
Université de Montréal

On Improving Variational Inference with Low-Variance

Multi-Sample Estimators

par

Eeshan Gunesh Dhekane

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de

Maître ès sciences (M.Sc.)
en informatique

December 17, 2020

c© Eeshan Gunesh Dhekane, 2020

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

On Improving Variational Inference with

Low-Variance Multi-Sample Estimators

présenté par

Eeshan Gunesh Dhekane

a été évalué par un jury composé des personnes suivantes :

Ioannis Mitliagkas
(président-rapporteur)

Aaron Courville
(directeur de recherche)

Alain Tapp
(membre du jury)

Résumé

Les progrès de l’inférence variationnelle, tels que l’approche de variational autoencoder

(VI) (Kingma and Welling (2013), Rezende et al. (2014)) et ses nombreuses modifications,

se sont avérés très efficaces pour l’apprentissage des représentations latentes de données.

Importance-weighted variational inference (IWVI) par Burda et al. (2015) améliore l’inférence

variationnelle en utilisant plusieurs échantillons indépendants et répartis de manière iden-

tique pour obtenir des limites inférieures variationnelles plus strictes. Des articles récents tels

que l’approche de hierarchical importance-weighted autoencoders (HIWVI) par Huang et al.

(2019) et la modélisation de la distribution conjointe par Klys et al. (2018) démontrent l’idée

de modéliser une distribution conjointe sur des échantillons pour améliorer encore l’IWVI

en le rendant efficace pour l’échantillon. L’idée sous-jacente de ce mémoire est de relier les

propriétés statistiques des estimateurs au resserrement des limites variationnelles. Pour ce

faire, nous démontrons d’abord une borne supérieure sur l’écart variationnel en termes de

variance des estimateurs sous certaines conditions. Nous prouvons que l’écart variationnel

peut être fait disparaître au taux de O
(

1
n

)
pour une grande famille d’approches d’inférence

variationelle. Sur la base de ces résultats, nous proposons l’approche de Conditional-IWVI

(CIWVI), qui modélise explicitement l’échantillonnage séquentiel et conditionnel de variables

latentes pour effectuer importance-weighted variational inference, et une approche connexe

de Antithetic-IWVI (AIWVI) par Klys et al. (2018). Nos expériences sur les jeux de don-

nées d’analyse comparative, tels que MNIST (LeCun et al. (2010)) et OMNIGLOT (Lake

et al. (2015)), démontrent que nos approches fonctionnent soit de manière compétitive, soit

meilleures que les références IWVI et HIWVI en tant que le nombre d’échantillons aug-

mente. De plus, nous démontrons que les résultats sont conformes aux propriétés théoriques

que nous avons prouvées. En conclusion, nos travaux fournissent une perspective sur le taux

d’amélioration de l’inference variationelle avec le nombre d’échantillons utilisés et l’utilité

de modéliser la distribution conjointe sur des représentations latentes pour l’efficacité de

l’échantillon. Mots-clés: inférence variationelle, réduction de la variance.

5

Abstract

Advances in variational inference, such as variational autoencoders (VI) (Kingma andWelling

(2013), Rezende et al. (2014)) along with its numerous modifications, have proven highly

successful for learning latent representations of data. Importance-weighted variational in-

ference (IWVI) by Burda et al. (2015) improves the variational inference by using multiple

i.i.d. samples for obtaining tighter variational lower bounds. Recent works like hierarchical

importance-weighted autoencoders (HIWVI) by Huang et al. (2019) and joint distribution

modeling by Klys et al. (2018) demonstrate the idea of modeling a joint distribution over

samples to further improve over IWVI by making it sample efficient. The underlying idea

in this thesis is to connect the statistical properties of the estimators to the tightness of the

variational bounds. Towards this, we first demonstrate an upper bound on the variational

gap in terms of the variance of the estimators under certain conditions. We prove that the

variational gap can be made to vanish at the rate of O
(

1
n

)
for a large family of VI ap-

proaches. Based on these results, we propose the approach of Conditional-IWVI (CIWVI),

which explicitly models the sequential and conditional sampling of latent variables to per-

form importance-weighted variational inference, and a related approach of Antithetic-IWVI

(AIWVI) by Klys et al. (2018). Our experiments on the benchmarking datasets MNIST (Le-

Cun et al. (2010)) and OMNIGLOT (Lake et al. (2015)) demonstrate that our approaches

perform either competitively or better than the baselines IWVI and HIWVI as the number

of samples increases. Further, we also demonstrate that the results are in accordance with

the theoretical properties we proved. In conclusion, our work provides a perspective on the

rate of improvement in VI with the number of samples used and the utility of modeling the

joint distribution over latent representations for sample efficiency in VI.

Keywords: variational inference, variance reduction.

7

Contents

Résumé . 5

Abstract . 7

List of tables . 13

List of figures . 15

List of acronyms and abbreviations . 17

Acknowledgement . 19

Chapter 1. Introduction. 21

1.0.1. Goals and Contributions . 22

Chapter 2. Machine Learning Background. 25

2.1. Artificial Intelligence and Machine Learning . 25

2.2. Machine Learning Basics . 26

2.2.1. Supervision in Learning . 26

2.2.2. Parametrization, Hyper-Parameters, and Capacity . 28

2.2.3. Performance Measure and Searching Optimal Parameters 29

2.2.4. Generalization and Regularization. 30

2.3. Probabilistic Machine Learning . 32

2.3.1. The Need of Probabilistic Modeling . 32

2.3.2. Directed Graphical Models . 34

2.3.3. Estimation and Inference. 35

2.3.4. Maximum Likelihood Estimation . 36

9

2.3.5. Bayesian Inference . 37

2.3.6. Variational Inference . 39

2.4. Neural Networks . 41

2.4.1. Feed-Forward Neural Networks . 42

2.4.2. Convolutional Neural Networks . 43

2.4.3. Residual Neural Networks . 44

2.4.4. Recurrent Neural Networks . 45

2.4.5. Backpropagation . 46

Chapter 3. Properties of Multi-Sample Variational Inference and their

Variational Gaps . 47

3.1. Estimator View of Variational Inference . 47

3.2. Variational Gap and Estimator Variance . 49

3.3. Bounding the Variational Gap . 51

3.3.1. A Simpler Upper Bound on the Variational Gap. 51

3.4. Variationally-Asymptotic Monte-Carlo Estimators . 53

3.4.1. Variance Reduction Techniques . 56

3.5. Related Work . 58

3.6. On the Lower Bounded Estimator Assumption . 61

3.6.1. Estimating the Variational Lower Bound . 61

3.6.2. Consequences of LBE . 63

3.7. Conclusions and the Significance of the Results. 64

Chapter 4. Variational Inference with Conditional Sampling 65

4.1. Conditional Sampling in Variational Inference . 65

4.2. Conditional-IWAE . 66

10

4.3. Properties of Conditional-IWAE . 70

4.4. Antithetic-IWAE. 73

4.5. Properties of Antithetic-IWAE . 75

4.6. Related Work . 77

4.7. Experimentation and Results . 79

4.7.1. Dataset Details . 79

4.7.2. Architecture Details . 80

4.7.3. Experiment 1: Comparison with IWAE-HIWAE Baselines 81

4.7.4. Experiment 2: Effect of the Choice of Architecture . 82

4.7.5. Experiment 3: Comparison with IWAE (Burda et al. (2015)) 83

Chapter 5. Discussion . 89

5.1. Conclusions and Future Work . 89

References . 91

11

List of tables

4.1 The results of CIWAE and AIWAE experiments, along with the corresponding

IWAE and HIWAE baselines of ours and by by Huang et al. (2019). The

experiments are performed on the MNIST (statically binarized) dataset

by Larochelle and Murray (2011). 84

4.2 The results of CIWAE and AIWAE experiments, along with the corresponding

IWAE and HIWAE baselines of ours and by by Huang et al. (2019). The

experiments are performed on the OMNIGLOT (dynamically binarized) dataset

by Lake et al. (2015). 85

4.3 The results of CIWAE and AIWAE experiments, along with the corresponding

IWAE of ours. The experiments are performed on the MNIST (statically binarized)

dataset by Larochelle and Murray (2011). 86

4.4 The results of CIWAE and AIWAE experiments, along with the corresponding

IWAE and HIWAE baselines of ours and by by Huang et al. (2019). The

experiments are performed on the OMNIGLOT (dynamically binarized) dataset

by Lake et al. (2015). 87

4.5 The results of CIWAE and AIWAE experiments, along with the corresponding

IWAE baselines of ours and by Burda et al. (2015). The experiments are performed

on both the MNIST (statically binarized) dataset by Larochelle and Murray (2011)

and the OMNIGLOT (dynamically binarized) dataset by Lake et al. (2015). 88

13

List of figures

3.1 The graph of the values of log ŵCIWAE for the training, validation and testing

splits of the OMNIGLOT dataset (Lake et al. (2015)). Our CIWAE approach is

described in Section 4.2. This graph emphasizes that our training process does

not overfit and thus, the estimator values increase on all the splits of the dataset.

This graph is an example; similar training curves are obtained for other datasets

with all approaches. 62

4.1 The schematic representations of the CIWAE and AIWAE approaches. For

comparison and contrast, the schematic representations of the VAE and IWAE

approaches are given in Figure 4.2. 68

4.2 The schematic representations of the VAE (Kingma and Welling (2013)) and

IWAE (Burda et al. (2015)) approaches. 69

15

List of acronyms and abbreviations

VI Variational inference

IWVI Importance-weighted variational inference

HIWVI Hierarchical importance-weighted variational inference

CIWVI Conditional importance-weighted variational inference

AIWVI Antithetic importance-weighted variational inference

ELBO Evidence lower bound

AE Autoencoders

MLE Maximum likelihood estimation

MAP Maximum a posteriori estimation

SGD Stochastic gradient descent

VLB Variational lower bound

LBE Lower bounded estimator assumption

MCE Monte-Carlo estimator

17

Acknowledgement

I thank my advisor, Prof. Aaron Courville, for selecting me into the M.Sc. program at Uni-

versité de Montréal/Mila, for the excellent supervision throughout my program, for granting

me the freedom to work on the research topics of my interest, for sharing his knowledge and

ideas throughout my research, and for directing my efforts better.

I thank Chin-Wei Huang for his help in my work presented in this thesis, for insightful dis-

cussions on the topic of variational inference, and for his help in better shaping my thesis.

I thank my friends G. S. S. Srinivas Rao and Rahul Patel for the helpful discussions and for

all their help in setting up computational resources. I also thank Olexa Bilaniuk for his help

in addressing the issues related to the Mila cluster.

I thank Linda Peinthière of Mila and Céline Bégin of Université de Montréal for their help

in all the administrative matters associated with my studies and research.

Finally, I thank my parents, Gayatri and Gunesh Dhekane, and my beloved brother Sourish

Dhekane for all their support, encouragement, and help throughout my life. I dedicate my

efforts and achievements to them for without them, it would not have been possible.

19

Dedicated to my parents, Gayatri and Gunesh, and my beloved brother Sourish

Chapter 1

Introduction

The problem of unsupervised learning is one of the most important and challenging tasks

in the area of machine learning. This is mainly because it is easier, faster, and economic

to obtain huge unlabeled datasets rather than having them labeled manually. Further,

unsupervised learning of representations seems important in understanding how humans

learn about their surroundings; it is evident that humans do not learn the representations of

their surroundings solely from supervision. Thus, one of the aims of unsupervised learning is

to uncover the latent patterns in the data without any explicit supervision. Ideally, we would

like to learn generative models of the data, which can explain how the data is generated. In

particular, generative models allow for learning distributions over the data in terms of latent

representations. Such generative models can consequently enable sampling from the data

distribution, learning missing data components, learning from smaller amounts of data, and

so on. Learning such models requires the computation of the posterior distributions over

the latent structure conditioned on the input data. This posterior distribution is intractable

in many widely used choices of parametrization; it either involves integrals or sums that

do not have analytic closed-form solutions or involve computing exponentially many terms,

which is computationally infeasible. One of the strategies to mitigate this problem is to

formulate the problem of learning the posterior distribution as an optimization problem and

perform approximate inference.

Variational inference is such an approximate inference approach that allows learning

parametrized generative models of data x in terms of their latent representations z when

the true posterior p (z | x) is intractable. Advances in variational inference, like variational

autoencoders (VAEs) by Kingma and Welling (2013), enable learning of deep and end-to-end

trainable models pθ (x, z), which scale well for large datasets. However, VAEs utilize a

family F = {qφ (z | x) | φ ∈ Φ} of parametrized proposal posterior distributions to model

the true posterior, where Φ is the set of all permissible parameters. This approximation

results in a biased optimization objective called the evidence lower bound (ELBO); the

intractable p (z | x) leads to the computation and optimization of the ELBO given by:

L = Eqφ(z|x) [pθ (x | z)]−DKL (qφ (z | x) ||pθ (z)). This ELBO is always a lower bound for the

true objective log pθ (x) that we aim to maximize. This bias results in one major problem;

the optimization of the biased objective of ELBO leads to learned parameters that are not

optimal for the maximization of the data marginal pθ (x). Decreasing the gap between pθ (x)

and the ELBO: Eqφ(z|x) [pθ (x | z)] − DKL (qφ (z | x) ||pθ (z)), called the variational gap, can

indeed result in better models of the data. Thus, it is imperative to understand the effect of

the variational gap on variational inference and develop techniques that can decrease this

gap for better variational inference.

The work on importance-weighted autoencoders (IWAE) by Burda et al. (2015) demon-

strates a mechanism to provably improve the ELBO using multiple samples from the

proposal posterior, making the ELBO approach log pθ (x) asymptotically with an increasing

number of samples. This work also demonstrates that training with the less biased ELBO

results in higher values of the data marginal pθ (x), resulting in better models of the

data. IWAE has led to an increased interest in the approach of using multiple samples for

improving variational inference. Our work too is inspired by and builds on this very idea.

1.0.1. Goals and Contributions

In our work, we ask the following questions and investigate their answers.

Q1: How fast does VI improve with the number of samples?

Many recent works have demonstrated theoretical properties of improvements in the varia-

tional inference with the number of samples. The measure of this improvement is defined

using the variational gap and the aim is to bound it from above as a function of certain prop-

erties of the estimators used to estimate the data marginal p (x) and the number of samples.

In this direction, many recent approaches have connected the variance of estimators to the

variational gap. However, finding a simple upper bound on the variational gap just in terms

22

of the variance of the estimators and the number of samples is a standing challenge. Towards

this, we demonstrate a simple bound on the variational gap using only the estimator variance

under amicable and justifiable assumptions. This bound enables a convenient reductionism;

with our bound, we reduce the problem of improving variational inference (or, decreasing

the variational gap) to the problem of designing multi-sample low-variance estimators of the

data marginal log p (x).

Q2: Can modeling joint distribution over samples result in sample-efficient VI?

We focus on using multiple samples for improving variational inference and thus, it is natural

to search for techniques that allow us to achieve these improvements with as few samples

as possible. Recent works like Huang et al. (2019) demonstrate that learning correlation

between samples can allow learning hierarchical latent variables, improve the performance

of VAEs, and can potentially decrease the sample count. The idea consists of replacing

i.i.d. sampling of latent variables, as done in Burda et al. (2015), with the conditional sam-

pling of latent variables, which resonates with the notion of antithetic sampling. However,

more importantly, it gives a mechanism to further reduce the estimator variance, thereby

decreasing the variational gap and improving the variational inference. Towards this, we

propose a generalization of IWAE, which we call the Conditional-IWAE (CIWAE), that en-

ables explicit modeling of correlation between multiple samples. The idea is that instead of

the independent sampling ziiid∼q (· | x), we sample every next latent variable conditioned on

previous samples: zi ∼ q (· | z1:i−1,x). This is a highly general form of conditional sampling

that models a large family of conditional/hierarchical latent variables approaches. Most

importantly, we prove a set of favorable properties of this generalization. We first prove

that despite the conditional sampling of latent variables, the corresponding estimators are

not only unbiased but are pairwise uncorrelated. Consequently, we prove that despite the

modeling of joint distribution over the samples, our approach enjoys the same asymptotic

properties as the ones enjoyed by the IWAE and other similar approaches; we prove that the

variational lower bound of CIWAE asymptotically approaches log p (x) at the rate of O
(

1
n

)
.

In addition to CIWAE, we consider one of its special cases, which we call Antithetic-IWAE

(AIWAE). In AIWAE, instead of generating all the n i.i.d. samples of IWAE, we only gener-

ate
⌈
n
2

⌉
i.i.d. samples {zi}d

n
2 e

i=1 and generate the rest of the samples in a manner resembling

the antithetic sampling: zd
n
2 e+i = 2 · µ − zi ∀ i ∈

{
1, . . . ,

⌊
n
2

⌋}
, where µ represents the

23

mean of the i.i.d. samples. We prove that similar to CIWAE, the variational lower bound of

AIWAE asymptotically approaches log p (x) at the rate of O
(

1
n

)
.

For experimentation, we parametrize our CIWAE and AIWAE approaches with neural net-

works. We perform our experimentation with the benchmarking datasets MNIST (LeCun

et al. (2010)) and OMNIGLOT (Lake et al. (2015)) used in the previous state-of-the-art

approaches. We demonstrate that the approaches of CIWAE and AIWAE either outperform

or perform competitive to the previous state-of-the-art as the number of samples increases.

This empirically confirms the hypothesis that modeling the joint distribution over the latent

variables leads to better variational inference in a sample-efficient manner.

The rest of the thesis is organized as follows. In Chapter 2, we provide a brief introduction

to the basics of machine learning, probabilistic machine learning, and neural network archi-

tectures that are relevant for our experimentation. In Chapter 3, we prove a simpler upper

bound on the variational gap in terms of the estimator variance and the number of samples.

In Chapter 4, we describe the Conditional-IWAE and Anithetic-IWAE approaches, provide

their theoretical properties, describe the experimentation, and demonstrate results that sup-

port our hypotheses about better variational inference by modeling the joint distribution

over samples. Finally, in Chapter 5, we discuss the conclusions of our works and describe

some directions for future research.

24

Chapter 2

Machine Learning Background

2.1. Artificial Intelligence and Machine Learning
We humans possess a remarkable ability called intelligence. It allows us to observe the

patterns in our surroundings, extract knowledge and learn skills from these observations,

use them to predict and control the events in the future, and take decisions to achieve the

desired effects. Equipped with our powerful intelligence, we have achieved astonishing feats

over the last few thousand years, which set us apart from our biological ancestor great apes,

and other animals. We learned to farm our food instead of constantly hunting for it and

evolved to form societies. We invented the concepts of currency, trade, art, and religion. We

are constantly uncovering the fundamental rules of nature through science and mathematics.

We have built machines to ease our efforts and increase our productivity. The inventions

of the computers and computer programs/algorithms are arguably two of the most

impactful achievements of the modern era. However, despite our tremendous progress, there

remain many problems and phenomena that we are yet to fully understand. Understanding

intelligence itself is one of such standing challenges.

One of the ways to understand any phenomenon is to try to create it from its components1.

In the same spirit, the works of Turing (1950) gave rise to the field of artificial intelligence

(AI), which is dedicated to developing algorithms for simulating intelligence in machines.

Advances in the field of AI can not only enhance our understanding of the notion of in-

telligence itself but can also improve upon human intelligence. Human intelligence allows

1 “What I cannot create, I do not understand”– Richard Feynmann.

extremely efficient generalization; it enables learning from experience in a manner such that

we can apply the learned knowledge and skills to previously unseen problems and adapt

efficiently to new environments. However, although highly powerful, human intelligence is

limited by biological constraints, such as the memory capacity of the human brain as well

as the rate of neuron firing. A computer program, on the other hand, can potentially be

constructed to have memory as well as processing power that is multiple orders of magnitude

higher than humans. Thus, advancing the field of AI can help enhance human intelligence

by combining its power with the computational benefits of a machine.

Machine learning (ML) is a subfield of AI that aims to develop algorithms that can

learn from the data to better perform the particular task at hand and generalize for similar

but previously unseen data. ML algorithms depend on sufficiently large amounts of data

to learn from, powerful parametrized models for learning the data representations, scalable

algorithms to train such models, and the computing power to actuate these algorithms. As

a result of the availability of massive amounts of data, the research on neural networks and

their training via the back-propagation algorithm, and the development of faster compute

technologies like graphical processing units (GPUs)/tensor processing units (TPUs), ML ap-

proaches have become the state-of-the-art in almost all of the problems of interest in the

domain of AI. Consequently, ML forms the contemporary paradigm for the approaches to

AI. In the next section, we consider the basic ML concepts and terminologies.

2.2. Machine Learning Basics

2.2.1. Supervision in Learning

Datasets are collections of data points and form one of the most important components

of any ML algorithm. ML algorithms are designed to adapt in a data-driven manner so

that they can learn from the data. Certain datasets contain data points in the form of

pairs of inputs along with their labels, in which case they are termed as labeled datasets.

For instance, the MNIST dataset by LeCun et al. (2010) contains the images of digits as

inputs and the digit identity as the label. However, labeling of datasets is a demanding task

and requires significant human effort, which is evident from the curation of the ImageNet

dataset (Deng et al. (2009)). On the other hand, thanks to the age of “big data”, unlabeled

26

datasets containing only the inputs without any annotations are readily available. Below,

we formalize these notions of labeled and unlabeled datasets.

Definition 2.2.1 (Datasets). A dataset D is a collection of data points t(i): D ={
t(i)
}
i
. For a labeled dataset, the data point is a tuple of inputs x(i) and labels y(i):

t(i) =
(
x(i), y(i)

)
, whereas for an unlabeled dataset, the data point consists of just the

inputs x(i): t(i) = x(i). We denote by X ,Y the spaces of inputs and labels respectively.

One of the ways in which an ML algorithm can learn is with supervision and using a labeled

dataset. One can attempt to learn a predictive function that can process an input data

point to generate the corresponding label. Learning such a predictive function for the labels

from the inputs using a labeled dataset is called supervised learning.

Definition 2.2.2 (Supervised Learning). A supervised learning algorithm attempts

to learn a predictive function f : X−→Y using a given labeled dataset D =
{
x(i), y(i)

}
i

such that when provided with unseen but similar inputs x∗ ∈ X , the function can

correctly predict the corresponding label y∗ ∈ Y as f (x∗).

Remark 2.2.3 (Classification and Regression). Most of the time, supervised learning

algorithms are used either to predict the class of the inputs, which can take one of the finitely

many distinct values, or to predict a scalar-valued function of the inputs, which can take

values from a continuous interval. The former case, where the labels are discrete valued(
y(i) ∈ Y , with |Y| = n ∈ N

)
, is called the classification problem. The latter case, where the

label can take a continuous/ranged value
(
y(i) ∈ Y ⊆ R

)
, is called the regression problem.

However, as seen before, curating massive labeled datasets is a highly demanding task.

Thus, it is imperative to have algorithms that can learn even from unlabeled datasets.

Learning with only an unlabeled dataset in order to uncover the latent structure in the

inputs is referred to as unsupervised learning. This notion is formalized below.

Definition 2.2.4 (Unsupervised Learning). An unsupervised learning algorithm

attempts to learn the latent structure/representation z ∈ Z for the input x ∈ X ,

where Z represents the space of latent structure/representation.

27

Remark 2.2.5 (Different Approaches to Unsupervised Learning). Note that the

latent representations that unsupervised approaches aim to learn are ought to have certain

desirable characteristics, based on which they are classified. For instance, one can aim to

group the inputs into different collections such that the inputs from the same collection

are similar to one another and the inputs from different collections differ from one another.

This approach is called clustering. Alternatively, one can aim to learn a lower dimensional

representation, or a manifold, for the inputs. Such approaches are called dimensionality

reduction or manifold learning. Another general approach is to learn a distribution over

the space of inputs such that it assigns higher values only at the input data points. This

approach is called density estimation, and forms the basis of our work.

Note that in certain cases, one can learn using a dataset that is only partially labeled.

Such learning that leverages both the labeled and the unlabeled datasets is termed semi-

supervised learning. Another approach is to utilize one part of the unlabeled data as

the inputs and treat the rest of the parts of the data as the corresponding labels to learn

its representations. This approach is called self-supervised learning. Also, there exists

a different formulation of learning called reinforcement learning in which the learner is

modeled as an agent that acts in an environment to optimize its reward.

2.2.2. Parametrization, Hyper-Parameters, and Capacity

In the ML paradigm, parametrized functions are used to obtain the representations of

the data. Parameters refer to all the trainable scalars of the function, which are learned

using the given dataset. In particular, the predictive function f in the case of supervised

learning approaches is invariably chosen to be a parametric function f = fθ : X−→Y with

the parameter θ ∈ Θ, where Θ represents the set of all permissible parameters. Similarly,

the latent representations z in the case of unsupervised learning approaches are modeled in

terms of parametrized functions gφ (x) of the inputs x with the parameter φ ∈ Φ chosen

from the set Φ of all permissible parameters. For example, suppose that we have a dataset

of points D =
{(

x(i), y(i)
)}

i
with X = Y = R. We want to parametrize the predictive

function f for this regression problem as a polynomial of degree at most d. Then, the family

of parametrized functions would be as follows.

Fd =
{
f(a0,...,ad) : R−→R | f(a0,...,ad) (x) =

∑
0≤i≤d ai · x

i, ai ∈ R ∀ i ∈ {0, . . . , d}
}

(2.2.1)

28

Note that we can learn the optimal values of the coefficients ai (i ∈ {0, . . . , d}) using the

given dataset D, which makes them the parameters of the approach. However, note that

choosing the value of the degree d is up to the designer of the approach; it can not be learned

from the given dataset D. Such scalars that define the choice of the parametric family but

whose value can not be learned from the given dataset are called the hyper-parameters of

the approach. Thus, the degree d is a hyper-parameter of the above approach.

Hyper-parameters control the richness of the family of parametrized functions. This is

evident from the above example; we have Fm ⊂ Fn for natural numbers m,n with m < n,

which makes Fn richer than Fm. This effective richness of the family of parametrized

functions is called the capacity of the approach. Hence, it is evident that the hyper-

parameters of any ML approach control its capacity.

2.2.3. Performance Measure and Searching Optimal Parameters

Since ML approaches adapt their parameters from the data, one must be able to perform

the following two steps: i. measure the performance, or the goodness, of the corresponding

model with any parameter value, and ii. search for better parameter values than the current

one based on the performance measure. The performance measure of any ML algorithm is

calculated using a learning objective, commonly referred to as a loss function, which

is defined in terms of the parametrized model, the inputs, and the labels (if they are

available). As the name suggests, the lower the value of the loss function, the better is the

performance of the model and vice versa. The notion of the loss function is formalized below.

Definition 2.2.6 (Loss Function). In a supervised learning setting with parametrizd

predictive function fθ and given dataset D =
{(

x(i), y(i)
)}

i
, the loss function Lsup is a

function of the terms from the set: {fθ (x) , y | (x, y) ∈ D}. In an unsupervised learn-

ing setting with the latent representation z modeled in terms of parametrized function

gφ, the loss function Lunsup is a function of the terms from the set: {x, gφ (x) | x ∈ D}.

Observe that with a given dataset D, the loss function L becomes the function of the

parameter. In the context of Definition 2.2.6 above, Lsup = Lsup (θ) for the supervised

learning setting and Lunsup = Lunsup (φ) for the unsupervised setting. Thus, the problem of

29

searching for the optimal parameters translates to finding the argmin of the loss function.

In ML, we invariably select loss functions that are differentiable with respect to their

parameters. If the intended measure of performance is non-differentiable, we use its

differentiable surrogates as the loss functions. Having a differentiable loss function L = L (θ)

enables the computation of its gradient ∇θL with respect to the parameters θ. Since the

gradient of any function with respect to its parameters points towards the direction of the

fastest growth of the function, the parameters of a learnable models can be improved by

changing them by small amounts in the opposite direction of the gradient. This gives the

so-called gradient-descent algorithm (Cauchy (1847)) for optimizing parameters.

Definition 2.2.7 (Gradient Descent (GD)). Consider an ML algorithm with pa-

rameters θ ∈ Θ, Θ being the set of all parameters, and loss function L (θ). Then, the

problem of learning can be converted into the following optimization problem:

Learning Problem: Find parameter θ∗ ∈ Θ such that θ∗ = arg minθ∈Θ L (θ)

To minimize L (θ), we use the gradient descent algorithm in order to learn new better

parameters θ′ from the current parameters θ as follows:

Gradient Descent Algorithm: θ′ ←− θ − η · ∇θL (θ)

Here, η is the step-size of the parameter update and it is a hyper-parameter. It

dictates the amount by which the current parameters θ should be updated in the

direction opposite to the gradient ∇θL (θ).

Remark 2.2.8 (Step-Size and Learning Dynamics). The step-size η is crucial in the

learning dynamics. Too small a step-size can slow down the parameter updates, thereby

slowing down the algorithm. On the other hand, too large a step-size can make the parameter

values diverge. Thus, η is chosen after trying a set of proposal values and then selecting the

best. Step-size schedules are also used for the better learning of parameters.

2.2.4. Generalization and Regularization

One of the most important aspects of learning algorithms is that they should be able to

generalize. Generalization refers to the ability of a learning algorithm to perform well

30

not only on the dataset used for its training but also perform equally well on similar yet

previously unseen data points. If an algorithm performs well on the data that is used

to train it but does not perform well on new data points, it is said to have overfit to

the training data. Overfitting usually happens when the algorithm ends up modeling the

randomness and extreme peculiarities in the inputs rather than learning the patterns in

them. Such a condition is also termed as memorization, wherein the algorithm ends up

memorizing peculiarities of the inputs. On the other extreme, the algorithm may not be

capable of learning patterns sufficiently and ends up performing poorly even on the training

data itself. In such cases, the algorithm is said to have underfit to the training data.

There is a connection between the capacity of a model, the size of the training dataset,

and the generalization performance of the corresponding algorithm. Low capacity models

are associated with function families that are not sufficiently rich. Thus, such models

end up underfitting on larger training datasets. High capacity models are associated with

overly expressive function families. Thus, such models end up memorizing and overfitting

to smaller training datasets. Thus, it is important to ensure the right amount of training

dataset and the right capacity of models in an ML algorithm for it to generalize better.

There are several ways to improve the generalization performance of ML models. Since

hyper-parameters control the capacity of ML algorithms, hyper-parameter tuning can

help allocate the correct capacity to the model and improve its generalizability. Another

widely used approach is regularization, where additional constraints are imposed on the

model parameters to enhance its generalization performance. Regularization is usually

carried out by adding to the loss function a regularization term, which is also a function

of the model parameters. This term penalizes different parameter choices differently,

which results in preference of certain parameter choices over others during training. Thus,

regularization gives a mechanism to introduce prior knowledge into the optimization process.

Definition 2.2.9 (Regularization Term). Consider a parametrized model with pa-

rameters θ ∈ Θ, which is trained with the loss function L (θ). A regularizer is a

function R such that R : Θ−→R. The model is then trained with the regularized loss

L̃ (θ) = L (θ) + λ · R (θ). The term R (θ) is the regularization term, and λ is the

hyper-parameter controlling the effect of regularization.

31

Remark 2.2.10 (L2−Regularizer and L1−Regularizer). The most commonly used reg-

ularizers are the L2−regularizer and the L1−regularizer. The L2
L−regularizer, given by

R (θ) = ‖θ‖2
2, encourages the parameters to be closer to the origin and the L1−regularizer,

given by R (θ) = ‖θ‖1 , encourages learning of sparse parameters.

However, regularization is not restricted to the addition of regularizer terms to the loss func-

tion and can take many other forms. One such widely used technique is the early stopping.

The core idea of early stopping is that the data available for training is split into train and

validation splits. The model is trained until its performance improves not only on the train

split but also on the validation split. As soon as the validation performance starts to deterio-

rate while the training performance keeps improving, the training is stopped. Another widely

used technique is data augmentation, in which we add plausible perturbed versions of the

input data points to the training dataset. This effectively increases the size of the training

dataset, which can mitigate the problem of overfitting in high capacity models. In addi-

tion, there is a multitude of other regularization approaches like noise injection (Bishop

(1995)), ensemble techniques like bagging (Breiman (1996)), and dropout (Srivastava

et al. (2014)).

This concludes our discussion of the basic concepts and terminologies of ML. For fur-

ther details, we encourage the readers to the excellent references books: Goodfellow et al.

(2016), Bishop (2006), and Russell and Norvig (2002). Having considered the basics of ML,

we turn our attention to its probabilistic formulations.

2.3. Probabilistic Machine Learning

2.3.1. The Need of Probabilistic Modeling

There are multiple sources of noise and uncertainty in any ML approach. Some of these

sources are deliberate and beneficial, while some others are unavoidable and may even prove

detrimental to the approach. Thus, there is a need to model and understand these sources

of randomness in order to exploit the beneficial ones and to mitigate the detrimental ones.

This is the reason for considering the probabilistic models of ML. Towards this, we begin

with a discussion of some of these sources of randomness in ML algorithms.

32

• The data can be noisy. The dataset available for training of a model is often noisy.

Usually, this noise is a result of the sensors used to collect the data. However, noise

can also be added to the data points for the regularization of the model through data

augmentation techniques. Thus, there is a need to model the noise in data and its

consequences on the learning of the model.

• The predictions of a model can involve uncertainties. Certain tasks are better

formulated with models that output a probability distribution over possible outputs.

For instance, a spam detection algorithm may output the probability that an input e-

mail is a spam or not. In some ML approaches, the intended output is better modeled

as a sample conditioned on the inputs. For instance, in reinforcement learning

problems, the agent is required to choose an action based on its observations. In

bandit learning problems, an agent needs to learn to perform a downstream task

from weak feedback signals. In such cases, sampling of outputs is known to enable

better learning of the models. However, in problems like medical diagnosis, the output

of an ML approach may have a direct impact on important aspects of human life. In

such cases, it is imperative to estimate the uncertainties of the model predictions.

• The optimization algorithms can be stochastic. It is often required to have

stochastic versions of optimization algorithms for scaling up the training of ML ap-

proaches. As we will see later, the gradient descent algorithm is often computation-

ally expensive. For scaling up ML approaches, its stochastic version, the stochastic

gradient descent algorithm, is used.

• The estimation of model parameters can involve uncertainties. As a result

of the aforementioned uncertainties, the estimation of model parameters can involve

uncertainties, which sometimes need to be estimated.

• Most importantly, almost all ML problems have probabilistic formulations.

For instance, the supervised learning problem of learning a predictive function fθ of

inputs x to predict the labels y can be formulated as the problem of learning a

parametrized conditional distribution pθ (y | x) over the labels y given the inputs

x. Similarly, unsupervised learning problems can be formulated as the problems of

33

learning parametrized distributions over the inputs x, possibly along with their latent

representations z, such as pθ (x), pθ (z | x), or pθ (x | z).

In view of these points, the utility of modeling the uncertainties in ML approaches is evident.

Thus, we begin with our discussion of the probabilistic formulation of ML.

2.3.2. Directed Graphical Models

One of the core themes of probabilistic models of ML approaches is that they view all the

involved variables as random variables/vectors and model their probability distributions.

Definition 2.3.1 (Data and Latent Representations). We denote by X and Z

the random variables corresponding to the observable data and their corresponding

latent representations. We assume that the dataset D is generated by taking samples

from a fixed underlying distribution pdata (·) corresponding to the random variable X.

Further, we assume that the samples taken from pdata (·) for generating the dataset D

are independent and identically distributed (i.i.d.). We denote this as follows:

D =
{

x(i) | x(i) iid∼ pdata (·)
}

Now, we define the probabilistic formulation of a model of the data. Depending on the

choice of the problem, we are interested in either modeling only the observed data or both

the observed data and its latent representations. For instance, in supervised learning, both

the inputs x and labels y are observable and we want to learn conditional parametrized

model pθ (y | x). In density estimation, we want to learn a parametrized model pθ (x) of

only the data x and in the problem of uncovering the latent structure of the data, such as

clustering, we are interested in parametrized models pθ (z | x) of the latent representations

z conditioned on the inputs x. Thus, in general, we are interested in learning the joint

probability distribution over all the involved random variables. However, we can simplify

this problem to learning parametrized conditional distributions, like pθ (y | x) or pθ (z | x),

or parametrized marginal distributions, like pθ (x), depending on the exact problem.

34

Definition 2.3.2 (Probabilistic Model). A parametrized probabilistic model of the

data is a parametrized joint probability distribution pθ (x, z) over all involved random

variables, x being the variables observable and z being the latent variables.

Note that the specification of a model needs additional information in the form of the way

different observable and latent random variables depend on each other. Such a specification

of the model is called the probabilistic graphical model, which models each of the random

variables as a node of a graph and specifies the dependencies in terms of the directed edges

from one node to the another. We restrict the choice of the graph to be a directed acyclic

graphs. With this, we formalize the notion of directed graphical models below.

Definition 2.3.3 (Directed Graphical Models (DGM)). Let G = (X,E) be a

directed acyclic graph (DAG). Let the set of verticesX =
{
X(1), . . . , X(n)

}
be the set of

all random variables of an ML approach. Let E = {(v−→w) | v,w ∈ X} be the set of

directed edges of G. Consider the parent function π : X−→2X over the graph G, which

inputs a vertex of the graph and returns the set of its parents, i.e., ∀ x ∈ X, π (x) =

{u | u ∈ X, (u−→x) ∈ E}. Then, the directed graphical model (DGM) corresponding

to the DAG G entails that the model p
(
X(1), . . . , X(n)

)
factorizes as follows:

p
(
X(1), . . . , X(n)

)
=
∏n

i=1 p
(
X(i) | π

(
X(i)

))
Thus, the DGM states that in the model, the random variable X(i) is dependent on

only those random variables that form its parent in the DAG G in the sense that X(i)

is conditionally independent of any other random variables given π
(
X(i)

)
.

2.3.3. Estimation and Inference

The problem of learning in probabilistic models can take many forms but there are two

major, but slightly different, themes. As seen before, the probabilistic model is defined as

a parametrized distribution pθ (x, z) over all the observable variables x and latent variables

z. In the first theme, we assume that we have access to the datasets corresponding to the

values of all the involved variables. Then, the aim is to estimate the value of the parameter θ

35

of the model, which is called the estimation problem. In the second theme, we only assume

that we have access to observable data. Then, the aim is to predict the distribution over the

latent variables z from the observable variables x, which is called the inference problem.

2.3.4. Maximum Likelihood Estimation

We begin with the simpler problem of estimation in a probabilistic model. We are given

with a dataset D =
{
x(i)

}n
i=1

and a parametrized model pθ (x) for this dataset. Our aim

is to train the model with the dataset to estimate the optimal parameters. In maximum

likelihood estimation (MLE), we assume that the optimal parameter is the one that

explains the given data well. Thus, we set the learning objective to be the maximization of

the dataset likelihood pθ (D), or equivalently, the dataset log-likelihood log pθ (D).

Definition 2.3.4 (Maximum Likelihood Estimation (MLE)). Given a

parametrized model pθ (x) and dataset D =
{
x(i)

}n
i=1

, the optimal parameter θ̂MLE

corresponding to the maximum likelihood estimation is defined as:

θ̂MLE = arg maxθ∈Θ log pθ (D) ≡ arg maxθ∈Θ
1
n

log pθ (D)

= arg maxθ log pθ
(
x(1), . . . ,x(n)

)
=∗ arg maxθ∈Θ

1
n

∑n

i=1 log pθ
(
x(i)

)
Here, Θ is the set of permissible parameters and the equality marked (∗) follows from

the i.i.d. data assumption, as given in Definition 2.3.1.

Now, note that GD can be used to minimize the negative of dataset log-likelihood in order

to compute θ̂MLE from randomly initialized θ. In particular, the update step becomes:

Loss: L (θ) = 1
n

log pθ (D) = 1
n

∑n

i=1 log pθ
(
x(i)

)
Update: θ ←− θ − η · ∇θL (θ) = θ − η · 1

n

∑n

i=1∇θ log pθ
(
x(i)

) (2.3.1)

Thus, each update step of the GD for computing θ̂MLE requires computing n gradients:

∇θ log pθ
(
x(i)

)
. This step is computationally expensive for large datasets and thus, it

does not scale up; it is computationally infeasible to use GD for training models on large

datasets. Here, we deliberately introduce uncertainty in the update step for scaling it up.

36

Definition 2.3.5 (Stochastic Gradient Descent (SGD)). The stochastic gra-

dient descent (SGD) update samples a batch {xi}Bi=1 of size B from the dataset

D, with B � n, and performs the update on the model parameters.

θ ←− θ − η · 1
B

∑
xiiid∼ D, i∈{1,...,B}

∇θ log pθ
(
xi
)

Note that the SGD approach utilizes a surrogate loss L̂SGD
θ evaluated only on a sampled

batch, and then uses its gradients to update the parameters θ, which is formalized below.

Loss: L̂SGD
θ = 1

B

∑
xiiid∼ D, i∈{1,...,B}

∇θ log pθ
(
xi
)

Update: θ ←− θ − η · ∇θL̂
SGD
θ = θ − η · 1

B

∑
xiiid∼ D, i∈{1,...,B}

∇θ log pθ
(
xi
) (2.3.2)

This introduction of sampling is an example of the need for stochasticity in a beneficial

manner; in the SGD updates, it enables scaling up of the algorithm for large datasets via

performing updates with relatively smaller batches of data.

2.3.5. Bayesian Inference

From Definition 2.3.4 and Equations 2.3.1, 2.3.2, it is evident that MLE has many limitations.

• θ̂MLE is a point estimate of the optimal parameters; we obtain one value of

the parameter based on the dataset and the optimization algorithm. Thus, the point

estimate does not model the uncertainty in the estimated parameter value, which is

a result of the data noise as well as the stochasticity in the optimization.

• θ̂MLE does NOT allow for the incorporation of extra information known

about the parameters. In particular, it does not allow the incorporation of prior

knowledge about the parameters into the optimization process.

The second point of incorporating the prior knowledge is taken care of by the maximum

a posteriori estimation (MAP), which assumes that the optimal parameter is the one

that is best explained by the given data. Thus, we set the learning objective to be the

maximization of the distribution p (θ | D), or equivalently, the maximization of log p (θ | D).

37

Definition 2.3.6 (Maximum A Posteriori Estimation (MAP)). Given a model

with parameter θ, dataset D =
{
x(i)

}n
i=1

, and a distribution over the parameters

p (θ) representing the prior knowledge of the parameters, the optimal parameter θ̂MAP

corresponding to the maximum a posteriori estimation is defined as:

θ̂MAP = arg maxθ∈Θ log p (θ | D) =∗ arg maxθ∈Θ log p (D | θ) · p (θ)
p (D)

≡† arg maxθ∈Θ log p (D | θ) · p (θ) = arg maxθ∈Θ log p (D | θ) + log p (θ)

Here, Θ is the set of all permissible parameters. The equality (∗) follows from Bayes’

rule, and the equality (†) follows from the fact that p (D) is a constant during the

optimization of θ.

The benefit of MAP estimation over MLE is that when we have the prior knowledge over the

parameters θ in the form of a distribution p (θ), it can be incorporated into the optimization

process. However, the MAP estimate θ̂MAP is also a point estimate and thus, similar to

the MLE, it does not model the uncertainty over the estimated parameter value either. To

model the uncertainty in the estimated parameter value, or any other variable of inter-

est, it is important to model a distribution over it. This is the so-called Bayesian inference.

Definition 2.3.7 (Bayesian Inference). Consider a variable of interest θ, a model

parameter or the latent representation of data, for which we want to model the un-

certainty. Let the prior knowledge of θ be available in terms of a distribution p (θ).

Suppose we have access to the data D and a model p (θ | D) representing the likeli-

hood of the data given θ. Then, Bayesian inference refers to the inference technique

of modeling the distribution over θ given the data D as follows.

p (θ | D) = p (D | θ) · p (θ)
p (D) =∗ p (D | θ) · p (θ)∫

θ′p (D | θ′) · p (θ′) dθ′

Here, p (θ) is referred to as the prior, p (D | θ) as the likelihood, p (D) as the data

marginal, and p (θ | D) as the posterior. Further, the equality (∗) follows from using

the marginalization of the variable θ′ in the denominator. If the involved variables are

discrete, the integral sign of the equality above should be replaced by the summation.

38

Remark 2.3.8 (MAP Estimation and Bayesian Inference). Bayesian inference essen-

tially refers to the usage of Bayes’ rule in order to model the complete posterior distribution

over the variable of interest θ using the given data D. Thus, from Definitions 2.3.6 and 2.3.7,

we can see that the MAP point estimate is just the argmax of the complete posterior distri-

bution p (θ | D) modeled using Bayesian inference.

It is clear that Bayesian inference generalizes point estimates, like MAP, by modeling the

complete posterior distribution. However, Bayesian inference does require the computation

of the data marginal term p (D) =
∫
θ′ p (D | θ′) · p (θ′) dθ′. It so happens that in many

popular choices of prior and likelihood models, the computation of this marginal term, and

hence that of the posterior term, is not easy. Often, in the case of continuous variables,

the marginal does not have an analytic solution, which means that there is no closed-form

expression for the integral. Also, in the case of discrete variables, the corresponding summa-

tion may be computationally expensive as it might involve computing exponentially many

terms. These conditions are referred to as intractabilities. Thus, the data marginal p (D),

and consequently the posterior p (θ | D), is computationally intractable for many widely

used parametrizations. Thus, despite being highly powerful, Bayesian learning does require

different techniques that help overcome these intractabilities.

One of the approaches to tackle the intractabilities in the evaluation of the posterior distri-

bution is to convert this problem of learning the posterior distribution into an optimization

problem. The core idea is that if the exact posterior distribution is the solution of an opti-

mization problem, then we can approximately solve that optimization problem to learn an

approximation to the true posterior distribution. Variational inference (VI) is one such

approach, which forms the basis of our research work and so, we discuss it next.

2.3.6. Variational Inference

Variational inference (VI) is an approximate inference approach for generative latent

variable models. VI utilizes a family of parametrized proposal distributions in order

to model the true intractable posterior distribution. Since we use a proposal distribution

to model a true posterior distribution, it is natural to set their KL-divergence as the

optimization objective. This is what is done in VI, which is formalized below.

39

Definition 2.3.9 (Variational Inference (VI)). Consider the task of learning the

latent representations z of input data x by learning the posterior distribution p (z | x),

which is intractable. Consider a family F = {qφ (z | x) | φ ∈ Φ} of parametrized

proposal distributions qφ (z | x) for modeling the true posterior distribution p (z | x),

where Φ is the set of all permissible parameters. Then, VI defines the approximate

inference problem as an optimization problem, where the task is to find the optimal

parameter φ∗ ∈ Φ that minimizes the KL-divergence DKL (qφ (z | x) ||p (z | x)).

VI Objective: Find φ∗ ∈ Φ such that φ∗ = arg minφ∈ΦDKL (qφ (z | x) ||p (z | x)), i.e.,

Minimize DKL (qφ (z | x) ||p (z | x)) with respect to φ ∈ Φ to obtain φ∗

so that qφ∗ (z | x) is the desired approximation to the true posterior p (z | x).

Remark 2.3.10 (Amortization). One can also utilize a parametrized proposal family

F = {qφ (z) | φ ∈ Φ} for modeling the posterior p (z | x) and define the VI objective as

the task of finding φ† ∈ Φ such that φ† = arg minφ∈ΦDKL (qφ (z) ||p (z | x)). In this case,

we would be implicitly allowing the learning of different optimal parameters for the input

data x independent of the other input data points. On the other hand, the VI objective of

Definition 2.3.9, we force the optimal parameters to be shared across data points by trying

to learn to optimize parameters for the entire dataset. This later approach of trying to

model a conditional proposal distribution qφ (z | x) rather than modeling the proposal qφ (z)

individually for each data point is known as amortization. Naturally, amortization slightly

lowers the performance of the VI approach but allows it to be scalable to large datasets,

where learning optimal parameters per data point is infeasible. Thus, we will focus on the

amortized version of the VI approach throughout our discussions, unless specified otherwise.

From Definition 2.3.9, it is clear that the optimization objective DKL (qφ (z | x) ||p (z | x))

can not be computed directly as it is defined in terms of the intractable posterior p (z | x).

40

Thus, we perform manipulations to obtain an equivalent trainable optimization objective.

DKL (qφ (z | x) ||p (z | x)) = Eqφ(z|x)

[
log qφ (z | x)

p (z | x)

]
=∗ Eqφ(z|x)

log qφ (z | x)
p(x|z)·p(z)

p(x)


= Eqφ(z|x)

[
log qφ (z | x)

p (z)

]
− Eqφ(z|x) [log p (x | z)] + Eqφ(z|x) [log p (x)]

=† DKL (qφ (z | x) ||p (z))− Eqφ(z|x) [log p (x | z)] + log p (x)

(2.3.3)

Here, the equality (∗) follows from Bayes’ rule and the equality (†) follows from the fact

that log p (x) is a constant in the expectation with respect to qφ (z | x).

Now, from Equation 2.3.3, we can see that the minimization of DKL (qφ (z | x) ||p (z | x)) is

equivalent to the maximization of the expression Eqφ(z|x) [log p (x | z)]−DKL (qφ (z | x) ||p (z))

as the term log p (x) is a constant in the optimization with respect to φ ∈ Φ. Further,

we can utilize parametrized decoder pθ (x | z) and prior pθ (z) in the final expression,

which allows us to compute and optimize it using gradient descent/ascent methods. This

equivalent optimization objective is called the evident lower bound (ELBO).

Definition 2.3.11 (Evidence Lower Bound (ELBO)). The expression

Eqφ(z|x) [log pθ (x | z)] − DKL (qφ (z | x) ||pθ (z)) is called the evidence lower bound

(ELBO). The qφ (z | x) is called the encoder, the inference model, or the

posterior, pθ (x | z) is called the decoder, and pθ (z) is the parametrized prior.

2.4. Neural Networks
One of the major factors responsible for the advent of deep learning is the advances in

(deep) neural networks and their optimization. Neurons are computational units inspired

from the biological neurons, which are capable of learning based on experience. Neurons

perform computations defined in terms of trainable parameters and non-linearities to produce

outputs from their inputs. Neural networks consist of layers of such trainable neurons,

where the outputs of the current layers are the inputs to the next layer. Given the inputs,

the outputs of the neural network are computed and are compared against the ground-

truth values to compute the loss, which is the measure of performance. The updates of the

trainable parameters can be computed using the backpropagation algorithm, where the

41

updates are computed sequentially from the last layer towards the first layer using the chain

rule. Thus, neural networks are considered to be capable of end-to-end learning. Deep

neural networks usually refer to neural networks with many layers of neurons and they

form the state-of-the-art approaches in many important machine learning problems. In this

section, we discuss some of these neural networks that we use in our experimentation.

2.4.1. Feed-Forward Neural Networks

Feed-forward neural networks (FFNN) consist of layers of neurons such that every neuron of

a layer is connected with every neuron of the next layer. For the layer i, a linear combination

of its inputs a(i) is first computed, which is then passed through a non-linearity σ in order

to obtain the output a(i+1) of this layer. We will refer to this computation carried out by a

neural network as its forward pass. The forward pass of the FFNN is given below.

Definition 2.4.1 (Forward Pass of Feed-Forward Neural Network).

The computations in layer i of a FFNN: a(i+1) = σ(i)
(
W(i) · a(i) + b(i)

)
, where

a(i) ∈ Rd(i) is di−dimensional input of layer i

a(i+1) ∈ Rd(i+1) is di+1−dimensional output of the layer i

W(i) ∈ Rd(i+1)×di is the weight matrix and b(i) ∈ Rdi+1 is the bias of the layer i

σ(i) : Rd(i+1)−→Rd(i+1) is the non-linearity of layer i

Remark 2.4.2 (Non-Linearities and Examples). Non-linearities in neural networks are

essential. Without non-linearities, a FFNN computes only a linear function of its inputs

and it is impossible to model sufficiently many function families using only the linear func-

tions. The most widely used non-linearities are sigmoid, tanh, and rectified linear units

(ReLU). In our experimentation, we use the sigmoid and tanh activations as well as a

variant, named exponential linear unit (ELU), of the ReLU activation.

For x ∈ R,
sigmoid (x) = 1

1+e−x , tanh (x) = ex−e−x
ex+e−x ,

ReLU (x) =

 x if 0 < x

0 otherwise
ELU (x) =

 x if 0 < x

α · (ex − 1) otherwise

(2.4.1)

42

2.4.2. Convolutional Neural Networks

In order to process data with specific structures and patterns, it is imperative to utilize

neural networks with appropriate stuctural priors. Structural prior refers to the choices in

the neural network architecture that cater to the specific characteristics of the input data.

One of the major sources of data in real-world applications is visual inputs like images and

videos. The processing of visual inputs requires many considerations, which also point at

the limitations of processing images with FFNNs.

• Images are represented as 2-dimensional arrays and contain spatial pat-

terns. Note that although FFNNs are powerful function approximators, they must

input data in the form of a fixed dimensional vector. Consequently, if one intends to

process images, where the data has a 2-dimensional structure and the patterns, one

needs to convert this data into a fixed-length vector format. This flattening of the

data into a vector can lead to loss of the spatial information in the input images.

• Images are extremely high-dimensional inputs. Usually, images contain ap-

proximately 104 to 105 pixels. If the image is colored, each pixel contains 3 scalar

values corresponding to the three channels R,G, and B. Thus, images are extremely

high-dimensional data, and processing them directly with FFNNs would require an

extremely large number of trainable parameters, which is computationally expensive.

• Images contain information that is usually invariant to certain trans-

formations. For instance, images transformed with small translations, scaling,

rotation, and illumination usually do not change the output of the neural network

for the required task at hand. It is not guaranteed that the parametrization in

FFNNs can cater for and exploit these desired invariances.

Convolutional neural networks (CNNs) aim to incorporate these invariances into

the neural network architectures. CNNs consist of convolutional layers, that are often

followed by pooling layers. Instead of layers of neurons that are connected to all the

neurons of the next layer, the convolutional layers incorporate parameter sharing by

using kernels to process the images. Kernels are small parametrized matrices, which are

discrete-convolved with the input features to the layer to generate the output features.

The pooling layers are used to subsample every local-region of an input feature based on

43

certain criteria to induce an invariance to small translations as well as to further reduce

the number of trainable parameters. The forward pass of a convolutional layer is given below.

Definition 2.4.3 (Forward Pass of Convolutional Layer).

The computations for one kernel in a convolutional layer: a(out) = K ∗ a(in) + b,

where a(in) is the 2-dimensional feature map input to the layer

a(out) is the 2-dimensional feature map output from the layer

K ∈ Rk×k is the kernel and b is the bias of the layer

∗ is the convolution operation:
(
K ∗ a(in)

)
n,m

=
∑

0≤i,j≤k−1
a(in)
n+i,m+j ·Kk−i,k−j

2.4.3. Residual Neural Networks

Despite the great success of deep neural networks, it was observed that the training of

very deep neural networks was notoriously hard. As the networks grew deeper, obtaining

informative gradients in the initial layers during the training process was difficult. However,

in principle, training of an (n+ 1)−layered neural network Nn+1 should result in a network

that performs equally well, if not better, than the training of an n−layered neural network

Nn. This is because appending an identity layer to an n−layered neural network gives

an (n + 1)−layered neural network with identical performance. This insight led to the

notion of skip-connections in neural networks, which decompose the problem of learning

deeper layer representations into the problem of learning a residual non-linear change to

the identity. In particular, the output of a skip-connection layer computes the feature from

the inputs, which are passed through a non-linearity, and are added to the input itself in

order to generate the outputs. Such neural networks are referred to as the residual neural

networks, for which the generic forward pass is described below.

44

Definition 2.4.4 (Forward Pass of Residual Neural Network Block).

The computations of a residual layer: a(out) = σ
(
fφ
(
a(in)

))
+ a(in), where

a(in) is the input to and a(out) is the output of the residual layer

fφ is the feature extractor and σ is the non-linearity of the layer

σ
(
fφ
(
a(in)

))
is the residual non-linear change to the skip-connectioned input a(in)

2.4.4. Recurrent Neural Networks

Many real-world sources of data are variable-length sequences that additionally possess

temporal structures and patterns. For example, videos are sequences of images, audio

signals are sequences of sound patterns, sentences are sequences of words, and in our

particular case, we aim at sequentially sampling of latent variables. Recurrent neural

networks (RNNs) are the neural network architectures that incorporate the required

structural prior for learning temporal structures and patterns in the data. In particular, for

a sequence of data inputs
{
x(t)

}
t≥0

, recurrent neural networks enable modeling parametrized

conditional distributions over the next input given the previous inputs, which are of the

form2 pθ
(
x(t) | x(t−1), . . . ,x(1)

)
. The vanilla RNNs, which were initially used to learn such

models, achieve this modeling by keeping track of a hidden state h(t) at each time instant

t (t ≥ 0), which models the context required to process the current input. These RNNs

process the input x(t+1) along with this state h(t) to predict the next input x(t+2) as well

as to update the hidden state to h(t+1). However, these models were observed to suffer

from the problem of vanishing or exploding gradients. Since RNNs involve performing

repeated computations with the same shared weights, the gradients with repsect to the

involved parametrization are difficult to maintain in a bounded region. This results in one

of the major challenges in such modeling of temporal patterns; vanilla RNNs can not readily

learn patterns over long-term intervals. Long short-term memory networks (LSTMs)

and gated recurrent units (GRUs) are the extensions of vanilla RNNs that introduce

the notion of processing the inputs and the hidden state via gates in order to mitigate the

2In the context of natural language processing, where each x(t) is a word, this conditional model refers

to the language model.

45

issues of vanishing or exploding gradients, which in turn allows for learning fairly long-term

dependencies. In our experimentation, we utilize the GRUs as they perform equally well as

the LSTMs but have simpler gating structure, which is described below.

Definition 2.4.5 (Forward Pass of Gated Recurrent Unit).

Reset gate r: r(t) = sigmoid
(
W(ir) · x(t) + b(ir) + W(hr) · h(t−1) + b(hr)

)
Update gate z: z(t) = sigmoid

(
W(iz) · x(t) + b(iz) + W(hz) · h(t−1) + b(hz)

)
New gate n: n(t) = tanh

(
W(in) · x(t) + b(in) + r(t) ?

(
W(hn) · h(t−1) + b(hn)

))
Hidden state h: h(t) =

(
1− z(t)

)
? n(t) + z(t) ? h(t−1)

Here, W and b are appropriately shaped weights and biases corresponding to the

gates and ? represents the Hadamard product.

2.4.5. Backpropagation

The update of parameters in deep neural networks having multiple layers can be efficiently

carried out using the backpropagation algorithm. The backpropagation algorithm com-

putes the updates in parameter values with chain rule applied sequentially from the last

layer towards the first layer. This allows the usage of already computed gradients to be

reused for the parameter updates in the lower layers in a recursive manner.

This completes our discussion of the relevant neural network architectures. In the next Chap-

ter, we begin with the first contribution of our work. We derive the theoretical properties of

variational inference based on multi-sample estimators and prove a simpler bound on their

variational gap.

46

Chapter 3

Properties of Multi-Sample Variational

Inference and their Variational Gaps

3.1. Estimator View of Variational Inference
In this section, we consider an estimator-based view of the variational inference approach.

Previously, we have seen that variational inference is an optimization problem that tries to

learn a proposal qφ (z), or qφ (z | x) if amortized, for the true intractable posterior p (z | x).

The parameter φ can be learned by setting the optimization objective as the minimization of

the KL-divergence term DKL (qφ (z | x) ||p (z | x)), which is equivalent to the maximization

of the evidence lower bound (ELBO) Eqφ(z|x) [p (x | z)] − DKL (qφ (z | x) ||p (z)). However,

we can arrive at the same ELBO optimization objective in another manner, which we

demonstrate below. Note that one of the ways of learning unsupervised representations

of data X is by modeling a probability distribution over the data. Mathematically, we

want to learn a parametrized distribution pθ (·) over the space of data points X , which can

input a sample x ∈ X and output its probability density or probability mass depending

on whether the random variable of the data X is continuous or discrete1. With the

success of variational auto-encoders and other deep variational inference techniques, this

parametrization is often actuated in terms of neural networks. However, now the question

is what should be the optimization objective. Intuitively, we want our model pθ (·) to assign

1For the sake of brevity, we will always consider the data X to be continuous and consequently, talk

about probability density. However, unless specified otherwise, these discussions would continue to hold by

replacing the probability density with probability mass when the data X is discrete.

high probability density to the data points x ∼ X. Thus, we set the optimization objective

as the maximization of the data likelihood.

Definition 3.1.1 (Variational Inference Optimization Objective). Given data

X and a parametrization family Θ, the variational inference optimization objective is:

maximize pθ (x) for x ∼ X subject to θ ∈ Θ.

Remark 3.1.2 (Log-Likelihood Maximization). Since log (·) is a monotonically increas-

ing function, we can equivalently try to maximize log pθ (x), which is the log-likelihood

of data, instead of maximizing the likelihood of data pθ (x) directly. The advantage of

maximizing the log-likelihood of data will be evident from the subsequent discussion.

Now, note that exactly how to optimize the parameter θ of pθ (x) is not evident from the

definition of the optimization objective itself. Thus, we introduce the latent variable Z such

that z = z (x) is the latent representation of the data point x. The introduction of the

latent variable not only gives a trainable objective but also enables learning a generative

model pθ (x | z) of the data. With the latent variables, we obtain a lower bound to the

maximization objective log pθ (x), which can then be easily parametrized and optimized.

log pθ (x) = log
∫

z∈Z
pθ (x, z) dz = log

∫
z∈Z

qφ (z | x)· pθ (x, z)
qφ (z | x) dz = logEqφ(z|x)

[
pθ (x, z)
qφ (z | x)

]

≥∗ Eqφ(z|x)

[
log pθ (x, z)

qφ (z | x)

]
= Eqφ(z|x) [pθ (x | z)]−DKL (qφ (z | x) ||pθ (z)) (3.1.1)

Here, the inequality (∗) follows from Jensen’s inequality applied to the concave function

log (·). Note that the last expression in Equation 3.1.1 contains exactly the same terms as

the ELBO derived earlier in Definition 2.3.11. Since log pθ (x) is a maximization objective,

we aim to maximize this lower bound ELBO and expect that this will also improve the data

log-likelihood log pθ (x) and consequently the data likelihood pθ (x).

Now, for a data point x, if we set the estimator ŵ = ŵ (z) = pθ(x,z)
qφ(z|x) , then we get the following

two of its properties from Equations 3.1.1. 1. E [ŵ] = pθ (x) and 2. log pθ (x) ≥ E [log ŵ].

These observations demonstrate the core idea of variational inference and thus, we formalize

these observations into the following definitions.

48

Definition 3.1.3 (Unbiased Estimator and Variational Lower Bound). Let

X ,x ∈ X , and X denote the space of input data, a data point, and the random

variable corresponding to the data point respectively. Let Zi (i ∈ {1, . . . , n}) be the

n latent variables used to model the data distribution, Z i be the space of the latent

variable Zi, and zi represent a sample corresponding to Zi. Consider a function ŵn :

X×Z1×. . .×Zn−→R+
0 . Let q (z1, . . . , zn | x) be the joint distribution over the latents.

Then, 1. ŵn is called an unbiased estimator of p (x) iff Eq(z1,...,zn|x) [ŵn] = p (x) for

any x, and 2. for an unbiased estimator ŵ of p (x), we denote the corresponding

variational lower bound (VLB) by L̂ and define it as L̂ = Eq(z1,...,zn|x) [log ŵ].

The following Lemma forms the theoretical basis of any variational inference approach.

Lemma 3.1.4 (Variational Lower Bound). For any unbiased estimator ŵ of p (x)

and for the corresponding variational lower bound L̂ = E [log ŵ], we have:

log p (x) ≥ L̂ = E [log ŵ]

Proof . We have log p (x) = logE
[
f̂
]
≥† E

[
log f̂

]
= L̂. Here, the equality (†) follows

from Jensen’s Inequality for the concave function log (·), which completes the proof. �

Remark 3.1.5 (Variational Lower Bound as Estimator). Note that the variational

lower bound L̂ = E
[
log f̂

]
can also be viewed as an estimator of log p (x). This idea has

been demonstrated previously in the works of Nowozin (2018). From Lemma 3.1.4, it is clear

that this estimator is biased and always underestimates the true objective log p (x).

3.2. Variational Gap and Estimator Variance
Lemma 3.1.4 and Remark 3.1.5 demonstrate that the variational lower bound always

underestimates the true log-likelihood p (x). Thus, in order to train the model to optimize

pθ (x), we are required to train the variational lower bound that is always biased. In this

context, one of the ways in which we can improve the variational inference is to try to

increase the variational lower bound and make it as close to the true objective as possible.

Achieving this would enable optimization of a less biased variational lower bound and thus,

49

we can improve variational inference to obtain a better model of the data. Towards this,

we consider the difference between the terms log p (x) and the variational lower bound

L̂ = E [log ŵ] corresponding to the unbiased estimator ŵ of p (x).

Definition 3.2.1 (Variational Gap). Let ŵ be an unbiased estimator of p (x) and

let L̂ = E [log ŵ] be the corresponding variational lower bound. The variational gap

of the estimator is denoted by V (ŵ) and is defined as follows:

V (ŵ) = log p (x)− L̂ = logE [ŵ]− E [log ŵ]

Corollary 3.2.2. For any unbiased estimator ŵ of p (x), we have: V (ŵ) ≥ 0.

Proof . It follows from Lemma 3.1.4: log p (x) ≥ L̂ =⇒ V
(
f̂
)

= log p (x)− L̂ ≥ 0. �

Remark 3.2.3 (Hölder Defect). This variational gap is also known by different names in

different domains; it is referred to as the Hölder defect in some earlier literature in the

areas of mathematics and economics (Becker (2012)).

From the above discussion, it is clear that we need to squeeze the variational gap to improve

the variational inference. Since the variational gap is essentially the gap generated by

Jensen’s inequality, we aim to exploit its equality condition.

Theorem 3.2.4 (Jensen’s Inequality). Let f be a concave function and X be a

random variable. Then, f (E [X]) ≥ E [f(X)]. Further, if f is strictly concave, then

equality holds iff X = E [X] with probability 1, i.e., X is a constant.

Proof . The proof can be found in Theorem 2.6.2 of Cover and Thomas (2006). �

Theorem 3.2.4 combined with the estimator view of variational inference points at a mech-

anism to reduce the variational gap. From Section 3.1, it is clear that the estimator-view of

variational inference has the following benefits: 1. each unbiased estimator ŵ of p (x) leads

to its own variational lower bound E [log ŵ], 2. this variational lower bound can be computed

in terms of powerful parametrizations such as neural nets and thus, it can be optimized to

50

obtain the parameters of the variational inference model. In addition, this view can be com-

bined with the equality condition of Jensen’s inequality to connect the variational gap V (ŵ)

corresponding to the estimator ŵ with its variance Variance (ŵ). From Theorem 3.2.4, we

have that the variational gap V (ŵ) is 0 when ŵ equals its own expectation value of p (x) with

probability 1. Thus, if we reduce the spread of the distribution of the estimator ŵ, which can

be measured using Variance (ŵ), then the distribution of ŵ will become sharper. A sharper

distribution of ŵ would be more centralized and have larger mass at its expectation value.

The larger the mass near the expectation value, the more close to equality condition will

be the corresponding estimator ŵ and thus, the smaller will be the variational gap. Thus,

the core idea can be summarized as follows: if Variance (ŵ)−→0, then V (ŵ)−→0 as well,

which improves the variational inference. This idea has been explored previously in

the works of Huang et al. (2019), Huang and Courville (2019), and Klys et al. (2018), and

our approach also builds on this idea.

3.3. Bounding the Variational Gap

3.3.1. A Simpler Upper Bound on the Variational Gap

In the previous Section 3.2, we outlined the intuition that decreasing the estimator variance

can result in squeezing of the variational gap, which then results in improved variational

inference. In this Section, we prove a simpler upper bound on the variational gap in terms

of only the variance of the estimator and the number of samples involved under certain

amicable conditions, which forms the first contribution of our work.

Theorem 3.3.1 (An Upper Bound on the Variational Gap). Let ŵ be an

unbiased estimator of log p (x) for a data point x ∼ X sampled from the data random

variable X. Let 1. ∃ c ∈ R+ such that ŵ > c, and let 2. Variance (ŵ) be finite. Then,

V (ŵ) < 1
2 · c2 · Variance (ŵ)

Thus, the variational gap of the estimator ŵ can be upper-bounded by an expression

defined entirely in terms of the variance of the estimator itself and nothing else.

51

Proof . Consider the second-order Taylor series expansion about the point w? for the

estimator ŵ and for a twice differentiable function f . Based on condition 1, we know that

ŵ ∈ (c,+∞). Thus, by Taylor’s theorem, there exists a real number w† > c such that:

f (ŵ) = f (w?) + f ′ (w?) · (ŵ − w?) + f ′′
(
w†
)
· (ŵ − w?)2

2 ! (3.3.1)

Now, we make the following settings: f (·) = log (·) and w? = E [ŵ]. Clearly, these substitu-

tions are legal, as f is twice differentiable over (c,+∞) and w? ∈ (c,+∞). Thus,

f (ŵ) = f (E [ŵ]) + f ′ (E [ŵ]) · (ŵ − E [ŵ]) + f ′′
(
w†
)
· (ŵ − E [ŵ])2

2 !

=⇒
(1)

E [f (ŵ)] = E [f (E [ŵ])] + E [f ′ (E [ŵ]) · (ŵ − E [ŵ])] + E
[
f ′′
(
w†
)
· (ŵ − E [ŵ])2

2 !

]

=⇒ E [log ŵ] = E [logE [ŵ]] + E
[
log′ E [ŵ] · (ŵ − E [ŵ])

]
+ E

[
log′′

(
w†
)
· (ŵ − E [ŵ])2

2 !

]

=⇒
(2)

E [log ŵ] = log p (x) + log′ p (x) · E [ŵ − E [ŵ]]︸ ︷︷ ︸
=0

+
−1/(w†)2

2 · Variance (ŵ)

=⇒
(3)
V (ŵ) = p (x)− E [log ŵ] = 1

2 · (w†)2 · Variance (ŵ) < 1
2 · c2 · Variance (ŵ)

(3.3.2)

Here, the implication (1) follows from taking expectation on both the sides of the previous

equality, the implication (2) follows from the substitutions of f (·) = log (·) and its deriva-

tives, and the implication (3) follows from the assumption w† > c. �

Remark 3.3.2 (Lower Bounded Estimator Assumption (LBE)). In Theorem 3.3.1, we

made two important assumptions on the estimator ŵ. The later assumption of Variance (ŵ)

being finite is a widely accepted and reasonable assumption which is used in many other

works to prove the corresponding theoretical guarantees (Huang et al. (2019), Burda et al.

(2015)). However, the former assumption of ŵ > c seems to be a fairly strong assumption,

and we call it the lower bounded estimator assumption (LBE). In the subsequent

discussions, we will consider the details of this assumption and argue that it is justifiable.

Remark 3.3.3 (Connection to Hölder Defect). Our motivation to pursue this approach

comes from the works of Huang and Courville (2019), where the authors consider first-

order Taylor-series expansion about the median of the estimator. Instead, we consider the

second-order Taylor-expansion about the mean of the estimator. This second-order expansion

allows us to obtain an upper bound in terms of the variance of the estimator, which is what

52

we wanted to achieve. However, this technique of second-order Taylor-expansion is fairly

common in mathematical literature. For instance, similar techniques are used to prove

optimality tests in calculus and these techniques have also been used independently in the

works of Becker (2012) on the Hölder defect. However, our approach uses this technique

specifically for upper-bounding the variational gap in terms of the estimator variance, and

nothing else, and thus, differs from these previous applications.

3.4. Variationally-Asymptotic Monte-Carlo Estimators
In this Section, we continue with the use of Theorem 3.3.1 to derive the properties of the

rate of improvement of variational inference. Recall that Theorem 3.3.1 gives an upper

bound on the variational gap V (ŵ) corresponding to an unbiased estimator ŵ of p (x)

in terms of its variance Variance (ŵ). This results in a powerful reductionism; we can

reduce the problem of improving variational inference to the problem of finding

low-variance estimators of the data likelihood p (x). However, by itself, Theorem 3.3.1

does not provide a mechanism to decrease the estimator variance. Here, we take inspiration

from the recent work on importance weighted autoencoders (IWAE) by Burda et al. (2015),

which demonstrates a mechanism of provably improving the variational lower bound,

thereby decreasing the variational gap.

Theorem 3.4.1 (IWAE (Burda et al. (2015))). Let X denote the space of input

data. Consider the estimator ŵnIWAE = 1
n

∑n
i=1

p(x,zi)
q(zi|x) defined for x ∈ X using samples

zi (i ∈ {1, . . . , n}) such that zi iid∼q (· | x). Let L̂nIWAE = E [log ŵnIWAE]. Then,

1. E [ŵnIWAE] = p (x), i.e., ŵnIWAE is an unbiased estimator of p (x),

2. log p (x) ≥ L̂nIWAE, i.e., L̂nIWAE is indeed a variational lower bound for log p (x),

3. L̂nIWAE ≥ L̂mIWAE ∀ n > m, i.e., the lower bound increases monotonically with n, and

4. limn−→∞ L̂
n
IWAE = log p (x), i.e., the lower bound is asymptotically unbiased.

Proof . Please refer to the Appendix A of Burda et al. (2015) for the proof. �

From Theorem 3.4.1 and the definition of the IWAE estimator ŵnIWAE, we observe two im-

portant components to design low-variance estimators.

53

• Instead of a single sample, use multiple samples from the proposal distribution in

order to define a set of unbiased estimators of the data likelihood.

• Consider an average of these estimators to create a single desired estimator.

With these observations, we consider the following definitions.

Definition 3.4.2 (Monte-Carlo Estimator (MCE)). Let {ŵi}
n
i=1 be a set of n

unbiased estimators of the data likelihood p (x). Then, the corresponding Monte-Carlo

estimator of the data likelihood p (x) is denote by ŵn, and is defined as ŵn = 1
n

∑n
i=1 ŵi.

Lemma 3.4.3. If ŵi are unbiased estimators of p (x), then the corresponding Monte-

Carlo estimator is also unbiased, i.e., E [ŵn] = p (x).

Proof . We have E [ŵn] = E
[

1
n

∑n
i=1 ŵi

]
= 1

n

∑n
i=1 E [ŵi] = 1

n

∑n
i=1 p (x) = p (x). �

However, the most important aspect of using the Monte-Carlo estimators is their variance

reduction properties. As we will demonstrate in Chapter 4, the n individual estimators can

be easily designed so that the variance of the Monte-Carlo estimator reduces at the rate of
1
n
. Towards formalizing this idea, we first consider some definitions.

Definition 3.4.4 (Big-O Notation). Consider two functions f, g : N−→R. We define

f to be of order g, and denote it by f (n) = O (g (n)) iff ∃ n0 ∈ N and ∃ k ∈ R+ such

that ∀ n ∈ N with n > n0, we have f (n) ≤ k · g (n), i.e., eventually, the growth of the

function f is upper bounded by a scalar k times that of the function g.

Definition 3.4.5 (Variationally-Asymptotic Monte-Carlo Estimator). Let

{ŵi}
n
i=1 be a set of unbiased estimators of p (x) and let ŵn = 1

n

∑n
i=1 ŵi be the

corresponding Monte-Carlo estimator. Due to lack of a better terminology, we call

the estimator ŵn to be variationally-asymptotic Monte-Carlo estimator iff it satisfies

1. ∃ c > 0 such that ŵi > c ∀ i ∈ {1, . . . , n}, i.e., the individual estimators ŵi are

lower bounded estimators, and

2. ∃ b > 0 such that Variance (ŵn) ≤ b
n
, i.e., the variance of the Monte-Carlo

estimator decreases to 0 at a rate of 1
n
or faster and thus, Variance (ŵn) = O

(
1
n

)
.

54

With these definitions, we prove the master theorem that describes the rate of convergence of

the variational gap to 0 for a general family of estimators. We prove that satisfying the two

conditions of the Definition 3.4.5 results in decrease in the variational gap at a rate of O
(

1
n

)
.

Theorem 3.4.6 (Master Theorem on the Rate of Improvement of VI).

Let {ŵi}
n
i=1 be a set of unbiased estimators of p (x) such that the Monte-Carlo estimator

ŵn = 1
n

∑n
i=1 ŵi is in fact a variationally-asymptotic Monte-Carlo estimator, i.e.,

1. ∃ c > 0 such that ŵi > c ∀ i (1 ≤ i ≤ n), and 2. ∃ b > 0 such that Variance (ŵn) ≤ b
n
.

Then, V (ŵn) = O
(

1
n

)
, i.e., the variational gap for the estimator ŵn goes to 0 at the

rate of 1
n
or faster. Thus, for the variational lower bound L̂n = E [log ŵn], we have

that L̂n−→ log p (x) at the rate of 1
n
or faster.

Proof . First, notice that the Monte-Carlo estimator ŵn is also a lower bounded estimator.

ŵn = 1
n

∑n

i=1 ŵi >
∗ 1
n

∑n

i=1 c = c. (3.4.1)

Here, the inequality (∗) follows from the given condition 1. Thus, ∃ c > 0 such that ŵn > c,

which gives that ŵn is a lower bounded estimator. Thus, we can use the upper bound on

the variational gap from Theorem 3.3.1 to prove the desired result as follows.

V (ŵn) ≤ 1
2 · c2 · Variance (ŵn) ≤† 1

2 · c2 ·
b

n
= b

2 · c2 · n
(3.4.2)

Here, the inequality (†) follows from the given condition 2. Thus, Variance (ŵn) = O
(

1
n

)
.�

Remark 3.4.7 (Emphasis on Variance Reduction in Estimators). As discussed ear-

lier, the lower bounded estimator assumption, which is the condition 1 from Definition 3.4.5,

is assumed in Theorem 3.4.6. Towards the end of this Chapter, we will discuss this condition

and justify it by giving arguments in the support of its feasibility. With this, we will be

assuming this condition in all our subsequent discussions. Thus, Theorem 3.4.6 completes

the reduction of the problem of the rate of improvement in the variational inference to the

rate of decrease of the variance of the Monte-Carlo estimator under consideration.

55

3.4.1. Variance Reduction Techniques

In this Subsection, we focus on the techniques for reducing the variance of the Monte-Carlo

estimators. These techniques revolve around the following idea: for a set of estimators

{ŵi}
n
i=1 with an upper bound on their variance, if either all of them or sufficiently

many of them are pairwise uncorrelated, then the variance of the Monte-Carlo estimator

ŵn = 1
n

∑n
i=1 ŵi vanishes to 0 at the rate of O

(
1
n

)
. One of the mechanisms, then, of

making the individual estimators ŵi uncorrelated is to use i.i.d. samples to construct these

estimators. This is precisely the idea underlying the IWAE estimator in Burda et al. (2015).

Theorem 3.4.8. Consider the estimators ŵIWAE,i = p(x,zi)
q(zi|x) defined using samples

zi (i ∈ {1, . . . , n}) such that zi iid∼q (· | x). Then, we have that ∀ i, j ∈ {1, . . . , n} with

i 6= j, the estimators ŵIWAE,i and ŵIWAE,j are independent and thus, uncorrelated.

Proof . Note that for a given data point x, the estimator ŵIWAE,i = p(x,zi)
q(zi|x) is a function of

zi. We know that ∀ i, j ∈ {1, . . . , n} with i 6= j, the samples zi and zj are independent and

we also know that functions of independent random variables are also independent. Thus,

ŵIWAE,i and ŵIWAE,j are independent, which makes them uncorrelated as well. �

Now, it is easy to see that if the individual estimators are all pairwise uncorrelated, then the

Monte-Carlo estimator has a variance that decreases to 0 at the rate of O
(

1
n

)
.

Theorem 3.4.9. Consider the set of estimators {ŵi}
n
i=1 such that 1. ∀ i, j ∈ {1, . . . , n}

with i 6= j, the estimators ŵIWAE,i and ŵIWAE,j are all pairwise uncorrelated, and 2.

∃ B > 0 such that Variance (ŵi) < B ∀ i ∈ {1, . . . , n}. Then, for the corresponding

Monte-Carlo estimator ŵn = 1
n

∑n
i=1 ŵi, we have that Variance (ŵn) = O

(
1
n

)
.

Proof . Consider the following manipulations.

Variance (ŵn) = Variance
(1
n

∑n

i=1 ŵi

)
=∗

(1
n

)2
· Variance

(∑n

i=1 ŵi
)

=† 1
n2 ·

(∑n

i=1 Variance (ŵi) + 2 ·
∑

1≤i<j≤nCovariance
(
ŵi, ŵj

))
<‡

1
n2 ·

(∑n

i=1B + 2 ·
∑

1≤i<j≤n 0
)

= n ·B
n2 = B

n

(3.4.3)

56

Here, the first two equalities follow from the standard variance properties and the last

inequality follows from the given conditions 1 and 2. �

Note that such IWAE-like approaches usually require a significantly large number of samples

to improve the variational inference by a considerable amount. Thus, although there are

theoretical guarantees of improvement, there is a need to improve upon the i.i.d. samples

as done in IWAE by Burda et al. (2015). In this direction, another idea that is explored

in the works of Huang et al. (2019) on hierarchical importance-weighted autoencoders is to

learn estimators that can have a negative correlation. In particular, this approach utilizes

the estimators ŵHIWAE,i = πi (z0, zi) · p(x,zi)·r(z0|zi)
q(zi|z0)·q(z0) , where zi are sampled conditionally

independently given z0. Although Huang et al. (2019) empirically demonstrate that these

estimators end up learning negative correlation, there is no theoretical guarantee that

this will always happen. Thus, there is no theoretical guarantee that HIWAE estimator

ŵnHIWAE = 1
n

∑n
i=1 ŵHIWAE,i will always have decreasing variance. In this context, our

variance reduction technique, described in Chapter 4, achieves the best of both the worlds.

Our Variance Reduction Approach: We sample the latent variables z1:n se-

quentially by explicitly modeling their dependency using a conditional proposal

q (zi | z1:i−1,x) or by using ideas from antithetic sampling (Wilson (1983)). We then

create the estimators {ŵi}
n
i=1 such that either all or sufficiently many of them become

pairwise uncorrelated and we obtain a Monte-Carlo estimator with O
(

1
n

)
variance.

We claim that our approach is better than the i.i.d. sampling in IWAE-like approaches.

This is because our approach models the dependencies between latent variables by modeling

their joint distribution. This enables modeling of posterior distributions that are more

expressive as compared to that of the i.i.d. samples. Since each new sample is obtained

conditioned on the previous ones, the variational lower bound can be made to increase with

lesser number of samples. In fact, our approach of conditional sampling is a generalization

iof the i.i.d. sampling; the proposal distribution q (zi | x) of i.i.d. samples is a special case

of the conditional proposal q (zi | z1:i−1,x), where there is no dependence in zi and z1:i−1.

Further, in Section 4.7, we will demonstrate that our approaches indeed perform better than

the baseline IWAE approach, which supports our claim.

57

3.5. Related Work
In this Section, we consider the previously demonstrated theoretical guarantees of improve-

ment in variational inference with the number of samples along with their assumptions. We

first consider the IWAE by Burda et al. (2015), which is the initial idea in this direction.

• Results of IWAE by Burda et al. (2015)

Let ŵIWAE,i = p(x,zi)
q(zi|x) , ŵ

n
IWAE = 1

n

∑n
i=1 ŵIWAE,i, L̂nIWAE = E [log ŵnIWAE]. Then,

(1) ∀ n,m ∈ N with n < m, L̂nIWAE ≤ L̂mIWAE.

(2) limn−→∞ L̂
n
IWAE = p (x).

• Assumptions

(1) ŵIWAE,i is bounded.

This approach proves that with an increasing number of samples, the variational lower bound

approaches the true marginal log p (x), thereby decreasing the variational gap to 0. However,

it does not provide an upper bound on the variational gap while doing so. An extension of

the IWAE approach is provided by Cremer et al. (2017), where they interpret the IWAE as

performing just the usual variational inference but with a more complex posterior induced

by the use of multiple samples. However, their theoretical guarantees are analogous to the

one in IWAE, demonstrating only that their variational lower bound converges to log p (x).

The next major step was given by Nowozin (2018), in which L̂nIWAE is viewed as a biased

estimator of log p (x) and thus, its bias and variance is estimated.

• Results of Nowozin (2018)

Let ŵi
iid∼P with E [ŵi] = p (x) (1 ≤ i ≤ n), where P is the distribution of each

of the n individual i.i.d. estimators. Let ŵn = 1
n

∑n
i=1 ŵi, and L̂n = E [log ŵn].

Let µj = EP
[
(w − EP [w])j

]
∀ j ∈ N and µ = EP [w]. Then,

(1) −V (ŵn) = L̂n − log p (x) = − 1
n
· µ2

2·µ2 + 1
n2 ·

(
µ3

3·µ3 − 3·µ2
2

4·µ4

)
− 1
n3 ·

(
µ4

4·µ4 − 3·µ2
2

4·µ4 + 10·µ2·µ3
5·µ5

5

)
+ o

(
1
n3

)
.

• Assumptions

(1) ŵi must be sampled independently from P .

(2) the distribution P of the i.i.d. estimators has finite moments of all orders.

58

This work hints that the variational gap is dominated by the 1
n
term. Further, the proportion-

ality constant µ2
2·µ2 is related to the coefficient of variation v =

√
µ2
µ2 and thus, the variational

gap is demonstrated to be related to the spread of the distribution of ŵ. Both these insights

are proved in our approach and further, the mathematical form of our upper bound of the

variation gap (from Theorem 3.3.1) has the same form as that proved by Nowozin (2018).

The next major step, by Maddison et al. (2017), demonstrates a bound on the variational

gap of any Monte-Carlo estimator ŵn using a variant of its variance Variance (ŵn).

• Results of Maddison et al. (2017)

Consider estimators ŵi with E [ŵi] = p (x) (1 ≤ i ≤ n) . Let ŵn = 1
n

∑n
i=1 ŵi,

and L̂n = E [log ŵn]. Let g (n) = E
[
(ŵn − p (x))6

]
. Then,

(1) L̂n−→ log p (x) as n−→∞.

(2) V (ŵn) ≤ 1
2 · Variance

(
ŵn

p(x)

)
+O

(√
g (n)

)
.

• Assumptions

(1) ŵn is uniformly and strongly consistent.

(2) lim supn−→∞ E
[

1
ŵn

]
is bounded above.

This bound connects V (ŵn) with Variance
(
ŵn

p(x)

)
, a variant of Variance (ŵn). However, it

also sheds light on a crucial idea; the expectation of the inverse estimator is required to be

bounded above. In our bound from Theorem 3.3.1, the strong assumption lower bounded

estimator is connected to this assumption. If the lower-bounded estimator condition holds,

then there exists c > 0 such that ŵn < c. Using this, we get that E
[

1
ŵn

]
< E

[
1
c

]
= 1

c
.

Thus, if lower bounded estimator assumption holds true, then assumption (2) of Maddison

et al. (2017) holds true as well. This relation also suggests that the lower bounded estimator

assumption is stronger than assumption (2) of Maddison et al. (2017) as the former implies

the latter. However, this upper bound is complex and can not be applied directly to comment

on the rate of decrease of the variational gap with the number of samples. Thus, our

approach provides a simpler bound on the variational gap at the cost of a related but slightly

stronger assumption. Another approach that attempts to derive a simpler upper bound on

the variational gap is the work by Klys et al. (2018).

59

• Results of Klys et al. (2018)

Let ŵ be an unbiased estimator of p (x). Then,

(1) ∃ C > 0 independent of ŵ such that for any sufficiently small ε > 0, V (ŵ) <

C ·
(
ε+ Variance(ŵ)

ε

)
. Thus, if Variance (ŵ)−→0, then V (ŵ)−→0.

• Assumptions

(1) The assumption ŵn is uniformly integrable is needed to complete the proof,

which was suggested by Christian Naesseth but missing from the original

works of Klys et al. (2018).

The utility of this approach is that the variational gap and the estimator variance are related

through a simple bound. Our work removes the need for the extra constant C from the upper

bound and gives a simpler bound using only the estimator variance. Another approach is

demonstrated in the works of Huang et al. (2019) and Huang and Courville (2019).

• Results of Huang and Courville (2019)

For an unbiased estimator ŵ of p (x), let µX = p (x) , νX be its mean and

median. Let µY = E [log ŵ], νY be the mean and median of the distribution of

log ŵ. Let ∃ CX , CY > 0 such that |µX − νX | ≤ CX , |µY − νY | ≤ CY . Then,

(1) V (ŵn) < CX
µX−CX

+ CY .

(2) Further, let σX , σY be the standard deviations of ŵ and log ŵ. Then,

V (ŵn) < σX
p(x)−σX + σY .

• Assumptions

(1) The distribution of ŵ has a single median.

(2) p (x) = µX > CX .

(3) Constant CX > 0 exists such that it satisfies assumption (2) as well as

|µX − νX | ≤ CX at the same time.

60

• Results of HIWAE by Huang et al. (2019)

Let ŵn be an unbiased Monte-Carlo estimator of p (x). Then,

(1) limn−→∞Variance (ŵn) = 0 =⇒ log ŵn−→ log p (x) in probability.

(2) Further, if log ŵn → log p (x) in L2 norm, then limn→∞Variance (ŵn) = 0.

• Assumptions

(1) E [|ŵn|] <∞, {ŵn} is uniformly integrable.

(2) E
[
|log ŵn|2

]
<∞, {log ŵn} is bounded in L1 norm.

(3) {log ŵn} is uniformly integrable.

These results relax the strict conditions from the work of Burda et al. (2015) and provide a

simple upper bound to the variational gap in terms of the variance of the estimator. However,

the problem with this approach is that it requires too many conditions on the distribution

of the estimator. In comparison, we argue that we provide a fairly elegant upper bound on

the variational gap using only two simple assumptions. This concludes the comparison of

our results with the previously published ones and we turn our attention to the analysis of

the crucial lower-bounded estimator assumption.

3.6. On the Lower Bounded Estimator Assumption
In this section, we discuss in detail the LBE assumption and provide justifications for it.

Although this assumption is fairly strong, we aim to argue that this assumption is reasonable

and justifiable. In this context, we provide the following arguments:

(1) In maximizing the variational lower bound/ELBO, we are effectively attempting to

maximize the values of the estimators. Further, the estimator value indeed increases

as the training progresses, even with sampled latent variables and even for validation

and test dataset, and this can be easily verified empirically.

(2) LBE assumption ensures that all data points get a probability density of at least c,

which is a desirable property of a parametrized model of the data.

3.6.1. Estimating the Variational Lower Bound

Note that for any unbiased estimator ŵ of p (x), we have the corresponding trainable vari-

ational lower bound L̂ = E [log ŵ]. This expectation is taken with respect to the proposal

61

distribution q (z | x), where z represents all the latent variables involved in computing the

estimator ŵ. However, note that computing the expectation value exactly is difficult and

thus, we effectively compute its Monte-Carlo expectation value. Thus, we get the estimation

L̃ of the true variational lower bound L̂ as L̂ ≈ L̃ = 1
m

∑
zi∼q(·|x), 1≤i≤m log ŵi, where ŵi is

the estimator value computed using the sample zi. Thus, during training, we are effectively

maximizing log ŵ, the log of the estimator value, which in term implies that we are effectively

increasing the estimator value itself.

Fig. 3.1. The graph of the values of log ŵCIWAE for the training, validation and testing

splits of the OMNIGLOT dataset (Lake et al. (2015)). Our CIWAE approach is described in

Section 4.2. This graph emphasizes that our training process does not overfit and thus, the

estimator values increase on all the splits of the dataset. This graph is an example; similar

training curves are obtained for other datasets with all approaches.

Now, the estimator ŵ is usually parametrized as ŵθ,φ, where φ represents the encoder pa-

rameters and θ represents the decoder and prior parameters. Thus, the estimator values

ŵθ,φ for the training dataset increase during the training process. However, even though we

62

train our model on the training dataset, we require the estimator values for the validation

and testing datasets to increase as well. This is because, in principle, it is possible that

during the training process, the estimator values increase only for the training dataset but

decreases for the validation and testing datasets. However, this happens if and only if we

overfit the training dataset. Since we stop training our model parameters φ, θ as soon as

they start to overfit, our model generalizes better and thus, estimator values increase even

on the validation and test datasets during the training process.

Thus, with Figure 3.1, it is clear that after the training is complete, the value of the estimator

ŵθ,φ is much higher than their initial value. Thus, if the initial values of estimators are

positive, which is usually true based on the design, it is not difficult to imaging that the

value of the trained estimators ŵθ,φ will be lower-bounded by a positive constant.

3.6.2. Consequences of LBE

Next, we can see that if the estimator ŵ is lower-bounded, then so is the data marginal. If

∃ c > 0 such that ŵ > c, then p (x) = E [ŵ] > E [c] = c, which gives that p (x) > c. Now,

we argue that this is indeed a desirable property. From Definition 3.1.1, we know that we

want to learn parametrized models pθ (·) of data which assign high probability density to

data points x. This is what is ensured in the above inequality; each data point x gets a

probability density of at least c. On the contrary, those parametrized models that do not

satisfy this property would not be desirable as there will be data points with arbitrarily low

densities associated with them. However, at the same time, there are distributions p (x) that

we would like to use for modeling data but that do not satisfy this property. For instance, the

Gaussian distribution p (x) = N (µ, σ2) with mean µ and standard deviation σ is a simple

distribution for modeling the data that does not satisfy the above property p (x) > c for some

c > 0. This example demonstrates a limitation of our approach, which is the result of the

strong lower bounded estimator assumption. This points towards a possible future research

direction of studying the extent to which a data distribution pdata (x) can be modeled with

parametrized distribution pθ (x); e.g., modeling a Gaussian distribution sufficiently well with

an appropriately truncated Gaussian distribution.

63

3.7. Conclusions and the Significance of the Results
In this Section, we conclude our theoretical results and emphasize their significance.

• Firstly, in Section 3.3, we demonstrate a simple and elegant bound on the variational

gap in terms of only the estimator variance. As discussed in Section 3.6, the con-

nection in the variational gap and certain statistical properties of the estimator has

previously been observed and exploited for improving variational inference. In the

same spirit, our result from Theorem 3.3.1 establishes a direct connection between

the variational gap and the estimator variance.

• One of the strengths of our approach is that it reduces the problem of improving

variational inference to an easier problem of designing low-variance estimators of

the data likelihood p (x). Many previous approaches use multi-sample estimators to

improve variational inference. Our result provides a perspective on these approaches;

we demonstrate that using multiple samples can result in low-variance estimators,

which then lead to a low variational gap and thus, better variational inference.

• Another strength of our approach is that it allows us to address the rate at which the

variational inference improves with the number of samples. Since Theorem 3.3.1 di-

rectly connects the improvement in variational inference to the estimator variance, we

can study the properties of the variances of multi-sample estimators and understand

the rate at which using more samples would improve the variational inference.

• Finally, our approach can be combined with well-established variance reduction tech-

niques to design low-variance estimators for improving variational inference. In fact,

in Chapter 4, we will use the ideas developed in this section to construct two ap-

proaches to improving variational inference and demonstrate their efficacy.

This completes our discussion of the theoretical properties of multi-sample variational infer-

ence and their variational gaps. In the next Chapter, we deal with the question of sample

efficiency in multi-sample variational inference.

64

Chapter 4

Variational Inference with Conditional

Sampling

4.1. Conditional Sampling in Variational Inference
In this Chapter, we consider the problem of the sample efficiency in multi-sample variational

inference. In the previous Chapter, we demonstrated a simple upper bound on the varia-

tional gap in terms of the estimator variance and then demonstrated that with multi-sample

estimators, the variational gap can be made to vanish at the rate of O
(

1
n

)
. These results

provided us with a powerful reduction; we reduced the problem of improving variational

inference to the problem of designing low-variance multi-sample estimators. Thus, we next

consider the question of sample efficiency in low-variance estimators. The IWAE approach

by Burda et al. (2015) utilizes n i.i.d. samples zi drawn from the proposal distribution

q (· | x) to create n i.i.d. estimators ŵIWAE,i = p(x,zi)
q(zi|x) . The corresponding IWAE estimator

ŵnIWAE = 1
n

∑n
i=1 ŵIWAE,i is the desired low-variance Monte-Carlo estimator for p (x).

However, empirically, the number of samples required for achieving significant improvements

is significantly large; for instance, Burda et al. (2015) demonstrate experiments with upto

n = 50 samples.

One of the natural extension of this idea is to use conditional sampling of latent vari-

ables and select each next sample conditioned on the previous ones: zi ∼ q (· | z1:i−1).

However, with this aforementioned conditional sampling, the usual IWAE estimators

ŵIWAE,i are rendered correlated, thereby leading to no guarantees about the O
(

1
n

)
nature

of the variance of their Monte-Carlo estimator. Towards this, we introduce a different

set of estimators which, despite the conditional sampling of latent variables, results in

pairwise uncorrelated estimators. This approach, which we call Conditional-IWAE

(CIWAE), uses the corrected estimators ŵCIWAE,i = p(x,zi)
q(zi|z1:i−1,x) . We prove that these

estimators are always pairwise uncorrelated, despite the conditional sampling of latent

variables. However, we can see that it is not necessary to make all the estimators

uncorrelated. We know that for a Monte-Carlo estimator ŵn, its variance is given by:

Variance (ŵn) = 1
n2 ·

(∑n
i=1 Variance (ŵi) + 2 ·∑1≤i<j≤nCovariance

(
ŵi, ŵj

))
. Thus, the

idea here is that we can sample the latent variables so that significantly many of the n

IWAE estimators ŵIWAE,i = p(x,zi)
q(zi|x) become uncorrelated to give a Monte-Carlo estimator

with O
(

1
n

)
variance guarantee. There can be many mechanisms of sampling variables to

achieve this effect but we utilize the idea of antithetic sampling (Wilson (1983)). In order

to generate n samples, we first generate
⌊
n
2

⌋
samples from the proposal distribution in an

i.i.d. manner and use their reflections in the mean of the distribution. These negatively

correlated samples should only induce a limited amount of negative correlation in the

corresponding estimators. In fact, we prove that only O (n) of the O (n2) covariance terms

are non-zero. This helps us achieve a Monte-Carlo estimator that retains the O
(

1
n

)
variance

properties. Due to the antithetic nature of sampling involved, we term this approach

Antithetic-IWAE. This approach has been considered before in the work of Klys et al.

(2018). However, we are the first to give the estimator-variance based perspective on this

approach and demonstrate its theoretical and empirical utility. In conclusion, our take on

sample efficiency can be summarized as follows.

Our Sample Efficiency Approach: Sample each new latent variable conditioned

on all or some of the previous ones, and then design appropriate estimators so that

the corresponding Monte-Carlo estimator is low-variance.

4.2. Conditional-IWAE
As seen previously, the CIWAE approach involves taking n conditional samples z1:n such that

each next sample zi is sampled conditioned on all previous ones, i.e., zi ∼ q (zi | z1:i−1,x).

This approach and the involved sampling scheme is detailed in Algorithm 1.

66

Algorithm 1: Conditional sampling algorithm and the CIWAE approach.
function: Conditional-Sampling-Algorithm

inputs : x ∼ p (·): A data point, where p (·) represents the data distribution.

qφ (z | zi−1,x): The parametrized encoder (neural network).

n: The number of conditional samples to be used for inference.

outputs : z1:n: n conditionally sampled latent variables.

for i = 1, . . . , n do

Sample zi ∼ qφ (· | z1:i−1,x);

end

return z1:n;

function: Ciwae

inputs : x ∼ p (·): A data point, where p (·) represents the data distribution.

qφ (z | zi−1,x): The parametrized encoder (neural network).

pθ (x | z): The parametrized decoder (neural network).

pθ (z): The prior on all latent variables.

n: The number of conditional samples to be used for inference.

outputs : ŵnCIWAE: The CIWAE estimator.

L̃nCIWAE: The trainable estimator for the lower bound of CIWAE.

z1:n ←− Conditional-Sampling-Algorithm(x, qφ, n);

for i = 1, . . . , n do

ŵCIWAE,i ←−
pθ(x|zi)·pθ(zi)
qφ(zi|z1:i−1,x) ;

end

ŵnCIWAE ←− 1
n

∑n
i=1 ŵCIWAE,i;

L̃nCIWAE ←− log 1
n

∑n
i=1 ŵCIWAE,i;

return ŵnCIWAE, L̃
n
CIWAE

67

data point x

reconstructions (x′)1:n

decoder pθ (x ∣ z)
(shared weights)

}
feature extractor

fϕ (x)

GRU cell
gϕ (zi ∣ z1:n−1, x)

z1 z2 zn

}

(a) A schematic representation of our CIWAE approach implemented with neural networks mod-

eling the involved distributions.

}
z1

data point x

encoder qϕ (z ∣ x)

⌈ n
2 ⌉ i.i.d. samples z1:⌈ n

2 ⌉
reconstructions (x′)1:n

z⌈ n
2 ⌉

decoder pθ (x ∣ z)
(shared weights)}

}
z⌈ n

2 +i⌉

}
z⌈ n

2 +i⌉ = 2 ⋅ μ − zi (1 ≤ i ≤ ⌊ n
2 ⌋)

⌊ n
2 ⌋ antithetic samples

(b) A schematic representation of the AIWAE approach (Klys et al. (2018)) implemented with

neural networks modeling the involved distributions.

Fig. 4.1. The schematic representations of the CIWAE and AIWAE approaches. For com-

parison and contrast, the schematic representations of the VAE and IWAE approaches are

given in Figure 4.2.

68

data point x

encoder qϕ (z ∣ x)

sample z

decoder pθ (x ∣ z)

reconstruction x′

(a) A schematic representation of the VAE approach (Kingma and Welling (2013)) implemented

with neural networks modeling the involved distributions.

z1

data point x

encoder qϕ (z ∣ x)

n i.i.d. samples z1:n reconstructions (x′)1:n

zn }

decoder pθ (x ∣ z)
(shared weights)}

}
(b) A schematic representation of the IWAE approach (Burda et al. (2015)) implemented with

neural networks modeling the involved distributions.

Fig. 4.2. The schematic representations of the VAE (Kingma and Welling (2013)) and

IWAE (Burda et al. (2015)) approaches.

69

Figure 4.1 (a) shows the schematic representation of the neural networks involved in im-

plementing the CIWAE approach. As discussed previously, the CIWAE approach performs

conditional sampling where each next sample zi is sampled conditioned on all the previ-

ous samples: zi ∼ q (zi | z1:i−1,x), which requires parametrizing an encoder that can model

dependencies on the variable number of samples z1:i−1. We achieve this by modeling the

encoder in terms of 1. a feature extractor fφ (x) that outputs an encoding of the input data

point x, and 2. a gated recurrent unit (GRU) cell (Cho et al. (2014)) that can model the

conditioning of z1:i−1 and x required to sample zi. The hidden state h0 of the GRU cell is

initialized with the encoding of the input x. For obtaining the first sample, the output of

the GRU cell is used and the updated hidden state h1 contains an encoding of x. In general,

the previous sample zi−1 is set as the input to the cell and the hidden state hi−1 containing

the encoding of x, z1:i−2 is used to obtain the updated state hi containing an encoding of

x, z1:i−2 and the output is used to sample the next latent zi.

4.3. Properties of Conditional-IWAE
Now, having seen the implementation details of the CIWAE approach, we prove through

the following theorems the properties of the rate of decrease of its variational gap.

Theorem 4.3.1. The estimator ŵCIWAE,i = p(x,zi)
q(zi|z1:i−1,x) is an unbiased estimator of

p (x), i.e., E
[
ŵCIWAE,i

]
= Eq(z1:n|x)

[
p(x,zi)

q(zi|z1:i−1,x)

]
= p (x) ∀ i ∈ {1, . . . , n}.

Proof . Consider the following manipulations.

Eq(z1:n|x)

[
p (x, zi)

q (zi | z1:i−1,x)

]
=
∫

z1:i−1
dz1:i−1

∫
zi

dzi
∫

zi+1:n
dzi+1:nq

(
z1:n | x

)
· p (x, zi)
q (zi | z1:i−1,x)

=∗
∫

z1:i−1
dz1:i−1

∫
zi

dzi
p (x, zi)

q (zi | z1:i−1,x)

∫
zi+1:n

dzi+1:nq
(
z1:n | x

)

=†
∫

z1:i−1
dz1:i−1

∫
zi

dzi
p (x, zi)

q (zi | z1:i−1,x) · q
(
z1:i | x

)
=‡

∫
z1:i−1

dz1:i−1
∫

zi
dzip

(
x, zi

)
· q
(
z1:i−1 | x

)
=
∫

z1:i−1
dz1:i−1q

(
z1:i−1 | x

) ∫
zi

dzip
(
x, zi

)
=
∫

z1:i−1
dz1:i−1q

(
z1:i−1 | x

)
· p (x) = p (x) ·

∫
z1:i−1

dz1:i−1q
(
z1:i−1 | x

)
= p (x) · 1 = p (x)

(4.3.1)

70

Here, the equalities (∗), (†), (‡) follow from marginalization of appropriate variables. The

order of integration for the positive integrand can be shuffled due to Tonelli’s theorem. �

Theorem 4.3.2. The estimators ŵCIWAE,i = p(x,zi)
q(zi|z1:i−1,x) , ŵCIWAE,j = p(x,zj)

q(zj |z1:j−1,x)

are pairwise un-correlated for all i, j (1 ≤ j < i ≤ n), i.e. E
[
ŵCIWAE,i · ŵCIWAE,j

]
=

Eq(z1:n|x)

[
p(x,zi)

q(zi|z1:i−1,x) ·
p(x,zj)

q(zj |z1:j−1,x)

]
= p (x)2 = E

[
ŵCIWAE,i

]
· E

[
ŵCIWAE,j

]
.

Proof . Consider the following manipulations for any i, j (1 ≤ i < j ≤ n).

E
[
ŵCIWAE,i · ŵCIWAE,j

]
= Eq(z1:n|x)

[
p (x, zi)

q (zi | z1:i−1) ·
p (x, zj)

q (zj | z1:j−1)

]

=(1)
∫

z1:i−1
dz1:i−1

∫
zi

dzi
∫

zi+1:j−1
dzi+1:j−1

∫
zj

dzj
∫

zj+1:n
dzj+1:n

q
(
z1:n | x

)
· p (x, zi)
q (zi | z1:i−1) ·

p (x, zj)
q (zj | z1:j−1)

=(2)
∫

z1:i−1
dz1:i−1

∫
zi

dzi
∫

zi+1:j−1
dzi+1:j−1

∫
zj

dzj
p (x, zi)

q (zi | z1:i−1) ·
p (x, zj)

q (zj | z1:j−1)∫
zj+1:n

dzj+1:n q
(
z1:n | x

)
=(3)

∫
z1:i−1

dz1:i−1
∫

zi
dzi

∫
zi+1:j−1

dzi+1:j−1
∫

zj
dzj q

(
z1:j | x

)
· p (x, zi)
q (zi | z1:i−1) ·

p (x, zj)
q (zj | z1:j−1)

=(4)
∫

z1:i−1
dz1:i−1

∫
zi

dzi
∫

zi+1:j−1
dzi+1:j−1

∫
zj

dzj q
(
z1:j−1 | x

)
· p (x, zi)
q (zi | z1:i−1) · p

(
x, zj

)

=(5)
∫

z1:i−1
dz1:i−1

∫
zi

dzi
∫

zi+1:j−1
dzi+1:j−1 q

(
z1:j−1 | x

)
· p (x, zi)
q (zi | z1:i−1)

∫
zj

dzj p
(
x, zj

)

=(6)
p (x) ·

∫
z1:i−1

dz1:i−1
∫

zi
dzi

∫
zi+1:j−1

dzi+1:j−1 q
(
z1:j−1 | x

)
· p (x, zi)
q (zi | z1:i−1)

=(7)
p (x) ·

∫
z1:i−1

dz1:i−1
∫

zi
dzi

p (x, zi)
q (zi | z1:i−1)

∫
zi+1:j−1

dzi+1:j−1 q
(
z1:j−1 | x

)

=(8)
p (x) ·

∫
z1:i−1

dz1:i−1
∫

zi
dzi q

(
z1:i | x

)
· p (x, zi)
q (zi | z1:i−1)

=(9)
p (x) ·

∫
z1:i−1

dz1:i−1
∫

zi
dzi q

(
z1:i−1 | x

)
· p
(
x, zi

)
=(10)

p (x) ·
∫

z1:i−1
dz1:i−1 q

(
z1:i−1 | x

) ∫
zi

dzi p
(
x, zi

)
=(11)

p (x) · p (x) ·
∫

z1:i−1
dz1:i−1 q

(
z1:i−1 | x

)
= p (x)2 = E

[
ŵCIWAE,i

]
· E

[
ŵCIWAE,j

]
(4.3.2)

71

Here, the equality (1) follows form the definition of the correlation, the equalities

(3), (6), (8), (10), (11) follow by marginalizing over the corresponding latent variables, and

the equalities (4), (9) follow by chain rule of probabilities.

Theorem 4.3.3. Consider the CIWAE estimator ŵnCIWAE = 1
n

∑n
i=1 ŵCIWAE,i =

1
n

∑n
i=1

p(x,zi)
q(zi|z1:i−1,x) defined in terms of n latent variables zi (i ∈ {1, . . . , n}),

where sample zi is sampled conditioned on all the previous samples z1:i−1. Let

Variance
(
ŵCIWAE,i

)
be upper bounded by a finite constant, i.e., let ∃ B > 0 such that

Variance
(
ŵCIWAE,i

)
< B ∀ i ∈ {1, . . . , n}. Then, Variance (ŵnCIWAE) = O

(
1
n

)
.

Proof . The proof follows directly from Theorem 4.3.2 as follows.

Variance (ŵnCIWAE) = Variance
(1
n

∑n

i=1 ŵCIWAE,i

)
=∗

(1
n

)2
Variance

(∑n

i=1 ŵCIWAE,i

)
=† 1

n2 ·
(∑n

i=1 Variance
(
ŵCIWAE,i

)
+ 2 ·

∑
1≤i<j≤nCovariance

(
ŵCIWAE,i · ŵCIWAE,j

))
=‡ 1

n2 ·
(∑n

i=1 Variance
(
ŵCIWAE,i

)
+ 0

)
<

1
n2 ·

∑n

i=1B = B · n
n2 = B

n
(4.3.3)

Here, the equalities (∗), (†) follow from standard properties of variance, and the equality (‡)

follows from Theorem 4.3.2. �

Theorem 4.3.4. Consider the CIWAE estimator ŵnCIWAE = 1
n

∑n
i=1 ŵCIWAE,i =

1
n

∑n
i=1

p(x,zi)
q(zi|z1:i−1,x) defined in terms of n latent variables zi (i ∈ {1, . . . , n}), where

sample zi is sampled conditioned on all the previous samples z1:i−1. Consider

the corresponding variational lower bound L̂nCIWAE = E [log ŵnCIWAE]. Let 1.

Variance
(
ŵCIWAE,i

)
be upper bounded by a finite constant, i.e., let ∃ B > 0 such that

Variance
(
ŵCIWAE,i

)
< B ∀ i ∈ {1, . . . , n}, and let 2. ŵCIWAE,i be lower bounded

estimators, i.e, let ∃ c > 0 such that ŵCIWAE,i > c ∀ i ∈ {1, . . . , n}. Then, ŵnCIWAE

is a variationally asymptotic Monte-Carlo estimator of p (x), i.e., ŵnCIWAE satisfies:

1. E [ŵnCIWAE] = p (x), 2. log p (x) ≥ L̂nCIWAE, 3. V (ŵnCIWAE) = O
(

1
n

)
, i.e.,

V (ŵnCIWAE)−→0 and L̂nCIWAE−→ log p (x) at the rate O
(

1
n

)
.

72

Proof . 1. Consider the following manipulations.

E [ŵnCIWAE] = E
[1
n

∑n

i=1 ŵCIWAE,i

]
= 1
n

∑n

i=1 E
[
ŵCIWAE,i

]
=∗ 1

n

∑n

i=1 p (x) = p (x)

Here, the equality (∗) follows from Theorem 4.3.1.

2. Since part 1 proves that ŵnCIWAE is an unbiased estimator of p (x), Lemma 3.1.4 implies

that log p (x) ≥ E [log ŵnCIWAE] = L̂nCIWAE.

3. The given condition 1 along with Theorem 4.3.3 gives Variance (log ŵnCIWAE) < B
n
.

Further, the given condition 2 along with Theorem 3.3.1 gives that V (ŵnCIWAE) ≤
1

2·c2 · Variance (ŵnCIWAE). Combining these two conditions, we have V (ŵnCIWAE) <

B
2·c2·n . Thus, V (ŵnCIWAE) = O

(
1
n

)
, which proves the desired result. �

4.4. Antithetic-IWAE
As seen in Section 4.2, the CIWAE approach utilizes conditionally sampled latent variables

and a corrected estimator. The conditionally sampled latent variables are targeted at increas-

ing the sample efficiency of the approach and the corrected estimators ŵCIWAE,i = p(x),zi
q(zi|z1:i−1|x) .

ensure that they are always pairwise uncorrelated, which results in O
(

1
n

)
variance prop-

erties of the corresponding CIWAE estimator ŵnCIWAE = 1
n

∑n
i=1 ŵCIWAE,i. However, our

other technique does not necessitate all the estimators uncorrelated; we sample the latent

variables in an antithetic manner and use the regular IWAE estimators as shown in Algo-

rithm 2. The antithetic sampling leads to sufficiently many estimators to become uncorre-

lated so that the O
(

1
n

)
variance properties hold for the corresponding AIWAE estimator

ŵnAIWAE = 1
n

∑n
i=1 ŵAIWAE,i. Note that in AIWAE, we effectively generate only half the num-

ber (
⌈
n
2

⌉
) of samples from the proposal q (· | x). These samples are then used to create the

remaining n −
⌈
n
2

⌉
=
⌊
n
2

⌋
samples by reflecting these samples in the mean µ of the distri-

bution modeled by q (· | x). Thus, from Algorithm 2, we can see that zi and zd
n
2 e+i are the

only pairs of correlated samples ∀ i ∈
⌊
n
2

⌋
; any other pair of samples is independent of each

other. Thus, only the estimators ŵAIWAE,i and ŵAIWAE,dn2 e+i
can be correlated and there are

only O (n) number of these contributions to the variance of the ŵnAIWAE, making it have the

O
(

1
n

)
variance properties. We will prove these results in the next Section. Note that the

schematic diagram of the implementation of the AIWAE approach is given in Figure 4.1 (b).

73

Algorithm 2: Antithetic sampling algorithm and the AIWAE approach.
function: Antithetic-Sampling-Algorithm

inputs : x ∼ p (·): A data point, where p (·) represents the data distribution.

qφ (z | x): The parametrized encoder (neural network).

n: The number of conditional samples to be used for inference.

outputs : z1:n: n antithetically sampled latent variables.

for i = 1, . . . ,
⌈
n
2

⌉
do

Sample zi iid∼ qφ (· | x);

end

µ←−Mean of the distribution modeled by q (· | x);

for i = 1, . . . ,
⌊
n
2

⌋
do

Set zd
n
2 e+i = 2 · µ− zi ;

end

return z1:n;

function: Aiwae

inputs : x ∼ p (·): A data point, where p (·) represents the data distribution.

qφ (z | x): The parametrized encoder (neural network).

pθ (x | z): The parametrized decoder (neural network).

pθ (z): The prior on all latent variables.

n: The number of conditional samples to be used for inference.

outputs : ŵnAIWAE: The AIWAE estimator.

L̃nAIWAE: The trainable estimator for the lower bound of AIWAE.

z1:n ←− Antithetic-Sampling-Algorithm(x, qφ, n);

for i = 1, . . . , n do

ŵAIWAE,i ←−
pθ(x|zi)·pθ(zi)

qφ(zi|x) ;

end

ŵnAIWAE ←− 1
n

∑n
i=1 ŵAIWAE,i;

L̃nAIWAE ←− log 1
n

∑n
i=1 ŵAIWAE,i;

return ŵnAIWAE, L̃
n
AIWAE

74

4.5. Properties of Antithetic-IWAE
Now, we prove through the following theorems the properties of the rate of decrease of the

variational gap of the AIWAE approach.

Theorem 4.5.1. For any latent variables v1:n with joint distribution q (v1:n | x), we

have Eq(v1:n|x)

[
p(x,vi)
q(vi|x)

]
= p (x) ∀ i ∈ {1, . . . , n}. In particular, let z1:n be the n latent

variables sampled using the Antithetic Sampling Algorithm 2. Then, as a special case,

the estimator ŵAIWAE,i = p(x,zi)
q(zi|x) is an unbiased estimator of p (x), i.e., E

[
ŵAIWAE,i

]
=

Eq(z1:n|x)

[
p(x,zi)
q(zi|x)

]
= p (x) ∀ i ∈ {1, . . . , n}.

Proof . Consider the following manipulations.

Eq(v1:n|x)

[
p (x,vi)
q (vi | x)

]
=
∫

vi
dvi

∫
v1:i−1

dv1:i−1
∫

vi+1:n
dvi+1:n q

(
v1:n | x

)
· p (x,vi)
q (vi | x)

=
∫

vi
dvi

p (x,vi)
q (vi | x)

∫
v1:i−1

dv1:i−1
∫

vi+1:n
dvi+1:n q

(
v1:n | x

)

=∗
∫

vi
dvi

p (x,vi)
q (vi | x)

∫
v1:i−1

dv1:i−1 q
(
v1:i | x

)

=†
∫

vi
dvi q

(
vi | x

)
· p (x,vi)
q (vi | x) =

∫
vi

dvi p
(
x,vi

)
=‡ p (x)

(4.5.1)

Here, the equalities (∗), (†), (‡) follow from the marginalization of the corresponding latent

variables and this completes the proof of the general case. �

Theorem 4.5.2. Let z1:n be the n latent variables sampled from the proposal q (· | x)

using the Antithetic Sampling Algorithm 2. Consider the estimators ŵAIWAE,i =
p(x,zi)
q(zi|x) ∀ i ∈ {1, . . . , n}. Let Variance

(
ŵAIWAE,i

)
be upper bounded by a finite constant,

i.e., let ∃ B > 0 such that Variance
(
ŵAIWAE,i

)
< B ∀ i ∈ {1, . . . , n}. Then, for the

AIWAE estimator ŵnAIWAE = 1
n

∑n
i=1 ŵAIWAE,i, we have Variance (ŵnAIWAE) = O

(
1
n

)
.

Proof . For latent variables z1:n sampled from the proposal q (· | x) using the Antithetic

Sampling Algorithm 2, we have the following relations.

ziiid∼q (· | x) ∀ i ∈
{

1, . . . ,
⌈
n

2

⌉}
, and zd

n
2 e+j = 2 · µ

(
zj
)
− zj ∀ j ∈

{
1, . . . ,

⌊
n

2

⌋}
(4.5.2)

75

Now, note that ∀ j ∈
{

1, . . . ,
⌊
n
2

⌋}
, zd

n
2 e+j is a function of zj, which in turn are indepen-

dent. We use the fact that the functions of independent random variables are themselves

independent. This and Expressions 4.5.2 give the following relations in the samples.

zs is independent of zt ∀ s, t ∈
{

1, . . . ,
⌈
n

2

⌉}
with s 6= t

zs is independent of zt ∀ s, t ∈
{⌈
n

2

⌉
+ 1, . . . , n

}
with s 6= t

zs is independent of zt ∀ s ∈
{

1, . . . ,
⌈
n

2

⌉}
and ∀ t ∈

{⌈
n

2

⌉
+ 1, . . . , n

} (4.5.3)

Now, for a given data point x, the estimators ŵAIWAE,i = p(x,zi)
q(zi|x) can be viewed as functions

of the corresponding latent variable zi. This and Expressions 4.5.2 give the following relation

in the estimators ŵAIWAE,i corresponding to the samples zi.

ŵAIWAE,s is independent of ŵAIWAE,t ∀ s, t ∈
{

1, . . . ,
⌈
n

2

⌉}
with s 6= t

ŵAIWAE,s is independent of ŵAIWAE,t ∀ s, t ∈
{⌈
n

2

⌉
+ 1, . . . , n

}
with s 6= t

ŵAIWAE,s is independent of ŵAIWAE,t ∀ s ∈
{

1, . . . ,
⌈
n

2

⌉}
and ∀ t ∈

{⌈
n

2

⌉
+ 1, . . . , n

}
(4.5.4)

With these relations, we consider the variance of the AIWAE estimator.

Variance (ŵnAIWAE) = Variance
(1
n

∑n

i=1 ŵAIWAE,i

)
=∗

(1
n

)2
Variance

(∑n

i=1 ŵAIWAE,i

)
=† 1

n2

(∑n

i=1 Variance
(
ŵAIWAE,i

)
+ 2 ·

∑
1≤i<j≤nCovariance

(
ŵAIWAE,i, ŵAIWAE,j

))
=‡ 1

n2

(∑n

i=1 Variance
(
ŵAIWAE,i

)
+ 2 ·

∑bn2 c
i=1 Covariance

(
ŵAIWAE,i, ŵAIWAE,dn2 e+i

))
≤ 1
n2

(∑n

i=1 Variance
(
ŵAIWAE,i

)
+ 2 ·

∑bn2 c
i=1

∣∣∣∣Covariance(ŵAIWAE,i, ŵAIWAE,dn2 e+i
)∣∣∣∣)

≤? 1
n2

(∑n

i=1 Variance
(
ŵAIWAE,i

)
+ 2 ·

∑bn2 c
i=1

√
Variance

(
ŵAIWAE,i

)
· Variance

(
ŵAIWAE,dn2 e+i

))

<§
1
n2

(∑n

i=1B + 2 ·
∑bn2 c

i=1

√
B ·B

)
= 1
n2

(
n ·B + 2 ·

⌊
n

2

⌋
·B
)

≤ 1
n2

(
n ·B + 2 · n2 ·B

)
= 2 ·B · n

n2 = 2 ·B
n

(4.5.5)

Here, the equalities (∗), (†) follow from standard properties of variance of linear combination

of random variables. The equality (‡) follows from relations from 4.5.5. The inequality

(?) follows from Cauchy-Schwarz ineqaulity: for random variables A,B, we have

76

|Covariance (A,B)| ≤
√
Variance (A) · Variance (B). The inequality (§) follows from the

assumption of an upper bound B on the variance of all the estimators ŵAIWAE,i. Thus,

Variance (ŵnAIWAE) = O
(

1
n

)
, proving the desired result. �

Theorem 4.5.3. Consider the AIWAE estimator ŵnAIWAE = 1
n

∑n
i=1 ŵAIWAE,i =

1
n

∑n
i=1

p(x,zi)
q(zi|x) , where z1:n are n latent variables sampled from the proposal q (· | x) us-

ing the Antithetic Sampling Algorithm 2. Consider the corresponding variational lower

bound L̂nAIWAE = E [log ŵnAIWAE]. Let 1. Variance
(
ŵAIWAE,i

)
be upper bounded by a

finite constant, i.e., let ∃ B > 0 such that Variance
(
ŵAIWAE,i

)
< B ∀ i ∈ {1, . . . , n},

and let 2. ŵAIWAE,i be lower bounded estimators, i.e, let ∃ c > 0 such that ŵAIWAE,i >

c ∀ i ∈ {1, . . . , n}. Then, ŵnAIWAE is a variationally asymptotic Monte-Carlo estimator

of p (x), i.e., ŵnAIWAE satisfies: 1. E [ŵnAIWAE] = p (x), 2. log p (x) ≥ L̂nAIWAE, 3.

V (ŵnAIWAE) = O
(

1
n

)
, i.e., V (ŵnAIWAE)−→0 and L̂nAIWAE−→ log p (x) at the rate O

(
1
n

)
.

Proof . 1. Consider the following manipulations.

E [ŵnAIWAE] = E
[1
n

∑n

i=1 ŵAIWAE,i

]
= 1
n

∑n

i=1 E
[
ŵAIWAE,i

]
=∗ 1

n

∑n

i=1 p (x) = p (x)

Here, the equality (∗) follows from Theorem 4.5.1.

2. Since part 1 proves that ŵnAIWAE is an unbiased estimator of p (x), Lemma 3.1.4 implies

that log p (x) ≥ E [log ŵnAIWAE] = L̂nAIWAE.

The given condition 1 along with Theorem 4.5.2 gives Variance (log ŵnAIWAE) <

2·B
n
. Further, the given condition 2 along with Theorem 3.3.1 gives that

V (ŵnAIWAE) ≤ 1
2·c2 · Variance (ŵnAIWAE). Combining these two conditions, we have

V (ŵnAIWAE) < 2·B
2·c2·n = B

c2·n . Thus, V (ŵnAIWAE) = O
(

1
n

)
, which proves the desired result. �

4.6. Related Work
This section provides a brief survey of approaches related to CIWAE and AIWAE.

The CIWAE and AIWAE approaches generate multiple samples, each conditioned on ei-

ther all or some of the previously generated samples, in order to achieve sample efficiency

in multi-sample variational inference. The multiple samples effectively allow representing

77

the proposal distribution to a greater resolution. This idea has been explored in the works

of Huang et al. (2019). The works of Naesseth et al. (2018) also use a similar idea but

they generate their multiple samples by combining the variational inference with sequential

Monte-Carlo sampling. Cremer et al. (2017), Nowozin (2018) and Domke and Sheldon (2018)

have demonstrated many interpretations of importance weighted VI that are in the same

spirit as our work. Cremer et al. (2017) reinterpret IWAE as performing regular variational

inference with a more complex proposal distribution, which matches our idea of modeling

a joint distribution over latent representations in CIWAE. The interpretation by Nowozin

(2018) views at the variational lower bound of IWAE as an estimator of the log-likelihood and

provides a family of approaches that reduce the involved bias, which matches exactly with

the idea of our work. Domke and Sheldon (2018) connect the idea of IWAE and defensive

sampling, where the idea is to utilize a proposal q with wider spread to avoid the involved

estimator from exploding due to q placing no density in regions where the true distribution

has significant value. This technique helps in variance reduction, which is the core idea of

our CIWAE and AIWAE approaches.

The AIWAE approach, originally from the works of Klys et al. (2018), is related to the idea

of antithetic sampling and its role in variance reduction. The works of Owen (2013) provide

the notion of antithetic variates, which build on negatively correlated estimators for variance

reduction and are related to the idea of AIWAE. Similarly, Wu et al. (2019) demonstrate the

approach of differentiable antithetic sampler along with the idea of using more representative

samples for variance reduction, which matches our idea.

Many approaches that look at the problem of improving the variational inference prob-

lem from the point of view of constructing more powerful and expressive proposal distribu-

tions. Ranganath et al. (2016) and Huang et al. (2019) build on this idea and our CIWAE

approach attempts to generalize these works. This is because we assume the most generic

dependency structure among the involved latent variables; recall that CIWAE samples each

next latent variable conditioned on all the previous approaches. Along the same line, many

recent approaches consider multi-sample variational inference and learn a hierarchical pro-

posal distribution. Some examples of such approaches are semi-implicit VI by Yin and Zhou

(2018), doubly semi-implicit VI Molchanov et al. (2019), and their generalization importance-

weighted hierarchical VI by Sobolev and Vetrov (2019).

78

Note that the recent work by Rainforth et al. (2018) demonstrates possible problems asso-

ciated with a large number of samples. This work associates the number of samples with

the signal-to-noise ratio involved in the training of the proposal distribution and thus, warns

that tighter lower bounds may not always be beneficial. The work of Tucker et al. (2018) on

doubly reparametrized gradients mitigates this issue.

Finally, while dealing with image data, we note that variational approaches are known to

result in blurry generative models and their counterpart generative adversarial networks

by Goodfellow et al. (2014) perform much better. However, with powerful neural architec-

tures and using conditional sampling of latent variables, Vahdat and Kautz (2020) demon-

strate high-quality image data generated by a VAE approach. Thus, the notion of conditional

sampling of latent variables is not restricted only to theoretical considerations of VI but can

lead to improvements in its practical aspects like producing better generative models!

4.7. Experimentation and Results
In this section, we show our experimentation with the CIWAE, AIWAE approaches and

discuss the results. We carry out experiments on the two standard benchmarking datasets,

MNIST (LeCun et al. (2010)) and OMNIGLOT (Lake et al. (2015)), which are also used by

the previous works. Our baselines are the IWAE approach by Burda et al. (2015), which is

one the key work that led to the idea of improving the VI with multiple samples, and the

HIWAE approach by Huang et al. (2019), which, similar to our work, builds on the idea of

modeling a hierarchical and more expressive proposal for improving over IWAE.

4.7.1. Dataset Details

Unfortunately, the experimentation in the field of VI is performed on many variants of the

benchmarking dataset. For instance, the MNIST and OMNIGLOT datasets can be used as-

is, with static binarization, or with dynamic binarization. These changes significantly change

the performances of the same approach, thereby making a comparison of the effectiveness

of different approaches difficult. Thus, we fix the following variants of the benchmarking

datasets for which the experimental results of the baseline approaches are available.

79

• MNIST dataset with static binarization as provided by Larochelle and Murray (2011).

• OMNIGLOT dataset by Lake et al. (2015) with dynamic binarization.

Here, static binarization refers to a fixed quantization of all the pixels of the image data

once and for all, and creating the dataset with these binarized images. This dataset is

to be used as it is for training the model, without introducing any other forms of data

augmentation techniques. For this reason, training on the statically binarized variants of

any dataset is extremely difficult; it is not easy to harvest the benefits of regularization

techniques like data augmentation. On the other hand, dynamic binarization does allow

for image augmentation. In dynamic binarization, each pixel value p ∈ [0, 1] of the image

is treated as the probability that the pixel should be binarized to 1, i.e., we consider a

Bernoulli (p) distribution at each pixel and take a sample out of it. The value of the sample,

either 0 or 1, is set as the pixel value in the image. Thus, with dynamic binarization, each

training image is essentially unique and different, which effectively regularizes the model

better than any static binarization.

4.7.2. Architecture Details

We perform our experimentation with two major architecture choices, which we call 1.

CNN and 2. MLP. The CNN architecture, as described in the works of Huang et al. (2018)

and Huang et al. (2019), uses residual convolutional neural networks for modeling both the

encoder qφ (· | x) and the decoder pθ (x | z). In our AIWAE approach, we use the exact neural

network architecture as used in the HIWAE baseline (Huang et al. (2019)). However, our

CIWAE architecture requires an additional component, a GRU cell. Thus, for the CIWAE

approach, we use a slight variation of encoder CNN architecture for the feature extractor

neural network fφ (x) and add a GRU cell gφ (zi | z1:i−1,x) to get the CNN-GRU architecture.

The slight variation is done so that the number of trainable parameters in CIWAE and

HIWAE are comparable, which eliminates the possibility that additional capacity is the

reason for the performance improvement of the CIWAE approach. This gives us a set of

approach-architecture pairs: 1. (IWAE, CNN), 2. (CIWAE, CNN-GRU), and 3. (AIWAE,

CNN). However, note that we can use the CIWAE encoder composed of the fφ and gφ

components for carrying out the IWAE and the AIWAE approaches as well. Thus, we

80

get two additional approach-architecture pairs: 4. (IWAE, CNN-GRU) and 5. (AIWAE,

CNN-GRU). Thus, we have 5 different approach-architecture pairs in our experiments on

the comparison with the HIWAE baseline by Huang et al. (2019) in Experiment 1.

However, the original IWAE experimentation uses a simple feed-forward neural network

architecture, which we denote by MLP, for both the encoder and the decoder. Also, we

observe in our experiments that the choice of architecture results in different performances

for the same approach, and thus, we also perform experiments with IWAE, CIWAE and

AIWAE approaches by replacing the residual convolutional neural networks with the feed-

forward neural networks of the original IWAE experimentation by Burda et al. (2015). This

gives us 5 more approach-architecture pairs: 1. (IWAE, MLP), 2. (CIWAE, MLP-GRU),

and 3. (AIWAE, MLP), 4. (IWAE, MLP-GRU) and 5. (AIWAE, MLP-GRU). Again, we

slightly tweak the MLP-GRU architecture so that MLP and MLP-GRU architectures have

a comparable number of trainable parameters. Experiment 2 demonstrates the comparison

of the performances of these approach-architecture pairs and emphasizes the effect of the

architecture choice on the proposed approaches.

The hyper-parameter settings for these two experiments are kept as identical to those in the

experimentation of Huang et al. (2019) as possible. However, the hyper-parameter settings

for the original IWAE experimentation of Burda et al. (2015) vary significantly, especially

in the number of epochs (actually, the number of updates). Besides, Burda et al. (2015)

demonstrate only 1 value per approach, whereas experiments of Huang et al. (2019) and our

work demonstrate performance with multiple seeds. Thus, in Experiment 3, we use the best

hyper-parameter settings possible and generate a single performance value for our approaches

to show that our approaches perform significantly better as the number of samples increases.

4.7.3. Experiment 1: Comparison with IWAE-HIWAE Baselines

In this experiment, we compare our CIWAE and AIWAE approaches with our IWAE base-

lines, and the IWAE-HIWAE baselines of Huang et al. (2019). The results of the experiments

on the MNIST dataset are documented in Table 4.1 and those on the OMNIGLOT dataset

are documented in Table 4.2. In both these tables, we highlight certain results for the nega-

tive log-likelihood values NLLval and NLLte for the validation and the test split respectively.

The L̂tr, L̂val, and L̂te values are for reference and for reporting results in a manner consistent

81

with Huang et al. (2019). We highlight the best approach with the CNN architecture and

the best approach with the CNN-GRU architecture. If the IWAE baseline or the HIWAE

approach of Huang et al. (2019) performs better than the two aforesaid best approaches, we

highlight them. With this, we make the following observations.

(1) As the number of samples increases, the AIWAE and CIWAE approaches start to

become competitive and even outperform the HIWAE baseline.

(2) The CNN architecture approaches usually perform better than the CNN-GRU ap-

proaches, which highlights the role of architecture in all the involved approaches.

(3) As the number of samples increases, AIWAE is observed to perform significantly

better than other approaches in general.

(4) We also see that our baselines are stronger and can sometimes be better than the

HIWAE approach and baselines of Huang et al. (2019).

(5) Our CIWAE approach performs competitively with our IWAE baseline but is not

observed to be significantly better with this architecture setting.

4.7.4. Experiment 2: Effect of the Choice of Architecture

In this experiment, we compare our CIWAE and AIWAE approaches only with our IWAE

baselines, where all the involved approaches are implemented with the MLP-based architec-

tures. The results of the experiments on the MNIST dataset are documented in Table 4.3

and those on the OMNIGLOT dataset are documented in Table 4.4. In both these tables,

we highlight certain results for the negative log-likelihood values NLLval and NLLte for the

validation and the test split respectively. The L̂tr, L̂val, and L̂te values are for reference

and for reporting results in a manner consistent with Huang et al. (2019). We highlight

the best approach with the CNN architecture and the best approach with the CNN-GRU

architecture. With this, we make the following observations.

(1) As the number of samples increases, the AIWAE and CIWAE approaches start to

become competitive, if not better, than the IWAE baseline.

(2) The MLP architecture approaches usually perform better than the MLP-GRU ap-

proaches, which again highlights the role of architecture in all the involved ap-

proaches.

82

(3) As the number of samples increases, both CIWAE and AIWAE are observed to per-

form better than the IWAE baseline.

(4) The performance of the CNN-based approaches is significantly better than that of

the MLP-based approaches, which further emphasizes the role of the architecture in

the performance of the approaches.

(5) Even when AIWAE and CIWAE approaches do not perform better than the IWAE

baseline, they usually remain competitive in performance.

4.7.5. Experiment 3: Comparison with IWAE (Burda et al. (2015))

In this experiment, we compare our CIWAE and AIWAE approaches with the original IWAE

baselines by Burda et al. (2015). The results with both the MNIST and OMNIGLOT

datasets are documented in Table 4.5. As done in Burda et al. (2015), we compare our best

performance values with those of the IWAE approach1. Note that the MLP-2 architecture

in Table 4.5 refers to the use of two stochastic layers for the IWAE approach. With this, we

make the following observations.

(1) As the number of samples increases, both the AIWAE and CIWAE approaches per-

form significantly better than the IWAE approach.

(2) The performance improvement is more evident in our approaches; at n = 1 our

approaches perform poorly when compared against the IWAE but at n = 50, our

approaches perform better.

(3) Our approaches even perform better than IWAE evaluated with two stochastic layers

(MLP-2 of Table 4.5).

(4) Performance improvement is indeed related to sample efficiency but it is clearly visible

in the experiments with the OMNIGLOT dataset. Note that the CIWAE approach

with n = 5 performs better than (IWAE, MLP) and (IWAE, MLP-2) with n = 50.

This emphasizes the desired sample efficiency using the conditional sampling of latent

variables.

1 Another reason for not performing multiple experiments with different seeds is that these experiments

are computationally expensive; each run documented in Table 4.5 requires about 48 hours of training on the

currently fastest RTX GPUs.

83

n Approach NLLval NLLte L̂tr L̂val L̂te

1

IWAE (Huang et al. (2019)) 82.64±0.11 82.37±0.12 83.26±0.10 86.57±0.11 86.36±0.15

HIWAE (Huang et al. (2019)) 82.24±0.05 81.96±0.04 82.92±0.17 85.75±0.08 85.50±0.08

IWAE (Ours, CNN-GRU) 82.80±0.46 82.63±0.46 83.46±0.23 86.77±0.59 86.64±0.57

CIWAE (Ours, CNN-GRU) 82.80±0.46 82.63±0.46 83.46±0.23 86.77±0.59 86.64±0.57

AIWAE (Ours, CNN-GRU) 82.80±0.46 82.63±0.46 83.46±0.23 86.77±0.59 86.64±0.57

IWAE (Ours, CNN) 82.30±0.18 82.10±0.18 83.17±0.35 86.20±0.11 86.08±0.11

AIWAE (Ours, CNN) 82.30±0.18 82.10±0.18 83.17±0.35 86.20±0.11 86.08±0.11

2

IWAE (Huang et al. (2019)) 82.03±0.04 81.77±0.04 82.36±0.20 85.40±0.05 85.16±0.03

HIWAE (Huang et al. (2019)) 81.88±0.35 81.60±0.35 82.15±0.60 85.03±0.65 84.76±0.64

IWAE (Ours, CNN-GRU) 81.94±0.13 81.76±0.14 82.25±0.24 85.29±0.15 85.21±0.19

CIWAE (Ours, CNN-GRU) 82.05±0.23 81.87±0.23 82.32±0.16 85.45±0.22 85.33±0.21

AIWAE (Ours, CNN-GRU) 82.07±0.10 81.92±0.10 82.28±0.16 85.22±0.11 85.12±0.09

IWAE (Ours, CNN) 81.72±0.18 81.50±0.19 82.13±0.18 85.11±0.17 84.95±0.17

AIWAE (Ours, CNN) 81.81±0.19 81.61±0.19 82.13±0.12 84.92±0.11 84.79±0.14

5

IWAE (Huang et al. (2019)) 81.63±0.04 81.37±0.04 81.48±0.17 84.45±0.06 84.25±0.08

HIWAE (Huang et al. (2019)) 81.39±0.09 81.13±0.09 81.28±0.14 84.04±0.16 83.79±0.14

IWAE (Ours, CNN-GRU) 81.40±0.09 81.19±0.10 81.33±0.15 84.16±0.10 83.98±0.12

CIWAE (Ours, CNN-GRU) 81.40±0.13 81.20±0.13 81.36±0.09 84.15±0.13 84.01±0.14

AIWAE (Ours, CNN-GRU) 81.33±0.19 81.15±0.20 81.16±0.18 84.00±0.18 83.86±0.20

IWAE (Ours, CNN) 81.11±0.07 80.88±0.05 81.07±0.11 83.87±0.04 83.67±0.03

AIWAE (Ours, CNN) 81.10±0.07 80.88±0.08 81.19±0.19 83.79±0.10 83.63±0.09

10

IWAE (Huang et al. (2019)) 81.37±0.05 81.13±0.02 80.85±0.16 83.84±0.06 83.62±0.03

HIWAE (Huang et al. (2019)) 81.28±0.08 81.04±0.09 80.89±0.13 83.77±0.23 83.56±0.22

IWAE (Ours, CNN-GRU) 81.02±0.12 80.81±0.14 80.73±0.19 83.37±0.12 83.19±0.15

CIWAE (Ours, CNN-GRU) 81.05±0.04 80.81±0.05 80.77±0.15 83.40±0.06 83.19±0.08

AIWAE (Ours, CNN-GRU) 80.98±0.10 80.76±0.11 80.63±0.23 83.29±0.09 83.11±0.12

IWAE (Ours, CNN) 80.80±0.05 80.55±0.05 80.66±0.08 83.15±0.09 82.92±0.08

AIWAE (Ours, CNN) 80.83±0.03 80.58±0.06 80.72±0.16 83.13±0.03 82.92±0.05

Table 4.1. The results of CIWAE and AIWAE experiments, along with the corresponding

IWAE and HIWAE baselines of ours and by by Huang et al. (2019). The experiments are

performed on the MNIST (statically binarized) dataset by Larochelle and Murray (2011).

84

n Approach NLLval NLLte L̂tr L̂val L̂te

1

IWAE (Huang et al. (2019)) 102.98±1.56 103.28±1.53 106.40±1.75 109.05±1.28 109.90±1.21

HIWAE (Huang et al. (2019)) 100.36±0.50 100.79±0.52 104.57±0.98 106.48±0.48 107.36±0.52

IWAE (Ours, CNN-GRU) 105.31±1.00 105.68±1.11 106.11±0.83 111.50±1.09 112.42±1.23

CIWAE (Ours, CNN-GRU) 105.31±1.00 105.68±1.11 106.11±0.83 111.50±1.09 112.42±1.23

AIWAE (Ours, CNN-GRU) 105.31±1.00 105.68±1.11 106.11±0.83 111.50±1.09 112.42±1.23

IWAE (Ours, CNN) 104.30±2.47 104.87±2.37 104.84±1.66 111.05±2.17 111.94±2.05

AIWAE (Ours, CNN) 104.30±2.47 104.87±2.37 104.84±1.66 111.05±2.17 111.94±2.05

2

IWAE (Huang et al. (2019)) 100.14±0.24 100.48±0.34 102.66±0.59 105.85±0.19 106.70±0.12

HIWAE (Huang et al. (2019)) 99.68±0.40 100.00±0.49 102.88±0.89 105.18±0.69 105.93±0.73

IWAE (Ours, CNN-GRU) 102.32±0.53 102.82±0.52 102.14±0.45 108.46±0.47 109.53±0.51

CIWAE (Ours, CNN-GRU) 102.48±1.05 102.94±0.98 102.80±0.78 108.39±1.40 109.43±1.15

AIWAE (Ours, CNN-GRU) 101.62±0.88 101.91±0.74 101.66±0.97 107.42±0.61 108.26±0.59

IWAE (Ours, CNN) 100.39±0.86 100.81±0.84 101.10±0.38 106.51±0.78 107.48±0.91

AIWAE (Ours, CNN) 100.12±1.29 100.82±1.08 100.94±0.55 106.01±1.24 107.04±1.11

5

IWAE (Huang et al. (2019)) 99.43±0.64 99.90±0.67 102.01±1.05 104.48±0.58 105.37±0.52

HIWAE (Huang et al. (2019)) 98.75±0.79 99.21±0.95 101.35±1.48 103.72±0.94 104.62±0.80

IWAE (Ours, CNN-GRU) 98.98±1.01 99.48±0.94 99.20±0.52 104.19±1.11 105.25±1.05

CIWAE (Ours, CNN-GRU) 99.75±0.71 100.14±0.74 100.43±1.36 104.91±0.55 105.72±0.43

AIWAE (Ours, CNN-GRU) 98.53±0.91 99.09±0.91 99.24±0.70 103.62±1.18 104.62±1.13

IWAE (Ours, CNN) 97.76±0.45 98.16±0.45 98.62±0.67 102.61±0.35 103.70±0.39

AIWAE (Ours, CNN) 97.79±0.28 98.46±0.35 98.69±0.13 102.92±0.35 103.88±0.46

10

IWAE (Huang et al. (2019)) 97.97±0.47 98.48±0.34 99.71±0.95 102.67±0.39 103.53±0.23

HIWAE (Huang et al. (2019)) 98.48±0.67 98.80±0.64 99.75±1.31 103.21±0.77 104.11±0.85

IWAE (Ours, CNN-GRU) 97.14±0.29 97.62±0.22 97.59±0.36 101.66±0.33 102.65±0.33

CIWAE (Ours, CNN-GRU) 97.82±0.49 98.30±0.44 98.09±0.53 102.37±0.62 103.36±0.51

AIWAE (Ours, CNN-GRU) 97.13±0.36 97.73±0.20 97.60±0.27 101.74±0.36 102.75±0.34

IWAE (Ours, CNN) 96.16±0.19 96.80±0.21 97.55±0.14 100.48±0.25 101.51±0.35

AIWAE (Ours, CNN) 96.21±0.58 96.82±0.56 97.38±0.42 100.65±0.72 101.73±0.66

Table 4.2. The results of CIWAE and AIWAE experiments, along with the corresponding

IWAE and HIWAE baselines of ours and by by Huang et al. (2019). The experiments are

performed on the OMNIGLOT (dynamically binarized) dataset by Lake et al. (2015).

85

n Approach NLLval NLLte L̂tr L̂val L̂te

1

IWAE (Ours, MLP-GRU) 91.08±0.16 90.20±0.13 93.62±0.16 97.27±0.08 96.46±0.05

CIWAE (Ours, MLP-GRU) 91.08±0.16 90.20±0.13 93.62±0.16 97.27±0.08 96.46±0.05

AIWAE (Ours, MLP-GRU) 91.08±0.16 90.20±0.13 93.62±0.16 97.27±0.08 96.46±0.05

IWAE (Ours, MLP) 90.77±0.12 89.92±0.12 93.38±0.23 97.20±0.09 96.42±0.16

AIWAE (Ours, MLP) 90.77±0.12 89.92±0.12 93.38±0.23 97.20±0.09 96.42±0.16

2

IWAE (Ours, MLP-GRU) 90.61±0.13 89.75±0.14 92.64±0.17 96.32±0.08 95.50±0.10

CIWAE (Ours, MLP-GRU) 90.23±0.05 89.43±0.07 92.10±0.15 95.69±0.07 94.94±0.11

AIWAE (Ours, MLP-GRU) 90.60±0.07 89.76±0.07 92.39±0.19 95.86±0.05 95.04±0.06

IWAE (Ours, MLP) 90.18±0.18 89.32±0.15 92.20±0.30 95.85±0.08 95.05±0.06

AIWAE (Ours, MLP) 90.16±0.09 89.34±0.10 91.87±0.15 95.51±0.07 94.74±0.13

5

IWAE (Ours, MLP-GRU) 89.84±0.18 89.00±0.17 91.30±0.28 94.65±0.14 93.80±0.17

CIWAE (Ours, MLP-GRU) 89.49±0.10 88.68±0.07 90.64±0.17 94.19±0.06 93.39±0.03

AIWAE (Ours, MLP-GRU) 89.73±0.07 88.89±0.05 90.96±0.10 94.55±0.07 93.74±0.05

IWAE (Ours, MLP) 89.45±0.13 88.62±0.13 90.70±0.21 94.29±0.10 93.50±0.07

AIWAE (Ours, MLP) 89.37±0.23 88.57±0.19 90.47±0.39 94.17±0.12 93.41±0.11

10

IWAE (Ours, MLP-GRU) 89.35±0.12 88.52±0.08 90.24±0.18 93.68±0.10 92.92±0.08

CIWAE (Ours, MLP-GRU) 89.49±0.10 88.68±0.07 90.64±0.17 94.19±0.06 93.39±0.03

AIWAE (Ours, MLP-GRU) 89.37±0.12 88.56±0.11 90.29±0.16 93.67±0.05 92.87±0.07

IWAE (Ours, MLP) 89.02±0.10 88.19±0.10 89.83±0.19 93.40±0.05 92.61±0.07

AIWAE (Ours, MLP) 89.04±0.23 88.23±0.23 89.80±0.40 93.38±0.11 92.65±0.14

Table 4.3. The results of CIWAE and AIWAE experiments, along with the corresponding

IWAE of ours. The experiments are performed on the MNIST (statically binarized) dataset

by Larochelle and Murray (2011).

86

n Approach NLLval NLLte L̂tr L̂val L̂te

1

IWAE (Ours, MLP-GRU) 113.40±0.72 113.66±0.75 117.13±0.72 118.11±0.72 118.98±0.72

CIWAE (Ours, MLP-GRU) 113.40±0.72 113.66±0.75 117.13±0.72 118.11±0.72 118.98±0.72

AIWAE (Ours, MLP-GRU) 113.40±0.72 113.66±0.75 117.13±0.72 118.11±0.72 118.98±0.72

IWAE (Ours, MLP) 110.58±0.24 110.71±0.15 114.75±0.21 115.95±0.18 116.65±0.16

AIWAE (Ours, MLP) 110.58±0.24 110.71±0.15 114.75±0.21 115.95±0.18 116.65±0.16

2

IWAE (Ours, MLP-GRU) 111.29±0.82 111.80±0.63 114.92±0.71 115.98±0.54 116.81±0.54

CIWAE (Ours, MLP-GRU) 110.55±0.25 110.85±0.29 114.08±0.17 115.18±0.10 115.86±0.23

AIWAE (Ours, MLP-GRU) 111.18±0.53 111.53±0.55 114.61±0.72 115.63±0.50 116.39±0.50

IWAE (Ours, MLP) 109.37±0.36 109.58±0.36 113.07±0.29 114.25±0.28 114.89±0.32

AIWAE (Ours, MLP) 110.39±0.60 110.74±0.56 113.88±0.65 115.09±0.48 115.64±0.51

5

IWAE (Ours, MLP-GRU) 110.33±0.52 110.44±0.53 113.18±0.57 114.17±0.46 114.93±0.42

CIWAE (Ours, MLP-GRU) 109.86±0.64 110.00±0.61 112.69±0.69 113.78±0.59 114.38±0.50

AIWAE (Ours, MLP-GRU) 110.01±0.68 110.33±0.63 112.99±0.74 114.04±0.53 114.73±0.51

IWAE (Ours, MLP) 108.45±0.41 108.78±0.55 111.63±0.49 112.64±0.42 113.33±0.46

AIWAE (Ours, MLP) 109.68±0.64 109.98±0.68 112.58±0.72 113.55±0.56 114.27±0.57

10

IWAE (Ours, MLP-GRU) 108.62±0.49 109.02±0.32 111.37±0.43 112.54±0.32 113.23±0.26

CIWAE (Ours, MLP-GRU) 108.93±0.44 109.34±0.47 111.70±0.45 112.66±0.39 113.33±0.32

AIWAE (Ours, MLP-GRU) 108.92±0.50 109.25±0.43 111.55±0.42 112.66±0.28 113.34±0.30

IWAE (Ours, MLP) 107.85±0.99 108.10±0.89 110.57±0.85 111.63±0.81 112.24±0.72

AIWAE (Ours, MLP) 108.69±0.50 108.98±0.46 111.26±0.54 112.37±0.41 113.01±0.42

Table 4.4. The results of CIWAE and AIWAE experiments, along with the corresponding

IWAE and HIWAE baselines of ours and by by Huang et al. (2019). The experiments are

performed on the OMNIGLOT (dynamically binarized) dataset by Lake et al. (2015).

87

MNIST OMNIGLOT

n Approach NLLte NLLte

1

IWAE (Burda et al. (2015), MLP) 88.71 108.11

IWAE (Burda et al. (2015), MLP-2) 88.08 107.58

CIWAE (Ours, MLP-GRU) 90.11 109.96

AIWAE (Ours, MLP) 89.75 108.12

5

IWAE (Burda et al. (2015), MLP) 88.83 107.62

IWAE (Burda et al. (2015), MLP-2) 87.63 106.31

CIWAE (Ours, MLP-GRU) 88.37 107.04

AIWAE (Ours, MLP) 88.34 105.79

50

IWAE (Burda et al. (2015), MLP) 89.05 107.80

IWAE (Burda et al. (2015), MLP-2) 87.86 106.30

CIWAE (Ours, MLP-GRU) 87.43 107.02

AIWAE (Ours, MLP) 87.45 104.16

Table 4.5. The results of CIWAE and AIWAE experiments, along with the corresponding

IWAE baselines of ours and by Burda et al. (2015). The experiments are performed on

both the MNIST (statically binarized) dataset by Larochelle and Murray (2011) and the

OMNIGLOT (dynamically binarized) dataset by Lake et al. (2015).

88

Chapter 5

Discussion

5.1. Conclusions and Future Work
In this Section, we discuss the contributions of our work, the conclusions of the experimen-

tation, and describe some directions for future work.

In Chapter 3, we discussed the theoretical properties of multi-sample estimators and their

variational gaps. In Theorem 3.3.1, we developed a simple upper bound on the variational

gap of an estimator in terms of its variance under certain amicable conditions on the estima-

tor. One of the conditions requires bounded variance and the other condition is the strong

lower-bounded estimator assumption. In Section 3.6, we provided justifications for the lower-

bounded estimator and argued that despite being strong, it is also reasonable. Thus, with

the upper bound, we reduced the problem of improving the variational inference to the design

of multi-sample low-variance estimators. We observed that there are mechanisms to design

multi-sample estimators such that their variance can be made to vanish at the rate of O
(

1
n

)
.

Based on this, we defined the family of variationally-asymptotic Monte-Carlo estimators, for

which the variational gap goes to 0 at the rate of O
(

1
n

)
.

However, having reduced the problem of better variational inference to multi-sample low-

variance estimators, the next natural step is to consider the sample efficiency; we want to

improve the variational inference with as few samples as possible. We argued that sampling

the latent variables conditionally, where each new sample is generated conditioned on either

all or some of the previous samples, can lead to sample efficiency. Towards this, in Chapter 4,

we considered two approaches: 1. Conditional-IWAE (CIWAE) and 2. Antithetic-IWAE

(which is originally considered in Klys et al. (2018) as well). In CIWAE, each new sample is

conditioned on all the previous samples and the IWAE estimator is corrected to the CIWAE

estimator. As proved in Section 4.3, the corrected CIWAE estimators result in making CI-

WAE an instance of variationally asymptotic Monte-Carlo estimator; its variational gap can

be proved to vanish at the rate of O
(

1
n

)
. In AIWAE, we showed that it is not necessary

to make all the individual estimators uncorrelated; we can generate samples in an antithetic

manner so that sufficiently many IWAE estimators become uncorrelated. Thus, as proved in

Section 4.5, AIWAE is also an instance of variationally asymptotic Monte-Carlo estimator

with variational gap of O
(

1
n

)
. In Section 4.7, we performed experiments on MNIST and

OMNIGLOT datasets and compare the performances of CIWAE and AIWAE as well as the

IWAE and HIWAE baselines of Huang et al. (2019) and Burda et al. (2015). We showed

that as the number of samples increases, CIWAE and AIWAE become competitive and even

outperform the baselines. With this, we showed the utility of modeling the joint distribution

over latent variables in improving the multi-sample variational inference.

However, we could not theoretically prove or disprove whether CIWAE and AIWAE can be

made to perform better than the IWAE baseline; we only demonstrated their variationally

asymptotic nature and that they perform better empirically. This is one of the directions for

future work; we can try to characterize how modeling joint distribution over latent variables

can improve upon the i.i.d. sampling of IWAE. We also observed that the choice of architec-

ture is important in experimentation with all the approaches. Note that CIWAE requires a

proposal encoder of the form qφ (zi | z1:i−1,x), which can process variable number of samples

z1:i. Thus, in our experimentation, we used GRU cell (Cho et al. (2014)) for modeling this

proposal. However, we observed that modeling this distribution with a large number of sam-

ples does not perform well as GRUs are known to have problems in modeling long sequences.

Another direction of work could be the use of transformer networks (Vaswani et al. (2017)),

or its derivatives, to better model the involved conditional sampling as transformer networks

are shown to better mitigate the problem of learning long-term dependencies. In addition,

a recent work called SUMO by Luo et al. (2020) has demonstrated an unbiased estimator

of the log marginal data likelihood log p (x), effectively closing the variational gap. Thus,

further research might be oriented towards variance reduction in such unbiased estimators

of log p (x).

90

References

[1] Robert A Becker. The variance drain and jensen’s inequality. 2012.

[2] Chris M Bishop. Training with noise is equivalent to tikhonov regularization. Neural

computation, 7(1):108–116, 1995.

[3] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[4] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[5] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoen-

coders. arXiv preprint arXiv:1509.00519, 2015.

[6] Augustin Cauchy. Méthode générale pour la résolution des systemes d’équations simul-

tanées. Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.

[7] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On

the properties of neural machine translation: Encoder-decoder approaches. arXiv

preprint arXiv:1409.1259, 2014.

[8] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using

rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,

2014.

[9] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series

in Telecommunications and Signal Processing). Wiley-Interscience, USA, 2006. ISBN

0471241954.

[10] Chris Cremer, Quaid Morris, and David Duvenaud. Reinterpreting importance-weighted

autoencoders. arXiv preprint arXiv:1704.02916, 2017.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A

large-scale hierarchical image database. In 2009 IEEE conference on computer vision

and pattern recognition, pages 248–255. Ieee, 2009.

[12] Justin Domke and Daniel R Sheldon. Importance weighting and variational inference.

In Advances in neural information processing systems, pages 4470–4479, 2018.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-

versarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,

and K. Q. Weinberger, editors, Advances in Neural Information Process-

ing Systems 27, pages 2672–2680. Curran Associates, Inc., 2014. URL

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf.

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[15] Chin-Wei Huang and Aaron Courville. Note on the bias and variance of variational

inference. arXiv preprint arXiv:1906.03708, 2019.

[16] Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural

autoregressive flows. arXiv preprint arXiv:1804.00779, 2018.

[17] Chin-Wei Huang, Kris Sankaran, Eeshan Dhekane, Alexandre Lacoste, and Aaron

Courville. Hierarchical importance weighted autoencoders. In International Confer-

ence on Machine Learning, pages 2869–2878, 2019.

[18] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

[19] Jack Klys, Jesse Bettencourt, and David Duvenaud. Joint importance sampling for

variational inference. 2018.

[20] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level con-

cept learning through probabilistic program induction. Science, 350(6266):1332–1338,

2015.

[21] Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator.

In Proceedings of the Fourteenth International Conference on Artificial Intelligence and

Statistics, pages 29–37, 2011.

[22] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. AT&T

Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2:18, 2010.

[23] Yucen Luo, Alex Beatson, Mohammad Norouzi, Jun Zhu, David Duvenaud, Ryan P

Adams, and Ricky TQ Chen. Sumo: Unbiased estimation of log marginal probability

for latent variable models. arXiv preprint arXiv:2004.00353, 2020.

92

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

[24] Chris J Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi,

Andriy Mnih, Arnaud Doucet, and Yee Teh. Filtering variational objectives. In Advances

in Neural Information Processing Systems, pages 6573–6583, 2017.

[25] Dmitry Molchanov, Valery Kharitonov, Artem Sobolev, and Dmitry Vetrov. Doubly

semi-implicit variational inference. In The 22nd International Conference on Artificial

Intelligence and Statistics, pages 2593–2602, 2019.

[26] Christian Naesseth, Scott Linderman, Rajesh Ranganath, and David Blei. Variational

sequential monte carlo. In International Conference on Artificial Intelligence and Sta-

tistics, pages 968–977, 2018.

[27] Sebastian Nowozin. Debiasing evidence approximations: On importance-weighted au-

toencoders and jackknife variational inference. In International Conference on Learning

Representations, 2018.

[28] Art B Owen. Monte carlo theory. Methods and Examples, 665, 2013.

[29] Tom Rainforth, Adam R Kosiorek, Tuan Anh Le, Chris J Maddison, Maximilian Igl,

Frank Wood, and Yee Whye Teh. Tighter variational bounds are not necessarily better.

arXiv preprint arXiv:1802.04537, 2018.

[30] Rajesh Ranganath, Dustin Tran, and David Blei. Hierarchical variational models. In

International Conference on Machine Learning, pages 324–333, 2016.

[31] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-

propagation and approximate inference in deep generative models. arXiv preprint

arXiv:1401.4082, 2014.

[32] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach. 2002.

[33] Artem Sobolev and Dmitry P Vetrov. Importance weighted hierarchical variational

inference. In Advances in Neural Information Processing Systems, pages 603–615, 2019.

[34] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The journal of machine learning research, 15(1):1929–1958, 2014.

[35] George Tucker, Dieterich Lawson, Shixiang Gu, and Chris J Maddison. Doubly reparam-

eterized gradient estimators for monte carlo objectives. arXiv preprint arXiv:1810.04152,

2018.

93

[36] A. M. Turing. Computing machinery and intelligence. Mind, LIX(236):433–460, 10

1950. ISSN 0026-4423. doi: 10.1093/mind/LIX.236.433. URL https://doi.org/10.

1093/mind/LIX.236.433.

[37] Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. arXiv

preprint arXiv:2007.03898, 2020.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in

neural information processing systems, pages 5998–6008, 2017.

[39] James R Wilson. Antithetic sampling with multivariate inputs. American Journal of

Mathematical and Management Sciences, 3(2):121–144, 1983.

[40] Mike Wu, Noah Goodman, and Stefano Ermon. Differentiable antithetic sampling for

variance reduction in stochastic variational inference. In The 22nd International Con-

ference on Artificial Intelligence and Statistics, pages 2877–2886, 2019.

[41] Mingzhang Yin and Mingyuan Zhou. Semi-implicit variational inference. arXiv preprint

arXiv:1805.11183, 2018.

94

https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433

	Résumé
	Abstract
	Contents
	List of tables
	List of figures
	List of acronyms and abbreviations
	Acknowledgement
	Chapter 1. Introduction
	1.0.1. Goals and Contributions

	Chapter 2. Machine Learning Background
	2.1. Artificial Intelligence and Machine Learning
	2.2. Machine Learning Basics
	2.2.1. Supervision in Learning
	2.2.2. Parametrization, Hyper-Parameters, and Capacity
	2.2.3. Performance Measure and Searching Optimal Parameters
	2.2.4. Generalization and Regularization

	2.3. Probabilistic Machine Learning
	2.3.1. The Need of Probabilistic Modeling
	2.3.2. Directed Graphical Models
	2.3.3. Estimation and Inference
	2.3.4. Maximum Likelihood Estimation
	2.3.5. Bayesian Inference
	2.3.6. Variational Inference

	2.4. Neural Networks
	2.4.1. Feed-Forward Neural Networks
	2.4.2. Convolutional Neural Networks
	2.4.3. Residual Neural Networks
	2.4.4. Recurrent Neural Networks
	2.4.5. Backpropagation

	Chapter 3. Properties of Multi-Sample Variational Inference and their Variational Gaps
	3.1. Estimator View of Variational Inference
	3.2. Variational Gap and Estimator Variance
	3.3. Bounding the Variational Gap
	3.3.1. A Simpler Upper Bound on the Variational Gap

	3.4. Variationally-Asymptotic Monte-Carlo Estimators
	3.4.1. Variance Reduction Techniques

	3.5. Related Work
	3.6. On the Lower Bounded Estimator Assumption
	3.6.1. Estimating the Variational Lower Bound
	3.6.2. Consequences of LBE

	3.7. Conclusions and the Significance of the Results

	Chapter 4. Variational Inference with Conditional Sampling
	4.1. Conditional Sampling in Variational Inference
	4.2. Conditional-IWAE
	4.3. Properties of Conditional-IWAE
	4.4. Antithetic-IWAE
	4.5. Properties of Antithetic-IWAE
	4.6. Related Work
	4.7. Experimentation and Results
	4.7.1. Dataset Details
	4.7.2. Architecture Details
	4.7.3. Experiment 1: Comparison with IWAE-HIWAE Baselines
	4.7.4. Experiment 2: Effect of the Choice of Architecture
	4.7.5. Experiment 3: Comparison with IWAE (burda2015iwae)

	Chapter 5. Discussion
	5.1. Conclusions and Future Work

	References

