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Résumé

Dans le contexte de l’augmentation de la part de la production énergétique provenant de
sources renouvelables imprévisibles, les prix de l’électricité sont plus volatiles que jamais.
Cette volatilité rend la prévision des prix plus difficile mais en même temps de plus grande
valeur. Dans cette recherche, une analyse comparative de 8 modèles de prévision est effectuée
sur la tâche de prédire les prix de gros de l’électricité du lendemain en France, en Allemagne,
en Belgique et aux Pays-Bas. La méthodologie utilisée pour produire les prévisions est ex-
pliquée en détail. Les différences de précision des prévisions entre les modèles sont testées
pour leur signification statistique. La méthode de gradient boosting a produit les prévisions
les plus précises, suivi de près par une méthode d’ensemble.

Mots clés: Prévision des prix de l’électricité
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Abstract

In the context of the increase in the fraction of power generation coming from unpredictable
renewable sources, electricity prices are as volatile as ever. This volatility makes forecasting
future prices more difficult yet more valuable. In this research, a benchmark of 8 forecast-
ing models is conducted on the task of predicting day-ahead wholesale electricity prices in
France, Germany, Belgium and the Netherlands. The methodology used to produce the
forecasts is explained in detail. The differences in forecast accuracy between the models are
tested for statistical significance. Gradient boosting produced the most accurate forecasts,
closely followed by an ensemble method.

Keywords: Electricity Price Forecasting
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Chapter 1

Introduction

In the past few decades, the electricity power sector has undergone a liberalization and dereg-
ulation process leading to the creation of public markets in which supply and demand from
private participants set prices. Participants in these markets consist of producers, distrib-
utors, brokers, speculators, and industrial consumers. In Europe, single country wholesale
power markets have emerged in the early 1990s followed by the creation of the European
single market in electricity now in effect [77].

Electricity has special features absent from most other commodities. First, electricity is
uneconomical to store and costly to transport long distances, which makes its distribution
across space and time complex relative to durable and fungible commodities. This feature
prevents the application of otherwise widespread arbitraging strategies such as cash-and-
carry. Second, electricity demand, and supply to a lesser extent, are inelastic. Prices are
consequently volatile, with spikes more extreme and more frequent than in other markets.
Figure 1.1 illustrates these price outliers. Third, aggregate electricity production requires
time to ramp up or down, occasionally causing oversupply and negative prices. Fourth, both
electricity supply and demand have strong daily, weekly, and yearly seasonality, as shown in
Figure 1.2. These stylized facts result in fragmented markets, both across geographies and
time horizons.

Each electricity market has idiosyncrasies of varying levels of significance regarding its
auction type(s), participant obligations, regulations, and overall market structure. In Eu-
rope, electricity trading falls in one of four market types:

(1) tailor-made transactions occur in the Over-the-counter (OTC) market, where settle-
ment can be physical or cash-settled,

(2) longer-term exposure (in the order of months) can be acquired using cash-settled
futures contracts listed on financial exchanges,

(3) auctions for day-ahead electricity delivery are conducted in the spot market1,

1While ‘spot’ usually refers to the continuously traded underlying asset in financial markets, in electricity
trading, especially in Europe, ‘spot’ usually refers to the day-ahead auction.



−500 0 500 1000 1500 2000 2500 3000
Price (€/MWh)

1

10

100

1000

10000

100000

1000000
mean: €44.97/MWh

Fig. 1.1. Illustration of extreme outlier electricity prices. The sample consists of hourly day-
ahead auction prices for France, Germany, Belgium and the Netherlands between 2005-02-08
and 2020-01-08.

(4) electricity is continuously traded in the intraday market, where last-minute imbal-
ances between supply and demand are corrected.

The day-ahead auction market, referred by (3), is the focus of this work. It is particularly
important because of the large volume traded and its role as a reference price for the OTC
and futures markets. Unlike most other organized markets, the day-ahead market is not a
continuous auction in which transactions occur at any time. Instead, participants all submit
bids and offers for delivery of electricity for each hour (or shorter timeframe) of the next day.
After the set closing time of the auction, the system operators compute a market-clearing
price (MCP) that satisfies transmission constraints between delivery nodes. The auction is
blind, because participants do not see the orders of other participants, and uniform-price,
because all transactions occur at the MCP. The MCP is the price at which the supply curve,
composed from the aggregation of the supply offers, and the demand curve, composed from
the aggregation of the demand bids, intersect. See Figure 1.3 for an actual example. Notice
that orders with negative prices are permitted, which results in occasional but rare negative
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Fig. 1.2. Seasonality in the French electricity sector. The top row displays the median
consumption forecast. The middle row displays the median production forecast for wind and
solar energy. The bottom row displays the median wholesale electricity price. For each row,
the seasonality is shown across the day (left column), across the week (middle column), and
across the year (right column).

MCPs. Those occur at the confluence of some factors: low demand, power plants that are
expensive to ramp down (e.g., nuclear), or surges in production from intermittent renewable
sources.

Accurate electricity price forecasts are valuable for every type of participant in the elec-
tricity markets. Producers able to forecast volatile prices with some accuracy can ramp up
or down their production schedules by contrasting their costs to projected prices. Distrib-
utors and bulk consumers of electricity, such as some energy-intensive factories, often have
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Fig. 1.3. Aggregated supply and demand curves for electricity for delivery in the Germany-
Luxembourg node during hour 11-12 of 2019-12-22. The market-clearing price was 37.60
€/MWh and the market-clearing volume was 23,570.2 MWh. Source https://www.epex.
com.

fixed revenues downstream while paying floating electricity prices upstream. Accurate fore-
casts allow them to hedge their risk or lock-in electricity at attractive prices. Brokers and
speculators can profit from potential mispricings.

Electricity price forecasting (EPF) requires familiarity with many adjacent disciplines.
Weather is a critical factor, impacting energy production by the increasingly significant re-
newable energies via solar irradiance for photovoltaics and wind speed for wind turbines.
For this reason, firms participating in the power markets often employ meteorologists. Elec-
tricity production, transport, and distribution are purely engineering problems, while price
formation through supply and demand lies in the realm of economics. Electricity production
is also a matter of public policy since it causes pollution, notably from burning fossil fuels
and nuclear fission.
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Chapter 2

Background and literature review

The European Power Exchange (EPEX) operates the European day-ahead electricity market
[6]. A blind auction takes place once a day, every day of the year. Anytime before 12:00 on
day D, participants can submit orders for electricity deliverable on each of the twenty-four
hours of day D+ 1. The results of the auction are published as soon as possible from 12:50.

The objective of this research is to build a model to make accurate point forecasts for
each of the day-ahead hourly prices, given all the information available before the closing of
the auction at 12:00. Note that the forecasts for each day-ahead hour are made at the same
time with the same set of available information.

The approach taken by this work is to attempt to learn the relationship between arbitrary
features and the day-ahead electricity prices from a dataset of historical values of these
features and prices. Note that other approaches not using historical data, at least not
directly, exist. For example, multi-agent simulations [57] and fundamental models [23],
in which basic physical and economic relationships drive the price of electricity, have been
applied to EPF. Such approaches are most often hybrids and used for longer-term forecasts
than the day-ahead.

Mitchell [74] provides a succinct definition of learning as used here: “A computer program
is said to learn from experience E with respect to some class of tasks T and performance
measure P , if its performance at tasks in T , as measured by P , improves with experience
E.” In our case, the experience E is the historical realizations of features and prices. The
task T is a regression; the output is a function f : Rn → R. The performance measure P is
a measure of distance between the forecasted price and the actual price (see Section 2.5).

This chapter gives an overview of the techniques used in this work. Section 2.1 surveys the
existing literature on EPF. Section 2.2 introduces data preprocessing steps often necessary
prior to modeling. Section 2.3 gives a high-level description of the models used in this work.
Section 2.4 discusses hyperparameters optimization of the models. Section 2.5 describes
metrics used to measure and contrast the accuracy of the forecasts made by the different
models. Section 2.6 proposes a test to determine the statistical significance of the metrics



described in Section 2.5. Finally, Section 2.7 introduces competitive forecasting, an adjacent
field rich in practical lessons for the objective of this work.

2.1. EPF research

Research on EPF quickly followed the creation of electricity markets in the 1990s. Since
the electricity markets involve diverse activities (engineering, economics, finance, public pol-
icy, meteorology, etc.), there has been a wide variety of methods proposed for EPF, some
more successful than others [86]. Weron [92] proposes a five-groups classification to orga-
nize EPF techniques: econometrics, computational intelligence, reduced-form, fundamental,
and multi-agent. Of those, the first two are relevant to our objective to forecast short term
electricity prices. Naturally, most techniques do not fall cleanly into one of the five groups
but rather are hybrids of two or more approaches.

2.1.1. Econometrics techniques

Econometrics techniques forecast future prices via a weighted combination of past prices
and exogenous variables such as the weather and/or electricity production and consumption.
The optimal weights for these past variables are typically found via linear regression. Such
models are autoregressive because the inclusion of past values in the forecast is meant to
capture temporal dependence in the prices. An archetypical econometrics technique is the
Autoregressive with Extra Input (ARX) model proposed by Misiorek et al. [73]:

P̂d,h = βh,0 + βh,1Pd−1,h + βh,2Pd−2,h + βh,3Pd−7,h︸ ︷︷ ︸
autoregressive effect

+ βh,4Pd−1,min︸ ︷︷ ︸
non-linear effect

+ βh,5Ld,h︸ ︷︷ ︸
load forecast

+ βh,6DSat + βh,7DSun + βh,8DMon︸ ︷︷ ︸
weekdays dummies

+εd,h

where Pd,h is the electricity price for day d and hour h, Pd,min is the minimum price on day
d, βh,i is the ith coefficient for hour h, Ld,h is the load forecast for day d and hour h, Dx

is a dummy variable for weekday x and εd,h is white noise also known as innovation. This
model was later used in multiple EPF studies [35, 56, 63, 70, 75, 89, 91]. The strength
of econometrics techniques is their interpretability. Their weakness is they have difficulty
representing nonlinear phenomena.

2.1.2. Computational intelligence techniques

Computational intelligence (CI) techniques are essentially applied statistics with more
emphasis on leveraging modern computers to estimate complex nonlinear multivariate func-
tions and less emphasis on producing confidence intervals for those estimates [42]. The most
well-known models belonging to this category are neural networks (Section 2.3.8), support
vector machines (SVMs), random forests, and gradient boosting. This work belongs to this
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lineage of forecasting techniques, and more in-depth descriptions of the techniques used are
available in Section 2.3.

In the first survey of CI techniques applied to EPF, Aggarwal, Saini and Kumar [9]
found that neural networks tend to outperform econometrics techniques, however, there was
no systematic evidence of out-performance of any model over the others on a consistent ba-
sis. Likewise, Areekul et al. [10] found that neural networks provided accurate forecasts in
simulations, and Chen et al. [25] found that a combination of neural networks and bagging
(Section 2.3.4.1) yielded accurate price forecasts on the Australian National Electricity Mar-
ket. In a recent study, Lago, De Ridder, and De Schutter [58] did a rigorous and systematic
(albeit limited to the Belgium market) comparison of forecasting techniques. They found
that CI techniques significantly outperform econometrics ones, and that neural networks
produce the most accurate forecasts among the CI techniques.

CI techniques have an unparalleled ability to model complex, nonlinear relationships.
However, they require vast amounts of data to do so, their predictions are hard to interpret
(black box models), their accuracy is sensitive to correct calibration, and they are computa-
tionally expensive.

2.2. Data preprocessing

Most learning algorithms for regression have requirements for their input data not met
by raw, real-world datasets. This section describes preprocessing steps applied to the raw
data in order to use regression algorithms.

2.2.1. Encoding

Learning algorithms most often expect real-valued input data. However, some useful
features might be binary (e.g., a day a public holiday or not) or categorical (e.g., France,
Germany, or Belgium). Encodings turn categorical features into real-valued ones.

2.2.1.1. One-hot encoding

One-hot encoding is the most common method used to transform categorical variables
into real-valued ones. It is analogous to dummy variables in statistics, which can be traced
in the literature as far back as 1854 when George Boole proposed their use to represent a
class [17]. A single categorical variable X of cardinality |X| = N is transformed into N
binary variables S1, . . . , SN , where

Si =

1.0 if X = i

0.0 otherwise
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Table 2.1 shows an example of one-hot encoding. Strengths of one-hot encoding are that
it is intuitive to understand and implemented in most statistical software. Weaknesses
are that it increases the dimensionality of the data (proportional to the cardinality of the
categorical variable) and degrades the performance of tree-based learning algorithms (see
Sections 2.3.3, 2.3.5, 2.3.6 and 2.3.7) by diluting the importance of categorical variables
compared to continuous ones [30].

Table 2.1. Example one-hot encoding of a categorical variable.

country price
Germany 40.0
France 38.0

Germany 35.0
Belgium 40.0
France 42.0
Belgium 39.0

→

Belgium France Germany price
0.0 0.0 1.0 40.0
0.0 1.0 0.0 38.0
0.0 0.0 1.0 35.0
1.0 0.0 0.0 40.0
0.0 1.0 0.0 42.0
1.0 0.0 0.0 39.0

2.2.1.2. Ordinal encoding

Ordinal encoding consists of categorical labels with arbitrary numbers. Table 2.2 shows
an example. Its strength is its simplicity. Its weakness is that some learning algorithms may
assume an ordering of the encoded variable even if there is none.

Table 2.2. Example ordinal encoding of a categorical variable.

country price
Germany 40.0
France 38.0

Germany 35.0
Belgium 40.0
France 42.0
Belgium 39.0

→

country price
1.0 40.0
2.0 38.0
1.0 35.0
3.0 40.0
2.0 42.0
3.0 39.0

2.2.1.3. Target encoding

Target encoding has for motivation to map individual values of an independent categorical
variable into the expected value of the dependant variable [72]. The categorical variable X
is replaced by Si, a Bayesian estimate of the expected value of the target variable Y given
that X = Xi:

Xi → Si
def= αi × E [Y |X = Xi] + (1− αi)× E [Y ] (2.2.1)

≈ αi ×
∑N
j=1 1 (Xj = Xi)Yj∑N
j=1 1 (Xj = Xi)

+ (1− αi)×
∑N
j=1 Yj

N
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where N is the number of samples in the dataset, 1 is the indicator function, and αi is the
frequency of Xi in the dataset:

αi
def=

∑N
j=1 1 (Xj = Xi)

N

If Xi is relatively rare in the dataset, αi is small, and the estimate is weighted toward the
(training) population mean of Y . If Xi is relatively frequent in the dataset, αi is large, and
the estimate is weighted more toward E [Y |X = Xi]. Note from Equation 2.2.1 that target
encoding can handle new data points with values of the categorical variables not present in
the training dataset. Table 2.3 displays the application of target encoding to our previous
example.

Table 2.3. Example target encoding of a categorical variable.

country price
Germany 40.0
France 38.0

Germany 35.0
Belgium 40.0
France 42.0
Belgium 39.0

→

country price
38.50 40.0
39.33 38.0
38.50 35.0
39.17 40.0
39.33 42.0
39.17 39.0

2.2.1.4. Leave-one-out encoding

Leave-one-out encoding is identical to target encoding except that the target value of a
given data point is left out when computing the encoding [4]:

Xi → Si = αi ×
∑N
j=1 1 (j 6= i)1 (Xj = Xi)Yj∑N
j=1 1 (j 6= i)1 (Xj = Xi)

+ (1− αi)×
∑N
j=1 Yj

N

This reduces the effect of outliers. Table 2.4 illustrates leave-one-out encoding.

Table 2.4. Example leave-one-out encoding of a categorical variable.

country price
Germany 40.0
France 38.0

Germany 35.0
Belgium 40.0
France 42.0
Belgium 39.0

→

country price
37.67 40.0
40.00 38.0
39.33 35.0
39.00 40.0
38.67 42.0
39.33 39.0
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2.2.2. Missing data imputation

For various reasons, notably erroneous data collection, real-world datasets often contain
missing values. Meanwhile, most learning algorithms require numerical and meaningful val-
ues as input. Data points with blanks or NaNs in one or more dimensions could be discarded
prior to modeling, however valuable data could be lost doing so. This section describes two
schemes to substitute missing values with numerical ones the learning algorithms accept as
input.

2.2.2.1. Mean imputing

Mean imputing [60] is a univariate imputing scheme. It consists merely of substituting
missing values in the ith feature by the mean of the non-missing values.

2.2.2.2. Iterative imputing

Iterative imputing [22] is a more sophisticated, multivariate approach. It works in a
round-robin fashion. Every round, a feature Xi with missing values is selected in a sequential
manner. This feature is then treated as a dependent variable and is regressed against the
other features Xj 6=i acting as the independent variables for known Xi’s. The missing features
of Xi are then filled with the prediction from this regression. The process is repeated for an
arbitrary number of iterations or until some stopping criterion is met.

A good survey of other missing data imputation methods is found in Bertsimas, Pawlowski
and Zhuo [14].

2.2.3. Input standardization

Many learning algorithms require input features to share the same scale, while for others
it may not be a requirement but help with learning nevertheless [78]. This section describes
the two most common scaling methods to standardize input data.

2.2.3.1. Z-score normalization

Z-score normalization standardizes features by removing the mean and dividing by unit
variance. The standard score Z of a sample X is calculated as:

Z = X − µ
σ

where µ and σ are respectively the mean and the standard deviation of the feature in the
training set.
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2.2.3.2. Min-Max scaling

Min-Max scaling works by scaling data to a fixed range, typically between 0 and 1. The
transformation is given by:

Xnorm = X −Xmin

Xmax −Xmin

where Xmin and Xmax are respectively the minimum and the maximum of the feature in the
training set.

Note that statistics required for the transformation (mean and standard deviation for Z-
score normalization and minimum and maximum for Min-Max scaling) are computed from
the training data, not from the validation or test data. The validation and test data must
be standardized using the statistics computed from the training data [83].

2.2.4. Target transformation

In order to reduce the influence of outliers, the target variable can be transformed into a
uniform or normal distribution prior to learning [12]. The transformed target sample y′i are
given by:

y′i = G−1
(
F̂ (yi)

)
where yi is the raw target sample, F̂ is the empirical cumulative distribution function (CDF)
of the training dataset, G is the CDF of the uniform or normal distribution and G−1 is the
inverse CDF. See Figure 3.4 for graphs illustrating the concept.

A prediction y′j from the resulting learning algorithm is then transformed back to the
empirical distribution as follow:

yj = F̂−1
(
G
(
y′j
))

2.3. Models

Each subsection in this section describes either a learning algorithm used in this work or
a building block used in the construction of one or more of such learning algorithms.

2.3.1. Linear Regression

Linear Regression (LR) is a straightforward learning algorithm described here to provide
context and used in this work to provide a baseline model to compare the accuracy of more
sophisticated models. As explained above, the objective of a regression task is to build a
model that can take an input vector x ∈ Rn and predict the value of a scalar y ∈ R1 as its
output. The linear regression model is:

ŷ = w · x + b

where w ∈ Rn is a vector of weights and b ∈ R1 is the bias term.
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In the context of a linear regression, learning signifies finding the parameters (the weights
w and the bias b) that minimizes an error function between the predictions ŷ and the actual
values y. If the target error function is mean squared error (MSE, Section 2.5.1.1), then there
exists a closed-form solution for the optimal parameters. If the input vectors are extended
with a constant: x = [x1, . . . , xn] → [1, x1, . . . , xn] and the bias term concatenated to the
weights: w = [w1, . . . , wn]→ [b, w1, . . . , wn], then the optimal weights are:

w∗MSE =
(
XTX

)−1
XTY

where X ∈ RT×n is the design matrix made by concatenating the T input vectors together
and Y ∈ RT×1 is the vector of actual values.

In practice, computing the inverse of XTX is both computationally expensive and nu-
merically unstable, so other linear systems resolution techniques are employed. One such
technique leverages the Singular Value Decomposition (SVD) [41] X = UΣV T . The solution
becomes:

w∗MSE = V Σ−1UTY

Since the rank of Σ is smaller or equal to n, the inverse is usually easy to compute. If
the target error function is not MSE, other optimization techniques can be used to find the
optimal parameters, notably stochastic gradient descent (SGD, see Section 2.3.8.2).

2.3.2. k-Nearest Neighbors

k-Nearest Neighbors (kNN) [33] is a non-parametric method applicable to classification
and regression tasks. Unlike every other learning algorithms discussed in this work, no
training is needed. Instead, all computation takes place when trying to predict new, unseen
inputs. The predicted target for a new input is given by aggregating the k closest inputs
from the training set, for some predefined aggregation function and distance measure. For
classification tasks, the aggregation function is most often the majority vote. For regression
tasks, the aggregation function is most often the weighted average, where the weights are
either uniform or inversely proportional to the distance between the input and the neighbors
[31]. The most popular distance measure is the Euclidian distance. Strengths of kNN are
their easy interpretability and the fact that they do not impose any distribution on the
data. Weaknesses are that predictions are computationally intensive (and therefore slow)
compared to other learning algorithms, and their accuracy suffers greatly in the presence of
noisy or irrelevant features or when features lie on different scales.

2.3.3. Decision Tree

A decision tree [21] is a binary tree where each node represents a test on one of the
input features, each branch is the outcome of the test and each leaf is the target label (for
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classification tasks) or target value (for regression tasks). There exist many ways to construct
decision trees from a training dataset [81], two of which are described below.

2.3.3.1. Greedy construction of a decision tree

Greedy construction of a decision tree is a recursive top-down algorithm. At each step,
all possible splits of every input variables are evaluated, and the split yielding the lowest
average Gini impurity [39, 21] (for classification tasks) or variance (for regression tasks)
across its two child nodes is selected. This binary splitting procedure ends once any of three
stopping criteria is met:

(1) if all targets are constant within a leaf.
(2) if the number of targets within a leaf is under a minimum specified count.
(3) if the depth of the tree is over a maximum specified depth.

2.3.3.2. Random construction of a decision tree

Random construction of a decision tree is also a recursive top-down algorithm. At each
step, a random split is uniformly drawn for each input feature, using the range of values from
the training dataset. The random split that minimizes the average variance across its child
nodes is selected. The same stopping criteria as the greedy construction (Section 2.3.3.1)
are used.

2.3.3.3. Feature importances

A useful by-product of the construction of decision trees is estimates of the relative
importance of input features [61]. Since splits on features are selected in decreasing order
of contribution to the accuracy of the decision tree, features split near the top of the tree
plays a more important role in the prediction produced by the tree than features split near
the leaves of the tree. This observation can help inform which input features are useful for
the task and which ones are irrelevant.

Moreover, if multiple decision trees are trained on the same task (see Section 2.3.4),
the variance of the feature importance estimate can be reduced by averaging the feature
importance of each tree.

2.3.4. Ensemble learning

Ensemble learning is the integration of multiple learning algorithms together to produce
a single meta-learning algorithm whose predictive performance is better than any of the
constituent learning algorithms used independently. It is now well known that ensemble
methods are among the most accurate learning algorithms available [26, 76, 80]. This
section describes three ensemble methods used in this work.
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2.3.4.1. Bootstrapped aggregation

Bootstrapped aggregation [19] is most commonly referred to as bagging. It is a meta-
algorithm that combines many unstable predictors to produce a more stable one. Given a
standard training dataset of size N , M datasets of size N are sampled with replacement.
M independent predictors are then trained on each of those M bootstrapped datasets. In
order to predict a new value, the predictions from theM predictors are combined (again, via
majority votes for classification tasks and via the arithmetic mean for regression tasks). The
predictors are trained independently of each other, potentially in parallel. Bagging can often
result in a substantial decrease in variance compared to any of the underlying predictor,
sometimes at the price of a small increase in bias.

2.3.4.2. Boosting

In 1988, Kearns asked the question [53]: “this problem asks whether an efficient learning
algorithm [...] that outputs a hypothesis whose performance is only slightly better than
random guessing implies the existence of an efficient algorithm that outputs a hypothesis
of arbitrary accuracy.” Shapire [84] introduced boosting as an affirmative answer to this
question. A boosted model FT (x) is an additive model of its constituent predictors ft(x):

FT (x) =
T∑
t=1

γtft(x) (2.3.1)

where T is the total number of ensembled weak learners and γt is the learning rate (also
known as shrinkage factor). Each constituent predictor ft(x) is trained on the results of
the boosted model up until its inclusion Ft−1(x). As such, constituent of a boosted model
are trained sequentially and training cannot be parallelized. This becomes clear in the
alternative, recursive expression of Equation 2.3.1:

Ft(x) = Ft−1(x) + γtft(x) (2.3.2)

There exists multiple learning algorithms satisfying this definition, see [71] for a unifying
framework. Section 2.3.7 describes the boosting learning algorithm used in this work, gradi-
ent boosting machines.

2.3.4.3. Ensemble averaging

Ensemble averaging is the simplest useful combining method for learning algorithms. It
consists of taking the arithmetic mean of multiple regressors in the case of regression tasks
or the majority vote of multiple classifiers in the case of classification tasks. Unlike bagging
(Section 2.3.4.1) or boosting (Section 2.3.4.2), the constituents predictors usually come from
different family of models.
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2.3.5. Random Forest

Random forests (RF) [48, 20] are bagging (Section 2.3.4.1) of greedily constructed de-
cision trees (Section 2.3.3.1), with a twist: when sampling bootstrapped datasets, only a
fraction p out of N features are randomly included. Recommended values [46] are p =

√
N

for classification tasks and p = N/3 for regression tasks. The purpose of training each tree on
a subset of features is to reduce correlation between the trees, which further reduces variance
in the aggregated learner.

2.3.6. Extremely Randomized Trees

Extremely randomized trees [38], commonly referred to as extra trees, are identical to
random forests except for two differences:

(1) Extra trees use randomly constructed decision trees (Section 2.3.3.2) instead of greed-
ily constructed ones.

(2) Extra trees do not use replacement when sampling datasets. In other words, each
decision tree is constructed using the original training dataset.

2.3.7. Gradient Boosting

Gradient Boosting (GBM) [34] is an ensemble method implementing the stage-wise boost-
ing model described in Section 2.3.4.2. At each stage, the additional weak learner ft (most
commonly a greedily trained decision tree (Section 2.3.3.1)) is trained on the pseudo-residuals
of the previous stage boosted model: εt = L (y, Ft−1(x)) where L is a chosen loss function.
More explicitely:

ft(x) = argmin
f

N∑
i=1

L (yi, Ft−1(xi)) (2.3.3)

Combining Equations 2.3.2 and 2.3.3, one can see why gradient boosting is said to be optimize
a loss function by doing gradient descent in function space:

Ft(x) = Ft−1(x) + γt argmin
f

N∑
i=1

L (yi, Ft−1(xi))

F0 depends on the loss function L. For example, it is the mean of the target value if the
loss function is the mean squared error (MSE) or the median of the target value if the loss
function is the mean absolute error (MAE).

2.3.8. Feedforward Artificial Neural Network

Feedforward Artificial Neural Networks (FFANNs) are the quintessential deep learning
models [42]. The network part of the name comes from their composition of many connected
units. The neural part of the name comes from their loose inspiration on neuroscience. The
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Fig. 2.1. Schematic representation of a FFANN. Each vertice represents an activation unit
and each edge represents a weight. The unit with no input at the top of each hidden layer
is the bias unit; its role is to provide every node with a trainable constant value, analogous
to the role of the constant in a linear regression.

feedforward part of the name is because, unlike recurrent neural networks, FFANNs have no
feedback connections where outputs of the model are fed back into itself.

The building blocks of neural networks are activation units. In the case of FFANNs,
these activation units are arranged in layers: an input layer, some hidden layers, and an
output layer. See Figure 2.1 for an example architecture. Each activation unit performs a
weighted sum of the outputs of the units in the previous layer, applies a nonlinear function
(the activation function, see Section 2.3.8.1) to the total, and output the result for units in
the next layer to use. More formally:

hi,j =

g (∑ni−1
k=1 wi−1,j,k xk + bi−1) if i = 0

g (∑ni−1
k=1 wi−1,j,k hi−1,k + bi−1) otherwise

(2.3.4)
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where hi,j is the output value of the jth unit of the ith layer, g() is the activation function,
ni is the number of units in the ith layer, wi,k,j is the weight between the kth unit of the ith

layer and the jth unit of the (i+ 1)th layer, xk is the value of the kth input feature and bi is
the bias term for the (i+ 1)th layer. Equation 2.3.4 can be expressed more succinctly using
vector notation:

hi,j =

g
(
w>i−1,j x + bi−1

)
if i = 0

g
(
w>i−1,j hi−1 + bi−1

)
otherwise

Finally, the prediction ŷ of a network of depth D for input features x, in the case of a
regression task, is

ŷ = w>D−1,1 hD−1 + bD−1

The purpose of training the neural network (see Section 2.3.8.2) is to find the weights wi,j,k
than minimize a loss function between the predictions ŷ and the actual values y.

2.3.8.1. Activation functions

Activation functions introduce the nonlinearity necessary for neural networks to learn
arbitrary, nonlinear functions. The universal approximation theorem [27, 62, 44] states
that, under some mild assumptions on the activation function, a feed-forward network with
a single hidden layer with n activation units can approximate any continuous function of
n-dimensional input variables.

Given the biological inspiration of neural networks, the first activation functions mimicked
action potential firing in the cell. The most widespread first-generation activation function
was the sigmoid: gsigmoid(x) = 1/1+e−x.

Subsequently, the rectified linear unit (ReLU) was introduced: gReLU(x) = max(0, x).
ReLU has been shown to have better biological motivations, mathematical properties, and
easier trainability [43, 40]. It has become the most popular activation function in neural
networks.

Figure 2.2 displays a plot of the sigmoid and ReLU activation functions.

2.3.8.2. Training

Training a FFANN with D hidden layers means finding the weights θ = w1, . . . ,wD+1

via empirical risk minimization [90]. Define the cost function J as the average loss over the
training set:

J(θ) = 1
N

N∑
i=1

L (yi, ŷi|θ)

Training is then equivalent to perform the optimization:

θ∗ = argmin
θ
J(θ)
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Fig. 2.2. Sigmoid and ReLU activation functions.

This optimization can be done by gradient descent, by iteratively updating an estimate of θ
until a minimum is reached:

θ ← θ + γ∇θJ(θ)

where γ is the learning rate. Computing ∇θJ(θ) can be analytically and computationally
difficult, however two methods remedy this: backpropagation [82] and stochastic gradient
descent (SGD) [79, 54] respectively.

Backpropagation is short for backward propagation of errors. While the computation of a
prediction from an input sample is done by propagating computed activation values forward
through the neural network, backpropagation works by propagating the gradient of the error
∇θJ(θ) backward, from the last layer to the first one. Gradients of the (i+1)th layer are used
to compute the gradients of the ith layer, in a process reminiscing of backward induction in
dynamic programming. Consult [42] for an in-depth walkthrough of backpropagation in a
FFANN.

Unlike standard gradient descent, which computes the gradient ∇θJ(θ) on the entire
dataset, SGD only computes the gradient on a so-called “minibatch,” a small subset of the
dataset. The gradient of the minibatch is an unbiased approximation of the gradient on the
full dataset. The minibatch can be as small as a single training example, but generally, using
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more examples is more cost-effective [88]. There have been numerous improvements made to
SGD over the years [18], but the general concept stays the same. The variant currently most
used in practice is Adaptive Moment Estimation [55]. Moreover, a criterion for when to stop
the training needs to be chosen. The most popular approach is “early stopping” [85, 16]:
train the network for an arbitrarily large number of epochs1, storing the parameters and
validation error at each epoch and return the set of parameters with the lowest validation
error. Early stopping is a form of regularization, helping prevent overfitting.

2.3.8.3. Batch normalization

Batch normalization [51] is a technique to improve the training speed and stability of
artificial neural networks, therefore improving their accuracy. In essence, it consists of nor-
malizing the input features, as discussed in Section 2.2.3.1, across each minibatches instead
of across the entire dataset. Additionally, the activation values of the ith layer can also be
normalized before being fed to the (i+ 1)th layer.

If a dataset is big and the distribution of the input features fat-tailed, normalizing the
inputs across the whole dataset squeeze the vast majority of inputs near zero. Batch nor-
malization fixes this since normalization occurs only within small minibatches of data.

2.3.8.4. Dropout

Dropout [87] is a regularization technique, that is, a technique to prevent neural networks
from overfitting the training dataset. During training, for each training sample, the output
of activation units in the input or hidden layers of a FFANN are zeroed out with probability
p. p is a hyperparameter of the model, fixed before the start of training. Once training
is over, all weights in the network are multiplied by 1 − p [47] and no activation units are
canceled anymore when it comes the time to make predictions from new input samples.

Dropout works for the same reasons as bootstrapped aggregation (bagging, Section
2.3.4.1). Effectively, it is equivalent to training all potential sub-architectures of a FFANN
instead of the FFANN itself, and the predictions of the resulting model are the average of
the predictions of all sub-architectures, as with bagging.

As the architecture of the FFANN grows larger (more, wider hidden layers), the number of
sub-architectures grows exponentially. Training so many architectures independently would
be computationally impossible, but made easy and computationally cheap thanks to dropout.

Note that dropout is not exactly equivalent to bagging, because in the latter the bagged
models are independent, while in the former models (sub-architectures) share some param-
eters (weights).

1An epoch is defined as running SGD over the entire training set once.
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2.4. Hyperparameters search

The goal when creating a forecasting model using historical data is not to model past
data precisely, but rather to forecast the future accurately. The ability of a model to perform
well on previously unseen data is called generalization. Underfitting occurs when a model
fails to capture the signal from a training dataset. Overfitting occurs when a model confuses
noise for signal. Underfitting and overfitting are the two central challenges in modeling.
Capacity refers to the complexity of functions a model can learn. Underfitting models have
too little capacity. Overfitting models have too much capacity.

Training a model means finding settings that maximize generalization. Settings can be
separated into two subsets: parameters and hyperparameters. Hyperparameters are settings
that control the capacity of a model. Parameters are adapted by the learning algorithm itself.
For example, in a polynomial regression ŷi = ∑N

j=0 βjx
j
i , the degree of the polynomial N is a

hyperparameter, and the coefficients β are parameters. Table 4.2 shows the hyperparameters
for each learning algorithm introduced in Section 2.3.

Best practices when training a model are to separate a dataset in three subsets as early as
possible in the data preparation process: the training set, the validation set and the test set.
The test set is kept aside until the training process is fully completed. It is used to compute
the out-of-sample error, which gives the expected performance of the model on new inputs.
The parameters of the model are trained with different combinations of the hyperparameters
on the training set, and the model with the combination of hyperparameters that yield
the best performance on the validation set is deemed the best. Since hyperparameters
control the capacity of the model, they cannot be optimized on the training set, because the
hyperparameters yielding the maximum capacity would always come out ahead, resulting in
overfitting.

In modeling, the samples in the dataset are often assumed to be IID: independent and
identically distributed. This assumption considerably facilitates the assignment of samples to
the training, validation, and test sets: randomly assign data points uniformly in the desired
proportions. For time series, especially the ones considered in this work, these assumptions
are incorrect. Data points close to each other in time have correlation (therefore are not
independent), and the data generation distribution changes over time (therefore the samples
are not identically distributed). This breach of IID assumptions is particularly marked for
the dataset described in Section 3.2, notably because of the marked increase in renewable
electricity production over the period spanning the dataset. It is therefore critical to prevent
information from the future to contaminate the validation and test sets, otherwise, models
would use information not available at the time of the forecast and their performance would
be overestimated.
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Fig. 2.3. Stylized walk-forward validation example. Di is the ith day, Tj is the jth training
set, and Vj is the jth validation set. In this made-up example, the training sets start with a
length of three days and expand, while the validation sets all have a length of one day.

Two schemes are commonly used to validate hyperparameters for time series datasets:
contiguous data splits and walk-forward validation. With contiguous data splits, the dataset
is split into three contiguous subsets: training, validation, and test, ordered chronologically.
See Figure 3.2b for an illustration. This validation scheme is the one used in [58, 59]. In
walk-forward validation [28], the model is trained multiple times using an expending-length
training set and a fixed-length validation set. See Figure 2.3 for a stylized illustration.

2.5. Performance metrics

Performance metrics are used to compare the relative accuracy of forecasting methods.

2.5.1. Notable forecasting performance metrics

This section describes four performance metrics, along with their strengths and weak-
nesses.

2.5.1.1. Mean Squared Error

The MSE is the most widespread error metric thanks to its tractable mathematical
properties. It is defined as

MSE def= 1
N

N∑
i=1

(yi − ŷi)2

where N is the sample size, yi is the ith actual value and ŷi is the ith predicted value. MSE
has two problems when used to measure a forecasting method’s performance [24]:

(1) Outliers dominate the value of the metric, which may or may not be desired.
(2) It is scale-dependent, so forecasts of different time series cannot be compared.

2.5.1.2. Mean Absolute Error

MAE is defined as
MAE def= 1

N

N∑
i=1
|yi − ŷi|
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MAE does not suffer from the excessive influence of outliers like the MSE, however it is also
scale-dependent.

2.5.1.3. Mean Absolute Percentage Error

Mean Absolute Percentage Error (MAPE) was, for a long time, one of the most used
performance metrics in forecasting settings. It is defined as

MAPE def= 100
N

N∑
i=1

∣∣∣∣∣yi − ŷiyi

∣∣∣∣∣
A strength of MAPE is that it is unit free; the MAPE of forecasts of different time series
can be compared directly. However, MAPE has other problems [64]:

(1) It is undefined for any actual target value of zero (yi = 0 causes a division by zero).
(2) It is asymmetric; interchanging yi and ŷi yields a different performance metric, even

if the absolute error is identical before and after the substitution. This asymmetry
causes negative errors (ŷi < yi) to be more heavily penalized than positive ones
(ŷi > yi).

2.5.1.4. Symmetric Mean Absolute Percentage Error

Symmetric Mean Absolute Percentage Error (sMAPE) addresses the asymmetry of MAPE.
It is defined as [64]:

sMAPE def= 200
N

N∑
i=1

|yi − ŷi|
|yi|+ |ŷi|

sMAPE is the performance metric used in this work.

2.5.2. Distinction between performance metrics and loss functions

It can be challenging to grasp the subtle difference between performance metrics and loss
functions. Both measure the distance between sample observations and labels predicted by
a learning algorithm. In many cases, the same function can act as the performance metric
and the loss function. However, performance metrics and loss functions play a different role
in the exercise of producing a learning algorithm.

The goal of a performance metric is to measure the prediction performance of a learning
algorithm in the context of the task at hand. It is directly related to the economic objectives
of the agent using the learning algorithm. The choice of performance metric is a decision
theory concern; the chosen performance metric should maximize the utility of the agent
using the learning algorithm. If the performance metric is appropriately chosen, an agent
should always prefer the learning algorithm with the best performance metric out of the
available ones. However, it is sometimes difficult to optimize a learning algorithm for a
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given performance metric if the latter is discontinuous or not strictly convex. In such a case,
surrogate loss functions are used.

Loss functions are an optimization parameter, similar to the learning rate in gradient
descent or population size in genetic algorithms. The goal of the optimization is to find the
learning algorithm parameters that optimize the performance metric. However, sometimes
the optimization algorithm cannot work with the performance metric directly. In those cases,
a surrogate loss function is substituted in the optimization algorithm to act as a proxy for
the performance metric. Different surrogate loss functions can act as proxies for the same
performance metric and can be treated as hyperparameters of the learning algorithm.

To illustrate this point, consider the classification task and the gradient descent opti-
mization algorithm. The objective is to classify datapoints accurately. Therefore accuracy is
the natural performance metric. However, accuracy is a step function; either a datapoint is
correctly labeled or not. Consequently, the gradient of the accuracy function is zero almost
everywhere, and gradient descent is ineffective. In order to use gradient descent effectively,
the cross-entropy loss function is substituted for accuracy. Since cross-entropy gradients have
the same sign as the accuracy function gradients, but the cross-entropy function is smooth
and strictly convex, gradient descent can effectively train a learning algorithm to optimize
accuracy.

A similar but subtler substitution is also possible for regression tasks. For example, one
might use the linear regression learning algorithm minimize the sMAPE (Section 2.5.1.4) but
use the MSE surrogate loss function since it yields a closed-form solution to the optimization
problem (Section 2.3.1).

2.6. Statistical significance of forecasts performance

While the performance metrics discussed in Section 2.5 allow us to compare the accuracy
of different forecasts, they do not guarantee that differences in accuracy are statistically
significant. The most popular approach do to so is the Diebold-Mariano test [29].

2.6.1. Diebold-Mariano test

Suppose there is a pair of forecasts with different accuracy according to a performance
metric g(y, ŷ) such as the ones in Section 2.5. Let y1, . . . , yN be the actual values, ŷ+

1 , . . . , ŷ
+
N

the predictions of the more accurate forecast, and ŷ−1 , . . . , ŷ
−
N the predictions of the less

accurate forecast. The objective is to know whether the difference in accuracy between the
two forecasts is statistically significant. Define the loss differentials to be di def= g(yi, ŷ+

i ) −
g(yi, ŷ−i ); i = 0, . . . , N . The null hypothesis of the one-sided Diebold-Mariano test is that
the predictive accuracy of the supposedly more accurate forecast is equal or worst than the
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supposedly less accurate forecast:

Diebold-Mariano

H0 : E [d] ≥ 0
H1 : E [d] < 0

It is natural to base the test on the mean of d and its variance. The mean is given by
d̄ =

∑N

i=1 di/N. The variance is more difficult to compute because the di are likely to be
autocorrelated. It can be shown that the variance of d̄ is, asymptotically,

V (d̄) ≈

[
γ0 + 2∑h−1

k=1 γk
]

N
(2.6.1)

where h is the number of steps after which there are no more autocorrelations and γk is the
kth autocovariance of d, estimated by

γ̂k =
∑N
i=k+1(di − d̄)(di−k − d̄)

N
(2.6.2)

Note that if k = 0 then the autocovariance is equal to the population variance. The Diebold-
Mariano z-test statistic is then

DM = d̄√
V (d̄)

(2.6.3)

where the variance V (d̄) is obtained by substituting the estimated autocovariances from
Equation 2.6.2 in Equation 2.6.1. Under the null hypothesis, DM has an asymptotic standard
normal distribution.

2.6.2. Harvey’s adjustment

While the Diebold-Mariano test performs satisfactorily for moderately large samples, it
is quite oversized for small and medium sample sizes. Harvey, Laybourne and Newbold [45]
proposed two adjustments to mitigate this. First, the test statistic is substituted by

DM∗ =
√
N + 1− 2h+ h(h−1)/N

N
×DM

where DM is the original test statistic from Equation 2.6.3. Second, the test statistic is
compared to critical values from the Student’s t distribution with N − 1 degrees of freedom,
rather than from the standard normal distribution.

2.7. Competitive Forecasting

Some problems have plagued the quality and comparability of EPF research: (i) the
use of different datasets (ii) different software implementations of forecasting models (iii)
different error metrics used (iv) uneven statistical rigor across studies and (v) the reticence
of researchers to publish negative findings. Consequently, many published results contradict
each other.
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A powerful way to mitigate those problems is forecasting competitions. By explicitly
defining the success measure ex-ante and by requiring researchers to commit their forecasts
before the realized target values are available, forecasting competitions solve the selection
bias endemic in forecasting research.

The most prominent times series forecasting competitions are the Makridakis series of
competitions [66, 67, 68, 69, 65], in which hundreds of participants submit forecasts for
thousands of time series to earn prizes and recognition. The two principal takeaways for
these M-competitions are:

• Ensemble of forecasts (Section 2.3.4.3) always outperform individual “pure” models.
• The initial superiority of econometrics approaches (Section 2.1.1) over computational
intelligence ones (Section 2.1.2) has vanished in the latest iteration of the competi-
tions.

While there is currently an explosion in forecasting competitions, few address the topic
of EPF. A notable exception was the price forecasting track of the 2014 Global Energy
Forecasting Competition [49, 50], in which the top entry (out of 117) used an ensemble of
computational intelligence techniques, and the second entry used an ensemble of econometrics
techniques.
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Chapter 3

Methodology

3.1. Context

The research presented in this work is the result of a collaboration between the author and
BCM Energy [7], a private company active in the European energy markets headquartered
in Lyon, France. A sponsorship from Mitacs [8] partially funded the collaboration. The
objective of the collaboration was to apply the forecasting techniques covered in Chapter
2 to BCM Energy’s proprietary dataset. The following three chapters expose the bulk of
the findings. Some implementation details, immaterial to the conclusions of this work but
deemed intellectual property by the business partner, are omitted.

3.2. Dataset

The dataset underpinning this work consists of time series data gathered between May
21st 2015 until December 1st 2019, totalling N = 159, 036 samples. 15 input features were
selected based on the availability of the data and judgment from human experts regarding
the factors material to day-ahead electricity prices. Table 3.1 lists properties of each selected
feature. Figure 3.1 shows the frequency of missing data in each feature using a density matrix
[15].

Feature 1 is the country of delivery of the transacted electricity. Four countries were
selected based on the business interests of the industry partner and to overlap countries
studied in other recent EPF research [58, 59]. Note that the selected countries are conter-
minous. Since electricity can be imported and exported to neighboring countries, proximity
is a factor in electricity prices [59]. Features 2, 4, and 5 are the day of the week, week of the
year and hour of the day, respectively. They are included to capture the strong seasonalities
of electricity prices (Figure 1.2). Feature 4, week of the year, was chosen to capture yearly
seasonality over the month of the year or season because it is finer-grained. Feature 3, year,
is included to potentially capture a secular trend or regime change during the period of the
dataset. For example, the rise in electricity production from renewable sources over the last



Table 3.1. Properties of the input features

# name units domain fraction of
missing values

1 country N.A. France,
Germany,
Belgium,

Netherlands

0.00

2 weekday weeks 1 to 7 0.00
3 year years 2015 to 2019 0.00
4 week weeks 1 to 52 0.00
5 hour hours 1 to 24 0.00
6 holiday N.A. True or False 0.00
7 wind forecast MWh 0.0 to 44,360.4 0.41
8 solar forecast MWh 0.0 to 32,133.0 0.41
9 consumption

forecast
MWh 6,019.7 to

236,052.0
0.27

10 inbound
capacity

MWh 76 to 10,279 0.00

11 outbound
capacity

MWh 210 to 9,660 0.00

12 last trade price Euros (€) -21.00 to 220.00 0.23
13 last trade size MWh 3 to 1,000 0.23
14 last trade age seconds 0 to 31,590 0.23
15 previous day

price
Euros (€) -500.00 to

874.01
0.00

few years plausibly translates into a greater influence of climatic conditions on electricity
prices. Everything else equal, electricity consumption is usually lower during the holidays.
Whether a given day is a public holiday or not is therefore included as feature 6. Features 7
and 8 are wind and solar electricity production forecasts, respectively. Wind speed and solar
irradiance forecasts were excluded because it is hoped that wind and solar electricity produc-
tion forecasts encapsulate all the information provided by them. Feature 9 is an electricity
consumption forecast. The wind production forecast, the solar production forecast, and the
consumption forecasts are produced by Réseau de Transport d’Électricité (RTE, [5]) in the
case of France and by IHS Markit [3] in the case of Germany, Belgium, and the Netherlands.
Features 10 and 11 are cumulative inbound and outbound transmission capacity, respectively.
The European Network of Transmission System Operators for Electricity (ENTSO-E, [2])
publishes bidirectional transmission capacity between each conterminous EU member coun-
tries. Supply and demand imbalances between countries cannot be netted out if there is
insufficient transmission capacity, affecting equilibrium prices. In order to prevent an ex-
plosion in the number of features, the transmission capacities are summarized by summing
the inbound and outbound transmission capacities for each country. The European Energy
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Fig. 3.1. Density matrix of the features in the dataset. Blank lines signify missing values.

Exchange AG (EEX, [1]) conducts a parallel, continuous auction for cash-settled futures
whose underlying is the average of EPEX day-ahead hourly auction prices. The activity on
these futures is a useful proxy for the forecasts of other market participants. Feature 12, 13,
and 14 are the price, size, and age of the last market trade made before the closing of the
EPEX day-ahead auction. Finally, feature 15 is simply the previous day’s price for a given
hour for a given country. It is a naive but often accurate prediction for the next day’s price.
The target variable is the EPEX SPOT day-ahead hourly auction price for each of the four
selected countries.
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3.3. Experimental setup

This section describes how the research was conducted and expands on the implementa-
tion of the techniques used.

3.3.1. Dataset split

The very first step is to isolate an out-of-sample test set out of the entire dataset. It is
critical to do so before any other data processing work to avoid contamination or information
leakage. The last year of available data, from December 2nd, 2018 until December 1st, 2019,
was used for the out-of-sample test set. While the test set proportion of the complete dataset
is larger (22%) than typically used, it is preferable for it to cover a full year of data given the
strong yearly seasonality of electricity prices. A test set shorter than a year might promote
a model that overperforms over the period but underperforms the rest of the year.

The remainder of the dataset is used for training and validation. Unfortunately, the same
validation scheme could not be used across all models. For all models except FFANN, walk-
forward cross-validation (Section 2.4), with expanding training sets starting with a length of
730 days and validation sets of fixed 30 days length (Figure 3.2a), was used. The long training
time of the FFANN model, despite the use of graphical processing units (GPUs), prohibited
the use of the walk-forward cross-validation scheme. Instead, a contiguous validation scheme
(Section 2.4), with a single validation test set of 30 days (Figure 3.2b), was used.

3.3.2. Hyperparameters search

The next step after splitting the dataset is to perform hyperparameter optimization for
each of the models described in Section 2.3. In addition to each model’s intrinsic hyperpa-
rameters (Table 4.2, second column), the choice of technique used for each data preprocessing
step described in Section 2.2 is also treated as a hyperparameter of the model.

A figurative multidimensional grid is constructed, with each dimension being a hyper-
parameter. For hyperparameters taking on discrete values, their dimension includes every
possible value. For hyperparameters taking on ordinal or continuous values, some evenly
spaced (on a linear or logarithm scale) candidate values are selected within a reasonable
range. The size of the grid is the cartesian product of every hyperparameter’s number of
possible values. Therefore, the grid can get very large.

Each node in the hyperparameter grid represents one possible combination of hyperpa-
rameters values. For each node (Figure 3.3):

(1) data is preprocessed
(2) a model is trained on the training set
(3) the value of the sMAPE performance metric is computed for the trained model on

the validation set
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(a) Walk-forward data split used to train all models except FFANN.
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(b) Contiguous data split used to train the FFANN model.

Fig. 3.2. Illustration of the two validation schemes used.
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Fig. 3.3. Data preprocessing pipeline.

A grid search is conducted, and the node with the lowest sMAPE is chosen as the optimal
hyperparameters for a given model.

Figure 3.4 illustrates the application of the target transformation described in Section
2.2.4. The top panel shows the target values before any transformation. They are tightly
clustered around small positive values. Applying a rank-based transformation to the target
values spreads the data more evenly, which may help learning algorithms discover subtle
relationships. Target values are spread before training the models, and interim predictions
of the models are projected back to the empirical distribution before comparison to the actual
values.

Figure 3.5 illustrates the optimization learning curves of the FFANN model on the train-
ing and validation sets. One epoch signifies performing stochastic gradient optimization over
the complete training dataset. After each epoch, the loss function is computed over both
the training set and the validation set. Learning curves are particularly useful to diagnose
problems with training neural networks, such as underfitting or overfitting, or whether the
dataset is suitably representative to solve the task at hand.
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Fig. 3.4. Quantile transformation of the target values.

3.3.3. Out-of-sample testing

After the optimal hyperparameters for each model were determined, the models were
then used to predict day-ahead prices in the hold-out test set. This backtesting was done
in a walk-forward fashion. Every day D, the models forecasted D + 1 prices using only
information available before noon on day D. Each week, the parameters of each model
(but not the hyperparameters) are recalibrated, using all data available from the start of the
dataset until and including the week that just became available (expanding window). The
sMAPEs (Section 2.5.1.4) between the predicted price of each model and the actual price
were computed, and one-sided Diebold-Mariano tests (Section 2.6.3) between the relevant
forecasts were conducted.
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Fig. 3.5. Optimization learning curves for the FFANN model.
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Chapter 4

Results

4.1. Data preprocessing

Table 4.1 displays the optimal data preprocessing techniques for each model, defined as
the combination of techniques that performed best on the validation set.

Table 4.1. Optimal data preprocessing techniques for each model.

model encoding missing data input target
imputation standardization transformation

Linear Regression one-hot iterative none normal
Extra trees ordinal simple none uniform
FFANN one-hot simple none none

Random Forest one-hot iterative none uniform
Gradient Boosting one-hot iterative none normal

kNN ordinal iterative Min-Max uniform

4.2. Hyperparameters search

Table 4.2 lists the hyperparameters for each model (second column) as well as the hyper-
parameters values that produced the predictions with the lowest sMAPE on the validation set
(third column). Figure 4.1 shows the effect of influential hyperparameters on the validation
sMAPE for the kNN model, while Figure 4.2 shows the effect of influential hyperparameters
on the validation sMAPE for the tree-based models (extremely randomized trees, random
forest, and gradient boosting).

4.3. Out-of-sample model performance

Table 4.3 displays the out-of-sample sMAPE metric for each model, in increasing order
of performance (lower values are better). The Ensemble model predictions is the arithmetic
mean (Section 2.3.4.3) of the kNN, Gradient Boosting and Random Forest predictions. The



Table 4.2. Notable hyperparameters of learning algorithms with their optimal values. See
Section 2.5.2 for a clarification regarding treating surrogate loss function choice as an hyper-
parameter.

model hyperparameters optimal values
linear

regression N.A.

extra
trees

• number of trees B 250
• surrogate loss function L MSE
• stopping criterion for training indi-
vidual trees

maximum depth of trees = 10

• fraction of features to include in each
bootstrapped training sets

1.0

FFANN

• number of hidden layers 2
• number of units in each hidden layer n1 = 100, n2 = 50
• activation function of each unit (sig-
moid, ReLU, etc)

ReLU

• surrogate loss function (MSE, MAE,
Huber, etc)

MSE

• minibatch size for SGD 64
• learning rate γ for SGD 0.001
• whether to use batch normalization
or not

No

• dropout probability p 0.0
• stopping criterion to end training stop if best validation error has not im-

proved for 5 consecutive epochs

random
forests

• number of trees B 250
• surrogate loss function L MSE
• fraction of features to include in each
bootstrapped training sets

0.5

• stopping criterion for training indi-
vidual trees

nodes are expanded until all leaves are
pure or until all leaves contain less than
2 samples

gradient
boosting

• number of weak learners T 100
• learning rate γt 0.1
• surrogate loss function L MSE
• stopping criterion for training weak
learners

maximum depth of trees = 5

• fraction of features to include in each
bootstrapped training sets

0.25

kNN
• number of neighbors k 10
• distance function of the neighbors d Euclidean distance
• weighting function of the neighbors w proportional to distance

Naive model serves as benchmark; its predicted price for hour H on day D for country C is
the realized price for hour H for country C on day D − 1.
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Fig. 4.1. Effect of influential hyperparameters for kNN. All other hyperparameters held
equal at their optimal value.

Table 4.3. Out-of-sample sMAPE performance metrics. Lower values are better.

model sMAPE
Extra trees 23.37
FFANN 22.86
Naive 22.42

Linear Regression 18.47
kNN 18.06

Random Forest 14.46
Ensemble 13.68

Gradient Boosting 13.44

Table 4.4 illustrates the statistical significance of the results in Table 4.3 using one-sided
Diebold-Mariano tests. Note that 28 tests are performed; therefore the null hypothesis is
expected to be rejected with confidence p = 0.05 once by random chance alone.

4.4. Feature importances

Figure 4.3 displays the normalized importance of each input feature as inferred from the
gradient boosting model, as described in Section 2.3.3.3. Each importance is normalized so
that they sum to 1.
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Fig. 4.2. Effect of influential hyperparameters for tree-based models. All other hyperpa-
rameters held equal at their optimal value.
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Table 4.4. Statistical significance of performance metrics. The Diebold-Mariano one-sided
test null hypothesis (H0) is that forecast A’s accuracy is equal or worst to forecast B’s.
Red crosses (7) signifies H0 is not rejected and green ticks (3) signifies H0 is rejected with
confidence p = 0.01.

↓ A \ B → Extra trees FFANN Naive LR kNN RF Ensemble GBM
Extra trees -
FFANN 7 -
Naive 7 7 -
LR 3 3 3 -
kNN 3 3 3 7 -
RF 3 3 3 3 3 -

Ensemble 3 3 3 3 3 3 -
GBM 3 3 3 3 3 3 7 -

Fig. 4.3. Feature importances inferred from the gradient boosting model.
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Chapter 5

Discussion

The general takeaway of the obtained results is: forecasting day-ahead electricity prices from
the selected input features is a remarkably low signal-to-noise ratio (SNR) problem. While
the selected features do influence the day-ahead prices, a significant amount of the variance in
prices arises from factors not captured by the features used. This informational insufficiency
can be observed in Figure 4.3; most of the features are barely used to produce the price
forecast. Other manifestations of this low signal-to-noise ratio are highlighted below.

5.1. Data preprocessing

The choice of categorical variable encoding and missing data imputation techniques did
not impact the accuracy of the forecasts materially. The models achieved similar performance
irrespective of the encoding or imputation technique used. By Occam’s razor, it is therefore
wise to use the simplest encoding and imputation technique out of the trialed ones, namely
one-hot encoding and mean imputation.

All models except kNN did not benefit from input standardization. In the case of kNN
(Figure 4.1, left), the criticality of standardizing input features is intuitive; since the nearest
neighbors are determined using Euclidian distance, features with different scale would skew
the results significantly. For other models, the absence of input standardization did not
negatively impact performance.

Target transformation benefitted all models except FFANN. The benefits of target trans-
formation are most likely due to the concentration of electricity prices in a small range with
some large outliers; spreading the distribution of prices allows the models to learn separating
hyperplanes more easily.

5.2. Hyperparameters search

The most salient outcome of the hyperparameters search is that the combination of
hyperparameters that yielded the best forecast accuracy for the FFANN model is the simplest
one (fewer hidden nodes per layer, no use of batch normalization nor dropout). This outcome



is most likely due to the training dataset being too small to train more complex models.
Indeed, the dataset used (159,036 data points) is orders of magnitude smaller than the
10,000,000 data points needed to train deep models rule of thumb advocated in the literature
[42].

Another interesting observation is that increasing the number of underlying estimators
does not harm the accuracy of bagging models (random forests and extremely randomized
trees) but does reduce the accuracy of the gradient boosting model (Figure 4.2, left). This
observation is in accordance with the theory. Since bagging weights training samples equally,
adding more estimators does not cause overfitting. However, since boosting weights erroneous
training samples more and more heavily as the number of estimators grows larger, adding
more estimators causes overfitting.

5.3. Out-of-sample model performance

Gradient boosting significantly outperformed every other model besides the ensemble
method. Gradient boosting machines are a recurring theme in forecasting competitions’
leaderboards, so this outcome did not come as a surprise.

One salient finding is the relative outperformance of the ensemble method. The superior
accuracy of ensembles of models is analogous to the wisdom of the crowds1. The superiority
of ensembles also relates to Jensen’s inequality [52]. Since common performance metrics m
are convex:

m

(
n∑
i=1

wiei

)
≤

n∑
i=1

wim(ei) (5.3.1)

where ei is the error of the ith forecast and wi is the weight assigned to the ith forecast
(0 ≤ wi ≤ 1). The error of the average of n predictions (left hand side of Equation 5.3.1)
will always be lower than the average of these errors (right hand side of Equation 5.3.1).
Furthermore, the error of the ensemble cannot be larger than the largest error of the n
forecasts.

Another notable outcome is how accurate the forecasts produced by the kNN model were
despite kNN relative simplicity and interpretability. It is not clear why this is the case. One
theory is that the data generating process changed significantly throughout the dataset (in
order words, the distribution producing the samples evolved, yielding non-IID samples) and
that the entirely non-parametric nature of kNN is more robust to such regime changes than
some of the other models. Given the evolution of the European electricity markets over
the period of the dataset, with a larger contribution from irregular renewable sources, this
hypothesis is plausible.
1At the 1906 West of England Fat Stock and Poultry Exhibition in Plymouth, 787 participants entered a
contest to predict the weight of an ox for a prize. The entries ranged over 219 lbs, with an average of 1197
lbs. The actual weight of the ox was 1198 pounds; therefore the average of the predictions had an error
below 0.1%! [36]
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The performance of neural networks was unexpectedly poor despite their growing rep-
resentation in the forecasting literature. This underperformance is plausibly due to their
voracity for data; the dataset in this work being not large enough for the FFANN model
to learn the relevant relationships between the variables well. The optimization learning
curves in Figure 3.5 corroborate this hypothesis. The large gap between the training set loss
and the validation set is a symptom of an unrepresentative training set, pointing to the low
signal-to-noise ratio in the data.
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Chapter 6

Conclusion

Electricity Price Forecasting is a notably difficult task for two reasons. Firstly, it is a low
signal-to-noise ratio task. A small number of input features cannot fully capture the large
number of factors driving electricity prices. Secondly, the migration toward cleaner energy
sources results in a continually evolving electricity production landscape. Therefore, rela-
tionships from the past may not hold in the future, disabling forecasting models.

Nonetheless, this research demonstrates that standard statistical learning tools can pro-
duce satisfactory results. Furthermore, ensemble methods combining the prediction of mul-
tiple models helps in producing more accurate forecasts.

There are three promising avenues for further research. Firstly, the incorporation of addi-
tional, pertinent input features would improve the signal-to-noise ratio problem. A method-
ology to systematically test features for predictive ability while protecting against spurious
correlation would be especially beneficial. Forays into this area of research with contributions
from the field of information theory are underway [37, 13]. Secondly, there exists research on
more sophisticated methods to combine forecasts than the simple arithmetic mean, starting
with Bates and Granger seminal paper on the topic [11]. The application of these meth-
ods would likely yield improvements in forecast accuracy. Thirdly, a reformulation of the
objective could make the problem both more tractable and relevant. Instead of predicting
the 24 hourly prices of the day ahead, predict if the average day-ahead hourly price will
be under or over the price currently traded on the cash-settled futures market (EEX). The
task changes from one of regression to one of binary classification, which is possibly easier to
model. Moreover, this formulation of the task allows for the testing of the efficient-market
hypothesis (EMH) [32].
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