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RÉSUMÉ

Les perturbations auxquelles font face les communautés écologiques, du fait des activités

humaines, sont à l’origine de changements profonds dans ces communautés. Nombreuses

caractéristiques des espèces sont altérées, de leur physiologie à leur occurrence même. Ces

changements se répercutent sur la composition, la diversité et la structure des communautés,

puisque les espèces n’interagissent pas tout le temps de la même manière en fonction des

conditions. Prévoir le devenir de ces communautés émergentes, et des fonctions qu’elles

soutiennent est un défi central de l’écologie et de nos sociétés.

Différents cadres conceptuels ont été utilisés pour relever ce défi, basés sur différents

mécanismes écologiques, et ont divergé en plusieurs domaines. D’un côté, l’analyse des

chaînes trophiques utilise la consommation pour expliquer les effets de la diversité verticale

(le nombre de niveaux trophiques) sur le fonctionnement, et de l’autre côté, les analyses

biodiversité-fonctionnement lient compétition et effets de la diversité horizontale (la diversité

au sein des niveaux trophiques isolés). Chacun de ces domaines a produit des résultats clés

pour comprendre les conséquences fonctionnelles des changements de composition et diversité

des communautés écologiques. Cependant, ils sont chacun basés sur différentes simplifications

fortes des communautés.

L’hypothèse qui sous-tend cette thèse est que la réconciliation en un même cadre de travail

des résultats fondamentaux de ces champs conceptuels divergents, ainsi que des effets des

changements de structure de la biodiversité, est une étape clé pour pouvoir améliorer notre

compréhension du fonctionnement de communautés écologiques en changement.

L’essor récent des méthodes d’analyse des réseaux trophiques, et des modèles permettant

de simuler le fonctionnement de ces réseaux trophiques offre un cadre idéal pour cette

réconciliation. En effet, les réseaux trophiques cartographient les échanges de matière entre

toutes les espèces d’une communauté, permettant la mise en place d’interactions variées.

Ils reflètent mieux la réalité complexe des communautés que les chaînes trophiques ou leurs
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niveaux trophiques isolés en intégrant notamment compétition et consommation. Un modèle

ressource-consommateur bioénergétique classique, développé par Yodzis et Innes (1992), permet

d’en simuler le fonctionnement, en intégrant des mécanismes et taux testés empiriquement.

Au-delà d’utiliser ces outils, cette thèse se concentre aussi sur leur évaluation. Après un

premier chapitre d’introduction, le second chapitre propose une plateforme ouverte, commune,

solidement testée et efficace pour l’utilisation du modèle bioénergétique, permettant ainsi

une synthèse plus rapide et aisée des résultats. Le troisième chapitre est une revue du corpus

méthodologique d’analyse des réseaux trophiques, proposant une gamme de méthodes robustes

et informatives, et soulignant leur domaine d’application et leurs limites. Enfin le quatrième

chapitre met ce cadre méthodologique à l’épreuve. Dans ce chapitre, nous montrons l’existence

d’une relation entre la complexité de la structure du réseau trophique des communautés et leur

régime de fonctionnement, se traduisant par la réalisation de différentes prédictions issues

de l’analyse des chaînes trophiques ou des analyses diversité-fonctionnement. Cette mise en

évidence des conditions structurelles pour la réalisation de différentes prédictions nous permet

de mieux comprendre quels mécanismes écologiques prédominent selon différentes conditions,

dirigeant l’effet de la diversité sur le fonctionnement.
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ABSTRACT

Human-driven disturbances are causing profound changes in ecological communities, as

many characteristics of species are altered, from their physiology to their very occurrence.

These changes affect the composition, diversity and structure of communities, since species do

not always interact in the same way under different conditions. Predicting the fate of these

emerging communities, and the functions they support, is a central challenge for ecology and

our societies.

Diverging conceptual frameworks have been used to address this challenge, based on

different ecological mechanisms. On the one hand, food chain analysis uses consumption to

explain the effects of vertical diversity (the number of trophic levels) on functioning, and on

the other hand, biodiversity-functioning analyses link competition and the effects of horizontal

diversity (diversity within isolated trophic levels). Each of these domains has produced key results

for understanding the functional consequences of changes in the composition and diversity of

ecological communities. However, they are each based on different strong simplifications of

communities.

The hypothesis underlying this thesis is that reconciling the fundamental results of these

divergent conceptual fields, as well as the effects of changes in the structure of biodiversity,

into a single framework is a key step towards improving our understanding of the functioning of

changing ecological communities.

The recent development of food web analysis and of models to simulate food webs functioning

provides an ideal framework for this reconciliation. Food webs map the exchange of matter

between all species in a community, allowing for a variety of interactions to take place. They

better reflect the complex reality of communities than food chains or their isolated trophic

levels, notably by integrating competition and consumption. A classical consumer-resource

bioenergetic model developed by Yodzis and Innes (1992) specifically makes it possible to

realistically simulate their functioning, using empirically tested mechanisms and rates.
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Beyond using these tools, this thesis focuses on their evaluation and implementation. After

a first, introductory chapter, the second chapter proposes an open, common, well-tested and

efficient platform for the use of the bioenergetic model, allowing a faster and easier synthesis of

the results. The third chapter is a review of the methodological corpus for ecological networks

analysis, outlining a range of robust and informative methods, and highlighting their scope

and limitations. Finally, the fourth chapter puts this methodological framework to the test. In

this chapter, we show the existence of a relationship between the complexity of communities’

food-web structure and functioning regime, resulting in the realization of different predictions

from food chain analysis or diversity-functioning analyses. This demonstration of the structural

conditions for the realization of different predictions allows us to better understand which

ecological mechanisms predominate under different conditions, directing the effect of diversity

on functioning.
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Foreword

The study of organisms and how they interact with one another and with their environment to

form integrated dynamics wholes – ecosystems – is a science almost as old as civilization itself.

The first description of an ecosystem has been attributed to Aristotle’s disciple Theophrastus

(371 - 288 BC), who synthesized the typical species composition and environmental conditions

characteristic of mangroves. While the analysis of ecosystems and their underlying processes

has been mainly framed in natural history since then, the rising concerns regarding human

growing impact on nature prompted the emergence of a new field – ecology – more recently.

The protection of ecosystems has been a core issue of ecology ever since, as we realized that

our impact – through global warming of surface temperatures, habitat fragmentation and

land-use change – threatened them, and the multitude of services they provide to human

populations.

In this context of environmental crisis, biodiversity faces a major threat, as species are

disappearing at an important and dramatically increasing rate across all major ecosystems.

Some scientists are even mentioning a sixth mass extinction, thus putting on an equal footing

the current extinction rates with those of the “big five” mass extinctions (respectively marking

the end of the Ordovician, Devonian, Permian, Triassic and Cretaceous periods). Species

extinction is not the only consequence of anthropogenic-driven global changes, their phenology

and distribution are shifting and their comportment are changing. These processes all contribute

to the emergence of novel communities, with changed composition and diversity of both species

and their interactions. Understanding how these novel communities will sustain the functioning

of ecosystems and the resulting ecosystem services is thus a pressing issue. In this context,

investigating the reciprocal influence of ecosystems composition, structure and functions has

emerged as a central problematic of ecology over the last decades.

“All have their worth and each contributes to the worth of the others.”

— J.R.R. Tolkien, The Silmarillion
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Chapter 1

Introduction

Hippos enjoying the morning sun in the mangroves of the Tana river delta, Kenya. Declared a wetland of international importance

under the Ramsar Convention, these mangroves are home to a very diverse and tangled community, and to many people whose

livelihood relies on its functioning. The construction of hydro-electric dams upstream, by disrupting the bi-annual flooding regime

and the river flow threatens both the ecosystem community, its functioning and the livelihood of local populations.
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1.1 The link between biodiversity and ecosystem functioning: a long-

standing question

The intuition that biodiversity and the magnitude of ecosystem processes rates are correlated

can be traced to the early 19th century, and what could be the first ecological experiment

(Hector 2009). This experiment, performed by Sinclair (1816), described in fig 1.1, is what we

could call today a biodiversity experiment, where species richness is experimentally manipulated

and some measure of the assemblage functioning is recorded (here yield). The results of

this experiment are later described first by Darwin & Wallace (1858) then by Darwin in his

celebrated work The Origin of Species (Darwin 1859). He notes: “It has been experimentally

proved that if a plot of ground be sown with one species of grass, and a similar plot be sown

with several distinct genera of grasses, a greater number of plants and a greater weight of dry

herbage can be raised in the latter than in the former case.”

A century later, Elton (1958) suggested that a decrease in biodiversity would affect

negatively ecosystem functioning and stability, as it would decrease the number of interactions

in the ecosystem and thus the number of alternative pathways for energy and nutrients.

Along the same lines, using the concept of the ecological niche formalized by Hutchinson

(1959), MacArthur (1970) hypothesized that communities with a rich resource base could

maintain a more stable pool of consumers. These ideas led to a heated debate regarding the

diversity-stability relationship (e.g., May 1972, 1974a; Pimm 1979). When looking at the data

available today, one can easily observe that the global distribution of species diversity is indeed

positively correlated to measures of ecosystem processes such as primary productivity. Fig. 1.2

shows for example how global tree species richness is correlated to productivity in forests (Liang

et al. 2016). Explaining the fundamental mechanisms that explain the diversity-functioning

relationship observable in ecosystems have been one of the central issues of ecology for a

few decades now. The emergence of experimental ecology and the shift from observations in
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Figure 1.1 Figure adapted from Hector 2009. This figure describes what is probably the first ecological
experiment, performed by Georges Sinclair, a Scottish horticulturist. The top panel describes the
experimental settings, with plots (centre), beds (edges) and tanks for aquatic species (marked f). The
data gathered through this experiment show a potential correlation between plant species richness
and yield.
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Figure 1.2 Figure from Liang et al., 2016. There is a positive asymptotic relationship between tree
species richness and productivity (right) in global forests (shaded white on the map, green dots show
the 777 126 sampled sites).

natural systems to the quantification of ecological processes has made possible to develop

our understanding of these mechanisms that have been framed in what is now called the

Biodiversity - Ecosystem Functioning (BEF) theory.

Before going into more details about the conceptual framework, it seems important to

define fundamental concepts, notably biodiversity and functioning, which are central to this

thesis.

Ecosystems are formed by a biotic community and its abiotic environment. All the organisms

composing the ecosystem’s community capture, mutualize and lose biomass as they grow,

reproduce, live and die. In doing so they are embedded in a myriad of interactions of various

nature with one another (competition, predation, pollination, etc.) and with their physical

environment, and thus all dynamically contribute to shaping ecosystem processes and emerging

properties. Ecosystem processes are the flows of nutrients and energy that are generated by

the living organisms and their interactions with one another and with their environment (e.g.,

primary productivity, nutrient cycling, biomass flow between herbivores and carnivores, etc.).

Ecosystem properties are the characteristics that result from these flows, such as producer

biomass or number of persisting species. The term ecosystem functioning can refer to both

(Hooper et al. 2005). In the context of this thesis, we focus on local communities, unaffected
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by environmental fluctuations and perturbations, and as such only study community functioning.

I use this expression to refer to the rates at which biomass (a common currency used to

represent nutrients and energy) is captured and transferred and the resulting stock of biomass

in the different components.

Of all the interactions organisms can realize, shaping community functioning, trophic

relationships are perhaps the most fundamental, as they are responsible for the transfer of

nutrients and energy through the community (McCann 2012). Food webs, representing these

feeding interactions (who eats whom) and mapping the resulting transfers of biomass, have

then naturally been a frequently used representation of communities in ecology (Dunne 2006;

McCann 2012). Following (Duffy et al. 2007), we can use two dimensions to describe food

web species diversity. Horizontal diversity describes diversity within a focus trophic level, in

which species display only competitive interactions. Vertical diversity conversely reflects the

number of trophic levels, or food chain length. While many studies focus on either one of these

dimensions, food webs are a useful tool to integrate both, as well as their interactions (as

changes in horizontal diversity can alter vertical diversity and vice versa).

The term biodiversity (or diversity in the context of this thesis), while often used as a

synonym of species richness, can encompass the variety of the living at a wide range of scales,

from genetic diversity to groups diversity (Hooper et al. 2005), where groups are formed from

the aggregation of organisms according to a shared characteristic of interest: functions, traits,

niche, etc. Several metrics can also be used to quantify biodiversity from the simplest count of

the number of entities to relative abundances, or presence-absence of focus entities (Hooper et

al. 2005).

The emergence of the BEF field marks a paradigmatic shift in ecology. Biodiversity is not

studied now only as a consequence of functioning, but also as a potential driver (Tilman et al.

2014). The results of these analyses, mainly obtained from experiments (Cardinale et al. 2007)

show that the richest ecological communities also display the highest level of functioning up to
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a certain limit, whatever the metric used (e.g., carbon retention, standing biomass, primary

production). This positive asymptotic relationship between diversity and functioning has since

become a paradigm of ecology (Loreau 2010a; Tilman et al. 2014). However, the vast majority

of these analyses focus on simple communities, where only competition for the shared resource

affects species dynamics. It is difficult to measure the extent to which these results extend to

real-world ecosystems.

At the same time, other domains of ecology also focus on investigating the factors driving

community functioning. This is notably the case of food chain ecology, which – since its

foundation by Elton (1927) – investigates the consequences of consumption on the transfer of

matter and energy in trophic chains (Lindeman 1942; Oksanen et al. 1981; Fretwell 1987;

Wilkinson & Sherratt 2016). Although these fields (BEF and food chain analysis) deal with

closely related issues - the functioning of communities, the use of different methods and

concepts creates a theoretical divide that prevents our understanding of functioning in natural

complex systems. It will thus not be long after the first BEF results before some authors

realize that to really understand - and ultimately predict - the functioning of communities, it is

necessary to bridge this theoretical divide by including the different concepts linked to both

competition and consumption in a single framework (Duffy et al. 2007).

Food webs present a natural framework for this reconciliation as they integrate both

dimensions of diversity mentioned above. On the one hand, they represent the diversity of

species within the same trophic level, competing for the same resources and avoiding the same

set of consumers (often referred to as horizontal diversity; Duffy et al. 2007; Loreau 2010a)

and on the other hand, they also represent the vertical aspect of diversity, i.e., food chain

length (Duffy et al. 2007; Loreau 2010a; Wang & Brose 2017). Food webs also represent in

detail all trophic interactions within a community thus providing an explicit map of the biomass

fluxes between species (Pascual & Dunne 2006). Coupled with adapted resource-consumer

models, food webs thus offer an ideal framework for reconciling concepts from BEF theory
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with those from food chain theory (Martinez et al. 2006). Initial work using this framework to

test the validity of BEF theory in complex communities has shown that the effect of diversity

seems to be strongly dependent on the organization of interactions within it, i.e., its structure

(Thébault & Loreau 2003; Loreau 2010a). Analysis of the structure of food webs – using

methods adapted from graph theory – then becomes a new necessity to continue this effort to

understand the link between diversity and functioning in natural ecological communities.

The work presented here aims at building and testing a methodological framework to

answer the following question: how does the structure of food webs influence the diversity-

functioning relationship in complex ecological communities? In this introduction, I will

start by giving a more detailed overview of the conceptual background presented above, from

analyses of food chains functioning and diversity experiments to the more recent analysis

of complex systems by the means of graph theory. By laying out the concepts and results,

stemming from each of the conceptual frameworks presented, that have been identified as

important in our understanding and predictions of community functions, the literature review

below outlines a set of ecological processes that are fundamental in understanding the link

between diversity and functions. I then identify a methodological framework that integrates

all of these processes — hereafter called ingredients — which will allow us to synthesize

our knowledge and move towards more accurate predictions of community functioning. I

will then explain how my research builds on that conceptual background and methodological

framework to advance our knowledge of the diversity-functioning relationship in complex

ecological communities.
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1.2 Conceptual background: insights on community functioning from

diverging domains of ecology

1.2.1 A food chain perspective: consumption shapes community structure

Food chains present a simple way of representing ecological communities (Elton 1927; Lindeman

1942; Fretwell 1987). They are built on the assumption that species that share a similar set

of resources and consumers — thus at a similar trophic level — share similar properties and

constraints. Since i) the majority of species have discrete trophic levels (Williams & Martinez

2004), ii) trophic level and body size are often correlated and iii) body size and biological rates

are also correlated, this representation is particularly practical and presents a certain degree

of realism. The study of trophic chains has led to major advances in both ecosystem and

community ecology, and has been key in studying the effect of consumption and the subsequent

movement of matter and energy on the functioning of trophic compartments or the system as

a whole (Fretwell 1987).

The food chain approach has also helped uncovering the mechanisms that govern and

constrain the transfer of matter between compartments. This allowed to understand, among

other things, the origin of a global phenomenon: the emergence of bottom-heavy biomass

pyramids and the conditions applying in the communities that deviate from them (Wang et al.

2009; Trebilco et al. 2016; Woodson et al. 2018). What is often referred to as the Eltonian

pyramid (Elton 1927) initially describes a decrease in the abundance of individuals as we move

up the food chain (Jonsson et al. 2005; Begon et al. 2006), but the concept applies equally to

biomass (Bodenheimer 1938; Lindeman 1942) and energy transfers between compartments

(Lindeman 1942; Hatton et al. 2015; Trebilco et al. 2016). The mechanisms known to cause this

phenomenon are metabolic losses and imperfect assimilation during the consumption process.

Numerous studies are investigating how body size distribution, the resulting allometric scaling of

biological rates and environmental factors influence these mechanisms (McCauley et al. 2018;
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Woodson et al. 2018). These studies have contributed greatly to our knowledge regarding the

distribution of biomass in the food chain in various conditions (Dortch & Packard 1989; Tunney

et al. 2012; McCauley et al. 2018), the allometric scaling of biological levels (Hatton et al.

2015; Trebilco et al. 2016) and the scaling between different measures of functioning (Hatton

et al. 2015). This shows us the key role of certain traits (especially metabolic class and

body size) in constraining energy and matter transfers in communities, because of the

allometric scaling of biological rates (ingredient 1). Note that by metabolic classes (or

categories) we mean whether the species is a producer, an invertebrate or a vertebrate. Species

from different metabolic classes have very different metabolisms (and as such different allometric

coefficients).

A more dynamic view of similar problems – i.e., the link between consumption mechanisms

and the generalities observed in ecological communities – has also been used. The development

since Lotka (Lotka & Lotka 1956) and Volterra (Volterra 1928) of resource-consumer models

has been the origin of a central concept of ecology: the trophic cascade (Hairston et al.

1960; Paine 1980; Fretwell 1987). The concept of trophic cascade describes how changes

in one level of the food chain can have cascading consequences on all other trophic levels

through top-down (Hairston et al. 1960) or bottom-up (Ohgushi & Sawada 1985; Power

1992) trophic control. Community-level cascades (Polis 1999) informs us about the cascading

consequences of manipulating the vertical component of diversity. As an example, the addition

of an extra trophic level — e.g., invasion or large increase in the abundance of a top predator

— is known to have an alternating effect on the different levels of the trophic chain that it

dominates (Estes & Palmisano 1974). The potency of herbivores is also known to have large

consequences on the productivity of a community (Carpenter & Kitchell 1988; Polis 1999). A

classic example is the sea otter, urchin and kelp forest system in the Aleutian Islands (Estes &

Palmisano 1974; Estes et al. 1998), near-extinction of otters due to either over-hunting by

humans or predation by killer whales can lead to the deforestation of kelp forests through
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the release of urchins that graze on kelp. Besides the analysis of the effect of trophic chain

length on the density and functioning rates of the different compartments, the concept of

trophic cascade is used to investigate various other questions concerning the relative strength

of top-down or bottom-up mechanisms (Borer et al. 2005) according to different factors such

as ecosystem types (Strong 1992; Schmitz et al. 2000; Halaj & Wise 2001; Shurin et al. 2002)

or environmental variations (Leibold 1989). The corpus of results that has emerged gives us a

fairly detailed picture of the factors that govern biomass dynamics, constrained by trophic

control, in resource-consumer systems. If we want to understand the functioning of complex

ecological communities, facing changes in diversity, including the possibility for trophic

control is necessary, highlighting the importance to frame our analyses of functioning

in adapted dynamic consumer-resource models (ingredient 2).

Another important insight from the dynamic analysis of food chains is the effect of omnivory

on trophic control. As Polis & Strong (1996) put it, “[. . . ] much theory relies on the idealization

of ‘trophic levels’ connected in a single linear chain.” However, more complex interactions such

as omnivory and intraguild predation (IGP) are widespread in real-world communities. Analysis

of their abundance in empirical systems first led to believe that most species occupy integer

trophic positions (Williams & Martinez 2004) but, later analysis showed that – while that

is true – many of the species that do occupy these integers trophic positions are producers

and herbivores, making the secondary consumer compartment a “tangled web of omnivores”

(Thompson et al. 2007). The effect of omnivory and IGP on community stability and the

predictability of the effect of trophic cascades are the subject of many experiments. The role

of omnivory is still unclear, and while it does not necessarily preclude the occurrence of trophic

cascades (Okun et al. 2008), its action on different trophic levels makes its consequences

often unpredictable (Pimm & Lawton 1978; Holt & Polis 1997; Mylius et al. 2001; Vanni et al.

2005), especially as its effect on stability seems to depend on primary production (Holt & Polis

1997; Mylius et al. 2001). These results show us that if we are to simulate realistically the
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functioning of ecological communities, we need to use a methodological framework that includes

complex interactions such as omnivory and IGP and allows the precise estimation of

their consequences (ingredient 3).

1.2.2 Zooming in on food chain compartments: competitive interactions shape the

BEF relationship in horizontal communities

First explicit explorations of the influence of biodiversity on ecosystems properties and processes

occurred almost three decades ago, motivated by the growing realization that the human-driven

biodiversity erosion could result in altered ecosystems services (Schulze & Mooney 2012).

Although a few considered a multi-trophic system (e.g., Naeem et al. 1994) defined as a food

web with several levels, the majority studied the impact of horizontal species diversity - the

diversity occurring within a single level, mostly primary producers - on several indicators of

communityfunctioning such as standing biomass, productivity, nutrient and water retention

and stability (Hooper et al. 2005; Loreau 2010b). These experiments usually consisted in

manipulation of plant species richness and composition (e.g., the seminal work of Tilman &

Downing 1994). They showed that, in this context, when species richness increases, community

functions such as standing biomass, primary production, resistance to drought, nutrient retention

and community stability increased as well (Tilman & Downing 1994; Tilman et al. 1996).

These results were reproduced across different types of ecosystems and trophic levels and

produced strong evidences of a positive and asymptotic BEF relationship, consistent across

many experiments for several indicators of functioning and independent of trophic levels and

study systems (Cardinale et al. 2012; Griffin et al. 2013).

Although experiments and observations showed a general response of several indicators of

functioning to diversity, they also generated years of debate regarding the underlying mechanisms

and the relative importance of identity and richness (Aarssen 1997; Tilman 1997a; Huston et al.

2000; O’Connor & Crowe 2005), which resulted in the development of a conceptual framework
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for BEF studies (Loreau & Hector 2001; Loreau 2010a). The consensus now is that the positive

BEF relationship emerges from the simultaneous effect of two main classes of mechanisms,

the selection effect (Tilman 1997b; Loreau & Hector 2001) and the complementarity effect

(Tilman 1997b; Loreau 2000; Loreau & Hector 2001). The selection effect is a generalization

of the sampling effect based on the assumptions that i) a highly effective species is more

likely to be present in more diverse communities and ii) the strongest competitor is also

often the most effective species and will eventually come to dominate the mixture. Traits

variation is an initial condition and a selective process then promotes dominance by species

with particular functional traits that affect species’ competitive abilities (Loreau & Hector

2001). The complementarity effect is based on the assumption that high diversity provides

more functional traits variation and is attributed to niche partitioning (Northfield et al. 2010)

and facilitation (Loreau 2010b). Although these two classes of mechanisms have a joint action,

functional complementarity is predominant and tends to increase over time (Cardinale et al.

2007). In the same study, selection has been found to be often only important in the early

stage of a community (Cardinale et al. 2007). This counter-intuitive result (pioneer species are

usually opportunistic, poorly competitive species) shows the potential difficulty to map results

from experiments to real-world systems. In experiments, plots are usually seeded at high density,

artificially increasing the importance of competitive abilities in the early stages. Similarly, the

type of function we chose to focus on (biomass storage and nutrient retention) may cause

artificial correlation between diversity and functions, because they are highly correlated to

competitive abilities (Winfree 2020). In real-world ecosystems, where species have to face

environmental fluctuations and external perturbations, other functions may be more important,

and less correlated to competitive abilities (Winfree 2020). Moreover, because early BEF

studies focused mostly on grasslands, the fundamental mechanisms only integrated interaction

occurring between the organisms within a single level: competitive interactions (Hines et al.

2015) to the detriment of other types of interactions.
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Given the importance of competition on shaping the functioning of trophic compartments,

the ideal methodological framework for analyzing ecological communities functioning must

include the possibility for competition between species (ingredient 4), across and within

compartments. Between heterotrophs, competition emerges from trophic interactions, when

two consumers share the same resource (exploitative competition) or when two resources have

the same consumers (apparent competition). But competition between autotrophs must also

be accounted for, at the basal level of the community, as their productivity sustain the whole

system.

1.2.3 Trophic cascade alters the effect of biodiversity on ecosystem functioning

While BEF theory tells us that within a trophic level, through mechanisms rooted in competition,

biodiversity begets higher levels of functioning (section 1.2.2), food chain theory suggests

that consumption could potentially alter the strength of competition within a trophic level

(section 1.2.1). This is a strong argument for the integration of both the vertical and horizontal

dimensions of diversity in analyses of community functioning. Many studies – reviewed by

Duffy et al. (2007) – analyzed the effect of trophic interactions on the BEF relationship at

one focus level. These studies focused mainly on how variations in diversity at one trophic

level change the diversity-functioning relationship at other trophic levels, and the effect of

food chain length on these cascading effects (Schmitz et al. 2000; Thébault & Loreau 2003;

Downing & Wootton 2005; Duffy et al. 2005; Holt & Loreau 2013). The effect of plant species

richness on primary productivity for instance depends on the diversity of herbivores and the

number of trophic levels (food chain length; Duffy et al. 2007). These results, beyond their

intrinsic relevance, show the importance of considering the interplay between processes that

emerge from consumption and competition. But the study systems used are often simplified

communities, with only few species and discrete trophic levels.

This disconnection between vertical and horizontal diversity in BEF studies is not repre-
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sentative of the overall biodiversity and therefore prevents a global understanding of BEF

relationship (Thébault & Loreau 2006; Duffy et al. 2007; Loreau 2010b; Thompson et al.

2012). Ecosystems are not only an assemblage of species but also underlain by a set of

interactions that form an integrated system often described as a “tangled bank.” Trophic

interactions are not only direct paths from producers to top predators, and while it is true that

many species have a discrete trophic level, interactions such as omnivory, intraguild predation,

or processes such as ontogenetic diet shifts are blurring the frontiers between “levels”, and

these interactions are known to have important dynamic effects. Therefore, the need for the

integration of species and interactions diversity has been widely acknowledged (Duffy 2003;

Thébault & Loreau 2003; Duffy et al. 2007). Food webs map the energy and nutrient fluxes

within the species diversity of an ecosystem. They provide a natural framework to study the

mechanisms of the BEF relationship (Thompson et al. 2012), and incorporate concepts from

both food chain and BEF theory, while also investigating the potential effect of the structure

of interactions (Barbier & Loreau 2019). An explicit food web perspective is the natural next

step in improving our understanding of BEF relationship (Thébault & Loreau 2006; Duffy et al.

2007; Rooney & McCann 2012; Thompson et al. 2012; Poisot et al. 2013; Hines et al. 2015).

1.3 Food webs as a natural framework for synthesis

Food webs describe the trophic interactions between organisms in a community, they can be

visualized using graphs, where nodes are often populations and edges are the directed trophic

interactions between them. May (1972); May (1974a) applied a simple consumer-resource

model to random food webs and showed that in this context, there is no apparent mathematical

reason why our observation that richer ecosystems appear to be more stable should be true.

Conversely, he showed that species-rich networks often have chaotic dynamics. This spurred

the search for the hidden mechanisms responsible for ecosystem stability. As random food webs

were unstable, identifying how structure drives community dynamic processes became a main
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research hypothesis. The “diversity-stability” debate that ensued produced much of what we

know today about the link between a community topological and dynamic properties.

Food webs are surprisingly similar in their topology (Cohen et al. 1990; Dunne et al. 2002a;

Jordano et al. 2003; Bascompte & Melián 2005; Pascual & Dunne 2005; Stouffer et al. 2005,

2006), regardless of the identity of the species involved or ecosystem types, revealing that some

dynamic and evolutionary constraints are at play in shaping them. Many food web properties

(e.g., intervality and connectance), that estimate various ecological processes (e.g., foraging

and allometric rules and proportion of specialists), display striking generalities (Pascual &

Dunne 2006). The existence of these generalities in the organization of trophic interactions

across ecosystems suggests that the paths of matter and energy allocations are constrained by

the mechanisms that cause the potential realization of such interactions. If food webs evolved

allowing the transfer of energy from primary producers to top predators, their structure is likely

to play an important role in functioning.

Milo (2002) showed for example that different types of networks (neural, electrical, ecological,

etc.) have a characteristic motif distribution. Motifs are all the different subwebs of 3 nodes

(species in the context of food webs) contained in a network. They are particularly interesting

because they represent the basic “building blocks” of networks. Among different types of networks,

food webs are characterized by an over-representation of the motifs A → B → C (linear

chain; arrows go from consumer to resource) and A→ B → C ← A (omnivory or intraguild

predation) and an under-representation of the motifs A→ B ← C (exploitative competition)

and A← B → C (apparent competition), relatively to random networks (Bascompte & Melián

2005; Camacho et al. 2007; Stouffer et al. 2007). This invariant in the structure of food

webs carries an important information as these motifs represent the basic modules between

species (respectively a linear food chain, omnivory, apparent and exploitative competition)

and as the dynamics of these modules (Holt 1997b) have been extensively studied. Omnivory

motifs in particular (and intraguild predation) and their contribution to food web dynamics
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have been extensively studied. While early work by Pimm & Lawton (1978) showed that

omnivory could potentially have a destabilizing role (using a Lotka and Volterra type model;

Lotka & Lotka 1956; Volterra 1928), the ubiquity of omnivory (defined as the presence of

species feeding on more than one trophic level) in natural food webs made ecologists question

that result. It was later found, using a more realistic model but simplified food webs (more

precisely a Rosenzweig 1973 dynamic model; with biological rates parameterized using allometric

relationships following Yodzis & Innes 1992) that omnivory may have a stabilizing role (McCann

& Hastings 1997). The role of omnivory in complex food webs stayed unclear until explored in

the light of interaction strength.

Using more realistic models of biomass transfer – that integrate allometrically scaled

biological rates – to investigate the link between topology and dynamics allowed to shed new

light on the link between food webs structure and dynamics. An important contribution of this

type of model was the possibility of analyzing structure in light of interaction strength (in the

context of food webs, we usually quantify interaction strength using biomass flow). Having

this type of weighed structural analysis made it possible to gather more evidence of the role

of omnivory for example. It appears that while strong omnivory links destabilize structure,

weak links (that appear to be more frequent) can stabilize community dynamics (Gellner &

McCann 2012, 2016; Wootton 2017). Actually, in food webs, the rule seems to be “many

weak links and a few strong”, with weak links stabilizing community dynamics by dampening

oscillations and as such reducing species probability of extinction (McCann et al. 1998). In the

context of food webs, interaction strength can be related to the turnover rate of biomass

(production:biomass ratio). This concept has been used to show that empirical food webs seem

to be compartmentalized into biomass channels (Rooney et al. 2006). In natural systems,

biomass comes from nutrient compartments (e.g., detritus, fungi, phytoplankton). A channel is

defined as a compartment into which species get the bulk (more than an arbitrary threshold)

of their biomass from one of these compartments. Channels appear to be asymmetrical in
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empirical systems (e.g., one has stronger links, which can be modelled by higher attack rates)

creating an asynchrony in biomass dynamics. Higher-level consumers then couple the different

channels. This asynchrony makes systems more stable, particularly by providing a more stable

prey base for consumers that are thus less threatened by extinction (Rooney et al. 2006).

This type of result shows the importance of integrating structural analyses of food webs into

dynamic models able to account for realistic mechanisms of biomass transfers to understand

the emergence of community functions.

1.4 The bioenergetic food-web model

To synthesize the results of the different approaches mentioned so far, we need a methodological

framework that would allow us to integrate the four ingredients mentioned above:

1. realistic energy and matter transfers, through trophic interactions, based on the allometric

scaling of biological rates;

2. the inclusion of these transfers in a dynamic consumer-resource model;

3. the adaptation of this model to food webs, where species can have multiple resources and/or

consumers;

4. the inclusion of competition between basal heterotroph species.

Such a framework makes it possible to integrate the dynamic consequences of consumption,

the influence of the food web structure of the communities, allometric scaling and the effect

of competition between basal species (the producers) as well as competition emerging from

trophic interactions (when species share similar resources or consumers). In turn this would

allow us to test the interplay between the structure of food webs and the mechanisms emerging

from competition and consumption respectively.

The bioenergetic model for food webs, with the addition of a nutrient-intake model for

producers growth, offers such a framework. This consumer-resource model was originally

developed by Yodzis & Innes (1992) and immediately led to important advances in ecology
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(Williams et al. 2007). More recently, it has been adapted for use in food webs through the

implementation of a multi-species functional response (Williams et al. 2007). The particularity

of this model, that made its success, is that the biological rates (for consumption, metabolism

and growth of basal species) vary according to the body masses of the species participating in

the interaction and their metabolic classes. The allometric coefficients and exponents are based

on empirical data, giving the model a degree of grounding in reality that others often do not

have (Williams et al. 2007). Body size is often referred to as a super-trait because it is, on the

one hand, easy to measure and, on the other hand, it scales with many physiological processes

(Whitfield 2004). This model therefore offers a balance between simplicity - a tractable number

of parameters - and realism (Williams et al. 2007). Including a nutrient intake model for

producers growth (Tilman 1982; Huisman & Weissing 1999; Brose et al. 2005b, 2005a; Brose

2008) allows including explicitly competition at the basal level, and to quantify the intake of

the community, through heterotrophs.

The adaptation of this model to the simulation of biomass dynamics in food webs is at the

origin of recent results testing the existence of the BEF relationship in complex ecological

communities, and the potential mechanisms that govern it (Schneider et al. 2016; Wang &

Brose 2017; Wang et al. 2019). In early BEF studies in which the underlying structure of

trophic interactions has been provided, BEF relationships appear to be more diverse than the

monotonic changes predicted within a single trophic level (Thébault & Loreau 2003; Thébault

et al. 2007) which suggests a strong dependence of the BEF relationship on food web structure.

However, more recently, Schneider et al. (2016) has shown that a positive and asymptotic

relationship seems to exist between animal richness and biomass fluxes and stocks in food webs.

Other propose that the height of the trophic chain (the vertical diversity of the community) is

at the origin of a selection of particularly productive basal species, at the origin of the BEF

relationship in food webs (Wang & Brose 2017). They also show the importance of intra-guild

predation in the emergence of the BEF relationship (Wang et al. 2019). This same model
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has led to other major advances in recent years, such as the recognition of the importance of

allometric scaling for trophic network stability and community persistence (Brose et al. 2006b;

Brose 2008). While other models have been used to investigate the mechanisms underlying

BEF relationships in food webs (Poisot et al. 2013 for example), their predictions and the

processes they arise from could be easily integrated within the bioenergetic food-web model.

This model, which makes including all the concepts that interest us possible – while still being

tractable – therefore offers an ideal candidate to be a common platform for synthesis.

1.5 Main questions and objectives

Based on the conceptual framework detailed above we see that while being able to predict the

functioning of novel communities (with changed composition and structure) is always at the

heart of our concerns, relatively few studies look at the influence of the structure of food

webs, and no consensus has yet emerged about the effect of diversity in complex ecological

communities. I argue here that to understand the joint effect of structure and diversity on the

functioning of food webs, it is necessary to develop and synthesize the different results that

have emerged from both food chain, BEF and food web analysis approaches in an adapted

framework. To do so, we need

- a common methodological framework integrating the four ingredients outlined above which

would allow us to integrate and compare the conditions for the emergence of the predictions

from the different approach and understand how they fit together;

- to understand the effect of food-web structure on these results, which requires finding suitable

measures of structure.

Chapters 2 and 3 of this thesis focus on implementing and assessing the tools needed, and

chapter 4 builds on these tools to analyze the effect of food-web structure on the emergence

of the various predictions mentioned, namely the effect of food chain length, complex trophic

interactions, allometric scaling and the BEF positive relationship.
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The second chapter of this thesis describes the implementation in a common and efficient

platform of the bioenergetic food-web model: BioEnergeticFoodWeb.jl . This model has been

recognized as ideal for integrating the different mechanisms of competition and consumption,

and the relationship between the two, and thus offers a natural candidate as a common tool for

synthesis. This is a somewhat unusual chapter since the BioEnergeticFoodWeb.jl package is

still under development and now has many new features and improvements since compared

to the time of publication. Most of these changes were born from new collaborations with

scientists interested in our platform and working on various thematics, showing, we hope, the

successful takeoff of this new common platform and its potential for synthesis. These changes

are described in the discussion that closes this thesis.

The BEFWm, and its implementation in the high-performance language Julia , give us an

efficient way to simulate the functioning of food webs, and the ability to test the influence

of the structure on the functioning. However, while there are a variety of ways to measure

food-web structure, we also need to understand what these metrics tell us about the ecological

processes they are supposed to represent, and how they can also be influenced by other factors

or simply emerge from mathematical constraints.

The third chapter of this thesis addresses these questions. This chapter is a critical review

of the different methods of food web analysis. By critical I mean that this review is not meant

to be exhaustive but rather an assessment of the methodological development of a core set of

methods that are robust and informative, the questions they can address, and their limitations.

Building this review collaboratively with many experts in the field also allowed me to select

strategically the structural measures used for the fourth chapter, and to assess their ecological

grounding.

Finally, the fourth chapter assesses the ability of the bioenergetic model to reproduce the

various predictions mentioned above and serve as a framework for synthesis. Through the joint

use of concepts developed through food chains, food webs and BEF analyses, we show the
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links between these different concepts by analyzing the interplay between their predictions.

Specifically we show that while the majority of communities are bottom heavy (meaning that

most of the community biomass is stored in primary producers at the basal level of the food

web), coherently with what we observe in natural systems (a “green world”), rarely top-heavy

communities can persist in the absence of subsidies. These communities seem to display a

particular food-web structure, relatively more complex (densely connected and with higher levels

of omnivory or IGP) and with a higher consumers-resource body-mass ratio. This structure is

correlated to more important fluxes between compartments and a higher efficiency to store the

biomass produced, which in turns allows the persistence of a heavy consumer compartment.

The results of this chapter, by highlighting these links between trophic network structure,

biomass distribution and diversity-functioning relationships, shed new light on the predictions of

functioning in the complex ecological community and the future developments that are needed.
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Chapter 2

Biomass dynamics in community food webs
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Summary

1. Food webs are the backbone upon which biomass flows through ecosystems. Dynamic

models of biomass can reveal how the structure of food webs is involved in many key

ecosystem properties, such as persistence and stability.

2. In this contribution, we present BioEnergeticFoodWebs, an implementation of Yodzis

& Innes (The American Naturalist 139, 1151?1175, 1992) bio-energetic model, in the

high-performance computing language Julia.

3. We illustrate how this package can be used to conduct numerical experiments in a

reproducible and standard way.

4. A reference implementation of this widely used model will ease reproducibility and

comparison of results across studies.

2.1 Introduction

Community and ecosystem ecologists have long sought to understand the diversity, properties

and dynamics of multi-species assemblages. The characteristics of communities emerge in

unpredictable ways because species influence one another through direct, and indirect, ecological

interactions. Seeing that the coexistence of populations is constrained at least by feeding

interactions, models of the relationship between resources and consumers have provided a

useful and frequent tool in studying the theory of community dynamics. Although these

modelling efforts started from simple, abstract models like those from the Lotka-Volterra

family (Bacaër 2011), more tailored and parameterized models have emerged whose goal was

to include a broader range of ecological and biological mechanisms, thus hopefully providing

more realistic representations of empirical systems. Among these, the “bio-energetic” model of

Yodzis & Innes (1992) is a general representation of resource-consumer dynamics, yielding

results comparable to empirical systems, while needing minimal parameters. This trade-off

between minimal complexity (we only need to provide species metabolic type and typical body
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size, two easy-to-measure parameters) and maximum ecological realism allows scaling up from

modelling simple few-species and few-interaction systems to more realistic species-rich, dense

communities.To achieve this purpose, it uses allometric scaling of metabolic biomass production

and feeding rates, meaning that the flow of biomass from a resource to its consumer is based

on realistic energetic constraints.

While the model developed by Yodzis & Innes (1992) provides a useful tool to study

pairwise interactions, we know that the dynamics of ecological communities are driven by the

entanglement of these interactions in larger networks (Camerano 1880; May 1972; Chesson &

Kuang 2008). We also know that disturbances affecting species biomass or density cascade up,

not only to the species that they interact with but also with species up to two degrees of

separation from the original perturbation (Berlow et al. 2004). In this context, models of energy

transfer through trophic interactions are better justified when they account for the entire

food-web structure, such as Williams et al. (2007) adaptation of Yodzis & Innes (1992) model.

This food-web bio-energetic model has been used, for example, to show how food web stability

can emerge from allometric scaling (Brose et al. 2006b) or allometry-constrained degree

distributions (Otto et al. 2007) (more past uses of the model are described in supplementary

table S2.1). Yet, although these and other studies used the same mathematical model,

implementations differ from study to study and few have been released. Motivated by the

fact that this model addresses mechanisms that are fundamental to our understanding of

energy flow throughout food webs, we present BioEnergeticFoodWebs.jl , a Julia package

implementing Yodzis & Innes (1992) bio-energetic model adapted for food webs (Williams et

al. 2007) with updated allometric coefficients (Brown et al. 2004; Brose et al. 2006b).

This package aims to offer an efficient common ground for modelling food-web dynamics,

to make investigations of this model easier, and to facilitate reproducibility and transparency

of modelling efforts. Taking a broader perspective, we argue that providing the community

with reference implementations of common models is an important task. First, implementing
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complex models can be a difficult task, in which programming mistakes will bias the output

of the simulations, and therefore the ecological interpretations we draw from them. Second,

reference implementations facilitate the comparison of studies. Currently, comparing studies

means not only comparing results but also comparing implementations – because not all code

is public, a difference in results cannot be properly explained as an error in either study, and

this eventually generates more uncertainty than it does answers. Finally, having a reference

implementation eases reproducibility substantially. Specifically, it becomes enough to specify

which version of the package was used, and to publish the script used to run the simulations (as

we do in this manuscript). We fervently believe that more effort should be invested in providing

the community with reference implementations of the models that represents cornerstones of

our ecological understanding.

2.2 The model

2.2.1 Biomass dynamics

We implement the model as described by Brose et al. (2006b), which is itself explained in

greater detail in Williams et al. (2007). This model describes the flows of biomass across

trophic levels, primarily defined by body size. It distinguishes populations based on two variables

known to drive many biological rates: body mass (how large an organism is, i.e. how much

biomass it stocks) and metabolic type (where the organism get its biomass from and how it is

metabolized). Once this distinction made, it models populations as simple stocks of biomass

growing and shrinking through consumer-resource interactions. The governing equations below

describe the changes in relative density of producers and consumers respectively.

B′i = riGiBi −
∑

j∈consumers

xjyjBjFj i
ej i

(2.1)
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B′i = −xiBi +
∑

j∈resources

xiyiBiFi j −
∑

j∈consumers

xjyjBjFj i
ej i

(2.2)

where Bi is the biomass of population i , ri is the mass-specific maximum growth rate, Gi is

the net growth rate, xi is i ’s mass-specific metabolic rate, yi is i ’s maximum consumption rate

relative to its metabolic rate, ei j is i ’s assimilation efficiency when consuming population j –

which represent the proportion (ei j ∈ [0, 1]) of biomass lost by j that is assimilated by i– and

Fi j is the multi-resources functional response of i consuming j :

Fi j =
ωi jB

h
j

Bh0 + ciBiB
h
0 +

∑

k=resources ωikB
h
k

(2.3)

2.2.2 Growth rate function

The formulation of the growth rate Gi can be chosen among three possibilities (Williams

2008) that all share the general equation of Gi = 1− s/k , where s is the sum of biomass of

populations in competition for a resource with carrying capacity k. The first scenario, used

by Brose et al. (2006b), sets s = Bi and k = K: species only compete with themselves for

independent resources. The issue with this formulation (Kondoh 2003) is that the biomass and

productivity of the system scales linearly with the number of primary producers. The second

formulation “shares” the resource across primary producers, with s = Bi and k = K/nP , wherein

np is the number of primary producers. Finally, a more general solution that encompasses both

of the previous functions is s =
∑

αi jBj , with αi i (intraspecific competition) set to unity and

αi j (interspecific competition) taking values greater than or equal to 0. Note that αi j = 0 is

equivalent to the first scenario of k = K and s = Bi .

2.2.3 Numerical response

In equation 2.3, ωi j is i ’s relative consumption rate when consuming j , or the relative preference

of consumer i for j (McCann et al. 1998; Chesson & Kuang 2008). We have chosen to
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implement its simplest formulation: ωi j = 1/ni , where ni is the number of resources of consumer

j . The Hill coefficient h is responsible for the hyperbolic or sigmoidal shape of the functional

response (Real 1977), B0 is the half-saturation density and c quantifies the strength of the

intraspecific predator interference – the degree to which increasing the predator population’s

biomass negatively affect its feeding rates (Beddington 1975; DeAngelis et al. 1975). Depending

on the parameters h and c the functional response can take several forms such as type II

(h = 1 and c = 0), type III (h > 1 and c = 0), or predator interference (h = 1 and c > 0).

2.2.4 Metabolic types and scaling

As almost all organisms’ metabolic characteristics vary predictably with body mass (Brown et

al. 2004), these variations can be described by allometric relationships as described in Brose

et al. (2006b). Hence, the per unit biomass biological rates of production (R), metabolism

(X)and maximum consumption (Y )follow negative power-law relationships with the typical

adult body mass (M)(Savage et al. 2004; Price et al. 2012).

RP = arM
−0.25
P (2.4)

XC = axM
−0.25
C (2.5)

YC = ayM
−0.25
P (2.6)

where the subscripts P and C refer to producers and consumers populations respectively, M

is the typical adult body mass, and ar , ax and ay are the allometric constant. To resolve the

dynamics of the system, it is necessary to define a timescale. To do so, these biological rates

are normalized by the growth rate of a chosen (usually the smallest) producer population (cf.
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eq. 2.4) (Brose et al. 2006b; Williams et al. 2007).

ri =
arM

−0.25
P

arM
−0.25
P

= 1 (2.7)

xi =
axM

−0.25
C

arM
−0.25
P

=
ax
ar
(
MC
MP
)−0.25 (2.8)

In equations eq. 2.1 and 2.2, yi refer to the maximum consumption rate of population i

relative to its metabolic rate and thus become a non-dimensional rate:

yi =
YC
XC
=

ayM
−0.25
P

arM
−0.25
P

axM
−0.25
C

arM
−0.25
P

=
ay
ax

(2.9)

As the biological rates also vary with the organisms metabolic types, the maximum

consumption rate of population i relative to its metabolic rate (yi) is not the same for

ectotherm vertebrates (yi = 4) and invertebrates (yi = 8) predators, the same goes for

the allometric constant ax , which causes the mass-specific metabolic rate (xi) to differ for

ectotherm vertebrates (ax = 0.88) and invertebrates (ax = 0.314). The diet of predators also

affects their assimilation efficiency (ei j) which is greater for carnivores (ei j = 0.85) than for

herbivores (ei j = 0.45).

Based on the observation that most natural food webs have a constant size structure (Brose

et al. 2006a; Hatton et al. 2015), the consumer-resource body-mass ratio (Z) is assumed to

be constant. The body mass of consumers is then a function of their mean trophic level (T ), it

increases with trophic levels when Z ≥ 1 and decreases when Z ≤ 1:

MC = Z
T−1 (2.10)

where MC is the body mass of consumers, normalized by the body mass of the basal

species (T = 1) to make the results independent of the body mass of the basal species. When
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simulating empirical food webs, it is also possible to provide a vector of the sampled average

body masses.

2.2.5 Setting the simulation parameters

All of these parameters can be modified before running the simulations (see ?model_parameters

), and are saved alongside the simulation output for future analyses. The default values and mean-

ings of the different parameters are explained in the documentation of the model_parameters

function. The user can specify which species are ectotherm vertebrates by supplying an array of

boolean values, and the body mass of each species by supplying an array of floating-point

values.

2.2.6 Saving simulations and output format

The core function simulate performs the main simulation loop. It takes two arguments, p –

the dictionary generated through the model_parameters function and containing the entire set

of parameters – and biomass , a vector that contains the initial biomasses for every population.

Three keywords arguments can be used to define the initial ( start ) and final ( stop ) times as

well as the integration method ( use , see ?simulate or the on-line documentation for more

details on the numerical integration methods available). This function returns an object with a

fixed format, made of three fields: :p has all the parameters used to start the simulation

(including the food web itself), :t has a list of all timesteps (including intermediate integration

points), and :B is a matrix of biomasses for each population (columns) over time (rows). All

measures on output described below operate on this object.

The output of simulations can be saved to disc in either the JSON (javascript object notation)

format, or in the native jld format. The jld option should be preferred as it preserves the

structure of all objects ( JSON should be used when the results will be analysed outside of

Julia , for example in R ). The function to save results is called BioEnergeticFoodWebs.save
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(note that BioEnergeticFoodWebs. in front is mandatory, to avoid clashes with other functions

called save in base Julia or other packages).

2.2.7 Measures on output

The BioEnergeticFoodWebs package implements a variety of measures that can be applied on

the objects returned by simulations. All measures take an optional keyword argument last ,

indicating over how many timesteps before the end of the simulations the results should be

averaged.

Total biomass ( total_biomass ) is the sum of the biomasses across all populations. It is

measured based on the population biomasses ( population_biomass ).

The number of remaining species ( species_richness ) is measured as the number of

species whose biomass is larger than an arbitrary threshold. As BioEnergeticFoodWebs uses

robust adaptive numerical integrators (such as ODE45 and ODE78), the threshold default

value is ǫ, i.e. the upper bound of the relative error due to rounding in floating point arithmetic.

In short, species are considered extinct when their biomass is smaller than the rounding error.

For floating point values encoded over 64 bits (IEEE 754), this is around 10−16 (the absolute

tolerance of the solver was set to the same value, we kept the default value for the relative

tolerance: 0) An additional output related to species_richness is species_persistence ,

which is the number of persisting species divided by the starting number of species. A value of

species_persistence of 1 means that all species persisted. A value of species_persistence

of 0 indicates that all species went extinct.

Shannon’s entropy ( foodweb_diversity ) is used to measure diversity within the food web.

This measure is corrected for the total number of populations. This returns values in ]0; 1],

where 1 indicates that all populations have the same biomass. It is measured as

H = −

∑

b × log(b)

log(n)
,
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where n is the number of populations, and b are the relative biomasses (bi = Bi/
∑

B).

Finally, we used the negative size-corrected coefficient of variation to assess the temporal

stability of biomass stocks across populations ( population_stability ). This function also

accepts an additional threshold argument, specifying the biomass below which populations are

excluded from the analysis. For the same reason as for the species_richness threshold, we

suggest that this value be set to either the machine’s ǫ(0.0) (i.e. the smallest value immediately

above 0.0 that the machine can represent), or to 0.0. We found that using either of these

values had no qualitative bearing on the results described below. Values close to 0 indicate

little variation over time, and increasingly negative values indicate larger fluctuations (relative

to the mean standing biomass).

2.3 Implementation and availability

The BioEnergeticFoodWebs package is available for the Julia programming language, and is

continuously tested on the current version of Julia , as well as the release immediately before

and on the current development version. Julia is an ideal platform for this type of model,

since it is easy to write, designed for numerical computations, extremely fast, easily parallelized,

and has good numerical integration libraries. The package can be installed from the Julia

REPL using Pkg.add("BioEnergeticFoodWebs") . A user manual and function reference are

available online at http://poisotlab.io/BioEnergeticFoodWebs.jl/latest/, which also

gives instructions about installing Julia, the package, and how to get started.

The code is released under the MIT license. This software note describes version 0.2.0

. The source code of the package can be viewed, downloaded, and worked on at https:

//github.com/PoisotLab/BioEnergeticFoodWebs.jl. Potential issues with the code or

package can be reported through the Issues system. The code is version-controlled, undergoes

continuous integration, and has a code coverage of approx. 90% to this date.
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2.4 Use cases

All functions in the package have an in-line documentation available at http://poisotlab.

io/BioEnergeticFoodWebs.jl/latest/, as well as from the Julia interface by typing ?

followed by the name of the function. In this section, we will describe three of the aforementioned

use cases. The code to execute them is attached as Supp. Mat. to this paper. As all codes

in the supplementary material uses Julia ’s parallel computing abilities, it will differ slightly

from the examples given in the paper. For all figures, each point is the average of at least 500

replicates. We conducted the simulations in parallel on 50 Intel Xeon cores at 2.00 Ghz. All

random networks were generated using the implementation of the niche model of food webs

(Williams & Martinez 2000) provided in BioEnergeticFoodWebs .

2.4.1 Effect of carrying capacity on diversity

Starting from networks generated with the niche model with 20 species and connectance of

0.15± 0.01, we investigate the effect of increasing the carrying capacity of the resource (on a

log scale from 0.1 to 10). We use three values of the αi j parameter, ranging from 0.92 (the

interspecific competition is smaller than the intraspecific competition, which should favour

coexistence), neutrally stable (intra = interspecific competition = 1), to 1.08 (the intraspecific

competition is smaller the interspecific competition, which should favour competitive exclusion).

We run the simulations with the default parameters (given in ?model_parameters , and in

the manual). Each simulation consists of the following code:

# We generate a random food web
A = nichemodel (20, 0.15)

# This loop will keep on trying food webs
# until one with a connectance close enough
# to 0.15 is found
while abs(BioEnergeticFoodWebs.connectance(A) -0.15) >0.01

A = nichemodel (20, 0.15)
end

# Prepare the simulation parameters
for α in linspace (0.92, 1.08, 3)

for K in logspace(-1, 1, 9)
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Figure 2.1 Effect of increasing the carrying capacity of the resource for different levels of competition
(α ∈ [0.9, 1.1]). For conditions of neutral coexistence or coexistence (α ≤ 1), diversity is stable until
K ≈ 5. For conditions of competition exclusion (α > 1), diversity increases for K < 5, and decreases
after.
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p = model_parameters(A, α = α,
K=K,
productivity =: competitive)

# We start each simulation with
# random biomasses in ]0;1[
bm = rand(size(A, 1))
# And finally , we simulate.
out = simulate(p, bm , start=0,

stop =2000, use=: ode45)
# And measure the output
diversity = foodweb_diversity(out ,

last =1000,
threshold=eps())

end
end

The results are presented in fig. 2.1.

2.4.2 Effect of consumer-resource body-mass ratio on stability

In fig. 2.2, we illustrate how the effect of body-mass ratio on stabilitydiffers between food webs

with invertebrates and ectotherm vertebrate consumers. We measure temporal stability as the

negative of the average coefficient of variation over the surviving species:

The body-mass ratio is controlled by the parameter Z (field Z in the code), and can be

changed in the following way:

scaling = logspace(-2, 4, 19) #creates an array with 19 body -mass
ratio values

# Prepare the simulation parameters
p = model_parameters(A, Z=scaling[i]) #where i is a number from 1 to

19

Which species is an ectotherm vertebrate is controlled by the parameter vertebrate

of model_parameters , which is an array of boolean (true/false) values. In order to have all

consumers be ectotherm vertebrates, we use

vert = round(Bool ,trophic_rank(A).>1.0)

so that for each network, we prepare the simulations with

# Prepare the simulation parameters
p = model_parameters(A,

Z=scaling[i],
vertebrates=vert)

# where i is a number from 1 to 19, as there are
# 19 body -mass ratio values in the scaling array
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Figure 2.2 The peak of stability, in terms of allometric scaling, differs between vertebrates and
invertebrates. Note that the y axis is reversed, since more negative values indicate less variation, and
therefore more temporal stability. The shaded area represents negative scaling, i.e. predators are
smaller than their preys.

55



0.8 0.9 1.0 1.1 1.2

0.0

0.2

0.4

0.6

0.8

Competition

P
e
rs

is
te

n
c
e

●
●

●

●

●

●

●

●

●

● ● ● ● ● ●

0.05

0.1

0.15

0.2

0.25
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lower than unity, the increased trophic control at higher connectances allows coexistence even under
stronger competition. The shaded area represents values of α smaller than unity, i.e. coexistence is
favored.

2.4.3 Effect of connectance on coexistence

We investigate the effect of connectance on species coexistence under different scenarios

of interspecific competition rates between producers (fig. 2.3). These simulations therefore

measure how the persistence of the entire food web is affected by competition at the most

basal trophic level. The persistence is used here as the measure of coexistence.

for co in vec ([0.05 0.15 0.25])
# We generate a random food web
A = nichemodel (20, co)
while abs(BioEnergeticFoodWebs.connectance(A)-co) >0.01

A = nichemodel (20, co)
end
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# Prepare the simulation parameters
for α in linspace (0.8, 1.2 , 7)

p = model_parameters(A, α = α,
productivity =: competitive)
bm = rand(size(A, 1))
# And finally , we simulate.
out = simulate(p, bm , start=0,

stop =2000, use=: ode45)
# And measure the output
persistence = species_richness(out ,

last =1000,
threshold=eps()) / 20

end
end

Values of α larger than 0 should result in competitive exclusion in the absence of trophic

interactions (Williams 2008). Indeed, this is the case when Co = 0.05 (only a single consumer

remains). Increasing connectance results in more species persisting. Although maximal species

persistence is reached for values of interspecific competition lower than unity, the increased

trophic control at higher connectances allows coexistence even under stronger competition.

The shaded area represents values of α smaller than unity, i.e., coexistence is favoured.

2.5 Conclusion

We have presented BioEnergeticFoodWebs , a reference implementation of the bio-energetic

model applied to food webs. We provided examples that can serve as templates to perform

novel simulation studies or use this model as an effective teaching tool. Because the output can

be exported in a language-neutral format (JSON), the results obtained with this model can be

analysed in other languages that are currently popular with ecologists, such as R , python , or

MatLab . Because we provide a general implementation that covers some of the modifications

made to this model over the years, there is a decreased need for individual scientists to start

their own implementation, which is both a time consuming and potentially risky endeavour.

Acknowledgements TP acknowledges financial support from NSERC, and an equipment

grant from FRQNT. We thank the developers and maintainers of ODE.jl .
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2.6 Supplementary information

2.6.1 List of published papers since 2007 that have used the bio-energetic food-web

model.
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Reference Title Food webs Model reference Growth rate function Functional response Implementation

Otto et al.,
2007

Allometric degree
distributions facilitate
food-web stability

modules from 5
natural food
webs

Yodzis &
Ines, 1992

productivity = :species Type II (:h = 1 and :c = 0) Not released

Rall et al.,
2007

Food-web connectance and
predator interference
dampen the paradox of
enrichment

Cascade model,
Niche model and
Nested hierarchy
model

Yodzis &
Ines, 1992

productivity = :species

Type II (:h = 1, :c =0),
III (:h = 2, :c = 0)
and predator interference, (:h = 1, :c = 1)
or gradient (1<:h<2 and 0<:c<4)

Not released

Brose,
2008

Complex food webs prevent
competitive exclusion
among producer species

Niche model
Yodzis &
Ines, 1992

Producer–nutrient model
(Brose et al., 2005a,b)

Hill exponent (:h) and
predator interference (:c)
randomly drawn from
truncated normal distributions.

Not released

Williams,
2008

Effects of network and
dynamical model structure
on species persistence in
large model food webs

Cascade model,
Niche model
Generalized
cascade model
and random model.

Brose et al. 2006;
Williams et al. 2007;
Williams and
Martinez 2004;
Yodzis and Innes 1992

:productivity = :species,
:system or
:competitive

Type II (:h = 1, :c = 0),
Weak type III (:h = 1.2, :c = 0)
or Weak predator interference
(:h = 1, :c = 0.5)

Not released

Stouffer &
Bascompte,
2010

Understanding food-web
persistence from local to
global scales

Niche model
Yodzis &
Ines 1992

productivity = :species Type II (:h = 1, :c = 0) Not released

Binzer et
al., 2011

The susceptibility of species
to extinctions in model
communities

Niche model
Yodzis &
Ines, 1992

productivity = :system

Hill exponent (:h) and
predator interference (:c)
randomly drawn from
truncated normal distributions.

Not released

Curtsdotter
et al., 2011

Robustness to secondary
extinctions: Comparing
trait-based sequential
deletions in static and
dynamic food webs

Niche model
Brose, 2008;
Rall et al., 2008

productivity = :system

Hill exponent (:h) and
predator interference (:c)
randomly drawn from
truncated normal distributions.

Not released

Stouffer &
Bascompte,
2011

Compartmentalization
increases food-web
persistence

Niche model
and natural
food webs

Yodzis &
Ines, 1992

productivity = :species Type II (:h = 1, :c = 0) Not released

Kéfi et al.,
2016

How Structured Is the
Entangled Bank?
TheSurprisingly Simple
Organization of
MultiplexEcological
Networks Leads to
IncreasedPersistence and
Resilience

Natural food
web and
randomization

Brose, 2008;
Yodzis & Ines 1992

productivity = :competitive
(see Kéfi et al., 2016
for more details)

Type III (see Kéfi et al.,
2016 for more details)

Not released

Iles & Novak,
2016

Complexity Increases
Predictability in
Allometrically Constrained
Food Webs

Niche model
Williams &
Martinez, 2004

productivity = :system
Saturating Type III–like
functional response :h = 3

Not released

Schneider et al., 2016
Animal diversity and
ecosystem functioning
in dynamic food webs

Simulated
(see Schneider et al.,
2016 for more details)

Brose et al., 2008 Producer–nutrient model

Hill exponent (:h) and
predator interference (:c)
randomly drawn from
truncated normal distributions.

Released

Table S2.1 List of published papers since 2007 that have used Yodzis and Ines (1992) mathematical model. The Food Webs column gives the
type of data the model was applied to. The growth rate function and functional response columns show how the choice of parameters made
in the papers can be reproduced using the BioEnergeticFoodwebs package.
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2.6.2 Scripts used to generate the figures in the paper.

Script used to generate fig. 1

using DataFrames

# Initialize all cores and set a seed
number_of_cores = 51
while nprocs () < number_of_cores

addprocs(number_of_cores - nprocs ())
end
@everywhere srand (42)

@everywhere using BioEnergeticFoodWebs

@everywhere competition = linspace (0.90, 1.10, 3)
@everywhere k = logspace(-1, 1, 19)

@everywhere replicates = 500
@everywhere conditions = vcat ([[[K, com] for com in competition] for

K in k]...)
@everywhere conditions = vcat([ conditions for i in 1: replicates ]...)

@everywhere function makesim(k, α)
# Generate a niche model with 20 species and a connectance of 0.15

± 0.01
A = nichemodel (20, 0.15, tolerance =0.01)
# Simulate
p = model_parameters(A, productivity =: competitive , αα=, K=k)
bm = rand(size(A, 1))
out = simulate(p, bm , start=0, stop =2000)
# Get results
d = foodweb_diversity(out , last =1000)
s = population_stability(out , last =1000 , threshold=eps())
b = total_biomass(out , last =1000)
r = species_richness(out , last =1000 , threshold=eps()) / 20.0
# Return20
return (d, s, b, r)

end

df = DataFrame(
[Float64 , Float64 , Float64 , Float64 , Float64 , Float64],
[: competition , :K, :diversity , :stability , :richness , :biomass],
length(conditions))

output = pmap((x) -> makesim(x...), conditions)
for k in eachindex(output)

df[: competition ][k] = conditions[k][2]
df[:K][k] = conditions[k][1]
df[: diversity ][k] = output[k][1]
df[: stability ][k] = output[k][2]
df[: biomass ][k] = output[k][3]
df[: richness ][k] = output[k][4]

end

# Filter results
df = df[!isnan(df[: diversity ]) ,:]
df = df[!isna(df[: diversity ]) ,:]
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df = df[df[: stability] .<= 0.0 ,:]

writetable ("./ figures/sm1.dat", df, separator =’\t’, header=true)

Script used to generate fig. 2

using DataFrames

# Initialize all cores and set a seed
number_of_cores = 51
while nprocs () < number_of_cores

addprocs(number_of_cores - nprocs ())
end

@everywhere using BioEnergeticFoodWebs

@everywhere Z = logspace(-2, 4, 19)
@everywhere V = vec([true false ])

@everywhere replicates = 1000
@everywhere conditions = vcat ([[(z, v) for z in Z] for v in V]...)
@everywhere conditions = vcat([ conditions for i in 1: replicates ]...)

@everywhere function makesim(z, v)
# Generate a niche model with 20 species and a connectance of 0.15

± 0.01
A = nichemodel (20, 0.15, tolerance =0.01)
# Simulate
if v

#=
All species with a trophic rank larger than one , i.e., all

primary producers ,
are vertebrates.
=#
vertebrates = trophic_rank(A) .> 1.0

else
# If not , all are invertebrates
vertebrates = falses(size(A, 1))

end
p = model_parameters(A, productivity =:system , Z=z, vertebrates=
round(Bool , vertebrates))

bm = rand(size(A, 1))
out = simulate(p, bm , start=0, stop =2000)
# Get results
d = foodweb_diversity(out , last =1000)
s = population_stability(out , last =1000 , threshold = -0.01)
b = total_biomass(out , last =1000)
r = species_richness(out , last =1000 , threshold=eps()) / 20.0
# Return
return (d, s, b, r)

end

df = DataFrame(
[Float64 , Bool , Float64 , Float64 , Float64 , Float64],
[:Z, :vertebrates , :diversity , :stability , :richness , :biomass],
length(conditions))

output = pmap((x) -> makesim(x...), conditions)
for k in eachindex(output)
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df[:Z][k] = conditions[k][1]
df[: vertebrates ][k] = conditions[k][2]
df[: diversity ][k] = output[k][1]
df[: stability ][k] = output[k][2]
df[: biomass ][k] = output[k][3]
df[: richness ][k] = output[k][4]

end

# Filter results
df = df[!isnan(df[: diversity ]) ,:]
df = df[!isna(df[: diversity ]) ,:]
df = df[df[: stability] .<= 0.0 ,:]
#df = df[df[: stability] .>= -5.0,:]

writetable ("./ figures/sm2.dat", df, separator =’\t’, header=true)

Script used to generate fig. 3

using DataFrames

# Initialize all cores and set a seed
number_of_cores = 51
while nprocs () < number_of_cores

addprocs(number_of_cores - nprocs ())
end
@everywhere srand (42)

@everywhere using BioEnergeticFoodWebs

@everywhere competition = linspace (0.8, 1.2, 15)
@everywhere connectance = linspace (0.05, 0.25, 5)

@everywhere replicates = 500
@everywhere conditions = vcat ([[[con , com] for com in competition]

for con in connectance ]...)
@everywhere conditions = vcat([ conditions for i in 1: replicates ]...)

@everywhere function makesim(co, α)
# Generate a niche model , with relative tolerance
A = nichemodel (20, co, tolerance =0.01 , toltype =:rel)
# Simulate
p = model_parameters(A, productivity =: competitive , αα=)
bm = rand(size(A, 1))
out = simulate(p, bm , start=0, stop =2000 , use=: ode45)
# Get results
d = foodweb_diversity(out , last =1000)
s = population_stability(out , last =1000 , threshold=eps())
b = total_biomass(out , last =1000)
r = species_persistence(out , last =1000 , threshold=eps())
# Return
return (d, s, b, r)

end

df = DataFrame(
[Float64 , Float64 , Float64 , Float64 , Float64 , Float64],
[: competition , :connectance , :diversity , :stability , :persistence ,

:biomass],
length(conditions))
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output = pmap((x) -> makesim(x...), conditions)
for k in eachindex(output)

df[: competition ][k] = conditions[k][2]
df[: connectance ][k] = conditions[k][1]
df[: diversity ][k] = output[k][1]
df[: stability ][k] = output[k][2]
df[: biomass ][k] = output[k][3]
df[: persistence ][k] = output[k][4]

end

# Filter results
df = df[!isnan(df[: diversity ]) ,:]
df = df[!isna(df[: diversity ]) ,:]
df = df[df[: stability] .<= 0.0 ,:]

writetable ("./ figures/sm3.dat", df, separator =’\t’, header=true)
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Chapter 3

Analyzing ecological networks of species interactions
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Abstract

Network approaches to ecological questions have been increasingly used, particularly in

recent decades. The abstraction of ecological systems – such as communities – through

networks of interactions between their components indeed provides a way to summarize this

information with single objects. The methodological framework derived from graph theory

also provides numerous approaches and measures to analyze these objects and can offer new

perspectives on established ecological theories as well as tools to address new challenges.

However, prior to using these methods to test ecological hypotheses, it is necessary that we

understand, adapt, and use them in ways that both allow us to deliver their full potential

and account for their limitations. Here, we attempt to increase the accessibility of network

approaches by providing a review of the tools that have been developed so far, with – what

we believe to be – their appropriate uses and potential limitations. This is not an exhaustive

review of all methods and metrics, but rather, an overview of tools that are robust, informative,

and ecologically sound. After providing a brief presentation of species interaction networks

and how to build them in order to summarize ecological information of different types, we

then classify methods and metrics by the types of ecological questions that they can be used

to answer from global to local scales, including methods for hypothesis testing and future

perspectives. Specifically, we show how the organization of species interactions in a community

yields different network structures (e.g., more or less dense, modular or nested), how different

measures can be used to describe and quantify these emerging structures, and how to compare

communities based on these differences in structures. Within networks, we illustrate metrics

that can be used to describe and compare the functional and dynamic roles of species based on

their position in the network and the organization of their interactions as well as associated

new methods to test the significance of these results. Lastly, we describe potential fruitful

avenues for new methodological developments to address novel ecological questions.
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3.1 Introduction

Al-Jahiz was perhaps the first scientist to provide, as early as in the eighth century, a description

of a food chain (Egerton 2002). About a thousand years later, Camerano (1880) introduced

the idea that the diversity of animal forms, and therefore biological diversity itself, can only be

explained when framed in the context of interrelationships among species. Seminal work by

Patten (1978) and Ulanowicz (1980) suggested that the structure of networks can approximate

information on theoretical constraints on community assembly, and helped generate interest

in the application of network science to ecology. “Network-thinking” now permeates studies

in ecology and evolution (Proulx et al. 2005), and is one of the fastest growing ecological

disciplines (Borrett et al. 2014), accounting for 5% of all published papers in 2012. Network-

based approaches are gaining momentum as one of the most helpful tools for the analysis of

community structure (Poisot et al. 2016b), because they offer the opportunity to investigate,

within a common formal mathematical framework, questions ranging from the species level

to the community level (Poisot et al. 2016b). Applying network approaches to a variety of

ecological systems, for example hosts and parasites (Poulin 2010), or bacteria and phage

(Weitz et al. 2013), yields new methodological and biological insights, such as the observation

that networks tend to be locally nested but regionally modular (Flores et al. 2013), which

suggests that different ecological and evolutionary regimes are involved at different scales.

Despite this long-standing interest, the application of measures grounded in network science is

still a relatively young field (in part because the computational power to perform some of these

analyses was largely unavailable in the early days of the field). This comes with challenges to

tackle. First, there is a pressing need for additional methodological developments, both to

ensure that our quantitative analysis of networks is correct, and that it adequately captures the

ecological realities that are, ultimately, of interest. Second, we need to understand better the

limitations and domain of application of current methods. Yet, there is a lack of a consensus

on what constitutes a “gold standard” for the representation, analysis, and interpretation of
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network data on ecological interactions within the framing of specific ecological questions; i.e.

which of the many available measures actually hold ecological meaning. All things considered,

the analysis of ecological networks can be confusing to newcomers as well as researchers who

are more well versed in existing methods.

Most notions in community ecology, including the definition of a community (Vellend 2010;

Morin 2011), and several definitions of a niche (Holt 2009; Devictor et al. 2010), emphasize

the need to study the identity of species and their interactions simultaneously (although

ecological network analysis can be critiqued for ignoring species identity in many instances).

Studies of ecological communities can therefore not discard or disregard interactions (McCann

2007a), and using network theory allows researchers to achieve this goal. With the existence of

methods that can analyze (large) collections of interactions, this approach is methodologically

tractable. Graph theory provides a robust and well formalized framework to handle and interpret

interactions between arbitrarily large (or small) numbers of species. Theoretical analyses of small

assemblages of interacting species (e.g., “community modules”, Holt 1997a) have generated

key insights into the dynamics of properties of ecological communities. We expect there is even

more to gain by using graph theory to account for structure at increasingly high orders of

organization (e.g., more species, larger spatial or temporal scales), because there is virtually no

upper bound on the number of nodes (species) or edges (interactions) it can be applied to, and

theory on large graphs can help predict the asymptotic behaviour of ecological systems. In

short, although graph theory may appear as overwhelmingly complicated and unnecessarily

mathematical, it allows us to express a variety of measures of the structure of networks that

can be mapped onto ecologically relevant questions.

Applying measures from network science to ecological communities can open three perspec-

tives (Poisot et al. 2016b). First, the multiplicity of measures confers additional tools to describe

ecological communities. This can reveal, for example, unanticipated ways in which communities

differ. Second, these measures can provide new explanatory variables to explain how ecological
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communities function. The question of stability, for example, has been approached through the

analysis of empirical food webs to question long-standing theoretical results (Jacquet et al.

2013). Finally, and this is a new frontier in network studies, they open the ability to predict the

structure of ecological communities, through the prediction of interactions (Desjardins-Proulx

et al. 2017; Stock et al. 2017). The domain of application of ecological networks is as vast as

the domain of application of community ecology; but ensuring that network measures deliver

their full potential of advancing our understanding of ecological systems requires that they are

well understood, and well used. Because of advances in graph theory, and the availability of

more efficient computational methods, the exploration of large networks is now feasible. While

this may not be immediately useful to macrobe-based research, microbial ecology, through

sequencing, is able to generate data sets of immense size that can be analysed with the tools

we present here (Faust & Skvoretz 2002).

This review provides an assessment of the state of methodological development of network

science applied to ecological communities. Taking stock of the tools available, their strengths

and limitation, is a necessary first step to determine how we can best analyse data from

ecological networks and improve in the future our analyses of their consequences on dynamic

ecological processes (see Jordano & Bascompte 2013 for mutualistic systems; Poulin 2010 for

parasites; McCann 2012 for food webs; or Dormann et al. 2017 for a recent overview). In this

review, we highlight areas in which future research is needed, so as to eventually establish a

comprehensive framework for how ecological networks can be analysed. The measures presented

herein do not represent all the measures that are available for ecological networks; instead,

they represent a core set of measures that are robust, informative, and can be reasoned upon

ecologically. While this review does not present the entire framework for ecological network

analysis, we are confident that it provides a solid foundation for its future development, and

that the recommendations we lay out should be used by future studies. We have organized the

measures by broad families of ecological questions. What is the overall structure of ecological
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networks? How can we compare them? What are the roles of species within networks? How

similar are species on the basis of their interactions? How can we assess the significance of

measured values? What are emerging questions for which we lack a robust methodology? This

order mimics the way networks are usually analysed, starting from community-level structure,

and going into the species-level details.

3.2 What are species interaction networks?

Identifying interactions across ecological entities can be done in a variety of ways, ranging from

literature survey and expert knowledge, direct or indirect observation in the field using gut

content (Carscallen et al. 2012), stable isotopes, molecular techniques such as meta-barcoding

and environmental DNA (Evans et al. 2016; O’Donnell et al. 2017), to modelling based on

partial data or mechanistic models. Depending on how they were assembled, species interaction

networks can represent a multitude of ecological realities. When based on field collection

(Morand et al. 2002; Bartomeus 2013; Carstensen et al. 2014), they represent realized

interactions, known to have happened (unreported interactions can be true or false absences,

depending on sampling effort among other things). Another common method is to ‘mine’ the

literature (e.g., Havens 1992; Strong & Leroux 2014) or databases (Poisot et al. 2015b),

to replace or supplement field observations. In this situation, species interaction networks

describe potential interactions: knowing that two species have been observed to interact once,

there is a chance that they interact when they co-occur. Another more abstract situation is

when interactions are inferred from a mixture of data and models, based on combinations of

abundances (Canard et al. 2014), body size (Gravel et al. 2013; Pires et al. 2015), or other

traits (Crea et al. 2015; Bartomeus et al. 2016). In this situation, species interaction networks

are a prediction of what they could be. In keeping with the idea of ‘networks as predictions’, a

new analytical framework (Poisot et al. 2016a) allows working directly on probabilistic species

interaction networks to apply the family of measures presented hereafter.
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Interactions are compiled and resolved (and subsequently assembled in networks) for a

multitude of taxonomic and organisational levels (Thompson & Townsend 2000): individuals

(Araújo et al. 2008; Dupont et al. 2009, 2014; Melián et al. 2014); species (Morand et

al. 2002; Krasnov et al. 2004); at heterogeneous taxonomic resolutions, including species,

genera, and more diffusely defined ‘functional’ or ‘trophic’ species (Martinez et al. 1999;

Baiser et al. 2012); groups of species on the basis of their spatial distribution (Baskerville

et al. 2011). This is because species interaction networks are amenable to the study of all

types of ecological interactions, regardless of the resolution of underlying data: mutualistic,

antagonistic, competitive, and so on. Recent developments made it possible to include more

than one type of interaction within a single network (Fontaine et al. 2011a; Kéfi et al. 2012),

allowing greater ecological realism in representing communities, which encompass several

types of interactions (e.g., plants are consumed by herbivores, but also pollinated by insects).

Such networks are instances of multigraphs (in which different types of interactions coexist).

Another development accounts for the fact that ecological interactions may have effects on one

another, as proposed by e.g., Golubski & Abrams (2011); these are hypergraphs. Hypergraphs

are useful when interactions rely, not only on species, but also on other species interactions: for

example, an opportunistic pathogen may not be able to infect a healthy host, but may do so if

the host’s immune system is already being compromised by another infection. Hence it is not

only species, but also their interactions, which interact. Such higher-order interactions can be

detected through comparing observed species density or performance to that obtained under a

dynamic model without higher-order interactions (Billick & Case 1994; Mayfield & Stouffer

2017). As using these concepts in ecological research represents a recent development, there is

little methodology to describe systems represented as multigraphs or hypergraphs, and we will

only mention them briefly here. In a way, methodological developments on these points are

limited by the lack of data to explore their potential. As the interest among network ecologists

will increase for systems in which the current paradigm of species–species interactions falls
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short, we expect that the inflow of data will stimulate the emergence of novel methods.

Formally, all of these structures can be represented with the formalism of graph theory.

A graph G is defined as an ordered pair (V, E), where every element of E (the edges) is a

two-element subset of V (the nodes). From this simple structure, we can measure a large

number of properties (see e.g., Newman 2010 for an introduction). A simple graph contains

neither self-edges (a node is linked to itself) or multiedges (the same two nodes are linked

by more than one type of edge), whereas a multigraph contains at least one multiedge. As

we illustrate in fig. 3.1, edges can be directed (e.g., A eats B), or undirected (e.g., A and B

compete); unweighted (e.g., A pollinates B) or weighted (e.g., A contributes to 10% of B’s

pollination). In the context of studying ecological interactions, V is a set of ecological objects

(taxonomic entities, or other relevant components of the environment), and E are the pairwise

relationships between these objects. As both the strengths of interactions and their direction

are highly relevant to ecological investigations, data on species interactions are most often

represented as networks: directed and weighted graphs. We use network as a synonym for

“graph” throughout. Species interaction networks can, finally, be represented as unipartite or

bipartite networks. Unipartite networks are the more general case, in which any two nodes can

be connected; for example, food webs or social networks are unipartite (Post 2002; Dunne

2006). Unipartite networks can represent interactions between multiple groups; for example,

food webs can be decomposed into trophic levels, or trophic guilds. Bipartite networks, on the

other hand, have nodes that can be divided in disjointed sets T (top) and B (bottom), such

that every edge goes from a vertex from T , to a vertex from B; any ecological community

with two discrete groups of organisms can be represented as a bipartite network (e.g. plant

and mutualists, Jordano & Bascompte 2013; parasites and hosts, Poulin 2010; phage and

bacteria, Weitz et al. 2013). It is possible to represent k-partite networks, i.e. networks with k

discrete “levels”. This formalism has been used for resources/consumers/predators (Chesson &

Kuang 2008), and other plant-based communities (Fontaine et al. 2011b). Tripartite networks

73





1974b; Gravel et al. 2016b; Monteiro & Faria 2016; Novak et al. 2016).

3.3 What can we learn with ecological networks?

Here, unless otherwise stated, we will focus on describing measures of the structure of

unweighted, directed networks (i.e., either the interaction exists, or it does not; and we know

in which direction it points), to the exclusion of quantitative measures that account for the

strength of these interactions. In most cases, quantitative variations of the measures we

present do exist (see e.g., Bersier et al. 2002), and share a similar mathematical expression.

We think that focusing on the simplifying (yet frequently used) unweighted versions allows

one to develop a better understanding, or a better intuition, of what the measure can reveal.

There is a long-standing dispute (Post 2002) among ecologists as to whether “arrows” in

networks should represent biomass flow (e.g., from the prey to the predator) or interaction

(e.g., from the predator to the prey). Because not all interactions involve biomass transfer,

and because networks may be used to elucidate the nature of interactions, we will side with

the latter convention. In general, we will assume that the interaction goes from the organism

establishing it to the one receiving it (e.g., from the pollinator to the plant, from the parasite

to the host, etc.).

3.3.1 What do communities look like?

Order, size and density During the last decades, various network measures have been

developed to characterize the general structure of interacting communities, capturing both

species identity and their interactions (Dunne et al. 2002b; Montoya et al. 2006; Allesina &

Pascual 2007; Thompson et al. 2012). Most of these measures encompass and supplement

usual measurements in community ecology. In addition to how many species there are, and which

species are in local area, knowledge of their interactions is an additional layer of information

that network measures exploit to quantify biodiversity.
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A first descriptor of a network is its order (S), i.e., the total number of nodes. If nodes are

species, order measures the species richness of the community described by the network G.

The total number of interactions (L) is the size of the network. From these two measures

is computed the linkage density L
S

(e.g., Bartomeus 2013), which is the mean number of

interactions per node – or simply, if a random species is selected, how many interactions it

would be expected to have. Linkage density should be considered with caution as it can be

misleading: the distribution of interactions among nodes in species interaction networks is

rarely uniform or normal (Williams 2011), and a minority of species are known to establish a

majority of interactions (Dunne et al. 2002a). Moreover L is known to scale with S2 (Cohen &

Briand 1984; Martinez 1992), at least in trophic interaction networks.

This observation that L scales with S2 has cemented the use of an analog to linkage

density, the connectance (Co), as a key descriptor of network structure (Martinez 1992).

Connectance is defined as L
m

, i.e., the proportion of established interactions (L), relative to the

possible number of interactions m. The value of m depends of the type of network considered.

In a unipartite directed network, m is S2. In a directed network in which species cannot interact

with themselves, m is S(S − 1). In an undirected network, m is S S−1
2

if the species cannot

interact with themselves, and S S+1
2

if they can. In a bipartite network, m is T ×B, the product

of the number of species at each level. The connectance varies between 0 if the adjacency

matrix is empty to 1 if its entirely filled. It is also a good estimate of a community sensitivity to

perturbation (Dunne et al. 2002a; Montoya et al. 2006) as well as being broadly related to many

aspects of community dynamics (Vieira & Almeida-Neto 2015). Although simple, connectance

contains important information regarding how links within a network are distributed, in that

many network properties are known to covary strongly with connectance (Poisot & Gravel

2014; Chagnon 2015), and the fact that most ecological networks “look the same” may be

explained by the fact that they tend to exhibit similar connectances (fig. 3.2). Poisot & Gravel

(2014) derived the minimum number of interactions that a network can have in order for all

76



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S
p
a
rs

e
ly

 c
o
n
n
e
c
te

d
 m

o
ti
f

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
a
rt

ia
ll
y
 c

o
n
n
e
c
te

d
 m

o
ti
f

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

F
u
ll
y
 c

o
n
n
e
c
te

d
 m

o
ti
f

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
e
s
te

d
n
e
s
s

Connectance

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

M
o
d
u
la

ri
ty

Figure 3.2 To illustrate the strong relationship betweeen connectance and other network measures,
we measured the nestedness using η, modularity (best partition out of 100 runs), and the relative
frequencies of three bipartite motifs (white, sparsely connected; grey, partially connected; black, fully
connected) in 102 pollination networks. The sparsely connected motif represents two independent
interactions. The partially connected motif represents the addition of one interaction to the sparsely
connected one, and the fully connected motif includes the addition of another interaction. All of
these measures have a strong covariance with connectance, and for this reason, the comparison of
networks with different connectances must rely on randomizations. For data, methods, and code see
https://osf.io/82ypq/.

species to have at least one interaction. This allows us to express connectance in the [0; 1]

interval, where 0 indicates that the network has the least possible number of interactions.

Interactions repartition within the networks The majority of real-world species interaction

networks are highly heterogeneous with regard to interactions distribution among nodes. It is

possible to study the degree distribution of the network (the distribution of the number of inter-

actions per node, see paragraph below). The way interactions are organized (distributed) among

the nodes reflects ecological constraints and can be studied using various methods.Quantitative

measures of different structures have been developed from graph theory and have played
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a growing role in understanding the evolution and functioning of ecological communities

– in particular, because these measures add a small amount of information (comparatively

to measures presented later below), they are a natural first step in moving away from a

species-centric view of community into the arguably more realistic species-and-interactions

view that networks capture well.

If the degree of a node is its number of interactions, then the degree distribution P (k)

measures the probability that a species has k interactions within the network. The degree

distribution can be calculated as P (k) = N(k)/S where N(k) is the number of nodes with k

interactions, and S is the total number of species in the network. The degree distribution

allows identification of important nodes, such as potential keystone species (Sole & Montoya

2001 ; Dunne et al. 2002b), generalists, and specialist species (Memmott et al. 2004). In

directed networks, the degree distribution can be divided into in-degree and out-degree. These

respectively correspond to species vulnerability (e.g., number of predators in food webs) and

generality (e.g., number of resources in food webs). It is often assumed that the distribution of

degree in networks should resemble a power law (Strogatz 2001; Caldarelli 2007). In other

words, the proportion P(k) of nodes with degree k should be proportional to k−γ (but see see

Jordano et al. 2003 – a truncated power law may be a more accurate description). Assuming

that power laws are an appropriate benchmark is equivalent to assuming that ecological networks

are structured first and foremost by preferential attachment, and that deviation from power-law

predictions suggests the action of other factors. Dunne et al. (2002a) found that, at least in

food webs, ecological networks tend not to be small-world or scale-free (i.e., having a specific

degree distribution; Caldarelli 2007), but deviate from these rules in small yet informative

ways (specifically, about prey selection or predator avoidance). Opportunistic attachment and

topological plasticity have been suggested as mechanisms that can move the system away from

predictions based on power laws (Ramos-Jiliberto et al. 2012; Ponisio et al. 2017). We suggest

that deviations from the power law be analysed as having intrinsic ecological meaning: why
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there are more, or fewer, species with a given frequency of interactions may reveal reasons for

and/or constraints on particular species interactions.

The network diameter gives an idea of how quickly perturbations may spread by providing a

measure of how dense the network is. Diameter is measured as the longest of all the shortest

distances (di j) between every pair of nodes in the graph (Albert & Barabási 2002), where

di j is the length of the shortest path (sequence of interactions) existing between the nodes i

and j . A small diameter indicates the presence of a densely connected nodes, or hubs, hence

fast propagation between nodes which may make the network more sensitive to perturbation

(e.g. rapid spread of a disease; Minor et al. 2008). The diameter is relative to the number of

nodes in the network, since it relies on counting the number of edges in a path, which may

become larger as the network order increases. To overcome this issue, the diameter can also be

measured as average of the distances between each pair of nodes in the network.

Aggregation of nodes based on their edges From the heterogeneous repartition of in-

teractions between nodes in species interaction networks, certain structures and groupings

of interactions around nodes emerge. While the degree distribution hints at how edges are

organized around single nodes, one can frame this question at the scale of the entire network.

It is likely that other structures will appear when multiple nodes are considered at once. This

can be done by analyzing what types of relationships the nodes (representing species, etc.) are

typically embedded in (e.g., competition, intraguild predation), through the analysis of motifs

distribution, or by determining if there are nodes found in dense clusters or non-overlapping

compartments, forming modular communities.

Species interaction networks can be decomposed into smaller subgraphs of n species, called

motifs (Milo 2002). The smallest modules to which they can be decomposed are three-species

motifs (Holt 1997a). The relative frequencies of each of these motifs holds information

about network structure. There are 13 possible three-nodes motifs in directed networks, each

representing a different relationship between three nodes, such as competition between A and B
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for a shared resource C (A→ C ← B), or a linear chain between A, B and C (A→ B → C).

Among these 13 motifs, some are present in species interaction networks with a lower or higher

frequency that what is expected in random networks. Motif distributions are characteristic of

network type (neuronal, electrical, social, ecological, and so on). In food webs for example,

motifs under- and over-representation has been found to be consistent across different habitats

(Camacho et al. 2007; Stouffer et al. 2007; Borrelli 2015). In ecological networks, motifs

have been referred to as the basic building blocks of communities, as they represent typical

relationships between species. Studying their distribution (i.e., how many of each type of

motif there is this network) offers an opportunity to bridge the gap between two traditional

approaches (Bascompte & Melián 2005), namely the study of the dynamics of simple modules

such as omnivory or linear food chain (Pimm & Lawton 1978; Holt 1996; McCann et al.

1998), and the analysis of aggregated metrics describing the community as a whole. Motif

distributions have been used to study the processes underlying the assembly and disassembly of

ecological communities (Bastolla et al. 2009), as well as of the link between community’s

structure and dynamics (Stouffer & Bascompte 2011). More recently, motifs have also been

used to define species’ trophic roles in the context of their community (Baker et al. 2014) and

to link this role to the network’s stability (Borrelli 2015).

The clustering coefficient is useful to estimate the “cliquishness” of nodes in a graph (Watts

& Strogatz 1998) – that is their grouping in closely connected subsets. It measures the degree

to which the neighbours of a node are connected (the neighbourhood of a node i is composed

of all of the nodes that are directly connected to i). In other words, it gives an idea of how

likely it is that two connected nodes are part of a larger highly connected group or “clique”.

Two different versions of the clustering coefficient (CC) exist. First, it can be defined locally,

for each node i (Watts & Strogatz 1998). In this case cci =
2Ni

ki (ki−1)
where ki is i ’s degree (its

number of neighbours) and Ni is the total number of interactions between i ’s neighbours.

It describes the fraction of realized edges between i ’s neighbours and thus varies between 0
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Figure 3.3 Illustration of the nested and modular structure of networks, represented as matrices. A is
a perfectly nested matrix; in B, three interactions (in grey) have been displaced to lose the perfectly
nested structure. C is a perfectly modular network; in D, three interactions have been displaced to
lose the modular structure.

(none of i ’s neighbours are connected) and 1 (all of them are connected, forming a “clique”).

From this measure, we can calculate the average local clustering coefficient: CC1 =
∑
i ci
S

where

S is the total number of nodes. This first version describes the “cliquishness” of a typical

neighbourhood, but has the drawback of giving more influence to nodes with a small degree.

Nevertheless, the clustering coefficient provides a way of characterising the structure of the

graph through the analysis of CCk , which is the average of the cci of all nodes of degree k , and

specifically of the distribution of CCk across multiple values of k . The clustering coefficient can

also be defined globally, for the entire graph (Soffer & Vazquez 2005; Saramäki et al. 2007)

and is calculated as follows CC2 =
3Nt
Nc

, where Nt is the number of triangles in graph G (a is

connected to b and c, b to a and c and c to a and b) and Nc is the number of three-node

subgraphs (e.g., a is connected to b and c , b and c are connected to a but not to each other).

Kim (1993) suggested that this property of a network can be used to infer competition, but

this has to our knowledge received little attention in ecology.

Whereas clustering analysis gives information about the grouping of nodes within their
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immediate neighbourhood (but no information about the identity of nodes in this neighbourhood),

a measure of modularity gives a similar information at a larger scale (Gauzens et al. 2015).

Network modularity measures how closely connected nodes are divided in modules, also called

compartments (Olesen et al. 2007). A module is defined as a subsystem of non-overlapping and

strongly interacting species (see fig. 3.3, matrices C and D for a comparison of the structures of

modular and non-modular matrices). The modular structure of graphs has been studied because

of its dynamical implications, in that modularity promotes stability by containing perturbations

within a module, thereby constraining their spreading to the rest of the community (Stouffer

& Bascompte 2010, 2011). This has been a key argument in the diversity-stability debate

(Krause et al. 2003). A major challenge when studying the modularity of species interaction

networks is to find the best subdivision of the network. Several methods have been developed

for this purpose, which can be classified into three categories: i) classical optimization of a

modularity function that maximizes link density within modules (Guimerà et al. 2004; Newman

2004; Newman & Girvan 2004; Guimerà & Amaral 2005a, 2005b), ii) probability mixture

strategies (stochastic blockmodels, usually referred to as group model in ecology; Holland et al.

1983; Allesina & Pascual 2009a) and iii) modular flow analysis based on maps of random walk

(Rosvall & Bergstrom 2008; Rosvall et al. 2009; Farage et al. 2020). These usually resulting in

different groupings, reflecting the fact that there is not one true grouping of nodes in ecological

networks. The method must thus be chosen carefully to fit the type of information one wants

to reveal.

The optimization of a modularity function is by far the most popular in ecology The

principle underlying this function is to find the optimal subdivision that maximizes the number

of interactions within modules while minimizing the number of interactions between modules.

The calculated modularity is then compared with a null model that has the same number of

links and nodes, with the links connected to each other randomly. Modularity optimization has

a resolution limit (in that its performance decreases with the size of the network) making it
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less reliable for large species interaction networks (Fortunato & Barthélemy 2007); there are

methods designed specifically to work on thousands of nodes and more (see e.g. Liu & Murata

2009). To compare outcomes of different modularity measurements, it is possible to use an

a posteriori method. In a network where modules are already found, the realized modularity

(Q′R) measures the proportion of interactions connecting nodes within modules (Poisot 2013).

This is expressed as

Q′R = 2×
W

L
− 1 , (3.1)

where W is the number of interactions within modules, and L is the total number of

interactions. This takes on a value of 1 when modules are disconnected from one another

(which is not true of other modularity functions that account for the probability of establishing

an edge). This measure can take on negative values if there are more interactions between

modules than within them, which can be viewed as a non-relevant partitioning of the community.

Nestedness Species interaction networks can also present a nested structure (see fig. 3.3,

matrices A and B for a comparison of the structures of nested versus non-nested matrices),

where the species composition of small assemblages are subsets of larger assemblages. In food

webs, a nested structure occurs when the diet of the specialist species is a subset of the diet

of the more generalist species – and where the predators of species are nested as well. The

analysis of nestedness has revealed ecological and evolutionary constraints on communities.

For example, it has been hypothesized that a nested structure promotes greater diversity by

minimizing competition among species in a community (Bastolla et al. 2009). Various metrics

have been developed to quantify nestedness (Ulrich 2009; Ulrich et al. 2009). Most are based on

the principle that when a matrix is ordered by rows and columns (that is descending in rank from

above and from the left) a nested network will present a concentration of presence data in the

top-left corner of the matrix, and a concentration of absence data in the opposite corner [see
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Staniczenko et al. (2013) for an exception; see fig 3.3C]. Numerous studies (Rodriguez-Girones

& Santamaria 2006; Fortuna et al. 2010; Flores et al. 2011) use the proportion of unexpected

presence or absence in the matrix to quantify nestedness. Seemingly the most widely used

measure of nestedness is based on overlap and decreasing fills (NODF), as suggested by

Almeida-Neto et al. (2007); Bastolla et al. (2009) suggested that η can complement NODF,

in that η does not require a re-ordering of the nodes (i.e., there is no need to put the most

densely connected nodes first, and the least densely connected nodes last). As per Bastolla et

al. (2009), η is defined as:

η(A) =

∑

i<j ni j
∑

i<j minimum(ni , nj)
(3.2)

where ni j is the number of common interactions between species i and j , and ni is the

number of interactions of species i . Note that this formula gives the nestedness of rows with

regard to the columns, though one can also measure the nestedness of columns with regard

to rows as η(A′), and calculate the nestedness of the whole system as the average of these

two values. We suggest that, since it does not rely on species re-ordering, η can be used over

NODF or other nestedness measures. There are some caveats to this argument, however.

First, the number of permutations for NODF is known, and for species-poor networks, they

can be computed in a reasonable time. Second, NODF can help understanding how different

orderings of the matrix (e.g., informed by species traits such as interaction strength or forbidden

links)contributes to nestedness – if this is the question of interest, then NODF is the logical

choice (Krishna et al. 2008). Once ordered by degree, NODF and η are identical (with the

exception that NODF accounts for decreasing fill, whereas η does not). Finally, η has the

undesirable property of always giving the same value depending only on the degree distribution.

Therefore, any permutation of a network that maintains the degree distribution will give the

same value of η, which greatly impedes hypothesis testing.
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Intervality A last measure of the structure of species interaction networks is their intervality.

A network is “interval” when it can be fully explained by one dimension (trait). An interval food

web with species ordered by their body mass, as an example, has predator eating a consecutive

range of prey, that all fall into a range of body masses (Eklöf & Stouffer 2015), or are closely

related from a phylogenetic standpoint (Eklöf & Stouffer 2015). The first step in calculating

intervality is to identify a common trait along which nodes can be ordered. This can be body

mass in the case of food webs, but can also be a property derived from their position in the

network, such as their degree; indeed, a nested bipartite network is interval when species

are organized by decreasing degree. Intervality then measures how well interactions of all

species can be described by this trait. Most unipartite ecological networks are close to being

interval with one or several dimensions, such as defined by body size (Zook et al. 2011) or

arbitrary traits derived from the interactions themselves (Eklöf et al. 2013). There are several

methods to quantify a network’s intervality. Cattin et al. (2004) quantified the “level of diet

discontinuity” using two measures: (i) the proportion of triplets (three species matrix) with a

discontinuous diet (i.e., at least one species gap), in the whole food web (Ddiet), and (ii) the

number of chordless cycles (Cy4). A cycle of four species (a graph cycle is a subset of species,

here 4, that are connected by a continuous path of interactions such that the first species is

also the last)is considered as chordless if at least two species out of the four are not sharing

prey, so the diets cannot be totally interval. Nevertheless, these two measures only give a local

estimation of intervality. Stouffer et al. (2006) proposed to measure the intervality of the

entire network by re-organizing the interaction matrix to find the best arrangement with the

fewest gaps in the network. This is a stochastic approach that by definition does not guarantee

finding the global optimum, but has the benefit of working at the network scale rather than at

the scale of triplets of species.
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3.3.2 How are communities different?

Detecting spatial and temporal variation in ecological networks, and associating these variations

with environmental factors, may yield insights into the underlying changes in ecosystem

functions, emergent properties, and robustness to extinction and invasion (Tylianakis et

al. 2007; Tylianakis & Binzer 2013). These efforts have been hindered by the difficulty of

quantifying variation among interaction networks. The challenge lies in finding a meaningful

way to measure the dissimilarity between networks (Dale & Fortin 2010). Given the ecological

properties or processes of interest, a direct comparison – not always computationally tractable

– may not be necessary. Hence, networks can be indirectly compared through their properties

(e.g., degree distribution, connectance, nestedness, modularity, etc.). Multivariate analyses of

network metrics have been used to estimate the level of similarity between different networks

(Vermaat et al. 2009; Baiser et al. 2012), while null models were used to compare observed

values statistically to their expected random counterparts (e.g., Flores et al. 2011).

In the situation where several networks share a large enough number of species, one can

alternatively compare how these shared species interact. This approach can be particularly

useful along environmental gradients (Tylianakis et al. 2007; Tylianakis & Morris 2017). It

represents a second ‘dimension’ of network variability, where in addition to changes in higher

order structure, changes at the scale of species pairs within the networks are accounted for.

This variation is more readily measured through a different approach to sampling, where instead

of relying on the sampling of a large number of networks in different environments, efforts are

focused on the same system at reduced spatial or temporal scales. The development of methods

to analyse replicated networks is still hampered by the lack of such data; this is especially

true in food webs. Replicated food webs based only on the knowledge of the local species and

their potential interactions (e.g., Havens 1992) are not always appropriate: by assuming that

interactions always happen everywhere, we do not capture all sources of community variation

(in addition to the issue of co-occurrence being increasingly unlikely when the number of species
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increases). Sampling of ecological networks should focus on the replicated documentation of

interactions within the same species pool, and their variation in time and space (Poisot et al.

2012; Carstensen et al. 2014; Olito & Fox 2015), as opposed to relying on proxies such as

comparison of different communities across space (Dalsgaard et al. 2013), or time (Roopnarine

& Angielczyk 2012; Yeakel et al. 2014).

Analysis of network structure measures has so far played a central role in the comparison of

networks and in the search for general rules underpinning their organization (Dunne 2006;

Fortuna et al. 2010). Notably, the number of species affects the number of interactions in

real ecological networks (Martinez 1992; Brose et al. 2004), and thus many other network

properties (Dunne 2006). Some measures of network structure covary with expected ecological

properties, such as species abundance distributions (Blüthgen et al. 2008; Vázquez et al. 2012;

Canard et al. 2014), network size and sampling intensity (Martinez et al. 1999; Banašek-Richter

et al. 2004; Chacoff et al. 2012). This issue can seriously limit the interpretation of network

measures and their use for network comparison. Furthermore, most of these measures are highly

correlated among themselves: Vermaat et al. (2009) reported that network variation can be

reduced largely along three major axes related to connectance, species richness (which is tied to

connectance because the number of interactions scales with the number of species) and primary

productivity (which is hard to measure, and is not easily defined for all systems). More recently,

Poisot & Gravel (2014) and Chagnon (2015) showed that because of constraints introduced by

the interaction between connectance and network size, the covariation of the simplest measures

of network structure is expected to be very strong. As a consequence, it is barely possible to

make robust network comparisons using the variations in these basic descriptors. We therefore

need to go beyond these global network properties, and find meaningful alternatives that allow

a better understanding of the ecological differences between networks.

Differences in global structure Other methods accounting for the structure of the entire

network have been developed. For example, some methods are based on the frequency
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distribution of small subnetworks including network motifs (Milo 2002) and graphlets (a more

general definition of motifs; Przulj 2007; Yavero lu et al. 2015). The method of graph edit

distance gives edit costs (each modification to the graph counts for one unit of distance) for

relabelling nodes, as well as insertion and deletion of both nodes and interactions (Sanfeliu &

Fu 1983), and therefore provides a well-defined way of measuring the similarity of two networks

(this method has not been widely used in ecology). Other suitable measures to determine

network similarity are based on graph spectra (Wilson & Zhu 2008; Stumpf et al. 2012).

Spectral graph theory (which is yet to be applied comprehensively to the study of species

interaction networks, but see Lemos-Costa et al. (2015)) characterizes the structural properties

of graphs using the eigenvectors and eigenvalues of the adjacency matrix or the closely related

Laplacian matrix (the Laplacian matrix, defined as D− A, wherein D is a matrix filled with 0’s

in the off-diagonal elements, and the degree of each node is on the diagonal and accounts

both for network structure and for degree distribution). Some methods allow the algorithmic

comparison of multiple networks in which no species are found in common (Faust & Skvoretz

2002; Dale & Fortin 2010), and are primarily concerned with the overall statistical, as opposed

to ecological, properties of networks.

Ecological similarity and pairwise differences All of the aforementioned methods are

adapted from other fields (usually physics) and focus on networks as mathematical abstractions.

Developing new methods, rooted in ecological processes, to compare ecological networks would

potentially provide new important insights.@pois12dsi presented a framework for measurement

of pairwise network dissimilarity, accounting both for species and interactions turnover through

space, time or along environmental gradients. This method extends the notion ofβ-diversity

to the network of interaction underlying communities Following Koleff et al. (2003), this

approach partitions interactions in three sets: shared by both networks, unique to network

1, and unique to network 2. The β-diversity can be measured by comparing the number of

interactions shared and unshared bythese three sets to reflect symmetry of change, gain/loss
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measures, nestedness of interaction turnover, etc. This method of network β-diversity can

also be extended to multiple network comparisons using their relative difference from the

same meta-network. While many measures of β-diversity exist to analyse compositional data,

there is still a lack of a comprehensive methodology regarding their application to networks. A

large part of this stems from the fact that species interactions require the species pair to be

shared by both communities, and consequently some analyses require that the species pair is

shared by two communities: measures of network β-diversity are strongly constrained by the

structure of species co-occurrence. If no species pairs co-occur, or if no two networks have

common species, these methods cannot give informative results (the dissimilarity being, by

default, complete) – as of now, this suggests that a tighter integration of these methods with

research on compositional turnover is needed, especially to understand the threshold of shared

species below which they should not be applied. In addition, none of the current methods seem

sufficient to characterize the structure for a meaningful comparison and to extract information

hidden in the topology of networks (as they ignore network-level structure, i.e., emerging from

more than direct interactions), and the development of future methods that work regardless of

species composition seems like a straightforward high-priority topic. Finally, this framework

would benefit from a better integration with quantitative measures. Using Bray-Curtis (or

equivalent) measures to assess difference between networks for which interaction strengths are

known would allow us to quantify dissimilarity beyond the presence or absence of interactions.

3.3.3 What do species do?

Not all species in large communities fulfill the same ecological role, or are equally important for

processes and properties acting in these communities. As species interactions are a backbone

for fundamental mechanisms such as transfer of information and biomass, one can expect

that the role of a species reflects its position within its community, organized by trophic

level, abundance, body size or other ecologically meaningful organizing principles. In species
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interaction networks, it is possible to measure the position and the role of species in different

ways, giving different ecological information.

Centrality Centrality is a measure of how “influential” a species is, under various definitions

of “influence”. It has been used to identify possible keystone species in ecological networks

(Jordán & Scheuring 2004; Martín González et al. 2010). We note that the ability of network

structure measures to identify keystone species is highly dubious; the canonical definition of a

keystone species (Paine 1969) requires knowledge about biomass and effects of removal, which

are often not available for network data, and makes predictions that are primarily about species

occurrences. These measures may be able to identify list of candidate keystone species, but

this requires careful experimental/observational validation. Nevertheless, knowledge of network

structure allows us to partition out the effect of every species in the network. For example, in

networks with a nested structure, the core of generalist species have higher centrality scores, and

the nested structure thought to play an important role for network functioning and robustness

(Bascompte et al. 2003). We provide an illustration of some centrality measures in fig. 3.4.

Degree centrality (CD(i) = ki ; Freeman (1977)) is a simple count of the number of

interactions established by a species. In directed networks, this measure can be partitioned

between in-degree (interactions from others to i) and out-degree (interaction from i to other).

It is a local measure, that quantifies the immediate influence between nodes. As an example, in

the case of a disease, a node with more interactions will be more likely both to be infected and

to contaminate more individuals (Bell et al. 1999). To compare species’ centrality, CD has to

be normalized by the maximum degree (〈CD〉 = CD/kmax).

Closeness centrality (CC) (Freeman 1978; Freeman et al. 1979) measures the proximity of

a species to all other species in the network, and is therefore global in that, although defined at

the species level, it accounts for the structure of the entire network. It is based on the shortest

path length between pairs of species and thus indicates how rapidly/efficiently a node is likely

to influence the overall network. The node with the highest CC is closer to all other nodes than
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Figure 3.4 On the simple graph depicted at the top (nodes of the same shade have the same
centralities), we measured centrality using betweenness, eigen centrality, degree centrality, and
closeness. The values have been corrected to sum to unity. The value in bold gives the most central
family of nodes for the given measure. This example illustrates that different measures make different
assumptions about what being “central” means. The dark-grey nodes do not have a betweenness
centrality value; some software returns 0 for this situation.
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any other nodes and will thus affect more rapidly the overall network if, for example, there is a

perturbation (Estrada & Bodin 2008). Formally, CC is defined as

CC(i) =
∑

j 6=i

n − 1

dj i
, (3.3)

where di j is the shortest path length between i and j , and n is the number of species.

Betweenness Centrality (CB) (Freeman 1977) describes the number of times a species is

between a pair of other species, i.e., how many paths (either directed or not) go through it.

This measure is thus ideal to study the influence of species loss on fragmentation processes,

for example (Earn 2000; Chadès et al. 2011; McDonald-Madden et al. 2016). Nodes with high

CB values are considered as module connectors in the network. The value of CB is usually

normalized by the number of pairs of species in the network excluding the species under focus,

and is measured as

CB(i) = 2×
∑

j<k;i 6=j

gjk(i)/gjk
(n − 1)(n − 2)

, (3.4)

where gjk is the number of paths between j and k , while gjk(i) is the number of these paths

that include i .

Eigenvector centrality (CE – Bonacich 1987) is akin to a simulation of flow across

interactions, in which each species influences all of its partners simultaneously. It then measures

the relative importance of species by assigning them a score on the basis that an interaction

with more influential species contributes more to a species’ score than the same interaction

with a low-scoring species (Allesina & Pascual 2009b). From a graph adjacency matrix A, the

eigenvector centrality of species i is given by

CE(i) =
1

λ

∑

j

Ai jCE(j) , (3.5)

where Ai j is 1 if i interacts with j and 0 otherwise, and λ is a constant. This can be
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rewritten as the eigenvector equation:

Ac = λc , (3.6)

wherein c is the vector of all values of CE. As all values of CE have to be positive, as per

the Perron-Frobenius theorem, λ is the greatest eigenvalue of A.

Finally, Katz’s centrality (CK – Katz 1953) is a measure of the influence of a node in

the network. This measure takes into account all the interactions connecting a node to its

neighbourhood. However, an immediate neighbour has more weight than a distant one. CK is

defined as

CK(i) =

∞
∑

k=1

n
∑

j=1

αkAkij , (3.7)

wherein α is the attenuation constant, and k is the length of the paths between i and

j . The α value is between 0 and 1/λ, where λ is the largest eigenvalue of A. Larger values

of α give more importance to distant connections, thus allowing this measure to function

either locally (immediate neighborhood) or globally (entire graph). CK can be used in directed

acyclic graphs (e.g., trees), which is not true of CE. This is also the only measure to have a

probabilistic equivalent (Poisot et al. 2016a).

Studying different measures of centrality provides important information regarding the

roles of certain species/nodes. As an example, a species may have a low CD and a high CB,

meaning that it plays a key role in connecting species that would not be connected otherwise

even if it does not interact with them directly. A low CD and a high CC means that the

species has a key role by interacting with important species. Because the absolute values of

centrality vary with network size and connectance, Freeman et al. (1979) suggested that the

centralization measure, rarely applied in ecology, be used when comparing centrality across

networks. Centralization is defined, for any centrality measure Cx , as the sum of the differences
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between each node’s centrality, and the highest centrality value (
∑

i(Cx(i)−max(Cx))). This

measure is then divided by the maximal possible value of centralization for a network with

the same number of nodes and interactions, which in turn depends on the formulae used to

measure centrality, and can be estimated based on random draws of the networks.

Species roles in the network Species functional roles can be reflected in the interactions

they establish (Coux et al. 2016), providing a clear bridge between network approaches and

functional ecology studies. Functional traits are known to be correlated with the position of

species in the network, either because they intervene directly in the interaction (Brose et al.

2006a; Alexander et al. 2013), constraining the set of possible interactions or their frequency,

or because phenological incompatibilities prevent the interaction from happening (Olesen et al.

2011). For instance, (Petchey et al. 2008a) used allometric scaling of body size and foraging

behaviour of individual consumers to predict species interactions. Scaling up to multiple traits,

one can group species into functional clusters, based on their similarity. The distribution of

some species-level network measures (e.g., centrality, degree) can then be compared within and

across groups (Petchey & Gaston 2002). This method usually does not account directly for

interactions between species (Petchey et al. 2008a) but is useful when studying a process for

which the influential traits are known, or to test the importance of a particular (complex of)

traits on a function. Moreover, when the trait used is correlated to diet choice (e.g., body

mass), and because we know that networks are usually interval(see paragraph on intervality),

this may group interacting species.Note that one can, in this situation, adopt a very generous

definition of what constitutes a trait: spatial grouping of species (Baskerville et al. 2011) is one

example in which examining interactions in the light of species attributes provides ecological

insights.

If external information on species traits is absent, the role of a species can be approached

through the interactions it establishes within the network: species with similar interactions

are often grouped into trophic species, and these can be assumed to have similar traits or
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lifestyles (this approach has mostly been used in food webs). Indeed, many food-web models

(Williams & Martinez 2000; Cattin et al. 2004) predict interactions between trophic groups,

and not between species. Lumping species within trophic groups maintains the heterogeneity of

interactions across groups, but removes all variability of interactions between species within the

groups. As a consequence, species that bring unique interactions to a trophic group may be

overlooked. Dalla Riva & Stouffer (2015) suggested an alternative to this approach: species

positions are analysed before clustering them into groups (i.e., there is a measure of position for

every species), allowing explicit investigation of species interactions while avoiding obfuscation

of the variance within groups.

Coux et al. (2016) measured the functional role of species, by applying functional dispersion

FDis (Laliberté & Legendre 2010) to the adjacency or incidence matrix of the network. Under

this framework, as in Mouillot et al. (2013), the uniqueness of a species is hinted at by its

distance to the centroid of all other species. We argue that this approach should be questioned

for two reasons. First, it is sensitive to the ordination choices made. Second, it is not clear how

it allows the comparison of results across different networks: not only does the position of a

species vary in relation to other species in the network, it varies from one network to another.

Note that centrality measures are not necessarily better at identifying which species are unique:

as we show in fig. 3.4, for some measures, non-unique nodes have high centrality values. We

argue that the development of measures for node uniqueness should receive increased attention.

In particular, measures that rely on ordination only account for first-order interactions, i.e.,

direct interactions between species. As a consequence, a large part of the network structure,

which emerges through consideration of longer chains of interactions, is not accessible via

these methods.

Looking at network motifs is a promising way to address species functional roles and node

uniqueness. Motifs are all the possible ways a fixed number of species (usually three or four)

can interact. Within these motifs, species can occupy a variety of unique positions; for example,

95



within a linear food chain, there are three distinct positions (bottom, middle, top), whereas a

trophic loop has a single unique position. Within motifs with three species, 30 unique positions

can be identified (Stouffer et al. 2012), and for each species, its frequency of appearance

at each of these positions within networks has been shown to be an inherent characteristic

conserved through its evolutionary history. This method has the advantage of grouping species

that may be different in terms of guild or partners, but that contribute in the same way to the

structure of the community. Based on this vector it is possible to identify species statistically

that exhibit similar profiles. Motif positions tend to be well conserved both in time (Stouffer et

al. 2012) and space (Baker et al. 2014), making them ideal candidates to be investigated

alongside functional traits and phylogenetic history.

Partition based on modularity In large communities, some species are organized in modules

(see “What do communities look like” part “Edges repartition within the graph”), within which

they interact more frequently among themselves than with species of the same overall network

but outside of their module. Guimerà & Amaral (2005b) proposed that when functional or

topological modules can be found in large networks, the functional role of a species can be

defined by how its interactions are distributed within its module and with other modules. To

identify these roles, the first step is to identify the functional modules of a large network (see

“What do communities look like” part “Edges repartition within the network”). The profile of

species interactions is determined by using two measures.

First, the z-score quantifies how well-connected a species i is within its module m.

zi =
Ki −Kmi
σKmi

, (3.8)

where Ki is the degree of i within its module mi ; Kmi is the average of K over all species of

mi and σKmi is the standard deviation of K in mi .

Second, the participation coefficient (PC) describes the profile of i ’s interaction with species
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found outside of the module m.

PCi =

NM
∑

m=1

(
Kis
ki
)2 , (3.9)

where ki is the total degree of species i , meaning a count of all its connections, inter- and

intra module. The PC of a species therefore varies between 0 (all interactions are within the

module) and 1 (all interactions are uniformly distributed among all modules). The use of these

indices is based on the assumption that species with similar interactions have similar traits and

so are expected to play the same functional role.

Olesen et al. (2007) used these two values to divide species into four groups, based on a

cutoff for z (2.5) and for PC (0.62). Species with low z and low PC are “peripherals” – they

are not well connected within or between modules. Species with low z and high PC connect

well between, but not within, modules, and are “connectors”. Species with high z and low PC

are “module hubs”, well connected within their own modules but not with the outside. Finally,

species with high z and high PC are “network hubs”, connecting the entire community. In their

analysis of plants and pollinators, Olesen et al. (2007) revealed that pollinators tend not to be

module hubs, and are also less frequently network hubs than plants are.

Contribution to network properties. As species make differential contributions to network

structure and processes, the removal of certain species will therefore have a greater effect on

the community’s stability and functioning, and these species are therefore stronger contributors

to these processes. Differential contribution to several processes can be estimated in multiple

ways: by performing removal/addition experiments in real ecological systems (e.g., Cedar creek

or BIODEPTH experiments), by analyzing the effect of a species extinction within empirical

(Estrada & Bodin 2008) or simulated (Berlow et al. 2009) systems, by using a modelling

approach and simulating extinctions (Memmott et al. 2007), or by analyzing the statistical

correlation between an ecosystem property and species functional roles (Thompson et al.
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2012). Another way to quantify the contribution of a species to a property P is to compare

it to its contribution to the same property when its interactions are randomized (Bastolla

et al. 2009). This method allows studying the contribution of a species’ interactions, as the

variation of interactions is intuitively expected to be faster than the variation of species. Indeed,

because interactions require species to co-occur, because there are far more interactions than

species, and because interactions have dynamics of their own, whether there will be more signal

in interactions than in species presence is an hypothesis that should be tested on empirical

systems in priority.

The contribution of a species to a given network measure after its interactions are randomized

is

ci =
(P − 〈P ⋆i 〉)

σP ⋆
i

, (3.10)

where P is the property (nestedness, modularity, productivity, . . . ), 〈P ⋆i 〉 and σP ⋆
i

are the

average and standard deviation, respectively, of the property across a set of random replicates

for which species i interactions have been randomized. The effects of several traits or structural

properties of species (such as centrality or species trophic roles) on their contributions to given

measure can then be analyzed.

3.3.4 How similar are species interactions?

Some species exhibit a much larger set of interactions than others or form denser clusters

within the network. One of the many challenges of ecology is to understand the causes and

consequences of such heterogeneous species interactions. Species are, first and foremost,

related by their phylogenetic history. We will not address this aspect here, because it does

not easily integrate with network theory. We encourage readers to refer to Cadotte & Davies

(2016) instead.

One way in which the heterogeneity of species interactions is quantified is through analysis
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of the overlap in their partners, known as ecological similarity. For simplicity, we will use the

vocabulary derived from trophic networks, but these methods can also be applied to other

types of ecological networks. Ecological similarity between species is a widely used concept that

quantifies the resemblance between two species or “biotic interaction milieu” (McGill et al.

2006) and allows analyzing processes ranging from species niche (Elton 1927) and community

assembly (Piechnik et al. 2008; Morlon et al. 2014) to trophic diversity (Petchey & Gaston

2002). The simplest and most widely used measure of pairwise ecological similarity is the

Jaccard coefficient (Legendre & Legendre 2012):

SJ =
a

a + b + c
(3.11)

where a is the number of shared partners, b the number of species that interact with only

the first species and c with only the second species (for variations, see (Legendre & Legendre

2012)). The Jaccard similarity coefficient is widely used to estimate ecological similarity and

competition between species (Rezende et al. 2009) but does not account for the shared absence

of interactions (but see Chao et al. 2005). This is not a severe issue, as ecological networks tend

to be extremely sparse, and therefore shared absence of interactions may not be informative.

The similarity index has to be chosen with care depending on the focus of the study. In the

general equation above, consumers and resources are seen as perfectly equivalent (additively),

but, in directed networks, it can be adapted to include consumer and resources as different

dimensions of trophic activities and/or for dynamical food webs by including information about

flows (Yodzis & Innes 1992). Once a similarity matrix is formed from all pairwise measurements,

a hierarchical clustering can be performed to build a dendrogram, which gives information

about the trophic diversity of species within a community and the relative uniqueness of species

(but see Petchey et al. 2008b). Cophenetic correlation (Sokal & Rohlf 1962) can then be used

to analyze how well several dendrograms, built using different methods, preserve the similarity

between species (Yodzis & Winemiller 1999). The similarity of overall communities can also be
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estimated to see how similar, or dissimilar, species within it are when compared to null models

(Morlon et al. 2014). For this purpose, the mean or maximum pairwise similarity is averaged

across the whole network under consideration.

3.3.5 Is any of this significant?

Most network properties tend to be colinear (Vermaat et al. 2009), specifically because they

covary with the number of species and links (MacDonald et al. 2020). For example, the number

of interactions in a network with a known number of species will limit the possible values of

nestedness, modularity, and so on (Poisot & Gravel 2014). As such, the value of any measure

of network structure often needs to be compared to a range of possible values under a null

model. The purpose of the null model is to search the null space of possible randomized

networks (Fortuna et al. 2010), in a way that would yield an unbiased distribution of the

measure of interest, to which the observed value is then compared. In practice, this approach is

constrained by (i) the size of the null space to search, and specifically the fact that it varies

with connectance (Poisot & Gravel 2014), and (ii) the computational burden of a thorough

null space exploration.

A large number of studies use the null hypothesis significance testing (NHST) paradigm to

assess the significance of an observed value of network structure. NHST works by generating

randomized networks under a variety of constraints, measuring the property of interest on

these randomizations, then commonly using a one-sample t-test with the value of the empirical

measure as its reference. This is justified because, through the mean value theorem, the

application of enough randomizations should yield a normal distribution of the simulated

network measure (see Flores et al. 2011). Bascompte et al. (2003) used a probabilistic sampling

approach, where the probability of drawing an interaction depends on the relative degree of the

species; Fortuna & Bascompte (2006) used the same approach, with the distinction that all

interactions have the same probability (equal to connectance). Drawing from a probability
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distribution in this manner has a number of shortcomings, notably the fact that some species can

end up having no interactions, thus changing the network size (which Fortuna et al. 2010 termed

“degenerate matrices”). An alternative approach is to use constrained permutations, where

pairs of interactions are swapped to keep some quantity (the overall number of interactions,

the degree of all species, and so on) constant. This approach is used in null models for species

occupancy (Gotelli 2000; Gotelli & Entsminger 2003; Ulrich & Gotelli 2007). Stouffer et al.

(2007) used an intermediate approach, where swapping was done as part as a “simulated

annealing routine”, to give the algorithm enough leeway to explore non-optimal solutions before

converging (as opposed to just swapping, which has no definition of the optimality of a solution).

Another possibility is to use alternatives to null model testing, as proposed by@macd20rls.

Seeing that the number of links may be best viewed not as a fixed but rather a probabilistic

quantity (Poisot et al. 2016a), they suggest using mathematical models instead of simulation

of random matrices to provide a domain of expected values. This type of alternative methods,

as null models, requires more development.As of now, there are no clear recommendations as

to which approach to sample the null space is the most efficient (or computationally feasible for

large network sets), emphasizing the need for a more exhaustive comparison of the behaviour

of these methods.

Hypotheses underpinning null models The most frequently used null models are topological,

i.e., they can search the null space based only on the matrix, and do not rely on ecological

processes to generate random networks. We will focus on the subset of null models which

generate a probability of observing an interaction based on different aspects of network

structure; these probabilistic networks can be analysed directly or, as is most commonly done,

converted into binary networks through random draws. There are three broad categories

of null models (commonly used for bipartite networks) – based on connectance, based on

degree distribution, and based on marginal degree distribution. Each family embodies a specific

hypothesis about the sources of bias on the measured property. Type I (Fortuna & Bascompte
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2006) null models are focused on connectance, where the probability of any two species i and j

interacting is fixed as

Pi→j =
|E|

|T | × |B|
, (3.12)

where T and B are nodes from the “top” (T = {v ∈ V, kin(v) = 0}) and “bottom”

(B = {v ∈ V, kout(v) = 0}) levels of the network (these methods were originally applied to

bipartite networks). This model assumes that interactions are distributed at random between

all species, without considering the degree of the species. Deviation from the predictions of this

model indicate that the network measure of interest cannot be predicted by connectance alone.

Type II null models (Bascompte et al. 2003) add an additional level of constraint, in that

they respect the degree distribution of the network (in degree kin ; out-degree kout). In a Type

II network,

Pi→j =
1

2

(

kin(j)

|T |
+
kout(i)

|B|

)

, (3.13)

meaning that the interaction is assigned under the hypothesis that i distributes its outgoing

interactions at random, and j receives its incoming interactions at random as well. In this

model, species with more interactions have a higher probability of receiving interactions in

the simulated network. This conserves both the distribution of generality and vulnerability.

Deviation from the predictions of this model indicate that the network measure of interest

cannot be predicted by the degree distribution alone.

Finally, Type III models account for only one side of the degree distribution, and can be

defined as Type III in, wherein

Pi→j =
kin(j)

|T |
, (3.14)
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and Type III out, wherein

Pi→j =
kout(i)

|B|
. (3.15)

Deviation from the predictions of this model indicate that the network measure of interest

cannot be predicted by the marginal degree distributions alone. Ecologically speaking, deviation

from this null model means that the way interactions are established/received is sufficient to

explain the observed structure. These models can be expressed in a sort of hierarchy. Type I

introduces the least hypotheses, and should be applied first. If there is no significant deviation,

then Type III models can be applied, then Type II. This approach has the important benefit of,

in addition to determining which properties show a difference from the random expectation,

giving insights about which aspect of the structure are responsible for this difference.

Topological and generative models It is important to note that these models, based on

permutations, are purely topological. There is no difference, when deciding if an interaction

should be assigned between two species, between e.g., a plant-pollinator network, or a host-

parasite network. One may want to test deviation from a null distribution that would be

informed by ecological processes. To inject some processes into the null models used, several

“generative” models have been proposed. In contrast to topological models, generative models

use core assumptions about ecological mechanisms to generate networks that mimic aspects

of a template network. Arguably the most influential (despite it being limited to trophic

interactions) is the “niche model” (Williams & Martinez 2000), that generates networks of

trophic groups based on the hypothesis that feeding interactions are determined by an arbitrary

niche-forming axis generally accepted or implied to be body-size ratios (Brose et al. 2006a).

Gravel et al. (2013) showed that the parameters of this model can be derived from empirical

observations. The niche model assumes a beta distribution of fundamental niche breadth in the

entire network (in cases where the trait space is bound between 0 and 1); this assumption,
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close though it may be to empirical data, nevertheless has no mechanistic or theoretical support

behind it. This suggests that so-called generative models may or may not be adequately

grounded in ecological mechanisms, which implies the need for additional developments. Similar

models include the cascade model and the nested-hierarchy model, but these tend to generate

networks that are qualitatively similar to those of the niche model (Brose et al. 2006b). More

recently, several models suggested that species traits can be used to approximate the structure

of networks (Santamaría & Rodríguez-Gironés 2007; Bartomeus 2013; Crea et al. 2015; Olito

& Fox 2015; Bartomeus et al. 2016). Finally, networks tend to be well described only by the

structure of species abundances. Both in food webs (Canard et al. 2012) and host-parasite

bipartite networks (Canard et al. 2014), modelling the probability of an interaction as the

product of relative abundance appears sufficient to generate realistic networks. These generative

models represent an invaluable tool, in that they allow building on mechanisms (although,

as we illustrate with the niche model, not necessarily ecological ones) instead of observed

relationships to generate the random expectations. The NHST-based analyses then proceed as

with topological models, i.e., the observed value is compared to the distribution of values in the

theoretical space.

3.3.6 Future methods for novel questions

Surveying the methodological toolkit available to analyze ecological networks highlights areas

in which future developments are needed. We identified, in particular, four topics that require

additional attention.

Multi/hyper graphs Most of the tools to analyse species interaction networks are limited to

node-to-node interactions, to the exclusion of node-to-interaction or interaction-to-interaction

interactions. This limits the variety of biological situations that can be represented. Golubski

& Abrams (2011) presented a number of situations that elude description in this way. For

example, opportunistic infection by a pathogen O requires the pre-existence of an interaction

104



between a pathogen P and an host H. This situation is better captured as (i) the existence of

an interaction between H and P (noted LHP ) and (ii) the existence of an interaction between O

and this interaction, noted O → LHP . Another hard-to-represent scenario is niche pre-emption:

if a host H can be infected by either pathogen P1 or P2, but not both at the same time, then

the interactions LHP1 and LHP2 interact antagonistically. This is a different situation from

simple competition between P1 and P2. Although these are extremely important drivers of,

for example, species distributions (Araújo & Rozenfeld 2014; Blois et al. 2014), the current

methodological framework of ecological network analysis is not well prepared to represent these

data.

External information Building on the basis suggested by Poisot et al. (2015c), Bartomeus et

al. (2016) proposed that the mechanisms determining ecological interactions can be identified

within a cohesive statistical framework, regardless of the type of ecological interaction. At its

core, their framework assumes that interactions are the consequence of matching rules, i.e.,

relationships between trait values and distributions. For example, a pollinator can get access to

nectar if its proboscis is of a length compatible with the depth of the flower. Rather than

relying on natural history, these “linkage rules” (Bartomeus 2013) can be uncovered statistically,

by modelling an interaction Li j as a function f (xi , yj) of the traits involved, wherein xi and

yj are sets of traits for species i and j respectively. Procedures akin to variable selection will

identify the traits involved in the interaction, and model selection can identify the shape of

the relationship between trait values and interactions. There are two reasons for which this

work is an important milestone in the modern analysis of ecological networks. First, it places

interactions within the context of community ecology, by showing how they build upon, and

influence, trait distributions. In particular, it draws attention to how structure of networks

results both from the linkage rules and from the distribution of traits in the locality where

the network is measured (Gravel et al. 2016a). Second, it does away with the necessity of

topological models to generate random networks: identifying matching rules is the only step
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needed to generate random networks based on functional, biological hypotheses, thereby

solving some of the concerns we identified with generative null models. We argue that this

approach should be expanded to accommodate, e.g., phylogenetic relationships among species.

The ideal framework to study networks, and the one we should strive for, avoids considering

interactions in isolation from other aspects of community structure – instead, it is explicit about

the fact that none of these aspects are independent. Although this will come with additional

mathematical and statistical complexity, this cost will be more than offset by the quality and

the refinement of the predictions we will make.

Although documenting species, traits, and interactions seems like a daunting effort, there

are novel approaches to accelerate the generation of data in some systems. For example, Bahlai

& Landis (2016) showed that passive measurement based on citizen science (using Google

Images) allows users to accurately document phenological matches and species interactions

between flowers and bumblebees. Similarly, Evans et al. (2016) showed that sequencing of diet

gives access to phylogenetic and interaction history within a single experiment. Addressing

novel questions will require a diversification of the methodological toolkit of network ecologists,

as well as an improved dialogue between empiricists and theoreticians.

Networks of networks An additional frontier for methodological development has to do with

the fact that networks can be nested. A network of species–species interactions is the addition

of interactions at the population level (Poisot et al. 2015c), themselves being aggregates of

interactions at the individual level (Dupont et al. 2011, 2014; Melián et al. 2014). This is also

true when moving from single-site to multi-site network analysis (Poisot et al. 2012; Canard et

al. 2014; Carstensen et al. 2014; Trøjelsgaard et al. 2015). Local interaction networks exist

in meta-community landscape (Gravel et al. 2011; Trøjelsgaard & Olesen 2016), and their

structure both locally and globally, is constrained by, but is also a constraint on, co-occurrence

(Araújo et al. 2011; Cazelles et al. 2015).

Analyzing networks in a meta-community context might require a new representation. Most
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of this challenge comes from two sources. First, species are shared across locations; this means

that two nodes in two networks may actually represent the same species. Second, networks

are connected by species movement. Both the dynamics and the structure of networks are

impacted by the fact that species move across the landscape at different rates and in different

ways. The implication is that every species in the landscape potentially experiences its own

version of the metacommunity (Olesen et al. 2010). Investigating community structure and

the emerging dynamic processes in light of space would allow a more potent examination of

the spatial structure and dynamics of ecological networks (Gouhier et al. 2010; Gravel et al.

2016b; Trøjelsgaard & Olesen 2016).

3.4 Managing species interactions networks data

The above analyses benefit from access to (context-enhanced) data on ecological interactions.

An important point to raise is that the format expected for the analysis (i.e., when data are

actively being processed) is different from the format suitable for storage, archival, mining, and

linking. From an information management perspective, this places the question of What are

ecological networks? in a new light.

Most of the measures mentioned above, and therefore most software, expect networks

to be represented as matrices; every row/column of the matrix is an object, and the value

at row i and column j is a measure of the interaction between i and j . It can be a Boolean

value, a measure of interaction strength, or a probability of interaction. This approach is

used by databases such as IWDB, Web-of-Life.es, and World of Webs (Thompson et al.

2012). Although this approach has the benefit of being immediately useful, it lacks the easy

homogeneousaddition of metadata. In the context of species interaction networks, metadata is

required at several levels: nodes (species, individuals), interactions, but also the overall network

itself (date of collection, site environmental data, and so on). Most research has so far been

constrained to the adjacency matrix representation of networks. However, ontologically richer
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representations (graphs with built-in metadata) may offer themselves to a larger and different

tool set: multi-graphs, and hyper-graphs, capture a wider picture of ecosystems where all types

of interactions are considered simultaneously. Food webs, or other networks, stored as binary or

weighted matrices may not be the most relevant representation for these questions.

There are two initiatives that remedy this shortcoming by providing meta-data-rich informa-

tion on ecological interactions. Globi (Poelen et al. 2014) is a database of interactions,

extracted from the literature, and available through GBIF. It relies on an ontology of interaction

types, and on unique taxonomic identifiers for species. Mangal.io (Poisot et al. 2015a) is a

database of networks, that can be fed and queried openly through several packages; it relies on

a custom data format, and can be linked to other databases through the use of taxonomic

identifiers.

Networks formatted as raw matrices may well be immediately usable, but supplementing

them with external information is hard. On the other hand, granular databases with rich

metadata can always be converted to raw matrices, while retaining additional information. It

is important that we maintain a distinction between the formats used for storage (in which

case, relational databases are the clear winner) and the formats used for analysis (that can be

generated from queries of databases). In order to facilitate synthesis, and draw on existing

data sources, it seems important that the practice of depositing interaction matrices be retired,

with the profit of contributing to the growth of context-rich databases. here are a handful of

software packages available for ecological network analysis (Csardi & Nepusz 2006; Dormann

et al. 2008; Hagberg et al. 2008; Hudson et al. 2013; Flores et al. 2016; Poisot et al. 2016a).

They differ in their language of implementation, license, and methods availability.

Considerations about the analysis of networks go hand in hand with the far more difficult

question of data sources and data quality. (Jordano 2016) showed that obtaining estimates of

the completeness of sampling is both difficult, and different between weighted and unweighted

networks. Describing the data at the level of the interaction in more detail may therefore give
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better estimates of (i) the robustness of the overall network, and (ii) the relevant aspects of

life history to add in models. These can then be added to predictive models, in the form of

functional traits (Bartomeus 2013; Bartomeus et al. 2016), to boost our ability to infer the

existence of interactions (or their strength). Relevant interaction-level data (discussed in Poisot

et al. 2015a) include the identity of species involved, their abundances, local environmental

conditions, and functional traits of the individuals or populations observed interacting, when

available. Shifting the focus of sampling away from networks, and onto interactions (because

what are networks, but a collection of interactions?) would give more information to work

with. Because the amount, resolution, and type of information that it is necessary and feasible

to sample will vary for each system, empirical network scientists should lead the effort involved

with developing data standards. Taking a step back, data quality should be framed within the

context of a specific analysis; we feel that there is a need for a review that would attempt to

determine the minimal amount of information needed as a function of the type of analyses that

will be applied.

3.5 Conclusions

In this contribution, we have attempted a summary of the measures from graph theory that

are the most frequently used in, or the most relevant to, the analysis of species interaction

networks.

Even though species interaction networks are ubiquitous in community ecology, biogeography,

macroecology, and so on, there is no clear consensus on how to analyse them. We identified a

number of areas that would benefit from methodological development. We highlight each of

these below, and identify whether they should stimulate future development of novel methods

to complete the framework, or stimulate further investigation and assessment of existing

methods to clarify when they should be applied.

There is a pressing need to accommodate hypergraphs and multigraphs within the network
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analysis framework, to allow work on a larger and more realistic variety of ecological situations.

Pilosof et al. (2015) identified these systems as having a high relevance when predicting

community change, and the emergence of zoonotic diseases, and this is a clear example of an

area in which ecology and applied mathematics can have fruitful interaction.

The information we use in the building of network needs to be expanded. Far from being a

collection of species and their interactions, networks are structured by environmental forces,

species trait distribution, species evolutionary history, and random chance. Replicated data

sets with extensive metadata and additional information would most likely boost our power to

describe, explain, and predict network structure (Poisot et al. 2016b). The next generation

of network measures should account for additional information carried by both species and

interactions.

Of course, the addition of data to ecological interactions requires to expand the scope

of what is currently being sampled, and to normalize it to some extent. More broadly, we

expect that the development of novel methods, and the collection of novel data and their

standardization, should go hand in hand. The emergence of interactions and networks databases,

based around documented formats, is a step in the right direction, as they provide an idea of

the scope of data to collect.

We need to establish stronger standards for the manipulation of network data. Networks

are difficult to manipulate, and the lack of a robust software suite to analyse them is a very

worrying trend – our knowledge of ecological networks is only as good as our implementation of

the analyses, and academic code can always be made more robust, especially in fields where the

widespread adoption of computational approaches is still ongoing. We expect that, since there

are numerous initiatives to increase good practices in software engineering among academics,

this problem will be solved by improved community standards in the coming years.

The NHST approach to network structure needs additional study, especially when it comes

to determining best practice. Recent developments in graph theory, and notably edge-sampling
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based cross-validation (Li et al. 2020), can help assess the performance of generative null

models. There is a shortage of null models that are based on topology but still account for

known biology of the networks (such as forbidden interactions), highlighting the need for future

developments.

There is a need to compare the alternative measures of a single property. We tried as

far as possible to frame these measures in the context of their ecological meaning. But this

can only be done properly by strengthening the ties between network analysis and field- or

laboratory-based community ecology. Statistical analysis of measures on existing data sets

will only go so far, and we call for the next generation of studies aiming to understand the

properties of network structure to be built around collaboration between empirical researchers

and measures developers.
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Abstract

In a rapidly changing world, the composition, diversity and structure of ecological communities

face many threats. Biodiversity-Ecosystem Functioning (BEF) and community food-chain

analyses have focused on investigating the consequences of these changes on ecosystem

processes and the resulting functions. These conceptual frameworks have up to recently

been often diverging, but each produced important results and identified a set of important

mechanisms, that shape ecosystem functions. However, the frequent disconnectionbetween

these frameworks, and the various simplifications of the study systems are not representative

of the complexity of real-world communities. Here we use food webs as a more realistic

depiction of communities, and use a bioenergetic model to simulate their biomass dynamics

and quantify the resulting flows and stocks of biomass. We use tools from food web analysis

to investigate how the predictions from BEF and food-chain analyses fit together, how they

correlate with food-web structure and how it might help us understand the interplay between

various drivers of ecosystem functioning. We show that food web structure is correlated to the

community’s efficiency in storing the captured biomass, which may explain the distribution

of biomass (top heaviness) across the different trophic compartments (producers, primary

and secondary consumers). While we know that ecological network structure is important in

shaping ecosystem dynamics, identifying structural attributes important in shaping ecosystem

processes and synthesizing how it affects various underpinning mechanisms may help prioritize

key conservation targets to protect not only biodiversity but also its structure and the resulting

services.

4.1 Introduction

Understanding the consequence of diversity on ecosystems process rates has become a pressing

issueas we realized that human activities threaten both species existence (MEA 2005) and

interactions (Poisot et al. 2015c) at a global scale. A variety of analyses have been conducted
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to investigate this particular problematic, and have produced important results (Tilman et al.

2014; Plas 2019) but the divide between them in concepts and approaches has hindered our

ability to synthesize their results to build a general theoretical framework (Raffaelli 2006; Duffy

et al. 2007; Hines et al. 2019).

In particular, while some studieshave focused on understanding the effect of “horizontal

diversity” on ecosystems process rates (Biodiversity-Ecosystem functioning analyses or BEF)

mainlythrough mechanisms derived from competition (Loreau & Hector 2001; Tilman et al.

2014), conversely others have focused on the effect of “vertical diversity” by aggregating species

into trophic compartments along the food chain and using the concepts from food-chain theory

(Fretwell 1987; Duffy et al. 2007; Loreau 2010a). Both approaches have produced important

results, such as the paradigmatic BEF relationship (Tilman et al. 1996), or the consequences

of trophic cascades on community structure (Paine 1980; Polis & Strong 1996; Borer et al.

2006; Gruner et al. 2008); but to build a mechanistic understanding of diversity effects on

ecosystem process rates in natural communities, comprising many species along the food chain,

we need to be able to reconcile both dimensions of diversity, as well as the different approaches

used to study their effect in a single framework (Ives et al. 2005; Duffy et al. 2007; Thompson

et al. 2012).

Recent efforts towards this goal have generally used dynamic consumer-resource models

applied to food webs (Poisot et al. 2013; Schneider et al. 2016; Wang & Brose 2017; Wang et

al. 2019; Buzhdygan et al. 2020). Studying the flux of biomass in ecological communities

represented as their underlying network of trophic interaction – a map of whom eats whom, or

food web – provide a powerful framework to investigate community functioning (Pascual &

Dunne 2006; Thompson et al. 2012). We define functions here as the emerging rates and

stocks of biomass transfers in food webs.Fluxes of nutrients and energy (commonly measured

usingbiomass) in ecosystems represent the fundamental ecosystem process sustaining organisms,

allowing their growth, underlying interaction between them and ultimately constraining the
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persistence and structure of the community (Barnes et al. 2018). As such, biomass fluxes

represent a useful common currency to analyze, model and ultimately gain understanding of

the aggregated ecosystem processes they underlay, from primary production to pressure of

top carnivores (DeAngelis 1992), providing a way to estimate ecosystem multi-functionality

(defined as the provisioning of multiple ecosystem functions; Barnes et al. 2018) and the

potential to sustain various ecosystem services (Soliveres et al. 2016). By mapping trophic

interactions, food webs also map biomass routes through the communities, the dynamics of the

transfer of biomass through these routes can be modelled using adapted consumer-resource

models such as Yodzis & Innes (1992). In parallel, the structure of these routes can be analyzed

through a set of measures, adapted from graph theory, that carry a diversity of ecological

information such as species degree of specialization, distance to producers, etc. (Dunne 2006;

Delmas et al. 2019a). Characterizing the biomass distribution in food webs can also bring

useful information. This results in an ideal framework for modelling communities functioning,

and identifying its drivers.

First results from theoretical analyses of the BEF relationship in food webs show that the

positive - hitherto paradigmatic - relationship between the diversity of species in a community

and functioning rates appears to be dependent on the structure of the network (Thébault &

Loreau 2006). For example, networks containing few VS. many generalist species would have

qualitatively different BEF relationships. More recent in-silico experiments that followed have

usually framed their analyses in more realistic communities, i.e., containing more species and

using models that generate food webs with realistic structures of interactions (such as the niche

model; Williams & Martinez 2000). The results of these studies show that the dependence on

structure of the BEF relationship may not be as strong as previously thought, there still seems

to be a positive relationship between diversity and functioning rates (Schneider et al. 2016;

Wang & Brose 2017; Wang et al. 2019), but this relationship is relatively noisy. These studies,

along with other more theoretical work (Poisot et al. 2013), have offered mechanisms that
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could extend the action of selection and complementarity to a framework involving competition

and consumption, but no consensus has yet been reached.

Most of these recent analyses, using food webs to investigate diversity effects, although

they integrate both dimensions of diversity (vertical and horizontal), do not necessarily attempt

to bridge the gap between the conceptual frameworks that have emerged from the analysis of

their effects in isolation (namely BEF and trophic chain theories). The analysis of trophic

chains dynamics in particular has produced important results for understanding the functioning

of ecosystems (Ives et al. 2005). Among these results is the fact that changes in richness

(and thus the functioning of a trophic level since the BEF relationship is valid within the

different compartments; Cardinale et al. 2006a) are reflected, via the trophic cascade, on all

the other trophic levels (Duffy et al. 2007). In parallel the same kind of approach shows that

the type of trophic interaction can also vary the strength of the trophic cascade. For example,

depending on the proportion of omnivores (or intra-guild predators) in a community, a variation

in consumer richness will not have the same impact on plant biomass (losing a predator leads

to a reduction in plant richness, whereas a decrease in the richness of omnivores leads to an

increase in their biomass; Polis & Strong (1996)).

One important results from food chain theory, and more specifically from analyzing the effect

of community-level trophic cascades (as opposed as species-level; Polis 1999), is the influence

on community shapes. By shape we refer to what is generally called trophic structure, i.e., a

qualification of the distribution of biomass or abundance along the different trophic levels of the

community (cascade or pyramid, top or bottom heavy). We use the term shape here to avoid

confusion with the food-web network structure. The biomass distribution that characterizes

trophic chains (and by extension networks) captures the synergy between dynamic, energetic

and structural constraints shaping biomass transfers and underly community emerging functions

(Barbier & Loreau 2019). Recent studies by Barbier & Loreau (2019) and Galiana et al. (2020)

present a framework to reconcile predictions resulting from the use of different approaches in
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the study of food chains (energetic vs. dynamic). Their results show that community shape

can theoretically inform us on the strength and direction of trophic control (what they call

donor control vs. antagonistic feedback). While these results are still theoretical, we know that

top-heavy (TH) and bottom-heavy (BH) food webs for example do emerge under different

energetic constrains reflecting different internal dynamic processes (Leroux & Loreau 2008;

McCauley et al. 2018; Woodson et al. 2018). Similarly pyramidal or cascade shapes could also

be a reflection of other energetic or dynamic constraints (Barbier & Loreau 2019; Galiana et

al. 2020).

We believe that investigating the link between the structure of interactions within food webs

and food webs characteristic biomass distributions can help us identify the key mechanisms

driving community functions. We also argue that the results of this analysis will help us

understand the emergence if BEF relationships in food webs, as it captures the same energetic

constraints.We expect for example that BEF relationships will be different depending on

community shape, reflecting different energetic constraints on the dynamic transfers of

biomass through trophic interactions. To test our hypothesis, we used food webs to represent

communities, and simulated their biomass dynamics using a consumer-resource bioenergetic

model adapted to food webs (Yodzis & Innes 1992; Williams et al. 2007). We investigated the

potential link between the emerging shape of the communities, their food-web structure and

BEF relationship. If our hypothesis proves to be valid, this would offer a possible explanation

for the apparent idiosyncrasy of the BEF relationship in food webs. It would also provide ideas

about the possible mechanisms responsible for the diversity-functioning relationship in complex

ecological communities.
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4.2 Methods

4.2.1 Biomass dynamics

To estimate biomass dynamics in food webs, we used a well-established bioenergetic food-web

model (BEFWm). This model is an extension of Yodzis & Innes (1992) consumer-resource

model to multiple resources and consumers (Williams et al. 2007). Biomass dynamics in this

model hinge on three main dynamic processes described in the driving eq. 4.1 below: autotrophic

production (first term of eq. 4.1), transfer of biomass through consumption (second and third

terms of eq. 4.1), and loss of biomass because of metabolism (fourth term of eq. 4.1) and

imperfect assimilation (ej i). The details of the model for plant growth (Gi(N)), functional

response (Fji) and all parameter values are described in supplementary material (appendix 1,

section S1).

B′i = riGi(N)Bi −
∑

j = consumers

xjyjBjFji

eji
+

∑

k = resources

xiyiBiFik − xiBi (4.1)

Plant growth through autotrophic production is the basic process that sustains communities.

Competition between plants for abiotic resources is a fundamental process of ecosystem

functioning (Loreau et al. 2001; Cardinale et al. 2006b). We made this competition explicit by

combining a well established (Tilman 1982; Huisman & Weissing 1999) and empirically tested

(Passarge et al. 2006) model of nutrient intake for producers with a food-web consumer-resource

model (following Brose 2008). The resulting bioenergetic model integrates the basic mechanism

from which BEF relationships emerge – competition – with mechanisms that result from

consumption (e.g., transfer efficiency). This approach yields more realistic results with fewer

extinctions than classical consumer-resource models (Brose 2008), as it integrates feedback

between bottom-up transfer of biomass from plants to consumers and top-down control of

plant biomass by consumers.

In the nutrient intake model (Brose et al. 2005b, 2005a; Brose 2008), all producers share
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two nutrients N1 and N2. Nutrients availability is determined by their respective rates of supply,

turnover and consumption by plants. Plants all have different half-saturation density for both

nutrients, which results in a hierarchy of competition between them, as a lower half-saturation

means a higher intake efficiency. As plants do not need all nutrients in the same quantities,

we set nutrient content in plants (c1 and c2 for respectively N1 and N2) to reflect this. We

set c1 = 1 and c2 = 0.5, meaning that plants need a higher quantity of N1 than N2. The

half-saturation for N1 is thus the primary driver of plants competitive hierarchy. The model

equations are described in supplementary material (appendix 1, section S1.1.1).

Biomass is transferred through trophic interactions according to a multi-species functional

response (Williams et al. 2007). This extension of the classical functional response accounts for

consumers (resources) having multiple resources (consumers) and therefore accounts for both

apparent and exploitative competition. We chose to implement a Holling type III functional

response (Holling 1959; Real 1977) with homogeneous consumption among a consumer’s

resources, this allows us to have more stable systems, retaining more species (Brose et al.

2006b) and does not qualitatively change the results (Brose et al. 2006b; Schneider et al.

2012). Finally, biomass is lost through metabolism and imperfect assimilation. The functional

response and its parameters are described in supplementary material (appendix 1, section

S1.1.2).

The biological rates controlling these processes – namely the growth, maximum consumption

and metabolic rates – are all dependant of two things: species metabolic class (vertebrate or

invertebrate) and typical adult body size. In other words, we have an allometric scaling of

biological rates with body size, with different allometric coefficient depending on the metabolic

class.
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4.2.2 Generating realistic food webs

We generated food webs with realistic structural properties using the Allometric Diet Breadth

Model (ADBM, Petchey et al. 2008a). This model is based on optimal foraging theory and the

allometry of foraging variables with body size. As such, it needs to be initialized with a vector

containing species typical adult body sizes. It predicts realistic interactions from empirical

food webs (Petchey et al. 2008a; but see Allesina 2011), and important food webs structural

properties such as diet breadth and food web connectance, two potentially strong drivers of

biomass dynamics.

To predict interactions between species, the ADBM model works in two steps. First

it calculates the profitability (Pij, or rate of energy intake) for each pair of species in the

community. Then, it selects the links that maximize it. Profitability is expressed as a function

of the net energy gained through trophic interactions (which scales linearly with the consumer

body size), the encounter rate (which depends on the density of the resource species here

expressed as biomass and the allometrically scaled attack rate) and the handling time. We

chose to implement the “ratio” method for estimating handling time as it is supposed to yield

more accurate results (Petchey et al. 2008a). In this formulation, handling time is estimated

differently depending on the body-size ratio between a consumer and its potential resource.

If the size difference is too big (bigger than a chosen threshold; see section S2) then we

assume that the focus consumer is not able to consume the focus resource. See section S2

and Petchey et al. (2008a) for more detail on the model’s equations and parameter values.

4.2.3 Numerical experiments

In order to generate realistic food webs that still express a generate wide range of richness and

structure, we initialized the ADBM model with body-mass data from an empirical community:

the Benguela pelagic community [Yodzis (1998); Brose et al. (2016); tab. S3 in appendix 1,

supplementary material]. We chose this particular community because of the ability of the
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ADBM model to reproduce it quite well (Petchey et al. 2008a). We sampled species from

those present in this community and recorded their body mass and metabolic class (vertebrate

or invertebrate). The body masses were used to generate food-web interaction matrices (see

fig. 4.1, top left panel), and metabolic classes were also used to calculate biological rates later

used for the biomass dynamics simulations.

We generated food webs with 10 levels of producers richness (from 2 to 20), and 7 levels of

consumer richness (from 5 to 35). For each of these 70 combinations of total species richness

(7 to 55), we randomly generated up to 100 different food webs with the ADBM model. For

each food web, we randomly drew the producers half-saturation density for the two shared

nutrients, to generate a random hierarchy of competition among the different food webs. This

design produces food webs with different richness, structure and ability to extract nutrients.

Because we wanted to set different typical consumer-resource body-mass ratio to explore

the effect of allometric scaling, we did not use the original sampled body mass (used to generate

food webs) in the simulations to calculate biological rates but reassigned body masses based on

a sampled consumer-resource body-mass ratio (Z). A species i body mass (Mi) is calculated

from Z and its trophic level (ti) in the following way: Mi = Zti . Using this method provides us

with a wider range of size structures. As allometric scaling is an important determinant of

biomass dynamics and food web stability (Brose et al. 2006b; Brose 2008), we believe that it is

important to investigate its effect on functioning.

For each of these webs, we simulated biomass dynamics using the BioEnergeticFoodWeb

package (v. 1.1.2; Delmas et al. 2020), a Julia (v. 1.3.1; Bezanson et al. 2017) implementation

of the bioenergetic model as described above in the section Biomass dynamics. Biomass dynamics

for each food web were simulated for 3000 time steps (see fig. 4.1, bottom left panel), as

systems usually reach the dynamic equilibrium before 1000 time steps. Species extinctions were

triggered when species biomass reach 10−6. These extinctions caused a new structure to emerge

as all links from and to these species disappear. This emerging structure (see fig. 4.1 right panel)
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is the one that is later used for the analyses. Codes and data used for these analyses are available

at https://osf.io/yuezq/?view_only=2378095a26d9414489fbcd4a72753a27.

For every food web that reached equilibrium with three compartments – food webs without

secondary consumers were discarded – we estimated its functioning, structure and shape.

Functioning here refers to the quantification of the fluxes and stocks within the food webs.

Biomass fluxes (represented by arrows in fig. 4.1, right panel) in food webs is the basic process

underpinning ecosystem functioning, and reflects many of the functioning typically studied

in BEF analyses (Barnes et al. 2018). We thus extracted the biomass values at each time

step for all species and calculated fluxes (which correspond here to species intakes, that is
∑

k = resources xiyiBiFik for consumers and riGi(N)Bi for producers) and stocks (total biomass)

at the species level using the equations of the model for corresponding process (see the

corresponding sections in the sup. mat.). Both the fluxes and stocks were averaged over the

second half of the iteration to compensate for potential oscillations. These quantities were later

aggregated at the compartment level (plants, primary and secondary consumers) to generate

results at the food chain scale. As precision we define omnivores as species that can feed on

both animals and producers.

To compare the biomass to intake relationships of communities with and without con-

sumption, we also simulated the biomass dynamics of communities with producers only. As we

needed to see a variation in intake, we simulated communities with varying richness (1 to 20)

and supply rate (1 to 10). As intake is always close to its maximum value in the absence of

consumption, we used a linear regression to extrapolate for a wider range of intake. Without

consumption, the relationship between intake and stored biomass should indeed be linear

(metabolic losses scale linearly with species biomass).

Structure refers to the organization of trophic interactions between species within the food

webs. Once extinct species and the interactions to and from them were discarded, we measured

the food web connectance, height (Dunne 2006) and motif profile (Milo 2002). Motifs are
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the different N-species sub-webs that can exist within a network (here N = 3). They are the

simplest building blocks of networks. We focused here on 4 motifs that represent fundamental

and widely studied trophic modules (omnivory or intraguild predation A→ B → C ← A, food

chains A→ B → C, apparent A← B → C and exploitative A→ B ← C competition, note

that in this paper arrows go from consumer to resource) and have been linked to food web

dynamics (Stouffer et al. 2007; Borrelli 2015). We used the Julia package EcologicalNetworks.jl

(v0.3.0; Poisot et al. 2020) and the python3 package pymfinder (Mora et al. 2018a) to analyze

food web structure.

Food web shape is defined here as what we usually call trophic structure in the literature

(we decided to use another term to avoid confusion with food webs’ network structure). Food

web shape describes the distribution of biomass along the three main food chain compartments:

plants, primary and secondary consumers. Food webs can have a pyramid or cascade shape,

meaning that biomass can be either distributed alternatively or not along the food chain and

can be bottom, middle (except for pyramids) or top-heavy (BH, MH or TH), which described

the position of the compartment with the highest biomass. In other words, if we order a

community compartments (P for producers, H for herbivores and C for secondary consumers)

according to their total biomass, if the result is P-H-C, the community has a BH pyramidal

shape, P-C-H gives a BH cascade shape, H-C-P and H-P-C both represent MH cascade shape,

C-H-P is a TH pyramidal shape (also called inverted pyramid of biomass) and C-P-H is a TH

cascade-shaped community.
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in structure between cascade-shaped and pyramid-shaped food webs, we do see structural

differences between BH, MH and TH food webs (see fig. 4.2). To better visualize how the

different descriptors of structure used in fig. 4.2 translate in terms of food-web global structure,

we represented a typical (median values for connectance and height) food webs for each

case (fig. 4.3), with the average (solid line) and standard deviation (ribbon) for the biomass

dynamics of producers (green), herbivores (black), omnivores (light orange) and carnivores

(dark orange). Food webs appear in our analysis to be BH by default, yet TH food webs can

still persist but they are relatively rare (7.7 %). These TH food webs exhibit greater vertical

diversity (i.e., a greater number of trophic levels; see fig. 4.2 A) allowing them to maintain a

higher mean consumer-resource body-mass ratio (see node sizes in the typical food webs,

fig. 4.3). This higher ratio is associated with greater stability (Brose et al. 2006b) and large

body mass are associated with lower metabolic losses (see model description, appendix 1,

section 1 in supplementary material). They are also more complex (higher connectance, see

fig. 4.2 C) and display particular types of interactions. In fact, looking at the motifs profile of

food webs, it appears that TH food webs have more omnivory/IGP and exploitative competition

motifs (fig. 4.2 D and G), while BH food webs have on average more apparent competition

motifs (fig. 4.2 D) which seems to be consistent with TH food webs displaying a more complex

and functionally diverse secondary consumer compartment. The higher proportion of omnivory

is probably related to higher intra-guild predation, causing biomass to potentially take longer

paths, and thus have a longer residence time in the system.

Ecological communities in fact appear to be distributed on a multivariate structural gradient

according to their top heaviness. On one side of this gradient, we have a very large majority

(91.8 %) of bottom heavy communities, presenting a relatively short trophic chain and a fairly

low complexity, in the sense that interactions seem to be only slightly entangled (they display

a relatively weaker connectivity and less omnivore/intraguild predation motifs, see fig. 4.2

and 4.3). These communities have a high producer species richness at their base, but a low
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consumer richness (fig. 4.6), thus displaying consumers feeding low in the food chain and

often generalists (which is translated by a high proportion of apparent competition motifs as

shown in fig. 4.2). In other words, these communities are more horizontally than vertically

diverse. Moving along this gradient, we see higher and more complex communities at the other

end (connectivity is larger and they have a higher proportion of omnivore/intraguild predation

motifs, see fig. 4.2 and 4.3). Conversely, these communities appear to be richer vertically

than horizontally. In the middle, in an intermediate situation, there are very few middle-heavy

communities. It is important to note however that the range of structural variation produced

may be dependent on the food web model used (here the allometric diet breadth model).

Our results indicate that food webs, comprising both competition and consumption, are

in general – as expected based on consumption losses– less efficient at storing the captured

biomass than purely competitive communities (4.4). The dashed line in each panel of figure

fig. 4.4 represents the theoretical biomass to intake regime of community composed of

producers only, with no trophic interaction to mediate interspecific competition for the shared

nutrients. Intake here represents the food webs total intake, which is equivalent in our model to

primary production. We expect that given energetic constraints (metabolism and imperfect

assimilation), communities achieve higher biomass, for the same intake, when there are no

trophic interactions involved (e.g. a grassland with no consumers). The majority of the food

webs meets this expectation, displaying a regime below this reference line. Yet, surprisingly, the

producers-only baseline regime can be overshot in some cases (approx. 6.4 % of all food webs).

This can happen when food webs total intake is above a certain threshold, the value of this

intake threshold being dependent on the shape of the food webs. BH food webs (fig. 4.4, D

and E) or MH (fig. 4.4, C) have on average a lower biomass to intake regime than TH food

webs (fig. 4.4, A and B), which represent a lower ability to store the captured biomass. For

example, for a total intake of 0.75, the theoretical relationship for a grassland gives a biomass

of approx. 5.5 (fig. 4.4), BH food webs have a biomass largely below this value (< 2.5, fig. 4.4,
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Figure 4.4 Bottom-heavy food webs have a lower biomass turnover on average but can exist at
lower intake values and when consumers are on average smaller than their resources (log10(Z) < 0).
This figure represents the relationship between food-web total intake and total biomass, or biomass
turnover in the food webs (each dots represent one food web) for different shapes, namely top-heavy
(top, A and B), medium-heavy (middle row, C) and bottom-heavy (bottom, D and E) cascades (left,
A, C and D) and pyramids (right, B and E). Dots are coloured according to the decimal logarithm of
the average consumer-resource body-size ratio in the food web. The average shape is represented on
the left of each plot for cascades and on the right for pyramids along with N, the amount of food
webs in each panel. The grey boxes represent the mean biomass of the three compartments (Plants
P, Herbivores C1 and secondary consumers C2).
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D and E) but TH food webs have a biomass between 2.5 and 7 (fig. 4.4 A and B), higher

than BH and in some case than the theoretical baseline. This does not seem to depend on

food webs being pyramid- or cascade-shaped, but only on their top heaviness, although BH

cascade-shaped food webs seem not to be able to overshoot the baseline even at maximum

intake, unlike their cascade-shaped counterpart. Storage efficiency is also strongly correlated to

food webs mean body-size consumer-resource ratio (Z), at the same intake value, higher Z is

correlated to higher biomass.

Despite the differences mentioned above, food webs appear to all have qualitatively similar

diversity-functioning relationships independently of their shape (fig. 4.6 and fig. 4.5). Total

biomass increases with both animal and plant richness with similar rates for all shapes (fig. 4.6),

although unfortunately there is not enough variation in food webs displaying TH pyramid or MH

shapes to analyze their BEF relationship. Looking at the flows within food webs, we see a similar

result, with qualitatively analogous relationship for the different shapes, although it appears

that TH pyramid-shaped and MH food webs display a lower level of intake (fig. 4.5). While we

reach maximum productivity even for low richness for the BH food webs (fig. 4.5, bottom row),

producers appear more strongly controlled in the TH food webs (fig. 4.5, top row) – especially

cascade-shaped (fig. 4.5, left column) – and the MH cascades in which herbivores are less

regulated (fig. 4.5, C), resulting in low productivity. Consumption, on the other hand is higher,

whatever the level of animal richness in the TH food webs (fig. 4.5, top row). This higher

consumption is driven mainly by higher secondary consumption, in particular higher intra-guild

consumption. In TH and BH cascade-shaped food webs, we see that productivity and secondary

consumption both increase with richness while primary consumption decreases (fig. 4.5, A and

D). The fact, however, that all richness-functioning relationships are qualitatively similar seems

to confirm the existence of a diversity effect, albeit more or less strong depending on shape, in

food webs. The qualitative differences are caused by the same synergy of structural (motif

distribution) and energetic constraints (consumption and metabolic losses) that give rise to
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Figure 4.5 Animal richness - flux relationship in food webs with different shapes. This figures shows
the effect of total animal richness on food webs total intake for the different compartments (colour
coded, see legend) and the different shapes, namely top-heavy (top, A and B), medium-heavy (middle
row, C) and bottom-heavy (bottom, D and E) cascades (left, A, C and D) and pyramids (right, B
and E). The solid line represents the average response and the shaded area represent the standard
deviation around the mean. The average shape is represented on the left of each plot for cascades
and on the right for pyramids along with N, the amount of food webs in each panel. The grey boxes
represent the mean biomass of the three compartments (Plants P, Herbivores C1 and secondary
consumers C2).

133



Figure 4.6 Diversity - total biomass relationships in food webs with different shapes. This figures
shows the effect of producers and consumers richness on food webs total biomass for food webs of
different shapes, namely top-heavy (top, A and B), medium-heavy (middle row, C) and bottom-heavy
(bottom, D and E) cascades (left, A, C and D) and pyramids (right, B and E).
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either top- or bottom-heavy food webs.

4.4 Discussion

We were able to reproduce predictions typical of different domains of ecology, all of which aim

at understanding and predicting ecosystem functioning, but based on different concepts and

approaches. On the one hand, the biodiversity-ecosystem functioning (BEF) theory mainly

focuses on quantifying the effect of species richness on ecosystem functioning using concepts

rooted in competition and predicts a positive and asymptotic BEF relationship (Tilman et al.

1996, 2014; Loreau & Hector 2001). On the other hand, the analysis of biomass transfer in

communities represented by trophic chains predicts that communities should be bottom heavy

in the absence of biomass or nutrient subsidies (Leroux & Loreau 2008), pyramid-shaped if we

adopt a static perspective based on the balance of energy transfers or possibly cascade-shaped if

we focus on the dynamics of biomass transfers through trophic interactions (Barbier & Loreau

2019). The methodological framework we used, based on the coupling of the representation

of communities through their underlying food webs, and the use of a bioenergetic model to

simulate the dynamics of biomass transfers in these trophic networks (Yodzis & Innes 1992;

Williams et al. 2007) allows us to integrate concepts deriving from both competition and

consumption and thus reconcile the predictions emerging from these concepts.The use of these

tools is ultimately what allows us to shed new light on the possible link between these different

predictions, and thus on the concepts that frame them.

4.4.1 A link between food webs complexity and top heaviness

When we look at natural ecosystems, we realize that as in our results, they are dominated

in most cases by the biomass of heterotrophs (Bar-On et al. 2018). This observation has

been at the origin of the bottom-up VS. top-down debate (Wilkinson & Sherratt 2016) as

well as much of the work around food chains. In the context of the bioenergetic model, as in
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nature, energy constraints are such that it is in fact rare to be able to maintain a dominant

secondary consumer compartment (Lindeman 1942; McCauley et al. 2018). In addition, the

greater risk of extinction faced by predators, especially large top predators (Cardillo 2003;

Binzer et al. 2011), add an additional constraint by threatening the persistence of this type of

community. This explains why we only find top-heavy food webs at high primary production

values (see fig. 4.4). For this to happen in the absence of external factors such as nutrient

subsidies (Leroux & Loreau 2008), several conditions must be met, that leads to a particularly

efficient system in terms of energy transfer (McCauley et al. 2018). This efficiency, translated

in our study by a higher capacity to store the biomass produced (see fig. 4.4), seems to be

linked to a particular – more complex – organization of the interactions, and in turn food web

structure, as well as to the allometric scaling of biological rates (fig. 4.2).

4.4.2 Similar BEF relationships in spite of different efficiencies at storing biomass

This link between food web structure and biomass turnover is not surprising if we look at recent

results on the analysis of biomass dynamics and the resulting functioning in food webs. The use

of a very similar methodological framework revealed a correlation between food webs species

richness, height and functioning (Wang & Brose 2017), on the one hand, and between species

richness, proportion of intraguild predation and functioning, on the other hand (Wang et al.

2019). The fact that we find these two factors (height and proportion of IGP) correlated with

communities having higher productivity, biomass (and a lower turnover) seems therefore quite

consistent. What is more surprising is that, while the food web structure does have an effect on

the distribution of biomass within the different compartments and on the efficiency in storing

the biomass produced, this impact has little effect on the diversity-functioning relationship

(see fig. 4.5 and 4.6). While we have different vertical vs. horizontal diversity balances — and

therefore an equally different competition vs. consumption balance — which should theoretically

lead to difference in the BEF relationship (Thébault & Loreau 2006; Duffy et al. 2007) in all
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cases for which we had enough data to draw conclusions, we have qualitatively very similar

(almost identical) diversity-functioning relationships. This is valid whether we look at flows

(fig. 4.5) or total biomass (fig. 4.6). In the light of the recent results cited above, that focused

on the analysis of the diversity-functioning relationship in food webs, this can be explained by a

complex interplay between structure, energy efficiency of interactions, biomass distribution,

and functioning. The observed effect of intraguild predation in (Wang et al. 2019) or vertical

diversity in (Wang & Brose 2017) would only exist in certain ranges of variation in species

richness, which can only persist if the community presents a particularly efficient functioning

regime, which leads it to be able to store a large biomass in its apical compartment, i.e., in

top-heavy form.

4.4.3 Cascade- and pyramid-shaped food webs are only as different as their top heav-

iness

It is important to note, however, that although our approach yields communities with different

shapes (cascade- and pyramid-shaped), communities’ shape does not appear to be related to

particular food web structures or to a particular biomass turnover (fig. 4.4). For top-heavy

communities, we are potentially limited by the amount of data (only 20 food webs over the

total 4589 display an inverted pyramidal shape). The energy constraints are indeed such to

maintain a high biomass of carnivores while the biomass of producers is low that it is our

understanding that very few communities in the context of our model have been able to persist

under these conditions. For bottom-heavy communities, however, we have almost as many

pyramid-shaped as we have cascade-shaped communities, and so we do not have this limitation.

And there seems to be very little difference between the two, apart from the inability of the

bottom-heavy pyramids to overshoot the functioning regime of a purely competitive community.

We think this is related to the low relative biomass of carnivores. Indeed, in the cascade-shaped

counterpart of the bottom-heavy communities, we note that at high intakes, this baseline is
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slightly overshot, and that high intakes are generally correlated with high animal diversity. This

is what leads us to say that, in the context of our analysis, top heaviness is an important factor

in separating communities according to their biomass turnover regime

4.4.4 Perspectives

Other factors limit the scope of our results. In our analysis, we took a non-adaptive view of

trophic interactions. Faced with the extinction of some or all of its resources, a consumer in

our model cannot adapt by switching its diet, which would result in a rewiring of interactions

(Petchey et al. 2008a; Staniczenko et al. 2010; Gilljam et al. 2015). To disentangle the interplay

between rewiring (notably through influence on secondary extinction dynamics) according

to different rewiring mechanisms and biomass dynamics seems to us to be a necessary first

step for the subsequent inclusion of rewiring in this kind of synthesis. It is possible that by

allowing consumers to adapt their diet to the biomass variations of their resource or competitor,

we see the biomass dynamics change (Kondoh 2003). This in turn could make it easier to

maintain structures that would otherwise not be able to persist given energetic constrains,

or to maintain a greater range of diversity for certain structures. This could change, if not

qualitatively, at least quantitatively our conclusions. It should also be noted that we took a

relatively global approach, and chose not to test the effect that ecosystem type might have on

our results. Changing the type of ecosystem, and thus the proportion of vertebrates, ectotherm

or endotherm vertebrates (which have different biological rates), could also change the results.

Species face increasing extinction risk, threatening the persistence of ecological processes

and functioning, but even in systems where species richness is not affected, the structure of

the food web that connects them can be altered by environmental changes (Albouy et al.

2014; Kortsch et al. 2015). Ecological network analyses show us that communities are more

than the sum of their parts. To maintain ecosystem stability, functioning and the resulting

services to human societies, we need to protect the structure of diversity (McCann 2007b;
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Tylianakis et al. 2010). Preserving ecological network structure requires that we identify, like

we did here, the attributes of network structure that are important ecosystem processes, how

species contribute to different attributes, how different attributes interacts and how ecosystem

processes feedback on structure. This would ease the choice of conservation targets and make

conservation more efficient.

We have emphasized the role of food web structure and its importance to understand

ecosystem processes. However, accurately sampling ecological networks such as food webs

is not an easy task. When sampling food webs, interactions are established using various

methods that reflect different ecological realities (Delmas et al. 2019a). The ensuing difficulty

to evaluate food-web data (Jordano 2016) challenges our understanding of the effect of realistic

variations in structure, and in turn our ability to make accurate predictions of functioning

based on sampled communities. More work in understanding the mechanisms that underlie

the probability of an interaction, to build mechanistic food-web models that produce realistic

food webs, and more food-web sampling are still needed. However, we show here that precise

information may not necessarily be needed. In fact, in the context of our work, species richness

of trophic compartments and the animal to producer ratio can be used to estimate the domain

of variation of chain length, motifs distribution, and consumer-resource body-mass ratio, which

makes estimating the functioning regime of the community possible.

In conclusion, we show here that food web structure is important in understanding ecosystem

functioning, but is also the product of feedbacks between species richness and community

functioning. If structure does not appear to be influencing qualitatively the diversity-functioning

relationship, it still seems important to other aspects of functioning such as the distribution of

biomass along the food chain. This in turn could result in different consequences when facing

perturbations, as extinction risk increases with trophic rank. Of course, before understanding

the real-world implication, more work is needed. Our analysis lays potentially interesting links,

the validity and the generality of the relationships between food web structure, top heaviness
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and functioning regime should be further tested, and the exact mechanisms underlying the

relationships identified.

4.5 Supplementary information

4.5.1 The bioenergetic food-web model (BEFWm)

Biomass dynamics in the BEFW model The bioenergetic food web model (Yodzis & Innes

1992; Williams et al. 2007) driving equation is described below (4.2). The first term describes

how producers, at the most basal level of the food web, are responsible for biomass growth

(thus making riGi(N)Bi = 0 for non-producer species). All producers use the same nutrients

(N) to produce biomass, sustaining the system. This is described in greater details in the

section Growth through nutrient intake. Biomass is then transferred through each trophic

interaction (second term and third terms of 4.2) through a multi-species functional response

(see section The multi-species functional response). Finally, biomass is loss through metabolism

(fourth term of 4.2).

B′i = riGi(N)Bi −
∑

j = consumers

xjyjBjFji

eji
+

∑

k = resources

xiyiBiFik − xiBi (4.2)

In 4.2 and the paragraphs below, i represent the focus species, j represent its consumers, k

its resources and l the nutrients. The state variable Bi is the biomass of population i . The

biomass dependant growth rate of producers is described by the first term of the equation:

riGi(N)Bi , where ri is the species intrinsic growth rate and Gi(N) is its net growth rate and

depends on nutrients (N) concentration (described below in the paragraph Growth through

nutrient intake). The second and third terms of the equation are the biomass transfers

(respectively loss and gain) through trophic interactions between population i , its consumers j

and resources k. It depends on the consumer (j or i) mass-specific metabolic rate (x), its

maximum consumption rate relative to its metabolic rate (y), a multi-resource functional
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response (F , described in more details below in the paragraph Consumption: the multi-species

functional response) and i ’s assimilation efficiency when consuming population j (ei j). Finally,

all species lose biomass through metabolism, this is described by the last term of 4.2. The

values chosen for all parameters are given in table S4.1.

Table S4.1 Values used for the parameters of the bioenergetic model. The metabolic rate x is
allometrically scaled and as such is different for each species. Parameter values from Brose et al.,
2006 and Brose, 2008.

Parameter Symbol Value

Intrinsic growth rate ri 1

Metabolic rate xi See appendix

Maximum assimilation rate yi 8 for invertebrates, 4 for vertebrates

Assimilation efficiency ej i 0.85 for carnivory links, 0.45 otherwise

Plants half-saturation densities Kli U ∼ [0.15, 0.20]

Turnover rate D 0.25

Supply Sl 4 for each nutrient

Nutrient content in plant biomass cl c1 = 1 and c20.5

Preference ωji 1/n where n is the number of resources

Consumers half-saturation densities B0 0.5

Hill exponent h 2

Predator interference c 0

Growth through nutrient intake The nutrient intake model (Tilman et al. 1996; Brose

et al. 2005a) describes the relationship between nutrient concentration and producer biomass,

and is formalized by the following equation:

Gi(N) = MIN(
N1

K1i + N1
,
N2

K2i + N2
) (4.3)
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In 4.3 N1 and N2 are the respective concentrations in the environment of the two nutrients

shared by all plant species. Competition between plants emerge from this model through the

difference in the plants half-saturation density (Kli) for the two nutrients. The concentration of

the two nutrients is determined by the following equation:

N ′l = D(Sl − Nl)−

n
∑

i = 1

(cliriGi(N)Bi) (4.4)

where D is the turnover rate relative to the time scale of the system (determined by the

intrinsic growth rate), Si is the supply concentration and cli is the concentration of nutrient

l in species i , which determines which of the two nutrient species need the most. If plants

intrinsic growth rate r , metabolic rate x and concentration for each nutrient c1 and c2 are

equal, then the hierarchy of competition is primarily determined by species half saturation for

K1i (the smaller the stronger competitor i is) if c1 > c2 and conversely.

The multi-species functional response The second and third terms of 4.2 describe

respectively the amount of biomass lost and gained through consuming or being consumed

by other species. While (xiyiBi)/eji determines the metabolic-dependant efficiency of i at

consuming j , Fji expresses the fraction of this efficiency rate that is actually achieved by j when

consuming i . This fraction, namely the functional response, is expressed through the following

equation:

Fik =
ωikB

h
k

Bh0 + cBiB
h
0 +

∑

r = resources ωirBhr
(4.5)

where ωik quantify the specialization of i towards k , that is the fraction of i ’s diet (represented

by the maximum consumption rate yi) targeted to eating k . The parameter h, the Hill exponent,

controls how the functional response will saturate in response to an increase in k ’s biomass

(Bk). Hill coefficient is bound between 1 (Holling type II functional response; Holling 1959)

and 2 (Holling type III functional response, Holling 1959; Real 1977), but can take any
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value in between, making the saturation curve more or less sigmoid. Predator interference

can also be implemented in this functional response by making c > 0, which expresses the

density-dependant control of predators on themselves (DeAngelis et al. 1975). Finally, B0

represent the half-saturation density.
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4.5.2 The allometric diet-breadth model (ADBm)

To predict interactions between species, the ADBm (Petchey et al. 2008a) works in two steps.

First it calculates the profitability (Pij, or rate of energy intake) for each pair of species in the

community. Then, it selects the links that maximize it. Profitability is expressed as:

Pij =

∑

i = 1 λijEi
1 +

∑

i = 1 λijHij
(4.6)

where, Ei is the net energy gained by j when consuming i and scales linearly with i ’s body

size (Mi): Ei = eMi . Profitability also depends on the encounter rates λij (λij = Ni ∗Ai j) which

depends on the density of the resource species (Ni = nMi) and the attack rate (Ai j = aM
ai
i M

aj
j ).

Finally, profitability is also influenced by the handling time Hij. We chose to implement the

“ratio” method for estimating handling time as it is supposed to yield more accurate results.

In this formulation, handling time is estimated differently depending on the body-size ratio

between a consumer and its potential prey. If the size different is too big (bigger than a chosen

threshold b) then we assume that i is not able to consume j . This is expressed by having

Hi j = h/(b− (Mi/Mj)) if Mi/Mj > b and Hi j = inf otherwise. Parameters values are presented

below in the S4.2.

Table S4.2 Values used for the parameters of the allometric diet breadth model. For more details and
references for the parameters values used, see Petchey et al., 2008.

Parameter Symbol Value

Allometric constant for attack rate a 0.0189

Consumers allometric coefficient for attack rate ai −0.491

Resources allometric coefficient for attack rate aj −0.465

Allometric constant for handling time h 1

Threshold for handling time b 0.401
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4.5.3 The Benguela pelagic food web

We used body mass data from species of the Benguela upwelling system, as described in

Yodzis (1998) and Brose et al. (2016). From the complete list of interactions, we only kept

herbivorous and predacious links and discarded bacterivorous links. The heterotrophic producers

were identified as the resource of herbivorous interactions. We sampled body masses from

species mean body mass data, and recorded the metabolic type associated with it. The following

table provides a list of all species with their body mass and metabolic type.

Table S4.3 Herbivorous and predacious interactions in the Benguela pelagic food web associated with
species common names, body masses and metabolic classes.

Interaction type Consumer species Consumer metab Consumer mass Resource species Resource metab Resource mass

herbivorous Bacteria heterotrophic bacteria 1.0e-8 Phytoplankton photo-autotroph 0.0001

predacious Benthic carnivores invertebrate 10 Benthic filter feeders invertebrate 10

herbivorous Microzooplankton invertebrate 0.0001 Phytoplankton photo-autotroph 0.0001

predacious Microzooplankton invertebrate 0.0001 Microzooplankton invertebrate 0.0001

herbivorous Mesozooplankton invertebrate 0.01 Phytoplankton photo-autotroph 0.0001

predacious Mesozooplankton invertebrate 0.01 Microzooplankton invertebrate 0.0001

herbivorous Macrozooplankton invertebrate 1 Phytoplankton photo-autotroph 0.0001

predacious Macrozooplankton invertebrate 1 Mesozooplankton invertebrate 0.01

predacious Macrozooplankton invertebrate 1 Macrozooplankton invertebrate 1

herbivorous Gelatinous zooplankton invertebrate 100 Phytoplankton photo-autotroph 0.0001

predacious Gelatinous zooplankton invertebrate 100 Microzooplankton invertebrate 0.0001

predacious Gelatinous zooplankton invertebrate 100 Macrozooplankton invertebrate 1

herbivorous Anchovy ectotherm vertebrate 11.5 Phytoplankton photo-autotroph 0.0001

predacious Anchovy ectotherm vertebrate 11.5 Microzooplankton invertebrate 0.0001

predacious Anchovy ectotherm vertebrate 11.5 Macrozooplankton invertebrate 1

herbivorous Pilchard ectotherm vertebrate 280 Phytoplankton photo-autotroph 0.0001

predacious Pilchard ectotherm vertebrate 280 Macrozooplankton invertebrate 1

predacious Round herring ectotherm vertebrate 215.2 Macrozooplankton invertebrate 1

predacious Lightfish ectotherm vertebrate 4.8 Macrozooplankton invertebrate 1

predacious Lanternfish ectotherm vertebrate 6.9 Macrozooplankton invertebrate 1

herbivorous Goby ectotherm vertebrate 18.6 Phytoplankton photo-autotroph 0.0001

predacious Goby ectotherm vertebrate 18.6 Macrozooplankton invertebrate 1

predacious Other pelagics ectotherm vertebrate 2554.85 Benthic carnvores invertebrate 10

predacious Other pelagics ectotherm vertebrate 2554.85 Macrozooplankton invertebrate 1

predacious Other pelagics ectotherm vertebrate 2554.85 Gelatinous zooplankton invertebrate 100

predacious Horse mackerel ectotherm vertebrate 5104.9 Lanternfish ectotherm vertebrate 6.9

predacious Horse mackerel ectotherm vertebrate 5104.9 Benthic carnivores invertebrate 10

predacious Horse mackerel ectotherm vertebrate 5104.9 Macrozooplankton invertebrate 1

predacious Chub mackerel ectotherm vertebrate 3259.5 Lanternfish ectotherm vertebrate 6.9

predacious Chub mackerel ectotherm vertebrate 3259.5 Benthic carnivores invertebrate 10

predacious Chub mackerel ectotherm vertebrate 3259.5 Macrozooplankton invertebrate 1

predacious Chub mackerel ectotherm vertebrate 3259.5 Round herring ectotherm vertebrate 215.2

predacious Other groundfish ectotherm vertebrate 13127 Round herring ectotherm vertebrate 215.2

predacious Other groundfish ectotherm vertebrate 13127 Lightfish ectotherm vertebrate 4.8

predacious Other groundfish ectotherm vertebrate 13127 Lanternfish ectotherm vertebrate 6.9

predacious Other groundfish ectotherm vertebrate 13127 Goby ectotherm vertebrate 18.6
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predacious Other groundfish ectotherm vertebrate 13127 Other pelagics ectotherm vertebrate 2554.85

predacious Other groundfish ectotherm vertebrate 13127 Other groundfish ectotherm vertebrate 13127

predacious Other groundfish ectotherm vertebrate 13127 Hakes ectotherm vertebrate 22994.5

predacious Other groundfish ectotherm vertebrate 13127 Squid invertebrate 40

predacious Other groundfish ectotherm vertebrate 13127 Benthic carnivores invertebrate 10

predacious Other groundfish ectotherm vertebrate 13127 Mesozooplankton invertebrate 0.01

predacious Other groundfish ectotherm vertebrate 13127 Macrozooplankton invertebrate 1

predacious Other groundfish ectotherm vertebrate 13127 Anchovy ectotherm vertebrate 11.5

predacious Hakes ectotherm vertebrate 22994.5 Pilchard ectotherm vertebrate 280

predacious Hakes ectotherm vertebrate 22994.5 Round herring ectotherm vertebrate 215.2

predacious Hakes ectotherm vertebrate 22994.5 Lightfish ectotherm vertebrate 4.8

predacious Hakes ectotherm vertebrate 22994.5 Lanternfish ectotherm vertebrate 6.9

predacious Hakes ectotherm vertebrate 22994.5 Goby ectotherm vertebrate 18.6

predacious Hakes ectotherm vertebrate 22994.5 Horse mackerel ectotherm vertebrate 5104.9

predacious Hakes ectotherm vertebrate 22994.5 Chub mackerel ectotherm vertebrate 3259.5

predacious Hakes ectotherm vertebrate 22994.5 Other groundfish ectotherm vertebrate 13127

predacious Hakes ectotherm vertebrate 22994.5 Hakes ectotherm vertebrate 22994.5

predacious Hakes ectotherm vertebrate 22994.5 Squid invertebrate 40

predacious Hakes ectotherm vertebrate 22994.5 Mesozooplankton invertebrate 0.01

predacious Hakes ectotherm vertebrate 22994.5 Macrozooplankton invertebrate 1

predacious Hakes ectotherm vertebrate 22994.5 Anchovy ectotherm vertebrate 11.5

predacious Squid invertebrate 40 Pilchard ectotherm vertebrate 280

predacious Squid invertebrate 40 Round herring ectotherm vertebrate 215.2

predacious Squid invertebrate 40 Lightfish ectotherm vertebrate 4.8

predacious Squid invertebrate 40 Goby ectotherm vertebrate 18.6

predacious Squid invertebrate 40 Horse mackerel ectotherm vertebrate 5104.9

predacious Squid invertebrate 40 Other groundfish ectotherm vertebrate 13127

predacious Squid invertebrate 40 Hakes ectotherm vertebrate 22994.5

predacious Squid invertebrate 40 Squid invertebrate 40

predacious Squid invertebrate 40 Benthic carnivores invertebrate 10

predacious Squid invertebrate 40 Macrozooplankton invertebrate 1

predacious Squid invertebrate 40 Anchovy ectotherm vertebrate 11.5

predacious Tunas ectotherm vertebrate 909000 Pilchard ectotherm vertebrate 280

predacious Tunas ectotherm vertebrate 909000 Round herring ectotherm vertebrate 215.2

predacious Tunas ectotherm vertebrate 909000 Lightfish ectotherm vertebrate 4.8

predacious Tunas ectotherm vertebrate 909000 Lanternfish ectotherm vertebrate 6.9

predacious Tunas ectotherm vertebrate 909000 Goby ectotherm vertebrate 18.6

predacious Tunas ectotherm vertebrate 909000 Other pelagics ectotherm vertebrate 2554.85

predacious Tunas ectotherm vertebrate 909000 Horse mackerel ectotherm vertebrate 5104.9

predacious Tunas ectotherm vertebrate 909000 Chub mackerel ectotherm vertebrate 3259.5

predacious Tunas ectotherm vertebrate 909000 Hakes ectotherm vertebrate 22994.5

predacious Tunas ectotherm vertebrate 909000 Squid invertebrate 40

predacious Tunas ectotherm vertebrate 909000 Benthic carnivores invertebrate 10

predacious Tunas ectotherm vertebrate 909000 Anchovy ectotherm vertebrate 11.5

predacious Snoek ectotherm vertebrate 13012.1 Pilchard ectotherm vertebrate 280

predacious Snoek ectotherm vertebrate 13012.1 Round herring ectotherm vertebrate 215.2

predacious Snoek ectotherm vertebrate 13012.1 Lightfish ectotherm vertebrate 4.8

predacious Snoek ectotherm vertebrate 13012.1 Lanternfish ectotherm vertebrate 6.9

predacious Snoek ectotherm vertebrate 13012.1 Goby ectotherm vertebrate 18.6

predacious Snoek ectotherm vertebrate 13012.1 Horse mackerel ectotherm vertebrate 5104.9

predacious Snoek ectotherm vertebrate 13012.1 Hakes ectotherm vertebrate 22994.5

predacious Snoek ectotherm vertebrate 13012.1 Squid invertebrate 40

predacious Snoek ectotherm vertebrate 13012.1 Benthic carnivores invertebrate 10

predacious Snoek ectotherm vertebrate 13012.1 Macrozooplankton invertebrate 1

predacious Snoek ectotherm vertebrate 13012.1 Anchovy ectotherm vertebrate 11.5

predacious Kob ectotherm vertebrate 68000 Pilchard ectotherm vertebrate 280
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predacious Kob ectotherm vertebrate 68000 Goby ectotherm vertebrate 18.6

predacious Kob ectotherm vertebrate 68000 Horse mackerel ectotherm vertebrate 5104.9

predacious Kob ectotherm vertebrate 68000 Chub mackerel ectotherm vertebrate 3259.5

predacious Kob ectotherm vertebrate 68000 Other groundfish ectotherm vertebrate 13127

predacious Kob ectotherm vertebrate 68000 Hakes ectotherm vertebrate 22994.5

predacious Kob ectotherm vertebrate 68000 Squid invertebrate 40

predacious Kob ectotherm vertebrate 68000 Kob ectotherm vertebrate 68000

predacious Kob ectotherm vertebrate 68000 Benthic carnivores invertebrate 10

predacious Kob ectotherm vertebrate 68000 Macrozooplankton invertebrate 1

predacious Kob ectotherm vertebrate 68000 Anchovy ectotherm vertebrate 11.5

predacious Yellowtail ectotherm vertebrate 82040.3 Pilchard ectotherm vertebrate 280

predacious Yellowtail ectotherm vertebrate 82040.3 Round herring ectotherm vertebrate 215.2

predacious Yellowtail ectotherm vertebrate 82040.3 Goby ectotherm vertebrate 18.6

predacious Yellowtail ectotherm vertebrate 82040.3 Other pelagics ectotherm vertebrate 2554.85

predacious Yellowtail ectotherm vertebrate 82040.3 Horse mackerel ectotherm vertebrate 5104.9

predacious Yellowtail ectotherm vertebrate 82040.3 Chub mackerel ectotherm vertebrate 3259.5

predacious Yellowtail ectotherm vertebrate 82040.3 Other groundfish ectotherm vertebrate 13127

predacious Yellowtail ectotherm vertebrate 82040.3 Squid invertebrate 40

predacious Yellowtail ectotherm vertebrate 82040.3 Macrozooplankton invertebrate 1

predacious Yellowtail ectotherm vertebrate 82040.3 Anchovy ectotherm vertebrate 11.5

predacious Geelbek ectotherm vertebrate 26127.38 Pilchard ectotherm vertebrate 280

predacious Geelbek ectotherm vertebrate 26127.38 Round herring ectotherm vertebrate 215.2

predacious Geelbek ectotherm vertebrate 26127.38 Goby ectotherm vertebrate 18.6

predacious Geelbek ectotherm vertebrate 26127.38 Other pelagics ectotherm vertebrate 2554.85

predacious Geelbek ectotherm vertebrate 26127.38 Horse mackerel ectotherm vertebrate 5104.9

predacious Geelbek ectotherm vertebrate 26127.38 Other groundfish ectotherm vertebrate 13127

predacious Geelbek ectotherm vertebrate 26127.38 Hakes ectotherm vertebrate 22994.5

predacious Geelbek ectotherm vertebrate 26127.38 Squid invertebrate 40

predacious Geelbek ectotherm vertebrate 26127.38 Benthic carnivores invertebrate 10

predacious Geelbek ectotherm vertebrate 26127.38 Anchovy ectotherm vertebrate 11.5

predacious Whales and Dolphins endotherm vertebrate 82000 Pilchard ectotherm vertebrate 280

predacious Whales and Dolphins endotherm vertebrate 82000 Round herring ectotherm vertebrate 215.2

predacious Whales and Dolphins endotherm vertebrate 82000 Lanternfish ectotherm vertebrate 6.9

predacious Whales and Dolphins endotherm vertebrate 82000 Goby ectotherm vertebrate 18.6

predacious Whales and Dolphins endotherm vertebrate 82000 Other pelagics ectotherm vertebrate 2554.85

predacious Whales and Dolphins endotherm vertebrate 82000 Horse mackerel ectotherm vertebrate 5104.9

predacious Whales and Dolphins endotherm vertebrate 82000 Hakes ectotherm vertebrate 22994.5

predacious Whales and Dolphins endotherm vertebrate 82000 Squid invertebrate 40

predacious Whales and Dolphins endotherm vertebrate 82000 Macrozooplankton invertebrate 1

predacious Whales and Dolphins endotherm vertebrate 82000 Anchovy ectotherm vertebrate 11.5

predacious Birds endotherm vertebrate 2287 Pilchard ectotherm vertebrate 280

predacious Birds endotherm vertebrate 2287 Round herring ectotherm vertebrate 215.2

predacious Birds endotherm vertebrate 2287 Lightfish ectotherm vertebrate 4.8

predacious Birds endotherm vertebrate 2287 Lanternfish ectotherm vertebrate 6.9

predacious Birds endotherm vertebrate 2287 Goby ectotherm vertebrate 18.6

predacious Birds endotherm vertebrate 2287 Other pelagics ectotherm vertebrate 2554.85

predacious Birds endotherm vertebrate 2287 Horse mackerel ectotherm vertebrate 5104.9

predacious Birds endotherm vertebrate 2287 Chub mackerel ectotherm vertebrate 3259.5

predacious Birds endotherm vertebrate 2287 Other groundfish ectotherm vertebrate 13127

predacious Birds endotherm vertebrate 2287 Hakes ectotherm vertebrate 22994.5

predacious Birds endotherm vertebrate 2287 Squid invertebrate 40

predacious Birds endotherm vertebrate 2287 Snoek ectotherm vertebrate 13012.1

predacious Birds endotherm vertebrate 2287 Birds endotherm vertebrate 2287

predacious Birds endotherm vertebrate 2287 Seals endotherm vertebrate 136000

predacious Birds endotherm vertebrate 2287 Benthic carnivores invertebrate 10

predacious Birds endotherm vertebrate 2287 Mesozooplankton invertebrate 0.01
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predacious Birds endotherm vertebrate 2287 Macrozooplankton invertebrate 1

predacious Birds endotherm vertebrate 2287 Anchovy ectotherm vertebrate 11.5

predacious Seals endotherm vertebrate 136000 Pilchard ectotherm vertebrate 280

predacious Seals endotherm vertebrate 136000 Round herring ectotherm vertebrate 215.2

predacious Seals endotherm vertebrate 136000 Lightfish ectotherm vertebrate 4.8

predacious Seals endotherm vertebrate 136000 Lanternfish ectotherm vertebrate 6.9

predacious Seals endotherm vertebrate 136000 Goby ectotherm vertebrate 18.6

predacious Seals endotherm vertebrate 136000 Other pelagics ectotherm vertebrate 2554.85

predacious Seals endotherm vertebrate 136000 Horse mackerel ectotherm vertebrate 5104.9

predacious Seals endotherm vertebrate 136000 Chub mackerel ectotherm vertebrate 3259.5

predacious Seals endotherm vertebrate 136000 Other groundfish ectotherm vertebrate 13127

predacious Seals endotherm vertebrate 136000 Hakes ectotherm vertebrate 22994.5

predacious Seals endotherm vertebrate 136000 Squid invertebrate 40

predacious Seals endotherm vertebrate 136000 Snoek ectotherm vertebrate 13012.1

predacious Seals endotherm vertebrate 136000 Birds endotherm vertebrate 2287

predacious Seals endotherm vertebrate 136000 Sharks ectotherm vertebrate 1500

predacious Seals endotherm vertebrate 136000 Benthic carnivores invertebrate 10

predacious Seals endotherm vertebrate 136000 Anchovy ectotherm vertebrate 11.5

predacious Sharks ectotherm vertebrate 1500 Pilchard ectotherm vertebrate 280

predacious Sharks ectotherm vertebrate 1500 Round herring ectotherm vertebrate 215.2

predacious Sharks ectotherm vertebrate 1500 Lightfish ectotherm vertebrate 4.8

predacious Sharks ectotherm vertebrate 1500 Goby ectotherm vertebrate 18.6

predacious Sharks ectotherm vertebrate 1500 Other pelagics ectotherm vertebrate 2554.85

predacious Sharks ectotherm vertebrate 1500 Horse mackerel ectotherm vertebrate 5104.9

predacious Sharks ectotherm vertebrate 1500 Chub mackerel ectotherm vertebrate 3259.5

predacious Sharks ectotherm vertebrate 1500 Other groundfish ectotherm vertebrate 13127

predacious Sharks ectotherm vertebrate 1500 Hakes ectotherm vertebrate 22994.5

predacious Sharks ectotherm vertebrate 1500 Squid invertebrate 40

predacious Sharks ectotherm vertebrate 1500 Tunas ectotherm vertebrate 909000

predacious Sharks ectotherm vertebrate 1500 Snoek ectotherm vertebrate 13012.1

predacious Sharks ectotherm vertebrate 1500 Kob ectotherm vertebrate 68000

predacious Sharks ectotherm vertebrate 1500 Yellowtail ectotherm vertebrate 82040.3

predacious Sharks ectotherm vertebrate 1500 Geelbek ectotherm vertebrate 26127.38

predacious Sharks ectotherm vertebrate 1500 Whales and Dolphins endotherm vertebrate 82000

predacious Sharks ectotherm vertebrate 1500 Birds endotherm vertebrate 2287

predacious Sharks ectotherm vertebrate 1500 Seals endotherm vertebrate 136000

predacious Sharks ectotherm vertebrate 1500 Sharks ectotherm vertebrate 1500

predacious Sharks ectotherm vertebrate 1500 Benthic carnivores invertebrate 10

predacious Sharks ectotherm vertebrate 1500 Mesozooplankton invertebrate 0.01

predacious Sharks ectotherm vertebrate 1500 Macrozooplankton invertebrate 1

predacious Sharks ectotherm vertebrate 1500 Anchovy ectotherm vertebrate 11.5
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4.5.4 Breaking down of the diversity-functioning relationship

Figure S4.1 Animal to producer biomass ratio for different levels of diversity. This figures shows the
relationship between producers and consumers richness on food webs animal to producer biomass
ratio for food webs of different shapes, namely top-heavy (top, A and B), medium-heavy (middle row,
C) and bottom-heavy (bottom, D and E) cascades (left, A, C and D) and pyramids (right, B and E).
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Figure S4.2 Diversity - total primary production relationships in food webs. This figures shows the
effect of producers and consumers richness on food webs total primary production for food webs of
different shapes, namely top-heavy (top, A and B), medium-heavy (middle row, C) and bottom-heavy
(bottom, D and E) cascades (left, A, C and D) and pyramids (right, B and E).
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Figure S4.3 Diversity - total herbivory relationships in food webs. This figures shows the effect of
producers and consumers richness on food webs total consumption by herbivores for food webs of
different shapes, namely top-heavy (top, A and B), medium-heavy (middle row, C) and bottom-heavy
(bottom, D and E) cascades (left, A, C and D) and pyramids (right, B and E).
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Figure S4.4 Diversity - total secondary consumption relationships in food webs. This figures shows
the effect of producers and consumers richness on food webs total secondary consumption for food
webs of different shapes, namely top-heavy (top, A and B), medium-heavy (middle row, C) and
bottom-heavy (bottom, D and E) cascades (left, A, C and D) and pyramids (right, B and E).

152



Chapter 5

Conclusion

An alligator, top predator of the swamps, eating a fish near New Orleans, Louisiana.
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The main objective of this thesis is to understand how food-web structure influences

the BEF relationships in complex ecological communities. I have chosen to reach this goal

not only by performing a set of experiments and analyses but also by assessing the existing

methodological framework traditionally used for this type of issue; and by identifying and

implementing in a common and open platform a set of existing tools that, in my opinion, are

necessary to advance the field more robustly and rapidly.

I first chose and implemented a model to adequately simulate biomass dynamics in food

webs, accounting for traits of fundamental importance for estimating species biological rates

(body mass and metabolic class): the bioenergetic food-web model (BEFWm; Yodzis & Innes

1992; Williams et al. 2007). This model is probably the most widely used to investigate food

web functioning and the BEF relationships in complex communities (see [table S2.1][List of

published papers since 2007 that have used the bioenergetic food-web model.]). We published

the BEFWm in a library – BioEnergeticFoodWeb.jl – to provide an open platform for further

synthesis and comparison, using one of the highest performances, dynamic, and easy-to-use

language: Julia . We also added a wide set of tests to make sure that the results can be

trusted, and assessed its ability to reproduce previous results, a necessary step for synthesis. I

describe this model and its use in chapter 2, and provide an overview of the new features that

were later added in the following discussion. Simulating realistic biomass dynamics in species-

and link-rich food webs gives the possibility to estimate various measures of functioning, by

quantifying the flows and stocks at different organizational levels (species, trophic levels, trophic

compartments, etc.). However to understand how food-web structure influences functioning,

we also needed to choose how to measure significant aspects of structure, that quantify the

ecological properties most likely to drive functioning.

Realizing the lack of a comprehensive review of the wide set of existing methods for

describing ecological networks, we decided to write it. Chapter 3 is not an exhaustive review

of all available methods, but gives an overview of robust and informative tools, as well as the
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ecological properties and processes they can abstract, and their limitations. In other words,

we have tried to outline the “best practices” for the field. This served as a basis for the

EcologicalNetworks.jl package, by Poisot et al. (2020), for ecological networks analysis.

This review also later helped me choose how to measure informative structural attributes, likely

to shape biomass dynamics in food webs.

Finally, in chapter 4, I built on these methodological steps, and used the BioEnergeticFoodWebs

.jl package to simulate biomass dynamics in realistic food webs, with varying structures,

diversity and body-mass distributions. I used food web analysis to investigate the influence of

food web structure on the BEF relationships in complex ecological communities. In this chapter

I used concepts from diverging fields of ecology — BEF and food-chain analyses — and show

how food web structure helps us understand how their respective predictions fit together and

how it helps us understand the BEF relationships in complex ecological communities.

5.1 A relationship between communities top-heaviness, food-web com-

plexity and functioning.

The BEFWm has been widely used since its publication by Yodzis & Innes (1992), and has led

to major advances in ecology (Williams et al. 2007). Its adaptation to food webs has shed

new lights on various ecological puzzles, such as the complexity-stability relationship, or the

generality of the BEF relationship in food webs. One of the main goals of this thesis is to show

its power as a synthesis framework for the analysis of factors influencing the functioning of

complex ecological communities, especially when combined with food web analyses.

By explicitly using concepts from diverging fields of ecology, results from chapter 4 show

that there is an interplay between food web structure and energetic constraints, captured by

characteristic shapes of biomass distribution.The majority of communities are, in nature as in

our analysis, bottom heavy (Bar-On et al. 2018). This is consistent with theoretical predictions

from the literature: in the absence of external input (subsidies), because of the distribution of
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body sizes in the community, imperfect assimilation and metabolism, it is energetically difficult

to maintain top-heavy communities (McCauley et al. 2018). And we show that these “default”

communities display little variability in food-chain length and animal diversity. In the context of

our analysis, they often have high plant diversity, and a low animal to producer ratio. The

positive diversity-functioning relationship we see in these communities is mainly driven by

plant diversity, but greater animal diversity can increase the general level of functioning of the

system, independently of food-chain length (which is often limited to 3 trophic levels). Within

the BEFWm, these “green” communities are in the majority of cases less efficient at storing the

material produced by heterotrophs than equivalent grasslands (i.e., with equal productivity).This

shows that in this case, the addition of consumption (and the subsequent consumption losses)

may prevent competitive exclusion among producers (Brose 2008), potentially increasing

diversity, but also seems to decrease the effect of diversity

Rarely, top-heavy communities can exist and persist. Food-web analysis sheds new light

on the conditions for their emergence. Previous results have shown the role of omnivory and

intraguild predation - which structurally translate into the same motif A → B → C ← A -

in attenuating the trophic cascade and stabilizing biomass dynamics (Finke & Denno 2004,

2005). The frequency of intraguild predation (IGP) is also correlated with higher food-web

functioning and greater diversity (Wang et al. 2019). The use of motifs frequency to measure

the structure of food webs (as established in chapter 3) allows us to link these results (chapter

4). Specifically, we show that communities with a high animal diversity and a high animal to

producer ratio have a more complex structure (represented by a relatively higher connectivity)

and more omnivore/IGP motifs. These communities are also more efficient at storing the

biomass produced (slower biomass turnover), and can even be more efficient than grasslands at

equivalent intake. This energy efficiency is linked to a higher consumer-resource body-mass ratio

on average (because predators feed on different levels of the food chain), which is associated

with higher stability and lower consumption and metabolic losses.This appears to be the reason
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for their top-heavy structure.

5.2 Reconciling predictions from food-chain and BEF theories

The analysis of food chains functioning, of isolated trophic compartments functioning (usually

framed in BEF analyses), and of the influence of the trophic cascade phenomenon on BEF

relationships has given us some fundamental building blocks that allow us to better understand

the functioning of the communities. However, the simplicity of the systems generally used to

perform these analyses is not representative of the complexity of the realistic communities. It

was therefore necessary to test the generality of these predictions, their range of applicability

and their influence on each other in more realistic systems. We have tried to answer the

following questions in realistic food webs: Under what condition can we produce top- and

bottom-heavy food webs? Is there a correlation between diversity and functioning in complex

food webs? Is the effect of chain length on the diversity-functioning relationship independent of

the structure of the network? What is the effect of the omnivory and IGP on the emergence of

these results? We answer these questions usingan efficient, tractable and empirically grounded

model: the bioenergetic model for food webs.

Top heaviness in the bioenergetic food-web model framework. The emergence of top-

heavy communities, and especially inverted pyramids of biomass, has long puzzled ecologists.

It has been later shown that subsidies – external inputs into the community – can lead to

top-heavy communities, as well as efficient energy channels that enhance biomass transfers

between trophic compartments (McCauley et al. 2018). In the context of the experiments

presented in chapter 4, we show that top-heavy communities (but rarely inverted pyramids) are

theoretically possible without exogenous energy input. They appear into communities displaying

a densely connected food-web, with a strong consumer-resource body-mass ratio and lead to

highly functioning systems. However, while our results are consistent with Trebilco et al. (2016)

given the parameters value in the BEFWm, it could also be interpreted as an overestimation of
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the transfer efficiency parameters in the BEFWm. More empirical and experimental work in

establishing these parameters is needed to test the validity of our results.

The BEF relationships in complex ecological communities. Coupling a food-web model

generating realistic communities (ADBm; Petchey et al. 2008a), and the BEFWm, we see a

positive asymptotic relationship between diversity and functioning in complex communities.

Consistently with previous work (Schneider et al. 2016; Wang & Brose 2017; Wang et al.

2019), diversity effects in complex communities are not as idiosyncratic and dependant on

structure as previously thought (Thébault & Loreau 2006; Loreau 2010a). Rare complex, rich

in animal and top-heavy communities do present a higher level of functioning for similar species

richness levels, but qualitatively, the diversity-functioning relationship is similar for all types

of food webs analyzed. Interestingly, BEF relationships in food webs, in the context of our

analysis, appear to logically follow from the synergy of structural and energetic constraints.

More diverse food webs are correlated here with higher animal richness and complexity. Because

many food webs in nature have a positive consumer-resource body-mass ratio, and following

the allometric scaling of biological rates in our model (especially maximum consumption and

metabolism), consumption losses and metabolism are lower in these food webs. They also have

statistically more omnivory motifs. It naturally follows that they have i) a higher productivity

and ii) a lower turnover rate. This means that they are bound to be more efficient at producing

and storing biomass.

Effects of food chain length and omnivory in complex ecological communities. In

simple community food chain, the number of discrete trophic levels (food-chain length) explains

the distribution of biomass in trophic compartments through trophic control. In systems

with strong top-down trophic cascade, an even number of trophic levels result in a release of

herbivores and a strong control of producers. Omnivory, by dampening the trophic cascade, can

alter this prediction. Here, it appears that we see the result of this phenomenon. One the

one hand, most communities are relatively simple and bottom heavy. In these communities,
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food-chain length only varies in the ]1, 3.5] range, and is mainly below 2, showing that secondary

consumers in these communities are often omnivores, feeding on both producers and consumers.

The presence of omnivory and the narrow range of variation in food-chain length make it difficult

to analyze its potential effect. On the other hand, more complex top-heavy communities do

present a wider range of variation, but the high frequency of omnivory and intraguild predation

probably strongly suppresses the effect of the trophic cascade. As a consequence, in the context

of our methodological framework, we did not see an effect of food-chain length.

5.3 Perspectives

5.3.1 Realistic scenarios of secondary extinctions and adaptive foraging

The global changes we are facing — and causing — considerably threatens biodiversity

and we see novel ecological communities emerging, with changed composition and structure

(MEA 2005). Current extinction rates are comparable to the great biodiversity crises that

punctuated the history of life on Earth (Barnosky et al. 2011) and invasion by exotic species

is an increasingly frequent phenomenon (MEA 2005). As species exist not alone but in a

web of interactions with various others, extinction or invasion events are more than likely to

be followed by a cascade of consequences. These consequences are diverse and range from

changes in species behaviour (to avoid a new predator or adapt to a new resource), density and

persistence in the community. Predicting the cascading consequences of primary extinctions or

invasions requires that we understand the factors driving them, and the subsequent changes in

food web structure and processes.

Species extinction risk and invasion success are correlated to certain traits. For example,

we know that large predators are disproportionately vulnerable to extinction (Cardillo 2003).

Specialists are also at greater risk, as they have a narrower range of possible adaptation if

their resource disappears (Brodie et al. 2014; Gallagher et al. 2014, 2015). Beyond improving

management and conservation efforts, this knowledge also provides realistic targets to simulate
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primary extinctions and their consequences in model systems (Srinivasan et al. 2007). Conversely,

analyses of secondary extinctions (Ebenman et al. 2004) can also provide us with a better

understanding of the correlation between species traits, structural properties and extinction risks

(e.g., Petchey et al. 2008c; Allesina & Bodini 2004; Roopnarine 2006; Brodie et al. 2014). This

type of analysis is relatively common and provides valuable insights in the fate of ecosystems

(Estes et al. 2011). However, we also know that changes in biomass are an early warning

of species extinction (before disappearing, species abundance necessarily drops significantly,

leading species to become “functionally extinct”; Säterberg et al. 2013; Anderson et al. 2011).

Consequently, many species are the subject of short-term fluctuation in diet that allows them

to adapt to these changes (Stephens & Krebs 1986; Agrawal 2001). Adaptive foraging has

been documented in nature, consumers for example can switch their diet to respond to changes

in resource availability or energetic value (Agrawal et al. 1999), causing a rewiring of the food

web. When adaptive foraging has been integrated with models of biomass dynamics in food

webs, it showed that rewiring generally stabilizes biomass dynamics and decreases the number

of secondary extinctions following a primary extinction event (Kondoh 2003; Roopnarine 2006;

Staniczenko et al. 2010; but see Gilljam et al. 2015). Research focusing on the mechanisms of

adaptive foraging and their consequences on stability has produced many interesting insights,

but little is known about their consequences on community processes.

Various models of adaptive foraging have been developed recently (see for example

Staniczenko et al. 2010; Gilljam et al. 2015). After publication of the BioEnergeticFoodWeb.jl

package, we implemented in version 1.0 (Delmas et al. 2019b) some of these models, the

diet overlap (Staniczenko et al. 2010), diet similarity (Gilljam et al. 2015) and adapted the

allometric diet breadth models (Petchey et al. 2008a) to simulate adaptive foraging and trophic

rewiring. This gives new potential to the BioEnergeticFoodWeb.jl package to simulate

biomass dynamics in food webs under different mechanisms of foraging adaptation, which

have so far resulted in opposite predictions (Staniczenko et al. 2010; Gilljam et al. 2015). The
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publication of this new feature makes it easy to (i) investigate the consequences of realistic

targeted extinctions on biomass dynamics, diversity, functioning and food web structure, but

also to (ii) compare the consequences of various mechanisms of rewiring.

5.3.2 From organisms to ecosystems

If we are interested in predicting community functioning, it is ultimately to predict the fate of

ecosystems, their functioning and of the multiple services they provide to human societies

(Balvanera et al. 2006; Haines-Young & Potschin 2010). Scaling up our results from communities

to ecosystems would require that we include the effect of environment on the ecological

processes of interest, at different organizational, temporal and spatial scales. Here we highlight

some interesting future avenues for research in this direction, and their potential influence on

the relationships as shown in chapter 4.

Communities rarely, if ever, exist in isolation, they are connected to a web of others

through dispersion, migration, and energy and matter fluxes. This has the potential to change

the relationships we highlight in chapter 4 in various ways. At the most basal level of our

analysis, nutrient inflow (fertilization) into the community could have different consequences.

These consequences could easily be analyzed by manipulating the supply rate of the nutrient-

intake model for producers growth that we included in version 1.0 (Delmas et al. 2019b)

of BioEnergeticFoodWeb.jl . While increasing nutrient supply could allow maintaining more

species and trophic levels, allowing for higher predators in the food chain (Post 2002), the

paradox of enrichment (Rosenzweig 1971) tells us that it could also destabilize biomass dynamics

and potentially cause extinctions. Subsidies have also been shown to increase the probability of

top-heavy communities (McCauley et al. 2018). Higher in the food chain, source-sink dynamics

have the potential to change the food web structure and function (Loreau et al. 2003; Grace et

al. 2016), not only by changing biomass dynamics between compartments, but also because of

changes in behaviour (e.g., avoidance of abundant predators) and diet preference. Integrating
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meta-community processes with adaptive foraging models in a bioenergetic framework has

the potential to change in unpredictable ways how we understand the effect of food-web

structure on the diversity-functioning relationship. It could notably make it easier for top-heavy

communities to emerge and persist, thus potentially causing shifts in the functioning regime of

communities.

Working at the regional scale would also allow us to understand the consequences of

diversity change at different scales. While it is an established fact that global biodiversity is

decreasing dramatically (MEA 2005), the effects are not the same at the global, regional

and local scales (Sax & Gaines 2003). In fact, it appears that local (alpha) diversity is not

affected as much as previously thought, while regional diversity, the pool of species from which

local communities are assembled, is more negatively affected. This makes communities more

homogeneous (smaller beta diversity) and in turn reduces the potential for compositional

turnover. Beyond species, interactions can vary in response to environmental factors and neutral

processes (Poisot et al. 2015c). The bioenergetic framework includes the possibility to account

for some species traits (mainly body mass and metabolic class so far) that are important in

estimating energetic demands and food web structure. This makes it an adapted framework to

study how a decrease in regional functional diversity would in turn affect local processes and

food web structure.

In a more and more fragmented and altered world, analyzing the effect of environmental

variations, at different scales, is also a necessary stepping stone. Temperature for example, can

influence communities by changing organisms biological rates, body sizes and the resulting

ecological processes (Gillooly et al. 2001; Brown et al. 2004; Walters & Hassall 2006).

Fertilization, as we stated just above, is another source of concern, as many ecosystems

face this type of perturbation. In fact, ecological communities face a variety of simultaneous

stressors that enter systems at different levels and act at different scales, from individual

organisms to the whole ecosystem, and affect different ecological mechanisms (Orr et al.
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2020). To this date studies that have focused on investigating the simultaneous effects of

these factors have done so in simplified systems and only included few stressors (Kéfi et al.

2019). The results, however, highlight the importance of this issue, as they show how the

interactive effect of as little as two stressors (temperature and fertilization, for example; Binzer

et al. 2012) can have counteractive effect on stability and functioning. To move forward in

this direction, in version 1.0 (Delmas et al. 2019b) of BioEnergeticFoodWebs.jl , we have

implemented models of temperature effect on both biological rates and body size, and are

moving on to include other potential stressors effects. Building a statistical framework to

understand the additive or interactive effect of many stressors, that exert simultaneous press or

pulse perturbations, at various scales will also be of primary importance to build a predictive

framework for biodiversity and ecosystem functioning for different scenarios of perturbation,

and in heterogeneous environments. Developing the BioEnergeticFoodWeb.jl platform to

include effects of various stressors, meta-community dynamics and developing the statistical

framework to analyze the effect of simultaneous, heterogeneous stressors will in fact be part of

my new research focuses as a postdoctoral research assistant.

5.3.3 Network analysis offers many perspectives to solve these complex issues

Networks occur at all scales of ecosystems, connecting species, individuals, habitats, ecosystems.

The development of network analysis has provided new ways to abstract complex systems and

study their dynamics in various fields. In ecology, network analysis is more and more used to

analyze various problems (Proulx et al. 2005). In the context of this work — and many other

that focus on biodiversity and community functioning — representing communities by their

underlying maps of energy and matter flow (food web) has provided many insights (Pascual &

Dunne 2005), whether it adopted a static (steady state) or dynamic vision of communities.

However, this is still a relatively recent field and new developments are needed, especially in

two areas: comparing of ecological networks and analyzing multilayered networks (Delmas et
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al. 2019a).

Comparing networks presents a unique challenge, depending on whether networks contain

similar sets of species or not. However, it has the potential to provide valuable results, for

example by linking variations in structure, diversity, environment and functioning, at different

scales. To date, network comparisons have been mainly done using multivariate analyses of a

set of metrics (Vermaat et al. 2009), describing structure (mean and standard deviation in

degree, connectance, etc). More comprehensive metrics (such as motifs distribution; Milo

2002) provides us with new insights, but as many different structural properties are correlated

to connectance and size (Dunne et al. 2002a), this type of analysis has its limits. To capture

the multivariate reality of ecological networks, we need more comprehensive metrics. Mainly,

this type of approach could help us studying empirically the effect of environmental gradients on

the structure of networks, which in turn would help test the validity of theoretical predictions

based on the use of the bioenergetic food web model. Notably, a recent method based on

the alignment of ecological networks using on their motifs holds great promise for measuring

network dissimilarity (Mora et al. 2018b) and has been used to show the existence of a

“backbone” of interactions in food webs. Comparing the different local realization of the same

regional pool of species can also be done by estimating pairwise network dissimilarity (Poisot et

al. 2012). Using these approaches, we could test whether food web dissimilarity and variations

in functioning are correlated. This would be a big step towards reconciling biogeography and

food-web analysis, and understanding the BEF relationships along environmental gradients.

Ecosystems are, as Schmitz (2010) put it “paradigmatically one of the most complex systems

known to science.” They are composed of many species that display a wide variety of traits and

that interact with one another — and with one another environment — through a myriad of

interactions. The work presented in this thesis, as many before, focuses on consumption, and

to a certain limit, competition. But pollination, facilitation, parasitism, etc. are more than likely

to change the effect of competition and consumption that we are able to measure (Fontaine
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et al. 2011b). The analysis of networks with different types of interactions is still in its early

stages, especially in ecology, but has already shown that including non-trophic interactions

modifies the effect of biodiversity on biomass (Arditi et al. 2005; Goudard & Loreau 2008;

Kéfi et al. 2012). The integration of BEF analysis in food webs was born from the realization

that consumption was probably changing the strength and effect of competition between

species within a trophic compartment (Duffy et al. 2007). Food webs provided a framework

to integrate both competition and consumption and host the subsequent analyses (Loreau

2010a). If we want to move towards more accurate predictions, we need to test the influence

of other interactions through the development of integrative frameworks able to abstract the

complex reality of ecosystems with many interactions.

5.4 Conclusion

With the publication of a common open platform for the bioenergetic food-web model, we are

making it easier to integrate various existing models, simulating processes such as adaptive

foraging or temperature effect, in a tractable but realistic framework. This platform offers the

possibility for rapid development in our ability to understand and predict community dynamics.

We show that the coupling between this model and the new developments in ecological networks

analysis provides a powerful framework to solve many exciting new challenges.
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