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ABSTRACT 

Sensory inputs are subjected to modulation by central neural networks involved in 

controlling movements. It has been shown that serotonin (5-HT) modulates sensory 

transmission. This study examines in lampreys the effects of 5-HT on sensory 

transmission to brainstem reticulospinal (RS) neurons and the distribution of 5-HT cells 

that innervate RS cells. Cells were recorded intracellularly in the in vitro isolated 

brainstem of larval lampreys. Trigeminal nerve stimulation elicited disynaptic excitatory 

responses in RS neurons, and bath application of 5-HT reduced the response amplitude 

with maximum effect at 10 µM. Local ejection of 5-HT either onto the RS cells or onto 

the relay cells decreased sensory-evoked EPSPs in RS cells. The monosynaptic EPSPs 

elicited from stimulation of the relay cells were also reduced by 5-HT. The reduction was 

maintained after blocking either NMDA or AMPA receptors. The local ejection of 

glutamate over, RS cell elicited excitatory responses that were only slightly depressed by 

5-HT. In addition, 5-HT increased the threshold for eliciting sustained depolarizations in 

response to trigeminal nerve stimulation but did not prevent them. Combined 5-HT 

immunofluorescence with axonal tracing revealed that the 5-HT innervation of RS 

neurons of the middle rhombencephalic reticular nucleus (MRRN) comes mainly from 

neurons in the isthmic region, but also from neurons located in the pretectum and caudal 

rhombencephalon. Our results indicate that 5-HT modulates sensory transmission to 

lamprey brainstem RS cells. 
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INTRODUCTION 

Sensory transmission plays a crucial role in modulating the activity of neural 

networks involved in the control of movements. In turn, the central networks exert 

powerful modulatory effect on the transmission of sensory inputs, thus gating the sensory 

inflow in relation to programmed neural activity. Several neurotransmitters systems have 

been shown to be involved in the modulation of sensory transmission. Among others, 

serotonin (5-HT) plays a very important role (Lopez-Garcia, 2006). 

Several studies have shown that 5-HT modulates sensory transmission in the 

spinal cord. In mammals, sensory transmission to superficial and deep dorsal horn 

neurons is either depressed by 5-HT, (cat; Headley et al., 1978; Anwyl, 1990; and rat: 

Lopez-Garcia & King, 1996; Lopez-Garcia, 1998; Garraway & Hochman, 2001), or in a 

small proportion of cases potentiated by 5-HT (rat: El Yassir et al., 1988; Lopez-Garcia 

& King, 1996). Depression effects have also been reported in the spinal cord of lower 

vertebrates. In tadpoles (Sillar & Simmers 1994) and lampreys, 5-HT decreases the 

amplitude of excitatory post-synaptic potentials (EPSPs) recorded in large secondary 

sensory neurons (giant interneurons) in response to stimulation of primary afferents (El 

Manira et al., 1997). In frog motoneurons, 5-HT also depresses the EPSPs induced by 

dorsal root stimulation (Ovsepian & Vesselkin, 2006). 

There is far less known about 5-HT effects on sensory transmission at the 

supraspinal level. Only one previous study in guinea pigs suggested that 5-HT depresses 

glutamate release from trigeminal primary afferents through presynaptic inhibition 

(Travagli & Williams, 1996). Thus, the aim of our study was to investigate the 
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modulatory effect of 5-HT on sensory inputs in brainstem lamprey preparation. In 

lampreys, brainstem reticulospinal (RS) cells constitute the main command neurons 

activating the spinal locomotor networks (Brodin et al., 1988; Grillner et al., 1988). They 

receive sensory inputs from several modalities to adapt locomotor activity to 

environmental conditions. For instance, strong sensory stimulation elicits sustained 

depolarizations with spiking activity in RS neurons that trigger swimming activity (Viana 

Di Prisco et al., 1997, 2000). Furthermore, the lamprey brainstem contains a rich 5-HT 

innervation (Steinbusch et al., 1981). There are 5-HT fibers surrounding the cell bodies of 

some of the large RS cells (Viana Di Prisco et al., 1994). Moreover, there is a rich 5-HT 

innervation within the trigeminal descending tract (Pierre et al., 1992), where the 

trigeminal sensory relay cells are located (Viana Di Prisco et al., 2005). The trigeminal 

inputs to RS neurons thus provide an excellent model to investigate 5-HT modulation of 

sensory transmission in the brainstem. 

In the present study, we show that 5-HT depresses sensory transmission to RS 

cells through effects on both AMPA and NMDA receptor components of the excitatory 

responses. These 5-HT effects seem to be mostly mediated by presynaptic mechanisms 

and the 5-HT innervation of RS cells seems to arise primarily from neurons in the isthmic 

region. 
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MATERIALS AND METHODS 

Animals 

Physiological experiments were carried out on 72 larval sea lampreys 

(Petromyzon marinus) ranging from 11 to 16 cm in total body length and collected from 

streams entering Lake Champlain (QC, Canada). The anatomical experiments were 

carried out on 14 adult sea lampreys ranging from 14 to 55 cm in total body length. 

Spawning phase sea lampreys were collected from St. Mary’s (ON, Canada) and Great 

Chazy (NY, USA) rivers, whereas the young adults were either collected from streams 

entering Lake Champlain (QC, Canada) or purchased from ACME Lamprey Co. 

(Harrison, ME, USA). All surgical procedures were carried out in accordance to the 

guidelines of the Canadian Council on Animal Care (CCAC) and were approved by 

University Animal Care and Use Committees at the Université de Montréal and 

Université du Québec à Montréal. 

Brainstem preparation 

The brainstem preparation was the same for both anatomical and 

electrophysiological experiments. Lampreys were anesthetized with tricaine 

methanesulphonate (MS 222, 100 mg/l, Sigma, Oakville, ON, Canada) and decapitated. 

Skin, muscles, cartilage, and viscera were removed. The brains were dissected out with 

their underlying cranium. A complete transection rostral to the mesencephalon and the 

brainstem preparation was then pinned down dorsal side up on sylgard at the bottom of a 

recording chamber. In all experiments, the preparation was continuously perfused with a 
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solution of oxygenated (with 100% O2) cold Ringer’s (8-10°C, pH 7.4) of the following 

composition (in mM): 130 NaCl, 2.1 KCl, 2.6 CaCl2, 1.8 MgCl2, 4 HEPES, 4 dextrose, 

and 1 NaHCO3. 

Electrophysiological recordings 

Giant RS cells located in the MRRN were recorded intracellularly using 

conventional glass microelectrodes filled with 4 M potassium acetate (80-130 MΩ 

resistance). These neurons are referred to as Müller cells and can be identified visually 

under the dissecting microscope (Rovainen, 1967). The intracellular signals were 

amplified by an Axoclamp 2A amplifier (Axon Instruments Inc, Foster City, CA, USA) 

in bridge mode. The signals were then digitized using the Clampex 9.2 software 

(pCLAMP9 pack program; Axon Instruments Inc) through a Digidata 1322 interface 

(Axon Instruments Inc). Off-line analysis was carried out using the Clampfit 9.2 software 

(Axon Instruments Inc). RS neurons included in this study had a stable resting membrane 

potential lower than -65 mV (mean value: -77.8  1.2 mV). 

Stimulation 

The ipsi- or contralateral trigeminal sensory root was electrically stimulated to 

elicit synaptic responses in RS cells. Stimulation was delivered with a glass-coated 

tungsten microelectrode (0.5-2 M , 10-25 µm tip exposure) using a Grass S88 stimulator 

(Grass Instrument, Quincy, MA, USA) connected to a stimulus isolation unit (SIU; Grass 

Instrument). Single shocks delivered every 30s (1-12 ms duration, 0.4-14 µA intensity) 

were systematically used to induce subthreshold responses. RS cell responses to 
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trigeminal stimulation are disynaptic and the relay cells have been shown to be located in 

the lateral parts of the brainstem, in the trigeminal descending tract (Viana Di Prisco et 

al., 2005). Electrical stimulation was also performed within the relay area to elicit 

monosynaptic EPSPs (1-7 ms duration, 1-10 µA intensity). To elicit suprathreshold 

responses, repeated trains of 2-4 pulses at 30 to 90 Hz were delivered every 0.2, 0.3 or 

0.5 s. The repeated trains were applied for 1-5 s at generally larger intensities (2-20 µA). 

This stimulation paradigm elicited sustained depolarizations in RS cells that were often 

accompanied by action potentials. The interval between successive stimulation trials was 

kept to more than 3 min. 

Drug application and solutions 

5-HT (Sigma) was bath applied (10 µM) or locally ejected (1 mM) into the relay 

cell area or directly over the soma of RS cells. The local ejections were made by applying 

positive pressure pulses through glass micropipettes using a Picospritzer (General Valve 

Corporation, Fairfield, NJ, USA). The neutral dye Fast Green (Fisher Scientific, Nepean, 

ON, Canada) was added to the solution in the ejection pipette to monitor the size and the 

exact location of the local ejections made in the brainstem. This method was used 

previously by us and others to produce very localized actions of drugs (Viana Di Prisco et 

al., 2005; Paggett et al., 2004; Ryan et al., 2007). The recording chamber outflow was 

placed near the ejection site to avoid spreading of the ejected drugs onto surrounding 

brain areas. Ejections of Fast Green mixed with Ringer’s did not produce any effect on 

RS cells. 
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In 4 experiments, Strychnine (Sigma; 5 M) and Gabazine (Tocris Bioscience, 

Ellisville, MO; 10 M), were bath applied to abolish inhibitory components in the 

synaptic responses elicited by trigeminal nerve stimulation. This was done to test possible 

potentiation of inhibitory inputs by 5-HT. 

Glutamatergic antagonists, D,L-amino-5-phosphonopentanoic (AP-5, Sigma; 100 

µM) and 6 cyano-7-nitroquinoxaline-2,3-dione (CNQX, Sigma, 20 µM) were dissolved 

in the Ringer's solution adjusted to pH 7.4 and bath applied. The two antagonists were 

washed in for 30 minutes, i.e well after their maximal effect (20 min after application; 

data not shown) was reached, before the effects of 5-HT were tested. The perfusion rate 

while bath applying the drugs was the same than under control conditions, approximately 

2-3 ml/min. 

The effect of 5-HT on glutamate-induced responses (D-Glutamic acid; Sigma, 5 

mM) was tested in the presence of tetrodotoxin (TTX; Sigma; 1 µM). One micropipette 

containing glutamate mixed with Fast Green was directly positioned over the dendrites of 

the recorded RS cell. Another micropipette containing 1 mM 5-HT was placed over the 

soma of the same cell. Glutamate ejections (20-60 ms duration) were performed before 

and after a local application of 5-HT (lasting 30 s). The glutamate ejections were 

delivered every 30 s and five responses were measured and averaged. 

Ca 2+ Imaging 

Calcium imaging was conducted in 14 experiments. The spinal cord was 

transversely sectioned at segmental level 2 or 3 and crystals of a calcium dye (Calcium 

Green-Dextran, 10,000 MW, Molecular Probes, Eugene, OR, USA) were applied to the 
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rostral stump of the cut spinal cord. The preparation was then put back into a dark 

chamber perfused with cold oxygenated Ringer's for a period ranging from 24-48 hrs. 

This consisted of the time needed for transporting the dye from the RS cut axons in the 

spinal cord to the cell bodies in the rhombencephalon. Images of labeled RS cell bodies 

were then observed on a Nikon Eclipse E600FN microscope (Nikon, Montréal, QC, 

Canada) equipped with a 20X water immersion objective and collected with an 

intensified Photometrics COOLSNAP HQ CCD camera (Photometrics; Trenton, NJ, 

USA). The images were acquired at a rate of 2-5 per second using a video image 

acquisition system. Intracellular recordings of a single RS neuron were systematically 

performed, as described above, in combination with calcium imaging. 

Data Analysis 

For each EPSPs illustrated, at least 5 traces were averaged in order to improve the 

signal to noise ratio. 5-HT induced a small hyperpolarization in the recorded RS cells 

(mean = 4.3  0.8 mV, n = 38). However for better visual comparison of the synaptic 

responses, the electrophysiological traces in all figures were superimposed in control 

conditions and in the presence of 5-HT. 

The effects of 5-HT, CNQX and AP-5 on the area of the EPSPs were measured. 

The area was measured from the beginning of the membrane potential depolarization 

after the stimulation artefact, until the membrane potential returned to resting values. The 

areas were expressed as a percentage of the control value. Throughout the paper, the data 

are indicated as the mean +/- SEM. All statistical analyses were performed on raw data 

using Origin software (OriginLab Corporation, Northampton, MA, USA). Student’s 
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paired t-tests were employed to compare drug effects between two groups. A one-way 

ANOVA followed by a post hoc Tukey analysis was used to compare means between 

more than two groups. A confidence level of P<0.05 was considered statistically 

significant. 

Metafluor software (Meta Imaging Series 5.0) was used to analyze the imaging 

data. In each experiment (n=14), the level of fluorescence in 2-6 RS cell bodies (total of 

57 RS cells) was measured and averaged for 4-5 trials before 5-HT application, 30 

minutes after, and after washout. Comparisons of the effects of 5-HT were made between 

large RS cells (more than 80 µM) and small RS cells (less than 50 µM). The calcium 

responses were expressed as the changes in fluorescence ∆F/F (%) and mean areas are 

expressed in arbitrary units. These values were used for statistical analysis. 

All figures were designed using CorelDraw 12 software (Corel Corp., Ottawa, 

ON, Canada). 

Retrograde tracing and 5-HT immunofluorescence 

Anatomical experiments were also carried out in 14 lampreys. Out of those, 9 

were injected with dextran amines and 5 with biocytin. Texas Red-conjugated dextran 

amines (TRDA, Molecular Probes) or biocytin (Sigma) were injected in the MRRN as 

follows: First, the periventricular cell layer of the MRRN was disrupted with the tip of a 

glass micropipette in order to cut afferent axons. Immediately after the lesion was made, 

fine entomological needles with re-crystallized TRDA or biocytin on their tip were used 

to inject the lesioned area. The fibers of the medial longitudinal fasciculus that coursed 

just ventral to the large MRRN cells were spared in most cases, although there is a 
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possibility that some might have been cut with the glass micropipette. The brains were 

then transferred into a chamber perfused with cold Ringer’s solution (8-10°C, 2-3 

ml/min, total volume ~70 ml) overnight. The next morning, they were transferred into a 

phosphate buffered saline solution (PBS, 0.1 M, pH 7.4, 0.9% NaCl) containing 4% 

paraformaldehyde for 24 hrs and then transferred into a phosphate buffered 30% sucrose 

solution overnight. Cryostat sections of 25 µm thickness were collected on ColorFrost 

Plus slides (Fisher Scientific) and allowed to dry on a plate at 37°C overnight. The next 

steps were carried out at room temperature unless mentioned otherwise. 

The next morning, all sections were rinsed three times for 10 min with PBS. The 

sections containing biocytin were then incubated for 1 h at room temperature in PBS 

containing streptavidin conjugated to Alexa Fluor 594 (Molecular Probes) diluted 1:200, 

and then rinsed three times 10 min in PBS. The biocytin- and the TRDA-containing 

sections were then all incubated in PBS containing 4% normal goat serum (Chemicon, 

Temecula, CA, USA) and 0.2% Triton X-100 (Fisher Scientific) for 1 hr. The latter 

solution was also used for antibody dilutions. The sections were then incubated overnight 

at 4°C in a rabbit anti-5-HT antibody (diluted 1:2000, Incstar, Stillwater, MN, USA) 

solution. After this, the sections were rinsed three times 10 min with PBS and then 

incubated in a solution containing a goat anti-rabbit antibody conjugated to Alexa Fluor 

488 (Molecular Probes) at a dilution of 1:40 for 1 hr. They were then rinsed three times 

10 min with PBS, quickly rinsed with dH2O, and left to dry on a plate at 37°C for 15 min. 

They were then mounted with Vectashield DAPI (Vector, Burlington, ON, Canada). The 

sections were observed and photographed using an E600 epifluorescence microscope 

equipped with a DXM1200 digital camera (Nikon). 
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RESULTS 

Effect of 5-HT on trigeminal evoked EPSPs 

Low intensity single shock stimulation of a trigeminal nerve systematically 

evoked subthreshold EPSPs in RS neurons (Fig. 1A; see also Viana Di Prisco et al., 

1995). Following bath application of 5-HT, a small hyperpolarization was observed in the 

recorded RS cells (mean = 4.3  0.8 mV, n=38). On the other hand, the amplitude of the 

EPSPs elicited by trigeminal nerve stimulation was markedly decreased in all RS cells 

(Fig. 1B). The size of the depression varied with the concentration of 5-HT (0.6 M = 

77.8  18.5 of control; 1 M = 80.9  15.4 of control; 5 M = 45  9.6 of control; 

10 M = 26.1  5 of control; 30 M = 28.4  5.4 of control; Fig. 1D). A maximal 

depression was reached at 10 M (p < 0.001, n=19). The concentration of 10 µM was 

thus used in the remaining experiments. The time course of the effects was also 

examined; about 20 min application period was necessary to achieve the maximal effect 

of 5-HT at 10 M (Fig. 1E). All measurements were therefore made after 30 min bath 

application of the drugs. 

The excitatory synaptic responses elicited by trigeminal inputs to RS neurons are 

known to be mediated by excitatory amino acids. However, it was also shown that 

trigeminal inputs consisted partly of glycinergic inhibitory inputs (Viana Di Prisco et al., 

1995). The effect of 5-HT on the responses induced by stimulation of trigeminal nerve 

were studied in the presence of strychnine (5 M) and Gabazine (10 M), respectively 

blocking glycine and GABAA receptors. The amplitude of the EPSPs was significantly 

decreased by 5-HT application (19.8 ± 6.3 % of control, p < 0.001; n = 4 experiments; 
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Fig. 1C). The reduction of the EPSPs was similar to that seen without the glycine and 

GABAA receptor blockers. This suggests that the depression of sensory-evoked EPSPs by 

5-HT is due to an action on excitatory synaptic transmission. 

Localization of the effect of 5-HT 

The effects of 5-HT could have been exerted on the connection between 

trigeminal primary fibers and relay cells, but also at the connection between relay cells 

and RS cells. Because of this, 5-HT (1 mM) was locally applied either on the recorded 

RS cells or in the relay cell area (Fig. 2A). The excitatory responses induced by 

stimulation of trigeminal nerve were reduced by ejections of 5-HT on RS cells (47.8 ± 6 

% of control; p < 0.001; n = 18; Figs. 2B1, C1). Local applications of 5-HT into the relay 

cell area, in the trigeminal descending tract, produced a similar decrease in the EPSPs 

(56.8 ± 9 % of control; p < 0.001; n = 18; Figs. 2B2, C2). 

The trigeminal relay area (Fig. 3A) was then stimulated to examine the effects of 

5-HT on the synaptic transmission between the relay cells and RS cells. First, divalent 

cations (10.8 mM Ca2+/7.2 mM Mg2+) were added to the perfusion Ringer's in order to 

abolish polysynaptic transmission (Berry & Pentreath, 1976; Cazalets et al., 1995). The 

larger part of the response remained in the presence of the high divalent cations, 

suggesting that most of the response was monosynaptic (Fig. 3B). The amplitude of the 

excitatory responses elicited in RS cells by stimulation of the relay cell region was 

significantly decreased by 5-HT (30.6 ± 11.6 % of control; p < 0.01; n = 7; Figs. 3C1, 

3C2). Taken together, these results suggest that sensory inputs to RS cells are depressed 
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by 5-HT and that the depression results from effects both at the connection between the 

primary afferents and relay cells and between the relay cells and RS cells. 

Effect of 5-HT on glutamate receptor subtypes 

The EPSPs induced in RS cells by trigeminal sensory stimulation were shown 

previously to consist of both AMPA and NMDA receptor components (Viana Di Prisco 

et al., 1995). Experiments were carried out to determine whether 5-HT acted on the two 

components. The NMDA receptor blocker, AP-5 (100 µM), slightly reduced the synaptic 

responses leaving the AMPA receptor component (Fig. 4A1), which was significantly 

reduced in the presence of 5-HT (14.3 ± 3.2 % of control; p < 0.01; n = 13; Fig. 4 A2). 

Conversely, the AMPA receptor blocker, CNQX (20 µM), was added in 7 other 

experiments reducing significantly the EPSPs (Fig. 4B1). The remaining NMDA 

receptor-mediated component showed a marked decrease after 5-HT (11.1 ± 7 % of 

control; p < 0.01; n = 7; Fig. 4B2). These results suggest that 5-HT modulates 

monosynaptic EPSPs elicited in RS cells by stimulation of the trigeminal relay area, 

through effects on NMDA and AMPA receptor-mediated components. 

The input resistance was measured in the recorded RS cell and there was no 

changes before and after 5-HT (n = 5) (10.8 ± 1.9 vs. 11 ± 1.8 M ; p >0.05; data not 

illustrated). The absence of effect is in accord with previously published results (Viana Di 

Prisco et al., 1992). Presynaptic mechanisms were thus suspected, but to address a 

possible postsynaptic action, the effects of 5-HT were tested on the excitatory responses 

elicited by a direct local application of glutamate on the recorded RS cell. TTX (1 µM) 

was added to the Ringer’s solution to eliminate indirect activation of the RS cell. The 
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depolarizations induced by glutamate application were affected by 5-HT, but only mildly 

(87.5 ± 9.7 % of control; p < 0.05; n = 7; Figs. 4C1, C2). The average hyperpolarization 

induced by 5-HT in the recorded RS cells under TTX was 4.5 ± 0.6 (n = 7). 

Effect of 5-HT on sustained depolarizations elicited by sensory stimulation 

Using stimulation trains and larger current intensities, the subthreshold EPSPs 

elicited in RS cells by trigeminal sensory stimulation turned into sustained 

depolarizations that considerably outlasted the stimulation trains (see also Viana Di 

Prisco et al., 1997, 2000). In 10 experiments, 5-HT was tested on these sustained 

depolarizations (Fig. 5). In the example shown, stimulation intensities of 4 µA and 5 µA 

elicited sustained depolarizations that lasted 5 s and 8.5 s, respectively (Figs. 5 A2, A3, 

control). After a bath application of 5-HT, the sustained depolarizations disappeared in 

RS cells (Figs. 5 A2, A3, 5-HT). However, they recovered by increasing the intensity or 

the duration of the stimulation trains (Figs. 5 A3, B). These results suggest that 5-HT 

increases the threshold for eliciting the sustained depolarization rather than preventing 

their occurrence. 

The sustained depolarizations elicited in lamprey RS cells are associated with an 

intracellular rise in Ca2+ (Viana Di Prisco et al., 1997, 2000). Because 5-HT reduced the 

size of the sustained depolarizations for the same stimulation strength, it was 

hypothesized that the drug would also reduce the rise in intracellular Ca2+ seen in RS 

cells in response to sensory stimulation. Calcium imaging was performed in 14 

experiments and the effects of 5-HT were tested on the Ca2+ responses elicited in RS cells 

by trigeminal sensory stimulation (Fig. 6A). In 7 experiments, one RS neuron was 
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recorded intracellularly in conjunction with Ca2+ imaging (Figs. 6A, B; Cell 1 

Recording). In response to suprathreshold sensory stimulation, RS neurons displayed 

sustained depolarizations accompanied by increases in relative fluorescence indicating an 

increase in intracellular Ca2+ concentration (Fig. 6B, control). The sustained depolarizing 

responses were decreased following bath application of 5-HT (Fig. 6B, 5-HT). The time 

course of the Ca2+ response was similar in the different RS cells (Figs. 6B, C, control). In 

3 of the 14 experiments, 5-HT had no effects on the calcium responses (n = 8 RS cells). 

In the other 11 experiments (total of 49 RS cells), there was a significant decrease of the 

Ca2+ response (Fig. 6D, control = 207.1 ± 38.1; 5-HT = 42.4 ± 11.9; washout = 196.7 ± 

43.2; p < 0.001 for 5-HT, 1-way ANOVA). The 5-HT effects were the same in all labeled 

cells in the MRRN, including large (Fig. 6E, n = 24; control = 246.1 ± 56.9; 5-HT = 48.6 

± 18.3; washout = 218.1 ± 61.6; see examples in Fig. 6C, cells 1, 2 and 3) as well as 

smaller (Fig. 6E, n = 25; control = 168.8 ± 42.9; 5-HT = 26.4 ± 11.9; washout = 167.7 ± 

4.5; p < 0.01; see examples in Fig. 6C, cells 4, 5 and 6) RS cells. Recovery was obtained 

several minutes after washout of 5-HT. 

Origin of the 5-HT innervation 

The results above show prominent effects of 5-HT on the sensory transmission to 

RS cells, which raises the question of the origin of this 5-HT innervation. Experiments 

were thus carried out to investigate this matter using retrograde transport of biocytin (n = 

5) or fluorescent dextran amines (n = 9), combined with 5-HT immunofluorescence (Fig. 

7). Two of the biocytin-injected animals also had the rostral tier of their spinal cord 

examined for double-labeled neurons. Figure 7 illustrates the different double-labeled 
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neurons on photomicrographs (A-D) and shows their localization in the brain (top 

drawings a-e). A typical injection site is illustrated in Fig. 7d. 

Double-labeled neurons were most consistently found in the ipsilateral isthmic 5- 

HT group (group II in Antri et al., 2006). They were present in 4 out of 5 animals injected 

with biocytin (total of 16 neurons) and in 2 out of 9 animals injected with dextran amines 

(total of 6 neurons). They were located in the periventricular cell layer, just ventral to the 

most rostral portion of the motor nucleus of the trigeminal nerve (V, Figs. 7c, C) and 

more rostrally, just ventral to the anterior rhombencephalic reticular nucleus (ARRN, 

Figs. 7b, B). The 5-HT isthmic cells were rostral to the MRRN at a distance of about 1 

mm (approximately 700 µm in young and 1200 µm in spawning adults) from the 

rostrocaudal middle of the nucleus. The cell bodies were often tightly packed together 

with indiscernible individual shapes (Figs. 7B, C). Their level of 5-HT immunoreactivity 

appeared weaker than other 5-HT neurons in the isthmic group. The labeling of their 

nuclei with DAPI, which binds to DNA, facilitated the identification of individual cells 

(not shown). Exclusively present in biocytin-injected animals, rare double-labeled cells 

were found in the contralateral 5-HT nuclei of the pretectum, near the posterior 

commissure (group I in Antri et al., 2006; in 2 out of 5 animals, total of 2 neurons; Figs. 

7a, A), and in the ipsilateral caudal rhombencephalic 5-HT nucleus (group III in Antri et 

al., 2006; in 1 out of 5 animals, total of 3 neurons; Figs. 7e, D). The double-labeled 

neurons in the pretectum (Fig. 7A) had small, ovoid periventricular cell bodies and the 

ones in the caudal rhombencephalic 5-HT group (Fig. 7D) had bipolar periventricular cell 

bodies and were part of the smaller 5-HT cells in that group. No double-labeled neurons 

were found in the spinal cord of the two biocytin-injected animals and only one neuron 
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was found in the hypothalamic 5-HT group from one biocytin-injected animal. This 

neuron had a round, bipolar cell body oriented in a medio-lateral fashion and giving rise 

to two primary dendrites. The apical dendrite appeared to be contacting the cerebro- 

spinal fluid in the ventricle. The anatomical results here show that the most of the 5-HT 

innervation to RS cells likely comes from cells in the isthmic region, although cells from 

the posterior commissure and caudal rhombencephalon regions may also contribute to 

some extent. 
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DISCUSSION 

Results from this study show that 5-HT induces a depression of the trigeminal- 

evoked synaptic responses recorded in lamprey RS cells. The 5-HT effects occur both 

between trigeminal primary fibers and relay cells, and between relay cells and RS cells. 

They are exerted on both the NMDA and the AMPA receptor-mediated components of 

the EPSPs. Presynaptic mechanisms are most likely involved at least at the connection 

between relay cells and RS cells. The 5-HT effects also occur overall on the RS cell 

population of the MRRN as indicated by the Ca2+ imaging experiments. The 5-HT cells 

located in the isthmic region are likely to play a significant role in modulating sensory 

transmission to brainstem RS cells, at least on the second part of the trigeminal-RS 

pathway. 

Serotoninergic modulation of the trigeminal sensory transmission 

We found that 10 M of 5-HT produced a maximal reduction of sensory 

transmission to RS cells. The same concentration was used by others in the brainstem 

(Viana Di Prisco et al., 1992) and spinal cord (Buchanan & Grillner, 1991) of lampreys. 

A dose-dependent effect of 5-HT was also reported on the synaptic transmission from RS 

neurons to spinal neurons (Schwartz et al., 2005; 2007), but maximal effects were 

obtained at much lower concentrations (i.e. 1 M). In our experiments, higher 5-HT 

concentrations were possibly needed because the synapses are located deeper in the tissue 

as the brainstem tegmentum is thicker than the spinal cord. The trigeminal relay cells are 

located within the trigeminal descending tract (Viana Di Prisco et al., 2005), an area 
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located ventrally in the rhombencephalon, and the dendrites of RS cells in the MRRN 

occupy the entire tegmentum (Rovainen, 1967). The exact location of the synapses 

between the relay cells and RS cells has not been established yet. 

Excitatory synaptic transmission from trigeminal afferents to RS cells is mediated 

by AMPA and NMDA receptors (Viana Di Prisco et al., 1995). Our results indicate that 

5-HT depresses both the AMPA and NMDA receptor-mediated components of the 

EPSPs. In the lamprey spinal cord, 5-HT was shown to depress synaptic transmission and 

the effects have also been attributed to presynaptic mechanisms (Buchanan & Grillner, 

1991; Shupliakov et al., 1995; El Manira et al., 1997; Blackmer et al., 2001). The 

subcellular mechanisms were recently investigated and 5-HT was shown to inhibit EPSPs 

by acting on G protein βγ-subunits (G-βγ) that modulate vesicle fusion properties 

(Gerachschenko et al., 2005; Photowala et al., 2006). The activation of the G-βγ subunits 

by 5-HT could then decrease the glutamate concentration in the synaptic cleft leading to a 

differential inhibition of synaptic NMDA and AMPA receptor-mediated currents 

(Schwartz et al., 2007). The authors have also reported a larger reduction of the AMPA 

than the NMDA receptor-mediated component. The doses of 5-HT were far less than 

those used in the present study. On the other hand, there was an additional reduction of 

the NMDA component at higher concentrations of 5-HT, in the range used in the present 

study (ca. 10 µM). In our study, 5-HT slightly reduced (≈ 13%) the depolarizing 

responses to a local application of glutamate over the RS cells. This small postsynaptic 

effect is unlikely sufficient to explain by itself the large depressive action of 5-HT on 

sensory transmission to RS cells. There were no effects on the input resistance of the 

recorded cells as previously reported (Viana Di Prisco et al., 1992). This suggests that the 
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5-HT effects reported in the present study are mostly exerted presynaptically at least in 

the second half of the trigeminal-RS pathway. 

It is noteworthy that 5-HT induced a small hyperpolarization of about 4 mV on 

average in the recorded RS cells in the present study. A hyperpolarization was also 

observed in the presence of TTX. Similar results have been obtained in the past by Viana 

Di Prisco et al. (1992). This indicates that 5-HT does exert an effect at the postsynaptic 

level. However, whether the hyperpolarization can explain the depression of the 

excitatory synaptic responses observed under 5-HT is uncertain. A membrane potential 

hyperpolarization would result in an increase in the electrochemical driving force and 

thus the size of the EPSPs would be expected to increase rather than decrease. Moreover, 

as indicated above, 5-HT did not produce a significant change in input resistance of the 

RS cells and therefore a shunting effect is not likely to contribute significantly to the 

depressing effect of 5-HT on the sensory-evoked synaptic responses in RS cells. The 

postsynaptic hyperpolarization could depress an inward depolarizing current such as 

calcium current. This could lead to a decrease in calcium entry during the suprathreashold 

sustained depolarization, but this would need to be shown. On the other hand, we have 

previously shown that the sensory-evoked sustained depolarizations in RS cells are 

accompanied by large and sustained increases in intracellular calcium. Using a NMDA 

receptor blocker, we also showed that calcium entry through the NMDA receptors was 

likely to contribute markedly to the rise in intracellular calcium (Viana Di Prisco et al, 

2000). Further experiments are needed to identify the subcellular mechanisms by which 

5-HT depresses synaptic transmission to brainstem RS cells in lampreys. 
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Serotoninergic projections to the MRRN cells 

In the lamprey brainstem, several regions contain 5-HT neuronal populations 

(Antri et al., 2006; Abalo et al., 2007). The present study shows that 5-HT innervation of 

MRRN cells seems to come from the brainstem and pretectum, and probably not from the 

hypothalamus and spinal cord. Despite the presence of numerous 5-HT neurons in 

diverse structures of the brain of lampreys, axonal tracing only labeled a few of these in 

our material. Biocytin was better at labeling 5-HT neurons than Texas Red-dextran 

amines. This could be due to the relatively smaller size of the biocytin molecule: This 

feature would allow biocytin to be picked up more easily by the very small-diameter 5- 

HT axons surrounding the MRRN cells, but also to diffuse in larger amount from the 

severed axons towards the cell bodies and label them more intensely. Biocytin has been 

shown to cross gap junctions between coupled neurons (Vaney, 1991). This could explain 

the larger number of double-labeled cells using biocytin, but evidence against this is that 

the general retrograde labeling pattern of neurons using Texas Red-dextran amines was 

the same as biocytin. Biocytin-labeled neurons seemed slightly more numerous than 

dextran-labeled neurons in general, and this simply reflected on the number of double- 

labeled neurons. 

A reason why so few 5-HT neurons were found to project to RS cells could be 

that the latter possess large dendritic arborizations going deep in the tegmentum that 

could well be the target of a significant portion of the 5-HT inputs. We intentionally 

injected the tracers periventricularly to minimize the labeling of “en passant” axons in the 

medial longitudinal fasciculus for example, only aiming at RS cell bodies. Given these 

considerations, the number of regions containing 5-HT neurons projecting to RS cells 
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could have been underestimated. This was not a major concern in the present context, 

because we were only looking for candidate brain regions at the origin of the RS cell 5- 

HT innervation. Although much care was taken not to lesion “en passant” fibers, we 

cannot exclude that some have been labeled by the injections, such as some of the 5-HT 

neurons located in the isthmic region that are known to project to the spinal cord (Brodin 

et al., 1986). It will be important to study physiologically the different brain regions 

identified here to establish more precisely which ones provide the 5-HT innervation to 

RS cells. 

Functional implication 

The RS system plays a major role in controlling locomotor activity in vertebrates 

(for reviews, see Grillner et al., 1988; Mastuyama et al., 2004). It receives inputs from the 

periphery as well as from forebrain and brainstem locomotor centers. In lampreys, 

stimulation of the trigeminal nerve evokes escape swimming (McClellan, 1984; Cardin et 

al., 1999). The escape responses have been shown to result from sustained depolarization 

in RS neurons (Viana Di Prisco et al., 1997, 2000). We now show that 5-HT increases the 

threshold for eliciting sustained depolarization and can thus influence the total RS neuron 

output. Whether 5-HT modulation of RS responses also affects the overall sensory- 

evoked locomotor activity remains to be established. 5-HT could depress transmission in 

pathways involved in initiating swimming as well as sensory transmission during 

ongoing locomotor activity. The modulation is likely to be even more efficient with 5-HT 

effects not only exerted at the level of the connexion between relay cells and RS cells but 
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also at the first synaptic level in the Central Nervous System, between primary afferents 

and trigeminal relay cells. 

Furthermore, RS cells are not functionally homogenous. It was shown that the 

function of different RS cells within one reticular nucleus for instance can differ 

considerably with respect to equilibrium and locomotor control (Zelenin et al., 2001; 

Deliagina et al., 2002). Although we now provide evidence that 5-HT is capable of 

depressing sensory transmission to all RS within one reticular nucleus, under natural 

conditions the selective activation of some populations of 5-HT cells may modulate 

transmission to specific RS cells reducing their inputs and perhaps activity with respect to 

other RS cells. We also provide evidence that 5-HT projections to RS cells of the MRRN 

arise from neurons located in the isthmic region as well as other brainstem areas. The 

selective activation of some 5-HT cells may provide a modulation at specific synapses 

originating from primary afferents to relay cells as well as from relay cells to RS cells. 

Therefore, through projections to different parts of the trigemino-reticular pathway, 5-HT 

neurons could exert both a general and more specific control of synaptic transmission. 

Conclusions 

A dense 5-HT innervation was described in the brainstem of lampreys in the past. 

We now show that RS cells of the MRRN are likely to be mostly innervated by 5-HT 

neurons in the isthmic region (group 2 of Antri et al., 2006). We also show that 5-HT 

exerts a powerful depression of transmission from trigeminal sensory inputs to RS cells. 

These effects could also play an important role in modulating inputs to RS cells in the 
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context of locomotion. Physiological experiments are underway to examine this in 

lampreys. 
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LEGENDS 

Figure 1: 5-HT depresses the amplitude of subthreshold EPSPs induced by trigeminal 

nerve stimulation. 

A: Schematic representation of the in vitro isolated brainstem preparation with a 

stimulation electrode positioned on one trigeminal nerve (Vth stim) and an intracellular 

microelectrode inserted in one large RS cell of the MRRN, identified visually. B: 

Synaptic responses elicited by a single shock stimulation (2 ms duration, 1.2 µA 

intensity) applied to the trigeminal nerve under control conditions (black line) and after 

bath application of 10 µM 5-HT (gray line). Each trace represents averages of 7 synaptic 

responses. C: Synaptic responses elicited by a single shock stimulation (8 ms duration, 

2.6 µA intensity) applied to the trigeminal nerve under strychnine (5 M) and Gabazine 

(10 M) (black line), and after bath application of 10 µM 5-HT (gray line). Note that the 

membrane potential under each condition is indicated in parentheses for traces in B and 

C. D: Histogram of the mean area of the responses expressed as the % of control for 

different concentrations of 5-HT. Note that maximal depression of the EPSPs was 

achieved with 10 µM 5-HT (ns: non significant, * p < 0.05, ** p < 0.01, *** p < 0.001; 

paired t-test). E: Single stimuli of 3 µA were delivered every 30 s to examine the time 

course of the area of subthreshold EPSPs after 5-HT (10 M) application. The areas were 

expressed in percentage of the control value. 5-HT effect shows a fast onset and requires 

about 20 min to reach maximum. Time zero represents the beginning of 5-HT perfusion. 
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Figure 2: The action of 5-HT is exerted both at the level of RS cells and that of the 

trigeminal relay cells. 

A: Schematic representation of the in vitro isolated brainstem preparation showing the 

relevant circuitry. A stimulation electrode was positioned on one trigeminal nerve (Vth 

stim) and an intracellular microelectrode was inserted in one visually identified large RS 

cell in the MRRN. 5-HT (1 mM) was locally ejected either on RS cells (light gray 

encircled area) or into the relay cell area (dark gray encircled area). B: Synaptic 

responses elicited in response to a single shock (3 ms duration, 1.4 µA intensity, averages 

of 5 traces each) applied to the trigeminal nerve under control conditions (black line), 

after ejections of 5-HT (dark gray lines) on RS cells (B1) or into the relay cell area (B2) 

and after 1 hour washout (light gray lines). Note that the membrane potential under each 

condition is indicated in parentheses for traces in B1 and B2. C: Histogram of the mean 

area of the responses in control condition (black) and after 5-HT (gray) ejected either on 

RS cells (C1) or into the relay cell area (C2). *** p < 0.001; paired t-test. 

Figure 3: Subthreshold EPSPs elicited in RS neurons by stimulation of the trigeminal 

relay area are inhibited by a 5-HT bath application. 

A: Schematic representation of the in vitro isolated brainstem preparation with a 

stimulation electrode positioned into the relay cell area and an intracellular 

microelectrode inserted in one large RS cell in the MRRN. B: Monosynaptic inputs from 

relay neurons to RS cells revealed under control conditions (black line) and in the 

presence of 10.8 mM Ca2+/7.2 mM Mg2+ (gray line; 50 min exposure). C1: Synaptic 

responses elicited in response to a single shock (2.4 ms duration, 0.6 µA intensity, 
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averages of 7 traces each) applied into the relay cell area under control conditions (black 

line) and after 5-HT application (10 µM, gray line). Note that the membrane potential 

under each condition is indicated in parentheses for traces in B and C1. C2: Histogram of 

the mean area of the responses in control (black) and after 5-HT (gray). ** p < 0.01; 

paired t-test. 

Figure 4: The effects of 5-HT on specific components of the excitatory responses evoked 

by sensory stimulation and on excitatory responses induced by local application of 

glutamate. 

A1: Synaptic responses elicited in response to a single shock (1.4 ms duration, 1 µA 

intensity, averages of 8 traces each) applied into the relay cell area under control 

conditions (black line), in the presence of AP-5 alone (100 µM; dark gray line) and in the 

presence of AP-5 (100 µM) with 5-HT (10 µM; light gray line). The inset shows the 

details of the boxed area in A1. A2: Histogram of the mean area of the responses in 

control (black), under AP-5 (dark gray) and under AP-5 with 5-HT (light gray). B1: 

Synaptic responses elicited in response to a single shock (2.4 ms duration, 0.6 µA 

intensity, averages of 7 traces each) applied into the relay cell area under control 

conditions (black line), in the presence of CNQX alone (20 µM; dark gray line) and in the 

presence of CNQX (20 µM) with 5-HT (10µM; light gray line). The inset shows the 

details of the boxed area in B1. B2: Histogram depicting the mean area of the responses in 

control (black), under CNQX (dark gray) and under CNQX with 5-HT (light gray). C1: 

Depolarizations elicited by local ejection of glutamate (5 mM, 30 ms duration, averages 

of 5 traces) on the recorded RS neuron. TTX (1µ M) was perfused to block synaptic 
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transmission. Control traces are illustrated in black and those after local application of 5- 

HT (1mM) are illustrated in gray. C2: Histogram of the mean area of the responses in 

control (black) and after local application of 5-HT (gray) showing a decrease of the 

glutamate responses. * p < 0.05, ** p < 0.01; paired t-test. Note that the membrane 

potential under each condition is indicated in parentheses for traces in A1, B1, and C1. 

Figure 5: Effects of 5-HT on the sustained depolarizations in RS cells. 

A: Sustained depolarizations elicited in response to train stimulations (3 trains of 3 pulses 

at 30 Hz delivered every 300ms) applied to the trigeminal nerve under control conditions 

and after application of 5-HT. The trains of stimulation were delivered at different 

intensities: 3 (A1), 4 (A2) and 5 µA (A3). At 4 or 5 µA (A2 and A3, control), the induced 

sustained depolarizations lasted 5 s and 8.5 s, respectively, whereas for the same 

stimulation intensities, the sustained depolarizations disappeared after 5-HT application 

(A2 and A3, 5-HT). A greater number of stimulation trains were needed to induce a 

sustained depolarization of similar size (A3). Note that the membrane potential under 

each condition is indicated in parentheses for traces in A1, A2, and A3. B: Relationship 

between the sustained depolarization areas induced by trigeminal nerve stimulation vs. 

the intensity of the stimulation under control and after 5-HT application. 

Figure 6: 5-HT modulation of suprathreshold sustained depolarizations and concomitant 

intracellular calcium changes in RS neurons. A: Fluorescent image of MRRN neurons 

retrogradely filled with Calcium Green-dextrans. Six MRRN neurons were analysed in 

this example, including the intracellularly recorded cell (cell 1 recording, black circle). 
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Scale bar = 100 µm. B: Sustained depolarizations elicited in response to train 

stimulations (2 trains of 3 pulses at 90 Hz delivered every 200 ms) applied to the 

trigeminal nerve under control conditions, after application of 5-HT, and after washout. 

The electrophysiological responses were accompanied by increases in relative 

fluorescence (∆F/F), indicating a rise in intracellular Ca2+ concentration. The sustained 

depolarization as well as the calcium response of the recorded MRRN cell were 

decreased in the presence of bath-applied 5-HT (10 µM). Note that the membrane 

potential under each condition is indicated in parentheses for traces in B. C: Calcium 

responses were measured in 5 other RS cells. The calcium responses were reduced in all 

analyzed RS neurons following 5-HT application. Note that the responses were restored 

after washout (rinse). D: Histogram of the mean area of calcium responses in 49 neurons 

from 11 experiments under control (black), 5-HT (gray) and after washout (white). E: 

Histogram depicting the mean area under the three experimental conditions, for large 

(more than 80 µm, n = 24) and small (less than 50 µm, n = 25) RS neurons. ns: non 

significant, ** p < 0.01, *** p < 0.001; One-way ANOVA. 

Figure 7: Serotoninergic neurons from different brain regions send axons to the 

periventricular RS cells in the MRRN. Top drawings represent a dorsal view of the whole 

brain of a young adult lamprey (left), the black straight lines (a-e) correspond to the 

location of the cross sections illustrated on the right (a-e), and the tracer injection site is 

approximately located at the tip of the injecting pipette in red. A typical injection site is 

illustrated on a photomicrograph of a cross section in d. The photomicrographs labeled 

from A to D were taken from areas delineated by red squares on cross sections a, b, c and 
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e. Photomicrographs from the left column (biocytin) illustrate retrogradely labeled 

neurons, the ones from the central column (5-HT) illustrate the exact same frames with 

filter sets showing 5-HT-immunoreactivity, and the ones from the right column (biocytin 

+ 5-HT) are a combination of the two previous photographs, with double-labeled neurons 

appearing in yellow-orange shades. A: Pretectum area showing a retrogradely labeled 

neuron with light immunoreactivity (A1-A3, arrows). B, C: Many neurons were 

retrogradely labeled in the isthmic region (B1-C1, arrows), some of them being also 

immunoreactive for 5-HT and often tightly packed together (B2, C2). Arrowheads point 

to darker profiles that represent nuclei of the 5-HT-positive neurons, as confirmed with 

DAPI labeling (not shown). D: The caudal rhombencephalic reticular formation with 

two retrogradely labeled neurons (D1; arrows). One neuron was also 5-HT-positive 

(D2,D3). Scale bar in D3 for all photomicrographs = 50 µm. 
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ABBREVIATIONS 

5-HT: Serotonin 

AMPA: Alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid 

ARRN: Anterior rhombencephalic reticular nucleus 

CNQX: 6-cyano-7-nitroquinoxaline-2,3-dione 

AP-5: D,L-amino-5-phosphonopentanoic acid 

Mes: Mesencephalon 

mlf: Medial longitudinal fasciculus 

MRRN: Middle rhombencephalic reticular nucleus 

Mth: Mauthner cell 

NMDA: N-methyl-D-aspartate 

NMLF: Nucleus of the medial longitudinal fasciculus 

VIIIth: Vestibular nerve 

PRRN: Posterior rhombencephalic reticular nucleus 

Rh: Rhombencephalon 

RS: Reticulospinal 

SC: Spinal cord 

V: Motor nucleus of the trigeminal nerve 

Motor nucleus of the VIIth nerve VII : 

Vth: Trigeminal nerve 

Motor nucleus of the Xth nerve X : 
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Figure 1: 5-HT depresses the amplitude of subthreshold EPSPs induced by trigeminal 

nerve stimulation. A: Schematic representation of the in vitro isolated brainstem 
preparation with a stimulation electrode positioned on one trigeminal nerve (Vth stim) 
and an intracellular microelectrode inserted in one large RS cell of the MRRN, identified 
visually. B: Synaptic responses elicited by a single shock stimulation (2 ms duration, 1.2 
-A intensity) applied to the trigeminal nerve under control conditions (black line) and 
after bath application of 10 -M 5-HT (gray line). Each trace represents averages of 7 

synaptic responses. C: Synaptic responses elicited by a single shock stimulation (8 ms 
duration, 2.6 -A intensity) applied to the trigeminal nerve under strychnine (5 M) and 

Gabazine (10 M) (black line), and after bath application of 10 -M 5-HT (gray line). Note 

that the membrane potential under each condition is indicated in parentheses for traces 

in B and C. D: Histogram of the mean area of the responses expressed as the % of control 
for different concentrations of 5-HT. Note that maximal depression of the EPSPs was 

achieved with 10 -M 5-HT (ns: non significant, * p < 0.05, ** p < 0.01, *** p < 0.001; 
paired t-test). E: Single stimuli of 3 -A were delivered every 30 s to examine the time 

course of the area of subthreshold EPSPs after 5-HT (10 M) application. The areas were 

expressed in percentage of the control value. 5-HT effect shows a fast onset and requires 
about 20 min to reach maximum. Time zero represents the beginning of 5-HT perfusion. 
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Figure 2: The action of 5-HT is exerted both at the level of RS cells and that of the 

trigeminal relay cells. A: Schematic representation of the in vitro isolated brainstem 
preparation showing the relevant circuitry. A stimulation electrode was positioned on one 

trigeminal nerve (Vth stim) and an intracellular microelectrode was inserted in one 
visually identified large RS cell in the MRRN. 5-HT (1 mM) was locally ejected either on RS 

cells (light gray encircled area) or into the relay cell area (dark gray encircled area). B: 
Synaptic responses elicited in response to a single shock (3 ms duration, 1.4 -A intensity, 
averages of 5 traces each) applied to the trigeminal nerve under control conditions (black 
line), after ejections of 5-HT (dark gray lines) on RS cells (B1) or into the relay cell area 

(B2) and after 1 hour washout (light gray lines). Note that the membrane potential under 
each condition is indicated in parentheses for traces in B1 and B2. C: Histogram of the 

mean area of the responses in control condition (black) and after 5-HT (gray) ejected 
either on RS cells (C1) or into the relay cell area (C2). *** p < 0.001; paired t-test. 
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Figure 3: Subthreshold EPSPs elicited in RS neurons by stimulation of the trigeminal relay 

area are inhibited by a 5-HT bath application. A: Schematic representation of the in vitro 
isolated brainstem preparation with a stimulation electrode positioned into the relay cell 

area and an intracellular microelectrode inserted in one large RS cell in the MRRN. B: 
Monosynaptic inputs from relay neurons to RS cells revealed under control conditions 

(black line) and in the presence of 10.8 mM Ca2+/7.2 mM Mg2+ (gray line; 50 min 
exposure). C1: Synaptic responses elicited in response to a single shock (2.4 ms duration, 
0.6 -A intensity, averages of 7 traces each) applied into the relay cell area under control 

conditions (black line) and after 5-HT application (10 -M, gray line). Note that the 
membrane potential under each condition is indicated in parentheses for traces in B and 
C1. C2: Histogram of the mean area of the responses in control (black) and after 5-HT 

(gray). ** p < 0.01; paired t-test. 
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Figure 4: The effects of 5-HT on specific components of the excitatory responses evoked 

by sensory stimulation and on excitatory responses induced by local application of 
glutamate. A1: Synaptic responses elicited in response to a single shock (1.4 ms duration, 

1 -A intensity, averages of 8 traces each) applied into the relay cell area under control 
conditions (black line), in the presence of AP-5 alone (100 -M; dark gray line) and in the 
presence of AP-5 (100 -M) with 5-HT (10 -M; light gray line). The inset shows the details 

of the boxed area in A1. A2: Histogram of the mean area of the responses in control 
(black), under AP-5 (dark gray) and under AP-5 with 5-HT (light gray). B1: Synaptic 
responses elicited in response to a single shock (2.4 ms duration, 0.6 -A intensity, 

averages of 7 traces each) applied into the relay cell area under control conditions (black 
line), in the presence of CNQX alone (20 -M; dark gray line) and in the presence of CNQX 
(20 -M) with 5-HT (10-M; light gray line). The inset shows the details of the boxed area 
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in B1. B2: Histogram depicting the mean area of the responses in control (black), under 

CNQX (dark gray) and under CNQX with 5-HT (light gray). C1: Depolarizations elicited by 
local ejection of glutamate (5 mM, 30 ms duration, averages of 5 traces) on the recorded 

RS neuron. TTX (1-M) was perfused to block synaptic transmission. Control traces are 
illustrated in black and those after local application of 5-HT (1mM) are illustrated in gray. 

C2: Histogram of the mean area of the responses in control (black) and after local 
application of 5-HT (gray) showing a decrease of the glutamate responses. * p < 0.05, ** 

p < 0.01; paired t-test. Note that the membrane potential under each condition is 
indicated in parentheses for traces in A1, B1, and C1. 
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Figure 5: Effects of 5-HT on the sustained depolarizations in RS cells. A: Sustained 

depolarizations elicited in response to train stimulations (3 trains of 3 pulses at 30 Hz 
delivered every 300ms) applied to the trigeminal nerve under control conditions and after 

application of 5-HT. The trains of stimulation were delivered at different intensities: 3 
(A1), 4 (A2) and 5 -A (A3). At 4 or 5 -A (A2 and A3, control), the induced sustained 
depolarizations lasted 5 s and 8.5 s, respectively, whereas for the same stimulation 

intensities, the sustained depolarizations disappeared after 5-HT application (A2 and A3, 
5-HT). A greater number of stimulation trains were needed to induce a sustained 
depolarization of similar size (A3). Note that the membrane potential under each 

condition is indicated in parentheses for traces in A1, A2, and A3. B: Relationship 

between the sustained depolarization areas induced by trigeminal nerve stimulation vs. 
the intensity of the stimulation under control and after 5-HT application. 
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Figure 6: 5-HT modulation of suprathreshold sustained depolarizations and concomitant 

intracellular calcium changes in RS neurons. A: Fluorescent image of MRRN neurons 
retrogradely filled with Calcium Green-dextrans. Six MRRN neurons were analysed in this 
example, including the intracellularly recorded cell (cell 1 recording, black circle). Scale 
bar = 100 -m. B: Sustained depolarizations elicited in response to train stimulations (2 

trains of 3 pulses at 90 Hz delivered every 200 ms) applied to the trigeminal nerve under 
control conditions, after application of 5-HT, and after washout. The electrophysiological 
responses were accompanied by increases in relative fluorescence (EF/F), indicating a 

rise in intracellular Ca2+ concentration. The sustained depolarization as well as the 
calcium response of the recorded MRRN cell were decreased in the presence of bath- 

applied 5-HT (10 -M). Note that the membrane potential under each condition is 
indicated in parentheses for traces in B. C: Calcium responses were measured in 5 other 
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RS cells. The calcium responses were reduced in all analyzed RS neurons following 5-HT 

application. Note that the responses were restored after washout (rinse). D: Histogram of 
the mean area of calcium responses in 49 neurons from 11 experiments under control 
(black), 5-HT (gray) and after washout (white). E: Histogram depicting the mean area 
under the three experimental conditions, for large (more than 80 -m, n = 24) and small 
(less than 50 -m, n = 25) RS neurons. ns: non significant, ** p < 0.01, *** p < 0.001; 

One-way ANOVA. 
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Figure 7: Serotoninergic neurons from different brain regions send axons to the 

periventricular RS cells in the MRRN. Top drawings represent a dorsal view of the whole 
brain of a young adult lamprey (left), the black straight lines (a-e) correspond to the 

location of the cross sections illustrated on the right (a-e), and the tracer injection site is 
approximately located at the tip of the injecting pipette in red. A typical injection site is 
illustrated on a photomicrograph of a cross section in d. The photomicrographs labeled 

from A to D were taken from areas delineated by red squares on cross sections a, b, c and 
e. Photomicrographs from the left column (biocytin) illustrate retrogradely labeled 

neurons, the ones from the central column (5-HT) illustrate the exact same frames with 

filter sets showing 5-HT-immunoreactivity, and the ones from the right column (biocytin 
+ 5-HT) are a combination of the two previous photographs, with double-labeled neurons 

appearing in yellow-orange shades. A: Pretectum area showing a retrogradely labeled 
neuron with light immunoreactivity (A1-A3, arrows). B, C: Many neurons were 
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retrogradely labeled in the isthmic region (B1-C1, arrows), some of them being also 

immunoreactive for 5-HT and often tightly packed together (B2, C2). Arrowheads point to 
darker profiles that represent nuclei of the 5-HT-positive neurons, as confirmed with 

DAPI labeling (not shown). D: The caudal rhombencephalic reticular formation with two 
retrogradely labeled neurons (D1; arrows). One neuron was also 5-HT-positive (D2,D3). 

Scale bar in D3 for all photomicrographs = 50 8m. 
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