %]

351

352

353 [% operation Sketch!CustomFor recursive_op() { %]

354 for(int i = [%=self.begin.first()%]; i < [%=self.end.first()%]; i+=[%=self.step.first()%]) {

355 [%for(anAction in self.action) {%]

356 [%=anAction.action.first().recursive_op()%]

357 [% } %]

358 }

359 [% } %]

360

361

362 [% operation Sketch!CustomWhile recursive_op() { %]

363 while([%=self.whileCondition.customCode.first().first()%]) {

364 [%for(anAction in self.whileAction) {%]

365 [%=anAction.action.first().recursive_op()%]

366 [% } %]

367 }

368 [% } %]

369

370

371 [% operation Sketch!CustomDoWhile recursive_op() { %]

372 do {

373 [%for(anAction in self.dowhileAction) {%]

374 [%=anAction.action.first().recursive_op()%]

375 [% } %]

376 } while([%=self.dowhileCondition.customCode.first().first()%]);

377 [% } %]

109

378

379

380 [% operation Sketch!CustomIF recursive_op() { %]

381 if ([%=self.ifCondition.customCode.first().first()%]) {

382 [%for(anAction in self.ifAction) {%]

383 [%=anAction.action.first().recursive_op()%]

384 [% } %]

385 }

386 [% if(not self.ifElse.isEmpty()) {

387 for(anAlternative in self.ifElse) {%]

388 [%=anAlternative.recursive_op()%]

389 [% }

390 }

391 } %]

392

393

394 [% operation Sketch!CustomElif recursive_op() { %]

395 else if ([%=self.elifCondition.customCode.first().first()%]) {

396 [%for(anAction in self.elifAction) {%]

397 [%=anAction.action.first().recursive_op()%]

398 [% } %]

399 }

400 [% } %]

401

402

403 [% operation Sketch!CustomElse recursive_op() { %]

404 else {

405 [%for(anAction in self.elseAction) {%]

406 [%=anAction.action.first().recursive_op()%]

407 [% } %]

408 }

409 [% } %]

410

411

412 [% operation Sketch!CustomDeclaration recursive_op() {

413 if(not (self.assignmentValues.size() > 0)) { %]

414 [%=self.variableType.first().variableType.first()%] [%=self.nom.first()%];

415 [% }

416 else { %]

417 [%=self.variableType.first().variableType.first()%] [%=self.nom.first()%] = [%=self.

assignmentValues.valeur.first().first().getOperationValues()%][%=(self.getAssignmentValues()

)%];

418 [% }

419 } %]

420 [*if(not (self.assignmentValues.operationValues.size() > 0)) { %]

110

421 [%=self.variableType.first().variableType.first()%] [%=self.nom.first()%] = [%=self.

assignmentValues.valeur.first().first().getOperationValues()%];

422 [% }

423 else { %]

424 [%=self.variableType.first().variableType.first()%] [%=self.nom.first()%] = [%=self.

assignmentValues.valeur.first().first().getOperationValues()%] [%=(self.getAssignmentValues

())%];

425 [% }

426 }

427 } %*]

428

429 [% operation Sketch!FunctionCall recursive_op() {%]

430 [%=self.functionName.first()%]();

431 [% } %]

432

433 [% operation Sketch!FunctionDeclaration recursive_op() {%]

434 void [%=self.functionName.first()%](){

435 [%for(aFonctionBody in self.fonctionBody) {%]

436 [%=aFonctionBody.fonctionBody.first().recursive_op()%]

437 [% } %]

438 }

439 [% } %]

440

441

442 [% operation Sketch!CustomAssignment recursive_op() { %]

443 [%=self.nom.first()%] = [%=(self.assignmentValues.valeur.first().first().getOperationValues() +

self.getAssignmentValues())%];

444 [% } %]

445

446

447 [% operation Any getAssignmentValues() {

448 var operations = ’’;

449 if(self.assignmentValues.first().operateur.size() > 0) {

450 var operators = self.assignmentValues.first().operateur;

451 var values = self.assignmentValues.first().operationValues;

452 for(count in Sequence{0..(values.size()-1)}){

453 operations = operations + ’ ’ + operators.at(count) + ’ ’ + values.at(count).getOperationValues

();

454 }

455 }

456 return operations;

457 } %]

458

459

460 [% operation Any getOperationValues() {

111

461 var operations;

462 if(self.constantValue.first().isDefined()) {

463 operations = self.constantValue.first();

464 }

465 else if(self.stringValue.first().isDefined()) {

466 operations = self.stringValue.first();

467 }

468 else if(self.intValue.first().isDefined()) {

469 operations = self.intValue.first();

470 }

471 else if(self.functionValue.first().isDefined()) {

472 operations = self.functionValue.first().recursive_op();

473 }

474 else if(self.variableValue.first().isDefined()) {

475 operations = self.variableValue.first();

476 }

477 return operations;

478 } %]

479

480

481 [% operation Sketch!InfiniteLoop recursive_op() {

482 self.infiniteLoop.first().recursive_op();

483 }

484 %]

112

Appendix E

Helper class

The Helper class which transforms a sketch to an XMI file
1 package ca.iro.umontreal.geodes.arduino.editor.interaction.generator;

2

3 import java.io.IOException;

4 import java.util.HashMap;

5 import java.util.Map;

6 import org.eclipse.emf.common.util.URI;

7 import org.eclipse.emf.ecore.resource.Resource;

8 import org.eclipse.emf.ecore.xmi.impl.XMIResourceImpl;

9

10 public class Helper {

11 public static void saveResourceAsXmi(Resource resource) {

12 try {

13 Map<String, String> saveOptions = new HashMap<String, String>();

14 Resource xmiResource = new XMIResourceImpl(URI.createURI(resource.getURI().toString().

replace("sketch", "xmi")));

15 System.out.println(xmiResource);

16 xmiResource.getContents().add(resource.getContents().get(0));

17 saveOptions.put(org.eclipse.emf.ecore.xmi.XMIResource.OPTION_ENCODING,"UTF-8");

18 xmiResource.save(saveOptions);

19 System.out.println("XMI sketch file created.");

20 } catch (IOException e) {

21 System.out.println("Error during creation of XMI.");

22 e.printStackTrace();

23 }

24 }

25 }

Appendix F

Pac-Man game sketch model

The sketch model of the Pac-Man game editor in ArduinoDSL.

1 SETUP {

2 SERIAL begin 9600

3 int oldPotentioValue = 0

4 MOUSE enable

5 }

6 FUNCTION scream {

7 SERIAL available -> int freeSerial

8 IF ’freeSerial > 0’

9 SERIAL read -> String message

10 IF ’message=="scream"’

11 TONE play 1000 on buzzerPin

12 TIME waitMilliseconds 500

13 TONE stop on buzzerPin

14 END:IF

15 END:IF

16 }

17 DIGITAL read on pacmanButton -> pacmanPressed

18 DIGITAL read on ghostButton -> ghostPressed

19 DIGITAL read on foodButton -> foodPressed

20 DIGITAL read on gridButton -> gridPressed

21 IF ’pacmanPressed’

22 SERIAL print "addPacman"

23 TIME waitMilliseconds 500

24 ELSEIF ’ghostPressed’

25 SERIAL print "addGhost"

26 TIME waitMilliseconds 500

27 ELSEIF ’foodPressed’

28 SERIAL print "addFood"

29 TIME waitMilliseconds 500

30 ELSEIF ’gridPressed’

31 SERIAL print "addGrid"

32 TIME waitMilliseconds 500

33 END:IF

34 MOUSE readAxis on A1 -> int xValue

35 MOUSE readAxis on A0 -> int yValue

36 MOUSE move xValue and yValue and 0

37 MOUSE pressed "MOUSE_LEFT" -> mousePressed

38 IF ’mousePressed’

39 SERIAL print "selectElement"

40 TIME waitMilliseconds 500

41 WHILE ’mousePressed’

42 END:WHILE

43 SERIAL print "moveElement"

44 TIME waitMilliseconds 500

45 END:IF

46 ANALOG read lightSensorPin -> int brightness

47 IF ’brightness < 600’

48 SERIAL print "addFood"

49 CALL scream

50 TIME waitMilliseconds 3000

51 END:IF

52 CALL scream

53 RFID125 readCard on rfidSensor -> String code

54 IF ’code=="7871946"’

55 SERIAL print "SimplePacMan"

56 TIME waitMilliseconds 2000

57 ELSEIF ’code=="7878677"’

58 SERIAL print "3DPacMan"

59 TIME waitMilliseconds 2000

60 END:IF

61 ANALOG read potentioPin -> int potentioValue

62 MATH map potentioValue and 0 and 1023 and 1 and 10 -> potentioValue

63 IF ’potentioValue != oldPotentioValue’

64 oldPotentioValue = potentioValue

65 String zoom = "zoom" + potentioValue

66 SERIAL print zoom

67 TIME waitMilliseconds 500

68 END:IF

116

	Résumé
	Abstract
	Contents
	List of figures
	List of acronyms and abbreviations
	Acknowledgements
	Chapter 1. Introduction
	1.1. Context
	1.2. Problem statement and thesis proposition
	1.3. Contributions
	1.4. Outline

	Chapter 2. Background and state of the art
	2.1. Modeling editors
	2.1.1. Domain-specific languages
	2.1.1.1. Abstract syntax
	2.1.1.2. Concrete syntax
	2.1.1.3. Semantics

	2.1.2. Code generation
	2.1.3. Editor generation

	2.2. Modeling language evolution
	2.2.1. Model co-evolution
	2.2.2. Concrete syntax evolution
	2.2.3. Constraint evolution

	2.3. API evolution
	2.4. Arduino
	2.4.1. Arduino board
	2.4.2. Arduino IDE
	2.4.2.1. The command buttons
	2.4.2.2. The sketch editor
	2.4.2.3. The output pane

	2.4.3. Arduino language
	2.4.4. Arduino libraries
	2.4.5. Grove base shield
	2.4.6. Grove devices
	2.4.6.1. Environmental sensors
	2.4.6.2. Motion sensors
	2.4.6.3. Wireless devices
	2.4.6.4. User interface devices
	2.4.6.5. Physical sensors

	2.5. Modeling for Arduino

	Chapter 3. The ArduinoDSL modeling language
	3.1. Presentation of the ArduinoDSL language
	3.2. Conceptual aspect
	3.2.1. Metamodel
	3.2.2. Graphical concrete syntax

	3.3. Behavioral aspect
	3.3.1. Metamodel
	3.3.2. Textual concrete syntax

	3.4. IDE generation and Arduino code generation
	3.4.1. The graphical editor of ArduinoDSL
	3.4.2. The textual editor of ArduinoDSL
	3.4.3. Arduino code generation

	3.5. Anticipated evolution issues

	Chapter 4. Architecture of the evolutionary process
	4.1. Specifying the extension library
	4.1.1. The extension specification
	4.1.2. The extension functions

	4.2. Extending the domain-specific language syntax
	4.2.1. The extension metamodel
	4.2.2. The extension concrete syntax

	4.3. Extending the domain-specific semantics
	4.3.1. The code generator
	4.3.2. The extension mapping

	Chapter 5. Evolving DSLs with extension libraries
	5.1. Extracting the information
	5.1.1. Creating the extension specification model
	5.1.2. Extracting and encapsulating the extension functions

	5.2. Extending the syntax
	5.2.1. Extending the conceptual metamodel
	5.2.2. Extending the behavioral metamodel
	5.2.3. Extending the concrete syntax
	5.2.4. Merging the extension and the core

	5.3. Extending the semantics
	5.3.1. Generating the extension mapping
	5.3.2. Evolving the code generator

	Chapter 6. Validation
	6.1. Case study
	6.1.1. Synthesis of interactive modeling editors
	6.1.2. Setup
	6.1.3. Incremental evolution
	6.1.3.1. Creating and moving Pac-Man elements
	6.1.3.2. Creating food elements randomly
	6.1.3.3. Notifying the user of the creation of food
	6.1.3.4. Alternating the concrete syntax
	6.1.3.5. Changing the size of the language elements

	6.1.4. Applicability, feasibility, usefulness
	6.1.4.1. Applicability
	6.1.4.2. Feasibility
	6.1.4.3. Usefulness

	6.2. Discussion
	6.2.1. Extracting functions
	6.2.2. Generating the artifacts
	6.2.3. Merging the artifacts
	6.2.3.1. Textual grammar
	6.2.3.2. Conceptual metamodel
	6.2.3.3. Graphical concrete syntax

	Chapter 7. Conclusion
	7.1. Summary
	7.2. Outlook

	Bibliography
	Appendix A. Conceptual metamodel
	Appendix B. Behavioral metamodel
	Appendix C. The board code generator
	Appendix D. The sketch code generator
	Appendix E. Helper class
	Appendix F. Pac-Man game sketch model

