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Résumé

Mots-clés: Bâtiments, Apprentissage Profond, Apprentissage par Renforcement, Consom-
mation Énergétique, Contrôle, Optimisation, Appels de Puissance, Réseaux Intelligents.

L’apprentissage statistique moderne démontre des résultats impressionnants, où les
ordinateurs viennent à atteindre ou même à excéder les standards humains dans certaines
applications telles que la vision par ordinateur ou les jeux de stratégie. Pourtant, malgré ces
avancées, force est de constater que les applications fiables en déploiement en sont encore à
leur état embryonnaire en comparaison aux opportunités qu’elles pourraient apporter.

C’est dans cette perspective, avec une emphase mise sur la théorie de décision séquentielle
et sur les recherches récentes en apprentissage automatique, que nous démontrons l’applica-
tion efficace de ces méthodes sur des cas liés au réseau électrique et à l’optimisation de ses
acteurs. Nous considérons ainsi des instances impliquant des unités d’emmagasinement éner-
gétique ou des voitures électriques, jusqu’aux contrôles thermiques des bâtiments intelligents.
Nous concluons finalement en introduisant une nouvelle approche hybride qui combine les
performances modernes de l’apprentissage profond et de l’apprentissage par renforcement au
cadre d’application éprouvé de la recherche opérationnelle classique, dans le but de faciliter
l’intégration de nouvelles méthodes d’apprentissage statistique sur différentes applications
concrètes.
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Abstract

Keywords: Buildings, Deep Learning, Deep Reinforcement Learning, Energy Consumption,
Optimal Control, Optimization, Power Consumption, Smart Grid.

While modern statistical learning is achieving impressive results, as computers start
exceeding human baselines in some applications like computer vision, or even beating pro-
fessional human players at strategy games without any prior knowledge, reliable deployed
applications are still in their infancy compared to what these new opportunities could fathom.

In this perspective, with a keen focus on sequential decision theory and recent statistical
learning research, we demonstrate efficient application of such methods on instances
involving the energy grid and the optimization of its actors, from energy storage and electric
cars to smart buildings and thermal controls. We conclude by introducing a new hybrid
approach combining the modern performance of deep learning and reinforcement learning
with the proven application framework of operations research, in the objective of facilitating
seamlessly the integration of new statistical learning-oriented methodologies in concrete
applications.
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Introduction

A tear rolled down the man’s cheek as he stared blankly at the screen. He had lost
his entire investment and years worth of trading, as the Daw Jones lived its biggest
day-drop in history. A few hundred kilometers away, numbers just came out: hundreds
of people died during the night. How can governments improve the actual COVID-19
virus mitigation strategy to save a maximum of lives while minimizing the impact on
everyone’s financial and mental stability? Just like two martial arts athletes facing each
other intensively, wondering which one will strike first knowing that it may compromise
their defence and make them momentarily vulnerable... yet if executed well, end the fight in
a glorious outcome; all of these scenarios are examples of decision making. Decision making
under uncertainty, which can either end up in a very expensive outcome if poor choices are
made, or in other person’s perspective, into a sizeable opportunity for great accomplishments.

In the same decade, while still far from general artificial intelligence, computer cognition
is reaching impressive levels exceeding human baselines in some applications like computer
vision, or even beating professional human talents at video and strategy games without
any prior knowledge. Major breakthroughs and state-of-the-art results are now detained by
computers in several fields. The main reason: statistical learning. The art of learning from
experience. As this area of research and its neighbouring communities live an explosion
of popularity in the recent years, with research growing exponentially and new knowledge
being introduced on a daily basis, robust deployed applications are still in their infancy of
what these new opportunities could bring.

While far from exhaustive, through this work we start by providing the reader with
an overview of sequential decision making theory along with some recent improvements in
statistical learning. We then proceed to demonstrate the application of recent developments
in deep supervised learning and deep reinforcement learning on real applied instances
involving the energy grid and the optimization of its actors, from energy storage and
electric cars to smart building and thermal controls. We conclude by introducing a new
hybrid approach combining the modern performance of statistical learning with the proven



application of classical operations research. We hope that such solution will facilitate the
integration of new statistical learning-oriented methodologies, while blending smoothly and
rigorously with other existing and future optimization solutions of different natures.

The first part of this document (chapter 1 to 3) introduces the formal mathematical
framework of sequential decision making, along with its inherent characteristics. In the
second part (chapter 4-6), we cover the fundamentals of statistical learning theory, with
a very keen focus on deep learning and deep reinforcement learning, along with their
modern approaches and methodologies. Finally, the third part describes the applica-
tions and main novel contributions of this thesis, building on the subjects introduced
in the first six chapters. A reader familiar with either or both of control and statistical
learning theories can skip directly to any part of this document without any loss of continuity.
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Part 1

SEQUENTIAL DECISION FRAMEWORK





Chapter 1

Model Formulation

The modern study of stochastic sequential decision problems began with work on sequential
statistical problems during the Second World War, and has seen thorough improvements
and implementations through the ages and applications in our modern society. The term
dynamic programming was originally used in the 1940s by Richard Bellman to describe the
process of solving problems where one needs to find the best decisions one after another.
By 1953, he refined this to the modern meaning, referring specifically to nesting smaller
decision problems inside larger decisions [20]. Nowadays, research in this field inhabits
a new efflorescence, considering modern computing resources and the imminent rise in
popularity of Artificial Intelligence.

Mainly synthesized from Pierre-Luc Bacon’s Excursions in Reinforcement Learning
course, the Dynamic Programming and Optimal Control (Vol I) [11], Dynamic Programming
and Optimal Control (Vol II) - Approximate Dynamic Programming [9] and Reinforcement
Learning and Optimal Control [12] books from Dimitri P. Bertsekas, the Markov Decision
Processes [56] book by Martin L. Puterman, and the Reinforcement Learning [72] book
by Richard S. Sutton and Andrew G. Barto, we dive directly in the matter and start by
considering the very broad and general problem in which a decision maker must choose a
sequence of actions so as to maximize a given performance measure. These actions can be
conceptualized as possible ways of influencing its environment over a series of interactions
through time. Since the environment we model is ongoing, the state of the system prior to
tomorrow’s decision depends on today’s decision. Consequently, decisions must not be made
myopically, but must take account of the opportunities and costs (or rewards) associated
with future possibilities.



1.1. Problem Definition
Uncertainty and stochasticity can arise from many sources - nearly all activities imply

some ability to reason in the presence of uncertainty. In fact, beyond mathematical
statements that are true by definition, it is difficult to think of any proposition that is
absolutely true or any event that is absolutely guaranteed to occur. More specifically
speaking, uncertainty arises from three possible sources [51]:

(1) Inherent stochasticity in the nature of the system - for example, the fundamental
nature of quantum mechanics, which describe the dynamics of subatomic particles,
has been proven to be probabilistic.

(2) Incomplete observability - Even deterministic systems can appear stochastic when
the observer does not have access to all the variables that drive the behavior of the
system.

(3) Incomplete modeling - When the model considered discards some of the information
we have, usually for simplicity or efficiency reasons, the discarded information results
in uncertainty in the prediction.

Mainly concerned by the last two sources (we shall leave the realm of the infinitely
small out for all intents and purposes), we thus consider our environment1, denoted E,
as a probabilistic system. At a specified point in time, the decision maker or agent 2,
denoted a, observes the state of this system. Based on this observation, the decision maker
is faced with the problem (or some might say the opportunity) to choose an action (or a
sequence of actions) which influences the system to perform optimally with respect to some
predetermined performance criterion.

The decision maker can interact with the environment at different time instants, denoted
t, called decision epochs, decision steps or just steps. Furthermore, the interval between two
decision epochs in discrete time is referred to as stages or periods. The set of decision epochs
can be either discrete, spaced out at irregular time intervals, or occurring continuously in
time.
We refer to the set of decision epochs as T , which leads to the classification:

• Discrete time, finite horizon: T := {0,1, . . . ,T − 1} for T <∞.
• Discrete time, infinite horizon: T := {0,1, . . .}.
• Continuous time, finite horizon: T := [0,1, . . . ,T − 1].

1also referred to as plant in some literature.
2sometimes called controller.
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Fig. 1.1. Diagram of the interactions between the agent and the environment in the se-
quential decision-making framework.

• Continuous time, infinite horizon: T := [0,∞).

In finite horizon problems, we typically assume that the decision maker is unable to take
a decision in the last decision epoch since the outcome of this decision would have to be
observed beyond the horizon.

1.1.1. State and Action Sets

At each decision epoch, the probabilistic system occupies a given state, represented
by s, belonging to a set of states S3. In every state, we assume that the decision
maker can influence the underlying probabilistic system via an action or control, de-
noted u, from a set of allowable actions Us which depend on state s. It is very common in
the reinforcement learning literature to assume that Us = U for all s ∈ S, where U := ∪s∈SU .

The sets S and Us may each be either:
(1) arbitrary finite sets,
(2) arbitrary countably infinite sets,
(3) compact subsets of finite dimensional Euclidian space, or
(4) non-empty Borel subsets of complete, separable metric spaces.

In nondiscrete settings, many subtle mathematical issues arise which, while interesting,
detract from the main purpose of the work presented. We thus assume, from now on, that
S and Us are discrete (finite and countably infinite) unless explicitly noted 4.

Actions may be chosen either randomly or deterministically. We denote by P(Us) and
P(U) the collection of probability distributions on (Borel) subsets of Us and U , respectively.
Choosing actions randomly means selecting a probability distribution q(•) ∈ P(Us), in which

3We assume, in what we believe a reasonable hypothesis, the same state space at every decision epoch.
4This statement is unconditionally true for S in our case, but not always for U .
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case action u is selected with probability q(u). Degenerate probability distributions corre-
spond to deterministic action choices.

1.1.2. System Evolution

As a result of choosing action u ∈ Us in state s at decision epoch t,

(1) The decision maker receives a reward (or cost), rt(s,u), rt : S × U → R and
(2) the system state at the next decision epoch is determined by the probability

distribution pt(•|s,u), pt : S × U → [0,1].

Let the real-valued function rt(s,u) defined for s ∈ S and u ∈ Us denote the value
at time t of the reward received in period t, and be additive over time. When positive,
rt(s,u) may be regarded as income, and when negative as cost. It is meant to have
an immediate meaning, which contrasts with the notion of return. The underlying
process by which this reward is accrued does not need to be specified in our model:
the only required specificity is the possibility to compute this value as a function of
the current state and action. Furthermore, in the finite horizon setting, no decision is
made at decision epoch T . Consequently, the reward at this time point is only a function
of the state. We denote it by rT (s) and sometimes refer to it as a salvage value or scrap value.

When the reward depends on the state of the system at the next decision epoch, we let
rt(s,u,j) denote the value at time t of the reward received when the state of the system at
decision epoch t is s, action u ∈ Us is selected, and the system occupies state j at decision
epoch t + 1. This setting can be reduced to the standard formulation by marginalizing out
the next state:

rt(st,ut) =
∑
j∈S

rt(st,ut,j)pt(j|st,ut) . (1.1.1)

The function pt(j|s,u), subject to the constraint ∑j∈S pt(j|s,u) = 1, is called a transition
probability function. It is important to note that many system transitions might occur in
the time period between decision epoch t and decision epoch t + 1. Under most notions of
optimality, all of the information is necessary to make a decision at time t is summarized
in rt(s,u) and pt(j|s,u); however, under some criteria we must use rt(s,u,j) instead of rt(s,u).

We define a Markov decision process (MDP) as the following collection of objects:

• a set of decision epochs,
• a set of system states,
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• a set of available actions,
• a set of state and action dependent transition probabilities, and
• a set of state and action dependent immediate rewards or costs:

{T ,S,U , pt(•|s,u),rt(s,u)} . (1.1.2)

The qualifier Markov is used because the transition probability and reward functions de-
pend on the past only through current state of the system and the action selected by the
decision maker in that state. Furthermore, we say that the combination of an MDP with a
performance measure describes a Markov Decision Problem.

1.1.3. Taking Decisions

The information regarding which action to choose at any given state and decision
epoch is encoded into a decision rule, denoted d. Decision rules range in generality
from deterministic Markovian to randomized history dependent, depending on how they
incorporate past information and how they select actions. Deterministic Markovian decision
rules are functions dt : S → Us, which specify the action choice when the system occupies
state s at decision epoch t. For each s ∈ S, dt(s) ∈ Us. This decision rule is said to be
Markovian (memoryless) because it depends on previous system states and actions only
through the current state of the system, and deterministic because it chooses an action
with certainty. We call a deterministic decision rule history dependent if it depends on
the past history of the system as represented by the sequence of previous states and
actions. That is, dt is a function of the history ht = (s1,u1,...,st−1,ut−1,st). The set of
all possible histories at time t can be written recursively asHt := Ht−1×U×S, whereH0 = S.

A randomized decision rule dt specifies a probability distribution qdt(•) on the set of ac-
tions. Randomized Markovian decision rules map the set of states into the set of probability
distributions on the action space, that is dt : S → P(U), and randomized history-dependent
decision rules according to dt : Ht → P(U). When Markovian, qdt(st)(•) ∈ P(Ust), and when
history dependent, qdt(ht)(•) ∈ Ust for all ht ∈ Ht. A deterministic decision rule may be
regarded as a special case of a randomized decision rule in which the probability distribu-
tion on the set of actions is degenerate, that is, qdt(st)(u) = 1 or qdt(ht)(u) = 1 for some u ∈ Us.

Using this classification, we therefore have decision rules that are history dependent and
randomized (HR), history dependent and deterministic (HD), Markovian and randomized
(MR), or Markovian and deterministic (MD) depending on their degree of dependence on
past information and on their method of action selection. We denote the set of decision
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rules at time t by DKt , where K designates a class of decision rules (K = HR, HD, MR,
MD); DKt is called a decision rule set.

The rewards and transition probabilities become functions on S or Ht after specifying
decision rules. For dt ∈ DHD

t , they equal rt(s,dt(ht)) and pt(j|s,dt(ht)) whenever ht =
(ht−1,ut−1,s). If dt is a randomized Markov decision rule the expected reward satisfies

rt(s,dt(s)) =
∑
u∈Us

rt(s,u)qdt(s)(u) , (1.1.3)

and the transition probability satisfies

(j|s,dt(s)) =
∑
u∈Us

pt(j|s,u)qdt(s)(u) . (1.1.4)

Analogous constructions apply to randomized history-dependent rules.

A decision rule only dictates the choice of action in a given state. A policy, contingency
plan, plan, control law, or strategy specifies the decision rule to be used at all decision epoch.
It provides the decision maker with a prescription for action selection under any possible
future system state or history. A policy π is a sequence of decision rules, i.e. π = (d0,d1,...)
where dt maps states of st into controls ut = dt(st). A stationary policy is a policy where the
same decision rule (which is not to say the same action) is chosen in every decision epoch:
π := (d,d,...). The relationship between the various classes of policies is as follows:

ΠSD ⊂ ΠSR ⊂ ΠMR ⊂ ΠHR (1.1.5)

ΠSD ⊂ ΠMD ⊂ ΠMR ⊂ ΠHR (1.1.6)

ΠSD ⊂ ΠMD ⊂ ΠHD ⊂ ΠHR (1.1.7)

where Π represents the space of the specified policy class, and the letters S,D,R and H
are respectively acronyms for stationary, deterministic, randomized and history-dependent.
Consequently, randomized, history-dependent policies are most general and stationary
deterministic policies are most specific. Stationary deterministic policies are appealing due
to their simple structure. In the infinite horizon criteria, we will see that we can restrict our
attention to such pure policies without any loss of optimality.

Finally, we also note the distiction between open-loop minimization, where we select all
controls u0,...,uT−1 at once at time 0, and closed-loop minimization, where we select a policy
{d0,...,dT−1} that applies the control dt(st) at time t with knowledge of the current state
st. With close-loop policies, it is possible to achieve higher rewards, essentially by taking
advantage of the extra information (the knowledge of the current state). The reduction in
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cost may be called the value of the information and can be significant. If the information is
not available, the controller cannot adapt appropriately to unexpected values of the state,
and as a result the cost can be adversely affected.

1.1.4. Induced Stochastic Processes

The combination of a policy and an MDP induces a stochastic process whose sample
space Ω is of the form:

Ω = S × U × S × U × ...× U × S = {S × U}T−1 × S , (1.1.8)

and in an infinite horizon model, Ω = {S × U}∞. A typical element, or sample path, ω ∈ Ω
consists of a sequence of states and actions, that is:

ω = (s1,u1,s2,u2,...,uT−1,sT ) or ω = (s1,u1,s2,...) . (1.1.9)

From a sample path, we define the random variables for the state and actions at time
t, which we write St(ω) = st and Ut(ω) = ut, as well as the history of the process
Ht(ω) := ht(s0,u0,...,ut−1,st).

Let the probability distribution P1(•) denote the initial distribution of the system state.
In most applications, we assume degenerate P1(•), that is, P1(s1) = 1 for some s1 ∈ S.
A randomized history-dependent policy π = (d1,d2,...,dT−1), T ≤ ∞, induces a probability
distribution P π through

P π{S1 = s} = P1(s) , (1.1.10)

P π{Ut = u|Ht = ht} = qdt(ht)(u) , (1.1.11)

P π{St+1 = s|Ht = (ht−1,ut−1,st), Ut = ut} = pt(s|st,ut) , (1.1.12)

so that probability of a sample path ω = (s1,u1,s2,...,sT ) is given by

P π(s1,u1,s2,...,sT ) = P1(s1)qd1(s1)(u1)p1(s2|s1,u1)qd2(h2)(u2)... (1.1.13)

qdT−1(hT−1)(uT−1)pT−1(sT |sT−1,uT−1) . (1.1.14)

for π in ΠHD or ΠMD, this simplifies to

P π(s1,u1,s2,...,sT ) = P1(s1)p1(s2|s1,u1)...p(sT |sT−1,uT−1) . (1.1.15)
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For computation, we require conditional probabilities of the process from t onward, con-
ditional on the history at time t. Under the discreteness assumptions, we compute these
probabilities as follows:

P π(u1,st+1,...,sT |s1,u1,...,st) = P π(s1,u1,...,sT )
P π(s1,u1,...,st)

. (1.1.16)

Few lines of development and algebra lead to

P π(ut,st+1,...,sT |s1,u1,...,st) = P π(ut,st+1,...,sT |st) , (1.1.17)

so that the induced stochastic processes {St; t ∈ T } is a discrete Markov chain.

When π is Markovian, we refer to the bivariate stochastic process {(St,rt(St,Ut)); t ∈ T }
as a Markov Reward Process (MRP) (a Markov chain together with a real-valued function
defined on its state space). This process represents the sequence of system states and stream
of rewards received by the decision maker when using policy π.

1.2. Deterministic Dynamic Programs
Deterministic dynamic programs (DDPs) represent an important and widely studied class

of problems. They arise when the transition probability function is specified by a transfer
function indicating exactly what will be the next state. The transition probability function
can then be written as:

pt(st+1|st, ut) =

1 if st+1 = ft(st, ut) ,

0 if st+1 6= ft(st, ut) ,
(1.2.1)

and where the rewards are given by rt(s,u). When the total reward is used to compare
policies, every DDP with finite S, U and T is equivalent to a shortest or longest path problem.

A finite directed graph consists of a set of nodes and directed arcs or edges. We define
a path as a sequence of arcs that connects one node to another node. We call such a
graph acyclic whenever there are no paths which begin and end at the same node. The
first (initial) node is called the origin, while the last (final) node is called the destination.
Finally, each node and edge can have attributes and or properties associated to it, such as
a distance, a cost, a time etc.

Formulation of a shortest path problem as a deterministic dynamic program involves
identifying nodes with states, arcs with actions, transfer functions with transition probabil-
ities and values with rewards. However, direct identification of decision epochs or stages is
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Fig. 1.2. Deterministic dynamic program expressed as a shortest route problem. The origin
node is colored in green, the terminal node in orange, and the red path represents the optimal
(shortest) path to minimize the overall cost attribute up to decision epoch T = 3.

not always possible and not necessary for solution. Looking at figure 1.2, at each decision
epoch, there is a node corresponding to each state. Arcs originate at each state, one for
each action, and end at the next stage at the node determined by the corresponding transfer
function. Arc lengths give rewards (or costs). We also add a "dummy" origin (O) and
destination (D). Arc lengths from nodes at stage T to the destination give terminal rewards
rT (s). If a solution is sought for a particular initial state s′ and the problem is one of
maximization, then we give the arc from the origin to s′ a large positive lengths, say L, and
set length of all other arcs starting from the origin equal to zero.

Several specialized algorithms and methods can be used to solve the shortest path problem
induced by the MDP. We do not develop the full detail of these algorithms explicitly, but
an interested reader can easily find all the necessary material for label correcting methods
(like Dijkstra), the Branch and Bound method and many more, to only name those few most
popular. As we will see, the backward induction algorithm presented in the next section can
also be used to solve our shortest path problem. It is however noteworthy to mention that
depth-first graph exploration is usually favored in DDPs.

1.3. Controlled Discrete-Time Dynamic Systems
When decisions are made continuously, the sequential decision problems are best analyzed

using control theory methods based on dynamic system equations. Under this perspective5,

5Discrete-time optimal control originates from the calculus of variations and its application for continuous-
time systems.
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we define a state equation (also called system equation or law of motion) which describes
how the system evolves over time under some exogenous source of disturbances:

st+1 = ft(st,ut,wt), t = 0, 1, ..., T − 1 , (1.3.1)

where

• t indexes discrete time,
• st is the state of the system and summarizes past information that is relevant for
future optimization,
• ut is the control or decision variable to be selected at time t,
• wt is a random parameter (also called disturbance or noise depending on the context),
• T is the horizon or number of times control is applied,
• ft is a function that describes the system and in particular the mechanism by which
the state is updated.

We formulate the model so that transitions which occur between decision epochs do not
influence the decision maker. This type of state transition can alternatively be described in
terms of the discrete-time system equation

st+1 = wt , (1.3.2)

where the probability distribution of the random parameter wt is

P{wt = j|st = i, ut = u} = pij(u,t) , (1.3.3)

Conversely, given a discrete-state system in the form

st+1 = ft(st,ut,wt) , (1.3.4)

together with the probability distribution Pt{wt|st, ut} of wt, we can provide an equivalent
transition probability description. The corresponding transition probabilities are given by

pij(u,t) = Pt{Wt(i,u,j)|st = i, ut = u} , (1.3.5)

where W (i,u,j) is the set
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Wt(i,u,j) = {w|j = ft(i,u,w)} . (1.3.6)

Thus a discrete-state system can equivalently be described in terms of a difference equation or
in terms of transition probabilities. Depending on the given problem, it may be notationally
or mathematically more convenient to use one description over the other.
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Chapter 2

Finite Horizon Markov Decision Processes

This chapter focuses on finite-horizon discrete-time MDPs, i.e. problems in which there is a
clearly defined final decision epoch T < ∞. This type of problem is very typical of what is
referred to as episodic experiences in reinforcement learning, while its continuous counterpart
is developed in the next chapter with the infinite-horizon setting.

2.1. Optimality Criteria
2.1.1. Some Preliminaries

Let π = (d1,d2,...,dT−1) denote a randomized history-dependent policy. Each π ∈ ΠHR

generates a probability distribution P π(•) on (Borel subsets of) HT , the set of histories
(sample paths) up to time T . For each realization of the history hT = (s1,u1,s2,...,sT ) there
corresponds a sequence of rewards {r1(s1,u1),...,rT−1(sT−1,uT−1),rT (sT )}. Let Rt ≡ rt(St,Ut)
denote the random reward received in period t < T, RT ≡ rT (ST ) denote the terminal
reward, R ≡ (R1,R2,...,RT ) denote a random sequence of rewards, and R the set of all
possible reward sequences. A policy π induces a probability distribution P π

R(•) on (Borel
subsets of) R:

P π
R(p1,...,pT ) ≡ P

[
{(s1,u1,...,sN) : r1(s1,u1),...,rT−1(sT−1,uT−1),rT (sT )} = (p1,...,pT )

]
.

(2.1.1)
In this definition, P π[•] denotes the probability distribution on the set of all realizations
of the Markov decision process under π. For a deterministic history dependent π, we have
Ut = dt(ht), while for π ∈ ΠMD Ut = dt(St). We compare policies on the basis of the decision
maker’s preference for different realizations of R and the probability that each occurs. We
now discuss approaches for such comparisons based on stochastic orderings, expected utility,
and other criteria.



2.1.2. The Expected Total Reward Criterion

Let vπT represent the expected total reward over the decision making horizon if policy π
is used and the system is in state s at the first decision epoch. For π ∈ ΠHR, it is defined by

vπT (s) := E
{
T−1∑
t=0

rt(St, Ut) + rT (ST )
∣∣∣∣∣S0 = s

}
, (2.1.2)

and where the expectation is taken over the distribution of sample paths induced by the
policy π in the given MDP. When using deterministic policies, the remaining source of
randomness is due to the transition probability function, and the expected total reward can
be written as:

vπT (s) := E
{
T−1∑
t=0

rt(St, dt(St)) + rT (ST )
∣∣∣∣∣S0 = s

}
. (2.1.3)

To account for the time value of rewards, we often introduce a discount factor γ, 0 ≤
γ ≤ 1, which measures the value at time n of a one unit reward received at time n + 1. A
one-unit reward received t periods in the future has present value γt. When γ = 1, we assign
equal importance to every reward irrespective of their occurrence in time while setting γ = 0
ignores all terms but the first one (myopically). For π ∈ ΠHR, the expected total discounted
reward is

vπT,γ(s) := E
{
T−1∑
t=0

γtrt(St, Ut) + γT rT (ST )
∣∣∣∣∣S0 = s

}
, (2.1.4)

Taking the discount factor into account does not effect any theoretical results or algorithms
in the finite-horizon case but might effect the decision maker’s preference for policies. As we
will see, the discount factor plays a key analytic role in the infinite-horizon models setting.

2.1.3. Optimal Policies

Markov decision process theory and algorithms for finite-horizon models primarily con-
cern finding an optimal policy which maximizes the total expected reward, or its discounted
variant. This optimal policy has the property that:

vπ
∗

T (s) ≥ vπT (s), s ∈ S , (2.1.5)

for all π ∈ ΠHR. We refer to such a policy as an optimal policy. If an optimal policy cannot
be obtained, then we seek an ε-optimal policy, that is, for an ε > 0, a policy π∗ε with the
property that

vπ
∗

T (s) + ε ≥ vπT (s), s ∈ S . (2.1.6)
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We seek to characterize the value of the Markov decision problem, v∗T , defined by

v∗T (s) ≡ sup
π∈ΠHR

vπT (s), s ∈ S , (2.1.7)

and when the supremum is attained, by

v∗T (s) = max
π∈ΠHR

vπT (s), s ∈ S . (2.1.8)

The expected total reward of an optimal policy π∗ satisfies

vπ
∗

T (s) = v∗T (s), ∀s ∈ S . (2.1.9)

In practice, all that might be required is an optimal policy for some specified initial state.
Alternatively, we might seek a policy prior to knowing the initial state. In this case, we seek
a π ∈ ΠHR which maximizes ∑s∈S v

π
T (s)P1{S1 = s}. Clearly we may find such a policy by

maximizing vπT (s) for each s for which P1{S1 = s} > 0. We use the expression Markov
decision problem for a Markov decision process together with an optimality criteria.

2.2. Finite-Horizon Policy Evaluation
The very notion of optimal policies relies on the ability to compare policies in terms of

their expected total reward (a partial order). Hence, a prerequisite for this task is to be
able to at least find out what is the expected total reward associated with any given policy:
the policy evaluation problem. A basic algorithm can be obtained by backward induction,
starting from t = T and vT = rT down to t = 0:

vπt (s) = rt(st, dt(ht)) +
∑

st+1∈S
pt(st+1|st, dt(ht))vπt+1((ht, dt(ht), st+1)) , (2.2.1)

where (ht, ut, st+1)) is the concatenation of the history up to time t (and ending with st)
with ut and the next state. In the case of Markovian policies, we have:

vπt (s) = rt(st, dt(st)) +
∑

st+1∈S
pt(st+1|st, dt(st))vπt+1(st+1) . (2.2.2)

2.3. Bellman Optimality Equations
In this section we introduce one of the most fundamental results in sequential decision

theory, the Bellman optimality equations1, and investigate their inherent properties. We
show that solutions of these equations correspond to optimal value functions and that they
also provide a basis for determining optimal policies.

1Also sometimes referred to as Bellman equations, optimality equations or function equations.
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Let

v∗t (ht) = sup
π ΠHR

vπt (ht) , (2.3.1)

which denotes the supremum over all policies of the expected total reward from decision
epoch t onward when the history up to time t is ht. Since we know ht, we only consider
portions of policies from decision epoch t onwards; that is, we require only the supremum
over (dt,dt+1,...,dT−1) ∈ DHR

t × DHR
t+1 × ... × DHR

T−1. When minimizing costs instead of
maximizing rewards, we sometimes refer to v∗t as a cost-to-go function.

The optimality equations are given by

v∗t (ht) = sup
u∈Ust

{
rt(st,u) +

∑
j∈S

pt(j|st,u)vt+1(ht,u,j)
}
, (2.3.2)

for t = 1, ..., T − 1 and ht = (ht−1,ut−1,s) ∈ Ht. For t = T , we add the boundary condition

vT (hT ) = rT (sT ) , (2.3.3)

for hT = (hT−1,uT−1,sT ) ∈ HT . These equations become policy evaluation equations when
we replace the supremum over all actions in state st, by the action corresponding to a
specified policy, or equivalently, when Us is a singleton for each s ∈ S. It is important to
note that while they resemble the policy evaluation equations, they differ in the fact that
they are inherently nonlinear.

The operation sup is implemented by evaluating the quantity in brackets for each u ∈ U ,
and then choosing the supremum over all of these values. If the supremum is attained, for
example, when each Ust is finite, it can be replaced by "max" so the optimality equations
become

v∗t (ht) = max
u∈Ust

{
rt(st,u) +

∑
j∈S

pt(j|st,u)vt+1(ht,u,j)
}
. (2.3.4)

A solution to this system of equations and boundary condition is a sequence of functions
vt : Ht → R, t = 1,...,T, with the property that vT satisfies the boundary condition
vT (hT ) = rT (sT ), vT−1 satisfies the (T − 1)th equation with vT substituted into the
right-hand side of the (T − 1)th equation, and so forth.

Our development so far has been general and we considered searching of the largest
possible class of policies: that of history dependent randomized policies. This is cumbersome
because the space of such policies grows exponentially as a function of the horizon. A
central result in the theory of MDPs is that a deterministic Markov policy which is optimal
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not only exists but can also be found by backward induction 2. This result relies first on
the fact that optimal value function depends on the history only through the current state.
Intuitively, the inductive argument behind this clearly follows from the fact that the Bellman
optimality equations maintains the history uselessly as all we need to compute the value in
the next decision epoch is the current state itself. Combining this fact with the theorem that
establishes the existence of an ε-optimal deterministic history dependent policy, entails that

v?T (s) = max
π∈ΠHR

vπT (s) = max
π∈ΠMD

vπT (s) . (2.3.5)

This result simplifies the original optimality equations significantly, which now look like

v?t (st) = max
ut∈Ust

rt(st,ut) +
∑
st+1

pt(st+1|st,ut)v?t+1(st+1) , (2.3.6)

starting with v?T = rT .

2.4. Backward Induction
We conclude this chapter with an important algorithm directly derived from the

recursive nature of the Bellman optimality equations, and usually known as the backward
induction or dynamic programming algorithm. The term backward induction and dynamic
programming are synonymous, although the latter often refers to all results and methods
for sequential decision processes.

Backward induction provides an efficient method for solving finite-horizon discrete-time
MDPs presenting an acyclic transition graph. For stochastic problems, enumeration and
evaluation of all policies from the terminal state is the only alternative, but forward induction
and reaching methods provide alternative solution methods for deterministic systems. Bellow
we define the backward induction algorithm and shows how to use it to find optimal policies
and value functions. The algorithm also generalizes policy evaluation.

2.4.1. The Backward Induction Algorithm

1. Set t = T and

v?T (sT ) = rT (sT ) ∀ sT ∈ S (2.4.1)

2. Substitute t− 1 for t and compute u∗t (st) = supπ∈Πu
π
t , for each st ∈ S by

2We omit the proof of this result for concision, but the complete development can be found both in Bertsekas’
and Puterman’s references.
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v?t (st) = max
u∈Ust

{
rt(st,u) +

∑
j∈S

pt(j|st,u)v∗t+1(j))
}
. (2.4.2)

Set

u?t (st) = arg max
u∈Ust

{
rt(st,u) +

∑
j∈S

pt(j|st,u)u∗t+1(j))
}
. (2.4.3)

3. If t = 1, stop. Otherwise return to step 2.
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Chapter 3

Infinite Horizon Markov Decision Processes

In this chapter, we develop infinite-horizon Markov decision processes with the expected
total discounted reward optimality criterion. We briefly introduce total reward and
average reward settings, but our main focus will concern the discounted version, as
these models are the best understood and most popular of all infinite-horizon Markov
decision problems. Results for these models provide a standard for the theory of mod-
els with other optimality criteria. Results for discounted models are noteworthy in that
they hold regardless of the chain structure of Markov chains generated by stationary policies.

Throughout this whole chapter, we will consider the following assumptions:

(1) Stationary rewards and transition probabilities - r(s,u) and p(j|s,u) do not vary from
decision epoch to decision epoch.

(2) Bounded rewards - |r(s,u)| ≤M <∞, ∀u ∈ Us and s ∈ S.
(3) Discounting - future rewards are discounted according to a discount factor γ ∈ [0,1).
(4) Discrete state spaces - S is finite or countable.

3.1. Infinite-Horizon Policy Evaluation
Just like we did in the previous chapter, in this section we develop recursions for the

expected total discounted reward of a Markov policy π. These recursions provide the ba-
sis for the vast majority of algorithms in optimal control and reinforcement learning theories.

Infinite-horizon models require evaluation of infinite sequences of rewards at all states in
S. Consequently, we need some notions of convergence of functions on S. Usually the term
convergence is used in the pointwise convergence sense, that is, limits are defined separately
for each s ∈ S. In models with expected total discounted reward, we analyze convergence



of algorithms and series in terms of convergence in supremum norm.

We say that the limit of a series exists whenever the series has a unique limit point, even
though it might be +∞ or −∞. This distinguishes a divergent series, that is, with limits of
either +∞ or −∞, from a non-convergent series which has multiple limit points.

Stationary policies assume a particularly important role in infinite-horizon models. We
use the notation d∞ = (d,d,...) to denote this policy. In a stationary infinite-horizon Markov
decision process, each policy π = (d1,d2,...) induces a bivariate discrete-time reward process;
{(St,r(St,Ut)); t = 1,2,...}. The first component St represents the state of the system at time
t and the second component represents the reward received when using action Ut in state St.
The decision rule dt determines the action Ut as follows:
For deterministic dt,

Ut = dt(St) for dt ∈ DMD and Ut = dt(Ht) for dt ∈ DHD, (3.1.1)

where the random variable Ht denotes the history up to time t. For randomized dt,

P{Ut = u} = qdt(St)(u) for dt ∈ DMR (3.1.2)

and

P{Ut = u} = qdt(Ht)(u) for dt ∈ DHR (3.1.3)

For Markovian π, {(St,r(St,Ut)); t = 1,2,...} is a Markov reward process.

For each s ∈ S given any π ∈ ΠHR, there exists a π′ ∈ ΠMR with identical total discounted
rewards. Considering this, we need not consider history-dependent policies, so that

v∗γ(s) ≡ sup
π∈ΠHR

vπγ (s) = sup
π∈ΠMR

vπγ (s) (3.1.4)

The following functions assign values to the reward streams generated by a fixed policy
when the system starts in a fixed state.

a. The expected total reward of policy π ∈ ΠHR, vπ is defined to be

vπ(s) = lim
T→∞

E
[
T∑
t=0

r(St, Ut)
∣∣∣∣∣S0 = s

]
= lim

T→∞
vπT (s) . (3.1.5)

When the limit exists and when the limit can be interchanged with the expectation (by
Lebesgue’s dominated convergence theorem for example), we can just write:
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vπ(s) = E
[ ∞∑
t=0

r(St, Ut)
∣∣∣∣∣S0 = s

]
. (3.1.6)

b. To ensure that the expectation is finite, we can use a discount factor γ ∈ [0, 1)
resulting in the expected total discounted reward:

vπ,γ(s) = lim
T→∞

E
[
T∑
t=0

γtr(St, Ut)
∣∣∣∣∣S0 = s

]
. (3.1.7)

The discount factor appears along the reward only from t = 1 because the realization of the
reward random variable is only available upon entering the next state after taking the first
decision. When the reward function is bounded and γ ∈ [0,1), the limit exists and we write:

vπ,γ(s) = E
[ ∞∑
t=0

γtr(St, Ut)
∣∣∣∣∣S0 = s

]
. (3.1.8)

Note that if the maximum possible reward is bounded by some constant rMAX:

max
s∈S

max
u∈U
|r(s,u)| = rMAX , (3.1.9)

then the return is at most rMAX
1−γ since we have a geometric series. Furthermore, the expected

total discounted reward can be shown to be equivalent to an expected total undiscounted
reward problem but where the horizon T is random.

c. Instead of introducing a discount factor to keep the sum bounded, we can also take
an average of the reward over time. This yields the so-called average reward criterion:

gπ(s) = lim
T→∞

1
T
E
[
T∑
t=0

r(St, UT )|S0 = s

]
= lim

T→∞

1
T
vπT (s)

We refer to the function gπ as the gain of the policy π ∈ ΠHR.

Going back to the classic discounting case and letting r0 = 0 and P 0
π ≡ I, where r0 and

P 0
π represent the initial reward and the transition probability matrix for all states at t = 0

respectively, we can express the equation 3.1.8 in vector notation as
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vπγ =
∞∑
t=0

γtP t
πrdt (3.1.10)

= rd1 + γPd1rd2 + γ2Pd1Pd2rd3 + ... (3.1.11)

= rd1 + γPd1(rd2 + γPd2rd3 + γ2Pd2Pd3rd4 + ...) (3.1.12)

= rd1 + γPd1v
π′

γ (3.1.13)

where π′ = (d2,d3,...). The last equation shows that the discounted reward corresponding to
policy π equals the discounted reward in a one-period problem in which the decision maker
uses decision rule d1 in the first period and receives the expected total discounted reward of
policy π′ as a terminal reward. The component-wise notation can be expressed as

vπγ (s) = rd1(s) +
∑
j∈S

γpd1(j|s)vπ′γ (j) (3.1.14)

The two last equations are valid for any π ∈ ΠMR; however, when π is stationary so
that π′ = π, they simplify further. Let d∞ ≡ (d,d,...) denote the stationary policy which
uses decision rule d ∈ DMR at each decision epoch. Our expected total discounted reward
vectorial and component-wise equations (3.1.13 and 3.1.14) then respectively become

vd
∞

γ = rd + γPdv
d∞

γ (3.1.15)

vd
∞

γ (s) = rd(s) +
∑
j∈S

γpd(j|s)vd
∞

γ (j) (3.1.16)

The value function vπ is then the unique solution to a linear system of equations which
we will refer to as the policy evaluation equations 1. From an operator-theoretic point of
view, this is to say that vπ is the fixed-point of some operator Lπ defined by the linear
transformation:

Lπv := rπ + γPπv .

For vπ to be a fixed-point of2 Lπ, this means that vπ is an element of V with the property
that Lπvπ = vπ.

1In the RL literature, these are generally called Bellman equations, which we prefer to use only for the
equations arising from Bellman’s optimality principle.
2We define a fixed-point with respect to its operator, hence our usage of of.
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A fundamental result about Lπ relates the recursive form of the policy evaluation equa-
tions with that of the corresponding Neumann series:

vπ =
∞∑
t=0

(γPπ)t rπ

= (I − γPπ)−1 rπ

= rπ + γPπvπ .

This equality holds when the spectral radius of γPπ is strictly less than 1. The spectral
radius of some square matrix A ∈ Rm×m is defined as σ(A) := max1≤i≤m |λi| where λi is an
eigenvalue of A. This is true since P is a stochastic matrix (summing across columns gives
a vector of ones) and ‖γP‖ = γ‖P‖ < 1 assuming that γ ∈ [0, 1).

This in turns follows from the fact that σ(A) ≤ ‖A‖ for any square matrix A. To see this,
note that by definition any λi satisfies Avxi = λivxi where vxi is the eigenvector associated
with λi. Taking the norm on both sides, we have 3 ‖A vxi‖ = ‖λi vxi‖ ≤ ‖A‖‖vxi‖.
Therefore, if λ? = max1≤i≤m |λi|, then |λ?|‖x?‖ ≤ ‖A‖‖vx?‖ and σ(A) ≤ ‖A‖.

3.2. Optimal Solutions in the Infinite-Horizon Setting
The optimality equations for the total expected discounted reward are defined as:

v∗(s) = max
u∈Us

r(s, u) + γ
∑
s′∈S

p(s′|s,u)v?(s′) . (3.2.1)

Correspondingly, the Bellman optimality operator is defined as:

Lv := max
d∈DMD

rd + γPdv . (3.2.2)

The fact that we can restrict our attention to deterministic Markovian rules follows from

max
d∈DMD

rd + γPdv = max
d∈DMR

rd + γPdv . (3.2.3)

Because Markovian deterministic decision rules are a subset of Markovian randomized
decision rules, we have:

max
d∈DMD

rd + γPdv ≤ max
d∈DMR

rd + γPdv . (3.2.4)

To obtain the other direction:
3Given that we have a consistent norm.
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max
d∈DMD

rd + γPdv ≥ max
d∈DMR

rd + γPdv , (3.2.5)

we write:

max
u∈Us

r(s,u) + γ
∑
s′∈S

p(s′|s,u)v(s′) ≥
∑
u∈Us

π(u|s)
r(s,u) + γ

∑
s′∈S

p(s′|s,u)v(s′)
 . (3.2.6)

In order to show that the Bellman optimality equations have a solution, we can use
Banach fixed-point theorem and establish that L is a contraction mapping. An operator
T : U → U (from a Banach space to a Banach space) is a contraction mapping if we can
show that there is a λ ∈ [0, 1) such that:

‖Tv − Tu‖ ≤ λ‖v − u‖ , (3.2.7)

for u ∈ U and v ∈ U . The Banach fixed-point theorem then tells us two things:
(1) There exists a unique fixed-point.
(2) We can get to this fixed-point by computing a sequence v(t+1) = Tv(t) = T nv(0)

starting from some arbitrary v(0)

To establish that L is a contraction mapping, it is easier to switch to the component
form of the optimality equations and write:

(Lv)(s)− (Lu)(s) =
max
u∈Us

r(s,u) + γ
∑
s′∈S

p(s′|s,u)v(s′)
−

max
u∈Us

r(s,u) + γ
∑
s′∈S

p(s′|s,u)u(s′)
 .

(3.2.8)

Now let u∗s := argmaxu∈Usr(s,u) + γ
∑
s′∈S p(s′|s,u)v(s′) and assume that Lv ≥ Lu. We then

have:

0 ≤ (Lv)(s)− (Lu)(s) (3.2.9)

≤ r(s,u∗s) + γ
∑
s′∈S

p(s′|s,u∗s)v(s′)− r(s,u∗s)− γ
∑
s′∈S

p(s′|s,u∗s)u(s′) (3.2.10)

= γ
∑
s′∈S

p(s′|s,u∗s) (v(s′)− u(s′)) ≤ γ
∑
s′∈S

p(s′|s,u∗s)‖v − u‖ = γ‖v − u‖ . (3.2.11)

The last step follows from the fact that we assume that we use the infinity norm (in finite
dimensional spaces). The same result can also be obtained if we start with the assumption
that Lu ≥ Lv. If we arrive at the same conclusion assuming either (Lv)(s) ≥ (Lu)(s) or
(Lu)(s) ≥ (Lv)(s), then we might as well take the absolute value and have:
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|(Lv)(s)− (Lu)(s)| ≤ γ‖v − u‖ . (3.2.12)

Taking the maximum on the left hand side then leads to:

‖Lv − Lu‖ ≤ γ‖v − u‖ . (3.2.13)

While Banach fixed-point theorem helps us establish the existence of a solution to the
optimality equations (the optimal value function), the question still remains of determining
a corresponding optimal policy. Having established that we could take the supremum over
deterministic decision rules rather than the larger set of randomized decision rules, we have
yet to say something about the kind of policies that can be obtained. In particular, we would
like to not only have deterministic randomized decision rules, but also stationary policies.
The gist of this statement revolves around the notion of conserving decision rules, which
means that for some Markovian deterministic decision rule d:

Ldv
? := rd + γPdv

? = v? . (3.2.14)

It is important to note that this definition involves Ld, the policy evaluation operator, and
not the optimality operator L. Put more simply, if a decision rule is conserving, if we were
to apply the policy evaluation operator of this decision rule to the optimal value function
then we would obtain back the optimal value function. Markovian deterministic decision
rules which satisfy this equality are also said to be v?-improving. In general, a Markovian
deterministic decision rule is v-improving4 (with respect to a given v) if:

Ldv = Lv = max
d∈D

rd + γPdv , (3.2.15)

meaning that the decision rule picks actions according to the argmax on the right-and-side.

3.2.1. Value Iteration

The value iteration algorithm follows directly from the constructive nature of the Banach
fixed-point theorem: that of applying a contraction mapping repeatedly starting from an
arbitrary guess of the fixed-point. But the Banach fixed-point theorem is also not fully
computational in the sense that it cannot just be translated naively to an algorithm as
it involves composing the contraction mapping with itself infinitely. Alternatively from
heuristically stopping whenever the difference between two iterates is bellow a defined
threshold, we can devise a reasonable stopping criterion which can guarantee that we
4In the reinforcement literature, we would rather talk of a greedy policy.
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terminate close enough to the true solution.

At every iteration, the value iteration algorithm computes:

v(t+1)(s) = max
u∈Us

r(s,u) + γ
∑
s′∈S

p(s′|s, u)v(t)(s′) . (3.2.16)

It can then be shown that if we interrupt the process whenever ‖v(t+1) − v(t)‖ < ε(1−γ)
2γ , then

the error must be ‖v(t+1)− v?‖ < ε
2 . This bound follows from the fact that:

‖v(t+1) − v?‖ ≤ γ

1− γ ‖v
(t+1) − v(t)‖ , (3.2.17)

where πε is the stationary deterministic policy derived from the value function upon
terminating value iteration. Therefore this inequality states that upon termination (by the
above criterion), the error cannot be larger than the difference between the last two iterates
scaled by γ(1− γ)−1.

Similarly, we can show that:

‖vπε − v(t+1)‖ ≤ γ

1− γ ‖v
(t+1) − v(t)‖ , (3.2.18)

where πε is the stationary policy obtained upon terminating. Remember that we choose to
stop when:

‖v(t+1) − v(t)‖ < ε(1− γ)
2γ ⇐⇒ γ

1− γ ‖v
(t+1) − v(t)‖ < ε

2 . (3.2.19)

This means that both ‖v(t+1) − v?‖ < ε/2 and ‖vπε − v(t+1)‖ < ε/2, which can be combined
together via the triangle inequality:

‖vπε − v?‖ ≤ ‖vπε − v(t+1)‖+ ‖v(t+1) − v?‖ ≤ ε . (3.2.20)

Upon termination, the algorithm would have found a policy whose value function is within
ε of the optimal value function v?.

3.2.2. Policy Iteration

Rather than applying the method of successive approximation directly over the space of
value functions, the policy iteration algorithms refines an initial guess on an optimal policy
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by evaluating its performance and adjusting it accordingly.

If dt is the t-th decision rule produced by policy iteration, then the policy evaluation
step consists in solving for v in (I − γPdt)v = rdt which then guides the policy improvement
step in which dt+1 is generated 5 by taking dt+1 ∈ argmaxd∈Drd + γPdv

(t). Because of
the partial order on V , the policy improvement step can be computed equivalently as
dt+1(s) ∈ argmaxu∈Usr(s, u) + γ

∑
s′ p(s′|s,u)v(t) and not be a direct enumeration over all

d ∈ D. This process is repeated (from an arbitrary d0) until two successive policies are the
same.

A key property in the analysis of policy iteration is to establish that the sequence {v(t)}
is monotonic, that is v(t+1) ≥ v(t). To see this, note that the next decision dt+1 has been
generated from v(t) by taking dt+1 ∈ argmaxd∈Drd + γPdv

(t). Therefore, this dt+1 being the
maximum over all d ∈ D – including dn – then it holds that:

rdt+1 + γPdt+1v
(t) ≥ rdt + γPdtv

(t) = v(t) . (3.2.21)

The equality follows from the fact that we make sure to solve for v(t) during the policy
evaluation step. We then have:

rdt+1 + γPdt+1v
(t) ≥ v(t) ⇐⇒ rdt+1 ≥

(
I − γPdt+1

)
v(t) . (3.2.22)

By multiplying on both sides of the inequality, we get:

(I − γPdt+1)−1rdt+1 ≥ v(t) , (3.2.23)

which means that v(t+1) ≥ v(t).

Because the sequence of values v(t) generated by policy iteration are non-decreasing and
that the improvement step is taken over the finite set of deterministic decision rules, then
policy iteration must terminate in a finite number of steps. By requiring that dt+1 = dt upon
termination, then we have that vdt+1 = vdt and so:

v(t) = v(t+1) = rdt+1 + γPdt+1v
(t+1) = rdt+1 + γPdt+1v

(t) = max
d∈D

rd + γPdv
(t) . (3.2.24)

This means that v(t) satisfies the Bellman optimality equations and that we have found an
optimal policy. The policy iteration algorithm therefore provides us with a constructive

5Also referred to as a greedification step in RL.
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proof for the existence of a solution to the Bellman optimality equations which is not based
on the contraction mapping theorem.

We use the term generalized policy iteration (GPI) to refer to the general idea of letting
policy-evaluation and policy-improvement interact, independent of the granularity and other
details of the two processes. Almost all reinforcement learning methods are well described
as GPI. That is, all have identifiable policies and value functions, with the policy always
being improved with respect to the value function and the value function always being
driven toward the value function for the policy. If both processes stabilize, then a policy
has been found that is greedy with respect to its own evaluation function. This implies that
the Bellman optimality equation holds, and thus that the policy and the value function are
optimal.

3.3. Approximate Solution Methods
While the analytical background of all the material introduced in this chapter is

rigorously accurate, most real-world applications involve additional challenges such as huge
dimensional spaces and introduce complexities that the classical framework cannot harness
with unless using additional resources. So far we presented our attempt of a concise and
synthesized version of what we would define as the foundations of classical sequential
decision making, but operations research, control theory and several other disciplines
developed (and are still developing) an enormous quantity of very diversified algorithms and
methodologies, which exploit a lot of different strategies and numerical tools that are way
beyond the scope of this work.

Among popular methodologies, to name only a few, we can think of approximate dynamic
programming, linear programming methods (involving, or not, numerical approximations),
constrained optimization, integer programming and many more. Two of the most important
tools we pay particular attention on are leveraging trajectory samples collected by experience,
and using function approximators to replace the full computation and avoid storing specific
quantities. Considering this, we now put a halt to the general decision making theory to
turn our focus towards the realm of statistical learning and simulation. We will then see in
the third section how we propose to merge specific material from both of these two fields to
leverage the benefits of both worlds in an elegant and efficient manner.
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Part 2

STATISTICAL LEARNING





Chapter 4

Machine Learning Fundamentals

Statistical learning refers to a vast set of tools and methods for understanding, or more
specifically, learning, from data. Practically, and from an application perspective, it can
been seen as the scientific study of algorithms and statistical models used to perform a
specific task by relying on examples rather than explicit instructions. Machine learning
(ML) can be seen as a form of applied statistics with increased emphasis on the use of
computers to statistically estimate complicated functions and a decrease emphasis on
proving confidence intervals around these functions.

Statistical learning tasks are typically divided in three main categories, which often fuse
and overlap in a variety of aspects:

(1) Supervised learning: statistical model creation for predicting an output based on
one or more inputs.

(2) Unsupervised learning: considering inputs but no supervising output; learning
and extracting relationships and structure from data.

(3) Reinforcement learning: optimal control framework, where training information
is used to evaluate actions, in order to maximize a numerical signal defined in
accordance to a specific goal.

To practical ends, we only briefly introduce the unsupervised learning setting and focus
the vast majority of this chapter on supervised learning. The primary purpose is to present
the general basic concepts of Machine Learning, which will dress the table for deep learning
and reinforcement learning, the main subjects of the next chapters. The content developed
herein mainly originates from the An Introduction to Statistical Learning [35], The Elements
of Statistical Learning [30], Deep Learning [27] and Stochastic Simulation [41] books, in
addition to available distributed academic material.



4.1. Learning Algorithms
As previously stated, statistical learning refers to algorithms and tools able to learn from

data. But such a definition is very unformal and does not allow for a rigorous identification.
To resolve this issue, we use the explicit definition as defined by [46]:

«A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P , if its performance at
tasks in T , as measured by P , improves with experience E. »

One can imagine a wide variety of such E, T and P , and we do not attempt to formally
define the nature or extensiveness of these entities. For our present interest, we only
present the two most popular and most widely used tasks, which are the regression and
the classification. Machine learning tasks can be described in terms of how the learning
system should process a sample of data. We refer to the inherent measured properties of
the sample as a collection of quantitative features. We typically represent this sample as a
vector x ∈ Ra where each component xi of the vector is a specific feature.

Classification is defined as a task where the learning algorithm is asked to specify which
of k categories some input belongs to. To solve this problem, the general approach is to
produce a function f : Ra → {1,...,k}. When y = f(x), the model assigns an input described
by vector x to a category identified by a numeric code y. Some variants of the classification
task can also output a probability distribution py1 over classes instead.

Regression is the task where the learning algorithm is asked to predict a numerical
value given some input. Typically, the learning algorithm is asked to output a mapping
f : Ra → Rb, where b is the dimension of the output. It resembles the classification task a
lot, differing only in the format and continuous nature of the target.

To evaluate quantitatively the performance of machine learning algorithms on a specific
task, one must use a performance measure P . For classification, the typical measure is the
accuracy of the model, defined as the proportion of examples for which the model produces
the correct output:

Accuracy = Number of correct predictions
Total number of predictions (4.1.1)

1By strict mathematical definition, a function can take many arguments as input but is constrained to a
single output. Consequently, in this case, we would rather speak of a mapping from x to a probability
distribution py.
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Equivalent information could also be obtained by measuring the error rate, i.e. the
proportion of examples for which the model produces an incorrect output.

In the regression setting, it is typical to base the performance evaluation metric on the
difference between the real sampled value, and the predicted one produced by the learning
algorithm. This approach yields the popular mean absolute error (MAE), mean squared
error (MSE), root mean squared error (RMSE), log mean squared error (LMSE) and mean
absolute percentage error (MAPE), defined respectively as:

1
n

n∑
i=1
|yi − ŷi| { MAE } , (4.1.2)

1
n

n∑
i=1

(yi − ŷi)2 { MSE } , (4.1.3)

1
n

√√√√ n∑
i=1

(yi − ŷi)2 { RMSE } , (4.1.4)

1
n

n∑
i=1

log (yi − ŷi)2 { LMSE } , (4.1.5)

100
n

n∑
i=1

yi − ŷi

yi
{ MAPE } . (4.1.6)

where i indexes the total number of samples, n. In most application scenarios, we are
interested in the generalization performance of the learning algorithm, i.e. its performance
on data unseen before. We therefore evaluate these performance measures using a subset of
data referred to as the test set, separated from the rest of the data the algorithm is trained on.

Machine learning algorithms can be broadly categorized as unsupervised or supervised
by what kind of experience they are allowed to have during the learning process. Most
the algorithms implied in the context of this work, in the supervised setting, can be
understood as being allowed to experience an entire dataset. A dataset is simply defined
as a collection of available samples. Unsupervised learning algorithms experience a
dataset containing many features, then learn useful properties of the structure of this
dataset. Supervised learning algorithms experience a dataset containing features, but
each example is also associated with a label or target. The usage of the term super-
vised originates from the view of the target y being provided by an instructor or teacher
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who shows the machine learning system what to do, unlike the unsupervised learning setting.

Supervised and unsupervised learning are not formally defined terms. One can show
using joint distribution decomposition that both are not completely formal or distinct con-
cepts, but rather simply help roughly categorizing some methodologies with machine learn-
ing algorithms. Traditionally, people refer to regression, classification and structured output
problems as supervised learning. Other variants of the learning paradigms are possible. For
example, in semi-supervised learning, some examples include a supervision target but other
do not. In reinforcement learning, as we will see in the last chapter of this section, the
learning algorithm interacts with an environment, so there is a feedback loop between the
learning system and its experiences.

4.2. Estimator, Bias and Variance
Given a probability space (Ω,F ,P), a random variable X is an F -measurable2 function

X : Ω → R that assigns a real number X(ω) to each outcome ω ∈ Ω. We typically refer to
this number as X before its true value is known.

We define the mathematical expectation (or theoretical average) of a real-valued random
variable X by:

E[X] =
∫

Ω
X(ω)P(dω) . (4.2.1)

If X is discrete, and given its mass function p, this general expression transforms to

E[X] =
∞∑
i=1

xi p(xi) , (4.2.2)

while for the continuous case with density f we have

E[X] =
∫ ∞
−∞

x f(x)dx . (4.2.3)

From this, we introduce the variance of X as :

Var[X] = E[(X − E[X])2] = E[X2]− (E[X])2 . (4.2.4)

Very often denoted σ2(X), the variance is a strictly positive quantity that can be interpreted
as the moment of inertia of the probability distribution function (PDF) or probability mass
function (PMF) of X with respect to its mean. Taking the square root of the variance yields
the standard deviation, and the ratio :
2{ω : X(ω) ∈ B} ∈ F ∀ B ∈ B, where B is the Borel σ-field on R.
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√
Var[X]
E[X] = σ(X)

E[X] , (4.2.5)

is referred to as the coefficient of variation or relative error.

The covariance between two random variables X and Y is defined by

Cov(X,Y ) = E[XY ]− E[X]E[Y ] . (4.2.6)

In the case where X and Y are independent, by modus ponens we have Cov(X,Y ) = 0. It
is important to note that the reverse statement is not necessarily true, i.e, a null covariance
does not necessarily guarantee independence between two variables. We also introduce the
(Pearson) linear correlation coefficient between X and Y :

ρ(X,Y ) = Corr(X,Y ) = Cov(X,Y )√
Var(X)Var(Y )

= E[XY ]− E[X]E[Y ]
σ(X)σ(Y ) . (4.2.7)

The linear correlation coefficient is always within the bound [−1,1], and can be viewed as
a standardized version of the covariance, since it measures the linear dependence between
X and Y . Furthermore, we say that X and Y are uncorrelated if ρ(X,Y ) = 0, positively
correlated if ρ(X,Y ) > 0, and negatively correlated if ρ(X,Y ) < 0.

4.2.1. Point Estimation

Experience samples or stochastic simulation are very often used to estimate unknown
mathematical expectations over a random variable X. Point estimation refers to the esti-
mation of an unknown quantity ν by some random variable X with expectation µ = E[X]
and variance σ2 = Var[X]. We introduce the bias, defined as the difference between µ and
ν:

Bias = µ− ν , (4.2.8)

and we consequently say that the estimator is unbiased if such quantity is null.

Let X1,...,Xn denote n independent realizations of the random variable X. Each of these
realizations represents a sample that has the independent and identically distributed (i.i.d.)
property. The sample mean or empirical mean of these realizations, also referred to as the
crude Monte Carlo estimator, is defined by

µ̂n = X̄n = 1
n

n∑
i=1

Xi , (4.2.9)

and their sample variance by
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S2
n = 1

n− 1

n∑
i=1

(Xi − X̄n)2 = 1
n− 1

n∑
i=1

X2
i −

n(X̄n)2

n− 1 , (4.2.10)

which yields

E[X̄n] = µ ,E[S2
n] = σ2 . (4.2.11)

Consequently, X̄n and S2
n are unbiased estimators of µ and σ2.

The variance of X̄n is σ2/n and it can be estimated by S2
n/n. If (X1,Y1),...,(Xn,Yn) is an

i.i.d sample of (X,Y ), then an unbiased estimator of Cov[X,Y ] is given by

Ĉov[X,Y ] = 1
n− 1

n∑
i=1

(Xi,X̄n)(Yi − Ȳn) . (4.2.12)

An infinite sequence of estimators {Yn,n ≥ 1} is often denoted simply by Yn. For example,
we sometimes use X̄n and S2

n to denote infinite sequences indexed by n. With this abuse
of notation, when n → ∞, we say that Yn is asymptotically unbiased if E[Yn − µ] → 0,
consistent if Yn → µ in probability, and strongly consistent if Yn

w.p.l.→ µ.

4.2.2. Confidence Intervals

It is common practice to assess the accuracy of X̄n as an estimator of µ via a confidence
interval (CI). More formally, a random interval [I1,I2] is a CI at confidence level 1 − α (or
equivalently a 100(1 − α)% CI) for µ if P[I1 ≤ µ ≤ I2] = 1 − α. The boundaries I1 and I2,
along with the width I2 − I1, are all random variables.

We define the coverage error as the difference

P[Ii ≤ µ ≤ I2]− (1− α), (4.2.13)

where the left term represents the true coverage probability, which differs from 1 − α and
is often unknown. Consequently, an ideal CI should present small values of E[I2 − I1] and
Var[I2 − I1], in addition to presenting an approximately correct coverage. Finally, as CI
is said to be asymptotically valid if its depends on the sample size n, and has its coverage
error converge to 0 when n→∞.

Considering a fixed confidence level 1 − α and a sufficient sample size n, by the central
limit theorem (CLT) we have that if

z1−α/2 = Φ−1(1− α/2) ≡ Φ(z1−α/2) = 1− α/2 , (4.2.14)
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then

P[|X̄n − µ| ≤ z1−α/2Sn/
√
n] ≈ 1− α . (4.2.15)

In this case, a CI at approximate level 1− α is given by

[In,1,In,2] = [X̄n − z1−α/2Sn/
√
n, X̄n + z1−α/2Sn/

√
n] . (4.2.16)

For example, setting α = 0.05 yields z1−α/2 ≈ 1.96.

As n → ∞, the width of the CI is asymptotically proportional to σ/
√
n, resulting in a

convergence in the order of O(n−1/2).

4.2.3. Efficiency of Simulation Estimators

Considering an estimator X available to estimate some unknown quantity µ, it is often
useful to have a notion of efficiency for simulation estimators that takes into account both the
work and the noise. In addition to the bias, variance, MSE and RMSE introduced previously,
we also define the relative error RE of X

RE[X] = RMSE(X)
|µ|

, µ 6= 0, , (4.2.17)

which is typically more relevant when µ is very small.

Introducing the expected computational resources required to compute X as a random
variable C(X), usually correlated with X, we call the product C(X) MSE(X) the work-
normalized MSE of X and we subsequently define the efficiency of X as the inverse

Eff(X) = 1
C(X) MSE(X) . (4.2.18)

An estimator Y is said to be more efficient than another estimator X if Eff(Y ) > Eff(X).
Efficiency improvement means finding a more efficient estimator Y than the currently used
estimator X in the above sense. The ratio Eff(Y )/Eff(X) is the efficiency improvement
factor. Often, both estimators are unbiased and are assumed to have roughly the same
computational costs; in such case, improving the efficiency is equivalent to reducing the
variance. For this reason, one often speaks of variance reduction techniques (VRTs).
However, efficiency can sometimes be improved by increasing the variance (slightly), while
reducing the computing cost.

Lastly, if the computing cost is not taken into account, e.g. if two estimators require about
the same computing effort, we call Var[X]/Var[Y ] the variance reduction factor (VRF) of Y
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with respect to X. It represents the factor by which the variance is reduced when using Y
instead of X.

4.2.4. Curse of Dimensionality

Machine learning tasks become exceedingly difficult as the number of dimensions in the
data grows, and as the density of samples becomes consequently lower and lower. This phe-
nomenon is known as the curse of dimensionality, and induces a statistical challenge because
the number of possible configurations becomes much larger than the training examples. Con-
sidering this, it is often useful or necessary to perform feature selection or dimensionality
reduction to reduce the number of inputs in our learning algorithms.

4.3. Model Selection and Data Manipulations
One of the main challenges in statistical learning is the performance on new, previously

unseen inputs. The ability to perform well on these out of training samples is called
generalization.

Starting from a quantitative or categorical realization, we consider a target variable Y , an
input vector X, and a prediction model f̂(X) estimated from a training set T that is trying
to approximate the underlying predictive relationship between the inputs and the outputs.
Typically, for a given learning algorithm, we compute some error measure or loss function
L(Y,f̂(X)) to assess the difference between the two quantities. We then proceed to reduce
this quantity during the training process, using the training error defined as the average loss
over the training sample:

err = 1
N

N∑
i=1

L(yi.f̂(xi)) . (4.3.1)

But what differentiates this classical optimization problem from machine learning is the
generalization error, or test error, defined as the prediction error over an independent test
sample

ErrT = E[L(Y,f̂(X))|T ] , (4.3.2)

where both X and Y are drawn randomly from their joint population. Further extending
our analysis beyond a single fixed training set, we can introduce a related quantity called
the expected test error

Err = E[L(Y,f̂(X))] = E[ErrT ] , (4.3.3)
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where the expectation averages over everything random, including the randomness in the
training set that produced f̂ .

As the model grows in complexity, it uses the training data more and is able to adapt to
more complicated underlying structures, which leads to a decrease in bias but an increase
in variance. Some intermediate model complexity can give a minimum expected test error.
Unfortunately, training error is not a proper estimate of the test error since it consistently
decreases with model complexity, typically reaching 0 with high enough capacity. However,
a model with zero training error is overfit to the training data and will typically generalize
poorly. Consequently, we can conclude that the two main factors determining how well a
machine learning algorithm will perform are its ability to:

(1) Make the training error small.
(2) Make the gap between training and test error small.

If we consider that the available data arose from a statistical model of the form :

Y = f(X) + ε , (4.3.4)

where Var(ε) = σ2
ε , and where the random error ε has E(ε) = 0 and is independent of X.

Furthermore, f(x) = E[Y |X = x], and we assume that the conditional distribution Pr(Y |X)
depends on X only through the condition mean f(x). We can derive the following expression
for the expected prediction error of a regression fit f̂(X) at an input point X = x0 using the
squared-error loss:

Err(x0) = E[(Y − f̂(x0))2|X = x0]

= σ2
ε + [E(f̂(x0))− f(x0)]2 + E[f̂(x0)− E(f̂(x0))]2

= σ2
ε + Bias2(f̂(x0)) + Var(f̂(x0))

= Irreducible Error + Bias2 + Variance .

The first term is the variance of the target around its true mean f(x0), and cannot be
avoided no matter how good the estimate of f(x0) is, unless σ2

ε = 0. The second and third
term represent respectively the bias and the variance, as introduced previously. The last
equalities illustrate a widely known and fundamental phenomenon in statistical learning
typically referred to as the Bias-Variance trade-off. This trade-off shows the conflict in
trying to simultaneously minimize the bias and the variance, which are the two sources of
error preventing supervised learning algorithms to generalize beyond their training set.
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4.3.1. Capacity, Overfitting and Underfitting

Reducing the training error, and minimizing the gap between training and test error
corresponds to the two central challenges in machine learning: underfitting and overfitting.
The former arises when the learning algorithm is not able to obtain a sufficiently low error
value on the training set, while the latter arises when the gap between the training error
and test error is too large.

The capacity of a model, i.e. its ability to fit a wide variety of functions, is an aspect that
we can control and which will affect overfitting or underfitting tendency behaviours. Models
with low capacity may struggle to fit the training set, while model with high capacity can
overfit by memorizing properties of the training set that do not serve them well on the test
set. One way to control the capacity of a learning algorithm is by choosing its hypothesis
space, that is, the set of functions that the learning algorithm is allowed to select as being
the solution. Machine learning algorithms will generally perform best when their capacity
is appropriate for the true complexity of the task they need to perform and the amount of
training data they are provided with.

Quantifying the capacity of the model enables statistical learning theory to make
quantitative predictions. One of the most important results is that it can be shown that
the discrepancy between training error and generalization error is bounded from above by
a quantity that grows as the model capacity grows but shrinks as the number of training
examples increases. While these bounds provide intellectual justification that machine
algorithms can work, they are rarely used in practice, especially in deep learning where
quantifying the capacity of a neural network is especially difficult because of its optimization
algorithm.

While simpler functions are more likely to generalize, the chosen hypothesis must
be sufficiently complex to achieve low training error. This reality leads to the typical
phenomena where training error decreases until it asymptotes to the minimum possible
error value, as the model capacity increases.

Let us imagine an omniscient model that simply knows the true probability distribution
that generates the data. Even in this eventuality, some error will incur from the fact that
there may still be some noise in the distribution, either because the mapping from x to y
in the supervised learning case is inherently stochastic, or because y may be a deterministic
function that involves other variables besides those included in x. We refer to the resulting

68



error in the omniscient case as the Bayes error.

Training and generalization error vary as the size of the training set varies. Expected
generalization error can never increase as the number of training examples increases. For
nonparametric models, more data yields better generalization until the best possible error
is achieved. On the parametric setting, any fixed model with less than optimal capacity will
asymptote to an error value that exceeds the Bayes error.

The relationship between bias and variance is tightly linked to the machine learning con-
cepts of capacity, underfitting and overfitting. When generalization error is measured by the
MSE, increasing capacity tends to increase variance and decrease bias. This is qualitatively
illustrated in figure 4.1.

Fig. 4.1. Illustrative representation of the bias-variance tradeoff as a function of model
capacity [60].

As a general rule, as we use more flexible methods, the variance will increase, and the
bias will decrease. As we increase the flexibility of a class of methods, the bias tends to
initially decrease faster than the variance increases, reducing the test MSE. However, at some
point increasing flexibility has little effect on the bias but starts to significantly increase the
variance. When this happens, the test MSE increases.

4.3.2. Hyper-Parameters and Datasets

Most machine learning algorithms simply experience a dataset. A dataset can be
described in many ways. In all cases, a dataset is a collection of examples which are in turn
collections of features. One common way to represent a dataset is with a design matrix.
A design matrix contains a different sample in each row, and each column of the matrix
corresponds to a different feature. This allows us to represent the whole dataset with a
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design matrix X ∈ Rn×m, where n is the number of samples and m the number of features.
It is important to note that if there is a time relation along the rows of our matrix, i.e.
each row represents a progressive observation of our features at a different time step, we
refer to our dataset as a time series. Lastly, if our samples are not all of the same size, e.g.
sentences or pictures, then we refer to our dataset as a set containing n elements.

We introduce the notion of hyperparameters, that is, algorithm’s settings we can use to
control their behavior. Unlike the parameters, the value of hyperparameters are not adapted
by the learning itself (though a nested learning procedure could be created). Sometimes a
setting is chosen to be a hyperparameter that the learning algorithm does not learn because
of the difficulty of the optimization. More frequently, the setting must be a hyperparameter
because it is not appropriate to learn that hyperparameter on the training set. This applies
to all hyperparameters that control model capacity: if learned on the training set, such
entities would always choose the maximum possible model capacity, resulting in overfitting.

It is important to recall the two possible separate goals we might have in mind as
machine learning practitioners: a) model selection, i.e. estimating the performance of
different models in order to choose the best one (b) model assessment, i.e. having chosen a
final model, estimating its prediction error (generalization error) on new data. If enough
data samples are available, the best approach for both problems is to randomly divide
the dataset (considering examples do not have any dependency between them, like in a
time series) into three parts: a training set, a validation set and a test set. The first one
is used to fit the models, while the second and last one are respectively used to estimate
the prediction error for model selection and to assess the generalization error of the final
chosen model. It is important that the test examples are not used in any way to make
choices about the model, including its hyperparameters. There is no general rule on the
proportions to choose for the three sub-datasets, as it depends on the signal-to-noise ratio
of the underlying function, as well as the complexity of the models being fit, but 50%,25%
and 25% are typical proportions used respectively for training, validating and testing.

Dividing our dataset into three subcomponents can be problematic, as it reduces the
amount of available data for training, validating and testing. Furthermore, if the validation
and test sets are too small, statistical uncertainty arises around the estimated average test
error. To this end, for datasets that are not very large, an alternative procedure can be
made at the price of increased computational cost. The idea of this procedure is to repeat
the training and testing computation on different randomly chosen subsets or splits of the
original dataset. The most common of these is the k-fold cross-validation (CV) procedure, in
which a partition of the dataset is formed by splitting it into k nonoverlapping subsets. Let
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κ : {1,...N} → {1,...K} be an indexing function indicating one of the K partitions to which
observation i among N observations is allocated by the randomization. Denote by f̂−k(x) the
fitted function computed with the kth part of the data removed. Then, the cross-validation
estimate of prediction error is:

CV(f̂ ,α) = 1
N

N∑
i=1

L(yi,f̂−κ(i)(xi)). (4.3.5)

The specific case K = N is referred to as leave-one-out CV.

4.3.3. Parametric vs Non-Parametric

Function estimators, depending on their nature, can be further divided into two classes:
parametric and non-parametric.

Parametric models learn a function described by a parameter vector whose size is finite
and fixed before any data is observed. Parametric methods involve a two-step model-based
approach:

(1) Make an assumption about the functional form or shape of the function (for example,
linear in X).

(2) Define procedure to fit or train the model.

Parametric methods assume underlying statistical distributions in the data. Therefore,
several conditions of validity must be met so that the result of a parametric test is reliable.
They present the advantage of fixed complexity, that remains constant even as the number
of samples grows, but the disadvantage that the chosen model will usually not match the
true unknown form of the function we wish to approximate.

Non-parametric methods seek an estimate of the function that gets as close to the data
points as possible without being too rough or wiggly. Nonparametric methods are more
robust than parametric tests - i.e. they are valid in a broader range of situations (fewer
conditions of probability). They present the advantage of avoiding any assumption of a
particular form for the function, with the potential to fit accurately a wide range of different
shapes. On the other end, such methods present a growing number of effective parameters,
require a larger number of observations than parameters to obtain more accurate estimates,
and have increasing complexity as a function of the training set size. Lastly, parametric
approaches will usually outperform the non-parametric ones if the parametric form that has
been selected is close to the true form of our function.
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4.3.4. Regularization

Our modern ideas about improving the generalization of machine learning models relies
on a principle typically referred to as Occam’s razor. This principle states that among
competing hypotheses that explain known observations equally well, we should choose the
"simplest" one. This idea was formalized and made more precise in the twentieth century
by the founders of statistical learning theory [27].

The no free lunch theorem for machine learning states that, averaged over all possible
data-generating distributions, every classification algorithm has the same error rate when
classifying previously unobserved points. In other words, there is no machine learning
algorithm universally better than any other. Fortunately, if we make assumptions about
the kinds of probability distributions we encounter in real-world applications, then we
can design learning algorithms that perform well on these distributions. Thus, the goal
of machine learning research is not to seek a universal learning algorithm, but instead
to understand what kind of distributions are relevant to the real world that an agent
experiences, and what kind of machine learning algorithm perform well on data drawn from
the kinds of data-generating distributions we care about.

The behavior of our algorithms is strongly affected not just by how large we make the
set of functions allowed in its hypothesis space, but also by the specific identity of those
functions. For example, linear regression has a hypothesis space consisting of the set of
linear functions of its input. But if we consider problems that behave in a very nonlinear
fashion, then this class of algorithms will yield very poor results. We can thus control the
performance of machine learning algorithms by choosing what kind of functions we allow
them to draw solutions from, and their amount.

Another idea is to give a learning algorithm a preference for one solution over another
in its hypothesis space. Such approach is used in weight decay, where we minimize a sum
comprising both our training error and a criterion that expresses a preference for the weights
to have a smaller norm. We shall cover this in details in the next chapter.

Formally, we define regularization as any modification we make to a learning algorithm
that is intended to reduce its generalization error but not its training error. Regularization
is one of the central concerns of the field of machine learning, rivaled in its importance only
by optimization.
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4.4. Maximum Likelihood Estimation
To formalize the aforementioned discussions, and to efficiently derive specific functions

that are good estimators for different models, we introduce in this section one of the most
popular frameworks in machine learning: the maximum likelihood principle.

Let us consider a set of n i.i.d sample realizations from a random variable X, denoted
X = {X1,X2,...,Xn}. Let pmodel(X; θ) be a parametric family of probability distributions
over the same space indexed by θ, i.e. a mapping any configuration X to a real number
estimating the true probability pdata(X). The maximum likelihood estimator for θ, denoted
θML is then defined as

θML = arg max
θ

pmodel(X ; θ), (4.4.1)

= arg max
θ

n∏
i=1

pmodel(Xi; θ) (4.4.2)

To avoid the inconvenience of the product over many probabilities, we prefer to take the log-
arithm of the likelihood, which does nots change its arg max but does conveniently transform
the product into a sum:

θML = arg max
θ

n∑
i=1

log pmodel(Xi; θ) (4.4.3)

Lastly, as we stated before, since the arg max does not change we can simply divide by n
to obtain a version of the criterion that is expressed as an expectation with respect to the
empirical distribution p̂data defined by the training data:

θML = arg max
θ

EX∼p̂data log pmodel(Xi; θ) (4.4.4)

Maximum likelihood thus seeks to find the optimum values for the parameters by max-
imizing a likelihood function derived from the training data. Another way to interpret
maximum likelihood estimation is to view it as minimizing the dissimilarity between the
empirical distribution, defined by the training set, and the model distribution where the
degree of dissimilarity between both is measured by the Kullback-Leibler (KL) divergence.
The KL divergence is given by

DKL(p̂||pmodel) = EX∼p̂data [log p̂data(X)− log pmodel(X)]. (4.4.5)

Since the left term is a function only of the data-generating process, it means that upon
training the model to minimize the KL divergence, we need only minimize the expectation
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on the second term, which is the same as equation 4.4.4. Another interpretation is that we
can see our problem as an attempt to make the model distribution match the empirical
distribution, since our ideal true data-generating distribution is not available. Despite the
same optimal θ arising whether we are maximizing the likelihood or the KL divergence, it
is important to note that the values of the objective functions are however different.

The maximum likelihood estimator can readily be generalized to estimate a conditional
probability P (y|x; θ) in the supervised learning setting, in order to predict Y givenX. Denote
by X all our inputs, and Y all our observed targets, then the conditional maximum likelihood
estimator is

θML = arg max
θ

P (Y|X ; θ). (4.4.6)

Furthermore, with the i.i.d. assumptions we can rewrite

θML = arg max
θ

n∑
i=1

logP (Yi|Xi; θ). (4.4.7)

We finish this section with the main properties of the maximum likelihood. One of its
main appeals is that it can be shown that as the number of examples n→∞, it is the best
estimator asymptotically in terms of its rate of convergence. Furthermore, under appropriate
conditions, the maximum likelihood estimator has the property of consistency, i.e. as the
number of training examples approaches infinity, the maximum likelihood estimate of a
parameter almost surely converges to the true value of the parameter.

4.5. Bayesian Statistics
The frequentist and Bayesian methods are the two most common approaches in statistics.

While until now we focused on the frequentist setting, Bayesian statistics instead express a
degree of belief, which may be based on prior knowledge inherent from results or personal
beliefs. Up until now we considered estimating a single value of θ, which we considered
to have a fixed but unknown value, then making all predictions thereafter based on that
one estimate which was considered a random variable being a function of the dataset.
In the Bayesian setting, we can instead consider all possible values of θ when making a
prediction, that is, we now consider the true parameter θ to be unknown or uncertain and
thus represented as a random variable.

Before observing the data, we use the prior probability distribution, or simply prior p(θ)
to represent our knowledge of θ. Typically, we start from a high entropy broad distribution,
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and we further seek to converge and concentrate around a few highly likely values of the
parameters. Now using our set of data samples {x(1),...,x(n)}, we can recover the effect of
data on our belief about θ by combining the data likelihood p(x(1),...,x(n)|θ) with the prior
via Bayes’ rule:

p(θ|x(1),...,x(m)) = p(x(1),...,x(m)|θ)p(θ)
p(x(1),...,x(m)) (4.5.1)

We previously described how the frequentist approach addresses the uncertainty in a given
point estimate by evaluating its variance. The Bayesian equivalent is to simply integrate
over it, which tends to protect well against overfitting. Lastly, Bayesian methods typically
generalize much better when limited training data is available but typically suffer from high
computational cost when the number of training examples is large, which makes it a good
candidate for grid search methodologies where the amount of samples is relatively low due
to long calculation training.
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Chapter 5

Deep Learning

Deep learning is an important sub-field of machine learning encompassing any calculation
implying artificial neural networks (ANN). Neural networks are computing systems vaguely
inspired by the biological brain structure, structured as alternating layers of aggregated
parameters and nonlinear activation functions. The power of neural networks comes from
their ability to learn complex highly non-linear representations of different abstraction
levels from data samples, and to scale particularly well with massive datasets. In their
modern form, ANNs have existed since the 1980s when LeCun et al. successfully trained
a convolutional neural network to recognize handwritten zip codes [40]. Since 2012, deep
learning has been successfully applied to many different problems and has contributed
to state-of-the-art results in a wide range of fields including computer vision, machine
translation, natural language processing and speech synthesis. To this day, deep learning is
probably one of the most powerful function approximation technique readily available for a
broad range of applications.

In the present chapter, we introduce all the major components involved in deep learning
and try to provide the reader with a mainly qualitative and sometimes partially quantitative
understanding of every concept at stake. Our goal is to introduce all the important elements
used and manipulated in the third part of this thesis. A reader interested in the full rigorous,
detailed development and implementation of the topics presented herein should refer to the
specific resources provided locally for the sake of completeness. The vast majority of the
content in this chapter comes from the classic ressource Deep Learning [27] book, as well as
publications related to specific topics.

5.1. Deep Feedforward Networks and Generalities
Deep feedforward neural networks, also called multi-layer perceptrons (MLPs) represent

the archetype and foundation block of deep learning. Their name originates from the simple



unilateral flow of information during the mapping process of a variable y from an input
sample x. When feedback connections are included in the structure of the neural network,
i.e. outputs of the model are fed back into itself, we refer to such entity as recurrent neural
networks instead.

5.1.1. Structure and Forward Pass

Despite their biological analogy, ANNs are called networks because of the
chain of functions they constitute. More formally, an MLP can be seen as
f(x) = f (n)(f (n−1)(...f (2)(f (1)(x)))), where we define f (1) as the first layer or input
layer, f (i) as the i−1th hidden layer, and f (n) as the output layer. Furthermore, we say that
the length of the chain defines what we call the depth of the model. It is this terminology
that inspired the name deep learning. Furthermore, layers are typically vector valued.
Consequently, we refer to the dimensionality of these as the width of the structure. As we will
see, both of these lastly introduced parameters play a major role in the capacity of our model.

Considering the previous development, a neural network layer can either be seen as
a single vector-to-vector mapping, or as many parallel units computing a vector-to-scalar
function, where those elements can be interpreted as a loose analogy of a neuron. More
formally, an ANN architecture provides a parametric class of functions where each layer
applies a linear transformation of the form :

A(x) + b , (5.1.1)

on a given vector input x, where A is an m × n matrix representing the weights of this
specific layer and b ∈ Rm is the bias vector. A and b are parameters of the network, i.e.
quantities to be determined by the training process.

Each of the m scalar output components of the linear layer then becomes the input to
a nonlinear differentiable and monotonically increasing activation function σ. The simplest
and most popular activation in modern practices is the rectified linear unit (ReLU) defined
as :

ReLU ≡ max{0,x} , (5.1.2)

Even if by strict mathematical definition the function is not differentiable at 0, since the
loss rarely reaches 0 because most of the time training converges to a local minima, and
since at the implementation one can simply choose either the left or right side derivative to
apply at 0, ReLU is one of the most efficient1 and widely used functions in practice. Close

1Its computation requires only a multiplication, and its derivative is one of the simplest expressions.
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variants like the leaky ReLU or exponential linear unit (ELU) are also popular, since they
respectively allow gradient flow for negative values and analytical differentiability. Other
functions, used since the early days of neural networks, have the property :

−∞ < lim
x→−∞

σ(x) < lim
x→∞

σ(x) <∞ . (5.1.3)

Such functions are called sigmoids, and some common choices are the hyperbolic tangent
function

σ(x) = tanh(x) = ex − e−x

ex + e−x
, (5.1.4)

and the logistic function

σ(x) = 1
1 + e−x

. (5.1.5)

Several examples of these functions are shown in figure 5.1.

Fig. 5.1. Illustration of six of the most popular activation functions used in deep learning
[34].

Many other activation functions are frequently used, and even today that choice remains an
active area of ongoing research. However, for our present purpose, we do not need to dive
in further details. In what follows, we will ignore the character of the function σ (except for
differentiability), and simply refer to it as a "nonlinear unit" and to the corresponding layer
as a "nonlinear layer."

The outputs of the linearities can be seen as features of the original input, or as a new
representation for it. Any feature that can be of practical interest can be produced or be
closely approximated by a neural network. The only requirement is a feedforward network
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with a linear output layer and at least one hidden layer with non-linear activation functions,
which can approximate any Borel measurable2 function from one finite-dimensional space
to another with any desired nonzero amount of error, provided that the network is given
enough hidden units. This is a consequence of the universal approximation theorem (UAT)
[68]. A neural network may also approximate any function mapping from any finite
dimensional discrete space to another3.

The concatenation of successive linear and non-linear functions, particularly when the
ouputs of each nonlinear layer becomes the inputs of the next linear layer, create what is
known today as a deep neural network architecture. More formally, we define the forward
pass of an ANN made of S successive non-linear layers as the whole computation from the
inputs x to the output ŷ expressed as:

{ Input Layer } h(1) = σ(1)
(
W (1)Tx+ b(1)

)
, (5.1.6)

{ Hidden Layers } h(i) = σ(i)
(
W (i)Th(i−1) + b(i)

)
∀ i ∈ [2,...,S] , (5.1.7)

{ Output Layer } ŷ = σ(S+1)
o

(
W (S+1)Th(S) + b(S+1)

)
. (5.1.8)

where we purposely added the subscript o to the last activation function to emphasize that
this layer usually has its own specific activation different from the others, depending on
the nature of the machine learning task at stake. Practically speaking, it is very common
to use a simple linear activation on the output layer for regression, and softmax activation
for classification, since it can be interpreted as a probability distribution considering its
mathematical properties:

softmax = exj∑
k exk

(5.1.9)

where the j and k indexes act on the x vector’s individual components.

Considering the UAT, one can reasonably question the utility of having multiple layers.
Two main reason justify this point:

(1) Considering the outputs of each non-linear layer as features, multilayer networks thus
provide a sequence of features, where each set of features in the sequence is a function
of the preceding one of the sequence. This produces a hierarchy of features, which

2The development of Borel measurability is beyond the scope of this work; to all practical purposes, we
instead consider the simplified statement "any continuous function on a closed and bounded subset of Rn."
3It is important to note here that despite the ability of a neural network to represent any function given
enough hidden units, we have no guarantees that it will actually learn that function.
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for specific applications, can be exploited to specialize the role of some of the layers
and to enhance particular characteristics of the input. Furthermore, deeper networks
were also shown to have the potential of being exponentially more efficient [49].

(2) Given the presence of multiple linear layers, one may consider the possibility of using
matrices A with a particular sparsity pattern or other structure that embodies special
linear operations such as convolution (see next section). When such structures are
used, the training problem often becomes easier, because the number of parameters
in the linear layers is drastically decreased.

It is worth noting that while in the early days of neural networks practitioners tended
to uses few non-linear layers, more recently a lot of success in certain problem domains
(including image and speech processing, as well as approximate DP) has been achieved with
deeper architectures.

5.1.2. Back-Propagation and Training

As we just detailed the information flow through a neural network from the input to the
output, called the forward propagation, we now introduce the back-propagation algorithm
[58] (often simply called backprop). In this setting, we consider the result of the forward
pass from which we compute a scalar cost L(θ), and consider how we can now inversely
allow the information from the cost to flow backward through the network for training.
More formally, recalling the maximum likelihood principle, the training problem of a neural
network has the form:

min
θ

n∑
k=1

(
L
(
ŷ(k)(x(k); θ),y(k)

)
+ λΩ(θ)

)
, (5.1.10)

where θ represents the collection of all the parameters in the neural network, L a cost
function (usually MSE for regression), ŷ and y the estimated and real value of some desired
quantity, Ω an additional regularization penalty (see section 4.3.4 on regularization),
and λ a size parameter for such penalty. This problem is an unconstrained nonconvex
differentiable optimization problem that can in principle be addressed with any of the
standard gradient-type methods.

Let us consider a sum of component functions:

f(θ) =
m∑
i=1

fi(θ) , (5.1.11)
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with fi a differentiable scalar function of the n-dimensional parameter vector θ. The classical
gradient method would generate a sequence of {θk} iterates, starting from an initial starting
point θ0 usually chosen to be an initial guess to the minimum of f :

θk+1 = θk − γk∇f(θk) = θk − γk
m∑
i=1
∇fi(θk) , (5.1.12)

where γk represents the step size parameter. Similarly, the incremental gradient method only
uses the gradient of a single component of f at each iteration:

θk+1 = θk − γk∇fik(θk) , (5.1.13)

for which i indexes the set {1,...,m}, and is chosen by some deterministic or randomized rule.
The selection method for such indexes is important for the performance of the method, and
yields different possible algorithms for example whether a cyclic order, a uniform random
order or a cyclic order with random reshuffling is chosen. Finally, it is important also to
compare the performance of the incremental and nonincremental settings depending on
their distance from convergence: when far from convergence, incremental methods tend to
be much faster, particularly if m is large; when close to convergence, incremental methods
can be inferior, in particular since the ordinary gradient method can be shown to converge
with a constant stepsize under reasonable assumptions [10].

We now introduce the stochastic gradient descent (SGD) algorithm, a type of incremental
gradient methods, to minimize a function f(θ) = E{F (θ,w)}, with F (•,w) : Rn → R:

θk+1 = θk − γk∇θF (θk,wk) , (5.1.14)

where wk is a sample of w, a random variable and ∇θF represent the gradient of F with
respect to θ. This method has a rich theory and a long history, and is strongly related to
the classical algorithmic field of stochastic approximation [12, 57]. While we can see direct
link with incremental gradient methods by viewing the expected value of F as a weighted
sum of cost function components, SGD is inherently different in the sense that it involves
stochastic sampling instead.

Reverting back to ANN training, among all gradient-type methods, incremental aggre-
gated gradient methods are still the most used in practice at the time of writing:

θk+1 = θk − γk
m−1∑
l=0
∇fik−l(θk−l) (5.1.15)

where fk is the new component function selected for iteration k. The addition to the
incremental gradient method is that here we use the sum of the component gradients
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computed in the past m iterations, which is an approximation to the total cost gradient
∇f(θk). The general idea around this method is to reduce the error between the esti-
mation of the true gradient and the incrementally computed approximation which yields
faster computation. Under certain conditions, this method exhibits a linear convergence
rate, without incurring the cost of a full gradient evaluation at each iteration (a strongly
convex cost function and with a sufficiently small constant stepsize are required for this [11]).

Let L1,...,LS+1 represent the matrices representing the linear layers, so that the output
of L1 is given by the vector L1x and at the kth layer (k > 1) we obtain Lk hk−1, where hk−1

is the output of the precedent non-linear layer k− 1. We can then express the output of an
MLP as

ŷ(L1,...,LS+1,x) = LS+1hS (LS...h1(L1x)...) . (5.1.16)

Using the previous development, we can now synthesize the generic steps to fully train
an ANN, regardless of the chosen gradient method algorithm:

(1) Apply forward propagation to calculate sequentially the outputs of the linear layers
that will be needed in the previous equation, and to derive the error vector .

(2) Use a backward pass through the network to calculate sequentially the partial de-
rivative of the cost function with respect to every component, using the chain rule.
This step is the back-propagation.

(3) Apply the chosen gradient-type method, SGD for example.

5.2. Convolutional Neural Networks
Convolutional Neural Networks (CNN) are a specialized kind of ANN, explicitly designed

for data with specific topologies. For example, time series data present a 1-D relationship
along the time dimension, images a 2-D spatial relationship, videos a 3-D spatial and tempo-
ral relationship etc. CNNs are one of the most successful tools in practical machine learning
applications to this day. To put it simply, this type of ANN uses a convolution operation in
place of general matrix multiplication in at least one of their layers, which allows them to
efficiently deal with high-dimensional inputs, to exploit different types of topologies, and to
have built-in invariance to certain variations we could expect from a same quantity under
different observations.

5.2.1. The Convolution Operation

Very popular and wide-spread in the digital and signal processing communities, the con-
volution is an operation on two functions of a real-valued argument. More formally speaking,
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the convolution of such two functions f and g, denoted using the convolution operation ∗, is
defined as the integral of the product of the two functions after one is reversed and shifted:

(f ∗ g)(t) def=
∫ ∞
−∞

f(τ)g(t− τ)dτ , (5.2.1)

which, by engineering convention, is equal to f(t) ∗ g(t).

In the usual machine learning terminology, the first function f is referred to as the input,
and the second function g as the kernel. The output is sometimes, and usually in machine
learning, referred to as the feature map. Considering the discrete setting, like in many
application scenarios where one only has access to data samples, we can define the discrete
convolution:

(f ∗ g)(t) =
τ=∞∑
τ=−∞

f(τ)g(t− τ) . (5.2.2)

Considering the finite aspect of the multidimensional arrays inputed in machine learning
applications, the kernel being an array of parameters that are adapted by the learning
algorithm and the necessity of the parameters to be explicitly stored separately, we typically
assume zero values everywhere but in the finite set of available points, and can thus reduce
the summation to one over a finite number of array elements.

Convolution presents the commutativity property, result of the kernel flipping relative
to the input. Despite its usefulness in mathematical manipulations, such property is
usually not important in neural network implementation, and a related function called
cross-correlation is usually applied instead. It is essentially the same as the convolution
operation, but without flipping the kernel. In the context of training, the learning algorithm
will learn the appropriate values of the kernel inplace, whether is it flipped or not. Discrete
convolution can be viewed as multiplication by a matrix, but with equality constraints on
different entries. For example, in a univariate discrete convolution, a Toeplitz matrix [84] is
typically used.

In addition to accommodating different input sizes, the convolution is used in deep
neural networks because it leverages three important ideas that can help improve a machine
learning system.

(1) Sparse interactions : a kernel smaller than the inputs requires fewer computing op-
erations and less parameters than a traditional fully connected MLP, because of the
local connectivity. Furthermore, it is possible to obtain good performance on the
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machine learning task while keeping the number of units several orders of magnitude
smaller than the size of the original input.

(2) Parameter sharing : units organized into the same feature map all share the same
parameters, and thus, we say they have tied weights since the value of the weight
applied to one input is tied to the value of a weight applied elsewhere.

(3) Equivariant representation : As a result of parameter sharing, the convolution also
yields the property of equivariance to several variations we could expect, such as
translation.

5.2.2. Pooling

A CNN layer typically consists of three consecutive elements, which are sometimes
successively repeated to create deeper architectures:

(1) Several parallel convolutions, called feature maps produce a set of linear pre-
activations where the size of the kernel is called the receptive field.

(2) Each pre-activation is inputed as argument into a non-linearity function such as the
ReLU (see section 5.1.1). This step is sometimes called the detector stage.

(3) Lastly, a pooling function is used to further modify the output of the layer, usually
to down-sample it.

Pooling layers are intended to consolidate the features learned and expressed in the
preceding feature map (with non-linearity). More formally, a pooling function replaces the
output of the net at a certain location with a summary statistic of the nearby inputs. For
example, the max pooling [85] operation reports the maximum output within a rectangular
neighborhood. Other popular pooling functions include averages, the L2 norm or a weighted
average based on the distance from the central pixel.

While we are constrained to stop our review on CNNs here, it is important to acknowledge
the historical importance of this type of network, as they are present in almost every high-
performing application scenario nowadays, and represent the daily bread and butter of a vast
majority of machine learning practitioners.

5.3. Recurrent Neural Networks
Just like convolutional neural networks were particularly well suited to data with

topological properties, recurrent neural networks [59] (RNNs) are a family of neural
networks designed for processing sequential data of the form x(1),...,x(τ). We can find
examples of such data in everyday life like natural language, writing, time series and many
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Fig. 5.2. The overall architecture of a Convolutional Neural Network includes an input
layer, multiple alternating convolution and max-pooling layers, fully-connected layers and
an output layer (classification in this case) [4].

others. Also in a similar fashion to CNNs, RNNs leverage the concept of parameter sharing
to allow a more efficient generalization. Closely related ideas have also been developped,
like using unidimensional convolutions across a temporal sequence to create what we call
a time-delay neural networks [39, 78]. RNNs share parameters in a different way: each
member of the output is a function of the previous members of the output. This recurrent
formulation results in a parameter sharing strategy through a very deep computational graph.

In what follows, to concision ends, we use the notation x(t) to refer to a vector who’s
time step index, t, ranges from 1 to τ . It is important to note that the t index does not
refer specifically to the passage of time in the real world, but simply indexes position in
the given vector sequence. To fully understand RNNs, we now extend the unidirectional
computational graph concept we saw with the MLP to include cycles.

5.3.1. Computational Graphs

Starting from the functional form of a dynamical system (see section 1.3) with state s(t)

parametrized by θ at index t:

s(t) = f(s(t−1); θ) , (5.3.1)

we define such equation as a recurrence since its definition at instant t refers to its own
definition at t − 1. We say that we unfold such recurrence for a sequence of length τ if we
apply repetitively the definition τ − 1 times. For example, unfolding the previous equation
with τ = 3 yields:
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s(3) = f(s(2); θ) (5.3.2)

= f(f(s(1); θ); θ). (5.3.3)

Such an expression can now be represented by a traditional directed acyclic graph if desired.
Considering an additional external signal x(t) driving our dynamical system, the state now
includes information about the whole past sequence. This idea is the fundamental principle
of recurrent neural networks, which actually build an internal state h to define the values of
the hidden units. Replacing s by h in equation 5.3.1 and adding an external signal x(t) leads
to:

h(t) = f(h(t−1),x(t); θ) . (5.3.4)

Just like almost any function could be considered a feedforward neural network, essentially
any function involving a recurrence can be considered a recurrent neural network.

When applied on a time series or a sequence, the recurrent neural network learns to use
his hidden state h(t) as a partial summary of the task-relevant aspects of the past sequence
of inputs up to t. Here we say partial because information is definitely lost since we consider
a mapping from a sequence of vectors to a single fixed length vector. It is however a part
of the interest, since the network learns the important aspects of the sequence that may be
important for the nature of the task it is trained for. The most demanding situation is when
we ask for the hidden state to be rich enough to allow one to approximately recover the
input sequence, which yields a special type of structure called an autoencoder.

5.3.2. Recurrent Network Types

Among all the possible design patterns one can think of for neural networks, three of
the most important settings are:

(1) recurrent networks producing an output at each time step, with recurrent connections
between hidden units;

(2) recurrent networks that produce an output at each time step and have recurrent
connections only from the output at one time step to the hidden units at the next
time step;

(3) recurrent networks with recurrent connections between hidden units, that read an
entire sequence and then produce a single output.

These patterns are presented in detail in figure 5.3.
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Fig. 5.3. Three popular recurrent neural network design patterns, with their compact com-
putation graph (left) and its unrolled counterpart (right) [27].

Traditional structures considered so far only had "causal" structure, in the sense that
the state at time t captured only information from the past and present inputs. In many
applications such as natural language processing (NLP), it is sometimes practical to consider
something that depends on the whole input sequence. Bidirectional RNNs (or BRNNs) [63]
were specifically invented to address that need. More specifically, BRNNs combine both an
RNN moving forward through the sequence, with another RNN moving backward through
it. This is pretty useful in time series to capture forward and backward dependencies in
quantities variations.

Using the aforementioned material, one can easily produce an RNN mapping an input
sequence to a fixed size vector, an input sequence to an output sequence of the same length,
and a fixed-sized vector to a sequence. We now conclude this subsection by introducing a
powerful architecture called the encoder-decoder [14] or sequence-to-sequence [71] (Seq2Seq)
that allows the system to map a variable-length sequence to another variable-length sequence
which can be of different size. More concretly, the framework is divided in two parts: (1)
An encoder, reader or input RNN processes the input sequence, then emits what we call the
context C. (2) This fixed-length vector is then used by the decoder, writer or output RNN to
generate the desired output sequence.

5.3.3. Back-Propagation Through Time

Applying the training algorithm we developed earlier for MLPs to RNNs is pretty
straightforward, but because the forward propagation graph is inherently sequential, the
back-propagation applied to the unrolled graph cost is called back-propagation through
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time (BPTT). The gradients obtained by the procedure can then be used with any
general-purpose gradient-based techniques, just like in the MLP case.

Since each of the neural network’s parameters must receive an update proportional to
the partial derivative of the error function with respect to itself, backprop information needs
to flow properly through the whole network. In many-layered feedforward networks, and
in networks with longer computation graphs in general such as RNNs, the gradient flow
often leads either to the vanishing gradient or exploding gradient problem. The former arises
when the recurrent multiplications on numbers smaller than 1 done during the process tend
to 0, while the latter inversely happens when numbers greater than 1 induce exponentially
increasing numbers. While some exotic techniques have been explored, such as unsupervised
pre-training of the layers [8], nowadays the problem of exploding gradients can be solved by
gradient clipping, i.e. by capping the norm the gradient can take (usually to 1 in practice).
On the other side, a special class of RNNs called gated RNNs mitigate the problem of
vanishing gradients.

5.3.4. Long Short-Term Memory and Gated Networks

The challenge of learning long-term dependencies comes from the fact that the gradients
propagated over many stages tend to either vanish, or to explode, considering the multiple
multiplications of many Jacobians. To counter this problem, one of the most popular and
practically applied sequence models to this day are the gated RNNs, which include the long
short-term memory (LSTM) and networks based on the Gated Recurrent Unit (GRU). Gated
RNNs incorporate a powerful internal mechanism called gates, usually relying on a sigmoid
activation function because of its co-domain properties, that can regulate the flow of informa-
tion. The intuition is that such gates can learn which data in a sequence is important to keep
or throw away, and consequently pass relevant information down the long chain of sequences.

The LSTM presents a similar flow as a traditional RNN, but the difference lies in what
we call the cell state and its various gates. More specifically, that cell state can be seen as
an information conveyor down the sequence chain. Information then gets added or removed
along the sequence, at each time step, with the following operations (see figure 5.4) within
the cell itself:

(1) A forget gate decides which information from the previous cell state c(t−1) will be
kept by taking the concatenation of the current input x(t) and the previous hidden
state h(t−1), and inputing it through a first sigmoid function, which outputs values
between 0 and 1. These outputs will then multiply the cell state in a point-wise
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manner. Sigmoid output values close to 0 will "forget" and remove information, while
output values near 1 will "keep" their previous cell state counterpart.

(2) An input gate updates the cell state by running two operations in parallel with the
vector concatenation of h(t−1) and x(t): (1) the vector is inputed into a second sigmoid
function to decide which values will be updated in a similar fashion to the forget gate.
(2) a copy of the vector is passed through the non-linear activation function (usually
a tanh or a ReLU ) before being multiplied point-wise just like in the forget gate.

(3) The output of the two previous gates is then added to form the next cell state c(t).
(4) Lastly, an output gate controls the nature of the next hidden state h(t) by passing

h(t−1) + x(t) through a third sigmoid, which then multiplies point-wise the new cell
state passed through a non-linearity to create h(t).

(5) Both c(t) and h(t) are then outputed and transfered to the next time step. The
process is repeated for every time step.

Fig. 5.4. Structure and basic layout of LSTM recurrent neural networks [17]. The cell state
c is represented by the top horizontal arrow, the hidden state h by the bottom horizontal
arrows, while the forget, input and output gates are denoted by the numbers 1,2 and 3
respectively.

GRUs [15] were introduced a lot more recently than LSTM, in 2014, and are very similar
in their concept. GRUs do not rely on a cell state anymore, but still execute the same
logical operations than LSTM with less gates, since now a single update gate simultaneously
controls both the forgetting factor and the decision to update the state unit, while the reset
gate decides how much information from the past to forget. This new type of recurrent units
also has fewer tensor operations, making it a little speedier in practice.
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5.4. Regularization
The beauty of neural networks relies in their effective combination of variegated elements.

From these possible combinations arise various and continuously-evolving methodologies
that allow performance improvements over the classic fundamental principles introduced
earlier, and which are required to reach the state-of-the-art results we observe nowadays.

Deep neural networks are very well known for their performance scaling proportionally
as they are fed larger and larger datasets, unlike many other machine learning algorithms
who eventually reach a plateau. The best way to make a machine learning model gener-
alize better is undoubtly to train on more data. A general performance improvement idea
arising from this principle is to augment or increase (artificially or naturally) the volume of
available samples in the treated dataset. We refer to such methods as data augmentation
techniques, but we do not expand further as they are very application-specific and depend on
the nature and available resources of the considered problem. We focus instead on two more
general improvement possibilities : improving generalization error in the network architec-
ture and training process, and improving the optimization algorithm itself, which tackles the
challenging task of naviguating a highly non-convex optimization surface.

As introduced in chapter 4, regularization can be defined as any modifications in a learn-
ing algorithm aiming for a reduction in generalization error. In the deep learning context,
regularization strategies generally imply regularizing estimators directly. In fact, unlike in
many classical ML application scenarios, the model family provided in deep learning almost
never matches the one of the real generating distribution, due to the complexity of the in-
stances considered. To quote directly [27] : "To some extent, we are always trying to fit a
square peg (the data-generating process) into a round hole (our model family)." This means
that controlling the complexity of the model does not simply imply finding the right size and
the right number of parameters. From an experimental perspective, it was instead found
that the best fitting model is a large instance that has been regularized appropriately. We
now cover a few of the most popular regularization strategies to create such large, deep
regularized models.

5.4.1. Parameter Norm Penalties

In machine learning, many regularization approaches offer a flexible and general solution
based on limiting the capacity of models by adding a parameter norm penalty ω(θ) to the
objective function J :

J̃(θ;X, y) = J + αΩ(θ) (5.4.1)

91



where J̃ represents the regularized objective function, and α ∈ [0,∞) is a regularization
rate hyperparameter weighting the contribution of the regularization term in the objective
function. For neural networks, it is usually chosen to apply a parameter norm penalty only
on the weights of the affine transformation at each layer, and leave the biases unregularized
since they typically require less data than the weights to fit accurately.

The weight decay, ridge regression, Tikhonov regularization or L2 parameter norm
penalty involves adding a Ω(θ) = 1

2 ||w||
2
2 term to the objective function. On a per-sample

basis, such modification multiplicatively shrinks the weight vector by a constant factor
at each step, just before doing the gradient update. From a more general optimization
perspective, introducing H as the Hessian matrix of J with respect to w evaluated at w∗,
the components of w∗ that is aligned with the i-th eigenvector of H is rescaled by a factor
of λi

λi+α where λ is the i-th eigenvalue of H. Lastly, L2 tends to push large weights down,
but leaves smaller weights between 0 and 1 relatively unchanged.

In a similar fashion to weight decay, L1 regularization introduces an additional
Ω(θ) = ||w||1 term to the objective function instead. However, L1 regularization differs
from L2, since its gradient contribution no longer scales linearly with each wi but instead
puts a constant factor of the same sign as wi. More specifically, L1 regularization results in
a solution that is more sparse, i.e. some parameters have an optimal value of zero. Such
behavior can be seen as feature selection, since the process chooses which subset of the
available features should be used.

Lastly, it is also possible to combine different parameter norm penalties term together.
One of the most common is the L1L2, combining both the L1 and L2 regularizations detailed
above in the same instance.

5.4.2. Noise and Dropout

"Regularization of an estimator works by trading increased bias for reduced variance.
An effective regularizer is one that makes a profitable trade, reducing variance significantly
while not overly increasing the bias." [27]. Noise can be applied to the inputs as a dataset
augmentation strategy, but it can also be applied to the outputs or even directly to the
parameters themselves. Adding noise is a practical, stochastic way to reflect uncertainty.
Noise applied to the weights can also be interpreted as equivalent (under some assumptions),
to encouraging stability of the function to be learned.
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Dropout [67] is a modern technique consisting of randomly dropping units (along with
their connections) in the neural networks during training. This prevents units from co-
adapting too much, and can be interpreted as a very computation efficient way of sampling
from an exponential number of different "thinned" networks. Such approach is very common
in ML, usually called bagging. It is however important to notice the difference here, that
in the dropout scenario, the models are not totally independent and trained on their own
respective training set. Furthermore, several modern methods re-use this principle even in
deployment to assess the variance and the uncertainty of the predictions.

5.5. Optimization
Neural network training is one of the most challenging optimization tasks, considering

the size and complexity of the problem. It is quite common to deploy several days, or
even several months of distributed computing resources to obtain interesting results. For
optimization problems of this importance, specialized sets of optimization techniques have
been developed, and in this section we introduce the most popular ones specific to ANN
training.

5.5.1. Early Stopping

Training duration can be quite challenging for neural networks: too little training will
yield an underfit model, while too much training could result in an overfitted model with
poor performance on the test set. A compromise is to train on the training dataset, but to
trigger training interruption at the point when performance on a validation dataset starts
to degrade. This simple, effective, and widely used approach to training neural networks is
called early stopping. In practice, the implementation is done by applying a prediction on
the validation set after every epoch, and it is common to define a patience before putting a
halt to the training, since validation loss can sometimes increase slightly before going down
again.

5.5.2. Optimization Surface

We previously introduced incremental gradient methods, and more specifically the SGD
algorithm. To this day, stochastic gradient descent and its variants remain among the most
used optimization algorithms for machine learning, and for deep learning in particular. Such
algorithms experience the challenge of navigating a strongly irregular error surface comprised
of local minima, saddle points and sharp cliffs. These characteristics can respectively lead
to (strongly) sub-optimal solutions, non-existing gradients or exploding gradients.

The momentum, from the physical analogy of oriented motion, is an algorithm accumu-
lating an exponentially decaying moving average of past gradients, and continuing to move
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Fig. 5.5. Qualitative illustration of the non-convex error surface the gradient descent algo-
rithms are applied on, as well as the inherent challenges induced by local minima and saddle
points [16].

in their direction. Momentum is useful to solve two main problems: (1) a poor conditioning
of the Hessian matrix, for example in a quadratic narrow "valley" with steep sides; (2)
variance in the stochastic gradient. While the step size was previously given by the norm of
the gradient multiplied by the learning rate, momentum adds a components scaling directly
to how "aligned" a sequence of gradients are. For example, if the momentum algorithm
always observes gradient g, then it will accelerate in the direction of −g until reaching a
terminal velocity.

Several variants of the momentum algorithm exist. One of the most popular is the
Nesterov momentum [69], which differs from standard momentum by where the gradient is
evaluated after the current velocity is applied. It can be interpreted as an attempt to add a
correction factor to the standard method. While in the convex batch gradient case, it can
be shown that the rate of convergence of the excess error is greatly improved, unfortunately
in the stochastic gradient case it does not improve the rate of convergence. Nevertheless,
Nesterov momentum is still often used in practice to train neural networks.

As shown in figure 5.5, the initial point for parameters drastically affects the optimization
result. Considering this, the initialization strategy of the parameters in a neural network
is particularly important. Surprisingly, to this day, modern initialization strategies are still
simple heuristics and usually rely on achieving some useful properties since rigorous math-
ematical guarantees are very hard to obtain. The only important condition that has been
proven a requirement is to break the "symmetry" between units. Despite many available
methodologies, the one we present is one of the most commonly used in practice: the Glorot
and Bengio [26] where each weight is sampled from a normalized distribution:
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where m and n represent the number of units in the previous layer and the number of units
in the next layer, respectively. Lastly, other simpler heuristics exist for bias initialization,
but for gated recurrent neural networks it is suggested [36] to start close to 1.

5.5.3. Optimization Algorithms

The AdaGrad algorithm [21] scales the learning rate of all model parameters propor-
tionally to the inverse of the square root of the sum of all the historical squared values
of the gradient. This results in the fact that parameters with larger partial derivatives of
the loss have a rapid decrease in their learning rate, while parameters with smaller partial
derivatives have a relatively small decrease in their learning rate [27]. While AdaGrad
presents some fruitful theoretical properties, in practice it tends to perform well for some
models, but not for all of them.

RMSProp [33], for "root mean squared propagation" is based on AdaGrad, but modifies
the gradient accumulation into an exponentially weighted moving average to perform
better in the nonconvex setting. RMSProp offers a more reliable convergence once
the optimization process has reached a "convex bowl", by "forgetting" the history from
the extreme past that would prevent convergence. From a practital perspective, it has
been empirically proven very useful and is employed routinely by deep learning practicioners.

Adam [38], derived from "adaptive moments", can be seen as a kind of combination
between RMSProp and momentum, but with a few important distinctions. First, momen-
tum is incorporated directly as an estimate of the first-order moment, with exponential
weighting of the gradient. Second, Adam offers a bias correction to the estimates of
both the first-order moments and the (uncentered) second-order moments to account
for their initialization at the origin [27]. At the time of the writing, and because of his
robustness to a variety of hyperparameters, Adam is the default optimizer used by the most
popular deep learning libraries. Consequently, it is probably the most widely used in practice.

Lastly, despite the development and popularity of SGD and some of its variants, a lot
of modern research is focused on adapting second-order methods to the neural network
training problem. In contrast to first-order methods, these methods make use of second
derivatives to improve optimization. However, in their crudest form such algorithms usually
require the calculation and storage of the Hessian matrix, which is very cumbersome and a
computational burden for most deep learning applications with millions of parameters and
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thousands to millions of data samples. A computationally efficient second-order method
could however revolutionize the neural network training reality.

5.5.4. Batch Size and Learning Rate

Two of the most crucial parameters in the aforementioned optimization techniques of
the SGD family are the batch size and the learning rate. These two aspects play a key role
in the gradient estimate calculated by the random sampling of such methods.

The true gradient of the total cost function gradually becomes smaller and smaller,
reaching 0 when we approach a minimum. On the other hand, SGD gradient estimator
introduces a source of noise with its random sampling process, that does not vanish even
near a minimum. To solve this problem, the learning rate εk at iteration k needs to gradually
decrease over time, respecting the two following conditions to guarantee convergence:

∞∑
k=1

εk =∞ , and (5.5.2)

∞∑
k=1

ε2k <∞ . (5.5.3)

In practice, it is common to adopt a scheduled learning rate, usually following a learning rate
decay until iteration τ :

εk = (1− α)ε0 + αετ , α = k

τ
. (5.5.4)

Another very powerful approach is to use an adaptive learning rate, where in a similar
fashion to early stopping (and in combination with !), we monitor validation loss plateaux,
and with a patience parameter we reduce the size of the learning rate by a fixed factor
(usually 2 to 10) until we reach a minimum value.

Optimization algorithms for ML typically compute each update to the parameters on an
expected value of the cost function using only a subset of the terms of the full cost function.
Computing the expectation is very expensive because it requires evaluating the model on
every example in the entire dataset. In practice, it is common to randomly sample only a
few examples from the data, i.e. a batch of examples, then taking the average over only
those examples. Algorithms using the entire training set are called batch or deterministic
gradient methods, algorithms using a single example are called stochastic (like SGD) or
online methods, and other algorithms in between (most modern ML algorithms) using
more than one but fewer than all the training examples are called minibatch or minibatch
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stochastic methods4. The following factors influence the batch size selection:

(1) Larger batches yield a more accurate estimate of the gradient, but with less than
linear returns.

(2) Hardware-wise, multicore architectures accelerate the process very little with batch
sizes that are too small. On the other hand, running parallel gradients makes memory
requirements scale with batch size, which is often a limiting factor for bigger datasets
and full gradient estimates.

(3) Small batches were shown to offer a regularizing effect [82], because of the noise
they add in the learning process. The high variance induced often requires a smaller
learning rate to maintain stability, which results in a longer training time at the end
because more steps are required to observe the entire training set.

4It is now common to call them simply stochastic methods.
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Chapter 6

Reinforcement Learning

Reinforcement learning (RL) is the third machine learning paradigm, where training infor-
mation is used to evaluate actions, rather than instruct, in order to maximize a numerical
signal defined in accordance to a specific goal [72]. Since 2015, RL has demonstrated very
impressive application results in several fields like robotics or game theory, to name only
these, as it reached (super) human-level controls without any prior knowledge. This success
mainly originates from the combination of reinforcement learning with deep learning as
function approximator, leading to what we refer today as deep reinforcement learning.

As we already introduced the general framework of sequential decision-making, we
directly build on the concepts presented in part I to offer a global qualitative overview of
the new emerging field that is deep reinforcement learning, along with its most popular
algorithms available to this day. The focus of this chapter is also to provide a detailed
mathematical development for the algorithm used in the context of this work: the Deep
Q-Network (DQN). Finally, we also try to provide a comparison with literature content from
the control and operations research community to establish a link between some concepts
that are mathematically equal but differ in their nomenclature.

The sources used for this chapter are tightly correlated to the ones of chapters 1 to
3. That is, Pierre-Luc Bacon’s Excursions in Reinforcement Learning course, the Dynamic
Programming and Optimal Control (Vol I) [11], Dynamic Programming and Optimal Control
(Vol II) - Approximate Dynamic Programming [9], Reinforcement Learning and Optimal
Control [12] books from Dimitri P. Bertsekas, the Markov Decision Processes [56] book
by Martin L. Puterman, the Reinforcement Learning [72] book by Richard S. Sutton and
Andrew G. Barto, and finally the Foundations of Deep Reinforcement Learning [28] book by
Laura Graesser and Wah Loon Keng. We also occasionally refer to several literature articles
related to specific presented content.



6.1. Generalities
RL relies on the framework of MDPs where an agent a undergoes continuous or episodic

interactions with its environment. At each sequence of discrete time steps t, up to a horizon
T ∈ [0,∞), the decision maker receives a partial observation ot ∈ O of the real state st ∈ S
the environment E is currently in, where O and S represent the discrete finite sets of
observations and states, respectively. Based on the perceived observation, the controller
then applies its policy π to choose a control ut from a set of controls U , which triggers a
transition of the environment according to the probability function Pt(st+1|st,ut) into a new
state st+1 and returns a new (partial) observation ot+1 along with a reward rt ∈ R. The
objective of the agent is to maximize the expected cumulative sum of these rewards on the
long run. It is important to note that it is typical in RL to consider the same available
action set for every epoch.

Considering the general sequential decision making theory, three primary functions
can be learned in reinforcement learning: the value functions such as the state-action
value function Qπ(s,u), the state value function V π(s), or the advantage value function
Aπ(s,u); the policy π(s); and the environment’s transition probabilities Pt(st+1|st,ut).
Correspondingly, three major families of deep reinforcement learning algorithms arise from
this idea:

(1) Value-based methods, learning value functions.
(2) Policy-based methods, learning policies.
(3) Model-based methods, learning or using a model of the environment.

Furthermore, additional families can be introduced by applying exotic combinations of these
basic ideas, and are usually behind the state-of-the art results we can see at the time of the
writing. In what follows, we introduce each of these primary families qualitatively and give
a brief overview of one of their archetype algorithms and of its logic, except for the DQN
where we explicit the full mathematical development.

A final important distinction between deep reinforcement learning algorithms, that affects
how training iterations make use of the data, is whether they are on-policy or off-policy. The
former implies that the algorithm can only learn from the training data generated by the
current policy, which means that the data must be discarded once used for training. In
contrast, off-policy algorithms do not abide by this requirement, and any data collected from
interactions with the environment can be (re)used in training. Consequently, such methods
are said to be more sample-efficient, but may require more memory to store the data.
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6.2. Value-Based Methods and Deep Q-Network
Value-based methods rely on learning either or both of the two value function V π(s)

and Qπ(s,u), then using their estimate on (s,u) pairs to derive a policy. Algorithms
in this setting tend to be more sample-efficient than policy-based algorithms, because
they have lower variance and make better use of data gathered from the environment.
However, there is no guarantee that such algorithms will converge to an optimum,
even local. In their standard formulation, they are usually natively limited to discrete
action spaces, but can be adapted to continuous action spaces through different workarounds.

6.2.1. Deep Q-Network

The Deep Q-Network [47] is probably one of the most iconic modern value-based method.
Inspired by the classical Q-Learning [80] algorithm, such methods are based on the state-
action value function Q, also called Q-factors in the control community:

Qπ(s,u) := E
[
T∑
t=0

γtrt(st, ut)
∣∣∣∣∣ s0 = s, u0 = u

]
, (6.2.1)

and more specifically on the optimal action-value function (or optimal Q-factors) Q?(s,u):

Q?(s,u) = max
π

E
[
T∑
t=0

γtrt(st, ut)
∣∣∣∣∣ s0 = s, u0 = u, π

]
. (6.2.2)

This last function obeys an important recursive relation known as the Bellman equation (see
sections 2.3 and 3.2), which is based on the following intuition: if the optimal value Q?(s′,u′)
of the state st+1 = s′ at the next time-step was known for all possible actions ut+1 = u′, then
the optimal strategy is to select the action u′ maximizing the expected value of r+γQ?(s′,u′):

Q?(s,u) = Es′
[
r + γmax

u′
Q?(s′,u′)|s,u

]
. (6.2.3)

While several methodologies use this important relation, like backward induction (section
2.4), value iteration with successive approximation (section 3.2.1), or (generalized) policy
iteration (section 3.2.2), in a similar fashion to value iteration the basic idea behind Q-
learning related algorithms is to estimate the optimal action-value function by using the
Bellman equation as an iterative update of the form:

Qi+1(s,u) = Es′ [r + γmax
u′

Qi(s′,u′)|s,u] , (6.2.4)

where the expectation is typically replaced by (crude) Monte Carlo estimates (see section
4.2.1) leading to a stochastic approximation.
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Such value iteration algorithms converge to the optimal action-value function, Qi → Q?

as i → ∞. From an application perspective, this basic approach is however impractical
because the action-value function is estimated separately for each trajectory, and only for
the states encountered without any generalization. Instead, it is common to use a function
approximator to estimate Q(s,u,θ) ≈ Q?(s,u), leading to a family of algorithms defined as
fitted value iteration. Using a deep neural network for doing so leads us to the basis of our
DQN algorithm.

The Q-network function approximator is trained by adjusting its parameters θi at it-
eration i using the mean-squared error loss from the difference obtained in equation 6.2.4,
where the target values r+γmaxu′ Q(s′,u′) are substituted with the network’s approximation
y = r + γmaxu′ Q(s′,u′; θ−i ), using parameters θ−i from some previous iteration for the sake
of stability1. This leads to a sequence of loss functions Li(θi) :

Li(θi) = Es,u,r
[
(E′s[y|s,u]]−Q(s,u; θi))2

]
= Es,u,r

[
(y −Q(s,u; θi))2 + Es,u,r[Vars′(y)]

]
,

(6.2.5)

where Es,u,r[Vars′(y)] represents the expected variance of the targets. Differentiating the loss
function with respect to the weights2 yields :

∇θiL(θi) = Es,u,r,s′
[(
r + γmax

u′
Q(s′,u′; θ−i )−Q(s,u; θi)

)
∇θiQ(s,u; θi)

]
. (6.2.6)

In a similar fashion to the original Q-Learning algorithm, and for computation-efficiency
justification, (crude) monte carlo estimates are typically used by optimizing the loss function
with incremental gradient descent algorithms such as SGD. We conclude the analogy with
Q-learning by noticing that setting the update frequency of θ−i to be made after every time
step leads us back to the original Q-Learning algorithm but using a deep neural network
function approximator.

Despite this evident similarity, in addition to keeping an older copy of the weights for
updates, the original DQN paper also introduced an additional concept to further improve
performance and stability using neural network function approximators. Experience replay
consists in storing the agent’s experiences et = (st,ut,rt,st+1) at each time-step, in a data
set or memory buffer Dt = e1,...,et. During the inner loop of the algorithm, (mini-batch)

1This is done because in the present setting the targets depend on the network weights, unlike traditional
supervised learning targets which are fixed before learning begins.
2The last term does not depend on the parameters θi, and is therefore dropped.
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Q-learning updates are performed, but using randomly picked (with uniform distribution)
samples of experience (s,u,r,s′). This leads to the advantage that each experience sample is
potentially used in many weight updates, which allows for greater data efficiency, breaks the
correlations between samples and therefore reduces the variance of the updates by smoothing
the distribution. Adding a gradient clipping to limit the norm of the gradient becomes also
easier and further increases the learning stability. Lastly, when learning on-policy, the current
parameters determine the next data sample that the parameters are trained on, which can be
problematic because it introduces unwanted feedback loops. Using experience replays allow
the algorithm to be model free and to learn off-policy while following another behavior policy
that ensures adequate exploration of the state space. In practice, the behaviour distribution
is often selected by an ε-greedy policy that follows the greedy policy with probability 1-ε and
selects a random action with probability ε. The ε parameter is typically reduced progressively
in training until it reaches a minimum threshold.

Fig. 6.1. Illustration of the experience replay mechanics, where the agent stores its experi-
ences as (st,ut,rt,st+1) tuples in a memory buffer.

As a last detail, during implementation we can further take advantage of using deep
learning as function approximation to accelerate the state-action value evaluation. For effi-
ciency purposes, instead of retrieving a single Q-value for a given state and action, requiring
a separate forward pass to compute Q for each action resulting in a cost that scales linearly
with the number of actions, we instead use an architecture in which there is a separate out-
put unit for each possible action, and only the state representation in an input to the neural
network. This allows us to compute the Q-values for all possible actions in a given state
with only a single forward pass through the network (see figure 6.2).
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Fig. 6.2. Illustration of the classical Q-value retrieval (left), compared to the deep learning
approach (right) where the network approximator is a mapping directly from state to actions
vector.

6.3. Policy-Based Methods and Policy Gradient
Algorithms in this family learn a policy π directly, often represented by its own function

approximator. Starting from the intuition that good policies generate trajectories that
maximize an agent’s objective, then they directly create a mapping from an observed state
to (probability of) actions. A major convenience of those methods relies in their application
generality to discrete, continuous or combined action types, without the need to calculate
any value function. Furthermore, even if they usually suffer from higher variance than
value-based methods and are more sample-inefficient, by the policy gradient theorem [72],
they are guaranteed to converge at least to a local optimal policy.

The most fundamental (and simplest) algorithm of this family, representing the basis of
almost all other related modern methods, is the policy gradient also known as REINFORCE
estimator by the RL community. Policy gradient parametrizes the policy directly using a
function approximator like a neural network. Combining different ideas, mainly the usage of
a stochastic estimator to obtain a derivative estimate of the performance J of a parameterized
randomized policy in a MDP, in addition to extended conditional Monte Carlo results in:

∇J(θ) = E
[
T∑
t=0

γtr(St, Ut)
∇θpθ(S0, U0, . . . , St, Ut)
pθ(S0, U0, . . . , St, Ut)

]

= E
[
T∑
t=0

γtr(St, Ut)∇θ log pθ(S0, U0, . . . , St, Ut)
]

= E
[
T∑
t=0

γtr(St, Ut)
t∑

k=0
∇θ log πθ(Uk|Sk)

]
.
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We note that the inner summation could be maintained recursively as a trace since it only
depends on the past. This is how it is presented in REINFORCE [81] and in subsequent
work [73] by Richard Sutton. Rather than accumulating a sum of gradients, it is more
common to switch the order of summations to get:

∇J(θ) = E
[
T∑
t=0
∇θ log πθ (Ut|St)

T∑
k=t

γk−tr(Sk, Uk)
]
.

That is, we weight the gradient of the log action probabilities by the return onward from
that state. The resulting estimator is then:

∇̃REINFORCEJ(θ) := 1
N

N∑
i=1

T∑
t=0
∇θ log πθ(ui,t|si,t)

T∑
k=t

γk−tri,t , (6.3.1)

where we’ve assumed that all N trajectories are of length T .

6.4. Model-Based Methods and Monte Carlo Tree
Search

Model-based algorithms either learn a model of an environment’s transition dynamics
or make use of a known dynamics model. Once equipped with such model, it is then
possible to simulate various trajectories virtually without even interacting with the real
environment until an action is required. The agent can then analyze the different sequences
generated and decide on the best action to take. Such methods are very appealing because
they require much less real experience to reach good performances, but are often limited
by the difficulty of obtaining a reliable model of the environment. When they work, such
methods are often 1 to 2 orders of magnitude more sample-efficient than model-free methods.
We refer to algorithms that do not use the environment’s transition information asmodel-free.

While most algorithms can simply be augmented with a function approximator to
approximate the state equation (see section 1.3) of any dynamic system, we choose to
introduce an algorithm of historical importance in model-based reinforcement learning, that
is the Monte Carlo Tree Search (MCTS). In what follows, we develop its basic working
principle, before expanding on how it was used in conjunction with deep reinforcement
learning and supervised learning to bring a computer Go agent from a weak amateur level
in 2005 to a worldwide grandmaster in 2017.

MCTS’s execution is triggered as soon as the new state of the agent is known, and
is repeatedly applied until an action needs to be outputed to the environment. The core
idea of MCTS is to keep a high performing action selection, while enjoying a simulated
exploratory behavior to see if the value of some actions may not differ from his initial

105



estimate. More formally, the 4 algorithm steps are as follow, taken from [72]:

(1) Selection. Starting at the root node, a tree policy based on the action values attached
to the edges of the tree traverses the tree to select a leaf node.

(2) Expansion. On some iterations (depending on details of the application), the tree
is expanded from the selected leaf node by adding one or more child nodes reached
from the selected node via unexplored actions.

(3) Simulation. From the selected node, or from one of its newly-added child nodes
(if any), simulation of a complete episode is run with actions selected by the rollout
policy. The result is a Monte Carlo trial with actions selected first by the tree policy
and beyond the tree by the rollout policy.

(4) Backup. The return generated by the simulated episode is backed up to update,
or to initialize, the action values attached to the edges of the tree traversed by the
tree policy in this iteration of MCTS. No values are saved for the states and actions
visited by the rollout policy beyond the tree. Figure 6.3 illustrates this by showing a
backup from the terminal state of the simulated trajectory directly to the state-action
node in the tree where the rollout policy began (though in general, the entire return
over the simulated trajectory is backed up to this state-action node).

The chinese game of Go represented a challenge for artificial intelligence researchers for a
long time, in part because the number of legal moves allowed per position (approximately 250,
compared to 35 in chess for example) creates a very large action space, and in part because
of the difficulty to define an adequate position evaluation function considering the rules and
objectives of the game. The first generation algorithm deployed by Deepmind, AlphaGo [65],
introduced a novel version of MCTS guided by both a policy and a value function learned
through deep reinforcement learning, naming it asynchronous policy and value MCTS (APV-
MCTS). In this new methodology, the tree expansion strategy was guided by a probability
distribution provided by a deep ANN called the SL-policy network, trained previously by
supervised learning to predict moves contained in a database of nearly 30 million human
expert moves. Also in contrast with basic MCTS, the node evaluation was a combination
not only of monte carlo rollouts, but also of the value functions vθ previously calculated by a
value-based deep RL method. Given s a newly added node, its value consequently became:

v(s) = (1− η)vθ(s) + ηG (6.4.1)

where G was the return of the rollout and η controlled the mixing of the values resulting
from these two evaluation methods. Finally, the rollout exploratory policy was calculated
by a shallow linear network (with an optimal performance vs computation pass ratio) also
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Fig. 6.3. Illustration of the four operations in the MCTS algorithm [72]: selection, expan-
sion, simulation and backup.

previously trained using self adversarial play and human expert moves. The pipeline of this
expedited description is illustrated in figure 6.4.

Fig. 6.4. AlphaGo pipeline and components [72].
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Lastly, without going into further details, it is interesting to note that Deepmind achieved
new records with their newest AlphaGo Zero algorithm [66], using no human knowledge or
experience samples, except pure deep reinforcement learning.

6.5. Hybrid Methods and Developments
We conclude the RL families overview by introducing methods that combine two or more

of the three primal families we just presented. Given the strengths and weaknesses of each
methodology, it seems natural to combine them to get the best of each. One widely used
group of algorithms learns both a policy and a value function. Such algorithms are referred
to as Actor-Critic, where the actor refers to the policy who acts, and the critic to the value
function who critiques the actions. More formally, starting from the base equation 6.3.1 of
the policy gradient, taking crude Monte Carlo updates is problematic because it introduces
a high variability in log probabilities and cumulative reward values due to the difference in
the trajectories, or is simply not able to update if the cumulative reward is 0. The main idea
behind actor-critic methods is to reduce the variance by using a learned baseline b instead
of the raw return:

∇J(θ) = 1
N

N∑
i=1

T∑
t=0
∇θ log πθ(ui,t|si,t)

T∑
k=t

γk−tri,t − b(si,t) . (6.5.1)

Substracting the return by a state-dependent baseline greatly reduces the variance, and
consequently yields smaller gradient updates for the training process. The nature of the
chosen baseline leads to different algorithms. Actor-Critic algorithms are an active area of
research and have given rise to many interesting developments in recent years, including the
following algorithms, to name but a few:

(1) (Asynchronous) Advantage Actor-Critic (A3C and A2C) [48].
(2) Trust Region Policy Optimization (TRPO) [61].
(3) Proximal Policy Optimization (PPO) [62].
(4) Deep Deterministic Policy Gradient (DDPG) [43].
(5) Soft Actor-Critic (SAC) [29].

To these elements, modern deep learning and different application scenarios allow some
pretty powerful models of environment transition dynamics to be added to create all sort of
different new algorithms. What we presented is by no mean an exhaustive list, but rather a
brief overview of this new field which seems to yield exciting new developments on a regular
basis !
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6.6. Communities and Similarities
We close this chapter by highlighting the different terminologies used by both the

statistical learning and the control community to refer to the same concepts. While we
noticed this phenomenon on our own during the literature review process of this work, we
choose to directly cite page 43 in Dimitri P. Bertsekas’ most recent book, Reinforcement
Learning and Optimal Control [12], which expresses the same idea but with much more
experienced and in-depth perspective:

«There has been intense interest in DP-related approximations in view of
their promise to deal with the curse of dimensionality3 and the curse of
modeling (a simulator/computer model may be used in place of a mathe-
matical model of the problem). The current state of the subject owes much
to an enormously beneficial cross-fertilization of ideas from optimal control
(with its traditional emphasis on sequential decision making and formal
optimization methodologies) and from artificial intelligence (and its tradi-
tional emphasis on learning through observation and experience, heuristic
evaluation functions in game-playing programs, and the use of feature-based
and other representations). The boundaries between these two fields are
now diminished thanks to a deeper understanding of the foundational is-
sues, and the associated methods and core applications. Unfortunately,
however, there have been substantial differences in language and emphasis
in RL-based discussions (where artificial intelligence-related terminology is
used) and DP-based discussions (where optimal control-related terminology
is used). »

Lastly, we also provide Dimitri’s list of equivalence terms, which can be useful for readers
to understand all the terminology used throughout this thesis and related work from both
communities:

(1) Environment = System.
(2) Agent = Decision maker or controller.
(3) Action = Decision or control.
(4) Reward of a stage = (Opposite of) Cost of a stage.
(5) State value = (Opposite of) Cost starting from a state.
(6) Value (or reward) function = (Opposite of) Cost function.
(7) Action (or state-action) value = Q-factor (or Q-value, which is also used in RL)

of a state-control pair.
(8) Planning = Solving a DP problem with a known mathematical model.

3See section 4.2.4.
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(9) Learning = Solving a DP problem without using an explicit mathematical model.
Other meanings are also common.

(10) Self-learning = Solving a DP problem using some form of policy iteration.
(11) Prediction = Policy evaluation.
(12) Generalized policy iteration = Optimistic policy iteration.
(13) State abstraction = State aggregation.
(14) Temporal abstraction = Time aggregation.
(15) Learning a model = System identification.
(16) Episodic task or episode = Finite-step system trajectory.
(17) Continuing task = Infinite-step system trajectory.
(18) Experience replay = Reuse of samples in a simulation process.
(19) Bellman operator = DP mapping or operator.
(20) Backup = Applying the DP operator at some state.
(21) Sweep = Applying the DP operator at all states.
(22) Greedy policy with respect to a cost function J = Minimizing policy in the

DP expression defined by J .
(23) Afterstate = Post-decision state.
(24) Ground truth = Empirical evidence or information provided by direct observation.
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Part 3

LEVERAGING DEEP REINFORCEMENT
LEARNING IN THE SMART GRID

ENVIRONMENT





Chapter 7

Technicalities

As the first two parts of this work laid the foundations of sequential decision making and
statistical learning theories, in this third segment we expose the novel contributions and the
nature of the deployed resources. In the present chapter, we begin by disclosing the technical-
ities of all the achieved implementations and exploited methodologies. Chapter 8 and 9 then
build on the introduced content, and illustrates in details results from application on two
different instances of the smart grid ecosystem: energy storage units (chapter 8) and smart
buildings (chapter 9). Finally, chapter 10 closes by proposing a new application-oriented
hybrid mechanism, borrowing content from both the control and artificial intelligence com-
munities, and by discussing the next opportunities and research projects arising from this
thesis.

7.1. Supervised Learning
This section follows the material introduced in chapters 4 and 5. A reader unfamiliar with

either general statistical learning concepts or deep learning should refer to those chapters
before proceeding.

7.1.1. Data Manipulations

As much as it is impressive to witness the intellectual work behind modern research
and challenging to implement it, on the other hand, the amount of resources required to
clean and acquire quality data tends to be very often underestimated due to its conceptual
simplicity. In fact, from our experience, data manipulations amounts to nearly 50% of all
the deployed resources in terms of time for a statistical learning practitioner. Going in the
details, we divide the considered data manipulations into four distinct categories as follow:
large-scale automated data selection, missing data treatment, traditional preprocessing and
data analysis, and time series specific manipulations.



Fig. 7.1. List of the main data manipulation types performed on the different application
scenarios.

By large-scale automated data selection, we refer to two main aspects: (1) acquiring and
storing reliable data correlated to our interests, e.g. weather data, API queries (both private
and public), time and calendar-related features etc.; (2) playing with new1, big dynamic
undocumented datasets, which result from the combined work of multi-disciplinary teams
in a continuously-evolving infrastructure. While the former is easily solved with proper
documentation and basic implementations, very often the latter is challenging as it requires
on-the-go collaboration and coordination from multiple resources, as well as the definition
of specific and rigorous conventions.

The traditional preprocessing and data analysis category encloses all usual data pre-
and post- processing practices, which are easily applied using available material and public
libraries. To name but a few of such manipulations, on the preprocessing side: (skewed)
data distributions analysis, feature selection, data normalization and standardization,
encoding types, and a few others. Post-processing work is also performed, but varies for
each application and will be covered subsequently.

For missing data treatment, even though it is also part of the traditional duties of a data
scientist, some application constraints require fancier methods than normal interpolation or
row removal, which is why it is considered a standalone category.

Lastly, the time dependency in the data induces time series specific manipulations, which
sometimes are inconvenient (removing rows during missing data treatment forces to store
separately the subsets of data for example), and some other times are an advantage (when
we can use existing methods that were specifically adapted to sequences, for example).

1It is undoubtly different to work on data types that were never documented before, unlike NLP or images
which are very common and have a rich set of tools and examples available.
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7.1.2. Deep Learning Training Practices

While various deep learning material was coded from bottom up during academia
projects and courses, the reader should be advised that all the presented results implying
neural networks herein are realized in combination with the TensorFlow library [2]. We
justify the usage of such library once an appropriate understanding of the deep learning
inherent principles is acquired, because native implementation of modern neural network
architectures can be very time-consuming, cumbersome, and particularly hard to optimize
from a computation speed perspective (which is one of the biggest downsides of deep
learning).

In a general attempt to reduce the number of hyperparameters and increase performance
on the considered supervised deep learning instances, several procedures are used. First, the
training process is set to a very high number of epochs, and interruption can be triggered
by only two possible factors: (1) an early stopping criterion monitoring validation loss fires
if the value of the loss stopped improving after a certain consecutive number of epochs
%ES; (2) a (generous) minimal baseline metric value βBS is expected after a certain number
of epochs %BS, or the training is discontinued. This second procedure is put in place to
save calculation time and avoid spending resources on architectures lacking promising
preliminary results. When the fitting procedure is terminated, the final selected model
weights are reverted to the ones that achieved the highest validation performance.

In conjunction to these training interruption criteria, we also apply the strategy of
reducing the learning rate (usually by a factor ranging between 2 to 10) upon reaching a
generalization error plateau, for some patience parameter %LR. We further introduce the
condition n %LR < %ES, allowing the training procedure to reduce the learning rate at least n
consecutive times before triggering the early stopping training termination. This way, early
stopping is guaranteed to be prompted only after several learning rate reductions, and we can
be almost assured that no further improvement was possible by reducing the learning rate,
and that we likely terminated in the lowest point of a local convex shape on the error surface.

Traditional hyper-parameters grid search is not well suited for deep learning, in part
because of the important training time, and in part because of the initialization process which
may result in noisy samples. Considering this aspect, we rely on Bayesian optimization (see
section 4.5) and consider the following problem:

x? = argmin
x
f(x) , (7.1.1)
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where f is our training resulting validation performance for a set of specific hyper-parameters.
Furthermore, f is expensive to evaluate, has no known closed form or gradients, and has noisy
evaluations of y = f(x). The Bayesian optimization loop is made of two steps: (1) building
a probabilistic model for the objective f , by integrating out all possible true functions using
Gaussian process regression; (2) Optimizing a cheap acquisition/utility function u based on
the posterior distribution for sampling the next point. The next observation is then sampled
and the process is repeated. For more details on the implementation, an interested reader
can consult the scikit-optimize library documentation [64].

7.1.3. Attention in Deep Learning

Attention is an important contribution to the field of deep learning that was first intro-
duced in 2015 by Bahdanau et al [6] in the context of neural machine translation (NMT).
The main idea behind the original Attention was to solve the long-range dependency problem
of Seq2Seq models, that were shown to have an important performance degradation scaling
with sequence input length [70]. To put it simply, Attention is a weighted average of J
values hj:

c =
J∑
j=1

αjhj , (7.1.2)

where ∑αj = 1. The product αjhj is referred to as the alignment vector, and can be
interpreted as the "contribution" of each value hj. In its initial form, which is commonly
referred today as Bahdanau Attention or Additive Attention, the mechanism uses a MLP to
output alignment scores2 ej that are fed in a softmax activation to produce α:

αj = exp(ej)∑J
k=1 exp(ek)

. (7.1.3)

In the original paper, the authors sum the alignment vectors like in equation 7.1.2 to produce
a specific context vector ci for each output of the network (i indexes the ith output of the
decoder), using the encoder’s hidden states and the previous state of the decoder. The score
function is thus of the form:

eij = a(si−1,hj) (7.1.4)

where si−1 is the decoder’s RNN hidden state just before emitting yi, hj the j-th annotation
of the input sequence of length J and a a (non-linear) activation function. Luong’s et al.
[44] later simplified and generalized the attention concept to a broader definition, where the
Additive Attention is simply a characterization of this new formalism.

2Different score functions can be used, as shown in figure 7.2.
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Fig. 7.2. Illustration of: (left) the different score functions that can be used with Attention;
(right) the alignment concept in a translation from English to French, for the specific word
"la" across the input sequence [50].

Given encoder and decoder sequences of respective length m and n, the aforementioned
schematic requires to pass mn times through the network to acquire all the attention scores.
Vaswani et al. in their iconic Attention is all you need [77] paper propose to first project s
and h onto a common space, then to choose a similarity measure as the attention score, like
the dot product:

eij = f(si)g(hj)T . (7.1.5)

In this case, g(hj) and f(si) only need to be calculated m and n times, respectively, to get
the projected vectors which can then be used to compute efficiently the alignment scores.

It is interesting to compare the previous development to a retrieval process. That is,
multiplying hj with αj can be seen as a "proportional retrieval", or directly retrieving a
specific element hj if we restrict α to be a one-hot vector. In a similar fashion, the two
projections f(si) and g(hj) can be interpreted as a query (for the decoder) and as keys (for
the encoder). Vaswani et al. highlighted this analogy, which is now commonly used as we
refer to Attention as a general mapping or retrieval process taking one or multiple keys K,
queries Q and values V :

Attention(Q,K,V ) = softmax
(
QKT

√
dk

)
V , (7.1.6)

where dk is the dimensionality of the queries and keys. The research group also introduced
a novel Transformer architecture, showing translation performances exceeding all the
related previous literature results, and relying only on a combination of different Attention
mechanisms.
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Fig. 7.3. Illustration of: (left) NMT from Bahdanau et al [6] - Attention Seq2Seq archi-
tecture with bidirectional GRUs used by the authors [37]; (right) Scaled Dot-Product and
Multi-Head Attention mechanisms introduced by Vaswani et al. [77].

Local Attention and Global Attention are important concepts derived from the general
application of Attention. While all inputs are considered in the Global Attention compu-
tation, which results in an important computational cost, Local Attention tries to focus
only on a subset of elements. That is, using a position pt in the input sequence, the system
considers only the items in a window of the range [pt − D, pt + D], where D is a chosen
hyper-parameter. This position can either be learned using a mechanism ending with a
sigmoid activation, which returns the relative position in the sequence length (the value 0
representing the beginning, 1 the end), or can heuristically be set relative to the current
time sequence input t. The former procedure is referred to as predictive alignment, and the
latter as monotonic alignment.

7.1.4. Deep Learning Architectures

With proper learning practices set up and all the necessary material presented, we now
introduce the main neural network architecture families examined in the context of this
work (see figure 7.4); which are focused and adapted for multivariate time series data types
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[24]:

(1) Multi-Layer Perceptron: archetype feed-forward neural network made of consec-
utive fully-connected layers (see section 5.1).

(2) Convolutional Neural Network: consecutive alternance of convolution, batch
normalization and pooling operations (see section 5.2), followed by one or multiple
dense layers. While there seems to be a polemic whether batch normalization should
be applied before or after activation, empirical results motivated us to use the first
option.

(3) Recurrent Neural Network: stacked gated recurrent layers (see section 5.3), can
output directly a sequence (output at each input of the sequence) or a vector (final
output after receiving the whole sequence). The reader should note that all considered
recurrent layers are gated (GRU, LSTM) and may also be bidirectional.

(4) Residual Network [31] (ResNet): following the observed performance gains of
deeper CNNs, these architectures were introduced to help the gradient flow in many-
layered settings. ResNets are made of residual blocks, that in its simplest implemen-
tation adds the identity value of its input to its output (which is usually the result
of one or more convolutional layer).

(5) Convolutional Recurrent Neural Network (CNN-RNN): originally referred to as
Long-term Recurrent Convolutional Networks (LRCN) [19], such structure is a com-
bination of convolutional layers applied repeatedly on (subsequences of) the original
sequence, followed by recurrent layers. This type of network allows the convolu-
tion to extract time translation-invariant (or other specific transformation) features,
which are then processed in the following recurrent layers. If subsequences of the
original sequence are obtained using a sliding window, then fed to a CNN, literature
typically uses the term multi-scale convolutional neural networks (MCNN) [18]. It
is worth noting that a global average pooling or other similar down-sampling layers
must be added in this case, to make the MCNN output match the correct tensor
dimensionality expected by an RNN.

(6) Wide and Deep architectures [13]: concept combining both the output of various
stacked deep layers, and the direct linear transform of the original input, to allow the
final network’s layer to rely on a combination of inputs and higher-level features.

(7) (Attention) Sequence to Sequence Encoder-Decoder [14] [71]: Sequence to
sequence (or encoder-decoder) architecture consists in an encoder part synthesizing
the input sequences into a fixed-length context or thought vector, which is then used
as input for the decoder that outputs another sequence (see section 5.3.2). Modern
architectures like the ones described in the previous subsection also typically add an
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attention component, which "soft-searches" for sequence parts specifically useful to
predict each output.

Fig. 7.4. Sequence-oriented deep learning architectures families explored in the context of
this work. Activation functions are not explicitly shown for (gated) recurrent layers, due
to their more complex internal pattern. The reader should note that this figure is purely
illustrative, and may not necessarily be true from an implementation or mathematical point
of view.

While we tried to break down the architectures into different "types" or families, it is
important to understand that these do not constitute, in any mean, an exhaustive list or an
officially recognized nomenclature. Any kind of layer or mathematical operation could be
added in any part of a neural network in the above list, and it would result in a new entity
whose category affiliation could be debated.
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Leveraging this reality and flexibility as an opportunity, as it is now common practice
in the deep learning community, we combine and output different data types, or data with
different temporal granularities into the same deep learning model by using tensor copying,
splitting and merging operations (addition, concatenation, point-wise, cross-product ...) with
different layer types. As we will see in one of the application scenarios, such approach can
even be used to perform missing data inference, at the cost of higher computational resources,
by applying encoder-decoder pre-training to reconstruct the occasionally missing inputs.

7.1.5. Classical Machine Learning Algorithms

Finally, other classical machine learning algorithms were also used in application, to
name but a few: support vector machines (SVM and SVC), K-Nearest Neighbors (KNN),
Decision Trees, and Random Forests. However, their sporadic usage either as a baseline or
as a quick utility made us consider them a simple supervised learning black box model, using
the Scikit-Learn library [52].

7.2. Reinforcement Learning and Control
Many popular libraries are readily accessible for tasks ranging from basic data manipu-

lations to deep learning (as we saw earlier). While a few interesting dynamic programming
packages are available, they are not friendly at all to the structure traditional deep
reinforcement learning is implemented on. On the other hand, DRL being in its infancy
at the time of this writing, the only interesting research package we encounter is openAI
gym, which despite being a great initiative from the community to create benchmarks and
standardized "datasets", is less adapted to the more complex applied instances with real
data we consider. With this in mind, while we ensure full compatibility of our controllers
and environments with both external libraries, to validate and compare control and DRL
algorithms, we build our own infrastructure for simulation and control from the bottom up.
This mainly includes graphs (based on dictionaries and adjacency matrices), classical control
algorithms, deep reinforcement learning algorithms, environment simulation and combina-
tion with real data. The idea is on one hand to use this as a didactic opportunity, and
on the other to have the required flexibility to combine all the necessary ingredients together.

Despite several algorithms implementation, our primary DRL application focus, and the
majority of available resources are spent on the deep Q-Network. Our choice is motivated
in part because of its off-policy (see section 6.1) and data-efficient nature, which allows
it to learn directly on external collected experience samples (something very common in
application), and partly because the nature of the quantity it approximates can be quite
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valuable and manipulated in a lot of different ways for various purposes, as we will see in
the upcoming sections.

7.2.1. Improved Deep Q-Network

We implement the classical DQN algorithm (see section 6.2.1) as per [47], and extend
its framework in several different ways. First, it was shown in the literature that Q-learning
has a tendency to overestimate action values due to its optimistic maximization operation
[75]. Using the second target network to compute the state-action values and the original
Q-network to choose the action is an adapted double Q-learning implementation [72], which
offers the best computation vs result compromise to solve the overestimation problem,
known as the Double Deep Q-Network algorithm [76]. Another interesting implementation
is the Dueling variant of the DDQN (D3QN) [79], which involves separating the Q-value
into its advantage A and state-value V components (see section 6.1). This process can be
done directly in the deep neural network through a special aggregation layer (see figure
7.5). By decoupling its Q-value prediction, the network can learn which states are (or are
not) valuable without having to learn the effect of each action at each state and has proven
to yield a better generalization performance. Also, instead of using a deterministic greedy
policy with probability ε of taking a random action, like the one in [47], we make profit
of having access to the advantage value and use it as a random policy with probability
1− ε, because A has the same properties as a probability distribution. Doing so is typically
referred to as using a Boltzmann policy in the DRL community, and bolsters an appropriate
exploratory behavior in the long term, while still allowing convergence towards an optimal
random policy if needs be.

From a function approximation perspective, we leverage the previously developed deep
learning material, and re-use all the aforementioned architectures for function approximation
performance. Secondly, we perform in a statistical learning way, the equivalent of what is
known as state augmentation in dynamic programming. That is, at the expense of additional
computing cost, we increase the amount of information contained in the state input and
map directly observation sequences {ot−H ,...,ot−1,ot} to Q-values3, where H represents the
history considered by the agent. Doing so allows the decision maker to increase the amount
of statistical relationships, and has proven particularly powerful in the partially observed
setting, which is almost always the case in real applications.

With a practical application point of view, we further leverage the flexibility of the deep
learning infrastructure by considering not only a single Q-value vector for all the possible
3To preserve the Markovian assumption we introduced in the early chapters, we informally consider this
sequence as the state, without any loss of generalization and to avoid unnecessary corrections.
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Fig. 7.5. Illustration of the Dueling Deep Q-Network principle [79]: the Q-function estimate
is separated into advantage A (bottom layer) and state-value V stream (top, unitary layer)
components inside the network, before being aggregated at the output.

actions, but rather parallel Q-value output streams for every control system. This can be
seen as a simplistic multi-agent framework adaptation, as it allows on one part an important
action space factorization, and on another the possibility to provide system-specific actions
and granularities for each controller. It is also computationally-efficient because it requires
only a single forward pass calculation, while still benefiting from shared parameters which
offer a global generalization and optimization scheme4.

Fig. 7.6. Upgraded Double Deep Q-Network using time series-adapted deep learning archi-
tectures to map a sequence of observations {ot−H , ..., ot−1,ot} to individual parallel Q-value
vectors, one for each of the C control systems.

Lastly, as a combined result of community discussions and trial and error, we modified
a few settings over their traditional or default values. First, we used an He initialization
4And also because we consider a centralized information setting, where the individual and combined rewards
are accessible to all agents. More on this in the chapter 9.
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[32] also known as variance scaling instead of the traditional Xavier initialization (see
section 5.5.2). While both methods aim at making the variance of a layer equal to the
variance of its inputs, empirical evidence seem to show that He is more approriate for
DQN. Second, in a similar fashion to traditional ANN training, we execute scheduled
learning rate reduction, starting from a step size of 1 × 10−3 and ending at a step size
of 1 × 10−4 at 80% of the training with Adam’s optimizer [38]. We also clip the norm
of the gradient to be between −1 and 1, to avoid updates that would be too drastic and
destabilize the learning process. Finally, we initialize the exploration rate ε to 1 for train-
ing, and perform a linear annihilation to reach a floor value of ε = 0.05 at 80% of the process.

Despite a high potential for performance exploration and tuning, we purposely try to fix
and reduce to a minimum the number of hyper-parameters. Our objective by doing so, is
to test application robustness and flexibility to a broad range of different instances, while
reducing the associated computational burden. This is also useful to demonstrate deployment
autonomy to third parties, as no post-implementation interventions are required.

7.2.2. Policy Gradient and Advantage Actor-Critic

As an archetype algorithm of the policy-based reinforcement learning families, and
of control theory in general, we also proceed to test the classical policy gradient (REIN-
FORCE) algorithm [81] (see section 6.3). Sadly, application on the considered instances
returned poor performances and longer training times compared to the other available DRL
algorithms. But such result is not surprising, as the sample-inefficiency problem of this
method is known in the literature, and the relatively small action spaces considered in our
instances suggest value-based methods are more adapted in the present context.

From the policy gradient and the DQN implementations, we have all the tools to
build the A2C and A3C algorithms [48] (see section 6.5), which is a hybrid algorithm of
type actor-critic. We recall that actor-critic methods combine a separate architecture to
explicitly represent the policy independent of the value function. The former is referred to
as the actor, and the latter as the critic.

In the original paper [48], the critic is a deep neural network approximating the state-
value function V . The cost function for the policy function results then in:

fπ(θ) = log π(ut|st; θ)
(
Rt − V (st; θt)

)
+ βH(π(st; θ)) , (7.2.1)

where θt are the values of the parameters θ at time t, Rt = ∑k−1
i=0 γ

irt+i + γkV (st+k; θt) is
the estimated discounted reward in the time interval from t to t + k (k is upper-bounded
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by a constant tmax), and H(π(st; θ)) is an entropy term used to favor exploration during the
training process. The cost function for the estimated value function then becomes:

fv(θ) = (Rt − V (st; θ))2 . (7.2.2)

Training is performed by collecting the gradient ∇θ from both of the cost functions, and
applying an incremental gradient descent algorithm in a centralized fashion. One of the
advantages of this algorithm is that multiple agents can be performed in parallel without
any GPU usage. If the central system waits for all gradients to perform the update, we refer
to the algorithm as A2C, while if the update is performed as soon as the gradient of one
agent is received, then the algorithm is known as Asynchronous A2C (A3C). Once training
is performed, the server then sends back an updated version of the parameters to the agents
to guarantee they share a common policy.

In our case, we reuse the available D3QN and make profit of our simultaneous access to
all Q, V and A values to use them as a baseline for the actor, leading to the following:

∇J(θ) = 1
N

N∑
i=1

T∑
t=0
∇θ log πθ(ui,t|si,t)A(si,t,ui,t) {A2C or A3C} , (7.2.3)

∇J(θ) = 1
N

N∑
i=1

T∑
t=0
∇θ log πθ(ui,t|si,t)Q(si,t,ui,t) {Q Actor-Critic} . (7.2.4)

While in [48] the authors prefer to use the following equality to calculate the advantage A:

A(st,ut) = rt+1 + γVv(st+1)− Vv(st) , (7.2.5)

we simply preferred to use our value from the D3QN, which we found less cumbersome and
more computationaly efficient.

Lastly, just like for the DQN implementations, we used similar settings for the deep
learning: the He initialization, the scheduled learning rate and gradient clipping. We also
fixed our hyper-parameters to test robustness with minimum intervention.
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Chapter 8

Smart Grid and Energy Storage

This chapter presents the first set of considered application instances, using the smart grid
as environment along with its actors, and deploying the methodology and tools described up
to this point. The reader should be aware that the content that follows was chronologically
realized in the early stages of this work, and should consequently be viewed as a development
and validation phase that is now obsolete at the time of writing. The material was developed
in collaboration with the industrial partner Sigma Energy Storage, and private data has
been replaced with random sampling from a similar distribution when necessary. Financial
problems forced the company to cease all its activities mid way through the 2019 year,
which results in the fact that the projects described below are no longer active or under
development.

8.1. Smart Grid
As the first power grids were originally designed to be centralized unidirectional systems

of electric power transmission and distribution [45], in what we consider today’s modern
Smart Grids, power generation is shifting from a centralized to a distributed approach
with four main actors interacting and communicating continuously together: (1) Energy
generation, transmission and distribution resources; (2) Markets; (3) Customers and service
providers; (4) Operations control. More formally, as defined by the European Union
Comission Task Force for Smart Grids [25]:

«A Smart Grid is an electricity network that can cost efficiently integrate
the behaviour and actions of all users connected to it - generators, con-
sumers and those that both - in order to ensure economically efficient,
sustainable power system with low losses and high levels of quality and
security of supply and safety. A smart grid employs innovative products
and services together with intelligent monitoring, control, communication,
and self-healing technologies [...].»



The dynamic optimization requirement of grid operations and resources, makes this opti-
mal control problem a perfect candidate for dynamic programming and reinforcement learn-
ing approaches. Furthermore, the changes resulting from the optimization of all the implied
agents will allow improvement in certain large-scale problems related to the production and
distribution of energy on the electricity grid, a decrease in the individual bill for consumers,
and more importantly, a direct benefit for the environment and sustainable development.

Fig. 8.1. Conceptual illustration of the smart grid and its inherent actors [74].

8.2. Energy Storage
8.2.1. Description

As the diversity and efficiency of energy resources continue to increase, the large-scale
conversion and storage of energy, whether in chemical, thermal, mechanical, electrical or
inertial form, represents one of the major industrial rivalries and technological challenges of
our modern times. An energy storage, often called an accumulator or a battery, is a device
capturing1 energy produced at one time to use it at a later time. Its main application utilities
are:

(1) Load leveling and peak shaving: store energy during low demand and deliver
during high demand.

(2) Intermittent renewable integration: avoid curtailment and store intermittent
energy for later delivery.

(3) Electricity arbitraging: store energy when grid prices are low, then sell when they
are high.

1The capturing process actually involves converting the energy into another form, following one of the must
fundamental laws of physics.
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(4) Network infrastructure and resiliency: increased reliability, frequency regula-
tion, black starts, etc.

8.2.2. Modeling and Optimization

Our general goal consequently is to optimize the behavior of any agent presenting an en-
ergy storage capacity, with respect to its objective, regardless of its nature or technology. To
do so, we define and characterize the following general properties of an energy storage system:

• Total energy storage capacity C ∈ R≥0.
• Default charging efficiency ηi ∈ [0,1], arising from energy losses in the charging
conversion process.
• Default discharging efficiency ηo ∈ [0,1], identical to above but for the discharching
process.
• Temporal energy decay following E ∝ E0e

−λt, where E is the current internal energy,
E0 the initial energy stored, λ ∈ R≥0 a decay parameter, and t indexes time. This
represents the system’s energy "leakage", losing charge over time if it is not discharged
rapidly. It is interesting to note that this mechanism, just like the charging and
discharging actions, further breaks the Markovian property of the system as the new
energy values depend of their historical counterparts.
• Minimum input power pmin

in ∈ R≥0.
• Minimum output power pmin

out ∈ R≥0.
• Maximum input power pmax

in ∈ R≥0.
• Maximum output power pmax

out ∈ R≥0.
• Charging ramp up time T ch

r ∈ N≥0, i.e. preparation time before the system can
actually proceed to charge. Defaults to 0 unless specified.
• Discharging ramp up time T ch

r ∈ N≥0, i.e. preparation time before the system can
actually proceed to discharge. Defaults to 0 unless specified.

We discretize the actions as an odd number, where one action (typically the index median)
corresponds to the "do nothing" control, while the others represent an equally spaced fraction
of the maximum charging and discharging powers2 pmax

in and pmax
out . Denoting by pin the

combined power input in the energy storage during the charging process, the system’s energy
and environment’s energy difference are given by:

2It is important to note that the physical property of some systems also establish a floor value greater than
0 for pmin

in and pmin
out .
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E
(t+1)
storage =E(t)

storagee
−λ + pin∆t , (8.2.1)

∆E(t+1)
env =− pin∆t ηin , (8.2.2)

where ∆t represents the chosen time step increments for the simulation. Inversely, taking
pout as the total power output from the battery in the discharge process yields:

E
(t+1)
storage =E(t)

storagee
−λ − pout∆t , (8.2.3)

∆E(t+1)
env =pout∆t ηout . (8.2.4)

The four equations above can of course be manipulated to oblige certain constraints, e.g.
to derive the value of pin or pout if a specific power input or output is expected in the
environment from the storage device. Finally, we also add the restriction 0 ≤ E

(t+1)
storage ≤ C to

account for the finite physical storing capabilities of the accumulator. While the units vary
with the scale of the application instances (from up to 3 orders of magnitude), we favour
the usage of the international (SI) units in simulation. The aforementioned development
defines the environment transition dynamics of our model.

The DQN and A2C algorithms, as described in Chapter 7, are used to drive the control.
In each application scenario, the best result among the two algorithms is shown, and an MLP
containing one hidden layer of 256 units with ReLU was used as function approximator in
both cases.

8.3. Literature Review
A wide range of problems in energy systems require making decisions in the presence

of some form of uncertainty. While many different literature resources tackle the energy
modeling problem, a fundamental synthesizing work has been realized by Powel et al.
to introduce a straightforward canonical model, which presents four fundamental classes
of policies derived from competing strategies proposed by control theory, dynamic pro-
gramming, stochastic programming and robust optimization. In the first part of their
paper [54], the authors highlight the importance of separating the modeling of a problem,
with the design of policies to solve it. In the second part [55], Powell and Meisel further
illustrate the application of the proposed modeling framework by considering a typical
energy storage problem, and by providing additional discussion behind subtle concepts
such as the state variable construction. Lastly, the authors also illustrate that each of the
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fours aforementioned classes of policies may be best depending on the problem’s charac-
teristics, and introduces a combined approach to combine strengths of multiple policy classes.

The novel content presented in this thesis builds on recent subsequent work introduced
by the same author, in the perspective of developing a unified framework for stochastic opti-
mization [53], and extends the presented material on different concrete application scenarios.

8.4. Validation and Toy Examples
8.4.1. Renewable Energy Sources

Even if individual components are unit tested, i.e. verified using specific individual
tests for algorithms, optimization, control and simulation; the complete interacting process
pipeline needs to be validated using toy examples of typical instances, where the control
performance can be cross-checked with known or analytical results.

The first toy instance, also acting as a proof of concept (POC), demonstrates the DQN’s
capacity to simply minimize energy consumption when connected to different typical renew-
able energy sources. The considered simplified distributions are depicted in figure 8.2, and
control sequences can be confirmed to reach an optimal (or at least satisfying ε-optimal solu-
tion) using the DP algorithm, given a sufficiently coarse granularity (to reduce the possible
state and action space).

Fig. 8.2. Illustration of the typical profile of wind, solar and tidal renewable energy sources.

8.4.2. Household Consumption and Electric Vehicle

The last validation instance is a traditional household connected to the grid, where
the controller manages the electric car’s charging and discharging schedule. In this
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simulation, we consider a 100% efficient 100 kWh capacity electric car, and a household
energy consumption drawn from a normal distribution where the mean over time is given
by the traditional duck curve value, and has a standard deviation of 0.3 kW. The car
leaves randomly between 6 and 9 AM, and returns between 3 and 7 PM. We require
from the system to be at least at 80% of its maximum charge upon departure, and at
least at 40% before midnight. The energy price from the grid is fixed and varies with
the time of the day, also according to the duck curve distribution. One of the results of
the simulation and the control characteristics are detailed in the figure 8.3. It is worth
noting that the state includes the time t and cyclic components sin(2πt/24) and cos(2πt/24).

Fig. 8.3. Toy example of a household with electrical vehicle, where the DQN controller
manages an electric car’s charging and discharging schedule. The left squares show the
energy storage’s characteristics, along with the considered state and actions; the top right
image illustrates the simulation’s details; and the bottom right image shows the internal
energy evolution of the electric car over time (considered null while it is away), where the
orange circles depict the departure and arrival time on that specific day.

Results show a proper behavior from the DQN controller, which fulfils all constraints
while waiting for electricity prices to lower in the morning and evening before charging, thus
minimizing the overall cost and energy consumed. While it did not explicitly perform peak
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shaving on the specific illustrated day, discharging to reduce costly energy usage from the
grid has been observed on days with earlier arrivals or higher battery levels.

8.5. Intermittent Renewable Integration
The intermittent renewable integration simulation resembles the electric car scenario,

except for its larger scale and permanent presence. Since it relies on private customer data,
we replace the real consumption by using samples drawn from a normal distribution with a
fixed mean of 20 kW and a standard deviation of 2 kW. While simplistic at first sight, the
resulting samples turn out pretty similar to their original counterparts, given the continuous
nature of the industrial process considered. We further simulate the effect of solar panels
contribution from a Gaussian distribution with standard deviation of 2 kW, but with a mean
varying over time to reach a maximum of 20 kW at the sun’s zenith, at 12PM (see figure 8.4).
All the other elements are identical to the previous section, and the car’s presence feature is
replaced by the solar generation at the previous time step.

Fig. 8.4. Intermittent renewable integration scenario, where the A2C controller manages
an energy storage’s operations interacting with solar panels and an industrial customer. The
top right squares show the energy storage’s characteristics, along with the considered state
and actions; the left image illustrates the simulation’s details; and the bottom right image
shows the hourly controls on a specific day.

This example presents a particular interest from an optimization perspective, because
it requires the control system to exit a local optimum during training: instead of simply
discharging then remaining idle, which results in a tempting immediate reward, the real
global optimum must be attained by an alternance of charging (which induces a temporary
negative reward and thus seems counter-intuitive) and discharging to release the energy at
a more useful time. It is also impressive to see that the granularity of action space (11)
is leveraged by the controller in two cases: (1) The discharge is smooth and exactly equal
to the mean consumption of the customer, with a reduction when solar becomes available;
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(2) Charging is done at a small pace as soon as solar energy availability increases, then is
switched to maximum at the zenith and when the energy price is at its lowest.

8.6. Peak Shaving and Global Adjustment
Various incentive measures have been implemented by grid operators in order to reduce

peak demand. In Ontario, Canada, major electricity consumers who participate in the
Industrial Conservative Initiative (ICI) are called Class A clients and are charged both an
Hourly Ontario Energy Price (HOEP) as well as a Global Adjustment (GA) cost, which is
usually a significant part of their annual electricity bill. The GA cost is calculated based
on a customer’s share of consumption during the top five peak hours of that year, as
determined at the year’s end. Class A clients are thus incentivized to reduce their electricity
consumption during these five annual peak hours, referred to as “ICI hours”, to significantly
lower their electricity bill. This can be accomplished with an energy storage system storing
energy behind the meter during non-ICI hours, then delivering stored electricity for the
customer’s direct use during predicted ICI hours.

The considered energy storage decision system is based on two components: a regression
to forecast demand, and an ensemble of binary classifiers3 trained on different subsets of
the data and presenting baseline individual performances. The former predicts Ontario
electricity demand 6 hours in advance, using an auto-regressive LSTM with 2 hours
prediction, while the latter outputs a prediction whether the actual day presents or not
the profile of a peak. The decision to use the energy storage system is then based on 2
conditions: (1) the majority of classifiers predict the day has the profile of a peak; (2)
The highest forecasted demand exceeds the smallest of the current top 10 peaks (or 80%
of the smallest historical peak recorded, at the beginning of the year). If both conditions
return true, the system (with a delivery capacity of 6 hours) is then triggered 3 hours before
the inflection point (maximum) in the prediction. On days without a peak profile, the
intermittent renewable integration strategy is simply applied instead. The features used in
the models are weather; time representations (both linear and cyclic) for days, weeks and
months; historical data including population, holidays, irradiation and previous electrical
demand from 2011 to present.

Defining our objective of capturing at least 80% of the peaks, and firing the system less
than 30 times in a year, applying the decision model in a time-series fashion, i.e. training
on all chronologically available data before the application year yields:

3Includes neural nets, KNNs, SVC, decision trees and random forests.
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Fig. 8.5. Illustration of the peak shaving decision algorithm’s logic (top) and the resulting
regression subplots (bottom) which reached an RMSE of 347 kW. The blue line shows the
LSTM’s prediction, while the red line represents the real power value.

(1) 2012-2013 - 1 missed peak, 18 starts.
(2) 2013-2014 - 0 missed peak, 25 starts.
(3) 2014-2015 - 0 missed peak, 23 starts.
(4) 2016-2017 - 1 missed peak, 21 starts.
(5) 2017-2018 - 0 missed peak, 19 starts.

It is important to note that the 2016 to 2018 years were kept as reserved test sets, and were
not used until the last performance assessment.

8.7. Electricity Market Arbitraging
The last scenario’s principle is pretty straightforward, as it simply consists in buying

(charging) electricity when its price is low, to resell it (discharge) at higher cost. The
major additional constraint over traditional arbitraging, is the limitation induced by the
energy storage’s properties: capacity, energy losses, and charging and discharging efficiencies.

We train a 1200 MWh energy storage system on Ontario’s HOEP data from 2014 to 2017,
before applying it on the 2017-2018 year. The system’s state included the current electricity
price (income or losses were determined by the price at the next time iteration), the charge
level of the system, the day of the year, as well as the usual time features. Figure 8.6 shows
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the hourly details of this instance as well as the total virtual gains nearing the 9 million
dollars.

Fig. 8.6. Real-time simulation of an energy system, driven by an A2C controller, performing
electricity market arbitraging from May 1st 2017 to April 30th 2018 on Ontario’s HOEP.
The top figure shows the hourly market prices over the year; the three squares on the right
depicts the system’s characteristics, along with its state and actions; and the bottom figures
show the simulation results.

The activity breakdown pie chart illustrates the very small idle time of the system, which
informally leads to the intuition that few opportunities were loss. The noteworthy point
here is that the value of the horizon can be linked directly with an uncertainty and stability
tolerance. Choosing a small horizon (or a smaller discount rate) results in a less risky but
more stable behavior, and consequently generates a linear-looking result like the one shown
above; a longer horizon (or a discount rate closer to one) on the other hand, creates more
important fluctuations, but yields an overall higher gain in the long term.
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Chapter 9

Smart Building

Energy consumed in the buildings sector, both residential and commercial, accounts for
near 40% of the total worldwide energy consumption [3], and beyond 30% of CO2 emissions
[23]. Considering 230 billion expected square metres in new construction over the next 40
years [22], such numbers make smart buildings one of the major actors in the modern power
grid’s infrastructure, and consequently an ideal impactful candidate for the optimization
and control theories application.

Fig. 9.1. Smart building optimization pipeline, from first introduction to a new building to
performing remote optimal control.

From this perspective, in the present chapter we tackle the control problem of smart
buildings connected to the grid, which can be seen as a complex energy storage system and
thus, as an extension of the previously presented material. The conceptual end-to-end process
pipeline is depicted in figure 9.1, and relies on rich 5 minutes interval data collection rates,



resulting in high granularity samples for the deployment algorithms. Despite many ongoing
ventures related to this data, in the context of this work, emphasis is placed on: (1) creating
an automated smart building physics model from statistical learning, (2) performing control
in said building, with respect to multiple (usually competing) objectives. This ambitious
project is conducted in partnership with the industrial partner BrainBox AI and Mitacs,
led to the presented article publication, and is still under active development with new
research opportunities induced from multiple successful applications and demonstrations.
To illustrate the extent of the impact resulting from this work, it is interesting to note
that a Canadian reader has significant statistical chances of being physically exposed to the
methodology detailed herein during his upcoming week, with numerous implementations in
3 continents and several countries worldwide.

9.1. Thermodynamics and Heat Transfers
Temperature is one of the physical properties of a system, proportional to the average

kinetic energy of its internal components (molecules and atoms). From a more practical
point of view, temperature can be conceptualized as the manifestation of thermal energy,
and heat as the transfer of such thermal energy from one system to another. By convention,
heat always flows from the highest temperature towards the lowest. The three fundamental
heat transfer mechanisms are:

(1) Conduction: Heat flow in a solid medium, or between objects with physical contact.
(2) Convection: Transfer of thermal energy caused by fluid motion. The advection

definition is intricately related and refers to the macroscopic transport mechanisms
of the fluid itself from one location to another (if any).

(3) Radiation: Transfer of energy originating from electromagnetic radiation.

In an elegant analytical perspective, these mechanisms can be combined as a sub-case of
the general transport equation of some physical quantity u, which is our temperature in the
present context:

∂u

∂t
= ∇ · (α∇u) + β · ∇u+ γu+ s , (9.1.1)

where α, β and γ represent respectively the diffusion, advection and decay coefficients, and
s a spatial source (or sink) term.

Focusing on the diffusive term, heat transfer in a solid medium follows the relation

qk = −kAdT
dx

, (9.1.2)
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referred to as Fourier’s law of conduction, where T (K) is the temperature, A (m2) is the area
through which heat is transferred, k (W/m K) the thermal conductivity1, and the negative
sign is a consequence of heat flowing from higher to lower temperatures. Considering a
steady-state one-dimensional heat flow between two points of length L leads to:

qk
A

∫ L

0
dx = −

∫ Tcold

Thot

kdT = −
∫ T2

T1
kdT . (9.1.3)

In this equation, x = 0 is uniform at Thot and x = L is uniform at Tcold. Furthermore, if k is
independent of T , we end up with

qk = Ak

L
(Thot − Tcold) = ∆T

L/Ak
. (9.1.4)

It is interesting to apply an analogy between heat flow and DC electric circuits, where
the quantity L/Ak can be viewed as a thermal resistance Rk (K/W). In that setting, the
current i is equal to the voltage potential E1 − E2 divided by the electrical resistance Re,
just like the flow rate of heat qk is equal to the temperature potential T1 − T2 divided by
Rk. This development is illustrated in figure 9.2.

Fig. 9.2. Illustration of the thermal and electrical circuits analogy, and temperature distri-
bution for steady-state conduction in a solid medium [42].

For the convection case, heat transfer can be divided in two simultaneous contributions:
energy transfer due to molecular motion (conductive mode), and energy transfer by the
macroscopic motion of fluid parcels. The latter may be caused naturally by density gradients,
which we refer to as natural convection, and also by pressure differences induced by a pump
or a fan for example. While the analytical formula is very similar to the conduction case, the
physical nature of a fluid complexifies the full resolution because of the dependency on the

1Despite few theories on analytical derivation of this quantity, it is usually empirically measured and tabu-
lated as the property of each material.
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velocity profile u(y) and turbulence, that would normally require dealing with the Navier-
Stokes equations in a rigorous approach. For example, as depicted in figure 9.3, measuring
the heat transfer between a fluid on a solid medium is given by

Fig. 9.3. Temperature and velocity profile of convective heat transfer between a surface
and a moving fluid [42].

qc = −kfluidA
∣∣∣∣∣∂T∂y

∣∣∣∣∣
at y=0

, (9.1.5)

but the temperature gradient depends on the motion of the fluid. To circumvent the problem,
it is convenient to derive and tabulate an average convection heat transfer coefficient h̄c
depending on the empirical properties and conditions of both the fluid and the surface. The
following equation can then be applied:

qc = h̄cA∆T , (9.1.6)

where qc (W) is the rate of heat transfer by convection and ∆T the difference between the
surface temperature of the solid and the temperature of the fluid far away from the surface.
Finally, in a similar fashion to conductance, we can derive the convective resistance of a
thermal DC circuit as 1/h̄cA (K/W).

The last heat transfer mechanism, radiation, depends on the absolute temperature and
nature of the surface. From the blackbody theory, radiant energy is emitted from a surface
at a rate

qr = σAT 4 (9.1.7)

where σ is a dimensional constant equal to 5.67×10−8 (W/m2 K4). Considering the imperfect
absorption and radiation of real mediums, the previous definition normally has to be adjusted
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by dimensionlesss modulus. But like in the convective case, it is usually simpler in practice
to go with

qr = T1 − T2

h̄rA
= T1 − T2

Rr

, (9.1.8)

Rr representing an empirical radiation resistance, which depends on the considered inter-
acting components (we neglect its full computation and hide it in h̄r constant, for simplicity
purposes and because we can use empirical measurements for it).

To perform calculations on combined heat transfer systems, like the buildings application
we are considering, engineering literature works with thermal conductances U (W/K), which
are the reciprocal of thermal resistances. Formally, for the three heat transfer mechanisms
they are given by:

Conduction Uk = Ak/L , (9.1.9)

Convection Uc = h̄cA , (9.1.10)

Radiation Ur = h̄rA . (9.1.11)

Such components are then used to model thermal circuits with capacitances, sources and
inductances, which present the same mathematical properties in series and in parallel as in
traditional electrical circuits.

Starting from these basic thermodynamics principles, for this application instance we
consider their complex interactions inside a building or a closed structure. That is, we
are interested in quantifying as accurately as possible the internal temperatures of different
spatial points, which vary continuously over time, as they are affected by several factors
such as air flow, heating, ventilation and air conditioning (HVAC) controls, human bodies
and activities, sun reflections and projections, and isolation to cite only but a few. While
decades of engineering research and applied physics modeling provided relatively accurate
tools and models, deploying and scaling such methods is particularly expensive both in terms
of financial and human resources, and unrealistic for large-scale applications.

9.2. Temperature Prediction
Modern buildings and their electronic monitoring systems count several thousands,

if not millions, of frequently-sampled different measurement types. As introduced in
chapter 7, such large-scale reality combined with multi-disciplinary teams implication in
the data acquisition process, requires the definition of rigorous yet universal methodologies
and labeling systems. While the HVAC community already relies on different tagging
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standards, with the most adopted one being from the official American Society of Heating,
Refrigerating and Air-Conditioning Engineers (ASHRAE) [5], we successfully deploy in
parallel a simpler OR-based tagging system for statistical learning and control convenience.
More specifically, upon onbarding a new building, engineers (or algorithms) throughout
the world performing the installation of data acquisition must tag each measurement type
according to the dynamic system components introduced in section 1.3:

• States (X): quantities of interest describing the properties and internal character-
istics of the building itself. Represent mainly internal temperature measurement
points.
• Controls (U): allmanageable entities, directly influencing the state variables. These
include HVAC components, which are then subdivided whether they are continuous
or discretized. All their operating properties related to power, energy and other
environment-impactful resources are documented and linked for optimization, control
and tracking purposes.
• Disturbances (W): uncontrollable parameters also affecting the state variables,
such as occupancy measures, humidity, external weather, time features etc.
• Others: variables (usually specific to the considered building) that may be useful
but requires human analysis for proper classification.

While far from perfect, such definition is broad enough to be applied in practice by any
individual, regardless of its professional competencies or academic specialization.

Once properly identified, and with enough historical data (usually around 4-6 weeks),
all samples stored in the data base are manipulated in groups according to their respective
categories or subdivision. Usual data treatments and analysis are applied: outlier detection,
interpolation for small data gaps and data subsets for larger ones, one-hot encoding for
categories and normalization to enumerate only but a few. These "clean" points are then
processed automatically into a supervised learning format for temperature prediction,
according to the following steps:

(1) State variables are placed as regression targets, duplicated, concatenated and shifted
along the time dimension to match the desired prediction horizon and granularity
(usually around 2 hours with 5 minutes intervals).

(2) State variables are also used as features, but only up to the current time step, since
we predict their value at time index t+ 1 and onwards.
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(3) Control variables are duplicated and shifted to augment the features matrix with
both their historical and future values (to simulate different trajectories resulting
from different controls).

(4) Disturbances are also included in the features matrix, with the columns known in the
future time steps (like for weather prediction or time features) treated identically as
for the controls.

(5) Resulting matrices are then reshaped into (lists of) tensors to match the (multi-
headed and multi-tailed) deep learning architecture(s) chosen for the prediction task,
with a specific care to include all available knowledge in the input features.

An example of the aforementioned automated conversion process from historical time series
data is illustrated in the figure below.

Fig. 9.4. Automated supervised learning conversion example from historical time series
data, using dynamic system components X (states), U (controls) and W (disturbances) to
perform functional modeling.

Using multiple channels for the inputs, in a deep multi-modal learning fashion, allows an
efficient combination of all data types regardless of their nature or temporal granularity2.
Furthermore, this separation allows channel-specific operations like convolutions, which can
later be re-used as feature detectors or for transfer learning purposes. This approach can
also be used on the targets, creating separate output channels for each individual zone
or floor of the considered building, just like in the multi-tailed DQN presented in section 7.2.1.

2Some input variables, like weather predictions, have hourly granularity unlike the vast majority of the
remaining data which has 5 minutes sampling frequency.

143



A single model is usually sufficient to predict all temperature points in small or medium-
sized buildings, but larger instances like skyscrapers or commercial centers require division
into sub-models, based on the physical separations of the building (in terms of floor, zones
or rooms, and specific HVAC equipment reach out). With this in mind, starting from a huge
single model for all zones, we use a recursive building hierarchy to break the prediction into
progressively smaller and smaller submodels, until a satisfying validation error is obtained
for all zones. Naturally, individual problematic or biased zones can be ignored or treated
with error fitting depending on the circumstances. Applying all the described development,
in conjunction with the methodologies and deep learning architectures detailed in chapter
7, allows us to achieve predictions with an RMSE typically in the range of 0.2◦C for 2 hours
ahead predictions3; which is lower than the usual temperature sensor uncertainty of ±
0.3◦C. The best resulting deep learning architectures are: (1) the multi-scale convolutional
recurrent neural network with a slicing window (MCNN-RNN) for its efficiency (good
performance vs low calculation time), and deep bidirectional GRUs with skip connections
and Attention in terms of pure RMSE minimization. Different model types are deployed
depending on the calculation burden and prediction precision requirements for each building.

Fig. 9.5. Internal temperature observed (brown-green) and 2 hours prediction (blue-green)
for a room in an anonymized medium-sized building in Montreal (QC), Canada. Connection
with the building was temporarily lost on February 13th, which explains the absence of
prediction on this day.

3Prediction accuracy also fluctuates with the seasonality, as the distribution changes.
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Pushing the analysis further, we realize that despite relatively low classical test error
in deployment, the forecasting model lacks sensitivity to controls variation: triggering full
heating does not result in the expected physical response, i.e. temperature increase, and
vice versa for cooling. The conclusion is that the learning process generalized poorly, and
relies too heavily on historical values such as the present temperature and time inputs to
guide future predictions. Back to the drawing board, we inject some more physics into the
methodology, with the two following modifications:

(1) Replacing the absolute temperature prediction T by a regression on the temperature
difference ∆T between each sampling interval. While this approach is common and
proven practice in several machine learning literature, in the present context it also
has an important physical meaning, as heat flow is based on temperature differences.
Considering this, we also add different temperature gradients to the input features
(difference between inside and outside air temperature, between zones, temporal vari-
ations ...).

(2) Adding enthalpy as a feature. In its most fundamental form, enthalpy is defined
as H = U + pV , where U is the total energy of a thermodynamic system, and pV

(pressure of the system times its volume) the additional work required to displace
the atmosphere for its creation. But one can show with the proper thermodynamic
equations manipulations, which we omit for the sake of concision, that this quantity
is directly linked to the heat balance of the system. In practice, we use the CoolProp
package [7] to compute the fluid properties of air at a given temperature, humidity,
and at sea level pressure of 101.3 kPa.

Not only do these two additions directly solve controls sensitivity, they also reduce prediction
error down to an average RMSE of 0.15◦C. It is particularly worth noting that the inflection
points in figure 9.6 are always consistent with the real ones for the ∆T model, which is
very interesting for autoregressive applications and RL, or model-based predictive control
(MPC). Lastly, expressing the building’s state variables this way is a lot more data-efficient
and solves the seasonality problem, as temperature difference logic holds regardless of the
outside temperature, and thus enables year-round deployment on weather never seen prior
in training.

Continual real-time connectivity and tracking of thousands of points is a major techno-
logical advance, but evidently suffers from sporadic communication interruptions or signal
losses. While complete communication disconnection compromises the entire pipeline, spo-
radic or expected missing entries in deployment can be elegantly solved. In the former case,
as the information sweep is performed every 5 minutes, if one of the entries is missing or if
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Fig. 9.6. Temperature (T) and temperature difference (∆T) models principle (left) and
application in a building (right). The black dashed line represents real temperature in a
zone sampled every 5 minutes, while the yellow and red lines show 1 hour predictions using
both the T and ∆T models with a single-layer LSTM.

Fig. 9.7. Missing data treatment for deployment of prediction, whether the interruption
arises during deployment, or is expected prior to deployment (right).

a fault is detected: (1) signal is sent to competent authorities to solve the problem; (2) the
missing column is immediately taken and used as target for a supervised learning instance
with a simple MLP, placing other columns as features. Triggering this gets the prediction
back in line in less than 15 minutes, and allows control algorithms to continue they work
seamlessly. In the other case, when a specific data type is expected or known to be occa-
sionally missing prior to training, multi-stream autoencoder reconstruction pre-training is
performed as detailed in figure 9.7. While only normal auto-encoders have been explored up
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to now, a lot of improvement is possible in this area with modern literature around varia-
tional and denoising autoencoders. Finally, while these two solutions do not have rigorous
guarantees, they do perform well in practice.

9.3. Autonomous Control
In this section we consider the multi-objective problem of optimizing expenses, thermal

comfort, power peaks, energy consumption and equipment cycling in smart buildings
equipped with multiple air-handling units (AHU) such as Roof Top Units (RTU) and
connected to the electrical grid. We assume control will be applied with high granularity
(decision epochs every 15 minutes), from a remote low-computational power device having
local access to all the heating, ventilation and air-conditioning (HVAC) components inside
the building (see figure 9.8). For application realism purposes, we also consider sparse
intermittent connectivity with the remote control device, making it independent from the
central computing source except for occasional data transfers. Finally, we impose a set
of pre-defined fixed constraints on thermal values for the safety of the users inside the
buildings, which will automatically trigger a fall-back position to classical controls if needed.

Fig. 9.8. Remote high-granularity control problem considered.

147



The considered multi-objective optimization problem can be expressed as

max
T∑
t=1

{
α1
t f

1
t + α2

t f
2
t + α3

t f
3
t + α4

t f
4
t + α5

t f
5
t

}
, (9.3.1)

where t indexes time up to a horizon T , and f it and αit, i ∈ {1,2,...,5}, are the different
objective functions as depicted in Fig. 9.8, and their respective weighting coefficients. This
optimization is subject to the thermodynamics of the building, the occupants’ safety mea-
sures, and the technical specificities of the HVAC equipments.

9.3.1. Thermodynamics Modeling

Starting from the transport equation 9.1.1, we start by focusing on the diffusion term

∂u

∂t
= ∇(D · ∇u) , (9.3.2)

where D = α is the diffusion coefficient (m2s−1). Such equation is an example of the general
conservation equations of the form:

∂u

∂t
+∇(F ) = 0 , (9.3.3)

with F denoting what we call the diffusive flux. Such equation is very broad and describes
a large range of physical phenomenons including thermal conduction, passive chemical
substance dispersion, magnetic field penetration in conducting substances and a lot more.
With a constant D and in a single dimension, the equilibrium solution can easily be
computed by ueq(x) = ax+ b, where the value of the integration constants a and b are fixed
by the boundary conditions of the problem.

Defining a spatial and temporal meshing as follow4:

xj = j ×∆x , j = 0,1, ..., J − 1 , (9.3.4)

tn = n×∆t , n = 0,1,..., N , (9.3.5)

and given the initial and boundary conditions, the most intuitive approach consists in con-
verting the main equation into a finite difference for the temporal derivate, and a centered
temporal difference of second order for the second derivative of x. This leads to the very
well known Forward-in-Time-Centered-in-Space (FTCS) algorithm, which an be seen as a
equivalent of the Euler method for partial differential equations (PDEs):

4The time iteration index n goes up to N because n = 0 is used for the initial condition.
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un+1 − un

∆t = D
uj+1 − 2uj + uj−1

(∆x)2 {Finite Difference} , (9.3.6)

un+1
j = unj +

(
D∆t
(∆x)2

)
(unj+1 − 2unj + unj−1) {FTCS} . (9.3.7)

Evaluating the right term of the FTCS method at time n + 1 instead of n results in the
so-called Euler implicit method

un+1
j = unj +

(
D∆t
(∆x)2

)
(un+1

j+1 − 2un+1
j + un+1

j−1 ) {Euler Implicit} , (9.3.8)

that can be expressed under the matrix form

Kij u
n+1
j = uni . (9.3.9)

In the present context, with the pure discretized diffusion equation, the matrixK corresponds
to the tridiagonal matrix:

Kij =



b0 c0 0
a1 b1 c1

a2 b2 c2
. . . . . . . . .

aJ−2 bJ−2 cJ−2

0 aJ−1 bJ−1


(9.3.10)

with

ai = −D∆t/(∆x)2 , i = 1, ..., J − 1 , (9.3.11)

bi = 1 + 2D∆t/(∆x)2 , i = 0, ..., J − 1 , (9.3.12)

ci = −D∆t/(∆x)2 , i = 0, ..., J − 2 . (9.3.13)

One should pay careful attention upon incorporating the problem-specific boundary
conditions, as it affects the definition of both the matrix and uni .

Von Neumann numerical stability analysis consists in observing under which condition a
small perturbation of the form

unj = ξn exp(ikj∆x) , (9.3.14)

is amplified or dampened by a given numerical algorithm. It is important to understand the
meaning of the value above: the product j∆x is the discretized version of our spatial variable

149



x, so exp(ikj∆x) corresponds to the harmonic mode of wavelength ∝ k−1. The (complex)
amplitude of this mode is given by the ξn term, and will grow with time - as discretized by
n - if |ξ|2 ≡ ξ ∗ ξ > 1, where ∗ denotes the complex conjugate. The numerical stability of an
algorithm like the one we introduced can thus be tested by verifying the condition |ξ| < 1
for all values of k in the spatial domain. Our choice of the Euler implicit method relies on
the powerful result that

ξ =
(

1 + 4 D∆t
(∆x)2 sin2(k∆x/2)

)−1
, (9.3.15)

which implies that |ξ| < 1 for any combination of ∆t and ∆x. This result can be explained
by the coupling of all the nodes in the calculation. It is however important to remember,
from a physical perspective, than even if numerical stability is assured a time step and
a spatial step sufficiently small are required for an appropriate precision to capture the
underlying physics phenomenon at stake. Lastly, the Euler implicit method is the one
suggested by literature for applications with bigger disparities between characteristic times,
which is typically the case in the building HVAC scenario.

Turning our attention on the specific implicit finite-elements heat transfer implementa-
tion, we consider that each given node i: is exchanging heat with all neighbouring nodes
j and k (the latter indexes nodes with known defined temperature, a boundary condition)
through conduction, convection and radiation, expressed as an equivalent conductance U ; has
capacitance or thermal mass C = mcp (J/K) 5, where cp is the specific heat6 of the medium;
is receiving heat from a source Q. The finite difference equation can then be written:

∑
j

U t+1
ij (T t+1

j − T t+1
i ) +

∑
k

U t+1
ik (T t+1

k − T t+1
i )− Ci

∆T (T t+1
i − T ti ) + Q̇t+1

i = 0 , (9.3.16)

where Uij (W/K) is the conductance between nodes i and j (see equation 9.1.9 for specific
formulas in the conduction, convection and radiation settings), Q̇(W) the heat flow into the
node and ∆t the time step, in seconds. Defining N as the number of internal nodes, and M
as the number of nodes with known boundary temperatures, the matrix form is implemented
using the upper triangular matrix U (due to symmetry), a vector C, known connection to
temperature sources as a matrix S and heat flow into the nodes in the vector Qin.

9.3.2. Case Studies

We perform our proof of concept through building simulations by accounting the
interaction of all the major thermodynamics actors in the system: shared walls and doors
5The capacitance of an object is a measure of how much heat it can store.
6Specific heat is the amount of heat a medium requires to have a one degree temperature differential.
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between zones, open spaces and room content, external temperature, users activities, solar
radiance, and HVAC components behavior. Real historical weather temperature is used to
drive the boundary conditions of the simulation, internal thermal properties are chosen to
represent archetype building types and characteristics, and the HVAC systems considered
are RTUs with two heating stages and two cooling stages for a total of five possible control
indexes if we include the “off" position. Finally, human activities and solar contributions
are sampled from a normal stochastic distributions with parameters varying depending on
each building’s nature and schedule.

Fig. 9.9. Thermal RC circuit instances considered in the building simulation. Indepen-
dent solar, human and HVAC heat contributions are added at every internal temperature
measurement point, and the external temperature is provided from real historical data.

For building types, we consider the three following distinct instances: a house (or an
apartment) with two AHUs consuming 10kW for stage 1, and 15kW for stage 2; a retail store
with three similar but larger systems having a 20kW stage 2; and finally a small commercial
center with seven independent controllers identical to the retail store. We assume a 90%
efficiency on all equipment, meaning that 90% of the input power is converted into heating
or cooling. Each building instance (see figure 9.9) is represented by its own thermal circuit
and includes heat contributions from users, solar radiance and HVAC components in each
individual zone (see figure 9.10 for simulation parameters). The comfort zone is defined
to be between 19.5◦C and 22.5◦C, but while it is kept constant in instance A, set points
are scheduled in the two other instances to adjust the dead band between 16◦C and 26◦C
during the non-occupancy hours, from 6 PM to 6 AM. The unitary kWh electricity price
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varies during the day, taking the value of 0.132$ from 7AM to 11AM, 0.095$ from 11AM
to 3PM, 0.132$ from 3PM to 7 PM, and 0.05$ in the remaining hours. Power is charged
based on the month’s highest peak, at the rate of 14.58$/kW. While a realistic simulation
is targeted, our main objective is also to introduce a high level of variation and uncertainty,
to illustrate the generalization and adaptation capacity of our DRL controller.

Fig. 9.10. Value of the parameters used in the simulation.

To increase application realism, we perform training in a centralized fashion from a cloud
computing resource, which then transfers the weights matrix to the local remote controller.
During deployment, only the results of the forward pass are accessible to this device,
with weight updates possible only through a pre-defined schedule. To assess performance
on different deployment steps, with increasing amounts of available data, we divide the
simulation into two phases:

• Phase 1: One continuous month deployment with an initial training on two months
of similar conditions.
• Phase 2: Year-round deployment, with 8 months of initial training data and no weight
update.

Phase 1 is evaluated on January 2020 (one of the coldest months) and trained from
November 2019 to the end of December 2019, while phase 2 is trained from July 7, 2018 to
March 14, 2019, then tested from March 15, 2019 to March 15, 2020 (see figure 9.11).

For the RL side of the simulation, the environment’s partial observation includes the
following information from the previous hour up to 15 minutes before the present time:
temporal iteration’s value t, and cyclic features of the form sin(2πt/T ) and cos(2πt/T ) where
T is the episode’s length; the HVAC systems’ index; internal and external temperature;
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Fig. 9.11. Outside temperature in Montreal (QC), Canada, from July 7 2018 to March
15 2020. Data originates from the Dark Sky API [1], and the training data for phase 2 is
depicted in blue, while the test deployment data is shown in red.

temperature set points; energy consumed in each zone; power calls in each zone; and highest
building power peak since the beginning of the month. Three actions are considered for
each HVAC controller: heat (increases control index), do nothing (leaves index unchanged),
or cool (lowers control index). Cooling stage 2 is represented by the lowest control index
0, while heating stage 2 is indexed by the maximum, 4. The reward process is built as
follows: the agent receives a periodic reward of 50 at each time step while being between
the temperature set points, and -20 if outside of the range, to stimulate comfort; -15 reward
for each action different from “do nothing", to reduce useless toggling; a negative reward
proportional to the power consumption each time the current highest power peak of the
month is exceeded; a penalty linearly scaling to the energy cost at each time step; and
finally a -1000 penalty each time the temperature is 2 degrees above or below the set points.
As a safety measure, the agent is then replaced by classical controls until the temperature is
back within comfort range. The resulting mathematical system for the agent is to maximize
its return for a 24-hours period, while being exposed to all the combined reward mechanisms
described above.

The training phase of the modified DQN consists in 50 000 epochs of 24-hours episodes
simulation, using an ε-greedy policy where either a random action is chosen for every con-
troller with probability ε, or a stochastic policy using the vector of normalized Q-values as
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a probability distribution over the actions (sometimes referred to as Boltzmann Policy [28])
is applied instead. Using this methodology bolsters appropriate exploratory behavior in the
long term, while still allowing convergence towards a final optimal random policy if need be
(unlike the original algorithm always deterministically using the arg max of the Q-factors).
Starting with ε = 1, we perform a linear decrement to reach a floor value of 0.05 at 80% of the
training epochs. Optimization is achieved with the Adam [38] gradient descent algorithm,
with constraints to limit the gradient norm between -1 and 1 to avoid instability arising from
a major update. Finally, a scheduled learning rate is applied with a starting value of 0.001,
reduced to 5× 10−4 at 30% of training, then finally set to 1× 10−4 from 60% to the end of
the computation.

9.3.3. Results and Discussion

We assess the test simulations by defining Key Performance Indicators (KPI) with
respect to each initial target objective: total and individual costs for the expenses; average
daily discomfort time for thermal comfort; average daily energy consumed for energy
consumption; highest overall peak for power peaks; and total number of performed cycles
for equipment cyclability. Following these definitions lead to the conclusion that the
multi-objective optimization is successful overall, as the DQN controller outperforms or
equals its classical reactive peer for all KPIs in phase 1 (see figure 9.12), and nearly all in
phase 2 (see figure 9.13).

The only poorer performances in the year-round deployment are the ones related to
discomfort and energy. It is however important to note that the difference between both
controllers is smaller than the model’s time step in the first case, making it negligible in the
context of this simulation, while in the second case energy cost savings were still observed
despite slightly more consumed energy. Running more training epochs or having a complete
year of data would probably solve or improve these aspects. Lastly, it is worth mentioning
from a safety perspective that security measures were not triggered at any point for phase
1, and only twice for phase 2 during the coldest days of winter, illustrating the ability to
operate reliably within strictly established constraints.

Figure 9.14 visually depicts a combination of important optimal HVAC behaviors
autonomously learned by the DRL controller, which match suggested theoretical guidelines
found in the HVAC literature [5], [83]: (1) temperature barely touches the set points and
reacts pre-emptively just before doing so, (2) pre-heating in the morning is linear and with
a precise phase shift, yet respects the more restrictive set point right on time during the
occupancy schedule, (3) the central zone never triggers HVAC as it knows it will benefit
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Fig. 9.12. KPI for phase 1 deployment, comparing both the DRL controller and its classical
reactive counterpart. Results are highlighted in green when DRL performances exceeds
classical controls, and in red in the opposite case.

Fig. 9.13. KPI for phase 2 deployment, comparing both the DRL controller and its classical
reactive counterpart. Results are highlighted in green when DRL performances exceeds
classical controls, and in red in the opposite case.
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from the heat transfer and inertia of all other rooms, and (4) temperature continuously
oscillates between set points, with lagged power calls and with timing at the end of the
day to reach the larger dead band without falling into the discomfort zone, and while
successfully avoiding electricity consumption during the expensive high price hours of the
evening.

Fig. 9.14. Temperature variation in each zone for the small commercial center instance
during a typical day in January 2020. The fully colored line represents the RL agent’s result,
while the grey dashed line depicts what a classical controller would have performed under
the same conditions.

Just like figure 9.14 showed the hourly energy price awareness of the DQN controller,
figure 9.15 illustrates an important flattening behavior in the power calls of the January
2020 month, and figure 9.17 an important peaks distribution shift toward lower values
over the whole year. Such improvements are particularly important, as power-related costs
usually account for the majority of the total expenses in buildings, and are prone to change
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depending on different factors like geographic location and electrical operator contracts.
This inherent variability makes a flexible solution like DRL an ideal approach to fit a broad
range of specific eventualities by simply adapting the reward definition of the control agent.

Fig. 9.15. Instantaneous 15 minutes power calls for phase 1 of instance C.

Despite being a competing objective to thermal comfort, equipment cyclability also
shows enhancements over normal operations: for the largest instance, the number of cycles
were reduced by 10% in Spring, 28% in Summer, 11% in Autumn, and 13% in Winter. The
phenomenon can be directly observed in the control sequences comparison of instance B for
a typical day in January 2020 (see figure 9.16).

Phase 2 results highlight a very important aspect, that is, the capacity of the DRL
controller to cope well with all seasonalities and weather transitions. This aspect is usually
challenging for this type of applications, making it a noteworthy advantage of the proposed
methodology. The action set of the controller was never constrained or modified, and always
had all the heating and cooling actions available. The agent autonomously learned how
to blend efficiently heating and cooling in seasonality transitions, while properly focusing
only on the important possibilities by itself in more extreme weathers. This suggests that
while occasional retraining may be required during the first year with seasonality changes,
an important autonomy could be reached with very sparse yearly updates once a complete
year of data is obtained.
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Fig. 9.16. 24-hour control sequences on instance B for the DQN controller (left) and clas-
sical controller (right) during a typical day of January 2020.

The training phase demonstrated an important continuous stability for all instances,
with non-degrading and monotonically improving performance. Even after 80% of the
epochs completed, pursuing training with a fixed exploration rate of ε = 0.05 did not
change significantly the actual approximated optimal Q-values following new neural network
updates. Such behavior is important to monitor, as it suggests convergence toward a
stable solution, and can even be used to halt training after the optimal number of training
iterations for deployment.

Our general synthesis is that multi-system DQN controller deployment value increases
with the complexity and opportunity potential of the considered instance. That is, systems
exhibiting complex dynamics and transient behaviors which typically induce challenges to
building operators and engineers, like fluctuating energy prices or contracts, a high number of
simultaneous control components, dynamic building schedules, or user-defined set points, to
name but a few. The learning and adaptive capability of DRL methodology then becomes
highly profitable, and does not suffer from obsolescence in the long term. Applying this
solution to smaller-scale buildings like houses or simpler systems still result in improvements,
but can prove more impactful in higher volumes and with group coordination.
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Fig. 9.17. Monthly non-zero instantaneous power consumption distributions for instance
C, from March 15 2019 to March 15 2020. The red numbers on the right denote the number
of power calls over 120 kW.
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9.3.4. Real Application and Indirect Reinforcement Learning

Applying reinforcement learning on a real building instance requires a virtual twin, or
at least a proper environment model, since the poor performance of the training phase can
negatively affect human occupants’ well-being and safety. With this in mind, we proceeded
to a quick indirect reinforcement learning assessment by using ninety days of simulated data
from a classical controller to train a deep learning model on the environment’s transition
dynamics (temperature difference in the present case). That is, we used experience generated
by a standard reactive controller to train an approximate environment’s transition model,
to be able to learn an independent optimal policy using our afore-described DQN algorithm
but without affecting the environment during the learning phase. Despite a slight (expected)
loss in performance over the direct RL application, to our surprise, we are still able to
outperform a traditional controller with respect to all the objectives. This can probably be
explained by the fact that the only reward component relying on the model is the comfort.
The rest, i.e. power, energy, equipement cycling and expenses are all deterministic and can
be computed precisely for all the agent’s actions.

In the light of our results, it is our belief that DRL and its extensions can cope
with much more complex smart building instances, both in terms of scale and dynamics.
Considering this, and leveraging the aforementioned temperature prediction framework, we
are currently working on deploying our DRL method on real instances. The projection is
to first demonstrate a more realistic indirect RL proof of concept on a large-scale realistic
building simulation (using an external library from other research partners to do so) by the
end of 2020; then to proceed with real instances in 2021 if everything works as expected.

In addition to its autonomous learning capabilities directly from raw observations of any
entity, DRL reward definition can easily be tuned and adapted through a simple graphical
user interface (GUI) post-implementation to reflect different optimization objectives. Fur-
thermore, from a calculation perspective, a DQN controller presents the advantage of being
light in deployment, as only matrix multiplications are required during the forward pass
to access the policy. This can further be leveraged in the GUI to offer visualization and
simulation tools as a transparency measure to building managers and operators.
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Chapter 10

Control Distillation

Deploying statistical learning and control resources in large-scale production induces
different challenges and opportunities compared to traditional research. One of the upsides
of this reality, is the wealth and diversity of valuable content coming from different sources
like engineering, applied research from different fields, empirical knowledge, etc. In order to
take advantage of all the combined contributions, one needs to consider a proper equitable
standardized framework to fuse efficiently and seamlessly all the benefits together.

In this perspective, we conclude our journey by presenting what we believe to be an ele-
gant approach to combine and contrast multiple control resources in deployment, regardless
of their origin. We finally close the chapter by giving an insight on planned future research
and explorations to extend the material presented in the scope of this work.

10.1. Pareto Front and Multi-objective optimization
Multi-objective optimization1 is the science of optimizing k multiple, usually contending,

objective functions fi(x), i ∈ {1,2,...,k}:

max(f1(x),f2(x),...,fk(x)) (10.1.1)

subject to x ∈ X , (10.1.2)

where X is the set of feasible solutions. The reader should note that while we chose to max-
imize the objective functions, the minimization equivalent follows exactly the same principle.

It is usually impossible for a given solution to optimize simultaneously all objective
functions. Considering this reality, we introduce the concept of Pareto optimal solutions,
1Also often referred to asmulticriteria optimization, multi-objective programming, multiattribute optimization
or Pareto optimization



that is, solutions that cannot improve any objective without degrading at least one of the
others. Furthermore, a solution xa is said to (Pareto) dominate another solution xb if:

(1) fi(xa) ≥ fj(xb) ∀i ∈ {1,2,...,k}, and
(2) fj(xa) > fj(xb) for at least one index j ∈ {1,2,...,k}.

The Pareto frontier (see figure 10.1) represents the set of Pareto optimal solutions x? ∈ X,
i.e. solutions that are not dominated by any other feasible solutions.

Fig. 10.1. Illustration of the Pareto front for discretized solutions with 2 objective functions
to maximize.

10.2. State Compounding
In this section we formally introduce one of the important processes repeatedly used in

the main control distillation interface, which we refer to as state compounding. The core
idea of compounding is to take a control sequence, then to apply a high fidelity environment
transition model with all available information to calculate precisely the trajectory of
these specific controls. To reduce dimensionality, resulting states are then compressed
into a representation where classical OR can be applied, yet augmented using all infor-
mation obtained from the environment’s predicted dynamics. The full process goes as follow:

(1) Starting from a control sequence u(1),u(2),...,u(h), where h is the prediction horizon, the
environment model is applied to predict the induced future states x(1), x(2), ..., x(h) ∈
Rd.
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(2) These predicted states, usually of high dimension because of the model quality, are
then projected on their primary component of interest, x(i)

1 ∀i ∈ {1,2,...,h}, where
the xj, j ∈ {1,2,...,d} represent the state vector components. In our smart building
application, x1 is the internal temperature measurement.

(3) The primary variable is then discretized into predefined states according to a meshing
parameter ∆x1. In our case, the default value is chosen as the measuring equipment’s
uncertainty.

(4) The trajectory is finally represented as a deterministic dynamic program (DDP),
as described in section 1.2, and can consequently be considered as a shortest path
problem.

Fig. 10.2. Visual representation of the state compounding process.

10.3. The Control Distillation Interface
The control distillation interface is a mean to combine multiple proposed control

sequences, comparing them on a fair basis, and fusing their optimal sub-components
together to produce a globally optimal solution. In its most general form, the interface is
initialized with the following inputs:

• A baseline sequence 0U = {0U1,
0U2,...,

0Uz}, where every control Ui, i ∈ [1,2,...,z] is
of the form Ui = u

(1)
i ,u

(2)
i ,...,u

(h)
i , as introduced previously, and where z is the number

of sub-instances (zones). Typically, 0U can be a safe and reliable solution like the
default classical controls.
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• Individual (separable) additive objective functions κij(Ui), j ∈ {1,2,...,k}, i ∈
{1,2,...,z}. These can be optimized locally with a guarantee of improving the global
solution (for example, energy consumption) regardless of the other decisions.
• Globally-dependent objective functions λm(U), m ∈ {1,2,...,l}, that depend
on all the chosen controls (e.g. power price based on combined highest peak of
the month) and that cannot be improved locally without complete knowledge of the
whole sequence (optional).
• A set of constraints Γ, which can be refined according to each specific objective
function (optional).
• A set of unallowable sequences Φ, due to application constraints (optional).

From these inputs, the baseline solution is defined as the deployment sequence or deployment
solution Udeployment, i.e. the sequence to send to the controller when a decision is required.
The different objective functions are then calculated for this solution, to be used as reference
to quantify subsequent improvements. The whole initialization process is depicted in the
figure 10.3.

Fig. 10.3. Example of the Distillation interface initialization, for 3 sub-instances, where the
baseline sequence 0U is defined as the first deployment sequence Udeployment.

Our optimization problem consequently takes the form:

maxF = max
U

z∑
i=1

k∑
j=1

ακijκij(Ui) +
l∑

m=1
αλmλm(U) ,

subject to Γ and Φ.

where F is our objective function, and the α are the weight coefficients of the different
sub-objectives.

Once properly initialized, one of the main methods of the Distillation interface is the
control sequence injection, taking one or multiple control sequences as input regardless of
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their origin2. These sequences are then compounded (see previous section) and aggregated
to the DDP problem of each sub-instance 3.

As a set of new sequences is injected, an improve solution method can be executed
(repeatedly) to improve the control sequence of each sub-instance, and adapted whether
parallel processing is available or not. The main idea behind this method is to recombine
the optimal sub-paths of the different injected solutions to create the global optimal one4.
Starting with the easiest scenario where λ = ∅, since the compounding process already
expressed all the trajectories under a standardized DDP format, a simple shortest path
algorithm like label-correcting methods, forward chaining or backward induction can
directly be applied, resulting in an optimal solution at the sub-instance level. Specific
constraints from Γ and Φ are tracked during this process, cutting non-compliant branches
or making their objective function value equal to −∞ to avoid their consideration. All
the aforementioned operations can be easily performed with multi-processing to speed up
calculation, as each problem is independent of the others and represents an additive term
in the total objective sum. The combined global deployment solution UDeployment is then
updated with the new optimal paths (if any).

If λ 6= ∅ and globally-dependent objective functions are considered in the problem, then
more caution needs to be taken, as each sub-instance cannot simply be optimized individually
(at least not directly without introducing new mechanics). In that case, the simplest method
is that either: (1) the same procedure as before can be applied by iterating sequentially
over each sub-instance and considering the rest of them static, or (2) if multi-processing is
available, the objective function gain over the old deployment sequence can be calculated for
each sub-instance in parallel, before updating the most promising one. It is important to
note that this approach is a lot more computation heavy, and performs poorly if the nature of
the problem induces high objective function values only for specific combined controls. Of all
the content presented in this chapter, this aspect is probably one of the biggest performance
bottlenecks and the most prone to improvement in our proposed solution.

2It is however interesting to add a signature on the origin of the controls, to keep track of the most performing
contributing methodologies.
3It is worth nothing here that an input sequence can be for only a specific sub-instance.
4The reader should be aware that we are combining perfect information policies to create a solution to a
problem with uncertainty. Consequently, there is not necessarily any optimization guarantees in the real
environment. Nevertheless, we argue that the quantity of information extracted from the high-fidelity model
is directly proportional to the performance of the conversion.
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Fig. 10.4. (Top) Illustration of the control sequences injection method in the Distillation
interface, with the original deployment sequence highlighted in yellow. (Bottom) Application
of the improve solution method for the λ = ∅ case, where the F and F ′ represent respectively
the original deployment sequence objective function values, and the new shortest path one.
The reader should note that new optimal solutions were found for each sub-instance in this
example, but that may not always be the case.

10.4. Deep Reinforcement Learning Driven Distillation
Just like DeepMind leveraged hundreds of hours of statistical learning in only a few

seconds in their adapted MCTS (see Chapter 6), our objective is similarly to use all the
information learned by a DRL agent during deployment. In our case, we however face the
additional challenges of: 1) validating the control sequence’s viability as no deployment
mistakes can be made for the safety of individuals inside the environment, and 2) trying to
find a global solution combining the optimal sub-components of a set of multiple control
sequences from different origins.

As we demonstrated in the previous chapter, DRL performs very well in a shared
parameters setting for global optimization with multiple simultaneous control instances.
To this end, we expand each DRL "tail" z (for "zone" in our application) by calculating
the usual algorithm’s output5 but with respect to: (1) each individual objective functions
fi(s,u), i ∈ {1,2,...,k + l}, and (2) pre-defined weighted combined objective functions6 of
interest of the form ∑k+l

i=0 αif
z
i (s,u). The main idea here is to use the latter to produce a

strong initial baseline solution for our Distillation interface, and the former as a driver to
guide the suggestion of new control sequences toward a specific objective, while minimizing

5The usual DRL output is either a state-action value function, an advantage or a probability distribution
(policy). See chapter 6 for more details.
6We remind to the reader that fi depends on s and u here, because of the DRL method.
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Fig. 10.5. Illustration of the quantities predicted by a DRL algorithm with DRL-driven
Distillation: each tail is augmented to produce either a value function, an advantage or a
probability distribution with respect to the function illustrated on the right. One of the
weighted combined objective functions is then going to be used to initialize the baseline
solution of the Distillation interface, and the individual objective functions to build a Pareto
frontier to guide improvements.

performance losses in others.

Once the selected baseline actions are used to initialize the interface7, according to the
argmax of the chosen combined (weighted) objective function, all other external control
sequences are injected and optimized. From this point, the user has a quantitative measure
of the best available global solution, with respect to the main function F and each individual
objective functions. Looking back at the upgraded DRL, a Pareto frontier is created in
the space of its outputs with respect to each individual objective functions. The actual
resulting deployment sequence Udeployment is then identified as the starting point of a "Pareto
frontier walk" towards the closest Pareto-optimal action increasing the desired objective
function8. This closest action is then submitted to the interface, and the process is repeated
(the desired function to improve may change). This idea is in part similar to the Simplex
algorithm which travels along the vertices of the optimal solutions polyhedra, but also to
the shooting methods in some way, as only a parameter is ajusted before sampling and
assessing a new trajectory.

7In practice it can be convenient to include both the DRL and a classical default solution to validate statistical
learning.
8If the initial solution is not on the Pareto frontier, then the first returned solution is the closest one lying
on the Pareto frontier.
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Fig. 10.6. Visual representation of "Pareto walking" from the currently considered deploy-
ment solution to the nearest Pareto-optimal one increasing the target objective function.

While the proposed methodology presents no rigorous guarantees, combining it with the
distillation interface adds a safety layer that allows new proposed solutions to be ignored if
they do not improve the actual deployment one.
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Chapter 11

Conclusion and Research Avenues

Modern engineering usually involves an important unified contribution from various
disciplines, in order to deliver the state-of-the-art performances that one is typically used
to encounter in its everyday life. In this regard, we believe the work presented throughout
this thesis to be a successful combination of control theory, statistical learning, physics
and application-specific knowledge, which despite being only in its early stages, reached
a concrete society-impacting level. Building on modern deep learning, deep reinforce-
ment learning and physics content, we successfully applied and developed material for
the smart grid’s environment. While the specific energy storage application had to be
aborted for financial reason, the subsequent work accomplished in smart buildings opera-
tion and control is the starting point of many promising developments beneficial to mankind.

While some interesting results arose from this work, which also led to many valuable
lessons and precepts, in our perspective everything presented up to now represents nothing
but a mere exordium. Much as the near-infinite future explorations space is a reality we
acknowledge, we identify three major research axis we wish to develop concurrently in a
near horizon, based on our interests:

• Deep Learning: given sufficient data, deep learning is probably to this day
the most powerful function approximator available to mankind. Considering this
aspect, while what we would call classical deep learning (like the related content we
introduced in the scope of this work) results in good performances, we believe that
the future of efficient and scalable applied artificial intelligence relies on the very
recent advances in the deep learning field. To name a few examples, meta-learning
or few-shots learning, multi-task learning, Attention-based interfaces such as neural
Turing machines and many other modern developments are in our perspective the
solution to the training burden and out-of-distribution generalization problem of



neural networks. Even the concept of Attention in its most crude form is of capital
importance, as it can not only be used for artificial intelligence purposes, but can
also prove powerful in control, or with physical quantities to blend domain knowledge
with human interpretability and statistical learning.

• Reinforcement Learning and Control: the major advantage we see in develop-
ing deep reinforcement learning, is the fact that all the concomitant deep learning
advances directly impact the performance and applicability of our control arsenal.
Furthermore, like we mentioned in Chapter 6, (deep) reinforcement learning is the
subject of very intensive research with exciting novelties arising on a regular basis.
Nevertheless, despite some very interesting concepts like curiosity, or simply new
state-of-the-art algorithms to consider for implementation, an important aspect
we already highlighted is the importance to take a deeper look at all the work
done by the control and operations research community, to make parallels and
complement the related material in the artificial intelligence literature. To us, it is
this equilibrium between novelty awareness and classical literature knowledge that
is the key to a strong, efficient and minimalist optimal control infrastructure.

• Physics and Engineering: in conjunction to all aforementioned elements, we are
convinced that the injection of physics insight is the secret to the next generation
of applied artificial intelligence. By physics, we not only include empirical and
theoretical domain-specific knowledge, but also fundamental quantities, principles
and theories such as entropy, relativity, and many other Universe dynamics which
can hardly be learned from a dataset as they are the result of thousands of years
of combined human intelligence. Incorporating physics is also a medium for human
comprehension and interpretation in the behavior resulting from the statistical
learning process.

It is in this perspective that we conclude the final chapter of this volume, with the promise
of a new tome aimed at swarm intelligence and multi-agent optimization in the forthcoming
years. Through our future work we hope to reach an impactful contribution in the field
of intelligent communities, with a keen focus on the smart grid application, and with the
general aspiration of working for the greater good of Humanity.
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Résumé. L’apprentissage profond a redéfini les normes modernes et la performance dans
les domaines de la vision informatique et du traitement du langage. Avec l’accroissement des
données provenant des infrastructures de mesure de l’énergie dans les réseaux électriques,
nous assistons à un foisonnement des occasions d’optimisation dans ces réseaux. Nous consi-
dérons donc ici le problème de commande optimale des systèmes de chauffage, climatisation
et ventilation d’un bâtiment intelligent avec une infrastructure de calcul à basse puissance
et ne nécessitant que peu de communications. Pour ce faire, nous introduisons une méthode
de commande autonome, multi-système basée sur l’apprentissage par renforcement profond.
Malgré l’application de plusieurs mesures assurant un niveau de service thermique minimal,
nous démontrons des améliorations notoires en termes de coûts d’énergie, de puissance, de
confort thermique et de nombre de cycles en utilisant une adaptation de l’approche de Q-
apprentissage profond sur des cas d’espèce basés sur des simulations de modèles physiques
calibrés sur des données metéorologiques historiques. Nous quantifions les résultats de l’op-
timisation et illustrons sa flexibilité et comment cette méthode peut facilement être étendue
à des édifices de plus en plus grands en comparant sa performance avec les contrôleurs
classiques réactifs.
Mots clés : Bâtiments, Apprentissage Profond, Apprentissage par Renforcement, Consom-
mation Énergétique, Contrôle, Optimisation, Appels de Puissance, Réseaux Intelligents

Abstract. Deep learning has redefined modern standards and performance in several areas
such as computer vision and natural language processing. With increasing amounts of fre-
quently sampled data in advanced metering infrastructure, similar opportunities are readily
available for smart grid actors’ optimization. In this regard, we consider the problem of re-
mote high-granularity control with low computational power in deployment and intermittent
connectivity for heating, ventilation, and air-conditioning components in smart buildings.
Thereupon, we introduce an adapted autonomous multi-system command infrastructure
based on deep reinforcement learning. Through several deployment safety measures, we
demonstrate significant improvements in expenses, thermal comfort, energy consumption,
power peaks and equipment cycling using an adaptation of the Deep Q-Learning algorithm
on case studies of physics-based simulations relying on real historical weather data. We
quantify the resulting optimization and illustrate both the scalability and flexibility of our
approach by comparing the trained controller to its classical reactive counterparts on in-
stances requiring simultaneous control on up to seven parallel systems.
Keywords: Buildings, Deep Learning, Deep Reinforcement Learning, Energy Consump-
tion, Optimal Control, Optimization, Power Consumption, Smart Grid
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Autonomous Control in Smart Buildings: a Deep
Reinforcement Learning Approach

Ysaël Desage, François Bouffard, Senior Member, IEEE, Fabian Bastin, and Jean-Simon Venne

Abstract—Deep learning has redefined modern standards
and performance in several areas such as computer vision
and natural language processing. With increasing amounts of
frequently sampled data in advanced metering infrastructure,
similar opportunities are readily available for smart grid actors’
optimization. In this regard, we consider the problem of remote
high-granularity control with low computational power in de-
ployment and intermittent connectivity for heating, ventilation,
and air-conditioning components in smart buildings. Thereupon,
we introduce an adapted autonomous multi-system command
infrastructure based on deep reinforcement learning. Through
several deployment safety measures, we demonstrate significant
improvements in expenses, thermal comfort, energy consumption,
power peaks and equipment cycling using an adaptation of the
Deep Q-Learning algorithm on case studies of physics-based
simulations relying on real historical weather data. We quantify
the resulting optimization and illustrate both the scalability and
flexibility of our approach by comparing the trained controller
to its classical reactive counterparts on instances requiring
simultaneous control on up to seven parallel systems.

Index Terms—Buildings, Deep Learning, Deep Reinforcement
Learning, Energy Consumption, Optimal Control, Optimization,
Power Consumption, Smart Grid.

I. INTRODUCTION

ENERGY consumed in the buildings sector, both residen-
tial and commercial, accounts for near 40% of the total

worldwide energy consumption [1], and beyond 30% of CO2

emissions [2]. Considering that 230 billion square meters of
new construction is expected over the next 40 years [3], such
numbers make smart buildings one of the major actors in the
modern power grid’s infrastructure.

From this perspective, in this paper we consider the multi-
objective problem of optimizing expenses, thermal comfort,
power peaks, energy consumption and equipment cycling in
smart buildings equipped with multiple air-handling units
(AHU) such as Roof Top Units (RTU), and connected to the
electrical grid. We assume control will be applied with high
granularity (decision epochs every 15 minutes), from a remote
low-computational power device having local access to all the
heating, ventilation and air-conditioning (HVAC) components
inside the building (see Fig. 1). For application realism pur-
poses, we also consider sparse intermittent connectivity with
the remote control device, making it independent from the
central computing source except for occasional data transfers.
Finally, we impose a set of pre-defined fixed constraints on

This work was supported in part by Mitacs and by BrainBox AI labs.
Y. Desage and F. Bastin are with the Departement d’Informatique et de
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d’études et de recherche en analyse des décisions (GERAD), Montreal, QC
H3T 1J4, Canada (email: francois.bouffard@mcgill.ca).

thermal values for the safety of the users inside the build-
ings, which will automatically trigger a fall-back position to
classical controls if needed.

Fig. 1. Remote high-granularity control problem considered.

The considered multi-objective optimization problem can
be expressed as a single objective problem using weighted
contributions of the form:
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where t indexes time up to a horizon T , and f it and αit,
i ∈ {1, 2, ..., 5}, are the different objective functions as
depicted in Fig. 1, and their respective weighting coefficients.
This optimization is subject to the thermodynamics of the
building, the occupants’ safety measures, and the technical
specificities of the HVAC equipments.

Numerous approaches have been proposed in literature to
address smart building control, including dynamic program-
ming [4], [5], model-predictive control [6], and machine
learning [7], [8], to name but a few. While demonstrating
successful results, such methods are either very composition-
ally expensive in deployment, require continuous two-way
communication protocols, imply numerous hours of building-
specific engineering, or simply do not scale up properly to
large instances.

In contrast, our proposed deep reinforcement learning so-
lution leverages the rich amount of temporal observations
through a specialized recurrent deep learning architecture,



2

resolves the important exponential action space growth of
larger parallel control instances, and allows an efficient global
optimization through a shared parameter setting. Lastly, our
solution can be easily deployed in its full potential requiring
only a few matrix multiplications on the deployment device.

II. REINFORCEMENT LEARNING

Reinforcement Learning (RL) is one of the three main
machine learning (ML) paradigms where training information
is used to evaluate actions (rather than instruct), in order to
maximize a numerical reward signal defined in accordance to
a specific goal [9]. RL relies on the framework of Markov
Decision Processes (MDP), where an agent a undergoes
continuous or episodic interactions with its environment. At
each step of a sequence of discrete time steps t, up to a
horizon T ∈ [0,∞), the decision maker receives a partial
observation ot ∈ O of the real state st ∈ S the environment E
is currently in, where O and S represent the discrete finite sets
of observations and states, respectively. Based on the perceived
observation, the controller then applies its policy π to choose a
control ut from a set of allowable actions Us1, which triggers
a transition of the environment according to the probability
function Pt(st+1|st, ut) into a new state st+1 and returns a
new (partial) observation ot+1 along with a reward rt ∈ R. The
objective of the decision maker is to maximize the expected
cumulative sum of such reward, called the return:

Rt = E

[
T∑
t=0

γtrt(st, ut)

]
, (2)

where the discounting factor γ ∈ [0, 1) accounts for the
desirability of short versus long-term rewards. From this, we
define the Q-function (or Q-factors) [10] of a given policy π
as the total expected return from being in state s, applying
action u and thereafter following policy π:

Qπ(s, u) = E
[
Rt|s0 = s, u0 = u, π

]
. (3)

It is common to use a function approximator to estimate this
or other quantities in RL. When a neural network is used for
this purpose, we typically use the term deep reinforcement
learning (DRL).

A. Deep Q-Learning

The optimal Q-factors can be defined as [11]:

Q?(s, u) = max
π

E

[
T∑
t=0

γtrt(st, ut)|s0 = s, u0 = u

]
, (4)

which obey an important recursive relation known as the
Bellman Equation: starting from the intuition that if the
optimal value Q?(s′, u′) of the state st+1 = s′ at the next
time-step was known for all possible actions ut+1, then the
optimal strategy is to select that action u′ maximizing the
expected value of r+ γQ?(s′, u′). Algorithms of the classical
Q-Learning [12] family leverage this principle and convert the
Bellman equation into an iterative update of the form

1It is typical in RL to consider the same set of actions Us = U ∀s ∈ S.

Qi+1(st, ut) = Est+1

[
r+γmax

ut+1

Qi(st+1, ut+1)|st, ut
]
. (5)

The Deep Q-Network (DQN) [13] algorithm uses a deep neural
network as a function approximator to predict Q(s, u; θ) ≈
Q?(s, u), where θ denotes the parameters of the network.
These parameters are updated periodically as a supervised
learning task using a mean-squared error loss L of the dif-
ference between the target y = r+ γmaxu′ Q(s′, u′; θ−i ) and
the old estimate Q(s, u; θ):

Li(θi) = Es,u,r
[(
y −Q(s, u; θi)

)2
+ Es,u,r

[
Var′s(y)

]]
, (6)

where θ−i and Es,u,r
[
Var′s(y)

]
represent the network’s pa-

rameters from a previous iteration and the expected variance
of the target, respectively. Crude Monte Carlo estimates, or
Sample Average Approximation (SAA) are then typically used
in conjunction with incremental gradient methods to converge
to a solution.

Lastly, [13] also introduces experience replay to stabilize
learning and smooth out the training distribution, which con-
sists of storing experience tuples et = (st, ut, rt, st+1) in a
memory buffer. During the inner training loop of the algorithm,
training examples are then randomly selected and mini-batch
Q-learning updates are performed with respect to (6). This
characteristic makes the DQN an offline algorithm, where the
agent learns a different optimal policy from the one used to
act in the environment during training.

III. METHODOLOGY

Given the sequential nature arising from time dependency
in the partial observations ot, we consider a sequence-adapted
bidirectional Long Short-Term Memory (LSTM) architecture
as function approximator for the DRL (details are illustrated
in Fig. 2). We refer the interested reader to Appendix A
for a more thorough presentation of essential deep learning
concepts.

Fig. 2. Deep bidirectional LSTM architecture used as function approximator.
The grey squares represent the duplicated components for each independent
Q-function output. Activations are not explicitly shown for the LSTM layers.

From the reinforcement learning perspective, we extend
the classical DQN framework by implementing its double Q-
learning variant [14]. We then use the aforementioned neural
network architecture to directly map observation sequences
{ot−H , ..., ot−1, ot} to Q-values, where H denotes the obser-
vation history considered by the agent2. Moreover, we further

2To rigorous intents, {ot−H , ..., ot−1, ot} can be considered as the DRL
agent’s state in itself, to respect the Markovian property.
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leverage the deep learning infrastructure by considering not
only a single Q-value vector for all the possible actions like in
the original DQN algorithm, but rather parallel Q-value output
streams for every present control system (see Fig. 3). This
can be seen as a simplistic multi-agent framework adaptation,
as it allows both an important action space factorization,
and the possibility to provide system-specific actions and
granularities for each controller. It is also computation-efficient
because it requires only a single forward pass calculation,
while still benefiting from shared parameters which offer a
global generalization and optimization scheme.

Fig. 3. Proposed Double Deep Q-Network using time series adapted
deep learning architectures to map a sequence of observations
{ot−H , ..., ot−1, ot} to individual parallel Q-value streams, one for
each of the C control systems.

Despite the high potential for performance exploration and
tuning, we purposely fix the hyper-parameters of the DRL
algorithm with the objective of testing application robust-
ness and flexibility in a broad range of different instances,
while reducing the associated computational burden. This
also useful for assessing deployment autonomy, as no post-
implementation interventions are performed.

IV. CASE STUDIES

A. Case Studies’ Setup
We perform our proof of concept through building simula-

tions by accounting the interaction of all the major thermody-
namics actors in the system: shared walls and doors between
zones, open spaces and room content, external temperature,
users activities, solar radiance, and HVAC components be-
havior. Real historical weather temperature is used to drive
the boundary conditions of the simulation, internal thermal
properties are chosen to represent archetype building types and
characteristics, and the HVAC systems considered are RTUs
with two heating stages and two cooling stages for a total of
five possible control indexes if we include the “off” position.
Finally, human activities and solar contributions are sampled
from normal distributions with parameters varying depending
on each building’s nature and schedule.

For building types, we consider the three following dis-
tinct instances: a house (or an apartment) with two AHUs
consuming 10kW for stage 1, and 15kW for stage 2; a
retail store with three similar but larger systems having a
20kW stage 2; and finally a small commercial center with
seven independent controllers identical to the retail store. We
assume a 90% efficiency on all equipment, meaning that
90% of the input power is converted into heating or cooling.
Each building instance (see Fig. 4) is represented by its own
thermal circuit (the reader can refer to the Appendix B for
more technical thermodynamics and modeling details) and
includes heat contributions from users, solar radiance and
HVAC components in each individual zone (see Fig. 5 for

simulation parameters). The comfort zone is defined to be
between 19.5◦C and 22.5◦C, but while it is kept constant in
instance A, set points are scheduled in the two other instances
to adjust the dead band between 16◦C and 26◦C during the
non-occupancy hours, from 6 PM to 6 AM. The unitary kWh
electricity price varies during the day, taking the value of
0.132$ from 7AM to 11AM, 0.095$ from 11AM to 3PM,
0.132$ from 3PM to 7 PM, and 0.05$ in the remaining hours.
Power is charged based on the month’s highest peak, at the
rate of 14.58$/kW. While a realistic simulation is targeted, our
main objective is also to introduce a high level of variation
and uncertainty, to illustrate the generalization and adaptation
capacity of our DRL controller.

To increase application realism, we perform training in a
centralized fashion from a cloud computing resource, which
then transfers the weights matrix to the local remote controller.
During deployment, only the results of the forward pass
are accessible to this device, with weight updates possible
only through a pre-defined schedule. To assess performance
on different deployment steps, with increasing amounts of
available data, we divide the simulation into two phases:

• Phase 1: One continuous month deployment with an
initial training on two months of similar conditions.

• Phase 2: Year-round deployment, with 8 months of initial
training data and no weight update.

Phase 1 is evaluated on January 2020 (one of the coldest
months) and trained from November 2019 to the end of
December 2019, while phase 2 is trained from July 7, 2018 to
March 14, 2019, then tested from March 15, 2019 to March
15, 2020 (see Fig. 6).

For the RL side of the simulation, the environment’s partial
observation includes the following information from the pre-
vious hour up to 15 minutes before the present time: temporal
iteration’s value t, and cyclic features of the form sin(2πt/T )
and cos(2πt/T ) where T is the episode’s length; the HVAC
systems’ index; internal and external temperature; temperature
set points; energy consumed in each zone; power calls in each
zone; and highest building power peak since the beginning
of the month. Three actions are considered for each HVAC
controller: heat (increases control index), do nothing (leaves
index unchanged), or cool (lowers control index). Cooling
stage 2 is represented by the lowest control index 0, while
heating stage 2 is indexed by the maximum, 4. The reward
process is built as follows: the agent receives a periodic reward
of 50 at each time step while being between the temperature
set points, and -20 if outside of the range, to stimulate comfort;
a -1000 penalty each time the temperature is 2 degrees above
or below the set points; a negative reward proportional to the
power consumption each time the current highest power peak
of the month is exceeded; a penalty linearly scaling to the
energy cost at each time step; and finally a -15 reward for each
action different from “do nothing”, to reduce useless toggling.
As a safety measure, the agent is replaced by classical controls
until the temperature is back within comfort range when
temperature exceeds or falls bellow 2 degrees of the set
points. The resulting mathematical system for the agent is to
maximize its return for a 24-hours period, while being exposed
to all the combined reward mechanisms described above.
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Fig. 4. Thermal RC circuit instances considered in the building simulation. Independent solar, human and HVAC heat contributions are added at every internal
temperature measurement point, and the external temperature is provided from real historical data.

Fig. 5. Value of the parameters used in the simulation.

Fig. 6. Outside temperature in Montreal (QC), Canada, from July 7 2018 to
March 15 2020. Data originates from the Dark Sky API [15], and the training
data for phase 2 is depicted in blue, while the test deployment data is shown
in red.

B. DQN Training Parameters

The training phase of the modified DQN consists in 50 000
epochs of 24-hours episodes simulation, using an ε-greedy
policy where either a random action is chosen for every con-
troller with probability ε, or a stochastic policy using the vector
of normalized Q-values as a probability distribution over the

actions (sometimes referred to as Boltzmann Policy [16]) is
applied instead. Using this methodology bolsters appropriate
exploratory behavior in the long term, while still allowing
convergence towards a final random optimal policy, if needs be
(unlike the original algorithm always deterministically using
the arg max of the Q-factors). Starting with ε = 1, we perform
a linear decrement to reach a floor value of 0.05 at 80% of
the training epochs. Optimization is achieved with the Adam
[17] gradient descent algorithm, with constraints to limit the
gradient norm between -1 and 1 to avoid instability arising
from a major update. Finally, a scheduled learning rate is
applied with a starting value of 0.001, reduced to 5× 10−4 at
30% of training, then finally set to 1× 10−4 from 60% to the
end of the computation.

C. Results and Discussion
We assess the test simulations by defining Key Performance

Indicators (KPI) with respect to each initial target objective:
total and individual costs for the expenses; average daily
discomfort time for thermal comfort; average daily energy con-
sumed for energy consumption; highest overall peak for power
peaks; and total number of performed cycles for equipment
cyclability. Following these definitions lead to the conclusion
that the multi-objective optimization is successful overall, as
the DQN controller outperforms or equals its classical reactive
peer for all KPIs in phase 1 (see Fig. 7), and nearly all in phase
2 (see Fig. 8).

The only poorer performances in the year-round deployment
are the ones related to discomfort and energy. It is however
important to note that the difference between both controllers
is smaller than the model’s time step in the first case, making
it negligible in the context of this simulation, while in the
second case energy cost savings were still observed despite
slightly more consumed energy. Running more training epochs
or having a complete year of data would probably solve or
improve these aspects. Lastly, it is worth mentioning from a
safety perspective that security measures were not triggered
at any point for phase 1, and only twice for phase 2 during
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the coldest days of winter, illustrating the ability to operate
reliably within strictly established constraints.

Fig. 7. KPI for phase 1 deployment, comparing both the DRL controller and
its classical reactive counterpart. Results are highlighted in green when DRL
performances exceeds classical controls, and in red in the opposite case.

Fig. 8. KPI for phase 2 deployment, comparing both the DRL controller and
its classical reactive counterpart. Results are highlighted in green when DRL
performances exceeds classical controls, and in red in the opposite case.

Fig. 9 visually depicts a combination of important optimal
HVAC behaviors autonomously learned by the DRL controller,
which match suggested theoretical guidelines found in the
HVAC literature [18], [19]: 1) temperature barely touches
the set points and reacts pre-emptively just before doing so,
2) pre-heating in the morning is linear and with a precise
phase shift, yet respects the more restrictive set point right
on time during the occupancy schedule, 3) the central zone
never triggers HVAC as it knows it will benefit from the heat
transfer and inertia of all other rooms, and 4) temperature
continuously oscillates between set points, with lagged power
calls and with timing at the end of the day to reach the
larger dead band without falling into the discomfort zone, and
while successfully avoiding electricity consumption during the
expensive high price hours of the evening.

Just like Fig. 9 showed the hourly energy price awareness of
the DQN controller, Fig. 10 illustrates an important flattening

behavior in the power calls of the January 2020 month, and
Fig. 11 an important peaks distribution shift toward lower
values over the whole year. Such improvements are particu-
larly important, as power-related costs usually account for the
majority of the total expenses in buildings, and are prone to
change depending on different factors like geographic location
and electrical operator contracts. This inherent variability
makes a flexible solution like DRL an ideal approach to fit
a broad range of specific eventualities by simply adapting the
reward definition of the control agent.

Despite being a competing objective to thermal comfort,
equipment cyclability also shows enhancements over normal
operations: for the largest instance, the number of cycles were
reduced by 10% in Spring, 28% in Summer, 11% in Autumn,
and 13% in Winter. The phenomenon can be directly observed
in the control sequences comparison of instance B for a typical
day in January 2020 (see Fig. 12).

Phase 2 results highlight a very important aspect, that is,
the capacity of the DRL controller to cope well with all
seasonalities and weather transitions. This aspect is usually
challenging for this type of applications, making it a note-
worthy advantage of the proposed methodology. The action
set of the controller was never constrained or modified, and
always had all the heating and cooling actions available. The
agent autonomously learned how to blend efficiently heating
and cooling in seasonality transitions, while properly focusing
only on the important possibilities by itself in more extreme
weathers. This suggests that while occasional retraining may
be required during the first year of deployment, complete
autonomy can be reached with very sparse yearly updates once
a complete year of data is obtained or right away from the
beginning given a proper reliable model of the building.

The training phase demonstrated an important continuous
stability for all instances, with non-degrading and monotoni-
cally improving performance. Even after 80% of the epochs
completed, pursuing training with a fixed exploration rate of
ε = 0.05 did not change significantly the actual approximated
optimal Q-values following new neural network updates. Such
behavior is important to monitor, as it proves convergence
toward a stable solution, and can even be used to halt training
after the optimal number of training iterations for deployment.

Our general synthesis is that multi-system DQN controller
deployment value increases with the complexity and oppor-
tunity potential of the considered instance. That is, systems
exhibiting complex dynamics and transient behaviors which
typically induce challenges to building operators and engi-
neers, like fluctuating energy prices or contracts, a high num-
ber of simultaneous control components, dynamic building
schedules, or user-defined set points, to name but a few.
The learning and adaptive capability of DRL methodology
then becomes highly profitable, and does not suffer from
obsolescence in the long term. Applying this solution to
smaller-scale buildings like houses or simpler systems still
result in improvements, but can prove more impactful in higher
volumes and with group coordination.

V. CONCLUSION

Case studies results demonstrate the successful applica-
tion of our proposed methodology on the smart building
multi-objective optimization problem. Significant improve-
ments were observed in expenses, thermal comfort, energy
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Fig. 9. Temperature variation in each zone for the small commercial center instance during a typical day in January 2020. The fully colored line represents
the RL agent’s result, while the grey dashed line depicts what a classical controller would have performed under the same conditions.

Fig. 10. Instantaneous 15 minutes power calls for phase 1 of instance C.

consumption, power peaks and equipment cycling for different
buildings accounting multiple HVAC systems. Our proposed
DQN controller outperformed its classical reactive counter-

part with respect to all individual objectives in simulation,
and showed successful year-round deployment without any
retraining.

In addition to its autonomous learning capabilities directly
from raw observations of any entity, DRL reward definition
can easily be tuned and adapted through a simple graphical
user interface (GUI) post-implementation to reflect different
optimization objectives. Furthermore, from a calculation per-
spective, a DQN controller presents the advantage of being
light in deployment, as only matrix multiplications are required
during the forward pass to access the policy. This can further
be leveraged in the GUI to offer visualization and simulation
tools as a transparency measure to building managers and
operators.

In the light of our results, it is our belief that DRL and its
extensions can cope with much more complex smart building
instances, both in terms of scale and dynamics. Moreover,
generalization success on unseen data leads us to the premise
that our approach could be directly applied on a real building
in future work, by first performing the learning phase on a
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Fig. 11. Monthly non-zero power call distributions for instance C, from March
15 2019 to March 15 2020. The red numbers on the right denote the number
of power calls over 120 kW.

Fig. 12. 24-hour control sequences on instance B for the DQN controller
(left) and classical controller (right) during a typical day of January 2020.

digital twin with an appropriate statistical or physical model.
Given multiple adoptions, this building-scale solution could
then be extended to a larger multi-agent hierarchy at the
grid level to help electrical operators and support network
resiliency.

APPENDIX A
DEEP LEARNING

Artificial neural networks (ANN) are computing systems
structured as alternating layers of aggregated parameters and
nonlinear activation functions. Their strength comes from their
ability to learn complex hierarchical non-linear representations

of different abstraction levels from data samples and to scale
particularly well with massive datasets. Traditional fully-
connected layers can be seen as vector-to-vector mappings,
where two operations are successively applied on a given input
x: first, a linear transformation of the form

Wx+ b , (7)

where W represents the weights matrix, and b the bias vector;
then, the linearly modified outputs are fed as an argument
into a non-linear activation function σ. Typical choices of
functions are the rectified linear unit (ReLU) ≡ max(0, x),
the hyperpolic tangent ≡ tanh(x) or other sigmoid functions.
The forward pass or forward propagation of a neural network
is defined as the complete information flow from the input
layer to the output [20]. For the multi-layer perceptron (MLP),
one of the most standard ANN made of consecutive fully
connected layers, this yields:

h(i) = σ(i)
(
W (i)Th(i−1) + b(i)

)
∀ i ∈ [1, 2, ..., L+ 1] , (8)

where h(i) is the output of the i-th layer, h(0) = x, and L is
the number of hidden layers. The output h(L+1) = ŷ typically
uses a different activation function, depending on the nature
of the considered supervised learning task.

Deriving a scalar cost L(θ) from ŷ with θ =
[W (1) . . .W (L+1); b(1) . . . b(L+1)], and applying the maximum
likelihood principle on n available samples, the standard ANN
training problem has the form

min
θ

n∑
k=1

(
L
(
ŷ(k)(x(k); θ), y(k)

))
, (9)

where y denotes the real value of some predicted quantity.
From this point, the gradient of the loss with respect to each
parameter θ in the network can be computed, in a phase
referred to as back-propagation. Finally, given the uncon-
strained nonconvex differentiable optimization nature of the
problem, such instances are usually addressed with standard
(incremental) gradient-type optimization methods [21].

A. Recurrent Neural Networks

Recurrent neural networks (RNN)s [22] are designed to
leverage sequential data of the form x1, ..., xτ , by building
an internal state h updated at each sequence input xt by the
recursive relationship

ht = f(ht−1, xt; θ) . (10)

This hidden state is used as a partial summary of the task-
relevant aspects of past sequence inputs up to time t, and
can be used in different fashions, depending on how the
computational graph of the outputs is developed by the user.
Bidirectional RNNs [23] extend classical RNNs by combining
two layers of opposite direction to the same output.

Gated RNNs such as the Long Short-Term Memory [24]
(LSTM) or the Gated Recurrent Unit [25] (GRU) build on
top of classical RNNs by adding internal memory cells and
operations to control information flow through different logical
gates implemented with sigmoids. More concretly, LSTMs



8

possess a forget gate to control information kept from previous
cell states; an input gate to filter new information input from
xt and ht−1; and an output gate to control the nature of
the next hidden state ht+1. Besides being popular for solving
calculation issues known as exploding and vanishing gradient,
internal gated recurrent unit components are also very useful
because their behavior and properties can be learned along
with the rest of the parameters during the training process.

APPENDIX B
THERMODYNAMICS AND MODELING

Starting from the diffusion term in the general physics
transport equation of some quantity u, temperature in our
context :

∂u

∂t
= ∇ · (D∇u) , (11)

where D is the diffusion coefficient which we assume constant,
we define a spatial meshing of the form xj = j × ∆x, j =
0, 1, ..., J − 1 and temporal meshing tn = n × ∆t, n =
0, 1, ..., N . The time iteration index n goes up to N because
n = 0 is used to denote the initial condition.

Given the initial and boundary conditions, converting the
left-hand side of (11) into a finite difference for the temporal
derivate, and the right side into a second-order centered
temporal difference for the second derivative of x leads to
the well known explicit or Forward-in-Time-Centered-in-Space
(FTCS) algorithm [26]. Evaluating the right-hand term of the
FTCS method at time n+1 instead of n results in the so-called
Implicit Euler method:

un+1
j = unj +

( D∆t

(∆x)2

)
(un+1
j+1 − 2un+1

j + un+1
j−1 ) , (12)

that can be expressed under the matrix form

Kij u
n+1
j = uni . (13)

This method is particularly well suited for applications with
bigger disparities between characteristic times, which is the
case in thermal modeling of a building.

Focusing on the unidimensional implicit finite-elements heat
transfer implementation, we consider that each given node
i is exchanging heat with all neighbouring nodes j and k
(the latter indexes nodes with known defined temperature,
a boundary condition) through conduction, convection and
radiation, expressed as an equivalent conductance U ; has
capacitance or thermal mass C = mcp (J/K), where cp (J/kg
K) is the specific heat of the medium and m (kg) its mass;
and is receiving heat from a source Q. The finite difference
equation can then be written:

∑
j

U t+1
ij (T t+1

j − T t+1
i ) +

∑
k

U t+1
ik (T t+1

k − T t+1
i )

− Ci
∆T

(T t+1
i − T ti ) + Q̇t+1

i = 0 ,

(14)

where Uij (W/K) is the conductance between nodes i and
j, Q̇ (W) the heat flow into the node and ∆t is expressed
in seconds. The conductance for the conduction, convection

and radiation heat transfer mechanisms is respectively given
by Ak/L, h̄cA and h̄rA, where A (m2) is the area through
which heat is transferred, k (W/m K) the thermal conductivity,
L (m) the length between points i and j, and h̄c (W/K m2)
and h̄r (W/K m2) the convection and radiation heat transfer
coefficients.
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