
Université de Montréal

Traffic Prediction and Bilevel Network Design

par

Léonard Ryo Morin

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée en vue de l’obtention du grade de
Philosophiæ Doctor (Ph.D.)

en Informatique

10 janvier 2020

c© Léonard Ryo Morin, 2020





Université de Montréal
Faculté des études supérieures et postdoctorales

Cette thèse intitulée

Traffic Prediction and Bilevel Network Design

présentée par

Léonard Ryo Morin

a été évaluée par un jury composé des personnes suivantes :

Jean-Yves Potvin
(président-rapporteur)

Emma Frejinger
(directrice de recherche)

Bernard Gendron
(codirecteur)

Fabian Bastin
(codirecteur)

Margarida Carvalho
(membre du jury)

Carolina Osorio
(examinatrice externe)

Jacques Bélair
(représentant du doyen de la FESP)





Résumé

Cette thèse porte sur la modélisation du trafic dans les réseaux routiers et comment celle-ci
est intégrée dans des modèles d’optimisation. Ces deux sujets ont évolué de manière plutôt
disjointe: le trafic est prédit par des modèles mathématiques de plus en plus complexes, mais
ce progrès n’a pas été incorporé dans les modèles de design de réseau dans lesquels les usagers
de la route jouent un rôle crucial. Le but de cet ouvrage est d’intégrer des modèles d’utilités
aléatoires calibrés avec de vraies données dans certains modèles biniveaux d’optimisation et
ce, par une décomposition de Benders efficace. Cette décomposition particulière s’avère être
généralisable par rapport à une grande classe de problèmes communs dans la litérature et
permet d’en résoudre des exemples de grande taille.

Le premier article présente une méthodologie générale pour utiliser des données GPS
d’une flotte de véhicules afin d’estimer les paramètres d’un modèle de demande dit recursive
logit. Les traces GPS sont d’abord associées aux liens d’un réseau à l’aide d’un algorithme
tenant compte de plusieurs facteurs. Les chemins formés par ces suites de liens et leurs carac-
téristiques sont utilisés afin d’estimer les paramètres d’un modèle de choix. Ces paramètres
représentent la perception qu’ont les usagers de chacune de ces caractéristiques par rapport
au choix de leur chemin. Les données utilisées dans cet article proviennent des véhicules
appartenant à plusieurs compagnies de transport opérant principalement dans la région de
Montréal.

Le deuxième article aborde l’intégration d’un modèle de choix de chemin avec utilités
aléatoires dans une nouvelle formulation biniveau pour le problème de capture de flot de
trafic. Le modèle proposé permet de représenter différents comportements des usagers par
rapport à leur choix de chemin en définissant les utilités d’arcs appropriées. Ces utilités
sont stochastiques ce qui contribue d’autant plus à capturer un comportement réaliste des
usagers. Le modèle biniveau est rendu linéaire à travers l’ajout d’un terme lagrangien basé
sur la dualité forte et ceci mène à une décomposition de Benders particulièrement efficace.
Les expériences numériques sont principalement menés sur un réseau représentant la ville
de Winnipeg ce qui démontre la possibilité de résoudre des problèmes de taille relativement
grande.
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Le troisième article démontre que l’approche du second article peut s’appliquer à une
forme particulière de modèles biniveaux qui comprennent plusieurs problèmes différents.
La décomposition est d’abord présentée dans un cadre général, puis dans un contexte où le
second niveau du modèle biniveau est un problème de plus courts chemins. Afin d’établir que
ce contexte inclut plusieurs applications, deux applications distinctes sont adaptées à la forme
requise: le transport de matières dangeureuses et la capture de flot de trafic déterministe.
Une troisième application, la conception et l’établissement de prix de réseau simultanés, est
aussi présentée de manière similaire à l’Annexe B de cette thèse.

Mot clés: données GPS, choix de chemin, modèles récursifs de choix, terminaux inter-
modaux, capture de flot, décomposition de Benders, optimisation biniveau, maximisation
d’utilité aléatoire.
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Abstract

The subject of this thesis is the modeling of traffic in road networks and its integration
in optimization models. In the literature, these two topics have to a large extent evolved
independently: traffic is predicted more accurately by increasingly complex mathematical
models, but this progress has not been incorporated in network design models where road
users play a crucial role. The goal of this work is to integrate random utility models calibrated
with real data into bilevel optimization models through an efficient Benders decomposition.
This particular decomposition generalizes to a wide class of problems commonly found in
the literature and can be used to solved large-scale instances.

The first article presents a general methodology to use GPS data gathered from a fleet
of vehicles to estimate the parameters of a recursive logit demand model. The GPS traces
are first matched to the arcs of a network through an algorithm taking into account various
factors. The paths resulting from these sequences of arcs, along with their characteristics, are
used to estimate parameters of a choice model. The parameters represent users’ perception
of each of these characteristics in regards to their path choice behaviour. The data used
in this article comes from trucks used by a number of transportation companies operating
mainly in the Montreal region.

The second article addresses the integration of a random utility maximization model
in a new bilevel formulation for the general flow capture problem. The proposed model
allows for a representation of different user behaviors in regards to their path choice by
defining appropriate arc utilities. These arc utilities are stochastic which further contributes
in capturing real user behavior. This bilevel model is linearized through the inclusion of
a Lagrangian term based on strong duality which paves the way for a particularly efficient
Benders decomposition. The numerical experiments are mostly conducted on a network
representing the city of Winnipeg which demonstrates the ability to solve problems of a
relatively large size.

The third article illustrates how the approach used in the second article can be generalized
to a particular form of bilevel models which encompasses many different problems. The
decomposition is first presented in a general setting and subsequently in a context where the
lower level of the bilevel model is a shortest path problem. In order to demonstrate that

7



this form is general, two distinct applications are adapted to fit the required form: hazmat
transportation network design and general flow capture. A third application, joint network
design and pricing, is also similarly explored in Appendix B of this thesis.

Keywords: GPS data, route choice, recursive choice models, intermodal terminals, flow
capture, Benders decomposition, bilevel optimization, random utility maximization.
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Introduction

This thesis covers the three main following topics: demand model parameter estimation using
real GPS data, integrating random utility models into a general flow capture problem and
a Benders decomposition specially adapted to a broad class of bilevel models. Throughout
this introduction, it is our goal to not only show how these seemingly unrelated subjects
lead one into the other, but also the importance of the whole they form. The chapter is
structured as follows. First, we showcase the motivation behind this work. Second, we
provide a background to the main areas of our research. Third, we lay out our specific
objectives and the resulting contributions. Finally, we detail the outline for the rest of this
thesis.

Motivation

With the global population more than tripling since the beginning of the 20th century, a
need for efficient methods of planning, decision making and simulation came into prominence.
This plight was answered by the development of operations research. Owing to the advent
of the information age, countless works of ever increasing complexity have been published in
a myriad of fields. One of these fields is the study of demand modeling which can be applied
to characterizing the behavior of people travelling by choosing one of many alternatives.
People and their movements are at the crux of many services, phenomenons and issues
such as public transit, air travel, the rise of alternative fuel vehicles, traffic congestion, the
concomitant CO2 emissions and other negative impacts. It is thus imperative to accurately
portray the behavior of these people if we are to enact effective policies and take actions
entailing environmental and economic benefits. Tracking people with GPS has emerged, in
recent years, as a powerful means to that end because of both its quantity and availability.
Therefore, providing a way to harness this plentiful resource with the goal of grasping the
factors involved in our decision-making processes in regards to our travel choices is of the
utmost importance.

However, this undertaking only serves as a basis for determining the choices we make
relating to any problematic situation we wish to address. In mathematical programming,
decisions are reached by the coalescence of an objective and constraints of which demand



modeling is often a pivotal element. What is typically used in that regard can be greatly
improved by simply incorporating state of the art demand models which have evolved sepa-
rately. Hence, it beckons to us to unite them with a problem where the behavior of travellers
is a central theme. We choose the general flow capture problem as we believe it is a peculiarly
versatile setting with numerous concrete applications due to its nature: an authority decides
where to install certain flow capturing resources, with the aim of capturing as much traffic
as possible, in a network where users, who have a reaction to these resources, are travel-
ling. The essence of this situation revolves around the behavior of the travellers and their
response to the decisions made by the authority, which, together, dictate the optimal instal-
lation configuration. Consequently, incorporating the best representation of the behavior of
these travellers in our mathematical program is fundamental.

With a mathematical model able to accurately predict the choices of travellers, the last
hurdle which we must clear is that of scaling. Indeed, the unprecedented growth of humanity
requires us to consider ever expanding settings which, in turn, translate to extremely large
mathematical models. A common approach to circumventing this impediment is the use of
heuristics which simplify reality to more manageable dimensions. However, the aptly named
decomposition methods deal with the issue by breaking down the problem into smaller parts
which can then be addressed efficiently. It is in fact what we use for the general flow capture
problem and we demonstrate that our method can be applied to a wide variety of other
problems. Thus, the goal is to provide the means for the models used to solve all of these
problems to be able to scale up to realistic proportions while simultaneously accurately
representing travellers’ behaviors which allows for better decisions.

Research Background

This thesis covers several fields of research and, as such, only the most relevant to this
work are discussed here. We also aim to provide, when appropriate, a perspective on what
we consider to be a lack of connection between these various topics in the state of the art.
Of course, a more thorough overview can be found in the literature review section of each
article presented subsequently.

We first look at discrete choice modeling in the context of the path choice of individuals
travelling within a network of nodes and arcs. Largely owing their popularity to the seminal
work of [54], discrete choice models are used to predict the choices of an individual when
choosing from a discrete set of alternatives. This choice is assumed to be based on attributes
captured by the utility of the alternatives and characteristics of the individual who is utility
maximizing. In reality, for various practical reasons, some of these attributes are unknown to
the modeler which leads to random utility discrete choice models. These models determine
choice probabilities for each alternative. The probabilities depend on assumptions made
regarding the choice set and the random portion of the utility which leads to different models.
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This framework naturally lends itself to describe the route choices of individuals travelling
within a transportation network. This route choice can be broken down into a series of arc
choices leading an individual from his origin to his destination or it can be made from a
set of predetermined paths, potentially determined by choice set generation algorithms [e.g,
5, 58].

Both approaches have their strengths and weaknesses. Path-based models have the ad-
vantage of being estimated easily by commercial software. They are not conducive to reliable
scenario analysis because choice probabilities depend on generated choice sets. These choice
sets also have to be recalculated when changes are made to the network. Arc-based models,
on the other hand, do not require path choice sets and thus do not suffer from their associ-
ated drawbacks. However, they can be limited in their ability to represent certain attributes
that are specific to a complete path such as a habitual (preferred) path. More generally,
arc-based models require arc-additive attributes which can be a drawback. Nevertheless, it
is a widely accepted assumption with respect to shortest path calculations and it is, in fact,
often used to generate path choice sets for path-based models. A more detailed overview of
the two approaches can be found in [26]. For these reasons, we focus on arc-based models
throughout this thesis.

The instantaneous utility of link a ∈ A(k) is u(a|k; β) = v(a|k; β) + ε(a), where A(k) is
the set of outgoing links from link k, v(a|k; β) is the deterministic utility and β is a vector
of parameters. These parameters typically include the travel time, the speed limit, the road
safety, the scenery, etc. The ε(a) represents the random term. These can be assumed to be,
for example, independently and identically distributed extreme value (with location zero and
scale µ) so that the choice model at each choice stage is logit. One of the most important
aspects to consider is the correlation between alternatives. In our context, this translates to
different possible paths having certain arcs in common. For instance, a standard logit model
does not consider this correlation when calculating path choice probabilities. There are
variants of the logit model that address correlation through a correction of the deterministic
utilities, such as C-logit [16] and path size logit [6]. However, they rely on a complete path
enumeration or choice set sampling [24]. If we define p as a sequence of arcs a1,a2,...,aT , we
can define its associated utility as

u(p) =
T∑
i=2

u(ai|ai−1; β). (1.0)

The probability of choosing path p would thus be given by:

Prob(p) = ev(p)∑
p′∈P

ev(p′) , (1.1)

where P is the set of all paths.
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We now turn our attention to random utility models in supply-side mathematical pro-
grams. Supply-side problems, in the context of operations research, refer to problems where
a manager typically has choices to make in regards to providing services, constructing facil-
ities, allocating resources and so on while taking into account the demand. In many cases,
discrete choice models that would realistically model the demand are ignored in favor of more
simplistic representations. This is mainly due to the non-linear expressions for the choice
probabilities of even the simplest discrete choice models as can be seen in Equation (1.1).

Keeping a mathematical program linear is an advantage as it allows to apply the more
common solution techniques and thus incorporating choice probability expressions is chal-
lenging. These non-linear terms can be approximated in a number of ways: linear functions,
piecewise linear functions, or even constants as a compromise [28]. There are also recent
developments in conic programming [62]. There is, however, a different and recently de-
veloped approach to integrating discrete choice models in mathematical programs which is
based on the utilities rather than the probabilities of each alternative. This thesis adopts
this approach.

Lastly, we provide a brief overview of bilevel programming as it is one of the focal points
in this work. Bilevel problems consist of a leader’s problem and a follower’s problem [17].
The leader is trying to optimize its own objective while respecting certain constraints while
the follower does the same with its own objective and constraints as can be observed in
(1.2)-(1.5) from [17]. Generally, the decisions of the leader affect the decisions of the follower
by changing its objective or constraints. The new decisions of the follower can in turn affect
the decisions of the leader. This cycle makes bilevel programs difficult to solve.

min
x,y

F (x,y), (1.2)

s.t.G(x,y) ≤ 0, (1.3)

min
x
f(x,y), (1.4)

s.t. g(x,y) ≤ 0. (1.5)

There are many types of solution methods used to deal with bilevel programs [19]. In this
thesis, we focus on those that reformulate the bilevel model into an equivalent single-level
model through the use of duality theory. This is usually achieved by one of two ways. The
first replaces the objective function of the follower’s problem with dual feasibility constraints
and complementary slackness conditions. The second substitutes the complementary slack-
ness conditions with the strong duality constraint which states that the primal and dual
objective functions of a problem are equal at optimality (if a bounded optimal solution
exists).
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While both of these methods yield mathematical programs that can be solved by standard
optimization tools, they have characteristics that may be considered problematic in certain
circumstances. Working with complementary slackness conditions means adding a relatively
large number of constraints that also have to be linearized which often implies adding a set of
binary variables. Although it is a single constraint, the strong duality constraint can have the
downside of providing the model with a relatively weak relaxation. Also, in both cases, the
structure of the follower’s problem cannot be exactly extracted for a decomposition method
because of the additional constraints. However, there is much to gain if we were able to do
so. In the context of bilevel network design problems or any other bilevel problem where the
follower’s problem consists of finding the shortest path in a network, shortest path problems
could be solved very efficiently by algorithms such as the Dijkstra one. This thesis attempts
to find a way to obtain a single-level formulation of a bilevel model which would still allow
for a decomposition method to benefit from the initial structure of the follower’s problem.

However, simply solving shortest path problems assumes that the followers have perfect
knowledge of network attributes and minimize the same objective function. Assuming an
uncongested network, for a given origin destination pair, they would hence seek the same
shortest path. We can avoid this oversimplification by using the aforementioned advanced
discrete choice models. Therefore, the method we use to reformulate a bilevel program to a
single-level must be able to use these demand models and preserve the shortest path problem
structure so that algorithms can be employed.

Objectives and Contributions

In this section, we explicitly lay out the contributions of this thesis. They are grouped
by articles.

The first article, “A GPS-based Recursive Logit Model for Truck Route Choice in an
Urban Area”, is centered on calibrating a discrete choice model using real GPS data. The
discrete choice model used is a recursive logit model which does not require choice set gen-
eration. The contribution is empirical, illustrating how to transition from GPS traces with
limited data processing to an estimated set of parameters for the recursive logit model.
Furthermore, because the GPS data and the road network used are genuine, the numerical
results themselves have value for practical purposes.

The second article, “Flow Capture under Heterogeneous User Behavior in Uncongested
Networks”, introduces a new formulation for the flow capture problem. This formulation
can accommodate various discrete choice models to represent how traffic propagates in the
network. The formulation itself is an important contribution but the key is how a utility
simulation approach is adapted to a network context. This approach relies on considering
a sufficient number of realizations of arc utilities rather than non-linear probability expres-
sions. Another important contribution in this paper is a novel Benders decomposition which
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exploits the shortest path problem formulation in the follower’s problem. This is possible
because of the particular way in which the bilevel model is brought to a single level without
complementary slackness constraints nor the strong duality constraint. The last contribu-
tion of this article takes the form of a numerical comparison between the various models
developed by the more traditional complementary slackness constraints and strong duality
constraint, as well as our Benders decomposition.

The third article, “Benders Decomposition for a Class of Bilevel Programs with Applica-
tions to Network Design”, generalizes the decomposition method applied to the flow capture
problem in the second article. The first contribution here is the general bilevel model along
with the assumptions needed in order to apply our Benders decomposition. This generic
model is made more specific by detailing a shortest path problem as the follower’s problem.
This allows us to highlight how that structure can be exploited to achieve efficient solution
methods. Subsequently, we demonstrate how various bilevel problems can be adapted to fit
the form needed for our decomposition. This is done through three concrete examples for
which we provide a detailed transition.

To summarize, we first present an application focused on predicting truck route choices
using GPS data and the recursive logit model. We then show how it can be adapted into
a random utility model used in a bilevel formulation for the general flow capture problem.
The resulting formulation can be relatively large, but we demonstrate how a novel Benders
decomposition method can be applied to efficiently solve it. Finally, we illustrate that our
decomposition can be applied to a wider class of bilevel models dealing with network design
and users seeking shortest paths within a transportation network.
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Résumé. Nous explorons l’usage de données GPS afin d’explorer les chemins qu’empruntent
les camions lourds dans le réseau routier urbain de Montréal. L’emphase est mise sur les
voyages qui interagissent avec des terminaux intermodaux (gare de triage, port). Nous
démontrons que les déplacements des camions peuvent être représentés avec précision et
nous proposons un modèle logit récursif pour choix de chemin basé sur ces données. Ceci
nous donne une meilleure compréhension des principaux facteurs qui influencent les déci-
sions de déplacement et peut potentiellement nous permettre de minimiser les impacts des
mouvements des camions, comme les émissions de CO2.
Mots clés : camions lourds, grand réseau urbain, données GPS, choix de route, logit
récursif, terminaux intermodaux, cas d’étude

Abstract. We explore the use of GPS devices to capture heavy truck routes in the Mon-
treal urban road network. We emphasize on trips that interact with intermodal terminals
(rail yard, port). We show that truck movements can be accurately represented and we
propose a recursive logit model for route choice based on this data. This provides a better
understanding in the main factors affecting the movement decisions and could potentially
offer opportunities to reduce impact on truck movements, such as CO2 emissions.
Keywords: heavy trucks, large urban network, GPS data, route choice, recursive logit,
intermodal terminals, case study

1. Introduction

Moving freight in urban areas is crucial for society and for economic growth. This chapter
focuses on the analysis of heavy truck movements between intermodal terminals situated in an
urban area. Major intermodal terminals generate a significant amount of traffic and have an
important economic value. Ensuring efficient transport to and from these terminals is crucial,
not only for the performance of the terminal operations and the trucking companies, but
also for reducing the negative impacts of truck traffic, e.g., congestion, noise and emissions.

We explore a dataset of GPS traces from multiple large trucking companies active in the
Greater Montreal area. These companies are members of an organization called CargoM -
Logistic and Transportation Metropolitan Cluster of Montreal. CargoM was in charge of the
data collection over three months during the winter of 2013-2014 using 48 GPS loggers.

While mobility patterns of people in urban areas have been extensively studied using
GPS data, the literature on its freight counterpart is scarce. Most of the studies analyzing or
modeling truck routes using GPS data focus on intercity transport and only a few investigate
this problem in urban areas. Moreover, the studies are faced with important data processing
challenges. In this study we illustrate through a case study how to generate results useful to
stakeholders with only limited data processing. For this purpose, we report both descriptive
results and results from structural modeling, in our case, random utility discrete choice
models. We use the state-of-the-art methodologies and provide empirical contributions.
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The objective of this study is first a descriptive analysis describing heavy truck movements
on the island of Montreal and their access times to the two main intermodal terminals (a
rail yard in the west and the Port of Montreal in the east) as well as the CO2 emissions on
these routes. A second objective is to estimate a route choice model based on map-matched
trajectory data. Data processing is typically a time-consuming and error-prone step prior
to route choice modeling. The objective of this study is to keep this step to a minimum.
Therefore, the descriptive study is based on raw GPS traces where only clearly erroneous data
records have been removed. Moreover, the route choice model is link-based and only requires
a network representation and map-matched trajectory data, unlike the more commonly used
path-based models that require path choice set generation. While the size of the dataset
is fairly limited, the main contribution of this study is to illustrate the feasibility of this
approach on a large network.

This article is structured as follows. First, we present a brief literature review covering
studies of freight movements by trucks using GPS data and discuss route choice modeling in
this context. We then present the data followed by the results section. Finally, a conclusion
summarizes our findings.

2. Literature Review

Multiple studies have shown the usefulness of GPS data in the analysis of truck movement
patterns. GPS data provide a passive way of collecting trajectory data that overcomes the
limits of fixed-date freight surveys, knowing that truck movements can vary considerably
within weekdays [63]. [52] explores the use of smartphone applications for GPS tracking in
order to gather data. GPS data can also be used to complement surveys to provide more
information [66, 1, 75]. Truck movements are also subject to heterogeneity in the travel
patterns which may be captured by GPS [7].

The main challenges of GPS data analysis often rely on the identification of tours and
stops from the GPS traces, as well as information on the transported goods including empty
trips. A number of studies [29, 65, 61, 68, 63] have adressed the issue by using various
pre-processing methods to remove insignificant trips and by setting thresholds on time spent
idle in order to identify a stop. [72] even propose a method to identify tour stops in urban
areas with a machine learning algorithm (Support Vector Machine). In our study, the data
includes a trip idenfitication number (identified by the driver or by an engine on-off event)
which addresses the problem of finding stops within a continuous stream of GPS traces.

[22] propose a method to calculate freight performance measures in corridors. [31] anal-
yse the efficiency of truck rail intermodal connectors using travel times for different periods
of the week. [44] look at the speed associated to each GPS trace to analyze freight vehi-
cle movements around São Paulo. They also analyze the data to identify stops made for
deliveries.

29



While there are many route choice modelling studies focusing on car or public transport
choices of individuals, there are relatively few studies on truck route choices. [32] estimate
path size and error component models for heavy trucks intercity route choices using the
previously described approach using generated choice sets and they provide an analysis of
forecasting results. [67] analyze attributes that influence truck routing using a combination
of two data sources: interviews at highway truck stops and stated preference data. [35]
estimates various decision factors for urban commercial vehicle movements, in particular in
the context of vehicle tours.

Most route choice models in the literature are random utility discrete choice models. We
focus on this type of model and maximum likelihood estimation of model parameters using
revealed preference data (trajectories in real networks). Route choice models are central
in many transport applications. For example, the analysis of parameters allows to assess
drivers’ preferences towards different types of infrastructure or sensitivity to tolls. Moreover,
the estimated models can be used to predict traffic flows. The literature on discrete choice
models for route choice analysis can be grouped into three categories: (i) path-based models
with generated choice sets of paths that are treated as actual choice sets ([58] provides an
overview), (ii) path-based models based on universal choice set (all paths) but where choice
sets are sampled and utilities corrected for the sampling [25] (iii) link-based recursive models
that are based on universal choice without any choice sets of paths [47]. The third has major
advantages over the first two because the model can be consistently estimated without the
time-consuming process of choice set sampling and it can be used to compute predicted
traffic flows in short computational times [26]. It, however, requires link-additive utilities.
In this study, we estimate a recursive logit model [24].

This study uses GPS data to construct a route choice model for trucks in the context of
intermodal trips in the Montreal transportation network, where two major logistics centres
are present: the port of Montreal and a rail terminal. In doing so, we aim to provide a
methodology for not only descriptive GPS data analysis but also route choice model estima-
tion in an urban setting.

3. Data and Methodology

In this section, we start by giving a brief overview of the data collection process and
the resulting dataset. We then discuss the map-matching procedure followed by a brief
description of the recursive logit model.

3.1. Data

The data used in this study was collected on heavy trucks operating during a period of
roughly 3 months, between December 9, 2013, and March 4, 2014, in the Greater Montreal
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Area (GMA). These vehicles, owned by large trucking companies, primarily moved between
the following locations: a major intermodal rail terminal in the center of Montreal Island,
intermodal container terminals of the port of Montreal and various warehouses. A data
point was recorded for every second when the vehicles’ engine was on. The complete dataset
contains 41,569,050 records corresponding to a total of 21,681 trips collected by 48 different
vehicles. This gives us an average trip duration of 31.95 minutes which is reasonable given
a typical trip length and the road network. Only 0.27% of trip records had invalid values.
It is important to note that a new trip is started whenever the engine is switched off or if
the driver specifies it through the collecting unit’s interface. This means that many of these
so-called trips are not significant both in distance traveled and in number of links used. This
issue is dealt with during the map matching process that we discuss in the following section.

Figure 1 displays a heat map presenting the density of the data, red indicates a high
density of data points while green represents a lower density. Highlighted are the port of
Montreal and the intermodal rail yards. Two highways link the two locations and attract
significant traffic. Three bridges and a tunnel are used to cross the Saint-Lawrence river
running south of the island of Montreal.

Table 1 describes the contents of the GPS dataset, stored in a PostgreSQL database.
Apart from the time and geographical information, the dataset also contains information on
the cargo weight, provided by the truck driver via a small on-board interface.

Fig. 1. Heat map of the collected data

3.2. Map Matching

In order to estimate a route choice model, we need a description of the road network along
with the observed route choices mapped to that network. In our case, all the information
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Field Description Example values
Survey ID Identification number of the data

recording device.
496, 497, 498

Trip ID Identification number of the cur-
rent trip.

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Local Datetime Date and time with precision to
the second.

January 10, 2014, 09:24:01

Latitude Latitude in degrees. 45.508928, 45.641103
Longitude Longitude in degrees. -73.509404, -73.762777
Heading Heading in degrees. 78, 186, 278

Wheel based Speed Current vehicle speed (m/s). 10.56, 3.98, 16.13
Cargo Weight Weight of the cargo being trans-

ported currently in various units
(when specified by the driver).

0, 20000, 1556

Reason for Stop If specified, number indicating
the reason for a stop or the end
of the trip.

1, 2, 3, 4, 5, 6, 7, 8

CO2 emissions Instantaneous CO2 emission in
g/s.

2.01, 4.37

Table 1. Description of the fields in the dataset

related to the network comes from Adresses Québec (http://adressesquebec.gouv.qc.ca). A
Python script is used to extract the relevant information and format it so it can be read
in Matlab which is the software we use for route choice model estimation. Observed paths
are obtained through a simple map matching algorithm using the data described previously
and the road network. While we devised the following simple algorithm taking into account
the precision of our GPS records as well as the network data, other algorithms could have
been used [59]. First, every record for a single trip is extracted, then a PostgreSQL query
assigns a link to each record based on proximity, heading and the direction of the link. The
associated link must be within 10 meters of the corresponding GPS traces and their headings
can be, at most, 40 degrees apart. If multiple links meet those criteria, then the closest one is
retained. Afterwards, this list of links is iterated through by another Python script to build
an observed path. At this stage, links must be sequential and certain thresholds are in place
to filter out incorrectly matched links. To find an initial link, at least 5 GPS traces must be
matched to the same link. Subsequently, a new link is added only when at least 3 consecutive
GPS traces match to it. This process is then repeated for each trip. In order to estimate the
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recursive logit model, we only keep the 698 observed paths that have a minimum of 6 links
because longer trips provide more information.

3.3. Recursive Logit Model

Traditional route choice models represent the alternatives offered to the decision maker
as the paths in the network, associating to each path a utility. It is assumed that the drivers
aim to maximize their utility, and typically, a logit model is calibrated over the observed path
choices. This modeling has, however, two major issues as the feasible paths in a real network
cannot be enumerated and we do not know the set of paths actually considered by the decision
maker. In addition to potentially long computational times, the obtained estimates can be
biased and the predictions inaccurate. The recursive logit model [24] allows to circumvent
these issues by assuming that the choice of the path is a sequence of link choices. A link
is defined by its source and sink nodes in the network. At each choice stage, the driver
chooses from the outgoing links the one that maximizes the sum of the instantaneous utility
and the expected maximum utility until the destination (so-called value function). The
instantaneous utility of link a ∈ A(k) is u(a|k; β) = v(a|k; β) + ε(a), where A(k) is the
set of outgoing links from link k, v(a|k; β) is the deterministic utility and β is a vector of
parameters to be estimated. The ε(a) are independently and identically distributed extreme
value type I (with location zero and scale µ) so that the choice model at each choice stage is
logit. In this context, the value functions are given by the well-known logsum formula and
Fosgerau et al. [24] show that they can be computed by solving a system of linear equations.
Moreover, the probability of an observed path is the product of the link choice probabilities.
The recursive logit model can be estimated and used for prediction without sampling any
choice sets of paths as long as path utilities are link-additive and that the path utilities are
given as the sum of the deterministic utilities of all links composing the path. We also note
that an attribute similar to path size (see [6] for details) can be added to the utilities to
correct for correlations. This attribute is called link size. We refer the reader to [24] and the
tutorial [77] for more details on the model and its calibration.

4. Results

In this section, we first present an illustrative example of a descriptive analysis of the
observed path choices. The scope of the descriptive analysis of the case study was identified
by the stakeholders. The descriptive anlysis paved the way to the development of the route
choice model, whose results are presented hereafter.
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4.1. Descriptive Analysis: Illutrative Example

The paths and associated travel times for trips with an intermodal terminal as origin or
destination are important as they have an impact on the performance of the trucking oper-
ations, in particular, waiting times at the access points. These paths are also of importance
for planning the network to avoid queues building up. As an example, Figure 2 illustrates
the different street paths that can be used to access the “de Boucherville” entrance of the
Port of Montreal.

Fig. 2. Travel paths to access “de Boucherville” port entrance

In our data, we observed a total of 1,131 entries made to the port at this location. The
most used paths are path 1 (60.7% of occurrences) and path 4 (11.4%) while the other three
paths are not significantly used (a combined 3.8%). The remaining 24.1% of entries could
not be matched to any of the five paths. This is explained by the fact that these vehicles
stopped at the warehouses in the area between paths 1 and 2 for some time before making
a technically new trip to the port entrance. Since path 1 is the only path with a significant
number of observations, we present a more detailed analysis of its travel times in Figure
3. The travel times slowly increase during the morning. More variability is observed from
10:00 to 13:00, a “peak” period for the port activities. This is reflected in the relatively
high number of outliers and in the top whisker (the “maximum”). The dotted line indicates
the travel time while driving at the legal speed limit. A similar analysis has been done
for the exits from the port. It has contributed in enhancing traffic management at the “de
Boucherville” exit: traffic signal timings have been changed to improve the situation.
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Fig. 3. Travel time variability to access entrance using path 1, by time of the day

Fig. 4. CO2 emissions in the Port of Montreal

We also conduct an analysis of CO2 emissions in the Port of Montreal as a function
of the time of day. First, we note that a small percentage of observations have a missing
instantaneous CO2 emission value despite registering a movement speed above 0 m/s. There
are different ways to impute these missing values. In our case, there are relatively few
missing values so we use a crude method where we simply impute an average value from the
observations, 2.05 g/s. Figure 4 reports the observed average emissions in kilograms over
the time of day. We separate the results for observations with and without imputed values.
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Furthermore, 4,836,698 records, representing 60.2% of the 8,034,382 records that are
located within the area of the port, have a movement speed registered at 0 m/s. This means
that the vehicle is not moving but has the engine on (idling). Summing the emissions for
these observations, we have 8.9 tons of CO2 from stationary vehicles over the course of the
3 months during which the data was collected. Of course, for this number to have any
meaning, we must calculate the percentage of the total number of trucks entering the port
our sample represents. Using the number of trucks entering the port per day in our data
and the real number recorded by port authorities, we estimate that our dataset represents
1.46% of all traffic. If we extrapolate using these numbers, idling vehicles emitted up to 550
tons of CO2 during the 3-month period. This brings us to develop a path choice model to,
in the end, better understand the behavior of the drivers. These insights and route choice
predictions can be used to improve the infrastructure to reduce the emissions.

4.2. Recursive Model Estimation

In this section, we present the estimation results of the recursive logit model without
link size. The model is based on a large network containing 215,403 links and 115,157 nodes
covering the whole region of the observations. The utilities are linear-in-parameters and are
a function of the three following attributes: travel time (TT), link constant (LC) and left
turns (LT). We recall that these utilities are link-additive. The deterministic part of the
utility of an arc a is defined as v(a|k; β) = βTTTT (a) + βLTLT (a|k) + βLCLC(a). So, the
path travel time is the sum of the link travel times, left turns correspond to the number of
left turns in a path and the path interpretation of link constant is the number of crossings.
Based on statistical testing (t-test and likelihood ratio test), we analyzed different attributes
and model specifications. Here, we report the model with the best in-sample fit.

We use an open-source Matlab code (https://github.com/maitien86) to estimate the
model by maximum likelihood. It is an implementation of the nested fixed point algorithm
proposed by [39], used in [47]. We can estimate the recursive logit model in a relatively
short computational time using the decomposition method developed in [46]. There is an
additional time required to load the data in Matlab, however, this loading time is also short
(the computations were done on a machine with an i7 processor and 12 GB of RAM running
Debian 3.16; the loading time is approximately 30 minutes and the run time is around 20
minutes). The computational time for the link-size model is longer because the utilities
become origin-destination specific and the decomposition method cannot be used.

The estimation results are reported in Table 2. We note that the parameter estimates
have their expected signs (negative) and they are significantly different from zero. This
implies that an increase in expected travel time and left turns decreases the overall utility.
The relatively high magnitude of the travel time parameter can be explained by the fact
that the unit of time is in hours. Therefore, expected travel time values in hours for any link

36



would be quite small and, when multiplied by the travel time parameter, would not simply
overtake every other parameter. In fact, we can interpret the ratios of the parameters relative
to each other: 0.88/ 353.52 = 0.002. This means that a left turn is equivalent to adding 0.002
hours, or 8.95 seconds, to the travel time in our average truck driver’s perception of route
choice. Applying the same logic to the link constant parameter, which represents crossings,
we have that a single crossing is equivalent to 6.24 seconds of additional travel time.

The purpose of our case study was to analyze in-sample results and, in that regard, the
results are satisfactory. We note that the estimated model can be used to simulate truck
route choices between different OD pairs and to compute traffic flows using an OD matrix
as input in short computational times similar to [78].

Parameters Recursive logit without link size Std Error t-test
Travel time value -353.52 41.90 8.44

Left Turn -0.88 0.092 9.56
Link Constant -0.61 0.05 13.47

Table 2. Route choice model estimation results

5. Conclusion and Future Work

In this chapter, we analyzed truck drivers route choice behavior in two ways. First
through a descriptive analysis based on raw GPS data and second, through the estimation
of a recursive logit model. While the dataset is too small to draw general conclusions for the
population of truck drivers in the Montreal region, the results illustrated that insights can be
gained with a limited data processing effort. This holds true in particular when the interest
lies in analyzing a specific region of the network, in our case the entry paths to the Port of
Montreal. We also illustrated that the recursive logit model can be applied in a very large
network. The model has the advantage of not requiring any generation of path choice sets,
which is typically a time-consuming and error-prone part of route choice modeling. Future
research should be dedicated to the analysis of truck tours, an aspect that we have ignored
in this study since the focus was set on trips with one of the intermodal terminals as origin
or destination.
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Résumé. Nous considérons le problème de capture de flot dans lequel un gérant de réseau
de transport décide sur quels arcs installer des ressources qui interceptent le trafic tout en
affectant leurs chemins. Dans l’état de l’art de ce problème, les flots de trafic sont déterminés
par des hypothèses simplistes comme des utilités déterministes et des ensembles de choix.
Notre première contribution est une formulation qui incorpore un modèle stochastique d’af-
fectation de trafic basé sur les arcs qui présume que les usagers font des choix maximisant
des utilités aléatoires. Ceci permet de prendre en compte une variété de préférences in-
cluant différentes perceptions des resources (positive, indifférente, négative). Pour obtenir
cette formulation, nous proposons un programme biniveau à partir duquel nous dérivons
plusieurs formulations dites “mixed integer linear”. À partir d’une d’entre elles, obtenue en
utilisant la dualité forte de manière particulière, nous dérivons une nouvelle méthode de dé-
composition de Benders. Notre seconde contribution est cette décomposition. Finalement,
nous menons des expériences numériques sur un grand réseau afin de démontrer que des
instances relativement grandes peuvent être résolues en un temps raisonnable.
Mots clés : Problème de capture de flot, comportement d’usagers, choix de chemin sto-
chastique, logit récursif, décomposition de Benders

Abstract. We consider the general flow capture problem where a transportation network
manager decides on which arcs to locate traffic intercepting resources that affects traffic
flows. In the current state of the art surrounding this problem, traffic flows are determined
under simplistic hypotheses such as deterministic utilities and path choice sets. Our first
contribution is a formulation which integrates an arc-based stochastic traffic assignment
model based on the assumption that travellers make random utility maximization choices.
This allows to account for a variety of preferences, including different perceptions (positive,
indifferent or negative) of the resources. To reach this formulation, we propose a bilevel
program from which we derive several general mixed integer linear program formulations.
From one of them, which is obtained through an uncommon use of strong duality, we derive
a novel Benders reformulation. Our second contribution consists of this particular decom-
position method. Finally, numerical experiments conducted on a large network show that
relatively large instances can be solved in reasonable times.
Keywords: Flow capture problem, user behavior, stochastic path choice, recursive logit,
Benders decomposition

1. Introduction

Flow capture problems (FCPs) concern the decisions on where to locate resources in a
network so as to capture traffic flows. They can be viewed as facility location problems
with the distinguishing feature that demand is represented by traffic flows as opposed to
being static in specific locations. The objective of FCPs, subject to various constraints (e.g.,
budget), can be expressed, for example, as maximizing the amount of captured flow or as
minimizing the consequences of non-captured flows. FCPs form a broad class of problems and
encompass a variety of applications such as optimal location of rail park-and-ride facilities
[34, 41], vehicle inspection stations [27, 55] and alternative fuel stations [60, 45, 42, 71].
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[4] propose to categorize FCPs into three classes based on the assumption on the traf-
fic flows in regards to the presence of resources. We refer to these classes as indifferent,
cooperative or evasive flows. Cooperative and evasive flows clearly depend on the resource
location decisions as the former seek them out, while the latter avoid them. These traffic
flows are a result of travellers’ route choice behavior where they seek to minimize their in-
dividual generalized cost function. This is known as the traffic assignment problem: given
an origin-destination (OD) matrix containing the number of trips between each origin and
destination in the network, and given a route choice model, the traffic flows are computed
assuming that the travel time is either a function of the traffic volume or is constant (i.e.,
no congestion). In this work, we take the latter point of view, which is consistent with the
state of the art on FCPs (see Section 2).

Our contribution, however, significantly extends the state of the art, as the FCP models
proposed in the literature are based on the assumption that travellers behave in a known and
deterministic way, that is, travellers minimize a perfectly known generalized cost function
so the route choice problem is reduced to a simple shortest path problem. There is a large
gap between this strong assumption and the state of the art in route choice models. In fact,
there is ample empirical evidence in the literature focused on route choice analysis [77] that
travellers’ generalized cost functions cannot be known perfectly. In turn, this motivates the
use of random utility maximization (RUM) models, which have better prediction accuracy.
Moreover, the spatial overlap of paths in a transportation network requires RUM models
that allow utilities to be correlated. The simplest RUM model – logit, aka logistic regression
– is based on the assumption that utilities are uncorrelated and has a poor prediction per-
formance compared to models that allow for correlated utilities. Most network optimization
formulations that integrate user behavior use a logit model (see Section 2). Note that, even
this simplest setting leads to non-linear non-convex formulations.

We aim to fill the gap between the state of the art on FCPs and route choice models.
This paper offers four main contributions:

(1) We propose a bilevel programming model for the FCP where the lower-level route
choice decisions are given by an arc-based RUM model, called nested recursive logit
[47]. It allows to predict traffic flows without any enumeration of choice sets of
paths – i.e., the support for the probability distribution – and path utilities that are
correlated. By appropriately defining the utility functions, the model can predict
traveller behavior according to any class of flows – evasive, cooperative or indifferent
– and accounts for the heterogeneous behavior within each class.

(2) Based on the simulation approach proposed in [56], we express the RUM model in arc
utility space instead of arc probability space. On the one hand, this leads to linear
constraints instead of non-linear ones. On the other hand, the resulting model has
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a large number of variables and constraints. This is particularly challenging in our
case as, unlike [56], we focus on the more complex network optimization setting.

(3) The bilevel programming model is rewritten as a single-level model through the ad-
dition of a Lagrangian term derived from strong duality constraints as opposed to
simply including them as constraints or by including complementary slackness con-
straints. The structure of the resulting model can be exploited to devise an efficient
Benders decomposition that relies heavily on solving shortest path problems rather
than linear programs, thus allowing large instances to be solved in reasonable times.

(4) We present results from extensive computational experiments on both a small illus-
trative network and the larger Winnipeg network, commonly used as a benchmark
for evaluating traffic assignment models [e.g., 3, 57, 37, 38]. Experiments on the small
network allows us to assess the impact of various problem characteristics and to test
the scalability of the single-level models when solved with a state-of-the-art solver,
thus motivating the use of Benders decomposition for the larger Winnipeg network.

The remainder of the paper is structured as follows. Section 2 contains a review of the
relevant literature. Section 3 describes the problem and the bilevel programming formulation
integrating the simulation approach. Section 4 details various techniques to achieve single-
level formulations, which are then linearized in order to exploit state-of-the-art mixed-integer
linear programming (MILP) solvers. Section 5 presents the Benders decomposition method.
Section 6 focuses on our numerical experiments, while Section 6 concludes the paper and
proposes avenues for future research.

2. Literature Review

This chapter is focused on bridging the gap between the state of the art in demand
modeling – in this case route choice behavior – and network optimization for FCPs. There
are two aspects capturing the demand in any FCP formulation. First, there is what we refer
to as aggregate demand, the number of trips between each OD pair over a given period of
time, captured in an OD matrix. Second, there is how these trips are distributed over paths in
the network in response to the resource allocation decisions. We refer to this as disaggregate
demand. Most studies on FCPs are single period, however [51] consider a multi-period
problem. Aggregate demand is assumed to be fixed and given with a notable exception in
[71] where aggregate demand is stochastic. Accordingly, we focus on a single period problem
assuming deterministic aggregate demand. Our contribution focuses on integrating state of
the art disaggregate demand models. In the following we provide an overview of disaggregate
demand models in the context of FCPs. We then review the state of the art in RUM route
choice models followed by a high-level description of bilevel programming models where the
lower-level user response is given by a RUM model. Finally, we describe the simulation
approach of [56] on which we base this work.
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Disaggregate demand is incorporated into FCPs in various ways across the literature. In
the seminal works of [33] and [8], the demand is assumed to travel along the predetermined
shortest path for each OD pair. The concept of deviation, where users are willing to deviate
from the shortest path to seek out or avoid a facility, is integrated in several subsequent
works [e.g., 74, 42, 50]. This is mainly done through path set enumeration, which implies
a limitation in regards to the number of paths considered. More recently, [4] improved on
this by reworking the model proposed in [50] to dynamically find the shortest path with
an arc-based formulation. However, their model remains deterministic similarly to the path
enumeration approaches. To the best of our knowledge, there are no RUM models used to
represent the disaggregate demand in FCPs, which is the gap we address in this work.

RUM models are frequently used to analyze and to predict route choice behavior in
transportation networks. There are two key challenges in this context that have been ex-
tensively studied: (i) the definition of choice sets and (ii) modeling correlated utilities in a
computationally tractable manner. Recursive models proposed by [24], [47] (aka maximum
entropy inverse reinforcement learning) [76] address these challenges. We refer to [77] for
a comprehensive overview of related work. Based on dynamic programming, these models
predict path choices based on an arc formulation without any restrictive assumption about
the choice sets, that is, any feasible path in the network is part of the choice set. We explore
this nice property.

While RUM models have not been included in FCPs, they have been integrated in other
problems. An example is the logit network pricing detailed in [28]. The solution approach
consists of solving a linear approximation of the problem and then using a local search
method. There are three possible approximations presented in their work. The first consists
of using a deterministic path assignment. The second and third consist of replacing the non-
linear term describing the choice probability of each alternative by a constant function and
a linear function, respectively. [49] consider a facility location problem with a RUM (logit)
model to calculate choice probabilities. A heuristic based on GRASP (greedy randomized
adaptive search procedure) and tabu search is proposed. Using [49] as a starting point, [20]
reformulate the model as a bilevel program with endogenous facility service rate variables
amongst its improvements. Their solution method is a heuristic based on that of [28].

An alternate method of incorporating a RUM model, the one we use in our work, is
based on the simulation approach of [56]. They propose to integrate a sample average ap-
proximation of predictions from discrete choice models into MILP formulations. Instead
of working with the non-linear expressions representing choice probabilities, the approach
focuses on drawing random terms from the distribution of the choice model to obtain utility
values. Following a principle of utility maximization, user choices correspond to the alter-
natives having maximum utility. This approach, to our knowledge, has not yet been used in
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a network optimization context, which exhibits specific challenges compared to the setting
considered by [56].

In summary, the gap we address in this paper is the lack of RUM models in the FCP
literature. This is achieved by adapting a simulation approach to a network optimization
setting, which is also a new development. The resulting bilevel programming formulation is
presented in the following section.

3. Problem Description and Bilevel Model

In this section, we introduce the FCP that we consider in our work, along with a bilevel
programming model. In this context, the decision maker chooses where to locate different
types of resources r ∈ R on the arcs of an uncongested network G = (N,A) composed of
nodes n ∈ N and arcs a ∈ A. The resources available on each arc a ∈ A are identified with
the indicator parameter σar that takes value 1, if resource r ∈ R can be installed on arc a ∈ A,
and value 0, otherwise. Note that we might have ∑r∈R σar = 0, in which case arc a ∈ A

cannot be used to locate any resources. The objective is to maximize the overall captured
traffic flow. Associated with each arc a ∈ A and each resource r ∈ R is an installation cost
car > 0 and a proportion of the flow the resource can capture qar ∈ (0,1]. The decisions
may be subject to different constraints, such as, not exceeding an overall budget b > 0, and
imposing a maximum or a minimum number of resources to install on subsets of the arcs. For
the sake of simplicity, we only impose the constraint that a single resource can be installed
on each arc. The resource location decision variables yar are equal to 1, if a resource of type
r ∈ R is installed on arc a ∈ A, and to 0, otherwise. We then assume the constraints on the
resource location variables to be captured by set

Y =
{
y ∈ {0,1}|A|×|R| |

∑
a∈A

∑
r∈R

σarcaryar ≤ b;
∑
r∈R

σaryar ≤ 1, a ∈ A
}
.

Accordingly, in the remainder of the paper, we write these constraints in the compact form
y ∈ Y .

Users observe the location of the resources and make route choices between different
OD pairs k ∈ K according to their preferences. For example, they can be attracted to the
resources (henceforth cooperative users), indifferent to them, or they might want to avoid
them (henceforth evasive users). They can also have different preferences regarding other
characteristics of the network, such as distance, presence of traffic lights, specific road types
and speed limits.

As the objectives of the decision maker and the users are not necessarily aligned, the
problem can be formulated as a bilevel program where the leader is the decision maker and
the followers are the users of the system. We divide the users into categories l ∈ L depending
on their preferences and type of behavior. Also, we assume that the aggregate demand is
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fixed and known, meaning that we know the number of users dkl of each category l ∈ L

travelling between the origin O(k) and the destination D(k) of each k ∈ K.
Before presenting the formulation, we turn our attention to the model of user behavior.

In order to predict the route choice behavior of the users in each category, we rely on
additive RUM models. These models are based on the assumption that each user category
l ∈ L associates a disutility u′lp(y,z,ε′) with each alternative p ∈ P and selects one of them
(note that we describe the model in terms of minimizing a disutility instead of maximizing a
utility, the latter being standard in the demand modeling literature). For the sake of notation
brevity, we omit the model parameters from this expression. The disutility is assumed to
depend on the resource location decision variables y, but also on the attributes of the network
and of the users, captured in the exogeneous variables z, and on a random variable ε. For
the sake of simplicity, we start with a path-based model, so p in this context is a path and P
is the set of all paths in the network for all OD pairs, i.e., P = ∪k∈KP k, where P k is the set
of all paths for OD pair k ∈ K (in the remainder, we assume that all paths are elementary).
In order to define a model for the choice of a path, we make the following assumption on the
associated disutility:
Assumption 1. The disutility of path p ∈ P for user category l ∈ L is

u′lp(y,z,ε′) = g′lp(y; β′l) + h′lp(z;α′l) + ε′lp, (3.1)

where
• g′lp(y; β′l) is a function that depends on the resource location decisions y ∈ Y and β′l
is a vector of preference parameters;
• h′lp(z;α′l) is a function of a vector z of attributes of the network and of the users (we
assume z takes its values in some set Z), and α′l is a vector of preference parameters;
• ε′lp is a random variable that determines the type of RUM model through its distribu-
tional assumption.

The probability that a user in category l ∈ L chooses alternative p ∈ P k for OD pair
k ∈ K is equal to the probability that its disutility is less than the disutility of any other path:
P(u′lp(y,z,ε′) < u′lp′(y,z,ε′), p′ 6= p, p′,p ∈ P k). Depending on the assumption on the random
variables, this probability may have a closed form. However, even for the simplest RUM
model (logit) – based on the assumption that ε′lp are i.i.d. extreme value type I distributed
– this probability is non linear in y, even if g′lp(y; β′l) is linear.

Instead of probabilities, we write our formulation in the space of disutilities. More pre-
cisely, a path-based model of our FCP makes use of path choice variables x′klp, assuming value
1, if path p ∈ P k is selected by user category l ∈ L to travel from O(k) to D(k), and value 0,
otherwise. For each OD pair k ∈ K, set X ′kl captures the constraint that each user category
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l ∈ L selects a single path:

X ′kl =

x′kl ∈ {0,1}|Pk| | ∑
p∈Pk

x′kpl = 1

 .
The bilevel programming model of our FCP can then be written as follows:

max
∑
a∈A

∑
r∈R

σarqaryar

∑
k∈K

∑
p∈Pk

∑
l∈L

δpad
k
l x
′k
lp

 (3.2)

y ∈ Y (3.3)

x′kl ∈ arg min
x′k
l
∈X′k

l

{Eε′ [u′l(y,z,ε′)x′kl ]}, k ∈ K, l ∈ L, (3.4)

where δpa is equal to 1, if arc a ∈ A belongs to path p ∈ P , and to 0, otherwise. The
objective of the leader, (3.2), is to maximize the flow capture subject to the resource location
constraints (3.3) and to the constraints that each user category l ∈ L chooses the path for
each OD pair k ∈ K that minimizes its expected disutility, (3.4).

One of the main issues with this formulation is related to the path sets P k, k ∈ K, as
they cannot be enumerated even for medium size networks. We therefore propose to write
the formulation in arc flows, hence removing the dependence on paths. The reformulation
relies on two key elements: properties of the recursive route choice models [24, 47] and a
simulation approach (in the space of disutilities) to evaluate the expected arc flows, (3.4),
through sample average approximation.

As opposed to path-based route choice models that require P as support for the proba-
bility distribution, recursive models decompose the choice of path in a sequential arc choice
process (Markov decision process). They are based on the full network and path choice
probabilities are computed by multiplying the probability of each arc in the path. This is
possible assuming that path utilities are arc additive:
Assumption 2. The disutility of path p ∈ P for user category l ∈ L can be expressed per
arc as

u′lp(y,z,ε′) =
∑
a∈A

δpaula(y,z,ε) (3.5)

where ula(y,z,ε) = gla(y; βl) + hla(z;αl) + εla with similar interpretations as in Assumption
1, i.e., gla(y; βl) is a function of y ∈ Y and βl is a vector of preference parameters; hla(z;αl)
is a function of z ∈ Z and αl is a vector of preference parameters; εla is a random variable
that determines the type of RUM model.

We can now propose an arc-based formulation of our FCP, where arc flow variables xkla
assume value 1, if arc a ∈ A is selected by user category l ∈ L as part of its chosen path for
OD pair k ∈ K:

max
∑
a∈A

∑
r∈R

σarqaryar

∑
k∈K

∑
l∈L

dkl x
k
la

 (3.6)
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y ∈ Y (3.7)

xkl ∈ arg min
xk
l
∈Xk

l

{Eε[ul(y,z,ε)xkl ]}, k ∈ K, l ∈ L, (3.8)

where Xk
l is the set of feasible arc flows that define all elementary paths for each k ∈ K and

each l ∈ L, i.e.,

Xk
l =

xkl ∈ {0,1}|A| | ∑
a∈F (n)

xkla −
∑

a∈B(n)
xkla = ekn, n ∈ N ;

∑
a∈B(n)

xkla ≤ 1, n ∈ N

 ,
where, for each node n ∈ N , we use the notation F (n) = {a ∈ A|a = (n,m)} B(n) = {a ∈
A|a = (m,n)}, and

ekn =


1, if n = O(k),
−1, if n = D(k),

0, otherwise.
The arc-based model, (3.6)-(3.8), is equivalent to the path-based one, (3.2)-(3.4). Indeed,

on the one hand, any path flows can be written as arc flows that capture the same disutilities,
thanks to Assumption 2. On the other hand, any arc flows that satisfy constraints (3.8)
correspond to path flows that minimize the same expected disutilities, due to Assumption 2.

Before presenting the formulation obtained through sample average approximation, we
explicitly define the expression for the disutility of an arc. We begin with the following
assumption on gla(y; βl):
Assumption 3. For any arc a ∈ A and any user category l ∈ L, the function gla(y; βl) is
linear and can be written as follows:

gla(y; βl) =
∑
r∈R

βlarσaryar. (3.9)

Typically, hla(z;αl) is also linear, although this is not required for what follows, unlike
Assumption 3.

Assumption 3 provides us with a simple characterization of user behavior. With respect
to the installation of a resource of type r ∈ R on arc a ∈ A such that σar = 1, a user category
l ∈ L is: cooperative, if βlar < 0; indifferent, if βlar = 0; evasive, if βlar > 0.

Although this is not required in most of our developments, it is often convenient to
assume that all users in a given category are either cooperative, or indifferent, or evasive
(homogeneity assumption), where users in category l ∈ L are:

• cooperative, if βlar ≤ 0 for each a ∈ A and r ∈ R such that σar = 1, and∑
a∈A

∑
r∈R βlarσar 6= 0;

• indifferent, if βlar = 0 for each a ∈ A and r ∈ R such that σar = 1;
• evasive, if βlar ≥ 0 for each a ∈ A and r ∈ R such that σar = 1, and∑

a∈A
∑
r∈R βlarσar 6= 0.
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In some cases (see Section 5.4), we make the strong homogeneity assumption, which states
that all users in a given category are either strongly cooperative or strongly evasive, where
users in category l ∈ L are:

• strongly cooperative, if βlar < 0 for each a ∈ A and r ∈ R such that σar = 1;
• strongly evasive, if βlar > 0 for each a ∈ A and r ∈ R such that σar = 1.

While the expected minimum disutility (3.8) is the solution to stochastic shortest path
problems, computing a sample average approximation through simulation corresponds to
solving deterministic shortest path problems over realizations of the arc disutilities. We
explore such shortest path computations by using the simulation approach of [56], discussed
in Section 2. We call one realization of ε a scenario s ∈ S and denote the corresponding
realization of arc disutilities usla(y,z,εs). By drawing a sufficiently large number of scenarios
|S|, assigning traffic to the resulting shortest paths xksl , s ∈ S, k ∈ K, l ∈ L, constitutes a
sample average approximation of the stochastic flow distribution, i.e.,

xkl = 1
|S|

∑
s∈S

xksl , k ∈ K, l ∈ L.

Note that, due to Assumption 3, the arc disutility for any scenario s ∈ S can be written
as:

usla(y, ψs) =
∑
r∈R

βlarσaryar + ψsla, (3.10)

where ψsla = hla(z;αl) + εsla. For the sake of brevity, only this definition is inserted in
subsequent mathematical developments when necessary.

We can now write a deterministic arc-based model that serves as a basis for subsequent
developments:

Z = max
∑
a∈A

∑
r∈R

σarqaryar

 1
|S|

∑
s∈S

∑
k∈K

∑
l∈L

dkl x
ks
la

 (3.11)

y ∈ Y (3.12)

xksl ∈ arg min
xks
l
∈Xks

l

{usl (y,ψs)xksl }, s ∈ S, k ∈ K,l ∈ L, (3.13)

where Xks
l is the set of feasible arc flows for s ∈ S, k ∈ K and l ∈ L, i.e.,

Xks
l =

xksl ∈ {0,1}|A| | ∑
a∈F (n)

xksla −
∑

a∈B(n)
xksla = ekn, n ∈ N ;

∑
a∈B(n)

xksla ≤ 1, n ∈ N

 .
This deterministic bilevel programming formulation has several interesting properties if the
disutilities satisfy the following assumption.
Assumption 4. For each arc a ∈ A, user category l ∈ L and scenario s ∈ S, there exist
constants µ and ∆ such that

µ ≥ usla(y,ψs) ≥ ∆ > 0, y ∈ Y. (3.14)
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The assumption usla(y,ψs) > 0 easily holds in practice if the deterministic part of the arc
disutility gla(y; βl)+hla(z;αl) is large enough (typically, the term hla(z;αl) includes the travel
time on arc a ∈ A). The constants µ and ∆ are used in our subsequent developments (see
Section 4). Under Assumption 4, the disutilities are always positive and the set of feasible
arc flows Xks

l , for s ∈ S, k ∈ K and l ∈ L, can now be written as

Xks
l =

xksl ∈ {0,1}|A| | ∑
a∈F (n)

xksla −
∑

a∈B(n)
xksla = ekn, n ∈ N

 .
Shifting our attention back to (3.11)-(3.13), we see that for fixed y ∈ Y , the follower

problem decomposes by scenario, user category and OD pair, and reduces to a shortest
path problem, which can be solved by Dijkstra’s algorithm, thanks to Assumption 4. Our
Benders decomposition method, presented in Section 5, exploits this property. In addition,
due to Assumption 3, the resource location and arc flow variables are only linked through
bilinear terms, in the objectives of both the leader and the follower. We also make use of
this property in our Benders decomposition method. Finally, for fixed y ∈ Y , the follower
problem reduces to a linear program, since the incidence matrix of a directed graph is totally
unimodular. This implies that we can relax the integrality constraints on the flow variables
without losing optimality. This property is exploited to derive single-level reformulations that
constitute essential steps towards the development of our Benders decomposition method.
These reformulations are presented next.

4. Single-Level Reformulations

After relaxing the integrality constraints on the arc flow variables, we can write the
follower problem for fixed y ∈ Y and for scenario s ∈ S, OD pair k ∈ K and user category
l ∈ L as a linear program:

min
∑
a∈A

usla(y,ψs)xksla (4.1)

∑
a∈F (n)

xksla −
∑

a∈B(n)
xksla =


1, if n = O(k),
−1, if n = D(k), n ∈ N,

0, otherwise,
(4.2)

xksla ≥ 0, a ∈ A. (4.3)

Denoting as πksln the dual variables associated to constraints (4.2), the dual of this linear
program can be written as follows:

max πkslD(k) (4.4)

πkslm − πksln ≤ usla(y,ψs), a = (n,m) ∈ A, (4.5)

πkslO(k) = 0, (4.6)
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where we use the fact that (4.2) contains one redundant equation, which we associate to the
origin O(k). We can then replace the objective of the follower problem, (4.1), by the dual
feasibility constraints, (4.5)-(4.6), and by optimality conditions, which can be the comple-
mentary slackness conditions

xksla
(
usla(y,ψs)− (πkslm − πksln )

)
= 0, a = (n,m) ∈ A, (4.7)

or the strong duality constraint

πkslD(k) =
∑
a∈A

usla(y,ψs)xksla . (4.8)

We can now write a single-level non-linear reformulation of (3.11)-(3.13) that combines both
(4.7) and (4.8) (for the sake of completeness, we write the constraints in extensive form):

Z = max 1
|S|

∑
s∈S

∑
a∈A

∑
r∈R

∑
k∈K

∑
l∈L

(σarqardkl )yarxksla (4.9)

∑
a∈A

∑
r∈R

σarcaryar ≤ b, (4.10)
∑
r∈R

σaryar ≤ 1, a ∈ A, (4.11)

yar ∈ {0,1}, a ∈ A, r ∈ R, (4.12)∑
a∈F (n)

xksla −
∑

a∈B(n)
xksla = ekn, n ∈ N, s ∈ S, k ∈ K, l ∈ L, (4.13)

xksla ≥ 0, a ∈ A, s ∈ S, k ∈ K, l ∈ L, (4.14)

πkslm − πksln ≤ usla(y,ψs), a = (n,m) ∈ A, s ∈ S, k ∈ K, l ∈ L, (4.15)

πkslO(k) = 0, s ∈ S, k ∈ K, l ∈ L, (4.16)

xksla
(
usla(y,ψs)− (πkslm − πksln )

)
= 0, a = (n,m) ∈ A, s ∈ S, k ∈ K, l ∈ L, (4.17)

πkslD(k) =
∑
a∈A

usla(y,ψs)xksla , s ∈ S, k ∈ K, l ∈ L. (4.18)

4.1. Lagrangian Reformulation

Before linearizing the single-level formulation, we take a look at another method of guar-
anteeing optimality of the follower problem, based on penalizing the violation of the strong
duality constraints (4.18). The key element here is to use Lagrange multipliers set to large
enough finite values to guarantee the optimality of the follower problem. This approach is
essential in order to derive our Benders decomposition method presented in Section 5.

We start by adding the strong duality constraints (4.18) as a Lagrangian term to the
objective (4.9) using a vector of Lagrange multipliers λ = (λksl )s∈S,k∈K,l∈L. We thus derive

50



the following Lagrangian-based single-level non-linear model:

Z(λ) = max 1
|S|

∑
s∈S

∑
a∈A

∑
r∈R

∑
k∈K

∑
l∈L

(σarqardkl )yarxksla

+
∑
s∈S

∑
k∈K

∑
l∈L

λksl

(
πkslD(k) −

∑
a∈A

usla(y,ψs)xksla
) (4.19)

subject to (4.10)-(4.18).
Proposition 1. The Lagrangian-based single-level non-linear model satisfies the following
properties:

(1) Removing either (4.17) or (4.18) yields a reformulation: Z(λ) = Z for any λ.
(2) Removing (4.17) and (4.18) yields a relaxation: Z(λ) ≥ Z for any λ.
(3) Removing (4.17) and (4.18), and setting λ to large enough finite values yields a

reformulation: Z(λ) = Z for any λ such that

λksl >
dkl
∑
a∈A maxr∈R{σarqar}

|S|∆ , s ∈ S, k ∈ K, l ∈ L.

Proof. Since 1 and 2 are trivial, we only show 3. Let (y,x, π) be an optimal solution of value
Z to (4.9)-(4.18). Assume that we remove both (4.17) and (4.18) from the Lagrangian-based
single-level non-linear model. Then, if we fix y = y, the resulting subproblem decomposes
by scenario s ∈ S, by OD pair k ∈ K and by user category l ∈ L, and further decomposes
into a subproblem in x variables only and a subproblem in π variables only. Thus, for s ∈ S,
k ∈ K and l ∈ L, the subproblem in x variables is

max
∑
a∈A

{(
1
|S|

∑
r∈R

dkl σarqaryar

)
− λksl usla(y,ψs)

}
xksla (4.20)

subject to (4.2)-(4.3), while the subproblem in π variables is

max λksl πkslD(k) (4.21)

subject to (4.5)-(4.6). This last subproblem is the dual of a shortest path problem with arc
lengths equal to usla(y,ψs). We denote as π̃ksl the solution to this problem. Concerning the
subproblem in x variables, under the assumption on the values of λ, it holds that

λksl >
dkl
∑
a′∈A maxr∈R{σa′rqa′r}

|S|∆

≥ dkl
∑
a′∈A

∑
r∈R σa′rqa′rya′r
|S|∆ ,

≥ dkl
∑
a′∈A

∑
r∈R σa′rqa′rya′r

|S|usla(y,ψs)
, a ∈ A, (by Assumption 4)
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which implies

tksla ≡ λksl u
s
la(y,ψs)−

1
|S|

∑
r∈R

dkl σarqaryar, a ∈ A,

≥ λksl u
s
la(y,ψs)−

1
|S|

∑
a′∈A

∑
r∈R

dkl σa′rqa′rya′r, a ∈ A.

> 0

Thus, the subproblem in x variables can be solved as a shortest path problem with arc
lengths tksla > 0. In addition, every single term λksl u

s
la(y,ψs) is strictly larger than the global

sum ∑
a′∈A

∑
r∈R

1
|S|d

k
l σa′rqa′rya′r. This implies that the the solution x̃ksl to the shortest path

problem with arc lengths tksla is also optimal for the shortest path problem with arc lengths
usla(y,ψs) (ties being broken with the second term 1

|S|
∑
r∈R d

k
l σarqaryar, for any a ∈ A), which

implies that
π̃kslD(k) =

∑
a∈A

usla(y,ψs)x̃ksla .

Thus, we conclude that Z(λ) = Z and (y,x̃,π̃) is optimal for (4.9)-(4.18). �

The approach that consists of penalizing the strong duality constraint is well-known in the
literature on bilevel programming (see, e.g., [70, 43, 15, 11, 12]). To the best of our knowledge,
such a penalty approach is not related to Lagrangian relaxation, although this interpretation
is natural. Accordingly, the penalty-based algorithms are iterative heuristic methods that
do not make use of Lagrangian-based methods. We also do not explore this line of research,
but we exploit the main result of Proposition 1 to develop a Benders decomposition method
based on the Lagrangian reformulation defined by the objective (4.19) subject to constraints
(4.10)-(4.16), i.e., constraints (4.17) and (4.18) are both removed and replaced with the
Lagrangian term with sufficiently large values of λ.

4.2. Linear Reformulations

In order to derive linear reformulations, we have to linearize the bilinear terms that
appear in (4.17), (4.18) and (4.19). Note that, due to Assumption 3, the only non-linear term
contained in the product usla(y,ψs)xksla is σaryarxksla . These bilinear terms can be linearized by
introducing new variables vkslar and the following constraints:

vkslar ≤ xksla , a ∈ A, r ∈ R, s ∈ S, k ∈ K, l ∈ L, (4.22)

vkslar ≤ σaryar, a ∈ A, r ∈ R, s ∈ S, k ∈ K, l ∈ L, (4.23)

vkslar ≥ xksla − (1− σaryar), a ∈ A, r ∈ R, s ∈ S, k ∈ K, l ∈ L, (4.24)

vkslar ≥ 0, a ∈ A, r ∈ R, s ∈ S, k ∈ K, l ∈ L. (4.25)
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We can then rewrite the objective (4.19) that includes the Lagrangian term (L) as

Z(λ) = max 1
|S|

∑
s∈S

∑
a∈A

∑
r∈R

∑
k∈K

∑
l∈L

(qardkl )vkslar

+
∑
s∈S

∑
k∈K

∑
l∈L

λksl

(
πkslD(k) −

∑
a∈A

{∑
r∈R

βlarv
ks
lar + ψslax

ks
la

})
.

(4.26)

Moreover, we rewrite (4.18), the strong duality constraint (SD), as

πkslD(k) =
∑
a∈A

{∑
r∈R

βlarv
ks
lar + ψslax

ks
la

}
, s ∈ S, k ∈ K, l ∈ L. (4.27)

The complementary slackness conditions (4.17) are also not linear and contains, in addi-
tion to the terms σaryarxksla , the products xkslaπksln . Instead of introducing additional variables
to represent these products, we exploit the fact that the x variables are, by essence, binary
variables and we rewrite the complementary slackness conditions (CS) as

usla(y,ψs)− πkslm + πksln ≤M(1− xksla ), a = (n,m) ∈ A, s ∈ S, k ∈ K, l ∈ L, (4.28)

xksla ∈ {0,1}, a ∈ A, s ∈ S, k ∈ K, l ∈ L, (4.29)

where M is an upper bound on the length of any path in the network (due to Assumption
4, we can set M = |A|µ).

We thus obtain a MILP reformulation of our Lagrangian-based single-level non-linear
model that has the objective (4.26) subject to constraints (4.10)-(4.16), (2.6)-(4.25) and
(4.27)-(4.29). This model combines the three approaches that guarantee optimality of the
follower problem: (CS), (SD) and (L), the latter with large enough values of the Lagrange
multipliers λ. It is clear that only one of these approaches is sufficient to obtain a reformu-
lation. We therefore consider three MILP models, defined by which of these three elements
are included or not. We also consider two additional models that combine one of the two
sets of constraints, (CS) or (SD), with the Lagrangian term (L) using large values of λ, in
order to measure the impact of the latter on solving the different models. The five resulting
MILP models - MCS , MCS−L, MSD, MSD−L and ML - are shown in Table 3.

Model CS SD L
MCS X

MCS−L X X
MSD X

MSD−L X X
ML X

Table 3. Definition of the different MILP reformulations

These models can be solved with a state-of-the-art MILP solver. Before presenting com-
putational results that compare the performance of such a MILP solver on the different
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models, we develop a Benders decomposition method that exploits the structure of model
ML to solve large-scale instances of our FCP.

5. Benders Decomposition

In this section, we present a Benders decomposition method designed to solve large-scale
instances. The method is based on model ML as a starting point because of its particular
structure. Since this model does not have neither complementary slackness nor strong duality
constraints, it allows for a decomposition that exploits shortest path problem computations
separable by scenario and user category.

5.1. Benders Reformulation

Following the partitioning approach of Benders decomposition, we choose the binary
variables y to be part of the master problem, while the other, continuous, variables, v, x and
π, are handled in the subproblem. Given y ∈ Y , the Benders subproblem decomposes by
scenario s ∈ S, by OD pair k ∈ K and by user category l ∈ L, and further decomposes into a
subproblem in variables v and x, and a subproblem in variables π. The latter is exactly the
dual of the follower problem (4.4)-(4.6), which is always feasible, as its dual is the bounded
shortest path problem (4.1)-(4.3). Hence, only Benders optimality cuts are needed. They are
expressed in terms of the extreme points of the polyhedron defined by the flow conservation
equations (4.2) and the nonnegativity constraints (4.3), which correspond to the set of paths
P k between O(k) and D(k). If we denote as Πks

l the variable that approximates the value of
the subproblem (4.4)-(4.6), the corresponding Benders optimality cuts are:

Πks
l ≤

∑
a∈A

(∑
r∈R

βlarσaryar + ψsla

)
δpa, s ∈ S, k ∈ K, l ∈ L, p ∈ P k. (5.1)

Concerning the subproblem in variables v and x, we first set

λksl = ω
dkl
|S|

, ω >

∑
a∈A maxr∈R{σarqar}

∆
in order to derive a convenient expression for the Benders optimality cuts. The subproblem
in variables v and x can then be written as:

max
∑
a∈A

{(∑
r∈R

(qar − ωβlar)vkslar
)
− ωψslaxksla

}
(5.2)

subject to (4.2), (4.3) and

vkslar ≤ xksla , a ∈ A, r ∈ R, (γkslar) (5.3)

vkslar ≤ σaryar, a ∈ A, r ∈ R, (γykslar ) (5.4)

vkslar ≥ xksla − (1− σaryar), a ∈ A, r ∈ R, (γ(1−y)ks
lar ) (5.5)
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vkslar ≥ 0, a ∈ A, r ∈ R. (5.6)

Note that this subproblem is always feasible, so only Benders optimality cuts are needed.
Using the dual variables shown in parentheses in constraints (5.3)-(5.5), as well as the

dual variables θksln associated with the flow conservation equations (4.2), we write the dual of
this subproblem to find the expression of the associated Benders optimality cuts:

min −θkslD(k) +
∑
a∈A

∑
r∈R

(
γykslar σaryar + γ

(1−y)ks
lar (1− σaryar)

)
(5.7)

θksln − θkslm −
∑
r∈R

(γkslar − γ
(1−y)ks
lar ) ≥ −ωψsla, a = (n,m) ∈ A, (5.8)

γkslar + γykslar − γ
(1−y)ks
lar ≥ qar − ωβlar, a ∈ A, r ∈ R, (5.9)

θkO(k)ls = 0, (5.10)

γkslar, γ
yks
lar , γ

(1−y)ks
lar ≥ 0, a ∈ A, r ∈ R. (5.11)

If we denote as wksl the variable that approximates the value of the subproblem (5.10)-(5.14),
we derive the following Benders optimality cuts:

wksl ≤ −θkslD(k) +
∑
a∈A

∑
r∈R

(
γykslar σaryar + γ

(1−y)ks
lar (1− σaryar),

)
(5.12)

s ∈ S, k ∈ K, l ∈ L, (θ, γ, γy, γ(1−y)) ∈ ext(Dks
l ),

where ext(Dks
l ) is the set of extreme points of the polyhedron Dks

l defined by (5.11)-(5.14).
The Benders reformulation MBD can then be written as:

max 1
|S|

∑
s∈S

∑
k∈K

∑
l∈L

dkl
(
wksl + ωΠks

l

)
(5.13)

subject to (4.10)-(4.12), (5.1), (5.12) and

Z l
0 ≤

1
|S|

∑
s∈S

∑
k∈K

∑
l∈L

dkl
(
wksl + ωΠks

l

)
≤ Zu

0 , (5.14)

where Z l
0 and Zu

0 are, respectively, lower and upper bounds on the optimal objective value
that are obtained by performing the initial heuristic method described in Section 5.3 and by
solving the initial relaxation presented in Section 5.4. Before we look into the computation
of these initial bounds, we first study how to generate efficiently the Benders optimality cuts
(5.1) and (5.12).

5.2. Generation of Benders Cuts

As Benders decomposition is applied first to the linear programming (LP) relaxation
(following the pioneering work of [53]), we show how to generate Benders cuts for y ∈ Y ,
where

Y =
{
y ∈ [0,1]|A|×|R| |

∑
a∈A

∑
r∈R

σarcaryar ≤ b;
∑
r∈R

σaryar ≤ 1, a ∈ A
}
,
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specializing them subsequently for y ∈ Y . In particular, we show that the Benders cuts can
be generated efficiently by solving shortest path problems, and by adding a “small" additional
effort when y is fractional, and no additional effort at all when y is integral. Given y ∈ Y ,
the Benders subproblem decomposes by s ∈ S, k ∈ K and l ∈ L. We first look at the
solution of the dual of the subproblem in variables v and x, i.e., (5.10)-(5.14). To simplify
the notation in what follows, we define ξlar ≡ qar − ωβlar, l ∈ L, a ∈ A, r ∈ R.
Proposition 2. For s ∈ S, k ∈ K and l ∈ L, let (θ, γ, γy, γ(1−y)) be defined as

γkslar = max{0, ξlar}σaryar, a ∈ A, r ∈ R, (5.15)

γykslar = max{0, ξlar}(1− σaryar), a ∈ A, r ∈ R, (5.16)

γ
(1−y)ks
lar = max{0,− ξlar}σaryar, a ∈ A, r ∈ R, (5.17)

− θksl = (−θksln)n∈N solves the linear program: (5.18)

max πkslD(k)

πkslm − πksln ≤
(
ωusla(y,ψs)−

∑
r∈R

qarσaryar

)
, a = (n,m) ∈ A,

πkslO(k) = 0.

(1) For any y ∈ Y , (θ, γ, γy, γ(1−y)) is feasible for the subproblem (5.10)-(5.14).
(2) For any y ∈ Y , (θ, γ, γy, γ(1−y)) is optimal for the subproblem (5.10)-(5.14) when

y = y.

Proof. For any y ∈ Y , we note the following identity, which follows directly from (5.15)
and (5.17):

γkslar − γ
(1−y)ks
lar = ξlarσaryar. (5.19)

We first prove that the solution given by (5.15)-(5.18) is feasible for the subproblem
(5.10)-(5.14). It follows from (5.18) that θksl verifies, for a = (n,m) ∈ A:

θ
ks

ln − θ
ks

lm ≥
∑
r∈R

(qar − ωβlar)σaryar − ωψsla,

=
∑
r∈R

ξlarσaryar − ωψsla,

=
∑
r∈R

(γkslar − γ
(1−y)ks
lar )− ωψsla,

which immediately implies (5.11). To verify (5.12), let a ∈ A and r ∈ R, and consider the
two cases:
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(1) ξlar > 0, then

γkslar + γykslar − γ
(1−y)ks
lar = (γkslar − γ

(1−y)ks
lar ) + γykslar

= ξlarσaryar + ξlar(1− σaryar)

= ξlar

= qar − ωβlar.

(2) ξlar ≤ 0, then

γkslar + γykslar − γ
(1−y)ks
lar = (γkslar − γ

(1−y)ks
lar ) + γykslar

= ξlarσaryar + 0

= (qar − ωβlar)σaryar
≥ qar − ωβlar.

Finally, constraints (5.13) are (5.14) are trivially verified.
Now, consider y ∈ Y and let us show that the solution given by (5.15)-(5.19) is optimal

for the subproblem (5.10)-(5.14) when y = y. The complementary slackness conditions can
be written as:

γkslar
(
xksla − vkslar

)
= 0, a ∈ A, r ∈ R, (5.20)

γykslar

(
σaryar − vkslar

)
= 0, a ∈ A, r ∈ R, (5.21)

γ
(1−y)k
lar

(
vkslar − xksla + (1− σaryar)

)
= 0, a ∈ A, r ∈ R, (5.22)

xksla

(
θksln − θkslm −

∑
r∈R

(γkslar − γ
(1−y)ks
lar ) + ωψsla

)
= 0, a = (n,m) ∈ A, (5.23)

vkslar
(
γkslar + γykslar − γ

(1−y)ks
lar − (qar − ωβlar)

)
= 0, a ∈ A, r ∈ R. (5.24)

Let xksl = (xksla )a∈A denote the solution of the shortest path problem between O(k) and D(k)
with respect to arc lengths (ωusla(y,ψs)−

∑
r∈R qarσaryar). By (5.18), −θksl solves the dual of

this shortest path problem. Hence, the following holds for a = (n,m) ∈ A:

0 = xksla

(
θ
ks

ln − θ
ks

lm +
(
ωusla(y,ψs)−

∑
r∈R

qarσaryar

))

= xksla

(
θ
ks

ln − θ
ks

lm −
∑
r∈R

(qar − ωβlar)σaryar + ωψsla

)

= xksla

(
θ
ks

ln − θ
ks

lm −
∑
r∈R

ξlarσaryar + ωψsla

)

= xksla

(
θ
ks

ln − θ
ks

lm −
∑
r∈R

(γkslar − γ
(1−y)ks
lar ) + ωψsla

)
,
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and (5.23) is verified. To show that the other complementary slackness conditions are satis-
fied, we consider two cases, for any a ∈ A and r ∈ R:

(1) σaryar = 1, which implies that γykslar = 0, so (5.21) is verified. In addition, we must
have vkslar = xksla to satisfy (5.3)-(5.6), so (5.20) and (5.22) are verified. Finally,
γkslar + γykslar − γ

(1−y)ks
lar = qar − ωβlar and (5.24) is verified.

(2) σaryar = 0, which implies that γkslar = γ
(1−y)ks
lar = 0, so (5.20) and (5.22) are verified.

In addition, we must have vkslar = 0 to satisfy (5.3)-(5.6), so (5.21) and (5.24) are
verified.

�

It is interesting to note that, in the case where y ∈ Y , i.e., y is integral, and we then
use the optimal dual solution (θ, γ, γy, γ(1−y)), the Benders optimality cuts (5.12) can be
simplified using the following identities:∑

a∈A

∑
r∈R

γykslar σaryar =
∑
a∈A

∑
r∈R

max{0,ξlar}(1− σaryar)σaryar

=
∑

a∈A,r∈R|ξlar>0
ξlar(1− σaryar)σaryar

and ∑
a∈A

∑
r∈R

γ
(1−y)ks
lar (1− σaryar) =

∑
a∈A

∑
r∈R

max{0,− ξlar}σaryar(1− σaryar)

=
∑

a∈A,r∈R|ξlar<0
−ξlarσaryar(1− σaryar).

Thus, when y is integral, any of the Benders optimality cuts (5.12) can be written as:

wksl ≤ −θ
ks

lD(k)+
∑

a∈A,r∈R|ξlar>0
ξlar(1− σaryar)σaryar

+
∑

a∈A,r∈R|ξlar<0
−ξlarσaryar(1− σaryar).

We can exploit Assumption 3 to further simplify the expression of the Benders optimality
cuts (5.12).

Let us assume that category l ∈ L contains only cooperative users. We then have βlar ≤ 0,
which implies ξlar > 0, for any a ∈ A and r ∈ R. The corresponding cut reduces to

wksl ≤ −θ
ks

lD(k) +
∑

a∈A,r∈R|ξlar>0
ξlar(1− σaryar)σaryar,

or, equivalently, to

wksl ≤ −θ
ks

lD(k) +
∑

a∈A,r∈R|ξlar>0,σaryar=0
ξlarσaryar.
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This cut has a simple interpretation: if the current approximation wksl of the value of the
subproblem (5.10)-(5.14) does not correspond with the actual shortest path length −θkslD(k)

when the installed resources are given by y, i.e., wksl > −θkslD(k), then the cut is activated.
Moreover, in this case, the cut provides an incentive to install additional resources that could
decrease the disutility of some of the users (and, at the same time, increase the captured
flow), but are currently not used, i.e., resources r ∈ R on arcs a ∈ A such that σaryar = 0.

In a similar way, if category l ∈ L contains only strongly evasive users, we then have
βlar > 0 for any arc a ∈ A and resource type r ∈ R. Given that ω is typically large, we may
assume that βlar > 1/ω, which implies that ξlar < 0, for any a ∈ A and r ∈ R. The Benders
optimality cut then simplifies to

wksl ≤ −θ
ks

lD(k) +
∑

a∈A,r∈R|ξlar<0
−ξlarσaryar(1− σaryar),

or, equivalently, to

wksl ≤ −θ
ks

lD(k) +
∑

a∈A,r∈R|ξlar<0,σaryar=1
−ξlar(1− σaryar).

In this case, the cut provides an incentive to close resources r ∈ R that are currently installed
on some arcs a ∈ A , i.e., σaryar = 1, but could be closed to decrease the disutility of some
of the users.

Proposition 2 is used to generate Benders cuts. Given y ∈ Y , shortest path problems
with respect to arc lengths (ωusla(y,ψs)−

∑
r∈R qarσaryar) are solved for each scenario s ∈ S

and each user category l ∈ L. At most |N | applications of Dijkstra’s algorithm are needed
to identify the shortest paths for each OD pair k ∈ K. Note that these paths are also the
shortest ones with respect to arc lengths usla(y,ψs), so we can use these paths to generate
the Benders optimality cuts (5.1) associated with the subproblem in variables π. The other
Benders optimality cuts, (5.12), are generated by using the result of Proposition 2. If y ∈
Y , the cuts are generated based on the solution (θ, γ, γy, γ(1−y)). If y ∈ Y , the solution
(θ, γ, γy, γ(1−y)) is given as input to the linear program (5.10)-(5.14), which is then solved to
derive the corresponding Benders cuts (5.12).

5.3. Initial Heuristic

We use a heuristic to provide initial cuts to our Benders reformulation, as well as to find
an initial solution of value Z l

0 . At every iteration of the heuristic, we solve the 0-1 LP model

max
y∈Y

∑
a∈A

∑
r∈R

faqarσaryar (5.25)

where fa is an estimate of the traffic flow using arc a. This estimate combines the traffic flows
for every user category and every OD pair. Given an optimal solution y ∈ Y , the follower
problem (3.13) for y = y is solved with Dijkstra’s algorithm, thus identifying a feasible
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solution (x,y) to our FCP and a lower bound Z l. At the next iteration, fa is updated as
follows:

fa = 1
|S|

∑
s∈S

∑
k∈K

∑
l∈L

dkl x
ks
al , a ∈ A. (5.26)

This procedure is repeated until the same lower bound is found for two consecutive iterations
or until a maximum number of iterations is reached.

We perform this iterative procedure five times by changing the initial value of fa, which
is set to fa = η

∑
k∈K

∑
l∈L d

k
l , where η ∈ {0.2, 0.4, 0.6, 0.8, 1}. The best feasible solution

found, along with its value Z l
0, is then given as input to the Benders decomposition method.

To generate initial Benders cuts, we use as candidate solutions, each optimal solution y ∈ Y
obtained when solving (5.25) at every iteration of the heuristic.

5.4. Initial Relaxation

We define an initial relaxation that is valid only when the strong homogeneity assumption
(see Section 3) holds, i.e., all users in any category are either strongly cooperative or strongly
evasive (and there are no indifferent users). If this assumption does not hold, then we could
solve the LP relaxation of any of the five MILP models presented in Section 4.2 to compute
the upper bound Zu

0 provided to the Benders reformulation.
The relaxation we propose exploits the Lagrangian-based single-level non-linear model.

Our goal is to get rid of the products σaryarxksla and, consequently, of the many variables
vkslar that are generated when linearizing these products. The resulting relaxation would then
be easier to solve than any LP relaxation derived from the five MILP models presented in
Section 4.2. Under the strong homogeneity assumption, we use this relaxation to compute
an initial upper bound Zu

0 to give to the Benders reformulation.
For each user category l ∈ L, we define τl: = −1, if users in category l are strongly

cooperative; = +1, is users in category l are strongly evasive.
Proposition 3. For each l ∈ L, let

ζl = τl max
a∈A,r∈R|σar=1

{
qar
βlar

}
.

The following MILP model provides an upper bound on Z:

Zu
0 = max 1

|S|
∑
s∈S

∑
k∈K

∑
l∈L

ζld
k
l

(
πkslD(k) −

∑
a∈A

ψslax
ks
la

)
(5.27)

subject to (4.10)-(4.16) and (4.28)-(4.29).

Proof. By definition of ζl, we have, for each l ∈ L, qar − ζlβlar ≤ 0, for each a ∈ A and
r ∈ R such that σar = 1. If we set the Lagrange multipliers to the values λksl = ζl

dkl
|S| , for

s ∈ S, k ∈ K and l ∈ L, we can write the objective of the Lagrangian-based single-level
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non-linear model as

max 1
|S|

∑
s∈S

∑
k∈K

∑
l∈L

dkl

∑
a∈A

∑
r∈R

(
qar − ζlβlar

)
σaryarx

ks
la︸ ︷︷ ︸

≤ 0



+ 1
|S|

∑
s∈S

∑
k∈K

∑
l∈L

ζld
k
l

(
πkslD(k) −

∑
a∈A

ψslax
ks
la

)
,

which implies the result. �

Since this relaxation is a MILP model, we solve it at the root node of a branch-and-cut
algorithm implemented in a state-of-the-art solver.

5.5. Summary of the Algorithm

The Benders reformulation is solved by Branch-and-Benders-Cut (BBC), where a single
branch-and-cut tree is generated with cuts being added as it is explored. The classical
approach to solve a Benders decomposition that consists in solving a MILP master problem
at every iteration and adding cuts in between is nowadays considered to be inferior to such
a BBC approach.

Our BBC algorithm proceeds in two phases:
Initialization phase

(1) Solve the initial relaxation presented in Section 5.4 to obtain Zu
0 .

(2) Perform the initial heuristic presented in Section 5.3 to:
(a) Find an initial feasible solution of value Z l

0;
(b) Generate the cuts on wksl and Πks

l from every solution y ∈ Y obtained when
solving (5.25) and add them to the Benders reformulation.

(3) Add constraint (5.14) to the Benders reformulation.
Branch-and-cut phase

(4) At the root node:
(a) Solve the LP relaxation of the master problem to obtain y ∈ Y ;
(b) Solve shortest path problems with respect to arc legths (ωusla(y,ψs) −∑

r∈R qarσaryar);
(c) Generate Benders cuts (5.1) on the values of Πks

l ;
(d) If y is integral, generate Benders cuts (5.12) on the values of wksl ;
(e) If y is fractional, solve the subproblem (5.10)-(5.14) to generate Benders cuts

on the values of wksl .
(5) At a node corresponding to an integer solution y ∈ Y :

(a) Solve shortest path problems with respect to arc legths (ωusla(y,ψs) −∑
r∈R qarσaryar);

(b) Generate Benders cuts (5.1) on the values of Πks
l ;
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(c) Generate Benders cuts (5.12) on the values of wksl .

6. Computational Experiments

There are two main objectives guiding our computational experiments. The first is to
assess the impact that various problem characteristics have when solving each of the models
presented with a state-of-the-art MILP solver. These characteristics include evasive and
cooperative user behaviors and levels of budget. The second objective is to test the scalability
of each model when problem dimensions are increased. The dimensions we focus on are the
number of scenarios, the number of OD pairs and the number of candidate arcs.

The five models presented in Section 4.2 are solved with the branch-and-cut algorithm of
CPLEX (version 12.7.1.0), using default parameters. In addition, the best feasible solution
found by the heuristic presented in Section 5.3 is initially provided when solving each model.
The Benders decomposition method is also implemented with CPLEX. We use the user cut
callback to implement the generation of Benders cuts at the root node and the lazy cut
callback to implement the generation of Benders cuts at nodes where an integer solution is
found.

Our experiments are conducted on two distinct networks. One is a small network specif-
ically designed to study the impact of the problem characteristics and the other is a large
network where the computational limits of the models can be tested. For both sets of ex-
periments, the disutility of any arc a ∈ A for a user category l ∈ L is based on the presence
of resources on the arc, the length of the arc ta and the random term εla. It is defined as

ula(y, t, ε) =
∑
r∈R

βlarσaryar + αlta + εla.

Furthermore, the discrete choice model used is a nested recursive logit model as it is a
superior alternative to the popular logit model [47]. This was done by defining the distribu-
tion scale of εla in (3.10) as proportional to ta and by adding a constant κ, which penalizes
paths that have a high number of arcs, as κ is added to the disutility of each arc. We thus
use the following definition for the random term:

εal = GEV(0,eθta) + κ,

where GEV stands for generalized extreme value distribution with two parameters. The
first parameter is the location, 0 in our case, and the second is the scale, which is given by
the exponential function with exponent θ, a non-negative value, multiplied by the length of
arc a. Values are sampled from the distribution object extreme_value_distribution in the
C++ library. We note that various discrete choice models could have been used by simply
changing the definition of εla.
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Fig. 5. A small network

All experiments were conducted on a machine with an Intel(R) Xeon(R) CPU E3-1275
V2 @ 3.50GHz along with 28GB of RAM.

6.1. Small Network

We begin our numerical tests on a small network comprised of 18 nodes and 60 arcs
illustrated in Figure 5. Instances based on this network have 8 OD pairs and 32 candidate
arcs. These arcs are indicated by dashed lines. There are 2 resource types and thus 64
possible resources, 1 user category and 30 scenarios. The number of scenarios has been
determined following preliminary experiments. The value |S| = 30 ensures a stable solution,
i.e., the solution does not change when increasing further the number of scenarios. The 8 OD
pairs, (1-18), (2-17), (6-16), (9-12), (18-1), (17-2), (16-6) and (12-9), have an equal aggregate
demand of 10 and promote traffic flow interactions in the central area of the network where
resources can be installed. This is a key element in ensuring that the instances are not trivial.

Four different types of user behaviors are tested on the small network: mildly evasive
(ME), very evasive (VE), mildly cooperative (MC) and very cooperative (VC). Table 4
summarizes the parameters related to the two types of resources (r = 1,2) and to the part of
the disutility of an arc that depends on user category preferences. Column “βlar” contains
the values for each type of user behavior with respect to each of the two types of resources.
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r βlar qar car

ME VE MC VC
1 30 60 -30 -60 0.6 1
2 20 40 -20 -40 0.4 1

Table 4. Parameters for the two resource types for the small network (αl = 10)

Columns “qar” and “car” represent, respectively, the corresponding values for each type of
resources. Parameter αl has the same value of 10 for every type of user behavior.

The parameters related to the random term εla take on the following values: θ = 0.08
and κ = 5. This calibration of the parameters is designed so that the shortest path between
each OD pair varies based on the random term εla and the presence of control resources.
This further guarantees non-trivial instances.

The goal of these tests is to identify instance characteristics that make the problem harder
to solve as well as to evaluate the differences between the various models. For each of the
four types of user behavior, four levels of budget are tested, allowing 3 (10%), 8 (25%), 16
(50%) or 24 (75%) out of the 32 candidate arcs where resources can be installed.

Table 5 reports three values for each model tested on each instance. First, “time” in-
dicates the time in seconds either to find an optimal solution or to stop after a time limit
of 1 hour. Second, “gapr” indicates the gap in percentage at the root node between the
best relaxation bound and the optimal value. Third, “gapf” indicates the gap in percentage
between the value of the final integer solution and the optimal value. Also, “gaph”, the gap
in percentage between the solution found by the heuristic presented in Section 5.3 and the
optimal value, is indicated for each instance. If none of the models could find the optimal
solution in the allotted time, then the best solution found across all models is used in place
of an optimal solution.

Our heuristic provides initial solutions of varying quality. As can be expected, when
users try to avoid resources, the iterative nature of the heuristic lacks the foresight needed
to capture traffic flows. When resources are installed on the arcs with the most flow, users
change their path choice to avoid them, which causes the heuristic to reassign the resources
to the new shortest paths, perpetuating the cycle. This effect becomes most apparent in
the very evasive case where solutions are relatively poor. In the cooperative case, however,
the leader and the follower problems are “aligned”, in that traffic flows are attracted to
the installed resources. This is reflected in the mildly cooperative case where the optimal
solution is found for every budget value. Nonetheless, the heuristic can struggle to find good
solutions with cooperative users as can be seen in the very cooperative case. This is due to the
greedy nature of the approach in which the arcs with the most flow initially heavily dictate
any solution found as the traffic reassignments only compound what is already captured.
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MCS MCS−L MSD MSD−L ML MBD

ME-10% time [s] 4.92 9.72 29.4 9.74 351.7 124.65
gapr [%] 12.98 53.33 0 0 53.33 53.33

gaph=20.00% gapf [%] 0 0 0 0 0 0

ME-25% time [s] 35.85 19.81 37.7 12.2 842.62 518.4
gapr [%] 18.86 51.67 0.19 0 51.67 51.67

gaph=10.00% gapf [%] 0 0 0 0 0 0

ME-50% time [s] 44.48 20.54 36.11 10.83 1002.83 537.79
gapr [%] 13.34 51.04 0 0 51.04 51.04

gaph=0% gapf [%] 0 0 0 0 0 0

ME-75% time [s] 12.51 19.62 16.12 10.85 902.15 730.02
gapr [%] 18.13 51.04 0 0 51.04 51.04

gaph=0% gapf [%] 0 0 0 0 0 0

VE-10% time [s] 42.46 1759.72 19.86 23.25 952.44 807.57
gapr [%] 14.91 53.33 0 0 53.33 53.33

gaph=40.00% gapf [%] 0 0 0 0 0 0

VE-25% time [s] 934.29 3600 31.65 18.56 3600 3600
gapr [%] 31.85 51.67 0 0 51.67 51.67

gaph=20.00% gapf [%] 0 0 0 0 10.00 15.00

VE-50% time [s] 1963.64 3600 52.59 49.2 3600 3600
gapr [%] 42.94 51.11 2.79 2.82 51.11 51.11

gaph=60.00% gapf [%] 0 0 0 0 2.22 6.67

VE-75% time [s] 3281.43 3600 19.87 24.04 3600 3600
gapr [%] 51.04 51.04 0 0 51.04 51.04

gaph=12.50% gapf [%] 0 0 0 0 0 0

MC-10% time [s] 3.38 83.19 692.07 739.63 3600 3600
gapr [%] 0 52.78 19.26 19.26 52.78 52.78

gaph=0% gapf [%] 0 0 0 0 0 0

MC-25% time [s] 48.5 216 3600 3600 3600 3600
gapr [%] 18.96 51.39 51.39 51.39 51.39 51.39

gaph=0% gapf [%] 0 0 0 0 0 0

MC-50% time [s] 98.67 183.84 3600 3600 3600 3600
gapr [%] 19.85 50.93 50.93 50.93 50.93 50.93

gaph=0% gapf [%] 0 0 0 0 0 0

MC-75% time [s] 42.49 174.16 3600 3600 3600 3600
gapr [%] 29.36 50.93 50.93 50.93 50.93 50.93

gaph=0% gapf [%] 0 0 0 0 0 0

VC-10% time [s] 3600 3600 3600 3600 3600 3600
gapr [%] 127.02 1196.22 112.09 112.09 1196.22 1196.22

gaph=24.37% gapf [%] 0 24.37 13.45 12.61 24.37 24.37

VC-25% time [s] 3600 3600 3600 3600 3600 3600
gapr [%] 105.58 502.99 136.91 136.91 502.99 502.99

gaph=10.56% gapf [%] 10.56 10.21 0.70 0 10.56 10.56

VC-50% time [s] 3600 3600 3600 3600 3600 3600
gapr [%] 121.76 353.87 203.19 203.18 353.87 353.87

gaph=17.71% gapf [%] 17.71 17.71 17.71 0 17.71 17.71

VC-75% time [s] 3600 3600 3600 3600 3600 3600
gapr [%] 110.84 276.28 201.40 202.00 276.28 276.28

gaph=14.11% gapf [%] 14.11 14.11 7.98 0 14.11 14.11

Table 5. Small network results with 30 scenarios65



As such, better solutions with resources installed on arcs with little to no flow initially are
unlikely to be found.

Our results show that, in general, it is more difficult to prove optimality for the instances
with cooperative users than for the ones with evasive users. The values of “gapr” indicate that
the relaxations are tighter for the last type of instances. As a result, installing a resource
that repels traffic flow allows for earlier pruning in the branch-and-cut tree. Indeed, if a
path is not used when some resources are installed on it, then there is no need to explore
installing additional resources on it. However, when resources make a path more interesting
for users, the same logic cannot be applied, since adding resources could attract more users
and therefore yield better solutions.

We can also see that a budget allowing for a little over 25% of the possible resources
to be installed seems to entail the most difficulty. If the budget is too small, there are few
possibilities to consider, while if the budget is too large, there are no tradeoffs to be made.

Turning our attention to our various formulations, we notice some distinctive results.
For evasive behavior cases, the aggregated models MSD and MSD−L seem to be the best,
while other models struggle. In the mildly cooperative case, however, models MCS and
MCS−L show better results than the others. The very cooperative case seems to be too
difficult for any of the models. Overall, we notice that MBD has better results than ML,
which confirms that applying our Benders decomposition to ML is indeed an improvement
to that formulation. However, due to the relatively small size of these instances, ML does
not perform nearly as well as MSD and MSD−L for the evasive behavior cases, and MCS and
MCS−L for the cooperative behavior cases. Adding the Lagrangian term to models MCS and
MCSD seems to help in the evasive cases with budget values of 25% and 50%. With these
budget values identified as more difficult, it is reasonable to conclude that the Lagrangian
term only helps for instances that have a minimum of difficulty. If the instance is easy to
solve, the additional computational burden caused by the Lagrangian term can lead to longer
solution times.

6.2. Winnipeg network

The second network is that of the city of Winnipeg and is comprised of 1040 nodes and
2836 arcs. As with our experiments on the small network, these instances are designed to
promote interactions between flows and control resources as much as possible. There are 2
resource types and 1 user category. Candidate arcs are selected by decreasing order of flows
from the best known flow solution included in the network description files available at
https://github.com/bstabler/TransportationNetworks/tree/master/Winnipeg

OD pairs are randomly sampled from the complete list provided with the network files as
to spread out traffic flows within the network. The budget is fixed at 30% meaning that 30%
of all possible resources can be installed at most. The number of scenarios, OD pairs and
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r βlar qar car

1 0.6 0.6 1
2 0.4 0.4 1

Table 6. Parameters for the two types of resources for the Winnipeg network (αl = 0.001)

candidate arcs varies throughout the experiments and is therefore specified wherever results
are reported.

As the focus of the experiments on this much larger network shifts towards scalability, we
only test an evasive user behavior, for which it is more difficult to find good feasible solutions.
This also corresponds to what is mostly studied in the literature. Table 6 summarizes the
parameters related to the two types of resources (r = 1,2) and to the part of the disutility
of an arc that depends on user category preferences. The columns are defined in the same
way as for Table 4.

The parameters related to the random term εla take on the following values: θ = 0.0001
and κ = 4.5. Similarly to the small network, this calibration of the parameters helps promote
changing shortest paths depending on the installation of resources and on the random term.

|S| MCS MC∫−L MSD MSD−L ML MBD

1 7200 7200 13 12 17 66
15 7200 7200 2818 3512 7200 627
30 7200 7200 7200 7200 7200 1573

Table 7. Average solution times (5 instances), 50 candidate arcs, 40 OD pairs

The first set of experiments aims to show how well each model performs when the network
is very large. Table 7 shows average solution times over 5 instances with 50 candidate arcs,
40 OD pairs and |S| = 1,15, 30. All six models are solved with a time limit set at 2 hours. We
can see that MCS and MCS−L are unable to solve any of the instances, as the complementary
slackness conditions make the models too large even for 1 scenario. Models MSD, MSD−L

and ML are the fastest for 1 scenario, but model MBD overtakes them when |S| = 15 and
even more when |S| = 30. Subsequent experiments, which explore solution stability and
the effects of increasing problem dimensions, are only conducted with model MBD since the
others cannot be solved in a reasonable time.

Solution stability is an important part of our approach. As we increase the number of
scenarios, we can expect the solution to eventually stabilize as the simulated approximation
of our discrete choice model becomes increasingly accurate. Our goal is to find the minimum
number of scenarios needed to reach a stable solution. We do this by analyzing the conver-
gence of the objective function value as the number of scenarios increase. To this end, we
take a look at three of the five previously tested instances with 40 OD pairs, 50 candidate
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Fig. 6. Stability (optimal value vs number of scenarios for instance 1)
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arcs and 2 types of resources. Figures 6-8 show how the optimal solution values vary with
respect to the number of scenarios for the three instances. As these plots show, past 40
scenarios, the optimal solution values seem relatively stable and oscillating only in relatively
small intervals. We note that with only 1 scenario, optimal values are far from what they
should be when the discrete choice model governing route choice is properly modeled with a
higer number of scenarios. This highlights the importance of considering an adequate num-
ber of scenarios to achieve an accurate result. This is also reflected in the optimal solutions
for variables y themselves, which stabilize past 70, 20 and 60 scenarios for each instance
respectively. We note that finding an ideal number of scenarios is dependent on a number of
factors such as the network topology, the discrete choice model parameters and the impact
control resources have on the path choice of users. As such, conducting a solution analysis
is important in order to guarantee the quality of the optimal solution found.

With an adequate number of scenarios estimated at 40, we proceed to evaluate how
increasing the number of OD pairs and candidate arcs affects the solution times. We also
study the effects of changing the number of scenarios. Because we are attempting to solve
very large instances, the timeout is set at 10 hours for the following experiments. Tables 8-10
present the results over 5 instances for varying quantities of these three problem dimensions.
In these tables is a new metric: cgapf which is the gap in percentage between the value of
the best integer solution, optimal or at timeout, and the best upper bound found. We note
that when an instance times out, its run time is not considered for the average time, but
the instance is included for the average gaps calculations. Table 8 shows the increase in
solution times with respect to the number of scenarios. This is further illustrated in Figure 9
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Fig. 7. Stability (optimal value vs number of scenarios for instance 2)
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Fig. 8. Stability (optimal value vs number of scenarios for instance 3)
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where the solution times for three of the instances have been individually plotted. As can be
observed, the growth of the run times is fairly linear as a function of the number of scenarios,

When increasing the number of OD pairs, results are more contrasted, as can be seen in
Table 9. Although the majority of the instances were solved to optimality within the time
limit, we can observe that the growth in difficulty is not as smooth as with an increasing
number of scenarios. The * denotes that the instance with 80 OD pairs that could not be
solved caused a memory related error at approximately 32000 seconds (this time was not
included in the average solution time). From the average cgapf of 3.71%, it can be inferred
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Fig. 9. Solution times vs number of scenarios
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that this problematic instance was still at 18.54% when the process stopped. However,
considering the other instances were solved reasonably efficiently, it can be seen as an outlier.

Finally, the results obtained when varying the number of candidate arcs are reported
in Table 10. Instances remain manageable up to 75 candidate arcs, but instances with 100
candidate arcs could not be solved to optimality. The ** indicate that the program ran out
of memory at approximately 25000 seconds for all five instances. However, cgapf reports a
1.90% average final gap indicating that the quality of the solutions is relatively good.

|S| 1 25 50 75 100 150
Avg time [s] 195 1627 2533 3390 4467 7311

Solved 5/5 5/5 5/5 5/5 5/5 5/5
gaph [%] 1.83 0.05 0.02 0.03 0.00 0.11
gapr [%] 23.68 8.64 8.65 7.59 6.60 5.68
cgapf [%] 0.0 0.0 0.0 0.0 0.0 0.0

Table 8. Average results (5 instances with 50 candidate arcs and 40 OD pairs): varying the
number of scenarios

7. Conclusion and Future Work

We introduced an FCP that integrates RUM models, thus allowing a stochastic path
choice representation and different types of user behaviors. We developed several MILP
reformulations of the bilevel programming model for our FCP. From one of these reformu-
lations, based on Lagragian relaxation, we derived a Benders decomposition method, which
allowed us to solve large instances based on a network for the city of Winnipeg.

70



|K| 20 40 60 80
Avg time [s] 1357 4727 5384 9821

Solved 5/5 5/5 5/5 4/5*
gaph 0.00 0.00 0.55 0.21
gapr 6.65 9.73 18.76 22.21
cgapf 0.00 0.00 0.00 3.71

Table 9. Average results (5 instances with 50 candidate arcs and 40 scenarios): varying the
number of OD pairs

∑
a∈A minr∈R{σar} 25 50 75 100
Avg time [s] 469 2528 6652 25000**

Solved 5/5 5/5 5/5 0/5
gaph 0 0.01 0 0
gapr 3.32 6.11 9.42 9.68
cgapf 0.0 0.0 0.0 1.90

Table 10. Average results (5 instances with 40 OD pairs and 40 scenarios): varying the
number of candidate arcs

There are many potential avenues of research following this work. One extension is the
inclusion of arc capacities and congestion as it can be an important factor in transporta-
tion applications. In addition, there is potential in adapting our Benders decomposition
method to other bilevel programming models where lower level problems reduce to shortest
path computations, since this is a fairly common situation, for example, in network design
problems.
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Résumé. Dans cet article, nous présentons une nouvelle méthode de décomposition de
Benders pouvant être appliquée à une forme particulière de modèle biniveau. L’élément clé
de cette décomposition est la méthode utilisée pour transformer le modèle biniveau à un
modèle à un seul niveau. Cela se fait en utilisant la dualité forte pour ajouter un terme à la
fonction objectif du problème du suiveur qui garantit l’optimalité sous certaines conditions.
Afin de montrer que cette forme et ces suppositions ne sont pas excessivement contraignantes,
nous exposons le fait que cette forme contient une classe générique de problèmes biniveaux de
design de réseaux. De plus, deux formulations de l’état de l’art pour des problèmes communs
dans la littérature (design de réseau pour le transport de matières dangeureuses et capture
de flot) sont adaptés à notre décomposition dans le but de démontrer sa polyvalence. Une
troisième formulation, pour le problème de design et prix simultanés de réseau, est présenté
à l’Annexe B.
Mots clés : programmation biniveau, design de réseau, décomposition de Benders, design
de réseau pour le transport de matières dangeureuses, design et prix simultanés de réseau,
capture de flot

Abstract. In this article, we present a novel Benders decomposition method that can be
applied to a particular form of bilevel programs. The key element of this decomposition
lies in the method used to transform the bilevel model into a single-level model. This
is done by using strong duality to add a term to the objective function of the follower’s
problem which guarantees optimality under certain assumptions. To show that the particular
form and assumptions required for this decomposition are not excessively restrictive, this
form is shown to include a generic class of bilevel network design problems. Furthermore,
two state of the art formulations for problems commonly found in the literature (hazmat
transportation network design and flow capture) are adapted to our decomposition method
to further demonstrate its versatility. A third formulation, for the joint network design and
pricing problem, is presented in Appendix B.
Keywords: bilevel programming, network design, Benders decomposition, hazmat trans-
portation network design, joint network design and pricing, flow capture

1. Introduction

The applications covered by bilevel programming typically have important consequences
for the economy and its related fields [64, 21]. This is mainly due to their particular structure
where one optimization problem contains another as a constraint. Concretely, this can be
seen as a sequential game with a leader and a follower. The leader’s problem contains the
follower’s problem, meaning that it makes its decisions while anticipating the reaction from
the follower. The follower makes its decisions according to its own problem, which depends
in some way on the leader’s decisions.

Solving bilevel programs is known to be intrinsically difficult. One of the common diffi-
culties is the intractability that often accompanies solving large instances [18]. This can be
explained by the fact that even linear bilevel programs are N P-hard [36]. Furthermore,
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simply evaluating a solution for optimality is also N P-hard [69]. Thus, finding ways to
efficiently solve in practice these problems is important.

In this paper, we present a general Benders decomposition method that can be applied
to problems of the form

Z = min g(y) + (yF + e)x, (1.1)

y ∈ Y, (1.2)

x ∈ arg min
x∈X
{(yC + b)x}, (1.3)

where
• y = (yi)i=1,...,m, Y ⊆ {0,1}m, Y 6= ∅;
• x = (xj)j=1...,n, X = {x ≥ 0|Ax ≥ d} ⊆ [0,u]n, X 6= ∅;
• C,F are m× n matrices and A is an l × n matrix;
• b,e are n-dimensional vectors and d is an l-dimensional vector.

We also make the following assumptions:
Assumption 5. There exists an n-dimensional vector ω such that

0 ≤ (yF + e) ≤ ω, y ∈ Y.

Assumption 6. There exists an n-dimensional vector ∆ such that

(yC + b) ≥ ∆ > 0, y ∈ Y.

Before presenting our solution method, we mention that there are many approaches to
solving bilevel programming models. We refer the reader to the works of [18] and [64] as
they are two examples of papers providing overviews of these methods.

While adding linearized complementary slackness constraints and strong duality con-
straints are two popular methods to obtain a single-level formulation, the approach we take
is slightly different. Instead of using strong duality to add a constraint equating the pri-
mal and dual objective functions of the follower’s problem (the strong duality constraint),
we add it to the objective function of the leader as a Lagrangian penalty. The approach
that consists of penalizing the strong duality constraint is well-known in the literature on
bilevel programming, where it is used in the context of iterative heuristic methods (see, e.g.,
[70, 43, 15, 11, 12]). It is on this particular one-level model that we apply our Benders
decomposition method, which is a novel approach, to the best of our knowledge. Although
there have been numerous works regarding the use of Benders decomposition in the context
of bilevel programming, none of them is based on Lagrangian relaxation, like ours.

While (1.1)-(1.3) is of a particular form, it encompasses a number of problem classes. To
illustrate this, we show how our decomposition can be applied to two distinct network design
applications by reformulating corresponding state-of-the-art models. The two applications
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explored are hazmat transportation network design and flow capture problems, which are
special cases of bilevel multicommodity uncapacitated network design problems.

The remainder of the paper is structured as follows: Section 2 details the generalized
decomposition method. Section 3 showcases properties in the general case of bilevel multi-
commodity uncapacitated network design problems. Sections 4 and 5 show how the proposed
decomposition method applies to, respectively, the hazmat transportation network design
and flow capture problems. Finally, Section 6 concludes our work with a brief summary and
potential future research directions.

2. Benders Decomposition

The goal of this section is to demonstrate how our particular Benders decomposition
applies to the bilevel programming model detailed in the introduction. We begin by refor-
mulating (1.1)-(1.3) as a single-level model after which we expose a suitable structure to
apply the decomposition itself. The dual of the follower’s problem (1.3) can be written as

max
π∈Π

πd, (2.1)

where π = (πk)k=1,...,l is the l-dimensional vector of dual variables associated with constraints
Ax ≥ d and Π = {π ≥ 0|πA ≤ yC + b}. To replace the follower’s problem, we first add the
dual feasibility constraints π ∈ Π to our model. We then need to replace the objective of
the follower’s problem either by complementary slackness conditions or by the strong duality
constraint, which states that the objective values of the primal and the dual of the follower’s
problem are equal: (yC + b)x = πd. In our case, we add the strong duality constraint as
a Lagrangian penalty in the objective function. This results in the following single-level
Lagrangian relaxation of the original bilevel program:

Z(λ) = min
y∈Y,x∈X,π∈Π

g(y) + (yF + e)x+ λ((yC + b)x− πd). (2.2)

For this relaxation to be a reformulation of the problem defined by (1.1)-(1.3), we must
demonstrate that λ can take a finite value which prioritizes the optimality of the follower’s
part of the objective function. To do this, we rewrite (2.2) as follows, noting that the variables
π are not linked anymore with the variables x in the Lagrangian relaxation:

Z(λ) = min
y∈Y

g(y) +
{

min
x∈X
{(yF + e)x+ λ(yC + b)x} − λmax

π∈Π
πd
}

(2.3)

= min
y∈Y

g(y) +
{

min
x∈X

(yF + e+ λ(yC + b))x− λmin
x′∈X

(yC + b)x′
}
. (2.4)

Recalling our assumptions (5) and (6), we can see that, by setting λ >

ωu/minj=1...,n{∆j}, we prioritize the optimality of the follower’s problem over the
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“x” part of the leader’s objective function, since

λ > ωu/ min
j=1...,n

{∆j}

≥ (yF + e)x/(yC + b)j, j = 1, . . . ,n,

which implies λ(yC + b)j > (yF + e)x, j = 1, . . . , n. So, for any y ∈ Y , if x∗ is an op-
timal solution to minx∈X{(yF + e + λ(yC + b))x}, then it is also an optimal solution to
minx′∈X{(yC + b)x′}. This implies that the two minimization problems over X in (2.4) have
the same optimal solution x∗, so for any y ∈ Y , we have

min
x∈X
{(yF + e+ λ(yC + b))x} − λmin

x′∈X
{(yC + b)x′} = (yF + e)x∗.

In particular, if (y,x) is an optimal solution to the bilevel program (1.1)-(1.3), then (y,x∗)
is also an optimal solution and (2.2) is a one-level reformulation of this bilevel program for
any λ > ωu/minj=1...,n{∆j}.

This reformulation now lends itself to a Benders decomposition where the two inner
minimization problems can be treated as subproblems in order to add cuts in the master
problem defined over binary y variables. Optimality cuts for minx′∈X(yC + b)x′, which is
already in its dual form, are easy to derive because X is independent of variables y and thus
are simply given by

wπ ≤ (yC + b)x̃

for every extreme point x̃ of X, where wπ is the variable that approximates the value of
maxπ∈Π πd = minx′∈X(yC + b)x′. Feasibility cuts are unnecessary because X ⊆ [0,u]n is
bounded.

Finding the expression of the cuts on minx∈X(yF + e + λ(yC + b))x first requires us
to linearize the yx variable product found in this objective function. This can be done by
defining vij = yixj, i = 1, . . . ,n, j = 1, . . . ,m, which yields the following linear reformulation
of minx∈X(yF + e+ λ(yC + b))x:

min
x∈X,v≥0

(f + λc)v + (e+ λb)x, (2.5)

vij ≤ xj, i = 1, . . . ,n, j = 1 . . . ,m, (γij ≥ 0) (2.6)

vij ≤ uyi, i = 1, . . . ,n, j = 1 . . . ,m, (γyij ≥ 0) (2.7)

vij ≥ xj − u(1− yi), i = 1, . . . ,n, j = 1 . . . ,m, (γ(1−y)i
j ≥ 0) (2.8)

where
• v = (vij)

i=1,...,m
j=1,...,n is an m× n-dimensional vector;

• f = (f ij)
i=1,...,m
j=1,...,n is an m× n-dimensional vector such that f ij = (F )ij, i = 1, . . . ,n, j =

1 . . . ,m;
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• c = (cij)
i=1,...,m
j=1,...,n is an m× n-dimensional vector such that cij = (C)ij, i = 1, . . . ,n, j =

1 . . . ,m;
We can then write the dual of this subproblem in order to derive the expression of the
associated optimality cuts (because X does not depend on y, feasibility cuts are not needed):

max θd− u
n∑
j=1
{γjy + γ

(1−y)
j (1− y)} (2.9)

θA+
m∑
i=1
{γi − γ(1−y)i} ≤ e+ λb, (2.10)

− γ − γy + γ(1−y) ≤ f + λc, (2.11)

θ ≥ 0, γ, γy, γ(1−y) ≥ 0, (2.12)

where
• θ is the l-dimensional vector of dual variables associated with constraints Ax ≥ d;
• γ = (γij)

i=1,...,m
j=1,...,n is an m×n-dimensional vector of dual variables associated with con-

straints (2.6) (γj and γi are, respectively, the m-dimensional and the n-dimensional
subvectors derived from γ);
• γy = (γyij )i=1,...,m

j=1,...,n is an m × n-dimensional vector of dual variables associated with
constraints (2.7);
• γ(1−y) = (γ(1−y)i

j )i=1,...,m
j=1,...,n is an m × n-dimensional vector of dual variables associated

with constraints (2.8) (γ(1−y)
j and γ(1−y)i are, respectively, the m-dimensional and the

n-dimensional subvectors derived from γ);
• 1 is the m-dimensional vector of 1’s.

The expression of the optimality cuts is as follows, where wx is the variable that approximates
the value of (2.5)-(2.8):

wx ≥ θ̃d− u
n∑
j=1
{γ̃jy + γ̃

(1−y)
j (1− y)}

for every extreme point (θ̃, γ̃, γ̃y, γ̃(1−y)) of the polyhedron D defined by (2.10)-(2.12). By
solving complementary slackness equations and feasibility conditions, we have the following
values for (θ̃, γ̃, γ̃y, γ̃(1−y)) if y variables take on integer values in the current master problem
solution:

θ̃ solves the dual of min
x∈X

(yF + e+ λ(yC + b))x; (2.13)

γ̃ij = max{0,−(f ij + λcij)}yi, i = 1, . . . ,n, j = 1 . . . ,m, (2.14)

γ̃yij = max{0,−(f ij + λcij)}(1− yi), i = 1, . . . ,n, j = 1 . . . ,m, (2.15)

γ̃
(1−y)i
j = max{0,(f ij + λcij)}yi, i = 1, . . . ,n, j = 1 . . . ,m. (2.16)
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This important result means that, in this case, the cuts (v and w) on both subproblems
can be generated by solving only minx∈X(yF +e+λ(yC+b))x. If this problem can be solved
by a specialized algorithm, generating the cuts can become very efficient. However, in the
case where binary variables y take on fractional values, which might happen if we solve the
LP relaxation by Benders decomposition, the linear program (2.9)-(2.12) has to be solved in
order the generate the optimality cut. We can speed up this process by setting the initial
values of the variables using (2.13)-(2.16) evaluated with the current fractional solution y.

To summarize, we can write the Benders reformulation as:

Z = min
y∈Y,wx,wπ

g(y) + wx − λwπ, (2.17)

wx ≥ θ̃d− u
n∑
j=1
{γ̃jy + γ̃

(1−y)
j (1− y)}, (θ̃, γ̃, γ̃y, γ̃(1−y)) ∈ ext(D), (2.18)

wπ ≤ (yC + b)x̃, x̃ ∈ ext(X), (2.19)

where ext(P ) is the set of extreme points of polyhedron P .

3. Bilevel Uncapacitated Network Design

We dedicate this section to adapting the developments of Section 2 to the context of
bilevel multicommodity uncapacitated network design problems. The goal is to showcase
important characteristics specific to this setting that allow for an efficient solution process
using specialized algorithms (here, shortest path computations) instead of solving LPs. In
addition, this class of problems illustrate the case where the Benders subproblems are sepa-
rable (here, by commodities).

In a network G = (N,A) with nodes N , arcs A and commodities K, we assume a problem
context where we define binary design variables yij and flow variables xkij for each arc (i,j) ∈ A
and commodity k ∈ K. Given a demand dk > 0 between the origin O(k) and the destination
D(k) of every commodity k ∈ K, we define costs for each arc (i,j) ∈ A as 0 ≤ fijyij+eij ≤ ωij

and cijyij + bij ≥ ∆ij > 0 at the upper and lower levels, respectively, of the following bilevel
multicommodity uncapacitated network design problem:

Z = min
y∈Y,xk∈Xk

∗ ,k∈K
g(y) +

∑
k∈K

(fy + e)dkxk (3.1)

where Xk
∗ is the set of optimal solutions to the following shortest path problem

min
∑

(i,j)∈A
(cijyij + bij)xkij, (3.2)

∑
(i,j)∈A

xkij −
∑

(j,l)∈A
xkjl =


−1, if j = O(k),

1, if j = D(k), j ∈ N,
0, otherwise,

(3.3)
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0 ≤ xkij ≤ 1, (i,j) ∈ A. (3.4)

The dual of this shortest path problem is one of maximizing the potentials at each node
under the constraint that the difference of potentials between two nodes linked by an arc is
capped by the cost associated to using that arc, which can be written more specifically:

max πkD(k), (3.5)

πkj − πki ≤ cijyij + bij, a = (i,j) ∈ A, (3.6)

πkO(k) = 0, (3.7)

where variables πki represent the potential at node i ∈ N , i.e., the shortest path length from
O(k) to node i ∈ N . The strong duality constraints can then be written as:∑

(i,j)∈A
(cijyij + bij)xkij = πkD(k), k ∈ K. (3.8)

Introducing Lagrange multipliers λk for each of these constraints, we can then derive the
following single-level relaxation of the bilevel program (3.1):

Z(λ) = min g(y) +
∑
k∈K
{(fy + e)dkxk + λk((cy + b)xk − πkD(k))} (3.9)

y ∈ Y ; xk ∈ Xk,πk ∈ Πk, k ∈ K, (3.10)

where Xk is the polyhedron defined by (3.3)-(3.4) and Πk is the polyhedron defined by
(3.6)-(3.7). Given our assumptions on the costs, this Lagrangian relaxation becomes a re-
formulation of the bilevel program (3.1) whenever

λk > dk
∑

(i,i)∈A
ωij/∆,

where ∆ = min(i,j)∈A{∆ij}, since this implies that λk(cijyij + bij) > (fy + e)dkxk, k ∈
K, (i,j) ∈ A. Thus, we can set λk = dkρ, k ∈ K, where ρ > ∑

(i,i)∈A ωij/∆.
It follows, with such a choice of λ, that the bilevel program (3.1) can be rewritten as:

Z = min
y∈Y

g(y) +
∑
k∈K

dk
{

min
xk∈Xk

(fy + e+ ρ(cy + b))xk − ρ max
πk∈Πk

πkD(k)

}
. (3.11)

This implies that the two inner optimization problems can be solved simultaneously by
a shortest path algorithm with arc lengths (fy + e + ρ(cy + b))ij. These problems can be
decomposed by commodities k ∈ K and can be solved by Dijkstra’s algorithm, since the
costs are positive. The algorithm can be executed only once per origin as long as it provides
the shortest path to each other node in the network, thus providing the solution to every
destination with the same origin. Therefore, there are at most |N | single origin-multiple
destinations shortest path subproblems to solve.

In regards to our more general Benders reformulation (2.17)-(2.19), in the case of a an
integer solution y, this shortest path algorithm provides the cuts on wk and vk simultaneously,
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since the shortest paths are the same and only the arc costs differ, where wkπ and wkx are the
variables that approximate the values of the subproblems maxπk∈Πk π

k
D(k) and minxk∈Xk(fy+

e+ ρ(cy + b))xk, respectively. More precisely, cuts on wkπ are given by

wkπ ≤
∑

(i,j)∈A
(cijyij + bij)δkpij , k ∈ K, p ∈ P k, (3.12)

where P k is the set of simple paths from O(k) to D(k) for each k ∈ K and δkpij = 1, if arc
(i,j) ∈ A belongs to path p ∈ P k for k ∈ K, and 0, otherwise. This follows immediately
from the fact that extreme points of Xk correspond to paths in P k.

Cuts on wkx can be obtained by linearizing the products of variables yijxkij with variables
vkij, which yields the following linear reformulation of minxk∈Xk(fy + e+ ρ(cy + b))xk:

min
xk∈Xk,vk≥0

(f + ρc)vk + (e+ ρb)xk, (3.13)

vk ≤ xk, (γk ≥ 0) (3.14)

vk ≤ y, (γyk ≥ 0) (3.15)

vk ≥ xk − (1− y). (γ(1−y)k ≥ 0) (3.16)

The dual of this linear program is then:

max θkD(k) − γk(y)y − γk(1−y)(1− y), (3.17)

θkj − θki + γk − γk(1−y) ≤ (e+ ρb), (3.18)

− γk − γk(y) + γ
k(1−y)
ij ≤ (f + ρc), (3.19)

θk, γk, γk(y), γk(1−y) ≥ 0. (3.20)

The Benders cuts on wkx are then expressed as:

wkx ≥ θ̃kD(k) − γ̃k(y)y − γ̃k(1−y)(1− y), k ∈ K, (θ̃k, γ̃k, γ̃k(y), γ̃k(1−y)) ∈ ext(Dk), (3.21)

where Dk is the polyhedron defined by (3.18)-(3.20). For any y ∈ Y , an optimal solution to
this linear program is given by:

θ̃k solves the dual of the shortest path problem min
xk∈Xk

(fy + e+ ρ(cy + b))xk; (3.22)

γ̃kij = max{0,−(fij + ρcij)}yij, (i,j) ∈ A, (3.23)

γ̃ykij = max{0,−(fij + ρcij)}(1− yij), (i,j) ∈ A, (3.24)

γ̃
(1−y)k
ij = max{0,(fij + ρcij)}yij, (i,j) ∈ A. (3.25)

If y takes on fractional values (derived from solving the LP relaxation by Benders decompo-
sition), then (3.22)-(3.25) still provides a feasible solution, which can be used to warm start
the solution of the linear program (3.17)-(3.20).
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y ∈ {0,1} y ∈ [0,1]
wk Shortest paths LP with warm start
Πk Shortest paths

Table 11. What needs to be solved for cuts on w and Π

Table 11 summarizes what needs to be solved to obtain the necessary cuts on wkx and
wkπ. In three cases out of four, shortest paths can be solved relatively quickly by Dijkstra’s
algorithm, but in the fractional case, cuts on wkx are obtained by solving an LP, which can
be initialized with shortest path computations.

To summarize, we can write the Benders reformulation specialized to bilevel multicom-
modity uncapacitated network design problems as:

Z = min
y∈Y,wkx,wkπ ,k∈K

g(y) +
∑
k∈K

dk{wkx − ρwkπ} (3.26)

subject to (3.12) and (3.21).
In the following sections, we demonstrate how two distinct applications can make use of

the methods presented so far. We begin by introducing the nature of the problem and a
brief literature review showcasing state of the art model formulations and solution methods.
We then reveal how one of these models for each problem can be adapted to fit the required
bilevel form to apply our decomposition method.

4. Hazmat Transportation Network Design

This section is devoted to the hazmat transportation network design problem. This
problem is chosen as an example for our method. We begin by exploring the literature
surrounding this problem and subsequently show how our decomposition method applies to
one of the more recent formulations.

4.1. Literature Review

The HTNDP typically consists of a governing body setting regulations for users trans-
porting hazardous materials within a network with the goal of minimizing the potential risk
to the general population and the environment. This can be done with a combinatorial
approach which corresponds to choosing on which links hazardous materials can be trans-
ported. Users then adapt their route choice based on which links are available and their own
preferences.

The combinatorial approach takes root in the work of [40] where a bilevel model is
proposed and subsequently converted into a single-level formulation through complementary
slackness equations. [9] puts forward a different perspective where the route choice of carriers
is not explicitly modelled. [30] proposes a cutting plane approach to deal with the hazmat
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transportation network design problem. [2] provides a proof that the hazmat transportation
network design problem is NP hard even for a single commodity. They also make use of strong
duality instead of complementary slackness to transform the bilevel model of [40] to a single-
level model. Furthermore, they ensure that when multiple shortest paths exist for the same
commodity, the one with the most risk is selected. [23] uses the model from [2] as a starting
point to propose a multi-cut Benders decomposition. They also include improvements in the
form of Pareto-optimal cut generation and retaining the flow conservation constraints in the
leader’s problem in order to ensure that the subproblems, where shortest paths are found,
are always feasible. To the best of our knowledge, the work of [23] is the only one proposing
a Benders decomposition method and is thus, very relevant to our work. As they use the
model of [2], the transition from the bilevel model to a single-level model is done through
strong duality constraints and subsequently, they apply Benders decomposition. However,
our approach differs in that we relax the strong duality constraints by adding them to the
objective function with a weight large enough to ensure an exact reformulation as opposed
to a relaxation. We then apply Benders decomposition to that model while exploiting the
structure of the subproblems.

Aside from the body of work focused on a combinatorial approach to the bilevel hazmat
network design problem, we quickly acknowledge the alternative perspective of toll-setting.
[48] appears to be the first to introduce the idea of using toll setting in a hazmat trans-
portation context arguing that it may be more realistic as governing authorities often do not
have the right to close specific network links to hazmat transportation. [10] extend the work
of [48] to take into account risk equity meaning that risk from the hazmat transportation
is spread out more evenly as to not unfairly subject a certain part of the population to an
excessive amount of risk.

4.2. Applying the Decomposition

We now turn our attention to the bilevel model found in [2] as it seems to be one of
the more advanced and recent models to the best of our knowledge. The leader’s problem
consists of choosing which arcs (i,j) = a ∈ A in network G = (N,A) can be used for the
transportation of hazardous materials by setting the values of binary variables yij. The
objective is to minimize, for each OD pair k ∈ K, the risk rkij scaled by the demand dk which
is fixed and known. The follower’s problem is that of the users finding the shortest path,
according to arc costs ckij and their availability yij, from their origin O(k) to their destination
D(k). The choice of the links forming this shortest path is represented by variables xkij.

min
∑
k∈K

∑
(i,j)∈A

rkijd
kxkij, (4.1)

yij ∈ {0,1}, ∀(i,j) ∈ A, (4.2)
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min
∑
k∈K

( ∑
(i,j)∈A

ckijx
k
ij −

1
R

∑
(i,j)∈A

rkijx
k
ij

)
, (4.3)

∑
(i,j)∈A

xkij −
∑

(j,l)∈A
xkjl =


−1, if j = O(k),

1, if j = D(k), ∀j ∈ N, k ∈ K,
0, otherwise,

(4.4)

xkij ≤ yij, ∀(i,j) ∈ A, k ∈ K, (4.5)

xkij ∈ {0,1}, ∀(i,j) ∈ A, k ∈ K. (4.6)

The leader’s objective function (4.1) consists of a minimization of the total risk multiplied
by the demand across all arcs and OD pair. The follower’s objective function (4.1) aims to
minimize the sum of arc costs used for each OD pair. Of note is the term − 1

R

∑
(i,j)∈A r

k
ijx

k
ij

where R is the sum over all OD pairs of the maximum risk path values. This term, under
the assumption that ckij is integer, guarantees that, amongst multiple shortest paths, the
one with the maximum risk is selected. Constraints (4.4) are the classical flow conservation
constraints and (4.5) are the network design constraints stating that an arc can only be used
by the follower if it has been made available by the leader.

To be able to apply our Benders decomposition method to this model, we must first
tackle two issues. The first is to reformulate the follower’s problem to remove constraints
(4.5) in order for it to have a feasible space independent of variables yij. We achieve this
by adding them to both objective functions (4.1) and (4.3) with a large enough penalty M ,
for example M ≥ maxk∈K

∑
(i,j)∈A c

k
ij. The second issue concerns the integrality constraint

on variables xkij (4.6). However, they can simply be relaxed due to the total unimodularity
of the follower’s problem. Lastly, we decompose the problem by commodities k. We thus
rewrite the follower’s problem as the following |K| problems:

min
∑

(i,j)∈A
(ckij −

rkij
R

+M(1− yij))xkij, (4.7)

∑
(i,j)∈A

xkij −
∑

(j,l)∈A
xkjl =


−1, if j = O(k),

1, if j = D(k), ∀j ∈ N,
0, otherwise,

(4.8)

0 ≤ xkij ≤ 1, ∀(i,j) ∈ A. (4.9)

With the appropriate mathematical program form, we now only need to verify our As-
sumptions (5)-(6). Assumption (5) is verified because the term in x of (4.1) can only take
positive values in a minimization problem. Assumption (6) holds since the only negative
term (with parameters rkij) is by definition ≤ 1 and path costs ckij are assumed to be integer
and > 0.
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By applying our methodology developed in Sections 2 and 3, we have to solve two shortest
path problems, for each k ∈ K, with the following arc costs in order to generate cuts on w
and Π respectively with a current integer solution y:

λk
(
ckij −

rkij
R

+M(1− yij)
)

+ rkijd
k +M(1− yij) (4.10)

and
ckij −

rkij
R

+M(1− yij). (4.11)

We have the following |K| problems to solve for cuts on wkx with a fractional y:

max πD(k) −
∑

(i,j)∈A
γ
k(y)
ij yij −

∑
(i,j)∈A

γ
k(1−y)
ij (1− yij), (4.12)

πkj − πki + γkij − γ
k(1−y)
ij ≤ rkijd

k +M + (λkckij −
λk

R
rkij + λkM), ∀(i,j) ∈ A, (4.13)

− γkij − γ
k(y)
ij + γ

k(1−y)
ij ≤ −λkM −M, ∀(i,j) ∈ A, (4.14)

γkij, γ
k(y)
ij , γ

k(1−y)
ij ≥ 0, ∀(i,j) ∈ A. (4.15)

Finally, we can write our Benders reformulation for the hazmat transportation network
design problem as:

min
∑
k∈K

(wkx − λkwkπ) (4.16)

subject to (4.2) and

wkx ≤ πD(k) −
∑

(i,j)∈A
γ
k(y)
ij yij −

∑
(i,j)∈A

γ
k(1−y)
ij (1− yij) (4.17)

∀k ∈ K, (πk, γk, γk(y), γk(1−y)) ∈ ext(Dk),

wkπ ≥
∑

(i,j)∈A
(ckij −

rkij
R

+M(1− yij))δkpij , ∀k ∈ K, p ∈ P k, (4.18)

where Dk is the polyhedron defined by (4.12)-(4.15).

4.3. Connectivity Cuts

In this Section, we present the idea of connectivity cuts in general and how they are
implemented in our solution method. Many y solutions proposed by the master problem are
unlikely to form paths between the OD pairs which can lead to a significant waste of time.
It is therefore advantageous to add connectivity cuts before and during the solution process.

To find a general expression for the connectivity cuts, we define two proper subsets of N .
The first, Sk, must contain O(k) and must not contain D(k). The second is simply defined
as Sk = N \ Sk. We note that the definition of these two sets corresponds to s-t cuts in
graph theory. We can now propose the following expression:
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∑
(i,j)∈(Sk,Sk)

yij ≥ 1, k ∈ K,Sk ⊂ N. (4.19)

This generic constraint states that at least one arc (i,j) in the cut set defined by Sk and
S
k has to be opened. Two particular cases of (4.19) are the resulting cuts for origins and

destinations of all OD pairs. They can be expressed as

∑
(i,j)∈Ak

yij ≥ 1, k ∈ K, i = O(k) (4.20)

and ∑
(i,j)∈Ak

yij ≥ 1, k ∈ K, j = D(k). (4.21)

Furthermore, we can define similar cuts for transfer nodes as

yij ≤
∑

(j,l)∈Ak
yjl, j ∈ T,∀(i,j) (4.22)

and ∑
(i,j)∈Ak

yij ≥ yjl, j ∈ T,∀(j,l) (4.23)

where T = {j ∈ N |@k such that j = O(k) or j = D(k). Constraints (4.20)-(4.23) are similar
in behavior to flow conservation constraints. They ensure that if an arc exiting a node is
open, then there must be at least one arc entering that node that is open and vice-versa.

The final method of generating connectivity cuts is based on the y given by the master
problem at any given iteration of the solution process. We first define the support graph
G(y) = (N,A(y)) where A(y) = {(i,j) ∈ A|yij > 0}. Then, starting from O(k), for every OD
pair k, G(y) is traversed forwards. If D(k) cannot be reached, then Sk in equation (4.19) is
defined as the set of nodes successfully visited by the search. This type of constraint is added
during the solution process while constraints (4.20)-(4.23) are added to the model before the
optimization.

4.4. Heuristic

We propose a simple heuristic to provide our model with initial cuts on variables wk

and Πk. The procedure can be divided in two parts: the first consists of finding values for
variables yij and the second consists of generating cuts based on those values.

Determining which arcs to open is done by solving shortest path problems with regards to
arc costs ckij. A candidate solution yij is built by simply setting yij to 1 if the corresponding
arc (i,j) is part of any of the |K| shortest paths. In order to find more solutions, this process
is repeated S times where the arc costs of the next iteration are given by
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c
k(s+1)
ij =

 c
k(s)
ij ∗Qc, if y(s)

ij = 1,
c
k(s)
ij , otherwise,

(4.24)

where Qc is a number strictly greater than 1. This penalizes arcs that are repeatedly found
to be part of the shortest paths for each OD pair which encourages new solutions to be
found.

We also build a second set of solutions for variables yij by using the same approach of
solving shortest path problems multiple times, but with regards to arc risks rkij. Again, yij is
set to 1 if the corresponding arc is part of any of the shortest paths found and the process is
repeated S times with a multiplier Qr applied to the risk rk(s)

ij of opened arcs of the previous
iteration.

Finally, as every y found is integer, we can generate the cuts on wk and Πk by solv-
ing shortest path problems with regards to (4.10) and (4.11) respectively, as detailed in
Section 4.2.

5. Flow Capture

In this Section, we look at the flow capture problem. We judge this problem to be of
interest because it can be used for many applications related to providing a service to traffic
flows within a network or intercepting unlawful drivers and vehicles. Following the same
structure as Section 4, the surrounding literature is reviewed and our method is applied to
a recent formulation.

5.1. Literature Review

Flow capture problems differ from the previous two applications as it does not involve
network design decisions. Instead, the leader’s problem consists of installing flow capturing
resources on certain arcs of the network with the goal of intercepting the most traffic flow.
The follower’s problem consists of finding the shortest path according to the users’ preferences
in regards to the base network characteristics and the presence of flow capturing resources.
The user’s response to these resources can be evasive, cooperative or neutral depending if the
resource in question raises, lowers or does not affect the cost of using that arc respectively.

Flow capture problems find their origin in the works of [33] and [8] and have since featured
many variations with various characteristics. [74] provide an overview of these features and
present a general formulation which can be adapted to implement them. We note, however,
that most works in the field, for example [42] and [50], do not use bilevel models to formulate
the cyclic interaction between the installation of resources to capture flow and the users’
potential change of route choice in response. Instead, a maximum deviation users are willing
to make is calculated in order to define the set of all possible paths for a given OD pair. One
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of the works using a bilevel model is that of [4] where the follower’s problem is a shortest
path problem, but behaviorally it is identical to the model in [50] on which it is based.

5.2. Applying our Decomposition

The model which serves as a basis for our decomposition model is the one we proposed in
this thesis. This model is characterized by its ability to represent various types of behaviors
exhibited by the users in regards to various types of resources. More importantly, this is done
through discrete choice model simulation in an arc-based shortest path context rather than a
pre-calculated path set. We note that the version presented here is restricted to deterministic
path choice and a single user category. For the complete model and our Benders reformulation
of it, we refer the reader to our work presented in the preceding chapter.

Again, we denote the graph as G = (N,A) and the demand as dk for each OD pair k ∈ K.
The cost of installing resource of type r on an arc (i,j) ∈ A is indicated by crij and its capture
percentage is indicated by qrij. Binary variables yrij are equal to 1 if a resource of type r is
installed on arc (i,j) and 0 otherwise. The additional arc cost associated with the presence
of a resource is denoted by βrij while the base arc cost associated with its characteristics is
denoted by εij. Finally, variables xkij are the flow variables.

Z = max
∑
k∈K

∑
(i,j)∈A

∑
r∈Rij

(qrijdk)yrijxkij, (5.1)

∑
(i,j)∈A

∑
r∈Rij

crijy
r
ij ≤ b, (5.2)

∑
r∈Rij

yrij ≤ 1, (i,j) ∈ A, (5.3)

yrij ∈ {0,1}, (i,j) ∈ A, r ∈ Rij, (5.4)

min
∑
k∈K

∑
(i,j)∈A

∑
r∈Rij

(βrijyrij + εij)xkij, (5.5)

∑
(i,j)∈A

xkij −
∑

(j,l)∈A
xkjl =


−1, if j = O(k),

1, if j = D(k), ∀j ∈ N,
0, otherwise,

(5.6)

xkij ≥ 0, (i,j) ∈ A, k ∈ K. (5.7)

The objective function of the leader (5.1) consists of maximizing the flow captured over
all OD pairs. Constraint (5.2) is a budget constraint limiting the number of resources which
can be installed. Constraints (5.3) limits the number of resources installed per arc to 1.
Equations (5.5)-(5.7) consists of a shortest path problem for all OD pairs where the cost of
using an arc takes into account the presence of a resource.

The bilevel model matches (1.1)-(1.3) and therefore only (5)-(6) need to be validated
before applying our decomposition method. Assumption (5) holds as the number of arcs,
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potential installed resources and demand all take finite values so an upper bound can be
calculated. Assumption (6) is valid because the follower’s problem is a shortest path problem
with arc costs > 0. We note that this problem can also be decomposed by commodity k.

Two shortest path problems need to be solved for each k ∈ K with the following arc costs
in order to generate cuts on w and Π respectively with a current integer solution y:∑

r∈Rij
λk(βrijyrij + εij)− qrijyrij (5.8)

and ∑
r∈Rij

βrijy
r
ij + εij. (5.9)

We have the following |K| problems to solve for cuts on w with a fractional y:

min−πkD(k) +
∑

(i,j)∈A

∑
r∈Rij

(
γ
rk(y)
ij yrij + γ

rk(1−y)
ij (1− yrij)

)
, (5.10)

πki − πkj −
∑
r∈Rij

(γrkij − γ
rk(1−y)
ij ) ≥ −λkεij, (i,j) ∈ A, (5.11)

γrkij + γ
rk(y)
ij − γrk(1−y)

ij ≥ qrij − ωβrij, (i,j) ∈ A, r ∈ Rij, (5.12)

πkO(k) = 0, (5.13)

γrkij , γ
rk(y)
ij , γ

rk(1−y)
ij ≥ 0, (i,j) ∈ A, r ∈ Rij. (5.14)

Finally, we can write our Benders reformulation for the hazmat transportation network
design problem as:

max
∑
k∈K

dk(wk + λkΠk) (5.15)

subject to (5.2)-(5.4) and

wk ≤ −πD(k) +
∑

(i,j)∈A

∑
r∈Rij

(
γ
rk(y)
ij yrij + γ

rk(1−y)
ij (1− yrij)

)
, (5.16)

k ∈ K, (π, γ, γy, γ(1−y)) ∈ ext(D1),

Πk ≤
∑

(i,j)∈A

∑
r∈Rij

(βrijyrij + εij)xkij, k ∈ K, p ∈ ext(D2), (5.17)

where Dk
1 is the solution space of (5.10)-(5.14) and Dk

2 is the solution space of (5.5)-(5.7).

6. Conclusion and Future Work

In this paper, we presented a novel Benders decomposition method for bilevel models
of a certain form. In particular, we showed how it can be applied to models with a multi-
commodity shortest path problem as the follower’s problem. We also demonstrated that it
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is possible to reformulate models for common applications in order to match the required
form for this decomposition method.

A clear future endeavor to pursue would be to conduct computational experiments com-
paring the models from the literature and the models obtained from applying our decompo-
sition, in particular, for the case of the HTNDP.
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Conclusion

This thesis contributed to the state of the art of traffic prediction and bilevel network design.
The contribution took the form of three articles. The first of these articles was focused on
two aspects: the analysis of GPS data and estimating a recursive logit model. The data
analysis included is only a fraction of a much larger project conducted for CargoM, but it
demonstrates the wide range of information that can be extracted from it. In fact, this
information fuels the second part of the article as the observed paths taken by the vehicles
are used to estimate the parameter values of a recursive logit model. The calibrated model
can subsequently explain the behavior of drivers as a function of the model parameters.

The second article addressed the issues surrounding the integration of discrete choice
models, such as the recursive logit model used in the first article, in the flow capture prob-
lem. The flow capture problem was an obvious candidate for this work because of its many
applications and the important role that the demand plays in it. The first point of inter-
est in this article is how we adapt the simulation approach of [56] to the more challenging
context of network optimization. Expressing the RUM model in arc utility space instead
of arc probability space leads to linear constraints instead of non-linear ones. By creating
enough scenarios based on realizations of the random term part of the arc utility definition,
we have an estimation of a discrete choice model. This estimation becomes more accurate
as the number of scenarios increases. However, the simulation approach as a whole creates a
large set of variables and constraints. The second point of interest is the Benders decompo-
sition method applied to our flow capture problem formulation. This decomposition features
cuts that can often be calculated by a shortest path algorithm rather than solving a linear
program. As a result, relatively large instances can be solved in reasonable times.

The third article demonstrated that the decomposition method developed in the second
article can be generalized to a particular form of bilevel models. The first part of this article
is based on generic bilevel formulations and how our method can applied to them while
exploiting their structure. The second part of the article consists of adapting three different
state of the art models to the required bilevel form. The three applications explored are:
the hazmat transportation network design problem, the joint network design and pricing
problem, and the flow capture problem. We showed that the particular form required for



the decomposition does in fact encompass many formulations for problems commonly found
in the literature.

As a whole, the three articles provided the means of integrating better demand models in
problems with bilevel formulations. We began with the estimation of a discrete choice model
based on real GPS data. We then showed how it can be included in a general flow capture
problem formulation. Finally, we demonstrated how the decomposition method used in the
flow capture problem could be used for many more applications.

Limitations and Outlook

In this final section, we take a look at the limitations we encountered throughout this
thesis. We also discuss how these limitations can pave the way for future research.

In the first article, there are many directions for potential additional endeavors. One
of the main limitations of our work is the poor quality of the network data used for the
map matching. After carefully inspecting it in a geographical information system applica-
tion (QGIS), we noticed that some nodes, or intersections, are seemingly duplicated and
separated by infinitesimal distances which caused continuity problems in the map matching
process. Also, arcs appeared to be missing from certain intersections rendering some turns
impossible. These issues limited the number of arcs in the observed paths. With a better
representation of the network, we could have benefited from a larger number of observations
for the recursive logit model parameter estimation. Furthermore, if the network data were
to contain additional link attribute information, additional corresponding parameters could
be estimated.

We should also mention that more descriptive analysis could be done. The focus was on
the port of Montreal, but the GPS traces cover a much larger area including some interesting
locations such as the rail yards where many stops are made. Additionally, this is a good
reason to analyze vehicle tours which can provide further insights into potential policies or
changes to the road network. However, we note that the size of the GPS data does not
constitute a representative sample and thus expanding the dataset would be crucial in any
further analysis.

The second article features numerous avenues of research. While reviewing the litera-
ture surrounding the FCP and other network optimization problems, we notice a number of
modeling hypotheses which could be interesting to pursue. The first of these would be arc
capacities. In our case, the network is supposed to be free of congestion, however modeling
this phenomenon could be relevant in certain applications. However, typical capacity con-
straints would be problematic as they involve sums of flows set to be lesser than or equal to a
maximum capacity. This would prevent us from directly applying our current decomposition.

In a similar vein, another compelling prospect would be to add facility capacities to cap
the quantity of demand they can each serve. We could also consider rewarding earlier flow
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capture by making the demand dependent on the arcs and setting it to a higher value for
arcs closer to the origin of any given OD pair. Finally, a formulation where flows can only
be captured once per OD pair could also be interesting to explore.

There are also some more practical possible improvements. A relatively high number of
scenarios is necessary in order to achieve a good approximation of a discrete choice model.
This can be problematic as more scenarios imply a larger model. As such, simulation tech-
niques that reduce the variance of the random variable sampling are worth exploring as
they have the potential to lower the number of scenarios required to reach a stable solu-
tion. Another interesting prospect would be to write a user cut callback function making
use of parallelism. In the current implementation, this function, which derives cuts from
fractional solutions, solves the appropriate LPs sequentially. However, with many scenarios,
user categories and OD pairs, there is a significant gain in solving these problems in parallel.

For the third article, a computational comparison between state of the art models and
the ones obtained without decomposition is the most important future work. This would
allow the decomposition method to be further proven as an interesting solution method. The
results from the second article show that it can indeed handle large instances, but being able
to show similar results for other models would be a significant boon.
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Appendix A

Complete Model Descriptions

A.1. Model CS

Z = max 1
|S|

∑
s∈S

∑
a∈AR

∑
r∈Ra

∑
k∈K

∑
l∈L

(qardkl )vksarl

∑
a∈AR

∑
r∈Ra

caryar ≤ b,

∑
r∈Ra

yar ≤ 1, a ∈ AR,

yar ∈ {0,1}, a ∈ A, r ∈ Ra,

∑
a∈A+

i

xksal −
∑
a∈A−i

xksal =


1, if i = O(k),
−1, if i = D(k), i ∈ N, k ∈ K, l ∈ L, s ∈ S,

0, otherwise,∑
a∈A−n

xksal ≤ 1, n ∈ N, l ∈ L, k ∈ K, s ∈ S.

πksjl − πksil ≤ usal(y,z,εs), a = (i,j) ∈ A, k ∈ K, l ∈ L, s ∈ S,

πksO(k)l = 0, k ∈ K, l ∈ L, s ∈ S,

usal(y,z,εs)− πksjl + πksil ≤Mk
als(1− xksal ), a = (i,j) ∈ A, k ∈ K, l ∈ L, s ∈ S,

xksal ∈ {0,1}, a ∈ A, k ∈ K, l ∈ L, s ∈ S

vksarl ≤ xksal , a ∈ A, r ∈ Ra, l ∈ L, k ∈ K, s ∈ S,

vksarl ≤ yar, a ∈ A, r ∈ Ra, l ∈ L, k ∈ K, s ∈ S,

vksarl ≥ xksal − (1− yar), a ∈ A, r ∈ Ra, l ∈ L, k ∈ K, s ∈ S,

vksarl ≥ 0, a ∈ A, r ∈ Ra, l ∈ L, k ∈ K, s ∈ S.



A.2. Model CS-L

Z = max 1
|S|

∑
s∈S

 ∑
a∈AR

∑
r∈Ra

∑
k∈K

∑
l∈L

(qardkl )vksarl

+
∑
k∈K

∑
l∈L

λksl

πksD(k)l −
∑
a∈A

∑
r∈Ra

βarlv
ks
arl + Ψs

alx
ks
al


∑

a∈AR

∑
r∈Ra

caryar ≤ b,

∑
r∈Ra

yar ≤ 1, a ∈ AR,

yar ∈ {0,1}, a ∈ A, r ∈ Ra,

∑
a∈A+

i

xksal −
∑
a∈A−i

xksal =


1, if i = O(k),
−1, if i = D(k), i ∈ N, k ∈ K, l ∈ L, s ∈ S,

0, otherwise,∑
a∈A−n

xksal ≤ 1, n ∈ N, l ∈ L, k ∈ K, s ∈ S.

πksjl − πksil ≤ usal(y,z,εs), a = (i,j) ∈ A, k ∈ K, l ∈ L, s ∈ S,

πksO(k)l = 0, k ∈ K, l ∈ L, s ∈ S,

usal(y,z,εs)− πksjl + πksil ≤Mk
als(1− xksal ), a = (i,j) ∈ A, k ∈ K, l ∈ L, s ∈ S,

xksal ∈ {0,1}, a ∈ A, k ∈ K, l ∈ L, s ∈ S

vksarl ≤ xksal , a ∈ A, r ∈ Ra, l ∈ L, k ∈ K, s ∈ S,

vksarl ≤ yar, a ∈ A, r ∈ Ra, l ∈ L, k ∈ K, s ∈ S,

vksarl ≥ xksal − (1− yar), a ∈ A, r ∈ Ra, l ∈ L, k ∈ K, s ∈ S,

vksarl ≥ 0, a ∈ A, r ∈ Ra, l ∈ L, k ∈ K, s ∈ S.
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A.3. Model SD

Z = max 1
|S|

∑
s∈S

∑
a∈AR

∑
r∈Ra

∑
k∈K

∑
l∈L

(qardkl )vksarl

∑
a∈AR

∑
r∈Ra

caryar ≤ b,

∑
r∈Ra

yar ≤ 1, a ∈ AR,

yar ∈ {0,1}, a ∈ A, r ∈ Ra,

∑
a∈A+

i

xksal −
∑
a∈A−i

xksal =


1, if i = O(k),
−1, if i = D(k), i ∈ N, k ∈ K, l ∈ L, s ∈ S,

0, otherwise,∑
a∈A−n

xksal ≤ 1, n ∈ N, l ∈ L, k ∈ K, s ∈ S.

xksal ≥ 0, a ∈ A, k ∈ K, l ∈ L, s ∈ S.

πksjl − πksil ≤ usal(y,z,εs), a = (i,j) ∈ A, k ∈ K, l ∈ L, s ∈ S,

πksO(k)l = 0, k ∈ K, l ∈ L, s ∈ S,

πksD(k)l =
∑
a∈A

∑
r∈Ra

βarlv
ks
arl + Ψs

alx
ks
al

 , k ∈ K, l ∈ L, s ∈ S.

vksarl ≤ xksal , a ∈ A, r ∈ Ra, l ∈ L, k ∈ K, s ∈ S,

vksarl ≤ yar, a ∈ A, r ∈ Ra, l ∈ L, k ∈ K, s ∈ S,

vksarl ≥ xksal − (1− yar), a ∈ A, r ∈ Ra, l ∈ L, k ∈ K, s ∈ S,

vksarl ≥ 0, a ∈ A, r ∈ Ra, l ∈ L, k ∈ K, s ∈ S.
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A.4. Model SD-L

Z = max 1
|S|

∑
s∈S

 ∑
a∈AR

∑
r∈Ra

∑
k∈K

∑
l∈L

(qardkl )vksarl

+
∑
k∈K

∑
l∈L

λksl

πksD(k)l −
∑
a∈A

∑
r∈Ra

βarlv
ks
arl + Ψs

alx
ks
al


∑

a∈AR

∑
r∈Ra

caryar ≤ b,

∑
r∈Ra

yar ≤ 1, a ∈ AR,

yar ∈ {0,1}, a ∈ A, r ∈ Ra,

∑
a∈A+

i

xksal −
∑
a∈A−i

xksal =


1, if i = O(k),
−1, if i = D(k), i ∈ N, k ∈ K, l ∈ L, s ∈ S,

0, otherwise,∑
a∈A−n

xksal ≤ 1, n ∈ N, l ∈ L, k ∈ K, s ∈ S.

xksal ≥ 0, a ∈ A, k ∈ K, l ∈ L, s ∈ S.

πksjl − πksil ≤ usal(y,z,εs), a = (i,j) ∈ A, k ∈ K, l ∈ L, s ∈ S,

πksO(k)l = 0, k ∈ K, l ∈ L, s ∈ S,

πksD(k)l =
∑
a∈A

∑
r∈Ra

βarlv
ks
arl + Ψs

alx
ks
al

 , k ∈ K, l ∈ L, s ∈ S.

vksarl ≤ xksal , a ∈ A, r ∈ Ra, l ∈ L, k ∈ K, s ∈ S,

vksarl ≤ yar, a ∈ A, r ∈ Ra, l ∈ L, k ∈ K, s ∈ S,

vksarl ≥ xksal − (1− yar), a ∈ A, r ∈ Ra, l ∈ L, k ∈ K, s ∈ S,

vksarl ≥ 0, a ∈ A, r ∈ Ra, l ∈ L, k ∈ K, s ∈ S.

104



A.5. Model L

Z = max 1
|S|

∑
s∈S

 ∑
a∈AR

∑
r∈Ra

∑
k∈K

∑
l∈L

(qardkl )vksarl

+
∑
k∈K

∑
l∈L

λksl

πksD(k)l −
∑
a∈A

∑
r∈Ra

βarlv
ks
arl + Ψs

alx
ks
al


∑

a∈AR

∑
r∈Ra

caryar ≤ b,

∑
r∈Ra

yar ≤ 1, a ∈ AR,

yar ∈ {0,1}, a ∈ A, r ∈ Ra,

∑
a∈A+

i

xksal −
∑
a∈A−i

xksal =


1, if i = O(k),
−1, if i = D(k), i ∈ N, k ∈ K, l ∈ L, s ∈ S,

0, otherwise,∑
a∈A−n

xksal ≤ 1, n ∈ N, l ∈ L, k ∈ K, s ∈ S.

xksal ≥ 0, a ∈ A, k ∈ K, l ∈ L, s ∈ S.

πksjl − πksil ≤ usal(y,z,εs), a = (i,j) ∈ A, k ∈ K, l ∈ L, s ∈ S,

πksO(k)l = 0, k ∈ K, l ∈ L, s ∈ S,

vksarl ≤ xksal , a ∈ A, r ∈ Ra, l ∈ L, k ∈ K, s ∈ S,

vksarl ≤ yar, a ∈ A, r ∈ Ra, l ∈ L, k ∈ K, s ∈ S,

vksarl ≥ xksal − (1− yar), a ∈ A, r ∈ Ra, l ∈ L, k ∈ K, s ∈ S,

vksarl ≥ 0, a ∈ A, r ∈ Ra, l ∈ L, k ∈ K, s ∈ S.

105





Appendix B

Joint Network Design and Pricing

Joint network design and pricing (JNDP), unlike network pricing, does not enjoy a vast
literature. The combination of network design and pricing aspects within the same model is
challenging which makes it an interesting subject for our method. We provide both a litera-
ture review and detailed mathematical developments leading to our Benders decomposition
for the problem.

B.1. Literature Review

Joint network design and pricing can be seen from a similar perspective as the HTNDP:
the leader’s problem consists of maximizing profits by deciding which links can be used by the
users and at what cost, while the follower’s problem remains to find the shortest path, from
origin to destination, in regards to several factors including the tariffs. The same sequential
and uncooperative interaction between leader and follower exists in this problem as it does
in the hazmat problem.

The literature surrounding the joint network design and pricing problem remains fairly
scarce despite the relatively large body of work on network design problems and pricing
problems respectively. To the best of our knowledge, the first solution method for the JNDP
is introduced in [13] where a comparison between a heuristic and the exact bilevel model
reformulated to a MILP solved by CPLEX is provided. We note that the idea of moving the
strong duality constraint to the objective function along with a weight is used in the heuristic.
It also decomposes the subproblem in shortest path problems by commodity. Their work is
extended in [14] where different levels of capacity are considered. A similar comparison is
provided which shows the heuristic performing well whereas the performance of the MIP is
relatively variable.

[73] propose a model which takes into account service time constraints and economies of
scale. Similarly to [13] and [14], a heuristic is proposed and is shown to provide near optimal
solutions in relatively short times.



B.2. Applying the Decomposition

The bilevel model we use as a starting point is a straightforward adaptation of the one
found in [13] where the continuous tariff variables are changed to integer variables each
multiplying a different possible tariff value. We argue that this is a reasonable change which
does not entail any loss of generality as monetary quantities fundamentally take on integer
values.

We denote the graph representing the full network as G = (N,A) and A1 as the set of
arcs controlled by the leader and A2 as A\A1. Binary variables yij indicate whether an arc
a = (i,j) ∈ A1 is open or not. A fixed cost fij is associated with the opening of an arc a ∈ A1

as well as an operating cost cij which is multiplied by the quantity of flow dk using the link
across all OD pairs k ∈ K. Binary variables tτij indicate which tariff T τ is selected from the
set of possible tariffs T for a given arc a ∈ A1. For arcs a ∈ A2, competitors are assumed
to impose a certain tariff uij. Flow variables xkij indicate which arcs (i,j) ∈ A1 are used by
users of OD pair k and flow variables skij are homologous with A2.

max
∑
k∈K

∑
(i,j)∈A1

∑
τ∈T

T τ tτijd
kxkij −

∑
(i,j)∈A1

fijyij −
∑
k∈K

∑
(i,j)∈A1

cijd
kxkij, (B.2.1)

∑
τ∈T

tτij ≤ 1 ∀(i,j) ∈ A1, (B.2.2)

tτij ∈ {0,1} ∀(i,j) ∈ A1,∀τ ∈ T , (B.2.3)

yij ∈ {0,1} ∀(i,j) ∈ A1, (B.2.4)

min
∑
k∈K

dk
( ∑

(i,j)∈A1

∑
τ∈T

T τ tτijx
k
ij +

∑
(i,j)∈A2

uijs
k
ij

)
, (B.2.5)

xkij ≤ yij ∀(i,j) ∈ A1,∀k ∈ K, (B.2.6)

Exk + Fsk =


−1, if j = O(k),

1, if j = D(k), ∀j ∈ N, k ∈ K,
0, otherwise,

(B.2.7)

xkij ≥ 0 ∀(i,j) ∈ A1, (B.2.8)

skij ≥ 0 ∀(i,j) ∈ A2, (B.2.9)

In constraint (B.2.7), E and F represent coefficient matrices for flow conservation con-
straints. The leader’s objective (B.2.1) consists of maximizing profits from the imposed
tariffs while minimizing the fixed costs and operational costs of opening arcs. Constraints
(B.2.2) implies that only one tariff can be selected at most for each arc ∈ A1. The follower’s
objective (B.2.5) consists of minimizing the costs incurred by using the network (the tariffs,
in this case). Constraints (B.2.6) are the classical flow conservation constraints adapted to
the two subsets of arcs A1 and A2.
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As was the case in the original formulation of the HTNDP, (B.2.6) must be reformulated
as a penalty in the objective function of the follower and the problem as a whole can be
separated by commodity k. The resulting formulation corresponds to the form (1.1)-(1.3)1.
Therefore, we can apply our Benders decomposition method as long as (5)-(6) are verified.
Assumption (5) is verified since our tariffs represented by discrete variables, therefore an
upper bound can be calculated by considering only the highest tariffs possible. In the
formulation of [13], tariffs are continuous and ≥ 0 and so it is assumed that there exists
at least one tariff-free path for each OD pair. We believe our formulation does not require
this assumption. Assumption (6) holds because arc travel costs are assumed to be ≥ 0.

Applying our methodology leads us to solve two shortest path problems, for each k ∈ K,
with the following arc costs in order to generate cuts on w and Π respectively with an integer
y current solution:

λk
(
dk(

∑
τ∈T

T τ tτij +M(1− yij) + uij)
)

+ dkcij − dk
∑
τ∈T

T τ tτij (B.2.10)

and
dk(

∑
τ∈T

T τ tτij +M(1− yij) + uij). (B.2.11)

We have the following |K| problems to solve for cuts on w with a fractional y:

max πD(k) +
∑

(i,j)∈A1

γ
k(y)
ij yij +

∑
(i,j)∈A

γ
k(1−y)
ij (1− yij)

+
∑

(i,j)∈A1

θ
k(t)
ij tτij +

∑
(i,j)∈A

θ
k(1−t)
ij (1− tτij),

(B.2.12)

ETπk − F Tπk − γkij + γ
k(1−y)
ij − θkij + θ

k(1−t)
ij ≤ λk

(
dk(M + uij)

)
− dkcij (B.2.13)

∀(i,j) ∈ A,

γkij + γ
k(y)
ij − γk(1−y)

ij ≥ −λM ∀(i,j) ∈ A, (B.2.14)

γkij, γ
k(y)
ij , γ

k(1−y)
ij ≥ 0 ∀(i,j) ∈ A, (B.2.15)

θkij + θ
k(t)
ij − θ

k(1−t)
ij ≥ (λ− 1)dk

∑
τ∈T

T τ ∀(i,j) ∈ A, (B.2.16)

θkij, θ
k(t)
ij , θ

k(1−t)
ij ≥ 0 ∀(i,j) ∈ A. (B.2.17)

Finally, we can write our Benders reformulation for the hazmat transportation network
design problem as:

max−
∑
ij∈A1

fijyij +
∑
k∈K

wk − λkΠk (B.2.18)

1The references in this Appendix are found in the third article.
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subject to (B.2.2)-(B.2.4) and

wk ≤ πD(k) +
∑

(i,j)∈A1

γ
k(y)
ij yij +

∑
(i,j)∈A

γ
k(1−y)
ij (1− yij)

+
∑

(i,j)∈A1

θ
k(t)
ij tτij +

∑
(i,j)∈A

θ
k(1−t)
ij (1− tτij)

(B.2.19)

∀k ∈ K, πki , γkij, γ
k(y)
ij , γ

k(1−y)
ij , θkij + θ

k(t)
ij − θ

k(1−t)
ij ∈ Dk

1 ,

Πk ≥ dk
( ∑

(i,j)∈A1

∑
τ∈T

T τ tτijx
k
ij +

∑
(i,j)∈A2

uijs
k
ij +

∑
(i,j)∈A1

M(1− yij)xkij
)

(B.2.20)

∀k ∈ K, x, s ∈ Dk
2 ,

where Dk
1 is the solution space of (B.2.12)-(B.2.17) and Dk

2 is the solution space of
(B.2.5)-(B.2.9) when (B.2.6) is rewritten as a penalty in the objective function.
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