Université de Montréal

Multi-player Games in the Era of Machine
Learning

par

Gauthier Gidel

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

These présentée a la Faculté des arts et des sciences
en vue de l'obtention du grade de Philosophize Doctor (Ph.D.)
en informatique

July, 2020

(© Gauthier Gidel, 2020.

Université de Montréal
Faculté des arts et des sciences

Cette theése intitulée:

Multi-player Games in the Era of Machine
Learning

présentée par:

Gauthier Gidel

a été évaluée par un jury composé des personnes suivantes:

[oannis Mitliagkas, président-rapporteur
Simon Lacoste-Julien, directeur de recherche
Yoshua Bengio, membre du jury

Constantinos Daskalakis, examinateur externe

These acceptée le:

A toi qui lis ces lignes, et & la beauté qui te guide.

To you who read these lines, and to the beauty guiding you.

iii

Résumé

Parmi tous les jeux de société joués par les humains au cours de I'histoire, le jeu
de go était considéré comme 1'un des plus difficiles a maitriser par un programme
informatique [Van Den Herik et al., 2002]; Jusqu’a ce que ce ne soit plus le cas [Silver
et al., 2016]. Cette percée révolutionnaire [Miiller, 2002, Van Den Herik et al., 2002]
fit le fruit d’'une combinaison sophistiquée de Recherche arborescente Monte-Carlo
et de techniques d’apprentissage automatique pour évaluer les positions du jeu,
mettant en lumiere le grand potentiel de I'apprentissage automatique pour résoudre
des jeux.

L’apprentissage antagoniste, un cas particulier de I'optimisation multiobjective,
est un outil de plus en plus utile dans 'apprentissage automatique. Par exemple, les
jeux a deux joueurs et a somme nulle sont importants dans le domain des réseaux
génératifs antagonistes [Goodfellow et al., 2014] et pour maitriser des jeux comme
le Go ou le Poker en s’entrainant contre lui-méme [Silver et al., 2017, Brown and
Sandholm, 2017]. Un résultat classique de la théorie des jeux indique que les jeux
convexes-concaves ont toujours un équilibre [Neumann, 1928]. Etonnamment, les
praticiens en apprentissage automatique entrainent avec succes une seule paire de
réseaux de neurones dont 1’objectif est un probleme de minimax non convexe et
non concave alors que pour une telle fonction de gain, I'existence d’un équilibre de
Nash n’est pas garantie en général. Ce travail est une tentative d’établir une solide
base théorique pour I'apprentissage dans les jeux.

La premiere contribution explore le théoreme minimax pour une classe partic-
uliere de jeux nonconvexes-nonconcaves qui englobe les réseaux génératifs antago-
nistes. Cette classe correspond a un ensemble de jeux a deux joueurs et a somme
nulle joués avec des réseaux de neurones.

Les deuxiéme et troisiéme contributions étudient 1'optimisation des problemes
minimax, et plus généralement, les inégalités variationnelles dans le cadre de
I’apprentissage automatique. Bien que la méthode standard de descente de gradient
ne parvienne pas a converger vers 1’équilibre de Nash de jeux convexes-concaves sim-
ples, il existe des moyens simples d’utiliser des gradients pour obtenir des méthodes
qui convergent. Nous étudierons plusieurs techniques telles que 'extrapolation, la
moyenne et la quantité de mouvement a parametre négatif.

La quatrieme contribution fournit une étude empirique du comportement pra-
tique des réseaux génératifs antagonistes. Dans les deuxieme et troisieme contribu-
tions, nous diagnostiquons que la méthode du gradient échoue lorsque le champ de
vecteur du jeu est fortement rotatif. Cependant, une telle situation peut décrire un

iv

pire des cas qui ne se produit pas dans la pratique. Nous fournissons de nouveaux
outils de visualisation afin d’évaluer si nous pouvons détecter des rotations dans
comportement pratique des réseaux génératifs antagonistes.

Abstract

Among all the historical board games played by humans, the game of go was con-
sidered one of the most difficult to master by a computer program [Van Den Herik
et al., 2002]; Until it was not [Silver et al., 2016]. This odds-breaking break-
through [Miller, 2002, Van Den Herik et al., 2002] came from a sophisticated
combination of Monte Carlo tree search and machine learning techniques to evalu-
ate positions, shedding light upon the high potential of machine learning to solve
games.

Adversarial training, a special case of multiobjective optimization, is an increas-
ingly useful tool in machine learning. For example, two-player zero-sum games are
important for generative modeling (GANs) [Goodfellow et al., 2014] and mastering
games like Go or Poker via self-play [Silver et al., 2017, Brown and Sandholm,
2017]. A classic result in Game Theory states that convex-concave games always
have an equilibrium [Neumann, 1928]. Surprisingly, machine learning practitioners
successfully train a single pair of neural networks whose objective is a nonconvex-
nonconcave minimax problem while for such a payoff function, the existence of a
Nash equilibrium is not guaranteed in general. This work is an attempt to put
learning in games on a firm theoretical foundation.

The first contribution explores minimax theorems for a particular class of
nonconvex-nonconcave games that encompasses generative adversarial networks.
The proposed result is an approximate minimax theorem for two-player zero-sum
games played with neural networks, including WGAN, StarCrat II, and Blotto
game. Our findings rely on the fact that despite being nonconcave-nonconvex with
respect to the neural networks parameters, the payoff of these games are concave-
convex with respect to the actual functions (or distributions) parametrized by these
neural networks.

The second and third contributions study the optimization of minimax prob-
lems, and more generally, variational inequalities in the context of machine learn-
ing. While the standard gradient descent-ascent method fails to converge to the
Nash equilibrium of simple convex-concave games, there exist ways to use gradi-
ents to obtain methods that converge. We investigate several techniques such as
extrapolation, averaging and negative momentum. We explore these technique ex-
perimentally by proposing a state-of-the-art (at the time of publication) optimizer
for GANSs called ExtraAdam. We also prove new convergence results for Extrapo-
lation from the past, originally proposed by Popov [1980], as well as for gradient
method with negative momentum.

vi

The fourth contribution provides an empirical study of the practical landscape
of GANs. In the second and third contributions, we diagnose that the gradient
method breaks when the game’s vector field is highly rotational. However, such a
situation may describe a worst-case that does not occur in practice. We provide new
visualization tools in order to exhibit rotations in practical GAN landscapes. In this
contribution, we show empirically that the training of GANs exhibits significant
rotations around Local Stable Stationary Points (LSSP), and we provide empirical
evidence that GAN training converges to a stable stationary point which, is a
saddle point for the generator loss, not a minimum, while still achieving excellent
performance.

vii

Keywords—Mots-clés

machine learning, game theory, adversarial training, minimax, Nash equilib-
rium, optimization, multi-player games, variational inequality, generative adver-
sarial networks, extragradient, generative modeling, landscape visualization, mo-
mentum.

apprentissage statistique, théorie des jeux, apprentissage antagoniste, mini-
max, equilibre de Nash, optimisation, jeux a somme nulle, inégalités variationelles,
réseaux génératifs antagonistes, extragradient, model génératifs, visualisation de
champ de vecteurs, méthode du moment.

viii

Contents

1 Introduction 1
1 Multiplayer games and Machine Learning 2
1.1 Motivation: defining 'good’ task losses through games 3

1.2 Foundations of Games for Machine Learning 3

2 Overview of the Thesis Structure 4
2.1 Defining a target for learning in games)

2.2 Building our theoretical understanding of game optimization 6

2.3 Studying the practical vector field of games 7

3 Excluded research oo 7

2 Background 9
1 Single Objective Optimization 9
1.1 Convex Optimization 9

1.2 Non-Convex Single-objective Optimization 12

2 Multi-objective Optimization. 13
2.1 Minimax Problems and Two-player Games 13

2.2 Extension to n-player Games 13

2.3 Existence of Equilibria 00000 14

24 Merit functions for games L. 14

2.5 Other multi-objective formulation 15

2.6 Solving games with optimization 16

3 Variational Inequality Problem 17
3.1 Merit Functions for variational inequality problems 18

3.2 Standard algorithms to Solve Variational Inequality Problems 18

4 Neural Networks Training 19

5 Generative Adversarial Networks 22
5.1 Standard GANs 22

5.2 Divergence minimization and Wasserstein GANs 23

3 Prologue to First Contribution 24
1 Article Details 24

ix

2 Contributions of the authors 24

4 Minimax Theorems for Nonconcave-Nonconvex Games Played

with Neural Networks 25
1 Introduction 25
2 Related work 27
3 Motivation: Two-player Games in Machine Learning 28
4 An assumption for nonconcave-nonconvex games 30
5) Minimax Theorems 32
5.1 Limited Capacity Equilibrium in the Space of Players 33
5.2 Approximate minimax equilibrium 34
5.3 Achieving a Mixture or an Average with a Single Neural Net 35

5.4 Minimax Theorem for Nonconcave-noncavex Games Played
with Neural Networks 36
6 Application: Solving Colonel Blotto Game 37
7 Discussion 38
5 Prologue to the Second Contribution 40
1 Article Details 40
2 Contributions of the authors 40
3 Modifications with respect to the published paper 40

6 A Variational Inequality Perspective on Generative Adversarial

Networks 41
1 Introduction 41
2 GAN optimization as a variational inequality problem 43
2.1 GAN formulations oL 43
2.2 Equilibrium 43
2.3 Variational inequality problem formulation 44
3 Optimization of Variational Inequalities (batch setting) 45
3.1 Averaging 45
3.2 Extrapolationo 47
3.3 Extrapolation from the past 48
4 Optimization of VIP with stochastic gradients 50
5 Combining the techniques with established algorithms 52
6 Related Work o 54
7 Experiments 5%)
7.1 Bilinear saddle point (stochastic) 55
7.2 WGAN and WGAN-GP on CIFAR10 56

8 Conclusion e 57

7 Prologue to the Third Contribution 59
1 Article Detailso 59

2 Contributions of the authors 59

3 Modifications with respect to the published paper 59

8 Negative Momentum for Improved Game Dynamics 60
1 Introduction 60

2 Background oo 61

3 Tuning the Step-size 64

4 Negative Momentum oL 66

5 Bilinear Smooth Games 69
5.1 Simultaneous gradient descent 70

5.2 Alternating gradient descent 70

6 Experiments and Discussion 72

7 Related Work 74

8 Conclusion 75

9 Prologue to the Fourth Contribution 76
1 Article Details 76

2 Contributions of the authors 76

10 A Closer Look at the Optimization Landscapes of Generative

Adversarial Network oo 77
1 Introduction 7
2 Related work 78
3 Formulations for GAN optimization and their practical implications 80
3.1 The standard game theory formulation 80
3.2 An alternative formulation based on the game vector field . 81
3.3 Rotation and attraction around locally stable stationary
points In games 83
4 Visualization for the vector field landscape 84
4.1 Standard visualizations for the loss surface 85
4.2 Proposed visualization: Path-angle 85
4.3 Archetypal behaviors of the Path-angle around a LSSP . . . 86
5 Numerical results on GANs 87
5.1 Evidence of rotation around locally stable stationary points
in GANs 88
5.2 The locally stable stationary points of GANs are not local
Nash equilibria oo 90

xi

6 Discussion e 91
11 Conclusions, Discussions, and Perspectives. 92
1 Summary and Conclusions 92
2 Discussions and Perspectives L. 93

A Minimax Theorem for Nonconcave-Nonconvex Games Played

with Neural Networks 113
1 Relevance of the Minimax theorem in the Context of Machine Learning113
2 Interpretation of Equilibria in Latent Games 113
3 Proof of results from Section 5 115
3.1 Proof of Proposition 1 115
3.2 Proof of Theorem 2 116
3.3 Proof of Proposition 3 119
3.4 Proof of Proposition 2 119
3.5 Proof of Theorem 1 121

B A Variational Inequality Perspective on Generative Adversarial

Networks 123
1 Definitions 123
1.1 Projection mapping oo 123
1.2 Smoothness and Monotonicity of the operator 124
2 Gradient methods on unconstrained bilinear games 124
2.1 Proof of Proposition 1 124
2.2 Implicit and extrapolation method 126
2.3 Generalization to general unconstrained bilinear objective . . 127
2.4 Extrapolation from the past for strongly convex objectives . 130
3 More on merit functionso 133
3.1 More general merit functions 134
3.2 On the importance of the merit function 135
3.3 Variational inequalities for non-convex cost functions 135
4 Another way of implementing extrapolation to SGD 136
5 Variance comparison between AvgSGD and SGD with prediction
method 137
6 Proof of Theorems 137
6.1 Proof of Thm. 2 139
6.2 Proofof Thm. 3. 141
6.3 Proof of Thm. 4 142
6.4 Proof of Theorem 3 146
7 Additional experimental results 149
7.1 Toy non-convex GAN (2D and deterministic) 149
7.2 DCGAN with WGAN-GP objective 149

xii

7.3 FID scores for ResNet architecture with WGAN-GP objective 150

7.4 Comparison of the methods with the same learning rate . . . 153
7.5 Comparison of the methods with and without uniform aver-
AgING L 155
8 Hyperparameters 159
C Negative Momentum for Improved Game Dynamics 161
1 Additional Figures 161
1.1 Maximum magnitude of the eigenvalues gradient descent
with negative momentum on a bilinear objective 161
1.2 Mixture of Gaussian. 162
2 Discussion on Momentum and Conditioning 162
3 Lemmas and Definitions 164
4 Proofs of the Theorems and Propositions 167
4.1 Proof of Thm. 1. 167
4.2 Proof of Thm. 2. 168
4.3 Proofof Thm. 3. 170
4.4 Proof of Thm. 4 171
4.5 Proof of Thm. 5. 172
4.6 Proof of Thm. 6 177
D A Closer Look at the Optimization Landscapes of Generative
Adversarial Networks 183
1 Proof of theorems and propositions 183
1.1 Proof of Theorem 1 183
1.2 Being a DNE is neither necessary or sufficient for being a LSSP 184
2 Computation of the top-k Eigenvalues of the Jacobian 186
3 Experimental Details 00 186
3.1 Mixture of Gaussian Experiment 186
3.2 MNIST Experiment 186
3.3 Path-Angle Plot 188
3.4 Instability of Gradient Descent 188
3.5 Additional Results with Adam 189

xiii

List of Tables

6.1

10.1

B.1

B.2

B.3

B4

Best inception scores (averaged over 5 runs) achieved on CIFARI0
for every considered Adam variant. OptimAdam is the related Op-
timistic Adam [Daskalakis et al., 2018] algorithm. EMA denotes
exponential moving average (with 5 = 0.9999, see Eq. 3.2). We
see that the techniques of extrapolation and averaging consistently
enable improvements over the baselines (in italic).

Summary of the implications between Differentiable Nash Equilibrium
(DNE) and a locally stable stationnary point (LSSP): in general, being a
DNE is neither necessary or sufficient for being a LSSP.

DCGAN architecture used for our CIFAR-10 experiments. When
using the gradient penalty (WGAN-GP), we remove the Batch Nor-
malization layers in the discriminator.
Best inception scores (averaged over 5 runs) achieved on CIFAR10
for every considered Adam variant. We see that the techniques of
extrapolation and averaging consistently enable improvements over
the baselines (in italic).
ResNet architecture used for our CIFAR-10 experiments. When us-
ing the gradient penalty (WGAN-GP), we remove the Batch Nor-
malization layers in the discriminator.
Best FID scores (averaged over 5 runs) achieved on CIFAR10 for ev-
ery considered Adam variant. OptimAdam is the related Optimistic
Adam [Daskalakis et al., 2018] algorithm. We see that the tech-
niques of extrapolation and EMA consistently enable improvements
over the baselines (in italic).

xiv

List of Figures

4.1

6.1

6.2

6.3

6.4

8.1

8.2

Training of latent agents to play differentiable Blotto with K = 3. Right:
The suboptimality corresponds to the payoff of the agent against a best
response. We averaged our results over 40 random seeds.

Comparison of the basic gradient method (as well as Adam) with the
techniques presented in §3 on the optimization of (3.3). Only the algo-
rithms advocated in this paper (Averaging, Extrapolation and Extrap-
olation from the past) converge quickly to the solution. Each marker
represents 20 iterations. We compare these algorithms on a non-convex
objective in §7.1.
Three variants of SGD computing 7' updates, using the techniques
introduced in §3.o o
Performance of the considered stochastic optimization algorithms on the
bilinear problem (7.1). Each method uses its respective optimal step-size
found by grid-search.o
Left: Mean and standard deviation of the inception score computed over
5 runs for each method on WGAN trained on CIFAR10. To keep the
graph readable we show only SimAdam but AltAdam performs similarly.
Middle: Samples from a ResNet generator trained with the WGAN-
GP objective using AvgExtraAdam. Right: WGAN-GP trained on
CIFAR10: mean and standard deviation of the inception score computed
over 5 runs for each method using the best performing learning rates; all
experiments were run on a NVIDIA Quadro GP100 GPU. We see that
ExtraAdam converges faster than the Adam baselines.

Left: Decreasing trend in the value of momentum used for training
GANSs across time. Right: Graphical intuition of the role of mo-
mentum in two steps of simultaneous updates (tan) or alternated
updates (olive). Positive momentum (red) drives the iterates out-
wards whereas negative momentum () pulls the iterates back
towards the center, but it is only strong enough for alternated up-
dates.
Effect of gradient methods on an unconstrained bilinear example:
ming max, 6" Ay . The quantity A, is the distance to the optimum
(see formal definition in §5) and f is the momentum value.

XV

62

8.3

8.4

8.5

Eigenvalues \; of the Jacobian Vwv(¢*,0*), their trajectories 1 — n\; for
growing step-sizes, and the optimal step-size. The unit circle is drawn in
black, and the red dashed circle has radius equal to the largest eigenvalue
Imax, Which is directly related to the convergence rate. Therefore, smaller

red circles mean better convergence rates. Top: The red circle is limited

by the tangent trajectory line 1 —n\;, which means the best convergence

rate is limited only by the eigenvalue which will pass furthest from the
origin as 1 grows, i.e., A; = argmin i(1/);). Bottom: The red circle is

cut (not tangent) by the trajectories at points 1 —nA\; and 1 — nAs. The

7 is optimal because any increase in n will push the eigenvalue A\; out of

the red circle, while any decrease in step-size will retract the eigenvalue

A3 out of the red circle, which will lower the convergence rate in any case.
Figure inspired by Mescheder et al. [2017]. 66
Transformation of the eigenvalues by the negative momentum method for

a game introduced in (2.4) withd =p=1,A =1, = 0.4,n = 1.55, 8 = —0.25.
Convergence circles for gradient method are in red, negative momentum

in green, and unit circle in black. Solid convergence circles are
optimized over all step-sizes, while dashed circles are at a given step-size

7n. For a fixed 7, original eigenvalues are in red and negative momentum
eigenvalues are in blue. Their trajectories as n sweeps in [0,2] are

in light colors. Negative momentum helps as the new convergence
circle (green) is smaller, due to shifting the original eigenvalues (red
dots) towards the origin (right blue dots), while the eigenvalues due

to state augmentation (left blue dots) have smaller magnitude and do

not influence the convergence rate. Negative momentum allows faster
convergence (green circle is inside the solid red circle) for a much broader
range of step-sizes. 67
The effect of momentum in a simple min-max bilinear game where the
equilibrium is at (0,0). (left-a) Simultaneous GD with no momentum
(left-b) Alternating GD with no momentum. (left-c) Alternating GD
with a momentum of +0.1. (left-d) Alternating GD with a momentum

of —0.1. (right) A grid of experiments for alternating GD with different
values of momentum (f) and step-sizes (n): While any positive momen-
tum leads to divergence, small enough value of negative momentum allows

for convergence with large step-sizes. The color in each cell indicates the
normalized distance to the equilibrium after 500k iteration, such that 1.0
corresponds to the initial condition and values larger (smaller) than 1.0
correspond to divergence (convergence). 71

xvi

8.6

10.1

10.2

10.3

10.4

Comparison between negative and positive momentum on GANs with
saturating loss on CIFAR-10 (left) and on Fashion MNIST (right) using
a residual network. For each dataset, a grid of different values of momen-
tum () and step-sizes (1) is provided which describes the discriminator’s
settings while a constant momentum of 0.5 and step-size of 10~ is used
for the generator. Each cell in CIFAR-10 (or Fashion MNIST) grid con-
tains a single configuration in which its color (or its content) indicates
the inception score (or a single sample) of the model. For CIFAR-10 ex-
periments, yellow is higher while blue is the lower inception score. Along
each row, the best configuration is chosen and more samples from that
configuration are presented on the right side of each grid.

Visualizations of Example 4. Left: projection of the game vector field on
the plane A2 = 1. Right: Generator loss. The descent direction is (1,)
(in grey). As the generator follows this descent direction, the discrimina-
tor changes the value of ¢, making the saddle rotate, as indicated by the
circular black arrow. oo o Lo
Above: game vector field (in grey) for different archetypal behav-
iors. The equilibrium of the game is at (0,0). Black arrows corre-
spond to the directions of the vector field at different linear inter-
polations between two points: e and x. Below: path-angle ¢(«)
for different archetypal behaviors (right y-axis, in blue). The left
y-axis in orange correspond to the norm of the gradients. Notice the
"bump" in path-angle (close to o« = 1), characteristic of rotational
dynamics.
Path-angle for NSGAN (top row) and WGAN-GP (bottom row)
trained on the different datasets, see Appendix D §3.3 for details
on how the path-angle is computed. For MoG the ending point is a
generator which has learned the distribution. For MNIST and CI-
FAR10 we indicate the Inception score (IS) at the ending point of the
interpolation. Notice the “bump" in path-angle (close to o = 1.0),
characteristic of games rotational dynamics, and absent in the min-
imization problem (d). Details on error bars in Appendix D §3.3.

Eigenvalues of the Jacobian of the game for NSGAN (top row)
and WGAN-GP (bottom row) trained on the different datasets.
Large imaginary eigenvalues are characteristic of rotational behavior.
Notice that NSGAN and WGAN-GP objectives lead to very different
landscapes (see how the eigenvalues of WGAN-GP are shifted to the
right of the imaginary axis). This could explain the difference in

performance between NSGAN and WGAN-GP.

xvii

38

10.5 NSGAN. Top k-Eigenvalues of the Hessian of each player (in terms
of magnitude) in descending order. Top Eigenvalues indicate that
the Generator does not reach a local minimum but a saddle point
(for CIFAR10 actually both the generator and discriminator are at
saddle points). Thus the training algorithms converge to LSSPs
which are not Nash equilibria.

10.6 WGAN-GP. Top k-Eigenvalues of the Hessian of each player (in
terms of magnitude) in descending order. Top Eigenvalues indicate
that the Generator does not reach a local minimum but a saddle
point. Thus the training algorithms converge to LSSPs which are
not Nash equilibria. 00000

A.1 Difference between pointwise averaging of function and latent mix-
ture of mapping.

B.1 Comparison of five algorithms (described in Section 3) on the non-
convex GAN objective (7.1), using the optimal step-size for each
method. Left: The gradient vector field and the dynamics of the
different methods. Right:The distance to the optimum as a function
of the number of iterations.

B.2 DCGAN architecture with WGAN-GP trained on CIFAR10: mean
and standard deviation of the inception score computed over 5 runs
for each method using the best performing learning rate plotted over
number of generator updates (Left) and wall-clock time (Right); all
experiments were run on a NVIDIA Quadro GP100 GPU. We see
that ExtraAdam converges faster than the Adam baselines. . . .

B.3 Inception score on CIFAR10 for WGAN-GP (DCGAN) over number
of generator updates for different learning rates. We can see that
AvgExtraAdam is less sensitive to the choice of learning rate.

B.4 Comparison of the samples quality on the WGAN-GP (DCGAN)
experiment for different methods and learning raten.

B.5 Inception Score on CIFAR10 for WGAN over number of generator
updates with and without averaging. We can see that averaging
improve the inception score. Lo oL

B.6 Inception score on CIFAR10 for WGAN-GP (DCGAN) over number
of generator updates L

B.7 Comparison of the samples of a WGAN trained with the different
methods with and without averaging. Although averaging improves
the inception score, the samples seem more blurry

xviii

. 151

B.8

C.1

C.2

C.3

D.1

D.2
D.3

The Fréchet Inception Distance (FID) from Heusel et al. [2017] com-
puted using 50,000 samples, on the WGAN experiments. ReEx-
traAdam refers to Alg. 5 introduced in §4. We can see that averag-
ing performs worse than when comparing with the Inception Score.
We observed that the samples generated by using averaging are a
little more blurry and that the FID is more sensitive to blurriness,
thus providing an explanation for this observation..

Contour plot of the maximum magnitude of the eigenvalues of
the polynomial (z — 1)?(x — 3)? + n*x? (left, simultaneous) and
(r — 1)%(x — B)® + n?2® (right, alternated) for different values of
the step-size n and the momentum . Note that compared to (5.5)
and (5.7) we used 3, = 3 = 3 and we defined 7 := /n72 A without
loss of generality. On the left, magnitudes are always larger than 1,
and equal to 1 for f = —1. On the right, magnitudes are smaller
than 1 for g — 1 < B <0 and greater than 1 elsewhere.
The effect of negative momentum for a mixture of 8 Gaussian dis-
tributions in a GAN setup. Real data and the results of using SGD
with zero momentum on the Generator and using negative / zero /
positive momentum () on the Discriminator are depicted.

Plot of the optimal value of momentum by for different a’s and con-
dition numbers (logjpk). Blue/white/orange regions correspond to

162

negative/zero/positive values of the optimal momentum, respectively. 164

The norm of gradient during training for the standard GAN objec-
tive. We observe that while extra-gradient reaches low norm which
indicates that it has converged, the gradient descent on the contrary
doesn’t seem to converge.
Path-angle and Eigenvalues computed on MNIST with Adam.
Path-angle and Eigenvalues for NSGAN on CIFAR10 computed on CI-
FAR10 with Adam. We can see that the model has eigenvalues with
negative real part, this means that we’ve actually reached an unstable

xix

List of acronyms and
abbreviations

CCE coarse correlated equilibria

e.g. exempli gratia [for instance]

EG Extragradient Method

ERM Empirical Risk Minimization

ie. ide est [that is]

GANs Generative Adversarial Networks
LSSE Locally Stable Stationnary Point
ML Machine Learning

NE Nash Equilibrium

PPM Proximal-Point Method

resp. respectively

SGD Stocastic Gradient Descent

VIP Variational Inequality Problem

XX

Acknowledgements

Aaron, Adam, Adrien, Ahmed, Alais, Amjad, Amy, Antoine, Ariane, Aude,
Audrey, Alex, Alexandre, Alberto, Anna, Anne Marie, Annabel, Aristide, Arthur,
Aymeric, Benoit (Beubeu), Bérénice, Camille, Catherine, Christophe, Claire,
Clément (Clemsy), Danielle, Damien, David, Denise, Dzmitry, Elodie, Emma,
Elise, Elyse, Eugene, Fabian, Florent, Florestan (Floflo), Francis, Frangois,
Félix, Fernand, Francesco, Gaétan, Gabriel, Gabriella (Gaby), Garo, Genevieve
(Geugeu), Georgios, Giancarlo, Grace, Guillaume, Gul, Guy (Gitou), Hélene,
Hirosuke (Hiro), Hugo, lan, Idriss, loannis, Issam, Jacques (Jak), Jaime, James,
Jean Baptiste, Jeanne, Jérémy, Joey, Judith, Kawtar, Kyle, Laura, Laure, Léna,
Léonie, Linda, Lucie, Loic, Loucas, Marie-Auxille, Marion, Mark, Marta, Marie
Christine, Maryse, Mastro, Mathieu, Maximilian, Max, Michel, Mickaél (Mika),
Mohamad, Mohammad, Morgane, Myrto, Nazia, Niao, Nicolas, Olivier, Oscar,
Pascal, Pierre, Quentin, Raphaél, Reyhane, Rémi, Rim, Robert, Romain, Salem,
Sharan, Sébastian, Sébastien, Serge, Sandra, Samy, Sesh, Simon, Sophie, Tanis,
Tanja, Tatjana, Tess, Theodor, Thomas, Tom, Tommy, Tony, Tristan, Tweety,
Utku, Valentin, Veranika, Victor, Vincent, Yan, Yann (Yannou), Yana, Yoram,
Yoshua, Ylva, Waiss, Wojtek, Zhor, Ziad.

Merci a toi que j’ai peut-étre apprécié, respecté, aimé, idolatré ou detesté; avec
qui j’ai parlé, échangé, fait de la recherche, souri, révé, ri, ou pleuré. Ma thése fut
un long voyage dont tu as fait partie. Nos chemin se sont croisé, et se recroiserons
peut-étre.

Thanks to you who I may have appreciated, respected, loved, idolized or hated,
with whom I spoke, interacted, did research, smiled, dreamt, laughed, or cried. My
thesis was a long journey you were part of. Our paths crossed and may cross again.

xx1

Notation

The set of real numbers

The set of complex numbers

The real and imaginary part of z € C
Scalars are lower-case letters
Vectors are lower-case bold letters
Matrices are upper-case bold letters.......
Operators are upper-case letters

The spectrum of a squared matrix A
The spectral radius of a squared matrix A ...
The largest and the smallest singular values of A opin(A) and 00 (A)
The identity matrix of R4
Standard asymptotic notations......... O, 2 and ©

(2) and (z)

Lop>8AaR
E

=N
N
~—

=

xxii

Introduction

«On a pas les mémes regles pourtant c’est le méme jeuyr
[We do not have the same rules yet it’s the same game]- Lomepal [2019]

What is the game mentioned by Lomepal [2019]? For some, it could be the
game of life [Gardner, 1970], while for others, it remains a mystery. However, what
is certain is that we live in a world full of games. From the simplest ones, such
as rock-paper-scissor, to the most challenging ones such as chess, go, or StarCraft
II, games are so complex and interesting that there exist a professional league of
players and dense theoretical literature for each of them [Simon and Chase, 1988,
Bozulich, 1992, Vinyals et al., 2017].

That is why a long-standing goal in artificial intelligence [Samuel, 1959, Tesauro,
1995, Schaeffer, 2000] has been to achieve superhuman performance—with a com-
puter program—at such games of skills.

Among all the historical board games played by humans, the game of go was con-
sidered one of the most difficult to master by a computer program [Van Den Herik
et al., 2002]; Until it was not [Silver et al., 2016]. This odds-breaking break-
through [Miller, 2002, Van Den Herik et al., 2002] came from a sophisticated
combination of Monte Carlo tree search and machine learning techniques to evalu-
ate positions, shedding light upon the high potential of machine learning to solve
games.

Machine learning, the science of learning mathematical models from data,

has expanded significantly in the last two decades. It has had a noticeable
impact in diverse areas such as computer vision [Krizhevsky et al., 2012], speech
recognition [Hinton et al., 2012], natural language processing [Sutskever et al.,
2014], computational biology [Libbrecht and Noble, 2015], and medicine [Esteva
et al., 2017].

Interestingly, while regarding such different domains, these success stories have
a common ground: they all correspond to the estimation of a prediction function
based on empirical data [Vapnik, 2006]. This learning paradigm, based on empirical
risk minimization (ERM), is known as supervised learning. At a high level, esti-
mating the correct dependence through ERM requires three main ingredients: 1) a
sufficient amount of data, 2) a hypothesis class on the actual dependence function,
3) a sufficient amount of computing to find an approximate solution to the corre-
sponding minimization problem. These three steps are subject to interdependent
tradeoffs [Bottou and Bousquet, 2008]—for instance, for a given computational

1

budget, more data would improve our ability to generalize but would make the
optimization procedure harder—are at the heart of the challenges of supervised
learning.

The notable success of the applications of supervised learning mentioned above
can be attributed to many factors. Among them, one can arguably say that the
building of high-quality datasets [Russakovsky et al., 2015], the improved access
to computational resources, and the design of scalable training methods for large
models [LeCun et al., 1998] played a significant role.

However, yet powerful, supervised learning is a restrictive setting where a single
learner is in a fixed environment, i.e., it has access to a large number of input-output
pairs at training time that come from an independent and identically distributed
process. This assumption does not consider that some other agents, i.e., computer
programs or humans, maybe part of the environment and thus impact the task.

Real-world games such as Go, poker, or chess are composed of multiple players,
thus not fitting into the i.i.d. ERM framework that is composed of a single learner in
a fixed environment. From the players’ viewpoint, the environment that conditions
the way they should play depends on their opponent and thus is not fixed. From
a machine learning perspective, the task in those games is to learn how to play to
beat any opponent.

Recently, machine learning techniques have led to significant progress on in-
creasingly complex domains such as classical board games (e.g., chess [Silver et al.,
2018] or go [Silver et al., 2017]), card games (e.g., poker [Brown and Sandholm,
2017, 2019] or Hanabi [Foerster et al., 2019]), as well as video games (e.g., Star-
Craft II [Vinyals et al., 2019] or Dota 2 [Berner et al., 2019]). However, chess, go,
and more generally, all the zero-sum games of skills mentioned in this introduction
are just “a Drosophilia of reasoning” [Kasparov, 2018]. We are just scratching the
surface, the combination of multi-player games and machine learning can offer.

1 Multiplayer games and Machine Learning

Adversarial formulations, or more generally multi-player games, are frameworks
that aim at casting tasks into which several agents (a.k.a players) compete (or col-
laborate) to solve a problem. At a high level, each agent is given a set of parameters
and a loss that they try to minimize. The key difference between standard super-
vised learning and multi-player games is that each agent’s loss depends on all the
players’ parameters, thus entangling the minimization problem of each player.

Such frameworks include real-world games such as Backgammon, poker, or
Starcraft II, but also market mechanisms [Nisan et al., 2007], auctions [Vickrey,
1961], as well as games specifically designed for a machine learning purpose such as

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] that enabled a

significant breakthrough in generative modeling, the domain of representing data
distributions.

1.1 Motivation: defining ’good’ task losses through games

Designing computer programs that learn from games’ first principles has been
a well-established challenge of artificial intelligence [Samuel, 1959, Tesauro, 1995].

Until recently, state-of-the-art performances were only achieved by injecting
domain-specific human knowledge [Campbell et al., 2002, Genesereth et al., 2005,
Silver et al., 2016] such as specific heuristics or openings discovered by humans or
data of games played by professional players.

A recent breakthrough [Silver et al., 2018] permitted to master chess, shogi,
and go by using a general algorithm that learns by playing against itself without
having access to any data or knowledge of other players.

It demonstrates the powerful potential of game formulation long-ago noticed by
the community [Genesereth et al., 2005]: the goal of “winning” the game is simple
yet challenging to achieve. The complexity arises from the competition between
the two players that usually start from a quite even state, and try to eventually
take the lead by taking advantage of the subtlety of some rules. To win, the best-
performing players must learn to incorporate knowledge representation, reasoning,
and rational decision-making.

The framework of GANs defines a game between two neural networks, a gener-
ator that aims at creating realistic images and a discriminator that tries to distin-
guish real images from the generated ones. The discriminator implicitly defines a
divergence between two distributions through the classification task: the data dis-
tribution and the generated one. Huang et al. [2017] argue that such divergences,
implicitly defined by a class of discriminators, are “good” task losses for generative
modeling: they are differentiable, have a better sample efficiency than standard
divergences, are easier to learn from, and can encode high-level concepts such as
“paying attention to the texture in the image.”

The impact of such new differentiable game formulations for learning is com-
pelling and promising, but they currently lack theoretical foundations.

1.2 Foundations of Games for Machine Learning

Compared to supervised learning, a loss minimization problem, multi-player
games are a multi-objective minimization (or maximization) problem. For exam-
ple, in a Texas hold’em poker game, each player tries to maximize its own gains.
However, since the game is zero-sum, the maximization of each player’ gain conflict
with each other and thus cannot be considered individually. Thus, in a game, the
optimization of each player must be considered jointly.

In that case, the standard notion of optimality is called Nash equilibrium [Nash
et al., 1950]. A Nash equilibrium is achieved when no player can decrease its loss
by unilaterally changing its strategy.

In general, the existence of an equilibrium is not guaranteed [Neumann and
Morgenstern, 1944]. This fact is problematic since the Nash equilibrium is a natu-
ral and intuitive notion of target for the players of a game. Ensuring that we have
a well-defined notion of equilibrium is a necessary first step to eventually build-up
an understanding of multi-player games. The minimax theorem [Neumann, 1928]
was among the first existence results of equilibria in games and is considered to be
at the heart of game theory.

“As far as I can see, there could be no theory of games
[without] the Minimax Theorem.”— Neumann [1953]

While this quote may appear slightly dismissive at first, it has to be put in context.
Neumann [1953] and Fréchet [1953] is an exchange between Maurice Fréchet and
John von Neumann regarding the relative contribution of Borel [1921] and Neu-
mann [1928] in the foundation of the field that is now called game theory. Beyond
the controversy, the quote mentioned above underlines that when building a new
field, it is fundamental to show that the object of interest—in that case, a Nash
equilibrium—exists to eventually build a theory on top of it. For instance, the
question of the computational complexity of a Nash equilibrium is closely entan-
gled with such an existence result: since a Nash always exists its computational
complexity cannot belong to the class of NP problems [Papadimitriou, 2007].

In the context of machine learning, the considerations regarding games are dif-
ferent. Each player’s payoff functions correspond to the performance of the machine
learning models that represent that player. Often their models are parametrized
by finite-dimensional variables. Consequently, the payoffs are (potentially non-
convex) functions of these parameters, raising the question of the existence of an
equilibrium for such a game played with machine learning models.

Overall, this thesis revolves around two main questions regarding machine learn-
ing in games: what is the target, and how can it be reached in a reasonable amount
of time?

2 Overview of the Thesis Structure

Besides the introduction and conclusion, this thesis includes a background sec-
tion followed by four contributions that correspond to four research papers that
the author of this thesis wrote during his Ph.D.

The story of the contribution develops as follows: the first contribution ex-
plores the notion of equilibrium in the context of a game played by deep machine
learning models by proving a minimax theorem for a particular class of nonconvex-
nonconcave zero-sum two-player game where the players are neural networks. We
then get interested in game optimization in the second and third contributions,
and we finally provide an empirical study of some practical games’ optimization
landscape.

Before jumping into the background section, we provide a more detailed sum-
mary of each section.

2.1 Defining a target for learning in games

In his seminal work, Neumann [1928] considered zero-sum two-player games.
In that case, both players are competing for the same payoff function, but while
one tries to maximize it, the other aims at minimizing it. The minimax theorem
ensures that under mild assumptions, such a game has a value and an equilibrium:
there exists an optimal strategy for each player that induces a given value for the
payoff function.

Such games are convenient to build up intuition because the notion of winning,
losing, and tying can be related to the value of the payoff function, i.e., if the payoff
of the first player is above (resp. below, equal) the value of the game it means that
the first player is currently winning (resp. losing, tying) the game.

In that setting, a general minimax theorem has been proved by Sion et al. [1958]
under the assumption that each player’s strategy set is convex and that the payoff
function is a convex-concave function.

In the context of machine learning, the payoff function often depends on the
parameters of each player. For instance, in chess, the reinforcement learning policy
that would pick each move may be parametrized by a neural network, and in GANSs,
the discriminator and the generator are usually neural networks.

Because of this neural network parameterization, one cannot expect the payoff
function to be convex-concave in general (the same way one cannot expect the loss
of a regression problem to be convex in supervised learning with a deep neural
network) [Choromanska et al., 2015].

In our first contribution, we propose an approximate minimax theorem cer-
tain class of problems, including Wasserstein GAN formulations wherein both the
generator and the discriminator are one hidden layer RELU network. Our re-
sult relies on the fact that for many practical games, e.g., GANs or Starcraft II,
the nonconvex-nonconcavity of the payoff function comes from the neural network
parametrization.

Roughly, we show that a pair of larger-width one-hidden-layer ReLU networks
attain the min-max value of the game attainable by distributions over smaller-
width one-hidden-layer RELU networks. The underlying intuition is as follows:

neural nets have a particular structure that interleaves matrix multiplications and
simple non-linearities (often based on the max operator like ReLU). The matrix
multiplications in one layer of a neural net compute linear combinations of functions
encoded by the other layers. In other words, neural nets are (non-)linear mixtures
of their sub-networks.

2.2 Building our theoretical understanding of game opti-
mization

The learning dynamics of differentiable games ,such as GANs, may exhibit a
cyclic behavior. For instance, consider a game such as rock-paper-scissors. Intu-
itively, it makes sense that each of the agents, trying to beat their opponent using
gradient information, will slowly change their strategies to the best response that
currently beats their opponent, continuously switching from rock to paper and then
scissors. One can show that this intuition is accurate: naively implementing the
gradient method to train the agents will lead to cycles where the players will alter-
natively play each different actions without even converging to a Nash equilibrium
of the game.

In the second contribution, we show the failure of standard gradient methods to
find an equilibrium of such simple examples inspired by rock-paper-scissors. Such
a failure of the gradient method on simple games leads to an immediate question:
are there principled methods that address this cycling problem? We answered this
question affirmatively and proposed to tap into the variational inequality literature
to leverage the concept of averaging and extrapolation to design new optimization
methods that address the cycling problem and tackle the current constraints of
modern machine learning, such as stochastic optimization in high dimension. Our
main theoretical contributions are two-fold: we first consider the convergence of
averaging and extrapolation for the optimization of bilinear examples. Our sec-
ond theoretical contribution is the study a variant of extragradient that we call
extrapolation from the past originally introduced by Popov [1980] and prove novel
convergence rates in the context VIP with Lipschitz and strongly monotone oper-
ators, and stochastic VIP with Lipschitz operator. We prove its convergence for
strongly monotone operators and in the stochastic VIP setting. Our empirical con-
tribution is the introduction of a novel algorithm leveraging extrapolation, that we
called ExtraAdam for the training of GANs. Our experiments show substantial
improvements over Adam and OptimisticAdam [Daskalakis et al., 2018] leading to
state-of-the-art performance for GANs at the time of publication.

In the third contribution, we investigate the impact of Polyak’s momen-
tum [Polyak, 1964] in the optimization dynamics of such games. Momentum is
known to have a detrimental role in deep learning [Sutskever et al., 2013], but
its effect in games was an unexplored topic. We prove that a negative value for
the momentum hyper-parameter may improve the gradient method’s convergence

properties for a large class of adversarial games. Notably, for games similar to
the rock-paper-scissor example described above, negative momentum is a way to
fix the gradient method where each player update alternatively their state (as
opposed to simultaneously). This fact is quite surprising since, in standard min-
imization, the momentum’s optimal value is positive. It is an excellent example
of counter-intuitive phenomena occurring in games with differentiable payoffs. We
also propose to build new intuition on the game dynamics by using a notion of
rotation. In standard minimization, the iterates are ’attracted’ to the solution and
thus adding momentum will use the past gradient to enhance this attraction to the
solution, and thus converge faster. In games, rotations around the optimum may
occur. To picture a simple dynamic, one can think of a planet orbiting around the
sun. Adding positive momentum will push the planet away from the sun (the equi-
librium point), while negative momentum will use past information to correct the
trajectory toward the sun. This balance between accelerating the attraction and
correcting the rotation explains why in games, unlike in minimization, the optimal
value for the momentum can be negative.

2.3 Studying the practical vector field of games

In the second and third contribution, we theoretically study the vector field of
games, i.e., the concatenation of each player’s payoff gradient, and build simple
examples where the gradient method fails to converge. However, going beyond
simple counter-examples, one question remains: does this cycling behavior that
breaks standard gradient methods happen in practice? Such a phenomenon is due
to the phenomenon of rotation that only occurs in differentiable games (compared
to standard minimization): due to their potential adversarial component.

Our fourth and final contribution is an empirical study aiming to bridge the
gap between the simple theoretical examples previously proposed and the practice.
We formalize the notions of rotation and attraction in games by relating it to the
imaginary part in the eigenvalues of the Jacobian of the game’s vector field. We
eventually develop a technique to visualize these rotations in differentiable games
and apply it to GANs. We show empirical evidence of significant rotations on
several GAN formulations and datasets. Moreover, we also study the nature of
the gradient method’s potential equilibrium and provide empirical evidence that
standard training methods for GANs converge to an equilibrium point that is not
a Nash equilibrium of the game.

3 Excluded research

In order to keep this manuscript consistent and succinct, the author has decided
to exclude a significant part of the publication produced during his Ph.D. Some of

the excluded research constitute relevant related follow-ups to the work discussed
in thesis [Huang et al., 2017, Chavdarova et al., 2019, Azizian et al., 2020a,b, Bailey
et al., 2020, Ibrahim et al., 2020]. The author of this Ph.D. thesis also worked on:

e Line-search for non-convex minimization [Vaswani et al., 2019)].

e Dynamics of Recurrent Neural Networks [Kerg et al., 2019].

Implicit regularization for linear neural networks [Gidel et al., 2019a).

Adaptive Three Operator Splitting [Pedregosa and Gidel, 2018|.

Variants of the Frank-Wolfe algorithm [Gidel et al., 2017, 2018].

Background

In this chapter we present the frameworks considered in our four contributions.
First we will introduce the standard single-objective minimization, then we will
talk about multi-objective minimization and Nash equilibrium and finally we will
present a generalization of the these frameworks based on the necessary first order
stationary conditions.

1 Single Objective Optimization

Despite the contributions of this thesis regarding the optimization of multi-
player games, it seemed essential to the author to give an overview of the current
knowledge on single objective optimization to contrast it with the numerous open
questions remaining in multi-player games optimization.

1.1 Convex Optimization

Recent advances in machine learning are largely driven by the success of
gradient-based optimization methods for the training process.

A common learning paradigm is empirical risk minimization, where a (poten-
tially non-convex) objective, that depends on the data, is minimized. In this section
we introduce the standard notions present in single-objective minimization.

Let f a function and X a convex set. A set X is said to be convex if|

r,ye X =yr+(1—y)ye X, vyel0,1]. (1.1)

For simplicity, we will assume that X is a subset of R?, but most of the results
provided in this work can be generalized to infinite-dimensional spaces.

Single-objective minimization is the problem of finding a solution to the follow-
ing minimization problem:

find «* such that " € X" := argmin f(x). (MIN)

xreX
The way to estimate the quality of an approximate minimizer @ is to use a
merit function. Formally, a function g : X — R is called a merit function if g is
non-negative such that g(x) = 0 & « € A [Larsson and Patriksson, 1994]. For

minimization, a natural merit function is the suboptimality: f(x) — f* where f*
is the minimum of f. We will see in Section 2 that there exists different way to
extend the notion of suboptimality to zero-sum two-player games. Some of these
extensions are not a merit function.

A standard assumption on the function f is convexity. Such assumption is
standard because it is a sufficient condition for the local minimal to also be global
minima. It is also a convenient assumption to obtain global convergence rates. Such
an assumption can be weakened using for instance the Polyak-Lojasiewicz condition
or the quadratic growth condition (see [Karimi et al., 2016] for an extensive study
of the relations between these conditions).

A function f is said to be conver if its value at a convex combination of point
is smaller than the convex combination of its values:

frx+ (1 -7y <vf(x)+(1-y)fly), Ye,yeX, 6 Vyel0,1]. (1.2)

From this property, it follows that the function f is sub-differentiable, i.e.,
there exist a linear lower-bound for f at any point. Moreover, the set of the
sub-differential 0 f(x) at point @ is defined as,

Of(x) ={d€R? : f(y) > f(z) + (y —=z)'d, Yy € R}. (1.3)

If f is convex then this set is convex and non-empty for any @ € X.

In this work we are mostly interested in first-order optimization and we will
assume that the function f is differentiable. A stronger assumption on the regu-
larity of f is the smoothness assumption. A function f is said to be L-smooth if
its gradient is L-Lipschitz, i.e.,

IVf(x) =Vl < Lz -y, Yo,y € X. (1.4)

This assumption is very common but may be weakened with the Hdélder conti-
nuity condition:

IVf(2) =Vl < Lulle —yl, Ve, y € X, (1.5)

where L, is a constant defined for any v € (0, 1]. Note that L, may be infinite
for some v and that Holder continuity implies that,

f) < J@) + Vi@ y—2)+ T lly -l Ve yex. (16)

One last common assumption that can be made on f is strong converity. A
function f is said to be u-strongly convex if f— ul|-||3 is convex, which is equivalent
to say that,

10

frae+(1-7)y) < vf(@)+1-)f(y)—m(1-y)z—yl3, Yz,y € X, Yy [0,1].
(1.7)
Note that being convex is equivalent to being 0-strongly convex.

Unconstrained Minimization Methods

If the constraint set & is equal to R? then (MIN) is an unconstrained minimiza-
tion problem. In that case the mecessary stationary condition for differentiable
functions is,

xreX” = Vf(z")=0 (1.8)

When the function f is convex this condition is a sufficient condition for opti-
mality.

When the function f is differentiable, a standard method to solve (MIN) is the
gradient descent method (GD) which dates back to Cauchy [1847]. At time ¢ > 0,
this method requires the computation of the gradient at the current iterate x; to
get the next iterate x;,; with the following update rule,

Gradient Descent: @y = @ — 0,V f(x), (1.9)

where 7, > 0 is called the step-size.! This method is called a descent method
because at point @; the direction V f(x;) is a descent direction,” meaning that for
ne small enough f(a;1) < f(xy). Moreover if the function f is smooth, gradient
descent benefits from the following descent lemma:

Lemma 1 ((1.2.13) [Nesterov, 2004]). If f is a L-smooth function then forn, < 1/L
we have that,

J(@in) < J(@) = TIVI @), Var € RY. (1.10)

This property is key in the convergence proof of gradient descent. Note this
property does not require the convexity of f, actually this lemma is also heavily
used in order to show properties on the iterates when the objective function f is
non-convex (see §1.2)

Constrained Optimization

When the constrained set X is a strict subset of R?, then (MIN) is a constrained
optimization problem and X is called the constraint set. In that case the standard

'In machine learning this quantity is also known as learning-rate.
2 Actually, it can be shown that any direction d such that d'V f(x) > 0 is a descent direction
from .

11

gradient descent method cannot be longer used because the direction given by the
gradient may not be feasible, i.e., Jx € X s.t. € —nV f(x) ¢ XVn > 0. In that
case, the standard method to solve such problem is the projected gradient method.
This method requires an additional projection step in order to get a feasible iterate

Projected Gradient Descent: ;.1 = Px[x; — 0V f(x)], (1.11)

where Py[] is the projection onto the set X’ defined as Py[x] = argmin, y |z —yl|3.

If the set X is convex, the projection is a quadratic minimization problem
that has a unique solution. Otherwise, this projection sub-problem might be very
challenging to solve. However, considering non-convex constraint sets goes way
beyond the scope of this work. That is why, in the following we will always assume
that the constraint set X’ is convex.

1.2 Non-Convex Single-objective Optimization

When the function f is non-convex, gradient descent may converge to a sta-
tionary point that is not the global minimum of the function. For simplicity of the
discussion, in this section, we only consider the unconstrained setting. In that case,
a stationary point is a point where the gradient is equal to zero. Since the gradient
at a stationary point is by definition always null, we have that if a; is a stationary
point, then the following iterate x;,; computed by gradient descent (1.11) is equal
to x;. There are three kinds of stationary points: local minima, local maxima and
saddle points. Let « € R?,

1. A stationary point such that there exists a neighbourhood U of x such that
fly) < f(x), Yy € U, is a local maximum.

2. A stationary point such that there exists a neighbourhood U of & such that
fly) > f(x), Yy € U, is a local minimum.

3. A stationary point such that for any neighbourhood U of @, there exist
y,y' € U such that f(y) < f(x) < f(y'), is a saddle point.

It can be shown that with random initialization gradient descent almost surely
converges to a local minimizer [Lee et al., 2016]. From an optimization perspective,
this property is appealing since we aim to converge to the global minimizer of f.
However, standard gradient descent can take an exponential time (exponential in
the dimension d) to escape saddle [Du et al., 2017]. Fortunately, adding noise at
some key moments can get rid of this exponential constant [Jin et al., 2017].

12

2 Multi-objective Optimization

As argued previously, single-objective minimization plays a major role in current
machine learning. However, some recently introduced models require the joint
minimization of several objectives.

For example, actor-critic methods can be written as a bi-level optimization prob-
lem [Pfau and Vinyals, 2016] and generative adversarial networks (GANs) [Good-
fellow et al., 2014] use a two-player game formulation.

In that case, the goal of the learning procedure is to find an equilibrium of this
multi-objective optimization problem (a.k.a. multi-player game). The notion of
equilibrium points date back to Cournot [1838]. It was later formalized by Nash
et al. [1950] who pioneered the field of game theory.

2.1 Minimax Problems and Two-player Games

The two-player game problem [Neumann and Morgenstern, 1944, Nash et al.,
1950] consists in finding the following Nash equilibrium:

0" € argmin £1(0,¢") and " € argmin Ly(0",) . (2.1)
6co ped

One important point to notice is that the two optimization problems (with
respect to @ and ¢) in (2.1) are coupled and have to be considered jointly from an
optimization point of view. In game theory L£; is also known as the payoff of the
it" player.

When £, = —L5 := L, the two-player game is called a zero-sum game and (2.1)
can be formulated as a saddle point problem [Hiriart-Urruty and Lemaréchal, 1993,
VIL4):

find (6%, ") s.t. L(O",¢) < LO", ") < L(O, %), V(0,p)cOxD. (2.2)
If such a pair (0%, ¢*) exists, then we have that,
max min £(0, ¢) = minmax L£(0, @) = L(0", ") (2.3)

pEd 0O 0cO ped

Note that by weak duality [Rockafellar, 1970], it is generally true that,

. _ | |
sup inf £(0,¢) < inf sup L(8.) (2.4)

2.2 Extension to n-player Games

We can extend the two-player game framework to a game with an arbitrary
number of players. A n-player game is a set of n players and their respective losses

13

L9 R - R, 1 < i< n. Player i controls the parameter 8, € ©, C R% where
* ,d; = d. The n-player game problem consists in finding the Nash equilibrium:

0; c argmin £(05,...,0; ,0,,0;.,,...,0,), 1<i<n. (2.5)

91'6@1'
Note that any non-zero-sum n-player game can be written as a (n + 1)-player
zero-sum game adding a (n + 1)-th loss equal to minus the sum of the other losses.

2.3 Existence of Equilibria

In the case of a zero-sum game, standard results [Sion et al., 1958, Fan,
1953, Hiriart-Urruty and Lemaréchal, 1993] show that under convexity assump-
tions there exists a saddle point of £. We present the result from [Hiriart-Urruty
and Lemaréchal, 1993] that requires the following assumptions,

(H1) the objective function L is convez-concave, i.e., L(-,) is convex for all ¢ € &
and L£(0,-) is concave for all 6 € ©.

(H2) The sets © and ® are nonempty closed convex sets.

(H3) Either © is bounded or there exists ¢ € ® such that £(0,¢) — oo when
16 — o

(H4) Either ® is bounded or there exists & € © such that £(0,¢) — co when
lspll = o0

Theorem 1. [Hiriart-Urruty and Lemaréchal, 1993, Theorem 4.3.1] Under the
assumptions (H1)-(H4) the payoff function L has a nonempty compact set of saddle
points.

In the first contribution of this thesis, we prove a minimax theorem where the
payoff function £ is not convex-concave. Such result is motivated by the machine
learning applications where neural networks parametrizations induce nonconvex-
nonconcave payoff functions.

Beyond the zero-sum two-player game setting, results on the existence of equi-
libria in multi-player games,first developed by Nash et al. [1950], is a rich liter-
ature [Nash, 1951, Glicksberg, 1952, Nikaido et al., 1955, Dasgupta and Maskin,
1986] that is outside of the scope of this thesis.

2.4 Merit functions for games

When dealing with optimization of games, the first question to ask is the ques-
tion of which merit function to use. For simplicity, we focus on zero-sum two-player
games.

14

Some previous work [Yadav et al., 2018] considered the sum of the “minimiza-
tion suboptimality” £(0,¢*) — L(0*, ¢*) with the “maximization suboptimality”
L(0%, %) — L(0%,¢):

9(6.¢) == L(8,4") — L(6",0) (2.6)

Unfortunately, as explained in [Gidel et al., 2017] this function is not a merit
function for the problem 2.2 in general. For example, with £(0,¢p) = 0 - ¢ and
© = & = [—1,1], then 8* = ¢* = 0, implying that ¢(8,¢) = 0 for any (0,).
However, when L is strongly convez-concave one can lower-bound ¢ by the distance
to the optimum times a constant.

In the general case, if the domains © and ® are bounded, one can define the
gap function

y— 3 _ / /
G(8,) = max L(8, ¢) — min L(0, p) = (9/,%%%@5(0’ @) —L(O,p) (27)
If, the domains are not bounded this function may be infinite except at the
optimum (take for instance £(60,) = 08-p and © = & = R). In order to contravene
this issue Nesterov [2007] considered the intersections Or := © U B(0, R) and
O = ®UB(p, R) where B(a, R) is a ball of radius R and center a. If there exists
a Nash equilibrium, then for any given # and ¢ and a large enough R, the function

GR<07 LP) = ﬁ%}; £(07 (P) o 01161(1;)111? ‘C(07 (P)) (28)

is a merit function.

2.5 Other multi-objective formulation

There exist other multi-objective optimization formulations that are not multi-
player games. Such formulations are outside of the scope of this thesis.
However, we provide a quick overview of the main alternatives.

Bilevel Optimization

Conversely to games, where all the players have a symmetric role, bilevel op-
timization is a multi-objective optimization framework introducing an asymmetry
between the objectives. It considers an upper-level objective f and a lower-level
objective g. The lower-level objective is used to induce a constraint on some pa-
rameters of the upper-level objective:

min f(w(6),6)

s.t. @(0) € argmin g(w, 0)
we

(2.9)

15

Note that this formulation can be more general with more objective or with
a stochastic formulation, see for instance Colson et al. [2007], Bard [2013] for an
overview of the field and Pedregosa [2016], Gould et al. [2016], Shaban et al. [2019]
for applications in a machine learning context.

Stackelberg Games

Such notion of hierarchy between the objective is related to the notion of Stack-
elberg games Stackelberg [1934], Conitzer and Sandholm [2006], Fiez et al. [2020]
that exhibit a notion of hierarchy between the players. In its simplest form (two-
player), a Stackelberg game opposes a follower and a leader. The latter can choose
its strategy with the knowledge of the strategy of the follower. Thus, this problem
can be formulated as a bilevel optimization problem where the follower corresponds
to the lower-level objective and the leader corresponds to the upper-level objective.

2.6 Solving games with optimization

The question of algorithms to find Nash equilibrium is related to the notion of
complexity of Nash equilibrium [Papadimitriou, 2007]. In general, Nash equilib-
ria are hard to compute. For instance, simple statements such as ‘are there two
Nashes?’ or ‘is there a Nash that contains the strategy s?’ are NP-hard problems
for two-player games [Gilboa and Zemel, 1989].

However, computing a Nash equilibrium cannot be a NP-hard problem because
a Nash equilibrium always exists [Papadimitriou, 2007]. The complexity of Nash
equilibria computation belongs to a class of problems called PPAD [Daskalakis
et al., 2009].

Consequently, it seems hopeless in general to design algorithms to solve games
(even approximately [Papadimitriou, 2007]). However, there are some points to
argue why this line of research is not futile. First, the Nash computation of zero-
sum two-player games can be reformulated as a linear program. Thus, in that case,
the computational challenge comes from the potentially large (or even infinite)
number of strategies. For instance, in a machine learning context, the strategy
spaces we may consider are finite-dimensional parameter spaces, motivating the use
of gradient-based methods. Secondly, the practical instance we want to solve may
not be hard. For instance, the mathematical programming literature developed a
plethora of algorithms to try to find approximate solutions to NP-hard problems
such as the travelling salesman problem [Bellmore and Nemhauser, 1968]. Another
example is the deep learning community that successfully minimizes non-convex
objectives [Zhang et al., 2017] while it is NP-hard even to check if a point is a local
minimizer of the objective function [Murty and Kabadi, 1985, Nesterov, 2000].

In the particular of minimax optimization, there exists a very rich literature
that deals with problems of the form

16

. T o
min max f(60) + 60" Ap — g(¢). (2.10)

When f and g are convex, such formulation is the primal-dual formulation of a
convex problem (see for instance [Rockafellar, 1970] for more details about convex
duality). Many primal-dual algorithms have been designed to solve such partic-
ular minimax problem such as the Arrow-Hurwicz algorithm [Arrow et al., 1958,
Zhu and Chan, 2008], the Chambolle-Pock Primal-Dual algorithm [Chambolle and
Pock, 2011, 2016], the Accelerated Primal-Dual algorithm [Ouyang et al., 2015].
However, these algorithms heavily exploit the bilinear structure of (2.10) and thus
cannot be straightforwardly extended to general minimax games.

In this thesis, we focus on methods to solve games with differentiable payoffs.
While recently, due to the motivations coming from the practical applications in
the context of machine learning, there is a revival of specific gradient-based method
optimization for games (see discussion in Chapter 11, there the mathematical pro-
gramming literature dealt with such (differentiable) game optimization problems
by casting them as variational inequalities.

In the following section, we present the variational inequality framework and
eventually present the standard methods such problems.

3 Variational Inequality Problem

Let Q C R% and F : Q — R? be a continuous mapping. In this section || - || is
a norm of R?.
The variational inequality problem [Harker and Pang, 1990] is:
find w* € Q such that F(w*)'(w—w*) >0, YwecQ. (VIP)
We call optimal set the set Q* of w € Q verifying (VIP).
A standard assumption on F' is monotonicity:
(Flw)—Flw) (w—-w)>0 Vww Q. (3.1)

If Flw) = Vf(w), it is equivalent to f being convex. If F' can be written
as (2.5), it implies that the cost functions are convex.?
When the operator F' is monotone, we have that

Flw) (w—w") < Flw) (w—-w"), Yw,w". (3.2)

Hence, in this case,

3The convexity of the cost functions in (2.3) is a necessary condition (not sufficient) for the
operator to be monotone.

17

(VIP) implies a stronger formulation sometimes called Minty variational in-
equality [Crespi et al., 2005]:

find w* € Q such that F(w) (w—w*)>0, Ywe Q. (MVI)

This formulation is stronger in the sense that, under mild assumptions, if (MVI)
holds for some w* € €2, then (VIP) holds too [Minty, 1967]. A stronger assumption
than monotonicity is u-strong monotonicity,

(Fw) = F(w) (w—w) > pf|w—|* YVw,w €. (3.3)

Note that 0-strong monotonicity is equivalent to monotonicity.

3.1 Merit Functions for variational inequality problems

A merit function useful for our analysis can be derived from this formulation.

Roughly, a merit function is a convergence measure.

A way to derive a merit function from (MVI) would be to wuse
g(w*) = supgcx F(w)"(w* — w) which is zero if and only if (MVI) holds
for w*. To deal with unbounded constraint sets (leading to a potentially in-
finite valued function outside of the optimal set), we use the restricted merit
function [Nesterov, 2007]:

Pyp— T —_—
Errg(w;) := weﬂ,ﬂ%}éngF(w) (wr —w). (3.4)

This function acts as merit function for (VIP) on the interior of the open ball
of radius R around wy, as shown in Lemma 1 of Nesterov [2007]. That is, let
Qp = 0N{w: [[w—wy| < R}. Then for any point @ € g, we have

EI‘I‘R(GJ) =0 we " NQ;. (35)

The reference point wy is arbitrary, but in practice it is usually the initialization
point of the algorithm. R has to be big enough to ensure that 2z contains a
solution. Errp measures how much (MVI) is violated on the restriction Qg.

Such merit function is standard in the variational inequality literature. A sim-
ilar one is used in [Nemirovski, 2004, Juditsky et al., 2011].

3.2 Standard algorithms to Solve Variational Inequality
Problems

One very important piece in the VIP optimization is the projection Py onto the
set ()

Polw] € argmin |jw — o/'||?. (3.6)
w'eQ)

18

In the following we will assume that we can compute such a projection quite
efficiently. Note that one can extend this projection framework to other geometries
using Bregman divergences [Bregman, 1967]. For simplicity and clarity, we work
with projections with respect to a norm || - ||.

Among the first algorithms to solve VIP is the standard projection method [Si-
bony, 1970],

Projection Method: ;.1 = Polzy — m F ()] . (3.7)

This algorithm converges linearly for Lipschitz and strongly monotone opera-
tors. However, this method does not converge, in general, for monotone opera-
tors [Korpelevich, 1976]. One way to contravene this issue is to solve a sequentially
less regularized problem using the projection method this technique is known as
the proximal-point method (PPM) [Martinet, 1970, Rockafellar, 1976]

PPM: ., = Solution of VIP with the operator Fi(w) := ¢t F(w) + (w — wyg) .

(3.8)

This method converges linearly (in terms of projection calls) when F is strongly

monotone and sublinearly when F' is monotone. However, the inner-outer loop

structure as well as the supplementary regularization hyperparameter of this
method make it less practical than the projection method.

A middle ground was achieved by Korpelevich [1976] with a method, called

extragradient, that does not have inner loops and converges when F' is monotone,

ye = Paolry — i (2,)]
Ti41 = Pﬂ[xt - WtF(yt)] .

Such a method is based on the idea of extrapolation, where the vector field
used to update x; is not computed at x; but at an extrapolated point ;. The
idea behind the computation of y; is that gy, roughly approximate the solution the
iterates of the proximal point method. This idea of comparing ¥, to the solution of
the proximal point method is actually at the heart of the analysis of the method
provided by Nemirovski [2004].

Note that, the idea of using an extrapolation step was to give “stability” to the
gradient is prior to Korpelevich [1976)’s work (see for instance Polyak [1963, Chap.
11]).

Extragadient Method: { (3.9)

4 Neural Networks Training

In this section, we introduce the definition of (artificial) feed-forward neural
networks. A feed-forward neural network is a composition of affine transformations

19

W, - +b; : R4 — Rg,., and non-linearities o; : Ré%+1 — R%+1 for 1 < ¢ < r. The
integer 7 is called the depth of the neural network and max; d; is called the width
of the neural network. Formally, a neural network is a function f : X —) where
X is called the input space and) is called the output space where the function f
is defined as,

f:flo~--fr where fl(hl) :hi+1 :Uz(mhz+bl), 1 SZST (41)

The vectors h; € R%, 2 < i < r — 1 are called the hidden states. Note that
h, = x is the input and h, = y is the output. Two-layer feed-forward neural

networks are known to be universal approximators, with a width going to infin-
ity [Hornik et al., 1989].

Empirical Risk Minimization for Supervised Learning

Consider the following setting, general enough to be applied to many supervised
learning problems. We have a finite set of data (x;,v;)1<i<n € (X x V)" indepen-
dently sampled from a distribution P. Given a loss function £:) x Y — R and a
class F of prediction function f : X —), the goal of the learning procedure is to
minimize the risk:

argmin E,)~ pl(f(x),y) (4.2)
feFr

Since, in practice, one has often only access to a finite number of samples, the
optimization procedure can only be done on the empirical risk:

1 n
ar;gcelgm " kz::l 0(f(xi), y:) (4.3)
Here, we are not developing two issues: if f is the 0 — 1 loss this problem
is NP-hard [Feldman et al., 2012, Ben-David et al., 2003] and that in practice
one consider surrogates losses and in order to get a solution of (4.3) with good
generalization properties (i.e., being close to the minimizer of (4.2)) one usually
adds a regularization to (4.3). These problems are standard issues of supervised
learning and are not the direction of research of this work. That is why, in the
following, we will focus on the optimization of (4.3) where ¢ is a differentiable
function.
Since in modern machine learning the dimension d and the number of samples
n are large, second-order method (because of large d) and batch methods (because
of large n) are prohibitively expensive. That is why machine learning engendered
the revival of stochastic first order methods. One of the most popular algorithms
belonging to this class of method is the stochastic gradient method (SGD) [Robbins
and Monro, 1951].

20

Stochastic Gradient Descent

Let Fg be a parametrized family of function. The stochastic gradient descent
is method similar as (1.11) but using an unbiased estimate of the gradient instead
of the gradient itself. Let assume that we want to solve

minE)~q ((fo(x),y) . (4.4)

For instance, if () is the empirical distribution associated with the data
(;,Yi)1<i<n, this problem is just a rewriting of (4.3) with an expectation. The
principle of SGD is to sample (x,y) ~ @ and then to compute Vgl(fg(x),y) to
update 8 with this estimate of the gradient,

Sample: (z,y) ~ Q

4.5
Compute: 011 = 60, — 1, Vl(fo,(x),y), (45)

Stochastic Gradient Descent: {

Note that this method is not a descent method and thus should be called
stochastic gradient method but the acronym SGD has become standard. Under
some reasonable assumption, such as the Lipschitzness of the expected gradient
0 — EpV fo(x,y) and the finite variance of the estimator one can show that this
method does converge at a O(1/v/t) rate.

Adaptive methods

Variants of SGD that scale coordinates of the gradient by some sort of averaging
of the previous gradient coordinates observed during the optimization procedure
have known a large success for neural networks optimization particularly because
these methods provide a sort of learning rate adaptivity for each individual feature.
Seminal works in this line of research proposed an algorithm called AdaGrad [Duchi
et al., 2011] proving significantly better convergence guarantees than SGD when
the gradients are sparse or small,

Sample: (x,y) ~ Q

diag(3t_, g2
AdaGrad: | Set: 0= Vob(fo (@),) and Vi = T8 Eam 8]

Compute: 6,1 = 0, — nti

v

If the gradient is not sparse or small (for instance in non-convex optimization,
gradients may vary a lot between early and late in learning) the learning rates
suffer from a too rapid decay and performances of Adagrad deteriorate. In order
to fix that issue, the non-convex optimization literature considers several variants

21

of Adagrad. The most popular variant of Adagrad for deep learning is arguably
Adam [Kingma and Ba, 2015]:

Sample: (x,y) ~ Q
Compute: my = fimy—1 + (1 - 51)91:7 Vi = Vi1 + (1 - 52)93
Adam: S Set: g, := Vol(fa, (), y) (4.7)

my
Compute: 6,1 = 6, nt\/vt,

Note that, in practice, for all the methods presented in this section, in order to
avoid singularities, a small € is added to the denominator. Even if Adam has been
widely adopted in practice, this method suffers from a fundamental theoretical
issue (mainly due to the fact that the step-size may not decrease) and may not
converge [Reddi et al., 2019].

5 Generative Adversarial Networks

The purpose of generative modeling is to generate samples from a distribution
ge that matches best the true distribution p of the data. The generative adversarial
network training strategy can be understood as a game between two players called
generator and discriminator. The former produces a sample that the latter has to
classify between real or fake data. The final goal is to build a generator able to
produce sufficiently realistic samples to fool the discriminator.

From a game theory point of view, GAN training is a differentiable two-player
game (2.1): the discriminator D, aims at minimizing its cost function £ and the
generator G aims at minimizing its own cost function £°.

5.1 Standard GANs

In the original GAN paper [Goodfellow et al., 2014], the GAN objective is
formulated as a zero-sum game where the cost function of the discriminator Dy, is
given by the negative log-likelihood of the binary classification task between real
or fake data generated from gg by the generator,

min max L(0,p) where L(0,¢p):= —)(I@Llog Dcp(x)]—){/I@qe[log(l—D¢(X’))] . (5.1)

However Goodfellow et al. [2014] recommend to use in practice a second formu-
lation, called non-saturating GAN. This formulation is a non-zero-sum game where
the aim is to jointly minimize

22

L£90,p) ;= — E log D, (x') and L (8, ¢) := —Eplog D,(x) — E log(1—Dy,(x")) .
X x'~qe

x'~qg
(5.2)
This formulation has the same stationary points as the zero-sum one (5.1) but
are claimed to provide “much stronger gradients early in learning” [Goodfellow
et al., 2014].
The distribution gg is sampled by sampling z according to a prior distribution
7 (often a multivariate Gaussian distribution) and then transforming z with the
generator function,

x~py & x=Gy(z), z~m. (5.3)

5.2 Divergence minimization and Wasserstein GANs

An interesting point of view on GANs is that the GANs objective formu-
lated as minimax are a divergence between the distribution p of the real data
and the one gg of fake data. In practice, the divergence they are minimiz-
ing are parametric adversarial divergences [Huang et al., 2017] of the form
SUD e Bz a)~pogs [((fo(T), fo(x'))]. In other words, the loss of a GAN between
the distribution p of the real data and the one gg of fake data is a parametric
divergence.

One popular example is the 1-Wasserstein distance [Villani, 2009]:

Wilp,q) = nf Ey)yllle - yll] (5:4)

Y€l (p,q)

where I'(p, q) :=={v : 7|, = p, 7|, = ¢} is the collection of all measures in the
product space with marginals p and ¢. The dual formulation of the 1-Wasserstein
distance is a maximum over 1-Lipschitz functions,

Wi(p,q) == sup E,[f(2)] — Eq[f(2)]. (5.5)

f,1-Lip

By choosing A(fu(x), fo(x')) = fo(x) — fo(x') and constraining f, to the
class of 1-Lipschitz functions, we get the (parametric) Wasserstein GAN (WGAN)
proposed by Arjovsky et al. [2017]:

min = max E, ,[fo(®)] — Egg [fo(2)]. (5.6)

0€0 e ||fp|lL<1

23

Prologue to First
Contribution

1 Article Detalils

Minimax Theorems for Nonconcave-Nonconvex Games Played with
Neural Networks. Gauthier Gidel, David Balduzzi, Wojciech Marian Czarnecks,
Marta Garnelo and Yoram Bachrach. This paper was submitted at NeurIPS 2020.

2 Contributions of the authors

Gauthier Gidel contributed to the original idea and the writing of the paper, the
experiments and the theorems. David Balduzzi, Wojciech Marian Czarnecki, Marta
Garnelo and Yoram Bachrach provided valuable feedback and helped in the genesis
of the idea of the paper. David Balduzzi and Yoram Bachrach supervised and
contributed to the writing of the paper. Marta Garnelo helped for the experiments.

24

Minimax Theorems for
Nonconcave-Nonconvex
Games Played with Neural

Networks

Abstract

Adversarial training, a special case of multi-objective optimization, is an in-
creasingly prevalent machine learning technique: some of its most notable appli-
cations include GAN-based generative modeling and self-play techniques in re-
inforcement learning which have been applied to complex games such as Go or
Poker. In practice, a single pair of networks is typically trained in order to find an
approximate equilibrium of a highly nonconcave-nonconvex adversarial problem.
However, while a classic result in game theory states such an equilibrium exists in
concave-convex games, there is no analogous guarantee if the payoff is nonconcave-
nonconvex. Our main contribution is to provide an approximate minimax theorem
for a large class of games where the players are ReLLU neural networks including
WGAN, StarCraft IT and Blotto Game. Our findings rely on the fact that despite
being nonconcave-nonconvex with respect to the neural networks parameters, these
games are concave-convex with respect to the actual functions (or distributions)
parametrized by these neural networks.

1 Introduction

Real-world games have been used as benchmarks in artificial intelligence for
decades [Samuel, 1959, Tesauro, 1995], with recent progress on increasingly complex
domains such as poker [Brown and Sandholm, 2017, 2019], chess, Go [Silver et al.,
2017], and StarCraft II [Vinyals et al., 2019]. Simultaneously, remarkable advances
in generative modeling of images [Wu et al., 2019] and speech synthesis [Binkowski
et al., 2020] have resulted from zero-sum games explicitly designed to facilitate
via carefully constructed arms races [Goodfellow et al., 2014]. Zero-sum games
also play a fundamental role in building classifiers that are robust to adversarial
attacks [Madry et al., 2018].

The goal of the paper is to put learning—by neural nets—in two-player zero-
sum games on a firm theoretical foundation to answer the question: What does it
mean to solve a game with neural nets?

In single-objective optimization, performance is well-defined via a fixed objec-
tive. However, it is not obvious what counts as “optimal" in a two-player zero-sum

25

nonconcave-nonconvex setting. Since each player’s goal is to maximize its payoft,
it is natural to ask whether a player can maximize its utility independently of how
the other player behaves. Neumann and Morgenstern [1944] laid the foundation
of game theory with the Minimax theorem, which provides a meaningful notion of
optimal behavior against an unknown adversary. For a two-player zero-sum game,
such a solution concept incorporates two notions: (i) a value V, (ii) a strategy for
each player such that their average gain is at least V (resp. -V) no matter what the
other does. The existence of such a value and optimal strategies in concave-convex
games is guaranteed in Sion et al. [1958], an extension of von Neumann’s result.

From a game-theoretic perspective, minimax may not exist in nonconcave-
nonconvex games. Nevertheless, machine learning practitioners typically train a
single pair of neural networks to solve

rdpeiél max o(w,0) where (w,0)— p(w,#) is nonconcave-nonconvex. (1.1)
Previous work [Arora et al., 2017, Hsieh et al., 2019, Domingo-Enrich et al., 2020]
coped with this nonconcave-nonconvexity issue by transforming Eq. 1.1 into a bi-
linear minimax problem over the Borel distributions on © and €2 (a.k.a. lifting
trick),

ugl’i(%) Vren%é)(u, Av) where (p, Av) == Eg,w[p(w, 8)] (1.2)
However, working on the space of distributions (a.k.a, mixed strategies) over the
weights of a neural network is not practical and does not exactly correspond to the
initial problem (1.1). That is why we do not consider (1.2) and put our focus on
proving a minimax theorem for (1.1).

Our main contribution is Theorem 1, an approximate minimax theorem for
nonconcave-nonconvex games for which Assumption 1 holds. This result contrasts
with the negative result of Jin et al. [2019] who construct a nonconvex-nonconcave
game where pure global minimax does not exist. The insights provided by our
main theorem are three-fold; first, it provides a principled explanation of why
practitioners have successfully trained a single pair of neural nets in games like
GANSs. Secondly, the equilibrium achieved in the theorem has a meaningful inter-
pretation as the solution of a game where the players have limited-capacity. Finally,
we show how latent parametrized policies used to solve matrix games such as Blotto
Game or multi-agent RL problem such as Starcraft II fit the assumptions of our
minimax results and, as an illustration, apply this method to solve differentiable
Blotto, a game with an infinite strategy space. All the proofs of the propositions
and theorems can be found in the appendix.

26

2 Related work

Minimax theorems in GANs. Many papers have adopted a game-theoretic
perspective on GANs, motivating the computation of distributions of networks (in
practice, finite collections) [Arora et al., 2017, Oliehoek et al., 2018, Hsieh et al.,
2019, Grnarova et al., 2018, Domingo-Enrich et al., 2020]. However, these papers
fail to explain why, in practice, it suffices to train only a single generator and
discriminator (instead of collections) to achieve state-of-the-art performance [Brock
et al., 2019]. Overall, even if we share motivations with the related work mentioned
above (providing principled results), our results and conclusion are fundamentally
different: we provide explain why using a single generator and discriminator—mnot
a distribution over them—makes sense. We do so by proving that one can achieve a
notion of nonconcave-nonconvex minimax equilibrium in GANs parametrized with
neural networks.

Stackelberg games and local optimality. The literature has considered
other notions of equilibrium. Recently, Fiez et al. [2020] proved results on games
where the goal is to find a (local) Stackelberg equilibrium. Using that perspec-
tive, Zhang et al. [2020] and Jin et al. [2019] studied local-optimality in the context
of nonconcave-nonconvex games. Our work provides a complementary perspec-
tive by providing a global minimax optimality theorem in a restricted—though
realistic—monconcave-nonconvex setting. Stackelberg equilibria may be meaning-
ful in some contexts, such as adversarial training, but we argue in §1 that the
minimax theorem is fundamental for defining a valid notion of solution for a large
class of machine learning applications.

Parametrized strategies in games. The notion of latent matrix games men-
tioned in this paper is similar to the pushforward technique proposed by Dou et al.
[2019]. It can also be related to the latent policies used in some multi-agent rein-
forcement learning (RL) applications. For instance the agent trained by Vinyals
et al. [2019] to play the game of StarCraft II had policies of form 7 (als, z) where z
belongs to structured space that corresponds to a particular way to start the game
or to actions it should complete during the game (e.g., the first 20 constructed units
and buildings). Moreover, using parameterized function approximator to estimate
strategies in games has been at the heart of multi-agent RL [Baxter et al., 2000,
Frangois-Lavet et al., 2018, Mnih et al., 2015]. Our contribution regarding latent
matrix games (and more broadly latent RL policies), is the theoretical framework
to study equilibrium in such parametrized nonconvex-nonconcave games and the
associated approximate minimax theorem we provide (Thm. 1).

Bounded rationality. In his seminal work, Simon [1969] introduced the prin-
cipled of bounded rationality. Generally speaking, it aims to capture the idea that
rational agents are actually incapable of dealing with the full complexity of a re-
alistic environment, and thus by these limitations, achieve a sub-optimal solution.
Neyman [1985], Papadimitriou and Yannakakis [1994], Rubinstein and Dalgaard

27

[1998] modeled these limitations by constraining the computational resources of
the players. Similarly, Quantal response equilibrium (QRE) [McKelvey and Pal-
frey, 1995] is a way to model bounded rationality: the players do not choose the
best action, but assign higher probabilities to actions with higher reward. Over-
all, QRE, bounded rationality /computation have a similar goal as latent games:
to model players that are limited by computation/memory/reasoning, however,
the way the limits are modeled differs since in this work we consider equilibrium
achieved with functions that have a limited representative power.

Finding a Nash equilibrium of Colonel Blotto. After its introduction
by Borel [1921], finding a Nash equilibrium of the Colonel Blotto game has been
an open question for 85 years. Roberson [2006] found an equilibrium solution
for the continuous version of the game, later extended to the discrete symmetric
case by Hart [2008]. The equilibrium computation in the general case remains
open. Recently, Blotto has been used as a challenging use-case for equilibrium
computation [Ahmadinejad et al., 2019]. Similarly, we consider a variant of Blotto
to validate that we can find approximate equilibrium in games with a single pair
of neural nets.

3 DMotivation: Two-player Games in Machine
Learning

A two-player zero-sum game is a payoff function ¢ : 2 x © — R, that evaluates
pairs of strategies (w, §). The goal of the game is to find an equilibrium, i.e., a pair
of strategies (w*, 6*) such that,

o(w,0") < p(w*, 0") < p(w*,0), Vw e, 0 € 0. (3.1)

The existence of such an equilibrium ensures that the order in which the play-
ers choose their respective strategy does not matter and that there exists a non-
exploitable strategy,

min max o(w,) = max min o(w,) = p(w*,0"). (3.2)
If the function ¢ is concave-convex and if the sets © and {2 are convex and com-
pact then Sion’s Minimax Theorem [Sion et al., 1958] insures that such a Nash
equilibrium does exist.

Previous theoretical work in the context of machine learning [Arora et al., 2017,
Oliehoek et al., 2018, Grnarova et al., 2018, Hsieh et al., 2019] considered the model
parameters w and 6 as the strategies of the game. Arguably, the most well-know
example of such a game is GANs.

28

Example 1. [Goodfellow et al., 2014] A GAN is a game where the first player, the
discriminator D,,, is a binary classifier parametrized by w € RP' and the second
player, the generator Gy, is a parametrized mapping from a latent space to an
output space. The payoff @ is then the ability of the first player to discriminate a
real data distribution pgaa from the generated distribution,

P(w,0) = Brrpyyy, | 108 Du(2)] + Beonvory [log (1= Du(Go(2)))] . (3.3)

Unfortunately, Example 1 does not satisfy Sion Minimax theorem’s assump-
tions for the following reasons: (i) The parameter sets are not compact. (ii) The
function ¢ is not concave-convex because of the non-convexity induced by the neu-
ral networks parametrization. While one can easily cope with the first issue—by
for instance restricting ourself to bounded weights or by leveraging Fan’s Theo-
rem [Fan, 1953]—the second issue (ii) is an intrinsic part of learning by neural
networks.

On the one hand, one cannot expect (3.2) to be valid for general nonconcave-

nonconvex games [Jin et al., 2019]. On the other hand, many games in the context
of machine learning have a particular structure since, as we will see in the next sec-
tion, their nonconcave-nonconvexity comes from the neural network parametriza-
tion.
Two complementary perspectives on a game. Example 1 can be interpreted
as a game between two players, one player, the generator, proposes a sample that
the other player, the discriminator tries to distinguish from a real data distribution
Pdata- In that game, the parameters w and 6 of the payoff function (3.3), do
not explicitly correspond to any meaningful strategy — i.e., generating a sample
or distinguishing data from generated samples. They respectively parametrize a
discriminator and a distribution one can consider as players that have an intuitive
interpretation in the GAN game.

Considering py the generated distribution in (3.3), we have a duality between
parameters and

Pl 0.0) = @D 10) 1= Eanpy, [108 Dul@)] + Eurny, [log (1= Duf@)]. (3.0

params

A compelling aspect of this dual perspective is that even though, one cannot expect
©, the payoff function of the parameters w and @, to be concave-convex, the payoff
of the @ is concave-conver. Formally, for any w,w’ € Q, 6,0 € © and and
A € [0, 1] we have,

P(ADy + (1 = X)Dur, pg) > AG(Duw, po) + (1 = XN)P(Dwr, pp) (by concavity of log)
P(Duw, Apg + (1 = N)pgr) = AP(Duy; pg) + (1 = A)B(Du, por) (by linearity of p — E,.)

Note that the notion of convex combination for the is quite subtle
here: AD,, + (1 — A\)D,s corresponds to a convex combination of functions

29

while Apy + (1 — X)per corresponds to a convex combination (a.k.a mixture) of
distributions.

Even if the payoff (3.4) is concave-convex with respect to (D, p), one cannot ap-
ply (yet) any standard minimax theorem for the following reason: given wy, ws € 2
and A € [0, 1] we may have

PweQ, st. ADy, +(1—N)D,, =D, (3.5)

meaning that the set of functions Fq = {D,|w € Q} may not be convex in
general. However, for the particular case of functions parametrized by ReLLU neural
networks we will show that the set F is “almost convex” (see Prop. 2 and 3). It is
one of the core results used in the proof of Thm. 1.

4 An assumption for nonconcave-nonconvex
games

The games arising in machine learning are not classical normal- or extensive-
form games. Rather, they often use neural nets to approximate complex functions
and high dimensional distributions [Brock et al., 2019, Razavi et al., 2019]. That
is why they are often considered general nonconcave-nonconvexr games (1.1). How-
ever, as illustrated in (3.4), in the machine learning context, many games have a
particular structure where the players’ payoff is concave-convex.

Assumption 1. The nonconcave-nonconver game (1.1) is assumed to have

a concave-convex players’ payoff, i.e., the parameters w and 6 respectively
parametrize such that,
o w,0) =¢() where (f,p) — @(f,p) is concave-convez. (4.1)
~——
params
We call f,, and gy , they can either be a parametrized function

or distribution.

One example of such a game has been developed in (3.4) where the first player,
D,, is a function and the second one, py is a distribution over images. Another
example is the Wasserstein GAN (WGAN).

Example 2. [Arjovsky et al., 2017] The WGAN formulation is a minimaz game
with a payoff ¢ s. t.,

Sp(wv 9) = @(Dw,pe) = Exwpdame(x) -]EJU’NPeDw(x/)) (4'2)

where the discriminator D,, has to be 1-Lipschitz, i.e., || Dy || < 1. By bilinearity
of the function (D,p) — E,[D(x)] we have that ¢ is bilinear and thus satisfies
Assumption 1.

30

Finally, we present a way to any cast matrix game with a very large (or even
infinite) number of strategies into a game that follows Assumption 1.
Using function approximation to solve matrix games. In the case of
matrix games, the payoff function ¢ : A x B — R has no concave-convex struc-
ture, and the sets A and B are often even discrete. Neumann and Morgenstern
[1944] introduced mixed strategies p € A(A), where A(A) is the set of probabil-
ity distributions over A, in order to guarantee the existence of an equilibrium. In
game-theory, a well-known example of a challenging matrix game is the Colonel
Blotto game.

Example 3 (Colonel Blotto Game). Consider two players who control armies of S
and Sy soldiers respectively. Each colonel allocates their soldiers on K battlefields.
A strategy for player-i is an allocation a; € A; and the payoff of the first player is
the number of battlefields won

plar, az) = e Xy Hlaa] > [az]i} (4.3)
where A; 1= {a eNK . 3F Jalpy <8, 1<k < K}.

In Example 3, the number of strategies grows exponentially fast as K grows.
Consequently, one cannot afford to work with an explicit distribution over the
strategies. A tractable way to compute an equilibrium of the Colonel Blotto Game
has been an open question for decades. The GANs examples (Eq.3.4 & 4.2) suggest
to consider distributions implicitly defined with a generator. Given a latent space
Z, a latent distribution m on Z and a mapping gy : Z — A, we can define the
distribution py € A(A) as

a~pg:a=gy(z), z~T. (4.4)

Definition 1 (Latent Matrix Game). A latent matrix game (¢, F,G) is a two-
player zero-sum game where the players pick f, € F and g9 € G and, given w and
7’ two fized distributions, obtain payoffs

p(w,0) = Ear im0 (), 90(2))] -

The reformulation of any matrix game as a latent game satisfies Assumption 1.

Example 3 (Latent Blotto). Consider the functions f, : RF — A; and
go : RP — Ay. The payoff is

p(w,0) = 4 A P([fulZ0)]k > [90(Z2)]1) (4.5)

where Zy, Zy ~ N (0, I,) are independent Gaussians and A; is defined in (4.3).

31

Latent matrix games encompasses multi-agent RL games played with RL poli-
cies such as the setting used by Vinyals et al. [2019] to play StarCraft II.! The
agent, called AlphaStar, has a latent-conditioned policy m(als, z) where z belongs
to a structured space that represents information about how to start constructing
units and buildings, and that is sampled from an expert human player distribution:
2 ~ Phuman(2). Given two agents m(als, z) and my(als, z), the payoff in the latent
game is @(m, mp) = P(m; beats my) . The classes F and G correspond to the neural
architectures used to parametrize the policies; the priors 7 and 7’ are the human
expert distribution pruman-

In that example, and more generally in multi-agent RL zero-sum games played
with policies parametrized by neural networks, the payoff p(w, 8) = P(m,, beats mp)
is a potentially nonconcave-nonconvex function of the parameters but satisfies As-
sumption 1.

5 Minimax Theorems

We want to prove a minimax theorem for some nonconcave-nonconvex
games (1.1) that satisfy Assumption 1. We start with an informal statement of
our result.

Theorem 1. [Informal] Let ¢ be a nonconcave-nonconvez payoff that satisfies As-
sumption 1 with ¢ bilinear and where the players f,, and gy are one hidden layer
ReL U networks of width p. For any € > 0 there ezists a pair (w,0) that achieves a
notion of approximate equilibrium.

When played with ReLLU networks Example 2 and 3 satisfy the hypothesis of this
theorem. The proof of this Theorem is split into 3 main steps: (i) in §5.1 by using
the fact that p(w,0) = &(fu,gs) we provide the existence of a limited-capacity
equilibrium in the convex hull of the space of players (see Assum. 1 for the definition
of players). Note that, since we are working in a larger space (the convex hull),
one cannot expect to achieve this equilibrium with a single pair of parameters
(w,0). (ii) in §5.2 we show that approximate equilibrium can be achieved with a
relatively small convex combination. (iii) in §5.3 we show that when using ReLU
networks, such small convex combination of players can be achieved by a single
larger ReLLU network. A formal definition of convex combination of players is
provided in §5.1.

!'Note that here we do not claim the novelty of parametrizing policies/strategies such idea has
been used in may games and RL applications (see related work section).

32

5.1 Limited Capacity Equilibrium in the Space of Players

Recall that by Assumption 1, the nonconcave-nonconvex payoff ¢ can be written
as,

o(w,0) = &() where (f,p) — &(f,p) is concave-convex . (5.1)

The players [, and p are either respectively parametrized
by w and 6. For instance, in the context of WGAN (Example 2), f,, would be the
discriminator and py would be the generated probability distribution. In that
example, notice that @(fy,-) is not convex with respect to the generator function
but only with respect to the generated distribution. Similarly, if we computed
convex combinations generator’s parameters, the payoff ¢ would not be convex.
Moreover, the Lipchitz constraint in Example 2 is natural in the ,
but it is challenging to translate it into a constraint in the parameter space.?
Overall, using (5.1) one can rewrite (1.1) as follows,

i 5 5.2
min max 3(f,) (5:2)

where Fq and Gg are function or distribution spaces (depending on the applica-
tion) incorporating the limited capacity constraints of the problem, e.g., Lipschitz
constraint. In the following, for simplicity of the discussion, we discuss what the
formal definitions of a convex combination are when and
when we have no additional constraint aside from the
parametrization, i.e., Fo := {f, | w € Q} and Gg := {py |0 € O}. However, these
notions and our results extend if we consider that both players are distributions
(e.g., in Example 3), or if we add any convex constraint on the functions or the
distributions, see Example 2.
Convex combination of functions. Let us consider w; and wy € 2, the
convex combination of the players f,,, and f,, is their point-wise averaging. The
convex hull of Fq can be defined as,

K K
hull(Fq) := {Averages from Fq} = {Z)‘ifwi | w; € €, Z)‘i =1,\>0 K> O}.

i=1 i=1
(5.3)
Convex combination of distributions. Consider latent mappings #; and
0, € O that parametrize probability distribution py, and pg, over a set X. The
convex combination py of py, and ps, with A € [0,1] is the mixture of these two
probability distributions, py := Apg, + (1 — \)ps, -
To sample from p,, flip a biased coin with P(heads) = A. If the result is heads
then sample a strategy from pp, and if the result is tails then sample from pp,. The
convex hull of Gg is,

%In practice, parameters are clipped [Arjovsky et al., 2017] or the Lipchitz constant of the
network is approximated [Miyato et al., 2018]. These approximations can be arbitrarily far from
the original constraint.

33

K K
hull(Ge) := {Mixtures from Gg} = {Z)\ipgi 0; € ©, Z)\i =1, N>0 K> O}.
i=1 i=1

(5.4)
The set hull(Gg) is a subset of P(X'), the set of probability distributions on X. This
set is different from the set of distributions supported on Gg considered by Arora
et al. [2017], Hsieh et al. [2019]. It contains ‘smaller’ mixtures because there may
be many distributions supported on Gg that correspond to the same p € hull(Gg).
Moreover these works did not take advantage of the convexity with respect to the
discriminator function (see Example 1 and 2) by considering (5.3).
Existence of an equilibrium by playing in the convex hulls. Our first
result is that there exists an equilibrium by allowing functions or distributions to
be picked from their convex hulls.

Proposition 1. Let ¢ be a game that follows Assumption 1. If Go and Fq are
compact, then there exist a value for the game such that,

V(Q,0):= su inf &(f,p)= inf su 3(f,p), 55
() fEhUHI()]‘—Q) pehull(Ge)) pchull(Ge) fehullI()]-'Q) o) (5:5)

where hull(Ge) and hull(Fg) are either defined in (5.3) or in (5.4), depending on
the type player.

After showing that the closure of hull(Gg) and hull(Fg,) are compact, this propo-
sition is a corollary of Sion et al. [1958]’s minimax theorem (see §3). Note that
2 and © are arbitrary and that this equilibrium differs from the infinite-capacity
equilibrium of the game (5.2) where we would allow f and g to be any function
or distribution (i.e. with no parametrization restriction). Because we consider
the convex hull of Fo and Gg, this equilibrium is achieved with convex combina-
tions (5.3) resp. (5.4)) of py, , © > 0 (resp. fu,,) and thus there is no reason to expect
to achieve this equilibrium with a single pair of weights (w, #) in general. However
in §5.2, we show that one can approximate such an equilibrium with relatively
small convex combinations.

5.2 Approximate minimax equilibrium

Approximate equilibria for (5.5) are the pairs of players e-close to achieving the
value of the game.

Definition 2 (e-equilibrium). A pair (fF, pf) € hull(F)xhull(G) is an e-equilibrium
if,

in B(f*p) > V(Q,0) - d 5(f,p7) < V(Q .
peﬁgg@)so(fe,p)_v(,0) —¢ an fegggjrﬂ)w(f,pe)_v(,0) + €

Note that f* does not depend on p! and vice-versa. We will show that such
approximate equilibria are achieved with finite convex combinations. Considering

34

fr € Fq and g; € Go (that can either be functions or distributions) we aim at
finding the smallest convex combination that is an e-equilibrium.

(K2, K®) := Smallest K and K’ € N s.t. (X5, XNofiu, 2K Noge) is an e-equilibrium.

Our goal is to provide a bound that depends on € and on some properties of the
classes Fq and Gg.

Theorem 2. Let ¢ a game that satisfies Assumption 1. If ¢ s bilinear,
0] < R, ||w|| < R, Vw,0 € Qx0O CR?xRP and o is L-Lipschitz then,

KGQ < %E”pln(ﬁf%) and Kee < %ggdln(GgL) (5.6)

where Dy, = maxy, v g p(w,) — p(w’,0) and Dy := max,, g g o(w,0) — p(w,d').

Roughly, the number K€ expresses to what extent the set of distributions in-
duced by the mappings in Gg has to be ‘convexifed’ to achieve an approximate
equilibrium. Note that in practice we expect this quantity to be small. For in-
stance, in the context of GANs, if the class of discriminators F, contains the
constant function D(-) = .5 then K& = 1 since o(D,G) =0, VG € G.

5.3 Achieving a Mixture or an Average with a Single Neu-
ral Net

We showed above that under the assumption of Theorem 2, approximate equi-
libria can be achieved with finite convex combinations. In this section, we investi-
gate how it is possible to achieve such approximate equilibria with a single ReLLU
network. Formally, such a function g : R%" — R can be written as,

go(r) =8 a; ReLU(¢/ v +d;) +b; where a;,b; € RY ¢; € Rén d; e R. (5.7)

We note 6 = (a,b,c,d) € RP@in+1+2d) and ReLU(z) = max(x,0). We present two
results on the representative power of neural networks. The first one concerns
mixtures of distributions represented by latent ReLU nets, and the second one
concerns convex combinations of ReLLU nets as functions.

Neural Nets Represent Mixtures of Smaller Nets. First, we get interested
in the probability distributions py induced by gy, defined as

a~pg : a= ge(z) where z ~ U([0,1]) and 6 € RP. (5.8)

One of the motivation of this work is to represent distribution over images usually
represented by a high dimensional vector in [0,1]¢. That is why we will assume
that our generator function take its value in [0, 1]%.

35

Proposition 2. If d;,, = 1 and if for all 0 € ©, z € [0,1], go(2) € [0,1]? and gy
is constant outside of [0,1], then for any Ok, , |10k < R, k= 1...K, there exists
0 € [-KR, KR]*WF% such that drv (L i, pa,.pe) < 1/R where dry is the total
variation distance.

Fig. A.1b (in §3) illustrates how gy is constructed. Unlike the universal ap-
proximation theorem, Prop. 2 shows that a single neural network can represent
mixtures. On the one hand, when one wants to approximate an arbitrary contin-
uous function, the number of required hidden units may be prohibitively large [Lu
et al., 2017] as the error € vanishes. On the other hand, the dimension of #3 in
Prop. 2 does not depend on any vanishing quantity. The high-level insight is that a
large enough ReLLU net can represent mixtures of distributions induced by smaller
ReLU nets, with a width that grows linearly with the size of the mixture.
Neural Nets represent an average of smaller Nets. If we consider averages
of functions as described in (5.3), we can show that point-wise averages of functions
9o, 0 € RP defined in (5.7) can be represented by a wider neural network.

Proposition 3. For all w, € [-R,R]P, k = 1... K, there exists w € [—R, R]X?
such that %Zle fur = fu-

Figure A.la shows how f, is constructed. Similarly as the Prop. 2, Prop. 3 is a
representation theorem that shows that the space { f, | w € RP} is ‘almost’ convex.

5.4 Minimax Theorem for Nonconcave-noncavex Games
Played with Neural Networks

Prop. 2 and 3 give insights about the representative power of ReLU neural nets:
as their width grows, ReLLU nets can express larger mixtures/averages of sub-nets.
Combining these properties with Thm. 2, we show that approximate equilibria can
be achieved for such nonconcave-nonconvex payoff.

Theorem 1. Let ¢ be a nonconcave-nonconvex game such that o(w,0) = @(fu, pe)
where py is the distribution induced by gy defined in (5.8), and f, and gy are one
layer ReLU networks (5.7). If ¢ is bilinear and L-Lipschitz, and if ¢ is L-Lipschitz,
then for any € > 0, there exists (w’,0}) € [-R, R|** ,s.t.,

€)7€

fin p(we,0) +e+ 5 > max o(w,6), (5.9)
10]<F.]l <R

where De = CQ/W and RE > R% .

An explicit formula for C' is provided in Appendix .3 §A as well as variants
of this theorem when w parametrizes a distribution or when 6 parametrizes a
function. Theorem 1 shows the existence of a notion of weaker-capacity-equilibrium

36

agent f

agent g

NG B
0 iterations 400 iterations 800 iterations 2
. . 0 200 100 600 800
(a) 5000 samples using the latent mapping f and g Number of iterations

after 0,400, and 800 training steps. Their respective (b) Performance and conver-
suboptimality along training has a value of 1.5,1.2, gence of the agents.
and .5.

Figure 4.1: Training of latent agents to play differentiable Blotto with K = 3.
Right: The suboptimality corresponds to the payoff of the agent against a best
response. We averaged our results over 40 random seeds.

for a nonconcave-nonconvex game where the players use a standard fully connected
architecture. The notion of weaker-capacity is encompassed within the fact that
w, and 6. are of dimension p. < p and are bounded in norm by R. < R. This
result differs from Arora et al. [2017, Theorem 4.3] who, only in the context of
GANS, design a specific architecture to achieve a different notion of approximate
equilibrium.

On the one hand, if €,/p < 1, then the lower-bound in (5.9) is vacuous (since p,
corresponds the number of non-zero parameter of the lower-capacity networks). On
the other, the number of parameters of the higher-capacity networks p only needs
to (roughly) grow quadratically with € to achieve a non-vacuous bound. Hence, a
consequence of Theorem 1 is that, for the nonconcave-nonconvex games of interest,
highly over parametrized networks can provably achieve a notion of equilibrium.

6 Application: Solving Colonel Blotto Game

We apply our latent game approach (Def. 2) to solve a differentiable version
of Example 3. We consider a continuous relaxation of the strategy space where
S1 = S,. After renormalization we have that A; = Ay = Ak, where Ay is the
K-dimensional simplex. It is important to notice that in that case an allocation
corresponds to a point on the simpler and a mizture of allocation corresponds to
a distribution over the simplex. We replace the payoff (4.5) of Latent Blotto by
a differentiable one, @(w,8) := E,r 1mnr [% SF o([fu(z) — gg(z’)]k)} where o is
a sigmoid minus 1/2 and f,, g9 : RP — Ag. This game has been theoretically
by Ferdowsi et al. [2018] when S; > 5.

For the latent mappings, f, anf gy we considered dense ReLLU networks with
4 hidden layers, 16 hidden units per layer, and a K-dimensional softmax output.

37

We use a 16-dimensional Gaussian prior for the latent variable. We trained our
agents using gradient descent ascent on the parameters of f and g with the Adam
optimizer [Kingma and Ba, 2015] with 8; = .5 and 5y = .99.

In Fig. 4.1b, we present the performance of the agents against a best response.
To compute it, we sampled 5000 strategies and computed the best response against
this mixed strategy using gradient ascent on the simplex. We also computed the
norm of the (stochastic) gradient used to update f. In Fig. 4.1a, we plotted sam-
ples from f at different training times. As we get closer to convergence to a
non-exploitable strategy, we can see that this distribution avoids the center of the
simplex (putting troops evenly on the battlefields) and the corners (focusing on a
single battlefield) that are strategies easily exploitable by focusing on two battle-
fields, this correlates with the decrease of the gradient and of the suboptimality
indicating that the agents learned how to play Blotto.

7 Discussion

Nonconcave-nonconvex games radically differ from minimization problems since
equilibria may not exist in general. How, then, can neural nets regularly find
meaningful solutions to games like GANs?

In this work, we partially answer this question by leveraging the structure of
GANSs to show that a single pair of ReLU nets can achieve a notion of limited-
capacity-equilibrium. The intuition underlying our theorems is as follows: neural
nets have a particular structure that interleaves matrix multiplications and simple
non-linearities (often based on the max operator like ReLU). The matrix multi-
plications in one layer of a neural net compute linear combinations of functions
encoded by the other layers. In other words, neural nets are (non-)linear mixtures
of their sub-networks.

Finally, it is instructive to discuss the relative merits of the limited-capacity
aspect that occurs in Theorem 1 due to the parametrization. On the one hand, if
one had access to any function/distribution an infinite-capacity equilibrium would
exist (because the whole function/distribution space is convex). However, this
quantity may not be realistic, e.g., in GANs, the optimal infinite-capacity generator
must represent the distribution of ‘real-world’” images. If such a concept is not
tractable, it seems unrealistic to expect limited capacity agents, such as humans
or computers, to find it [Papadimitriou, 2007]. On the other hand, our work shows
that one can efficiently approximate some equilibria when working with neural
networks. These equilibria capture the notion that agents—and humans—that play
complex games have a limited capacity that seems more reasonable to play complex
games such as Poker of StarCraft II that are multi-step with imperfect information.
Thus in the vein of games with bounded rationality, limited-capacity equilibria seem

38

to be an interesting solution concept that is more realistic than infinite-capacity
equilibria.

39

Prologue to the Second
Contribution

1 Article Detalils

A Variational Inequality Perspective on Generative Adversarial Net-
works. Gauthier Gidel, Hugo Berard, Gaétan Vignoud, Pascal Vincent and Simon
Lacoste-Julien. This paper was published at ICLR 2019 [Gidel et al., 2019b].

2 Contributions of the authors

Gauthier Gidel contributed to the general writing of the paper, the results on
the simple bilinear example and the proof of all the theorems of the paper. Gauthier
Gidel also brought his knowledge about optimization and variational inequalities.
Hugo Berard did the experiments and wrote the experimental section. He also
brought his knowledge about GANs and more generally generative modeling. Gaé-
tan Vignoud came up with the idea of extrapolation from the past and reviewed
the proofs of the paper. Simon Lacoste-Julien and Pascal Vincent supervised this
project. The original idea of using extragradient and adopting a variational in-
equality perspective on GAN came from Simon Lacoste-Julien.

3 Modifications with respect to the published
paper

We added a missing related work regarding extrapolation from the past [Popov,
1980]. We consequently modified the discussion regarding the novelty of extrapo-
lation from the past and our related contributions.

40

A Variational Inequality
Perspective on Generative
Adversarial Networks

Abstract

Generative adversarial networks (GANs) form a generative modeling approach
known for producing appealing samples, but they are notably difficult to train.
One common way to tackle this issue has been to propose new formulations of the
GAN objective. Yet, surprisingly few studies have looked at optimization methods
designed for this adversarial training. In this work, we cast GAN optimization
problems in the general variational inequality framework. Tapping into the math-
ematical programming literature, we counter some common misconceptions about
the difficulties of saddle point optimization and propose to extend techniques de-
signed for variational inequalities to the training of GANs. We apply averaging,
extrapolation and a computationally cheaper variant that we call extrapolation from
the past to the stochastic gradient method (SGD) and Adam.

1 Introduction

Generative adversarial networks (GANs) [Goodfellow et al., 2014] form a gen-
erative modeling approach known for producing realistic natural images [Karras
et al., 2018] as well as high quality super-resolution [Ledig et al., 2017] and style
transfer [Zhu et al., 2017]. Nevertheless, GANs are also known to be difficult to
train, often displaying an unstable behavior [Goodfellow, 2016]. Much recent work
has tried to tackle these training difficulties, usually by proposing new formula-
tions of the GAN objective [Nowozin et al., 2016, Arjovsky et al., 2017]. Each of
these formulations can be understood as a two-player game, in the sense of game
theory [Neumann and Morgenstern, 1944], and can be addressed as a variational
inequality problem (VIP) [Harker and Pang, 1990], a framework that encompasses
traditional saddle point optimization algorithms [Korpelevich, 1976].

Solving such GAN games is traditionally approached by running variants of
stochastic gradient descent (SGD) initially developed for optimizing supervised
neural network objectives. Yet it is known that for some games [Goodfellow, 2016,
§8.2] SGD exhibits oscillatory behavior and fails to converge. This oscillatory be-
havior, which does not arise from stochasticity, highlights a fundamental problem:
while a direct application of basic gradient descent is an appropriate method for

41

regular minimization problems, it is not a sound optimization algorithm for the
kind of two-player games of GANs. This constitutes a fundamental issue for GAN
training, and calls for the use of more principled methods with more reassuring
convergence guarantees.

Contributions. We point out that multi-player games can be cast as varia-
tional inequality problems (VIPs) and consequently the same applies to any GAN
formulation posed as a minimax or non-zero-sum game. We present two techniques
from this literature, namely averaging and extrapolation, widely used to solve VIPs
but which have not been explored in the context of GANs before.!

We extend standard GAN training methods such as SGD or Adam into vari-
ants that incorporate these techniques (Alg. 4 is new). We also explain that the
oscillations of basic SGD for GAN training previously noticed [Goodfellow, 2016]
can be explained by standard variational inequality optimization results and we
illustrate how averaging and extrapolation can fix this issue.

We study a variant of extragradient that we call extrapolation from the past
originally introduced by Popov [1980]. It only requires one gradient computation
per update compared to extrapolation, which needs to compute the gradient twice.
We prove its convergence for strongly monotone operators and in the stochastic
VIP setting.

Finally, we test these techniques in the context of GAN training. We observe a

4-6% improvement over Miyato et al. [2018] on the inception score and the Fréchet
inception distance on the CIFAR-10 dataset using a WGAN-GP [Gulrajani et al.,
2017] and a ResNet generator.?
Outline. §2 presents the background on GAN and optimization, and shows
how to cast this optimization as a VIP. §3 presents standard techniques and ez-
trapolation from the past to optimize variational inequalities in a batch setting.
§4 considers these methods in the stochastic setting, yielding three corresponding
variants of SGD, and provides their respective convergence rates. §5 develops how
to combine these techniques with already existing algorithms. §6 discusses the
related work and §7 presents experimental results.

!The preprints for [Mertikopoulos et al., 2019] and [Yazic1 et al., 2019], which respectively
explored extrapolation and averaging for GANs, appeared after our initial preprint. See also the
related work section §6.

2Code available at https://gauthiergidel.github.io/projects/vip-gan.html.

42

https://gauthiergidel.github.io/projects/vip-gan.html

2 GAN optimization as a variational inequality
problem

2.1 GAN formulations

The purpose of generative modeling is to generate samples from a distribution
ge that matches best the true distribution p of the data. The generative adversarial
network training strategy can be understood as a game between two players called
generator and discriminator. The former produces a sample that the latter has to
classify between real or fake data. The final goal is to build a generator able to
produce sufficiently realistic samples to fool the discriminator.

In the original GAN paper [Goodfellow et al., 2014], the GAN objective is
formulated as a zero-sum game where the cost function of the discriminator D, is
given by the negative log-likelihood of the binary classification task between real
or fake data generated from gy by the generator,

min max L(0,p) where L(0,¢):= —XIELlog ka(x)]—}(/]qulog(l—DAf))] . (2.1)
However Goodfellow et al. [2014] recommends to use in practice a second formula-
tion, called non-saturating GAN. This formulation is a non-zero-sum game where
the aim is to jointly minimize:

L;(0,¢) :=—E log D,(x") and Lp(0,p) := —Eplog D,(x) — E log(1-D,(x)) .
X~ x'~qg

x'~qg
(2.2)
The dynamics of this formulation has the same stationary points as the zero-
sum one (2.1) but is claimed to provide “much stronger gradients early in learn-
ing” [Goodfellow et al., 2014] .

2.2 Equilibrium

The minimax formulation (2.1) is theoretically convenient because a large lit-
erature on games studies this problem and provides guarantees on the existence of
equilibria. Nevertheless, practical considerations lead the GAN literature to con-
sider a different objective for each player as formulated in (2.2). In that case, the
two-player game problem [Neumann and Morgenstern, 1944] consists in finding the
following Nash equilibrium:

0" € argmin L;(0, ") and ¢* € argmin Lp (07, @) . (2.3)
0co ped
Only when L5 = —Lp is the game called a zero-sum game and (2.3) can be

formulated as a minimax problem. One important point to notice is that the two
optimization problems in (2.3) are coupled and have to be considered jointly from
an optimization point of view.

43

Standard GAN objectives are non-convex (i.e. each cost function is non-convex),
and thus such (pure) equilibria may not exist. As far as we know, not much is
known about the existence of these equilibria for non-convex losses (see Heusel
et al. [2017] and references therein for some results). In our theoretical analysis
in §4, our assumptions (monotonicity (4.1) of the operator and convexity of the
constraint set) imply the existence of an equilibrium.

In this paper, we focus on ways to optimize these games, assuming that an
equilibrium exists. As is often standard in non-convex optimization, we also focus
on finding points satisfying the necessary stationary conditions. As we mentioned
previously, one difficulty that emerges in the optimization of such games is that the
two different cost functions of (2.3) have to be minimized jointly in 8 and ¢. Fortu-
nately, the optimization literature has for a long time studied so-called variational
inequality problems, which generalize the stationary conditions for two-player game
problems.

2.3 Variational inequality problem formulation

We first consider the local necessary conditions that characterize the solution of
the smooth two-player game (2.3), defining stationary points, which will motivate
the definition of a variational inequality. In the unconstrained setting, a stationary
point is a couple (6%, ¢*) with zero gradient:

IVeLa(0%, ")l = [VoLp(0%,¢7)[| = 0. (2.4)

When constraints are present,® a stationary point (6*,*) is such that the direc-
tional derivative of each cost function is non-negative in any feasible direction (i.e.
there is no feasible descent direction):

VoLa(0",¢")(0—6") >0 and V,Lp(0",¢") (p—¢") >0, V(6,p) € OxP.

(2.5)
Defining w := (0, ¢), w* = (0*,¢"), Q := O x &, Eq. (2.5) can be compactly
formulated as:

-
F(w) (w—w") >0, Yw € Qwhere F(w) = [VoLa(6,9) VoLn(6,¢)]

(2.6)

These stationary conditions can be generalized to any continuous vector field: let

Q c RYand F : Q — R? be a continuous mapping. The variational inequality
problem [Harker and Pang, 1990] (depending on F' and) is:

find w* € Q such that F(w")'(w—w*) >0, Ywe Q. (VIP)

3An example of constraint for GANs is to clip the parameters of the discriminator [Arjovsky
et al., 2017].

44

We call optimal set the set Q" of w € § verifying (VIP). The intuition behind it
is that any w* € Q* is a fized point of the constrained dynamic of F' (constrained
to Q).

We have thus showed that both saddle point optimization and non-zero sum
game optimization, which encompass the large majority of GAN variants proposed
in the literature, can be cast as VIPs. In the next section, we turn to suitable
optimization techniques for such problems.

3 Optimization of Variational Inequalities
(batch setting)

Let us begin by looking at techniques that were developed in the optimization
literature to solve VIPs. We present the intuitions behind them as well as their
performance on a simple bilinear problem (see Fig. 6.1). Our goal is to provide
mathematical insights on averaging (§3.1) and extrapolation (§3.2) and propose
a novel variant of the extrapolation technique that we called extrapolation from
the past (§3.3). We consider the batch setting, i.e., the operator F'(w) defined in
Eq. 2.6 yields an exact full gradient. We present extensions of these techniques to
the stochastic setting later in §4.

The two standard methods studied in the VIP literature are the gradient
method [Bruck, 1977] and the extragradient method [Korpelevich, 1976]. The it-
erates of the basic gradient method are given by w3 = Polw; — nF(w;)] where
Pq[] is the projection onto the constraint set (if constraints are present) associated
to (VIP). These iterates are known to converge linearly under an additional as-
sumption on the operator’ [Chen and Rockafellar, 1997], but oscillate for a bilinear
operator as shown in Fig. 6.1. On the other hand, the uniform average of these
iterates converge for any bounded monotone operator with a O(1/+v/t) rate [Nedi¢
and Ozdaglar, 2009], motivating the presentation of averaging in §3.1. By contrast,
the extragradient method (extrapolated gradient) does not require any averaging
to converge for monotone operators (in the batch setting), and can even converge
at the faster O(1/t) rate [Nesterov, 2007]. The idea of this method is to compute a
lookahead step (see intuition on eztrapolation in §3.2) in order to compute a more
stable direction to follow.

3.1 Averaging

More generally, we consider a weighted averaging scheme with weights p, > 0.
This weighted averaging scheme have been proposed for the first time for (batch)

4Strong monotonicity, a generalization of strong convexity. See §1.

45

VIP by Bruck [1977],

) w T-1
wr = P ;pt L Sp= Z Ot - (3.1)
T -

Averaging schemes can be efficiently implemented in an online fashion noticing
that,
U_JT = (]. — ﬁT)U_JT—I + ﬁTUJT where 0 S ﬁT S 1. (32)

For instance, setting pr = % yields uniform averaging (p, = 1) and py=1—-p < 1
yields geometric averaging, also known as exponential moving averaging
(pr = pT74 1 < t < T). Averaging is experimentally compared with the
other techniques presented in this section in Fig. 6.1.

In order to illustrate how averaging tackles the oscillatory behavior in game
optimization, we consider a toy example where the discriminator and the generator
are linear: Dy, (x) = ¢”x and Gg(z) = 0z (implicitly defining gg). By substituting
these expressions in the WGAN objective,” we get the following bilinear objective:

. T T
min max ¢ E[x] — " OE[z] . (3.3)
A similar task was presented by Nagarajan and Kolter [2017] where they consider
a quadratic discriminator instead of a linear one, and show that gradient descent is
not necessarily asymptotically stable. The bilinear objective has been extensively
used [Goodfellow, 2016, Mescheder et al., 2018, Yadav et al., 2018, Daskalakis et al.,
2018] to highlight the difficulties of gradient descent for saddle point optimization.
Yet, ways to cope with this issue have been proposed decades ago in the context
of mathematical programming. For illustrating the properties of the methods of
interest, we will study their behavior in the rest of §3 on a simple unconstrained
unidimensional version of Eq. 3.3 (this behavior can be generalized to general mul-
tidimensional bilinear examples, see §2.3):
Ienelél max 0-¢ and (0%, ¢") = (0,0). (3.4)
The operator associated with this minimax game is F'(6,¢) = (¢, —0). There are
several ways to compute the discrete updates of this dynamics. The two most
common ones are the simultaneous and the alternating gradient update rules,

011 = 0, — 0y 01 = 0 — noy

) . 3.5
i1 = Q¢ + by Grr1 = Pt + 101 (3:5)

Sim. update: { Alt. update: {

Interestingly, these two choices give rise to completely different behaviors. The
norm of the simultaneous updates diverges geometrically, whereas the alternating

SWasserstein GAN (WGAN) proposed by Arjovsky et al. [2017] boils down to the following
minimax formulation: mingee max,ea,||p, ||, <1 Exmp[Dep(X)] — Ex/nge [De (X))

46

iterates are bounded but do not converge to the equilibrium. As a consequence,
their respective uniform average have a different behavior, as highlighted in the
following proposition (proof in Appendix B §2.1 and generalization in Appendix B,

§2.3):

Proposition 1. The simultaneous iterates diverge geometrically and the alternat-
ing iterates defined in (3.5) are bounded but do not converge to 0 as

Simultaneous: 07, +¢7 = (1+7°)(07 +¢7), Alternating: 607 +¢; = O(05 + &¢)
(3.6)

where u; = O(v;) < 3a, B,t0 > 0 such that Yt > to, av, < uy < Boy.

The uniform average (0, ¢;) = % “=1(0,, ¢s) of the simultaneous updates

(resp. the alternating updates) diverges (resp. converges to 0) as,

05 +
772152

. 02 | 712 2\t 02 | 12 05 + &5
Sim.: Ot—l—gbt:@((1—1—77)), Alt.: «9t+¢t:@< o) (3.7)
This sublinear convergence result, proved in Appendix B §2, underlines the
benefits of averaging when the sequence of iterates is bounded (i.e. for alternating
update rule). When the sequence of iterates is not bounded (i.e. for simultaneous
updates) averaging fails to ensure convergence. This theorem also shows how alter-

nating updates may have better convergence properties than simultaneous updates.

3.2 Extrapolation

Another technique used in the variational inequality literature to prevent oscil-
lations is extrapolation. This concept is anterior to the extragradient method since
Korpelevich [1976] mentions that the idea of extrapolated “prices” to give “stabil-
ity” had been already formulated by Polyak [1963, Chap. II]. The idea behind this
technique is to compute the gradient at an (extrapolated) point different from the
current point from which the update is performed, stabilizing the dynamics:

Compute extrapolated point: wyy1/2 = Polwy — nF(wy)], (3.8)
Perform update step: wy11 = Polwy — nF(wit1/2)] - (3.9)

Note that, even in the unconstrained case, this method is intrinsically different from
Nesterov’s momentum® [Nesterov, 2004, Eq. 2.2.9] because of this lookahead step
for the gradient computation:

Nesterov’s method: w172 = wy — nF(wy),

W1 = Wiy1j2 + B(Wip12 — wy) -

6Sutskever [2013, §7.2] showed the equivalence between “standard momentum” and Nesterov’s
formulation.

47

Nesterov’s method does not converge when trying to optimize (3.4). One intuition
of why extrapolation has better convergence properties than the standard gradient
method comes from Euler’s integration framework. Indeed, to first order, we have
Wit1/2 ~ w1 + o(n) and consequently, the update step (3.9) can be interpreted as
a first order approximation to an implicit method step:

Implicit step: wy11 = wy — NF (wig1) - (3.10)

Implicit methods are known to be more stable and to benefit from better con-
vergence properties [Atkinson, 2003] than ezplicit methods, e.g., in §2.2 we show
that (3.10) on (3.4) converges for any n. Though, they are usually not practical
since they require to solve a potentially non-linear system at each step. Going back
to the simplified WGAN toy example (3.4) from §3.1, we get the following update
rules:

Orr1 = 0 — (¢ + 10;)
bri1 = ¢+ (0 — ndy)

In the following proposition, we see that for n < 1, the respective convergence
rates of the implicit method and extrapolation are highly similar. Keeping in mind
that the latter has the major advantage of being more practical, this proposition
clearly underlines the benefits of extrapolation. Note that Prop. 1 and 2 generalize
to general unconstrained bilinear game (more details and proof in §2.3),

Orp1 = 0 — P11

3.11
G141 = Pt + 001 ()

Implicit: { , Extrapolation:{

Proposition 2. The squared norm of the iterates N? := 0? + ¢2, where the update
rule of 0; and ¢, are defined in (3.11), decreases geometrically for any n < 1 as,

Implicit: N2, = (1—772+7]4+(’)(776))Nt2, Extrapolation: N2, = (1—n*+n")N}.
(3.12)

3.3 Extrapolation from the past

One issue with extrapolation is that the algorithm “wastes” a gradient (3.8).
Indeed we need to compute the gradient at two different positions for every single
update of the parameters. [Popov, 1980] proposed a similar technique that only
requires a single gradient computation per update. The idea is to store and re-use
the extrapolated gradient for the extrapolation:

Extrapolation from the past: w172 = Polw; — nF (wi—1/2)] (3.13)
Perform update step: wyi1 = Polwy — nF (wWit1/2)] (3.14)

and store: F(wy1/2).

A similar update scheme was proposed by Chiang et al. [2012, Alg. 1] in the
context of online convex optimization and generalized by Rakhlin and Sridharan

48

—#— Adam with v = 0.01 —#— Extrapolation from the past vy = 0.5
Gradient method v = 0.1 —4— Extrapolation v = 0.6
—+— Averaging v = 2.0

Figure 6.1: Comparison of the basic gradient method (as well as Adam) with
the techniques presented in §3 on the optimization of (3.3). Only the algorithms
advocated in this paper (Averaging, Extrapolation and Extrapolation from the
past) converge quickly to the solution. Each marker represents 20 iterations. We
compare these algorithms on a non-convex objective in §7.1.

[2013] for general online learning. Without projection, (3.13) and (3.14) reduce to
the optimistic mirror descent described by Daskalakis et al. [2018]:

Optimistic mirror descent (OMD): wyi1/2 = w172 — 2nF(wi—1/2) + nF (wWi—3/2)

(3.15)
OMD was proposed with similar motivation as ours, namely tackling oscillations
due to the game formulation in GAN training, but with an online learning per-
spective. Using the VIP point of view, we are able to prove a linear convergence
rate for extrapolation from the past (see details and proof of Theorem 1 in §2.4).
We also provide results on the averaged iterate for a stochastic version in §4. In
comparison to the convergence results from Daskalakis et al. [2018] that hold for
a bilinear objective, we provide a faster convergence rate (linear vs sublinear) on
the last iterate for a general (strongly monotone) operator F' and any projection
on a convex {2. One thing to notice is that the operator of a bilinear objective is
not strongly monotone, but in that case one can use the standard extrapolation
method (3.8) which converges linearly for an unconstrained bilinear game [Tseng,
1995, Cor. 3.3].

Theorem 1 (Linear convergence of extrapolation from the past). If F' is pu-strongly
monotone (see Appendiz B §1 for the definition of strong monotonicity) and L-
Lipschitz, then the updates (3.13) and (3.14) withn = ﬁ provide linearly converging
iterates,

14

t
o=l < (1= 1) llwo — w3, V2 0. (3.16)

49

Algorithm 1 AvgSGD Algorithm 2 AvgEx- Algorithm 3 AvgPastEx-

traSGD traSGD
Let wy € § fort=0...T—1do Let wg €
fort=0...T—-1do &, ~ P fort=0...T—-1do
& ~ P (mini-batch) di + F(w, &) & ~ P (mini-batch)
d; < F(‘-"t» &) wé — Pﬂ[wt - Utdt] wé — PQ[wt - 77tdt—1]
wt+1 <— PQ[wt—T]tdt] d:f <~ F(w£7€£) , dt < F(w2/€7€t)
end for wii1 < Polw, — nidy] w1 < Polw, — n,dy]
_ 1w, end for end for
Return wy + <5%5— _ ST) - S)
Dot M Return wp ¢ <501 Return wyp «+ &450
Zt:o e Zt:() Nt

Figure 6.2: Three variants of SGD computing T" updates, using the techniques introduced
in §3.

4 Optimization of VIP with stochastic gradients

In this section, we consider extensions of the techniques presented in §3 to
the context of a stochastic operator, i.e., we no longer have access to the exact
gradient F'(w) but to an unbiased stochastic estimate of it, F'(w,), where { ~ P
and F(w) := Eqop[F(w, €)]. It is motivated by GAN training where we only have
access to a finite sample estimate of the expected gradient, computed on a mini-
batch. For GANs, £ is a mini-batch of points coming from the true data distribution
p and the generator distribution gg.

For our analysis, we require at least one of the two following assumptions on
the stochastic operator:

Assumption 2. Bounded variance by o?: E¢[||F(w) — F(w,§)||?] < 02, Yw € Q.

Assumption 3. Bounded expected squared norm: E¢[||F(w,§)||?] < M?, Vw € Q.

Assump. 2 is standard in stochastic variational analysis, while Assump. 3 is a
stronger assumption sometimes made in stochastic convex optimization. To illus-
trate how strong Assump. 3 is, note that it does not hold for an unconstrained
bilinear objective like in our example (3.4) in §3. It is thus mainly reasonable for
bounded constraint sets. Note that in practice we have 0 < M.

We now present and analyze three algorithms that are variants of SGD that
are appropriate to solve (VIP). The first one Alg. 1 (AvgSGD) is the stochastic
extension of the gradient method for solving (VIP); Alg. 2 (AvgExtraSGD) uses
extrapolation and Alg. 3 (AvgPastExtraSGD) uses extrapolation from the past. A
fourth variant that re-use the mini-batch for the extrapolation step (ReExtraSGD,
Alg. 5) is described in §4. These four algorithms return an average of the iterates

50

(typical in stochastic setting). The proofs of the theorems presented in this section
are in Appendix B §6.

To handle constraints such as parameter clipping [Arjovsky et al., 2017], we
gave a projected version of these algorithms, where Po[w’] denotes the projection
of w’ onto Q (see Appendix B §1). Note that when 2 = R?, the projection is the
identity mapping (unconstrained setting). In order to prove the convergence of
these four algorithms, we will assume that F' is monotone:

(Flw)—Flw) (w-w)>0 Vww Q. (4.1)

If F' can be written as (2.6), it implies that the cost functions are convex.”

Note however that general GANs parametrized with neural networks lead to non-
monotone VIPs.

Assumption 4. F' is monotone and) is a compact conver set, such that
maX%w/eQ Hw — le2 S R2.

In that setting the quantity g(w*) = max,eq F(w)"(w* — w) is well de-
fined and is equal to 0 if and only if w* is a solution of (VIP). Moreover,

if we are optimizing a zero-sum game, we have w = (0,¢),Q2 = O x ®
and F(0,9) = [VeL(0,p) — V,L(0,9)]". Hence, the quantity
h(6*,¢*) = maxeeco L(0*,) — mingee L(6,¢*) is well defined and equal

to 0 if and only if (6%, ¢*) is a Nash equilibrium of the game. The two functions g

and h are called merit functions (more details on the concept of merit functions

in §3). In the following, we call,

{(ema%ﬁ(& @) — L0,) if F(0,p)=[VeL(0,) —V,L(0,0)]
1 ')e

maxF(w') " (w — ') otherwise.
w'eN

Err(w) :=

(4.2)
Averaging. Alg. 1 (AvgSGD) presents the stochastic gradient method with
averaging, which reduces to the standard (simultaneous) SGD updates for the two-
player games used in the GAN literature, but returning an average of the iterates.

Theorem 2. Under Assump. 2, 3 and 4, SGD with averaging (Alg. 1) with a
constant step-size gives,

R2 M2 2 1 T-1
E[Err(wr)] < 20T +n ;O where wp = 7 ; wy, VI'>1. (4.3

Thm. 2 uses a similar proof as [Nemirovski et al., 2009]. The constant term
n(M? + ¢%)/2 in (4.3) is called the variance term. This type of bound is standard

"The convexity of the cost functions in (2.3) is a necessary condition (not sufficient) for the
operator to be monotone. In the context of a zero-sum game, the convexity of the cost functions
is a sufficient condition.

51

in stochastic optimization. We also provide in Appendix B §6 a similar O(1/v/%)
rate with an extra log factor when n, = % We show that this variance term is
smaller than the one of SGD with prediction method [Yadav et al., 2018] in §5.

Extrapolations. Alg. 2 (AvgExtraSGD) adds an extrapolation step compared
to Alg. 1 in order to reduce the oscillations due to the game between the two
players. A theoretical consequence is that it has a smaller variance term than (4.3).
As discussed previously, Assump. 3 made in Thm. 2 for the convergence of Alg. 1
is very strong in the unbounded setting. One advantage of SGD with extrapolation
is that Thm. 3 does not require this assumption.

Theorem 3. [Juditsky et al., 2011, Thm. 1] Under Assump. 2 and 4, if E¢[F] is
L-Lipschitz, then SGD with extrapolation and averaging (Alg. 2) using a constant
step-size n < ﬁ gives,

2 7 1 T-1
E[Err(wr)] < T + 57702 where wr = 7 g w,, VI'>1. (4.4)

Since in practice o < M, the variance term in (4.4) is significantly smaller
than the one in (4.3). To summarize, SGD with extrapolation provides better
convergence guarantees but requires two gradient computations and samples per
iteration. This motivates our new method, Alg. 3 (AvgPastExtraSGD) which uses
extrapolation from the past and achieves the best of both worlds (in theory).

Theorem 4. Under Assump. 2 and 4, if E¢[F| is L-Lipschitz then SGD with ex-
trapolation from the past using a constant step-size n < ﬁ, gives that the aver-
aged iterates converge as,

_ R 13 _ 1=,
E[Err(wr)] < — + —no” where wr:=—Y w, VI >1. (4.5)
nl' 2 T =

The bound is similar to the one provided in Thm. 3 but each iteration of Alg. 3
is computationally half the cost of an iteration of Alg. 2.

5 Combining the techniques with established
algorithms

In the previous sections, we presented several techniques that converge for
stochastic monotone operators. These techniques can be combined in practice with
existing algorithms. We propose to combine them to two standard algorithms used
for training deep neural networks: the Adam optimizer [Kingma and Ba, 2015] and

52

the SGD optimizer [Robbins and Monro, 1951]. For the Adam optimizer, there
are several possible choices on how to update the moments. This choice can lead
to different algorithms in practice: for example, even in the unconstrained case,
our proposed Adam with extrapolation from the past (Alg. 4) is different from
Optimistic Adam [Daskalakis et al., 2018] (the moments are updated differently).
Note that in the case of a two-player game (2.3), the previous convergence results
can be generalized to gradient updates with a different step-size for each player
by simply rescaling the objectives L5 and Lp by a different scaling factor. A
detailed pseudo-code for Adam with extrapolation step (Extra-Adam) is given in
Algorithm 4. Note that our interest regarding this algorithm is practical and that
we do not provide any convergence proof.

Algorithm 4 Extra-Adam: proposed Adam with extrapolation step.

input: step-size 7, decay rates for moment estimates (31, 32, access to the stochas-
tic gradients V/(-) and to the projection Pqo[-] onto the constraint set €2, initial
parameter wy, averaging scheme (p;);>1
fort=0...T—1do
Option 1: Standard extrapolation.
Sample new mini-batch and compute stochastic gradient: g, < V¥;(w;)
Option 2: Extrapolation from the past
Load previously saved stochastic gradient: g, = V{1 /2(w;_1/2)
Update estimate of first moment for extrapolation: m,_y/5 <= Bimy—1 + (1 — 31)g
Update estimate of second moment for extrapolation: v;_y/5 < Bav;-1 + (1—ps) th

Correct the bias for the moments: 17y_10 < mu_1/(1 — g,
Dp1y2 + vim1s0/(1— B3)
Mmy_1/2]

Perform extrapolation step from iterate at time t: w;,_1/2 < Po [w; — nﬁ
t—1/27T€

Sample new mini-batch and compute stochastic gradient: g11/2 <= Vq1/2(Wis1/2)

Update estimate of first moment: m; < Bimy_1/2 + (1 — B1)Gi11/2
Update estimate of second moment: vy <= fovy_1/2 + (1 — ﬁg)gt2+1/2
Compute bias corrected for first and second moment: 1, < my/(1 — B3),
by ve/(1 = B3")
Perform update step from the iterate at time ¢: w1y < Polw; — 7 \/Lﬂtjre]
end for
Output: wr_;)s, wr or Wy = D Pr+1Wii1/2/ S it (see (3.2) for online aver-
aging)

53

6 Related Work

The extragradient method is a standard algorithm to optimize variational in-
equalities. This algorithm has been originally introduced by Korpelevich [1976]
and extended by Nesterov [2007] and Nemirovski [2004]. Stochastic versions of
the extragradient have been recently analyzed [Juditsky et al., 2011, Yousefian
et al., 2014, Tusem et al., 2017] for stochastic variational inequalities with bounded
constraints. A linearly convergent variance reduced version of the stochastic gra-
dient method has been proposed by Palaniappan and Bach [2016] for strongly
monotone variational inequalities. Extrapolation can also be related to optimistic
methods [Chiang et al., 2012, Rakhlin and Sridharan, 2013] proposed in the online
learning literature (see more details in §3.3). Interesting non-convex results were
proved, for a new notion of regret minimization, by Hazan et al. [2017] and in the
context of online learning for GANs by Grnarova et al. [2018].

Several methods to stabilize GANs consist in transforming a zero-sum formu-
lation into a more general game that can no longer be cast as a saddle point prob-
lem. This is the case of the non-saturating formulation of GANs [Goodfellow et al.,
2014, Fedus et al., 2018], the DCGANs [Radford et al., 2016], the gradient penalty®
for WGANSs [Gulrajani et al., 2017]. Yadav et al. [2018] propose an optimization
method for GANs based on AltSGD using an additional momentum-based step
on the generator. Daskalakis et al. [2018] proposed a method inspired from game
theory. Li et al. [2017] suggest to dualize the GAN objective to reformulate it as
a maximization problem and Mescheder et al. [2017] propose to add the norm of
the gradient in the objective to get a better signal. Gidel et al. [2019c¢] analyzed a
generalization of the bilinear example (3.3) with a focus put on the effect of mo-
mentum on this problem. They do not consider extrapolation (see §2.3 for more
details). Unrolling steps [Metz et al., 2017] can be confused with extrapolation
but is fundamentally different: the perspective is to try to approximate the “true
generator objective function" unrolling for K steps the updates of the discriminator
and then updating the generator.

Regarding the averaging technique, some recent work appear to have already
successfully used geometric averaging (3.1) for GANs in practice, but only briefly
mention it [Karras et al., 2018, Mescheder et al., 2018]. By contrast, the present
work formally motivates and justifies the use of averaging for GANs by relating
them to the VIP perspective, and sheds light on its underlying intuitions in §3.1.
Subsequent to our first preprint, Yazic1 et al. [2019] explored averaging empirically
in more depth, while Mertikopoulos et al. [2019] also investigated extrapolation,
providing asymptotic convergence results (i.e. without any rate of convergence) in
the context of coherent saddle point. The coherence assumption is slightly weaker
than monotonicity.

8The gradient penalty is only added to the discriminator cost function. Since this gradient
penalty depends also on the generator, WGAN-GP is a non-zero sum game.

54

7 Experiments

Our goal in this experimental section is not to provide new state-of-the art
results with architectural improvements or a new GAN formulation, but to show
that using the techniques (with theoretical guarantees in the monotone case) that
we introduced earlier allows us to optimize standard GANs in a better way. These
techniques, which are orthogonal to the design of new formulations of GAN opti-
mization objectives, and to architectural choices, can potentially be used for the
training of any type of GAN. We will compare the following optimization algo-
rithms: baselines are SGD and Adam using either simultaneous updates on the
generator and on the discriminator (denoted SimAdam and SimSGD) or k up-
dates on the discriminator alternating with 1 update on the generator (denoted
AltSGD{k} and AltAdam{k}).” Variants that use extrapolation are denoted
ExtraSGD (Alg. 2) and ExtraAdam (Alg. 4). Variants using extrapolation from
the past are PastExtraSGD (Alg. 3) and PastExtraAdam (Alg. 4). We also
present results using as output the averaged iterates, adding Avg as a prefix of the
algorithm name when we use (uniform) averaging.

7.1 Bilinear saddle point (stochastic)

20.0-
AltAdam5
7.5- —— AvgAltAdamb
— AltSGD1
— AvgAltSGD1
ExtraSGD
—— AvgExtraSGD
PastExtraSGD
AvgPastExtraSGD

—

—
3

—
%)
4]
e

Distance to the optimum

5.0-
0 20 40 60 80 100
Number of gradient computation/n

Figure 6.3: Performance of the considered stochastic optimization algorithms on
the bilinear problem (7.1). Each method uses its respective optimal step-size found
by grid-search.

We first test the various stochastic algorithms on a simple (n = 10%,d = 103)

In the original WGAN paper [Arjovsky et al., 2017], the authors use k = 5.

55

finite sum bilinear objective (a monotone operator) constrained to [—1,1]%:

1 & A . ,
-> (OTM(Z)QO +0"al + @Tb(z)) (7.1)
iz
solved by (0%, ") s.t. { %fe*z—_—af) ,
where @ := 157 a® b := 15" b0 and M := 157 M. The matrices

M,S-), a,,(f), b,(f); 1 <i<n, 1< 7k <dwere randomly generated, but ensuring
that (6, ¢*) belongs to [—1,1]%. Results are shown in Fig. 6.3. We can see that
AvgAltSGD1 and AvgPastExtraSGD perform the best on this task.

7.2 WGAN and WGAN-GP on CIFAR10

We evaluate the proposed techniques in the context of GAN training, which is
a challenging stochastic optimization problem where the objectives of both play-
ers are non-convex. We propose to evaluate the Adam variants of the different
optimization algorithms (see Alg. 4 for Adam with extrapolation) by training two
different architectures on the CIFARI0 dataset [Krizhevsky and Hinton, 2009].
First, we consider a constrained zero-sum game by training the DCGAN archi-
tecture [Radford et al., 2016] with the WGAN objective and weight clipping as
proposed by Arjovsky et al. [2017]. Then, we compare the different methods on
a state-of-the-art architecture by training a ResNet with the WGAN-GP objec-
tive similar to Gulrajani et al. [2017]. Models are evaluated using the inception
score (IS) [Salimans et al., 2016] computed on 50,000 samples. We also provide the
FID [Heusel et al., 2017] and the details on the ResNet architecture in §7.3.

For each algorithm, we did an extensive search over the hyperparameters of
Adam. We fixed 7 = 0.5 and [y = 0.9 for all methods as they seemed to perform
well. We note that as proposed by Heusel et al. [2017], it is quite important to set
different learning rates for the generator and discriminator. Experiments were run
with 5 random seeds for 500,000 updates of the generator.

Tab. 6.1 reports the best IS achieved on these problems by each considered
method. We see that the techniques of extrapolation and averaging consistently
enable improvements over the baselines (see Appendix B §7.5 for more experi-
ments on averaging). Fig. 6.4 shows training curves for each method (for their best
performing learning rate), as well as samples from a ResNet generator trained with
ExtraAdam on a WGAN-GP objective. For both tasks, using an extrapolation step
and averaging with Adam (ExtraAdam) outperformed all other methods. Com-
bining ExtraAdam with averaging yields results that improve significantly over the
previous state-of-the-art IS (8.2) and FID (21.7) on CIFARI0 as reported by Miy-
ato et al. [2018] (see Tab. B.4 for FID). We also observed that methods based on
extrapolation are less sensitive to learning rate tuning and can be used with higher
learning rates with less degradation; see §7.4 for more details.

56

Model WGAN (DCGAN) WGAN-GP (ResNet)
Method no avg uniform avg EMA no avg uniform avg EMA
SimAdam 6.05+.12 58 +.16 6.08+.10 7.51+.17 7.68+.43 7.60+.17
AltAdamb 5.45+£.08 H572+£.06 549+£.06 7.57+.02 801£.05 7.66=+.03
ExtraAdam 6.38+.09 638+.20 637+.08 790+.11 847+.10 8.13+.07
PastExtraAdam 598+.15 6.07£.19 6.01+.11 7.84+.06 801+.09 7.99+.03
OptimAdam 5.74£.10 580+£.08 578+£.06 7.985+.08 818£.09 8.10+.06

Table 6.1: Best inception scores (averaged over 5 runs) achieved on CIFARI10 for ev-
ery considered Adam variant. OptimAdam is the related Optimistic Adam [Daskalakis
et al., 2018] algorithm. EMA denotes exponential moving average (with S = 0.9999, see
Eq. 3.2). We see that the techniques of extrapolation and averaging consistently enable
improvements over the baselines (in italic).

8 Conclusion

We newly addressed GAN objectives in the framework of variational inequality.
We tapped into the optimization literature to provide more principled techniques
to optimize such games. We leveraged these techniques to develop practical opti-
mization algorithms suitable for a wide range of GAN training objectives (including
non-zero sum games and projections onto constraints). We experimentally verified
that this could yield better trained models, improving the previous state of the
art. The presented techniques address a fundamental problem in GAN training
in a principled way, and are orthogonal to the design of new GAN architectures
and objectives. They are thus likely to be widely applicable, and benefit future

development of GANS.

57

6.0

Inception Score

3.0++
00 05 10 15 20 25 30 35 40 0 1 2 3 5
Number of generator updates o Number of generator updates o

Figure 6.4: Left: Mean and standard deviation of the inception score com-
puted over 5 runs for each method on WGAN trained on CIFAR10. To keep the
graph readable we show only SimAdam but AltAdam performs similarly. Mid-
dle: Samples from a ResNet generator trained with the WGAN-GP objective using
AvgExtraAdam. Right: WGAN-GP trained on CIFAR10: mean and standard
deviation of the inception score computed over 5 runs for each method using the
best performing learning rates; all experiments were run on a NVIDIA Quadro
GP100 GPU. We see that ExtraAdam converges faster than the Adam baselines.

58

Prologue to the Third
Contribution

1 Article Detalils

Negative Momentum for Improved Game Dynamics. Gauthier Gidel*,
Reyhane Askari Hemmat*, Mohammad Pezeshki, Rémi Le Priol, Gabriel Huang,
Sitmon Lacoste-Julien and Ioannis Mitliagkas. This paper was published at AIS-
TATS 2019 [Gidel et al., 2019¢].

*Equal contribution.

2 Contributions of the authors

Gauthier Gidel contributed to the general writing of the paper, the idea of all
the theorems in the paper and their respective proofs and the idea of Figure 4.2
and 4.3. Reyhane Askari lead the project on the experimental part and realized
the experiments with Mohammad Pezeshki. They both originally pioneered this
project as a Ioannis Mitliagkas’s class project. The original idea of using negative
momentum comes from loannis Mitliagkas. Rémi Lepriol made the Right figure in
4.1 and helped on the smoothing of the paper. He also worked on improving the
story and the clarity of the paper and proof-checked the appendix. Gabriel Huang
made Figure 4.3 helped on the smoothing of the paper, worked on improving the
story and the clarity of the paper, and proof-checked the appendix. Simon Lacoste-
Julien and loannis Miltiagkas supervised this project.

3 Modifications with respect to the published
paper

We corrected a typo in Thm. 6 (squared condition number instead of condition
number; and small change in constant) and the dependence in 5 (the momentum
parameter) in Theorem 5 for the formal statement. However, these modifications
do not change our conclusions.

59

Negative Momentum for
Improved Game Dynamics

Abstract

Games generalize the single-objective optimization paradigm by introducing dif-
ferent objective functions for different players. Differentiable games often proceed
by simultaneous or alternating gradient updates. In machine learning, games are
gaining new importance through formulations like generative adversarial networks
(GANS) and actor-critic systems. However, compared to single-objective optimiza-
tion, game dynamics is more complex and less understood. In this paper, we
analyze gradient-based methods with momentum on simple games. We prove that
alternating updates are more stable than simultaneous updates. Next, we show
both theoretically and empirically that alternating gradient updates with a nega-
tive momentum term achieves convergence in a difficult toy adversarial problem,
but also on the notoriously difficult to train saturating GANs.

1 Introduction

Recent advances in machine learning are largely driven by the success of
gradient-based optimization methods for the training process. A common learning
paradigm is empirical risk minimization, where a (potentially non-convex) objec-
tive, that depends on the data, is minimized. However, some recently introduced
approaches require the joint minimization of several objectives. For example, actor-
critic methods can be written as a bi-level optimization problem [Pfau and Vinyals,
2016] and generative adversarial networks (GANs) [Goodfellow et al., 2014] use a
two-player game formulation.

Games generalize the standard optimization framework by introducing different
objective functions for different optimizing agents, known as players. We are com-
monly interested in finding a local Nash equilibrium: a set of parameters from which
no player can (locally and unilaterally) improve its objective function. Games with
differentiable objectives often proceed by simultaneous or alternating gradient steps
on the players’ objectives. Even though the dynamics of gradient based methods
is well understood for minimization problems, new issues appear in multi-player
games. For instance, some stable stationary points of the dynamics may not be
(local) Nash equilibria [Adolphs et al., 2018, Daskalakis and Panageas, 2018].

60

Motivated by a decreasing trend of momentum values in GAN literature (see
Fig. 8.1), we study the effect of two particular algorithmic choices: (i) the choice
between simultaneous and alternating updates, and (ii) the choice of step-size and
momentum value. The idea behind our approach is that a momentum term com-
bined with the alternating gradient method can be used to manipulate the natural
oscillatory behavior of adversarial games. We summarize our main contributions
as follows:

e We prove in §5 that the alternating gradient method with negative momen-
tum is the only setting within our study parameters (Fig. 8.2) that converges
on a bilinear smooth game. Using a zero or positive momentum value, or
doing simultaneous updates in such games fails to converge.

e We show in §4 that, for general dynamics, when the eigenvalues of the Jaco-
bian have a large imaginary part, negative momentum can improve the local
convergence properties of the gradient method.

e We confirm the benefits of negative momentum for training GANs with the
notoriously ill-behaved saturating loss on both toy settings, and real datasets.

Outline. §2 describes the fundamentals of the analytic setup that we use. §3
provides a formulation for the optimal step-size, and discusses the constraints and
intuition behind it. §4 presents our theoretical results and guarantees on negative
momentum. §5 studies the properties of alternating and simultaneous methods
with negative momentum on a bilinear smooth game. §6 contains experimental
results on toy and real datasets. Finally, in §7, we review some of the existing work
on smooth game optimization as well as GAN stability and convergence.

2 Background

Notation. In this paper, scalars are lower-case letters (e.g., \), vectors
are lower-case bold letters (e.g., 0), matrices are upper-case bold letters
(e.g., A) and operators are upper-case letters (e.g., F'). The spectrum of a
squared matrix A is denoted by Sp(A), and its spectral radius is defined as
p(A) := max{|\| for A € Sp(A)}. We respectively note o,in(A) and oyax(A) the
smallest and the largest positive singular values of A. The identity matrix of R™*™
is written I,,,. We use 3 and < to respectively denote the real and imaginary part
of a complex number. O, 2 and O stand for the standard asymptotic notations.
Finally, all the omitted proofs can be found in Appendix C §4.

Game theory formulation of GANSs.

61

1.0+
£ 08L
0.6
0.4
0.2

Momentu

Figure 8.1: Left: Decreasing trend in the value of momentum used for training GANs
across time. Right: Graphical intuition of the role of momentum in two steps of simulta-
neous updates (tan) or alternated updates (olive). Positive momentum (red) drives the
iterates outwards whereas negative momentum () pulls the iterates back towards the
center, but it is only strong enough for alternated updates.

Method £ Bounded Converges Bound on A,
>0 X X Q((1+nopa(A))")

0 X x (1 +103m(A))

T X X Q (1 4 Pohax(D/17)t)
Altern >0 X X Conjecture: Q ((1+ 3?)?)
T 6 v X 0 (A)

- v v O (Ag(1 — o%in(D/16)1)

Figure 8.2: Effect of gradient methods on an unconstrained bilinear example:

ming maxe, 0T Ap . The quantity A; is the distance to the optimum (see formal definition
in §5) and g is the momentum value.

Generative adversarial networks consist of a discriminator D, and a generator
Gy. In this game, the discriminator’s objective is to tell real from generated exam-
ples. The generator’s goal is to produce examples that are sufficiently close to real
examples to confuse the discriminator.

From a game theory point of view, GAN training is a differentiable two-player
game: the discriminator D, aims at minimizing its cost function £p and the gener-
ator Gy aims at minimizing its own cost function L. Using the same formulation
as the one in Mescheder et al. [2017] and Gidel et al. [2019b], the GAN objective

62

has the following form,
0" € argmin L;(0, ™)

p" €argmin Lp (0%,).
Qe

Given such a game setup, GAN training consists of finding a local Nash Equilib-
rium, which is a state (¢*, 8*) in which neither the discriminator nor the generator
can improve their respective cost by a small change in their parameters. In order
to analyze the dynamics of gradient-based methods near a Nash Equilibrium, we
look at the gradient vector field,

v(p.0) = [VoLo(.0) VoLo(.0)] . (22)

and its associated Jacobian Vv(ep,8),

VQLPED(LP70) v‘PVQ‘CD(SO?H>) (23)
VoVoLla(p,0)" ViLa(p,0)
Games in which L5 = —Lp are called zero-sum games and (2.1) can be refor-

mulated as a min-max problem. This is the case for the original min-maxr GAN
formulation, but not the case for the non-saturating loss [Goodfellow et al., 2014]
which is commonly used in practice.

For a zero-sum game, we note L5 = —Lp = L. When the matrices Viﬁ(go, 0)
and V3L(p,0) are zero, the Jacobian is anti-symmetric and has pure imaginary
eigenvalues. We call games with pure imaginary eigenvalues purely adversarial
games. This is the case in a simple bilinear game L(¢p, 0) := ¢ Af. This game can
be formulated as a GAN where the true distribution is a Dirac on 0, the generator
is a Dirac on # and the discriminator is linear. This setup was extensively studied
in 2D by Gidel et al. [2019b].

Conversely, when V,VoL(p,80) is zero and the matrices VL(p,0) and
—V2L(p,0) are symmetric and definite positive, the Jacobian is symmetric and
has real positive eigenvalues. We call games with real positive eigenvalues purely
cooperative games. This is the case, for example, when the objective function L is
separable such as L(p,0) = f(¢) — g(0) where f and g are two convex functions.
Thus, the optimization can be reformulated as two separated minimization of f
and g with respect to their respective parameters.

These notions of adversarial and cooperative games can be related to the notions
of potential games [Monderer and Shapley, 1996] and Hamiltonian games recently
introduced by Balduzzi et al. [2018]: a game is a potential game (resp. Hamiltonian
game) if its Jacobian is symmetric (resp. asymmetric). Our definition of cooper-
ative game is a bit more general than the definition of potential game since some
non-symmetric matrices may have positive eigenvalues. Similarly, the notion of ad-
versarial game generalizes the Hamiltonian games since some non-antisymmetric

63

matrices may have pure imaginary eigenvalues, for instance,

(5 | R (| B

In this work, we are interested in games in between purely adversarial games
and purely cooperative ones, i.e., games which have eigenvalues with non-negative
real part (cooperative component) and non-zero imaginary part (adversarial com-
ponent). For A € R¥P_a simple class of such games is parametrized by « € [0, 1],

i 05+ (1—a)8" Ap — 5 2.4

min max of|0]; + (1 —)8 Ap —aflel;, (2:4)

Simultaneous Gradient Method. Let us consider the dynamics of the simul-
taneous gradient method. It is defined as the repeated application of the operator,

Fy(¢.0)= [6] —nv(p.0), (.6)cR", (25)

where 7 is the learning rate. Now, for brevity we write the joint parameters
w:= (p,0) € R™. Fort € N, let w; = (¢, 0;) be the t'" point of the sequence
computed by the gradient method,

wp = Fyo...0F(wy) = F"(w). (2.6)
t

Then, if the gradient method converges, and its limit point w* = (¢*, 8%) is a fized
point of F, such that Vu(w*) is positive-definite, then w* is a local Nash equilib-
rium. Interestingly, some of the stable stationary points of gradient dynamics may
not be Nash equilibrium [Adolphs et al., 2018]. In this work, we focus on the local
convergence properties near the stationary points of gradient . To the best of our
knowledge, there is no first order method alleviating this issue. In the following, w*
is a stationary point of the gradient dynamics (i.e. a point such that v(w*) = 0).

3 Tuning the Step-size

Under certain conditions on a fixed point operator, linear convergence is guar-
anteed in a neighborhood around a fixed point.

Theorem 1 (Prop. 4.4.1 Bertsekas [1999]). If the spectral radius
Pmax = p(VE,(w*)) < 1, then, for wy in a neighborhood of w*, the distance of wy

to the stationary point w* converges at a linear rate of O((Pmax + E)t) , Ve > 0.

64

From the definition in (2.5), we have:
VFE,(w*) =1, —nVv(w"), (3.1)
and Sp(VFE,(w")) = {1 —nAA € Sp(Vv(w™))} .

If the eigenvalues of Vv (w*) all have a positive real-part, then for small enough
7, the eigenvalues of VF, (w*) are inside a convergence circle of radius pmax < 1,
as illustrated in Fig. 8.3. Thm. 1 guarantees the existence of an optimal step-size
Mest Which yields a non-trivial convergence rate py.x < 1. Thm. 2 gives analytic
bounds on the optimal step-size M5, and lower-bounds the best convergence rate
Prmax (Mpest) We can expect.

Theorem 2. If the eigenvalues of Vv(w*) all have a positive real-part, then, the

best step-size Npest, which minimizes the spectral radius pmax(n) of VE,(¢*,0%), is
the solution of a (convex) quadratic by parts problem, and satisfies,

Jmax Sin(9%)® < Pmax (Mbest)” < 1 — R(1/A1)6, (32)
with §:= min [\ZRL/A) — R(L/A) (3.3)
and R(1/ M) < est < 2R(1/ A1) (3.4)
where (A\y = 1)icem = Sp(Vou(e*,0%)) are sorted such that

0 < R(I/N) < -+- < R(1/N\,). Particularly, when mpess = R(1/A1) we are
in the case of the top plot of Fig.8.3 and pumax(Meest)? = sin(¢)? .

When Vv is positive-definite, the best 7. is attained either because of one or
several limiting eigenvalues. We illustrate and interpret these two cases in Fig. 8.3.
In multivariate convex optimization, the optimal step-size depends on the extreme
eigenvalues and their ratio, the condition number. Unfortunately, the notion of the
condition number does not trivially extend to games, but Thm. 2 seems to indicate
that the real part of the inverse of the eigenvalues play an important role in the
dynamics of smooth games. We think that a notion of condition number might
be meaningful for such games and we propose an illustrative example to discuss
this point in §2. Note that when the eigenvalues are pure positive real numbers
belonging to [u, L], (3.2) provides the standard bound pp.x < 1 — p/L obtained
with a step-size n = 1/L (see §4.2 for details).

Note that, in (3.3), we have 6 > 0 because (A\;) are sorted such that,
R(1/XAe) > R(1/N), V1 <k <m. In (3.2), we can see that if the Jacobian of v
has an almost purely imaginary eigenvalue r;e%s then sin(¢;) is close to 1 and thus,
the convergence rate of the gradient method may be arbitrarily close to 1. Zhang
and Mitliagkas [2019] provide an analysis of the momentum method for quadrat-
ics, showing that momentum can actually help to better condition the model. One
interesting point from their work is that the best conditioning is achieved when
the added momentum makes the Jacobian eigenvalues turn from positive reals into
complex conjugate pairs. Our goal is to use momentum to wrangle game dynamics
into convergence manipulating the eigenvalues of the Jacobian.

65

- @] 1 4+ 05
1—/\3.,I o

Figure 8.3: Eigenvalues \; of the Jacobian Vu(¢*, 0*), their trajectories 1 — n)\;
for growing step-sizes, and the optimal step-size. The unit circle is drawn in black,
and the red dashed circle has radius equal to the largest eigenvalue pimax, which is
directly related to the convergence rate. Therefore, smaller red circles mean better
convergence rates. Top: The red circle is limited by the tangent trajectory line
1 — nA1, which means the best convergence rate is limited only by the eigenvalue
which will pass furthest from the origin as n grows, i.e., A\; = argmin R(1/);).
Bottom: The red circle is cut (not tangent) by the trajectories at points 1 — nA;
and 1 — nAs. The 7 is optimal because any increase in n will push the eigenvalue
A1 out of the red circle, while any decrease in step-size will retract the eigenvalue
A3 out of the red circle, which will lower the convergence rate in any case. Figure
inspired by Mescheder et al. [2017].

4 Negative Momentum

As shown in (3.2), the presence of eigenvalues with large imaginary parts can
restrict us to small step-sizes and lead to slow convergence rates. In order to
improve convergence, we add a megative momentum term into the update rule.
Informally, one can think of negative momentum as friction that can damp os-
cillations. The new momentum term leads to a modification of the parameter
update operator F,(w) of (2.5). We use a similar state augmentation as Zhang
and Mitliagkas [2019] and Daskalakis and Panageas [2018] to form a compound
state (wy, wi_1) := (@1, 0s, p1-1,0;-1) € R*™. The update rule (2.5) turns into the
following,

Eypwr, wi1) = (Wi, i) (4.1)

where w1 = w; — no(wy) + Blwy — wi_q), (4.2)

66

in which g € R is the momentum parameter. Therefore, the Jacobian of F, 5 has

the following form,
I, o, Vo(w;) 0, I, -1,
hloj_”[0, o, 7o, o, (43

Note that for f = 0, we recover the gradient method.

Figure 8.4: Transformation of the eigenvalues by the negative momentum method
for a game introduced in (2.4) withd=p=1,A=1,a =0.4,n = 1.55, 5 = —0.25.
Convergence circles for gradient method are in red, negative momentum in green,
and unit circle in black. Solid convergence circles are optimized over all step-sizes,
while dashed circles are at a given step-size 7. For a fixed 7, original eigenvalues
are in red and negative momentum eigenvalues are in blue. Their trajectories as
7 sweeps in [0, 2] are in light colors. Negative momentum helps as the new conver-
gence circle (green) is smaller, due to shifting the original eigenvalues (red dots)
towards the origin (right blue dots), while the eigenvalues due to state augmenta-
tion (left blue dots) have smaller magnitude and do not influence the convergence
rate. Negative momentum allows faster convergence (green circle is inside the solid
red circle) for a much broader range of step-sizes.

In some situations, if § < 0 is adjusted properly, negative momentum can
improve the convergence rate to a local stationary point by pushing the eigenvalues
of its Jacobian towards the origin. In the following theorem, we provide an explicit
equation for the eigenvalues of the Jacobian of F, 3.

Theorem 3. The eigenvalues of VF, g(w*) are

1+ Az
where A :=1— ﬁ, A € Sp(Vo(w*)) and Az is the complex square root of

67

A with positive real part'. Moreover we have the following Taylor approzimation,

A
a8, 0) = L= = B2+ O(F), (45)
i (B 3) = 2+ O(F). (4.6)

When f is small enough, A is a complex number close to 1. Consequently,
1y is close to the original eigenvalue for gradient dynamics 1 — nA, and p_, the
eigenvalue introduced by the state augmentation, is close to 0. We formalize this
intuition by providing the first order approximation of both eigenvalues.

In Fig. 8.4, we illustrate the effects of negative momentum on a game described
in (2.4). Negative momentum shifts the original eigenvalues (trajectories in light
red) by pushing them to the left towards the origin (trajectories in light blue).

Since our goal is to minimize the largest magnitude of the eigenvalues of F, s
which are computed in Thm. 3, we want to understand the effect of 5 on these
eigenvalues with potential large magnitude. Let A € Sp(Vv(w?*)), we define the
(squared) magnitude py,(3) that we want to optimize,

prn(B) = max { | (8,m, N[, [(8,m, N)[*}. (4.7)

We study the local behavior of p) , for small 3. The following theorem shows that
a well suited 3 decreases p, ,, which corresponds to faster convergence.

Theorem 4. For any A € Sp(Vv(w*)) s.t. R(A) > 0,

A=ISO) SO
pha(0) > 0 € 100 := (B, By’ -
Particularly, we have p) g /,)(0) = 2R(A)R(L/A) > 0 and if [Arg(N)| > F then,
(R(1/N),2R(1/N)) C I(N).

As we have seen previously in Fig. 8.3 and Thm. 2, there are only few eigenvalues
which slow down the convergence. Thm. 4 is a local result showing that a small
negative momentum can improve the magnitude of the limiting eigenvalues in the
following cases: when there is only one limiting eigenvalue \; (since in that case
the optimal step-size is Mest = R(1/A1) € I(A1)) or when there are several limiting
eigenvalues Ay, ..., A\r and the intersection I(A;) N ... N I(\;) is not empty. We
point out that we do not provide any guarantees on whether this intersection is
empty or not but note that if the absolute value of the argument of \; is larger than
7/4 then by (3.4), our theorem provides that the optimal step-size ny.s; belongs to
I(\).

Since our result is local, it does not provide any guarantees on large negative
values of 5. Nevertheless, we numerically optimized (4.7) with respect to § and 7

'If A is a negative real number we set A% :=iy/—A

68

and found that for any non-imaginary fixed eigenvalue A, the optimal momentum
is negative and the associated optimal step-size is larger than 7j(\). Another inter-
esting aspect of negative momentum is that it admits larger step-sizes (see Fig. 8.4
and 8.5).

For a game with purely imaginary eigenvalues, when |n)A| < 1, Thm. 3 shows
that uy(8,m,A) = 1 — (1 + B)nA. Therefore, at the first order, 5 only has an
impact on the imaginary part of u,. Consequently pu, cannot be pushed into
the unit circle, and the convergence guarantees of Thm. 1 do not apply. In other
words, the analysis above provides convergence rates for games without any pure
imaginary eigenvalues. It excludes the purely adversarial bilinear example (o = 0
in Eq. 2.4) that is discussed in the next section.

5 Bilinear Smooth Games

In this section we analyze the dynamics of a purely adversarial game described
by,

i 0"Ap+0"b+c' A c RPP, 1
Iin max p+0btcp, Ac (5.1)

The first order stationary condition for this game characterizes the solutions
(07, ") as
Ap*=b and A'0" =c. (5.2)

If b (resp. ¢) does not belong to the column space of A (resp. AT"), the game (5.1)
admits no equilibrium. In the following, we assume that an equilibrium does exist
for this game. Consequently, there exist b’ and ¢’ such that b = Ab' andc = A'¢.
Using the translations @ — 6 — ¢’ and ¢ — ¢ — b, we can assume without loss of
generality, that p > d, b = 0 and ¢ = 0. We provide upper and lower bounds on
the squared distance from the known equilibrium,

Ar = [16: — 07| + llee — @73 (5.3)

where (6%, ¢*) is the projection of (6, ¢;) onto the solution space. We show in §3,
Lem. 12 that, for our methods of interest, this projection has a simple formulation
that only depends on the initialization (6g,).

We aim to understand the difference between the dynamics of simultaneous
steps and alternating steps. Practitioners have been widely using the latter instead
of the former when optimizing GANs despite the rich optimization literature on
simultaneous methods.

69

5.1 Simultaneous gradient descent
We define this class of methods with momentum using the following formulas,

sim

1,8 (0t7 $Pt, et—la (pt—l) = (0t+17 Pi+1, 0t7 (Pt) (54)

01 =0, — AP+ 5:1(0; —0,_1)
where -
Pri1 = Pt +12A " O + Ba(pr — pr-1) -

In our simple setting, the operator slgl is linear. One way to study the asymptotic
properties of the sequence (0;, ;) is to compute the eigenvalues of V ;lg‘ The
following proposition characterizes these eigenvalues.

Proposition 1. The eigenvalues of V ;}”g” are the roots of the 4™ order polynomi-
als:

(z — 1)%(z — B)(xz — By) + mmaa®, X € Sp(AT A) (5.5)

Interestingly, these roots only depend on the product 7,7, meaning that any
re-scaling n; — Yy, 72 — %772 does not change the eigenvalues of VF;IE‘ and con-
sequently the asymptotic dynamics of the iterates (8, ;). The magnitude of the
eigenvalues described in (5.5), characterizes the asymptotic properties for the iter-
ates of the simultaneous method (5.4). We report the maximum magnitude of these
roots for a given A and for a grid of step-sizes and momentum values in Fig C.1. We
observe that they are always larger than 1, which transcribes a diverging behavior.
The following theorem provides an analytical rate of divergence.

Theorem 5. For any ny,n2 > 0 and 8y = By = 3, the iterates of the simultaneous
methods (5.4) diverge as,

Q(Ao(1+ 102 (A)') if B>0

. .1
Q(Ag(1 + Toauldy) i — 15 <6 <0,

A, €

This theorem states that the iterates of the simultaneous method (5.4) diverge

geometrically for g > —%. Interestingly, this geometric divergence implies that
even a uniform averaging of the iterates (standard in game optimization to ensure

convergence [Freund et al., 1999]) cannot alleviate this divergence.

5.2 Alternating gradient descent

Alternating gradient methods take advantage of the fact that the iterates 6,
and ;.1 are computed sequentially, to plug the value of 6;,; (instead of 6, for

70

2.0 T

1
=
o

1.8

o

1.44 ¢
0.4

S~

UBE koo

0.84

T
o
3

0.6+

0.4 4

o

wnLIqIMbo 9} 04 9OURISIP PIZI[EULIOT

NI

0.2

N

0.0 +oo
c d
() () -1.0 —0.8 —0.6 —0.4 —0.2 0.0 1.0

B

Figure 8.5: The effect of momentum in a simple min-max bilinear game where the
equilibrium is at (0,0). (left-a) Simultaneous GD with no momentum (left-b)
Alternating GD with no momentum. (left-c) Alternating GD with a momentum
of +0.1. (left-d) Alternating GD with a momentum of —0.1. (right) A grid of
experiments for alternating GD with different values of momentum () and step-
sizes (n): While any positive momentum leads to divergence, small enough value
of negative momentum allows for convergence with large step-sizes. The color in
each cell indicates the normalized distance to the equilibrium after 500k iteration,
such that 1.0 corresponds to the initial condition and values larger (smaller) than
1.0 correspond to divergence (convergence).

71

simultaneous update rule) into the update of @41,

alt(9t74.0t,0t 1, Pt— 1) = (0t+1,<Pt+1,9t780t) (5-6)

0,1 =0, —mAp,+ £1(60, — 0,_1)
where T
Pri1 =@ +12A 01+ Ba(pr — pi1)

This slight change between (5.4) and (5.6) significantly shifts the eigenvalues of the
Jacobian. We first characterize them with the following proposition.

Proposition 2. The eigenvalues ofVF,;f% are the roots of the 4™ order polynomials:
(z = 1)*(z = B1)(x — Ba) + mmAz®, A € Sp(A' A) (5.7)

The same way as in (5.5), these roots only depend on the product 77;. The
only difference is that the monomial with coefficient 7,72\ is of degree 2 in (5.5) and
of degree 3 in (5.7). This difference is major since, for well chosen values of negative
momentum, the eigenvalues described in Prop. 2 lie in the unit disk (see Fig. C.1).
As a consequence, the iterates of the alternating method with no momentum are
bounded and do converge if we add some well chosen negative momentum:

Theorem 6. If we set n < amx(A , B = —% and Py = 0 then we have

At-i—l €0 (maX{Q, 1-— mm)}tAO) (58)

If we set By = 0 and [y = 0, then there exists M > 1 such that for any n1,m2 > 0,
Ay = O(A).

Our results from this section, namely Thm. 5 and Thm. 6, are summarized
in Fig. 8.2, and demonstrate how alternating steps can improve the convergence
properties of the gradient method for bilinear smooth games. Moreover, combin-
ing them with negative momentum can surprisingly lead to a linearly convergent
method. The conjecture provided in Fig. 8.2 (divergence of the alternating method
with positive momentum) is backed-up by the results provided in Fig. 8.5 and §1.1.

6 Experiments and Discussion

Min-Max Bilinear Game [Fig. 8.5] In our first experiments, we showcase the
effect of negative momentum in a bilinear min-max optimization setup (2.4) where
¢,0 € R and A = 1. We compare the effect of positive and negative momentum
in both cases of alternating and simultaneous gradient steps.

72

Fashion MNIST and CIFAR 10 [Fig. 8.6] In our third set of experiments,
we use negative momentum in a GAN setup on CIFAR-10 [Krizhevsky and Hinton,
2009] and Fashion-MNIST [Xiao et al., 2017] with saturating loss and alternating
steps. We use residual networks for both the generator and the discriminator
with no batch-normalization. Following the same architecture as Gulrajani et al.
[2017], each residual block is made of two 3 x 3 convolution layers with ReLU
activation function. Up-sampling and down-sampling layers are respectively used in
the generator and discriminator. We experiment with different values of momentum
on the discriminator and a constant value of 0.5 for the momentum of the generator.
We observe that using a negative value can generally result in samples with higher
quality and inception scores. Intuitively, using negative momentum only on the
discriminator slows down the learning process of the discriminator and allows for
better flow of the gradient to the generator. Note that we provide an additional
experiment on mixture of Gaussians in § 1.2.

08] AR 11—
0.68] -
057 n —_—
046 ' M —
034 r .
i
023 = “ —
0.11 —
B 00 - m)‘;\ .
0.1 n j e I
023 ig | ‘ { w5 “ .
034 [0 ! = N
046 .
057 B
0.68 = .
35 36 38 40 42 43 45 46 48 5 , 35 36 38 -40 -42 43 45 46 48 5
logn logn

Figure 8.6: Comparison between negative and positive momentum on GANs with
saturating loss on CIFAR-10 (left) and on Fashion MNIST (right) using a residual
network. For each dataset, a grid of different values of momentum (/3) and step-
sizes (n) is provided which describes the discriminator’s settings while a constant
momentum of 0.5 and step-size of 10™* is used for the generator. Each cell in
CIFAR-10 (or Fashion MNIST) grid contains a single configuration in which its
color (or its content) indicates the inception score (or a single sample) of the model.
For CIFAR-10 experiments, yellow is higher while blue is the lower inception score.
Along each row, the best configuration is chosen and more samples from that
configuration are presented on the right side of each grid.

73

7 Related Work

Optimization.

From an optimization point of view, a lot of work has been done in the con-
text of understanding momentum and its variants [Polyak, 1964, Qian, 1999, Nes-
terov, 2004, Sutskever et al., 2013]. Some recent studies have emphasized the
importance of momentum tuning in deep learning such as Sutskever et al. [2013],
Kingma and Ba [2015], and Zhang and Mitliagkas [2019], however, none of them
consider using negative momentum. Among recent work, using robust control the-
ory, Lessard et al. [2016] study optimization procedures and cover a variety of
algorithms including momentum methods. Their analysis is global and they es-
tablish worst-case bounds for smooth and strongly-convex functions. Mitliagkas
et al. [2016] considered negative momentum in the context of asynchronous single-
objective minimization. They show that asynchronous-parallel dynamics ‘bleed’
into optimization updates introducing momentum-like behavior into SGD. They
argue that algorithmic momentum and asynchrony-induced momentum add up to
create an effective ‘total momentum’ value. They conclude that to attain the opti-
mal (positive) effective momentum in an asynchronous system, one would have to
reduce algorithmic momentum to small or sometimes negative values. This differs
from our work where we show that for games the optimal effective momentum may
be negative. Ghadimi et al. [2015] analyze momentum and provide global conver-
gence properties for functions with Lipschitz-continuous gradients. However, all
the results mentioned above are restricted to minimization problems. The purpose
of our work is to try to understand how momentum influences game dynamics
which is intrinsically different from minimization dynamics.

Finally, similar proof techniques based on the study of the eigenvalues of a
state-augmented operator have been recently used by Daskalakis and Panageas
[2018] for the study of the optimistic gradient method (OGDA). However, even
though OGDA and Polyak’s momentum can be seen as a variant of the gradient
method with an additional term, these additional terms are different. In OGDA
it is a difference between the two previous gradients, while in Polyak’s method it
is a difference between the two past iterates.

GANSs as games. A lot of recent work has attempted to make GAN training
easier with new optimization methods. Daskalakis et al. [2018] extrapolate the
next value of the gradient using previous history and Gidel et al. [2019b] explore
averaging and introduce a variant of the extra-gradient algorithm.

Balduzzi et al. [2018] develop new methods to understand the dynamics of
general games: they decompose second-order dynamics into two components using
Helmholtz decomposition and use the fact that the optimization of Hamiltonian
games is well understood. It differs from our work since we do not consider any
decomposition of the Jacobian but focus on the manipulation of its eigenvalues.

74

Recently, Liang and Stokes [2019] provide a unifying theory for smooth two-player
games for non-asymptotic local convergence. They also provide theory for choosing
the right step-size required for convergence.

From another perspective, Odena et al. [2018] show that in a GAN setup, the
average conditioning of the Jacobian of the generator becomes ill-conditioned dur-
ing training. They propose Jacobian clamping to improve the inception score and
Frechet Inception Distance. Mescheder et al. [2017] provide discussion on how the
eigenvalues of the Jacobian govern the local convergence properties of GANs. They
argue that the presence of eigenvalues with zero real-part and large imaginary-part
results in oscillatory behavior but do not provide results on the optimal step-size
and on the impact of momentum. Nagarajan and Kolter [2017] also analyze the
local stability of GANs as an approximated continuous dynamical system. They
show that during training of a GAN, the eigenvalues of the Jacobian of the corre-
sponding vector field are pushed away from one along the real axis.

8 Conclusion

In this paper, we show analytically and empirically that alternating updates
with negative momentum is the only method within our study parameters (Fig.8.2)
that converges in bilinear smooth games. We study the effects of using negative
values of momentum in a GAN setup both theoretically and experimentally. We
show that, for a large class of adversarial games, negative momentum may improve
the convergence rate of gradient-based methods by shifting the eigenvalues of the
Jacobian appropriately into a smaller convergence disk. We found that, in simple
yet intuitive examples, using negative momentum makes convergence to the Nash
Equilibrium easier. Our experiments support the use of negative momentum for
saturating losses on mixtures of Gaussians, as well as on other tasks using CIFAR-
10 and fashion MNIST. Altogether, fully stabilizing learning in GANs requires a
deep understanding of the underlying highly non-linear dynamics. We believe our
work is a step towards a better understanding of these dynamics. We encourage
deep learning researchers and practitioners to include negative values of momentum
in their hyper-parameter search.

We believe that our results explain a decreasing trend in momentum values
used for training GANs in the past few years reported in Fig. 8.4. Some of the
most successful papers use zero momentum [Arjovsky et al., 2017, Gulrajani et al.,
2017] for architectures that would otherwise call for high momentum values in a
non-adversarial setting.

75

Prologue to the Fourth
Contribution

1 Article Detalils

A Closer Look at the Optimization Landscapes of Generative Ad-
versarial Networks. Hugo Berard*, Gauthier Gidel*, Amjad Almahairi, Pascal
Vincent and Simon Lacoste-Julien. This paper was published at ICLR 2020 [Berard
et al., 2020].

*Equal contribution.

2 Contributions of the authors

Gauthier Gidel contributed to the general writing of the paper, the idea of the
paper (jointly with Hugo Berard) as well as the proof of all the theorems of the pa-
per. Gauthier Gidel also brought his knowledge about optimization. Hugo Berard
co-lead the project, wrote the code, did the experiments, and wrote the experi-
mental section. He also brought his knowledge about GANs and more generally
generative modeling. Amjad Almahairi supervised Gauthier Gidel during his in-
ternship at ElementAl, worked on the writing of the paper, and on the experiments.
Simon Lacoste-Julien and Pascal Vincent supervised this project.

76

A Closer Look at the
Optimization Landscapes of

(Generative Adversarial
Network

Abstract

Generative adversarial networks have been very successful in generative mod-
eling, however they remain relatively challenging to train compared to standard
deep neural networks. In this paper, we propose new visualization techniques for
the optimization landscapes of GANs that enable us to study the game vector
field resulting from the concatenation of the gradient of both players. Using these
visualization techniques we try to bridge the gap between theory and practice by
showing empirically that the training of GANs exhibits significant rotations around
Local Stable Stationary Points (LSSP), similar to the one predicted by theory on
toy examples.

Moreover, we provide empirical evidence that GAN training converge to a stable
stationary point which is a saddle point for the generator loss, not a minimum, while
still achieving excellent performance.

1 Introduction

Deep neural networks have exhibited remarkable success in many applications
[Krizhevsky et al., 2012]. This success has motivated many studies of their non-
convex loss landscape [Choromanska et al., 2015, Kawaguchi, 2016, Li et al., 2018],
which, in turn, has led to many improvements, such as better initialization and
optimization methods [Glorot and Bengio, 2010, Kingma and Ba, 2015].

While most of the work on studying non-convex loss landscapes has focused on
single objective minimization, some recent class of models require the joint mini-
mization of several objectives, making their optimization landscape intrinsically dif-
ferent. Among these models is the generative adversarial network (GAN) [Goodfel-
low et al., 2014] which is based on a two-player game formulation and has achieved
state-of-the-art performance on some generative modeling tasks such as image gen-
eration [Brock et al., 2019].

On the theoretical side, many papers studying multi-player games have argued
that one main optimization issue that arises in this case is the rotation due to the
adversarial component of the game [Mescheder et al., 2018, Balduzzi et al., 2018,
Gidel et al., 2019¢]. This has been extensively studied on toy examples, in particular

77

on the so-called bilinear example [Goodfellow, 2016] (a.k.a Dirac GAN [Mescheder
et al., 2018]). However, those toy examples are very far from the standard realistic
setting of image generation involving deep networks and challenging datasets. To
our knowledge it remains an open question if this rotation phenomenon actually
occurs when training GANs in more practical settings.

In this paper, we aim at closing this gap between theory and practice. Fol-
lowing Mescheder et al. [2017] and Balduzzi et al. [2018], we argue that instead of
studying the loss surface, we should study the game vector field (i.e., the concate-
nation of each player’s gradient), which can provide better insights to the problem.
To this end, we propose a new visualization technique that we call Path-angle which
helps us observe the nature of the game vector field close to a stationary point for
high dimensional models, and carry on an empirical investigation of the properties
of the optimization landscape of GANs. The core questions we want to address
may be summarized as the following:

Is rotation a phenomenon that occurs when training GANs on real world
datasets, and do existing training methods find local Nash equilibria?

To answer this question we conducted extensive experiments by training different
GAN formulations (NSGAN and WGAN-GP) with different optimizers (Adam
and ExtraAdam) on three datasets (MoG, MNIST and CIFAR10). Based on our
experiments and using our visualization techniques we observe that the landscape of
GANSs is fundamentally different from the standard loss surfaces of deep networks.
Furthermore, we provide evidence that existing GAN training methods do not
converge to a local Nash equilibrium.

Contributions. More precisely, our contributions are the following: (i) We
propose studying empirically the game vector field (as opposed to studying the
loss surfaces of each player) to understand training dynamics in GANs using a
novel visualization tool, which we call Path-angle and that captures the rotational
and attractive behaviors near local stationary points (ref. §4.2). (ii) We observe
experimentally on both a mixture of Gaussians, MNIST and CIFAR10 datasets that
a variety of GAN formulations have a significant rotational behavior around their
locally stable stationary points (ref. §5.1). (iii) We provide empirical evidence that
existing training procedures find stable stationary points that are saddle points,
not minima, for the loss function of the generator (ref. § 5.2).

2 Related work

Improving the training of GANs has been an active research area in the past
few years. Most efforts in stabilizing GAN training have focused on formulating
new objectives [Arjovsky et al., 2017], or adding regularization terms [Gulrajani

78

et al., 2017, Mescheder et al., 2017, 2018]. In this work, we try to characterize
the difference in the landscapes induced by different GAN formulations and how it
relates to improving the training of GANs.

Recently, Nagarajan and Kolter [2017], Mescheder et al. [2018] show that a local
analysis of the eigenvalues of the Jacobian of the game can provide guarantees on
local stability properties. However, their theoretical analysis is based on some
unrealistic assumptions such as the generator’s ability to fully capture the real
distribution. In this work, we assess experimentally to what extent these theoretical
stability results apply in practice.

Rotations in differentiable games has been mentioned and interpreted by
[Mescheder et al., 2018, Balduzzi et al., 2018] and Gidel et al. [2019¢]. While
these papers address rotations in games from a theoretical perspective, it was never
shown that GANs, which are games with highly non-convex losses, suffered from
these rotations in practice. To our knowledge, trying to quantify that GANs ac-
tually suffer from this rotational component in practice for real world dataset is
novel.

The stable points of the gradient dynamics in general games have been studied
independently by Mazumdar et al. [2020], Daskalakis and Panageas [2018], Adolphs
et al. [2018]. They notice that the locally stable stationary point of some games
are not local Nash equilibria. In order to reach a local Nash equilibrium, Adolphs
et al. [2018], Mazumdar et al. [2019] develop techniques based on second order
information. In this work, we argue that reaching local Nash equilibria may not
be as important as one may expect and that we do achieve good performance at a
locally stable stationary point.

Several works have studied the loss landscape of deep neural networks. Good-
fellow et al. [2015] proposed to look at the linear path between two points in
parameter space and show that neural networks behave similarly to a convex loss
function along this path. Draxler et al. [2018] proposed an extension where they
look at nonlinear paths between two points and show that local minima are con-
nected in deep neural networks. Another extension was proposed by [Li et al.,
2018] where they use contour plots to look at the 2D loss surface defined by two
directions chosen appropriately. In this paper, we use a similar approach of follow-
ing the linear path between two points to gain insight about GAN optimization
landscapes. However, in this context, looking at the loss of both players along that
path may be uninformative. We propose instead to look, along a linear path from
initialization to best solution, at the game vector field, particularly at its angle
w.r.t. the linear path, the Path-angle.

Another way to gain insight into the landscape of deep neural networks is by
looking at the Hessian of the loss; this was done in the context of single objective
minimization by [Dauphin et al., 2014, Sagun et al., 2016, 2017, Alain et al., 2019].
Compared to linear path visualizations which can give global information (but only
along one direction), the Hessian provides information about the loss landscape

79

in several directions but only locally. The full Hessian is expensive to compute
and one often has to resort to approximations such has computing only the top-k
eigenvalues. While, the Hessian is symmetric and thus has real eigenvalues, the
Jacobian of a game vector field is significantly different since it is in general not
symmetric, which means that the eigenvalues belong to the complex plane. In the
context of GANs, Mescheder et al. [2017] introduced a gradient penalty and use the
eigenvalues of the Jacobian of the game vector field to show its benefits in terms
of stability. In our work, we compute these eigenvalues to assess that, on different
GAN formulations and datasets, existing training procedures find a locally stable
stationary point that is a saddle point for the loss function of the generator.

3 Formulations for GAN optimization and their
practical implications

3.1 The standard game theory formulation

From a game theory point of view, GAN training may be seen as a game be-
tween two players: the discriminator D, and the generator Gy, each of which is
trying to minimize its loss Lp and Lg, respectively. Using the same formulation
as Mescheder et al. [2017], the GAN objective takes the following form (for sim-
plicity of presentation, we focus on the unconstrained formulation):

0" € argmin L;(0, ™) and @" € argmin Lp(0*,). (3.1)
OcRr pERY

The solution (6%, ¢*) is called a Nash equilibrium (NE). In practice, the considered
objectives are non-convex and we typically cannot expect better than a local Nash
equilibrium (LNE), i.e. a point at which (3.1) is only locally true (see e.g. [Adolphs
et al., 2018] for a formal definition). Ratliff et al. [2016] derived some derivative-
based necessary and sufficient conditions for being a LNE. They show that, for
being a local NE it is sufficient to be a differential Nash equilibrium:

Definition 1 (Differential NE). A point (0%, ¢*) is a differential Nash equilibrium
(DNE) iff

IVoLa (0,97l = [IVoLn(0",¢")| =0, V5L (0", ¢") = 0 and VL,Lp(6", ¢") = 0
(3.2)
where S > 0 if and only if S is positive definite.

Being a DNE is not necessary for being a LNE because a local Nash equilibrium
may have Hessians that are only semi-definite. NE are commonly used in GANs
to describe the goal of the learning procedure [Goodfellow et al., 2014]: in this
definition, 8* (resp. ¢*) is seen as a local minimizer of L(+, ¢*) (resp. Lp(6*,-)).

80

Under this view, however, the interaction between the two networks is not taken
into account. This is an important aspect of the game stability that is missed in
the definition of DNE (and Nash equilibrum in general). We illustrate this point in
the following section, where we develop an example of a game for which gradient
methods converge to a point which is a saddle point for the generator’s loss and
thus not a DNE for the game.

3.2 An alternative formulation based on the game vector
field

In practice, GANs are trained using first order methods that compute the gra-
dients of the losses of each player. Following Gidel et al. [2019b], an alternative
point of view on optimizing GANSs is to jointly consider the players’ parameters 0
and ¢ as a joint state w := (0,), and to study the vector field associated with
these gradients,! which we call the game vector field

v(w) = [VoLo(w)” VoLow)] where w:=(8,¢). (3.3)

With this perspective, the notion of DNE is replaced by the notion of locally stable
stationary point (LSSP). Verhulst [1989, Theorem 7.1] defines a LSSP w* using the
eigenvalues of the Jacobian of the game vector field Vo (w*) at that point.

Definition 2 (LSSP). A point w* is a locally stable stationary point (LSSP) iff
v(w*) =0 and R(A) >0, Ve Sp(Vu(w")). (3.4)

where R denote the real part of the eigenvalue X\ belonging to the spectrum of
Vo(w*).

This definition is not easy to interpret but one can intuitively understand a
LSSP as a stationary point (a point w* where v(w*) = 0) to which all neighbouring
points are attracted. We will formalize this intuition of attraction in Proposition 1.
In our two-player game setting, the Jacobian of the game vector field around the
LSSP has the following block-matrices form:

Vzﬁg<w*) V VQﬁg(w*) Sl B

Vo(w*) = o L = . 3.5
v(w’) VoVoLp(w*) V2Lp(w") A S, (3.5)
When B = —AT, being a DNE is a sufficient condition for being of

LSSP [Daskalakis and Panageas, 2018]. However, some LSSP may not be
DNE [Adolphs et al., 2018], meaning that the optimal generator 8* could be a
saddle point of Lg(+, ¢*), while the optimal joint state (6%, ¢*) may be a LSSP of
the game. We summarize these properties in Table 10.1. In order to illustrate the

!Note that, in practice, the joint vector field (3.3) is not a gradient vector field, i.e., it cannot
be rewritten as the gradient of a single function.

81

Zero-sum game Non-zero-sum game

DNE = LSSP [Daskalakis and Panageas, 2018] DNE % LSSP (Example 5, in Appendix D §]

DNE £ LSSP [Adolphs et al., 2018]
[Daskalakis and Panageas, 2018] DNE # LSSP (Example 4)

Table 10.1: Summary of the implications between Differentiable Nash Equilibrium
(DNE) and a locally stable stationnary point (LSSP): in general, being a DNE is
neither necessary or sufficient for being a LSSP.

intuition behind this counter-intuitive fact, we study a simple example where the
generator is 2D and the discriminator is 1D.

Example 4. Let us consider Lg as a hyperbolic paraboloid (a.k.a., saddle point
function) centered in (1,1) where (1,¢) is the principal descent direction and
(—p, 1) is the principal ascent direction, while Lp is a simple bilinear objective.

Le(01,02,0) = (02 — pb; —1)* — %(91 + @by — 1), Lp(01,09,0) = p(50; + 405 —9)

We plot L& in Fig. 10.1b. Note that the discriminator ¢ controls the principal
descent direction of L¢.

We show (see Appendix D §1.2) that (67,05,¢*) = (1,1,0) is a locally sta-
ble stationary point but is not a DNE: the generator loss at the optimum
(01,02) — Lg(01,02,0%) = 05 — 307 is not at a DNE because it has a clear de-
scent direction, (1,0). However, if the generator follows this descent direction, the
dynamics will remain stable because the discriminator will update its parameter,
rotating the saddle and making (1, 0) an ascent direction. We call this phenomenon
dynamic stability: the loss Lg(-, ¢*) is unstable for a fixed ¢* but becomes stable
when ¢ dynamically interacts with the generator around ¢*.

A mechanical analogy for this dynamic stability phenomenon is a ball in a ro-
tating saddle—even though the gravity pushes the ball to escape the saddle, a
quick enough rotation of the saddle would trap the ball at the center (see [Thomp-
son et al., 2002] for more details). This analogy has been used to explain Paul’s
trap [Paul, 1990]: a counter-intuitive way to trap ions using a dynamic electric
field. In Example 4, the parameter ¢ explicitly controls the rotation of the saddle.

This example illustrates the fact that the DNE corresponds to a notion of
static stability: it is the stability of one player’s loss given the other player is fixed.
Conversely, LSSP captures a notion of dynamic stability that considers both players
jointly.

By looking at the game vector field we capture these interactions. Fig. 10.1b
only captures a snapshot of the generator’s loss surface for a fixed ¢ and indicates
static instability (the generator is at a saddle point of its loss). In Fig. 10.1a,
however, one can see that, starting from any point, we will rotate around the
stationary point (¢*,07) = (0,1) and eventually converge to it.

82

=
13

S S

¢

.A"t
N\ arasff
Ns>rrf))

——

////m\\
VI 22N NN
///rwa\\
‘ll*'

|
=
ot

4 02

1.0 15
0y

=
o

(a) 2D projection of the vector field. (b) Landscape of the generator loss.

Figure 10.1: Visualizations of Example 4. Left: projection of the game vector field
on the plane 3 = 1. Right: Generator loss. The descent direction is (1,¢) (in
grey). As the generator follows this descent direction, the discriminator changes
the value of , making the saddle rotate, as indicated by the circular black arrow.

The visualization of the game vector field reveals an interesting behavior that
does not occur in single objective minimization: close to a LSSP, the parameters
rotate around it. Understanding this phenomenon is key to grasp the optimization
difficulties arising in games. In the next section, we formally characterize the
notion of rotation around a LSSP and in §4 we develop tools to visualize it in high
dimensions. Note that gradient methods may converge to saddle points in single
objective minimization, but these are not stable stationary points, unlike in our
game example.

3.3 Rotation and attraction around locally stable station-
ary points in games

In this section, we formalize the notions of rotation and attraction around LSSP
in games, which we believe may explain some difficulties in GAN training. The
local stability of a LSSP is characterized by the eigenvalues of the Jacobian Vv (w*)
because we can linearize v(w) around w*:

v(w) ~ Vo(w*)(w — w"). (3.6)
If we assume that (3.6) is an equality, we have the following theorem.

Proposition 1. Let us assume that (3.6) is an equality and that Vov(w*)
is diagonalizable, then there exists a basis P such that the coordinates
w;(t) = [P(w(t) — w")]; where w(t) is a solution of (3.6) have the follow-
ing behavior: for \; € Sp Vu(w*) we have,

1. If \; € R, we observe pure attraction: @;(t) = e Y'@;(0).

83

2. If R(\;) = 0, we observe pure rotation:

[@;(t)] _ [cos|/\jt| Sin\)\jﬂ] [w;(0)] _

wjra(t)] [—sin|Ajt] cos |Ajt]| |w;4a(0)

3. Otherwise, we observe both:

[w;(t)] _ - Re(\) [cosIm(A;t) sin Im()\jt)] [@;(0)]
@;j1(t) —sinIm(A;t) cosIm(\;t)| [@;41(0)|

Note that we re-ordered the eigenvalues such that the complex conjugate eigenvalues
form pairs: if \; ¢ R then \j11 = A;.

Matrices in 2. and 3. are rotations matrices. They induce a rotational behavior
illustrated in Fig 10.1a.

This proposition shows that the dynamics of w(t) can be decomposed in a
particular basis into attractions and rotations over components that do not interact
between each other. Rotation does not appear in single objective minimization
around a local minimum, because the eigenvalues of the Hessian of the objective
are always real. Mescheder et al. [2017] discussed that difficulties in training GANs
may be a result of the imaginary part of the eigenvalues of the Jacobian of the
game vector field and Gidel et al. [2019¢c] mentioned that games have a natural
oscillatory behavior. This cyclic behavior has been explained in [Balduzzi et al.,
2018] by a non-zero Hamiltonian component in the Helmholtz decomposition of
the Jacobian of the game vector field. All these explanations are related to the
spectral properties of this Jacobian. The goal of Proposition 1 is to provide a
formal definition to the notions of rotation and attraction we are dealing with in
this paper.

In the following section, we introduce a new tool in order to assess the magnitude
of the rotation around a LSSP compared to the attraction to this point.

4 Visualization for the vector field landscape

Neural networks are parametrized by a large number of variables and visual-
izations are only possible using low dimensional plots (1D or 2D). We first present
a standard visualization tool for deep neural network loss surfaces that we will
exploit in §4.2.

84

4.1 Standard visualizations for the loss surface

One way to visualize a neural network’s loss landscape is to follow a
parametrized path w(a) that connects two parameters w,w’ (often one is chosen
early in learning and another one is chosen late in learning, close to a solution). A
path is a continuous function w(-) such that w(0) = w and w(1) = w’. Goodfellow
et al. [2015] considered a linear path w(a) = aw + (1 — a)w’. More complex paths
can be considered to assess whether different minima are connected [Draxler et al.,
2018).

4.2 Proposed visualization: Path-angle

We propose to study the linear path between parameters early in learning and
parameters late in learning. We illustrate the extreme cases for the game vector
field along this path in simple examples in Figure 10.2(a-c): pure attraction occurs
when the vector field perfectly points to the optimum (Fig. 10.2a) and pure rotation
when the vector field is orthogonal to the direction to the optimum (Fig. 10.2b).
In practice, we expect the vector field to be in between these two extreme cases
(Fig. 10.2¢). In order to determine in which case we are, around a LSSP, in practice,
we propose the following tools.

Path-norm.. We first ensure that we are in a neighborhood of a stationary point
by computing the norm of the vector field. Note that considering independently
the norm of each player may be misleading: even though the gradient of one player
may be close to zero, it does not mean that we are at a stationary point since the
other player might still be updating its parameters. Path-angle.. Once we are
close to a final point w’, i.e., in a neighborhood of a LSSP, we propose to look at the
angle between the vector field (3.3) and the linear path from w to w’. Specifically,
we monitor the cosine of this angle, a quantity we call Path-angle:

cla) == % where v, :=v(aw' + (1 — a)w), a € [a,b]. (4.1)
Usually [a, b] = [0, 1], but since we are interested in the landscape around a LSSP,
it might be more informative to also consider further extrapolated points around
w' with b > 1.
Eigenvalues of the Jacobian.. Another important tool to gain insights on
the behavior close to a LSSP, as discussed in §3.2, is to look at the eigenvalues of
Vv(w*). We propose to compute the top-k eigenvalues of this Jacobian. When all
the eigenvalues have positive real parts, we conclude that we have reached a LSSP,
and if some eigenvalues have large imaginary parts, then the game has a strong
rotational behavior (Thm. 1). Similarly, we can also compute the top-k eigenvalues
of the diagonal blocks of the Jacobian, which correspond to the Hessian of each
player. These eigenvalues can inform us on whether we have converged to a LSSP
that is not a LNE.

85

1.00

0.75 0.05

0.50

L 0.5 0.25
1.0 0.00 —0.05

0.50 0.75 1.00 1.25 0.50 0.75 1.00 1.25 0.50 0.75 1.00 1.25
a a]

Path-angle

(a) Attraction only (b) Rotation only (c) Rotation and attraction

Figure 10.2: Above: game vector field (in grey) for different archetypal behaviors. The
equilibrium of the game is at (0, 0). Black arrows correspond to the directions of the vector
field at different linear interpolations between two points: e and x. Below: path-angle
¢(a) for different archetypal behaviors (right y-axis, in blue). The left y-axis in orange
correspond to the norm of the gradients. Notice the "bump" in path-angle (close to a = 1),
characteristic of rotational dynamics.

An important advantage of the Path-angle relative to the computation of the
eigenvalues of Vv (w*) is that it only requires computing gradients (and not second
order derivatives, which may be prohibitively computationally expensive for deep
networks). Also, it provides information along a whole path between two points
and thus, more global information than the Jacobian computed at a single point.
In the following section, we use the Path-angle to study the archetypal behaviors
presented in Thm 1.

4.3 Archetypal behaviors of the Path-angle around a LSSP

Around a LSSP, we have seen in (3.6) that the behavior of the vector field is
mainly dictated by the Jacobian matrix Vo(w*). This motivates the study of the
behavior of the Path-angle ¢(a) where the Jacobian is a constant matrix:

'v(w)—[il gj (w—w") and thus Vv(w)—[il ;j V. (4.2)

Depending on the choice of S;,.S5, A and B, we cover the following cases:

e 51,5, > 0,A = B = 0: eigenvalues are real. Thm. 1 ensures that we only
have attraction. Far from w*, the gradient points to w* (See Fig. 10.2a) and
thus ¢(a) = 1 for @ < 1 and ¢(a) = —1 for a > 1. Since w’ is not exactly w*,
we observe a quick sign switch of the Path-angle around o = 1. We plotted

86

the average Path-angle over different approximate optima in Fig. 10.2a (see
appendix for details).

¢ S,,8,=0,A=—B": cigenvalues are pure imaginary. Thm. 1 ensures that
we only have rotations. Far from the optimum the gradient is orthogonal
to the direction that points to w (See Fig. 10.2b). Thus, c¢(«) vanishes for
a < land a > 1. Because w' is not exactly w*, around o = 1, the gradient is
tangent to the circles induced by the rotational dynamics and thus c¢(a)) = +1.
That is why in Fig. 10.2b we observe a bump in c¢(«) when « is close to 1.

e General high dimensional LSSP (3.4). The dynamics display both attraction
and rotation. We observe a combination of the sign switch due to the attrac-
tion and the bump due to the rotation. The higher the bump, the closer we
are to pure rotations. Since we are performing a low dimensional visualiza-
tion, we actually project the gradient onto our direction of interest. That is
why the Path-angle is significantly smaller than 1 in Fig. 10.2c.

5 Numerical results on GANs

Losses. We focus on two common GAN loss formulations: we consider both
the original non-saturating GAN (NSGAN) formulation proposed in Goodfellow
et al. [2014] and the WGAN-GP objective described in Gulrajani et al. [2017].

Datasets. We first propose to train a GAN on a toy task composed of a
1D mixture of 2 Gaussians (MoG) with 10,000 samples. For this task both the
generator and discriminator are neural networks with 1 hidden layer and ReLU
activations. We also train a GAN on MNIST, where we use the DCGAN archi-
tecture [Radford et al., 2016] with spectral normalization(see Appendix D §3.2 for
details). Finally we also look at the optimization landscape of a state of the art
ResNet on CIFAR10 [Krizhevsky and Hinton, 2009].

Optimization methods. For the mixture of Gaussian (MoG) dataset, we
used the full-batch extragradient method [Korpelevich, 1976, Gidel et al., 2019b].
We also tried to use standard batch gradient descent, but this led to unstable
results indicating that gradient descent might indeed be unable to converge to
stable stationary points due to the rotations (see Appendix D §3.4). On MNIST
and CIFAR10, we tested both Adam [Kingma and Ba, 2015] and ExtraAdam [Gidel
et al., 2019b]. The observations made on models trained with both methods are
very similar. ExtraAdam gives slightly better performance in terms of inception
score [Salimans et al., 2016], and Adam sometimes converge to unstable points,
thus we decided to only include the observations on ExtraAdam, for more details
on the observations on Adam (see §3.5). Asrecommended by Heusel et al. [2017], we

87

0.06 0.004 0.003
NSGAN o
0.000 &
=0.001

™~ [-0.06 0002 0.002

Path Angle
Path Angle
Path Angle

0.08 ~0.003
04 05 06 07 08 09 10 11 04 05 06 07 08 09 10 11 04 05 06 07 08 09 10 11

Linear Path Linear Path Linear Path

(a) MoG (b) MNIST, IS = 8.97 (c) CIFARI10, IS = 7.33

0f
0.04
0010
0.02
. 000 0.005
VV GAIJ—GP -0 \ 0.000
0.005
0010

-0.015 -
04 05 06 07 08 09 10 11 04 05 06 07 08 09 10 11 04 05 06 07 08 09 10 11
Linear Path Linear Path Linear Path

Path Angle

B
Path Angle

(d) MoG (e) MNIST, IS = 9.46 (f) CIFARI10, IS = 7.65

Figure 10.3: Path-angle for NSGAN (top row) and WGAN-GP (bottom row) trained
on the different datasets, see Appendix D §3.3 for details on how the path-angle is com-
puted. For MoG the ending point is a generator which has learned the distribution. For
MNIST and CIFAR10 we indicate the Inception score (IS) at the ending point of the in-
terpolation. Notice the “bump” in path-angle (close to a = 1.0), characteristic of games
rotational dynamics, and absent in the minimization problem (d). Details on error bars
in Appendix D §3.3.

chose different learning rates for the discriminator and the generator. All the hyper-
parameters and precise details about the experiments can be found in Appendix D

§3.1.

5.1 Evidence of rotation around locally stable stationary
points in GANs

We first look, for all the different models and datasets, at the path-angles be-
tween a random initialization (initial point) and the set of parameters during train-
ing achieving the best performance (end point) (Fig. 10.3), and at the eigenvalues
of the Jacobian of the game vector field for the same end point (Fig. 10.4). We're
mostly interested in looking at the optimization landscape around LSSPs, so we
first check if we are actually close to one. To do so we look at the gradient norm
around the end point, this is shown by the orange curves in Fig.10.3, we can see
that the norm of the gradient is quite small for all the models meaning that we are
close to a stationary point. We also need to check that the point is stable, to do
so we look at the eigenvalues of the Game in Fig. 10.4, if all the eigenvalues have
positive real parts then the point is also stable. We observe that most of the time,
the model has reached a LSSP. However we can see that this is not always the
case, for example in Fig. 10.4d some of the eigenvalues have a negative real part.
We still include those results since although the point is unstable it gives similar

88

150
15 ° ® end L] o end 1000 b o end
. ® init 100 @ init @ init
t 1.0 I £ @
€ o5l o & o0 & 500 .
2 ol 2
NSGAN £ oof eme . o o o & o o B olefp em o o
£ < =
o _ ° =3 =3 >
E s wa -0 g -500 3
£ E E
X ° 10 1000
o ° -150 L L
o 5 10 15 20 o 5000 10000 15000 20000 25000 30000 0 100 200 300 400 500 600 700
Real Part Real Part Real Part
(a) MoG (b) MNIST, IS = 8.97 (c) CIFARI10, IS = 7.33
" ° ° gntd 150 O@ o end 6001 @ © end
e 2 e L 10 ogd L. IR o init
’-i 10 ® & s ® & 200 g
o 2 2
\/\/GAN_GP G of emm ®» o0 @ @am» | $ o o@ ® ol § of@oo o)
g-lo ® g —s50 - g 200 g
= ~ -100 08[? T -a00] @
_30 5]
° -150] -6001 @
-1.0 -0.5 0.0 0.5 1.0 ~75 =50 =25 0 25 50 75 100 0 100000 200000 300000 400000 500000
Real Part Real Part Real Part
(d) MoG (e) MNIST, IS = 9.46 (f) CIFARIO0, IS = 7.65

Figure 10.4: Eigenvalues of the Jacobian of the game for NSGAN (top row) and WGAN-
GP (bottom row) trained on the different datasets. Large imaginary eigenvalues are
characteristic of rotational behavior. Notice that NSGAN and WGAN-GP objectives lead
to very different landscapes (see how the eigenvalues of WGAN-GP are shifted to the right

of the imaginary axis). This could explain the difference in performance between NSGAN
and WGAN-GP.

performance to a LSSP.

Our first observation is that all the GAN objectives on both datasets have a
non zero rotational component. This can be seen by looking at the Path-angle
in Fig. 10.3, where we always observe a bump, and this is also confirmed by the
large imaginary part in the eigenvalues of the Jacobian in Fig. 10.4. The rotational
component is clearly visible in Fig. 10.3d, where we see no sign switch and a clear
bump similar to Fig. 10.2b. On MNIST and CIFAR10, with NSGAN and WGAN-
GP (see Fig. 10.3), we observe a combination of a bump and a sign switch similar to
Fig. 10.2c. Also Fig. 10.4 clearly shows the existence of imaginary eigenvalues with
large magnitude. Fig. 10.4c and 10.4e. We can see that while almost all models
exhibit rotations, the distribution of the eigenvalues are very different. In particular
the complex eigenvalues for NSGAN seems to be much more concentrated on the
imaginary axis while WGAN-GP tends to spread the eigenvalues towards the right
of the imaginary axis Fig. 10.4e. This shows that different GAN objectives can
lead to very different landscapes, and has implications in terms of optimization,

in particular that might explain why WGAN-GP performs slightly better than
NSGAN.

89

0.08 = init
end

0.06

600
(Generater § = ‘WN”HWHHWWHU“HH N
2 o000 20 200

—0.02 | |
-0.04 o] EEEESEESSRREREE of NEEEEEERSSSERES R

-0.06 -200
0 15 30 45 60 75 90 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Top-100 Eigenvalues Top-20 Eigenvalues Top-20 Eigenvalues

nitud:
Magnitude
Magnitude

M:

- it T 40 - init
20 end 30000 end 30

) : o o IIIIIIIII
. . . B 20000 10 I
Discriminator £)
¥ g

-30

Magnitude
s
g
Magnitude

0 15 30 45 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Top-100 Eigenvalues Top-20 Eigenvalues Top-20 Eigenvalues

(a) MoG (b) MNIST, IS = 8.97 (c) CIFARI10, IS = 7.33

Figure 10.5: NSGAN. Top k-Eigenvalues of the Hessian of each player (in terms of
magnitude) in descending order. Top Eigenvalues indicate that the Generator does not
reach a local minimum but a saddle point (for CIFAR10 actually both the generator and
discriminator are at saddle points). Thus the training algorithms converge to LSSPs which
are not Nash equilibria.

5.2 The locally stable stationary points of GANs are not
local Nash equilibria

As mentioned at the beginning of §5.1, the points we are considering are most
of the times LSSP. To check if these points are also local Nash equilibria (LNE)
we compute the eigenvalues of the Hessian of each player independently. If all
the eigenvalues of each player are positive, it means that we have reached a DNE.
Since the computation of the full spectrum of the Hessians is expensive, we restrict
ourselves to the top-k eigenvalues with largest magnitude: exhibiting one significant
negative eigenvalue is enough to indicate that the point considered is not in the
neighborhood of a LNE. Results are shown in Fig. 10.5 and Fig. 10.6, from which
we make several observations. First, we see that the generator never reaches a
local minimum but instead finds a saddle point. This means that the algorithm
converges to a LSSP which is not a LNE, while achieving good results with respect
to our evaluation metrics. This raises the question whether convergence to a LNE
is actually needed or if converging to a LSSP is sufficient to reach a good solution.
We also observe a large difference in the eigenvalues of the discriminator when
using the WGAN-GP v.s. the NSGAN objective. In particular, we find that the
discriminator in NSGAN converges to a solution with very large positive eigenvalues
compared to WGAN-GP. This shows that the discriminator in NSGAN converges
to a much sharper minimum. This is consistent with the fact that the gradient
penalty acts as a regularizer on the discriminator and prevents it from becoming
too sharp.

90

03 - init - init - it

0.2

Generator £ | [N

|

°

>
Magnitude
Magnitude

5 ANEEEEEEN
AN | = - e TR | (|
. R LT
LU
~03 -200
o 15 30 a5 60 75 920 w0 0 2 a4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Top-100 Eigenvalues Top-20 Eigenvalues Top-20 Eigenvalues
- init - init 500000 - init
10 end 150 end
400000
o 05 o 100 o
D . . . 3 s S 300000
£ 0 2 5 =1
iscriminator § 5 III“I § 200000
= s = o 2
IIIIIIIIIIIIII -
=50
-1.0
-100 o
0 15 30 45 60 75 90 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Top-100 Eigenvalues Top-20 Eigenvalues Top-20 Eigenvalues
(a) MoG (b) MNIST, IS = 9.46 (c) CIFARI10, IS = 7.65

Figure 10.6: WGAN-GP. Top k-Eigenvalues of the Hessian of each player (in terms
of magnitude) in descending order. Top Eigenvalues indicate that the Generator does
not reach a local minimum but a saddle point. Thus the training algorithms converge to
LSSPs which are not Nash equilibria.

6 Discussion

Across different GAN formulations, standard optimization methods and
datasets, we consistently observed that GANs do not converge to local Nash
equilibria. Instead the generator often ends up being at a saddle point of the
generator loss function. However, in practice, these LSSP achieve really good
generator performance metrics, which leads us to question whether we need a
Nash equilibrium to get a generator with good performance in GANs and whether
such DNE with good performance does actually exist. Moreover, we have provided
evidence that the optimization landscapes of GANs typically have rotational
components specific to games. We argue that these rotational components are
part of the reason why GANs are challenging to train, in particular that the
instabilities observed during training may come from such rotations close to LSSP.
It shows that simple low dimensional examples, such as for instance Dirac GAN,
does capture some of the arising challenges for training large scale GANs, thus,
motivating the practical use of method able to handle strong rotational compo-
nents, such as extragradient [Gidel et al., 2019b], averaging [Yazic1 et al., 2019],
optimism [Daskalakis et al., 2018] or gradient penalty based methods [Mescheder
et al., 2017, Gulrajani et al., 2017].

91

Conclusions, Discussions,
and Perspectives

1 Summary and Conclusions

In this thesis, we have investigated several aspects of learning in multi-player
games. In the first contribution, we tackled the issue of the existence of equilib-
rium in nonconvex-nonconcave games by introducing a novel realistic assumption.
In practice, although the payoff function may be nonconvex-nonconcave with re-
spect to the model parameters, it is convex-concave as a function of the models
themselves.

The investigation of the notion of equilibria in games has recently been an active
research topic in the community. For instance, defining what is local optimality in
games is a complex question that has been examined by [Jin et al., 2019, Zhang
et al., 2020]. Alternative notions of equilibria such as Stackelberg equilibria have
been studied by Fiez et al. [2020]. To our knowledge, our theorem is a novel
existence result of equilibrium for nonconvex-nonconcave payoffs that contrast with
the counter-example proposed by Jin et al. [2019]. Our work’s main takeaway is
that games like GANs of Starcraft II have an equilibrium because they satisfy the
specific assumptions presented in the first contribution.

The rest of this thesis focus on the optimization of games. In the second contri-
bution, we proposed a principled optimization perspective for GANs based on the
variational inequality literature. In that work, we introduced a novel optimization
algorithm leveraging the idea of extrapolation, providing state-of-the-art results on
GANSs at the time.

In the third contribution, we used linear algebra tools to analyze the impact
of momentum in the optimization of games. One of the conclusions drawn from
this work was relatively surprising: unlike in standard minimization for which the
optimal momentum hyperparameter is close to 1, in games, the optimal hyperpa-
rameter can be negative.

At the time of publication of the second and third publication, the theoretical
study of the optimization of games in the context of machine learning was at its
premises [Gidel et al., 2017, Palaniappan and Bach, 2016, Mescheder et al., 2017,
Daskalakis et al., 2018]. In these works we have identified that the simple bilinear
unconstrained matrix game was an interesting case study. We showed, among other
things, that the extragradient method and the alternating gradient method with
negative momentum were converging linearly on that problem.

The analysis of this simple example, also proposed by [Daskalakis et al., 2018],

92

opened a rich research direction and many publications subsequently used that case
study to test and develop new optimization methods for games [Abernethy et al.,
2019, Chavdarova et al., 2019, Yazic et al., 2019, Mokhtari et al., 2020, Ibrahim
et al., 2020, Azizian et al., 2020a,b]. Moreover, it sheds into light the fact that,
in minimax games, some first-order methods can convergence linearly even in the
absence of strong convex-concavity.

In the final contribution, we proposed an empirical study of the landscape of the
optimization vector field of practical GANs. The study of the practical landscapes
was not new at the time [Choromanska et al., 2015, Kawaguchi, 2016, Li et al.,
2018].

The novelty of this work comes from the fact that we focused on games that are
multi-objective optimization problems. We argued that the tools developed for the
study of standard minimization landscapes were not suited to the games’ optimiza-
tion landscape. We gave strong empirical evidence that the landscape of GANs had
some rotational components that cannot occur in standard minimization. Such ob-
servation is a strong argument in favor of principled methods to tackle rotations
such as extrapolation or negative momentum. Moreover, we also provided empiri-
cal evidence that standard training methods were converging to stationary points
that are locally stable but not local Nash equilibria. The theoretical existence of
such locally stable stationary points that are not local Nash equilibria has been
previously noticed by Mazumdar et al. [2020], Adolphs et al. [2018], Daskalakis
and Panageas [2018]. However, there was no prior evidence that it could happen
in practice.

Since Nash equilibria (and their local version) is the standard notion of equi-
librium in games, this phenomenon is relatively counter-intuitive and raises the

question of whether (local) Nash equilibria are needed to achieve good performance
in GANSs.

2 Discussions and Perspectives

While this thesis provides significant progress toward understanding multi-
player games in the context of machine learning, important open questions remain.
We will divide these questions into three categories: a theoretical study of games
in ML, optimization of games, and the design of new practical formulations at the
intersection of games and ML.

Theoretical study of games in ML. Many ML applications involve games
with more than two players such as Diplomacy [Kraus and Lehmann, 1988, Kraus
et al., 1989, Paquette et al., 2019, Anthony et al., 2020], DOTA [Berner et al.,
2019], Texas Hold’em poker [Brown and Sandholm, 2019] or market designs [Lay
and Barbu, 2010, Balduzzi, 2014]. Understanding what is (local) optimality in such
complex games where each player has a non-convex loss is a fascinating question.

93

In the context of ML, an interesting notion to explore is the concept of coarse
correlated equilibria (CCE) [Aumann, 1974]. CCE are a compelling notion because
they can be computed in polynomial time for many compactly represented multi-
player games [Papadimitriou, 2007] and because such notion is more relevant than
Nash equilibria in cooperation games such as the prisoner dilemma [Axelrod and
Hamilton, 1981].

Optimization of games. Optimization with first-order methods is quite well
understood in the context of minimization. For strongly convex and Lipschitz
objective, the community has defined a notion of conditioning of the problem.
The condition number is a value that represents the difficulty of the problem (in
terms of optimization). A classical result [Nesterov, 2004] shows that first-order
methods cannot converge faster than a geometric rate depending on the condition
number of the problem. Method that achieves this lower bound has been proposed
by [Polyak, 1964] and Nesterov [1983]. However, in minimax games, and more
generally in multi-player games, the gap between lower and upper convergence
bound is far from being bridged [Azizian et al., 2020a, Ibrahim et al., 2020, Zhang
et al., 2019]. One key component to take into account in the conditioning of a game
is that some methods such as extragradient converge linearly even in the absence of
strong convex-concavity [Tseng, 1995, Azizian et al., 2020a]. Thus, the conditioning
of a game must incorporate a notion of interaction between the players.

Another challenging technical problem in game optimization is the notion of
merit function. Actually, as discussed in § 2.4, the standard merit function G
defined in (2.7) may be infinite almost everywhere when dealing with unbounded
constraints sets. In that case, a convergence analysis using that merit function
is not possible. Thus, one interesting research direction is to identify new gap
functions to analyze such optimization problems. One way would be to use a
perturbed gap function such as the one used by [Monteiro and Svaiter, 2011].

One important question remaining is the problem of convergence guarantees in
the context of nonconvex-nonconcave minimax optimization (and more generally in
the context of multi-player games with non-convex payoffs). Unlike in non-convex
minimization, where a notion of global guarantee can be obtained, in games, there is
currently no proof of convergence guarantees for a first-order algorithm (see §1.2 for
more details). Some negative results have been recently provided by Letcher [2020]
and Hsieh et al. [2020]. However, as argued in the first contribution, the multi-
player games encountered in practical ML applications have a particular structure,
exhibited in the first contribution, that could potentially be leveraged to prove
some positive results.

Design of new game for ML formulations. Generative adversarial net-
works [Goodfellow et al., 2014] and adversarial training [Madry et al., 2018] are
arguably the two most popular adversarial training formulation in machine learn-
ing. However, such formulations’ potential is significant and could be leveraged to
tackle challenging ML problems such as the inference of causal relationship [Ar-

94

jovsky et al., 2019, Ahuja et al., 2020] or the generation of adversarial examples
with no interaction with the attacked model [Bose et al., 2020].

Another interesting direction to explore is the design of cooperation games
using ML. The machine learning community is just starting to get interested in
such challenges [Bard et al., 2020, Foerster et al., 2019], though the game theory
literature has studied the notion of cooperation in games decades ago [Axelrod
and Hamilton, 1981] and could provide many case studies and insights to design
cooperative games for ML.

Mot de la fin. The problems presented here are fascinating challenges that
can constitute rich and diverse research directions for many years but also push
forward the understanding of how humans think and learn.

95

Bibliography

J. Abernethy, K. A. Lai, and A. Wibisono. Last-iterate convergence rates for min-
max optimization. arXiv preprint arXiv:1906.02027, 2019.

L. Adolphs, H. Daneshmand, A. Lucchi, and T. Hofmann. Local saddle point opti-
mization: A curvature exploitation approach. arXiv preprint arXiv:1805.05751,
2018.

A. Ahmadinejad, S. Dehghani, M. Hajiaghayi, B. Lucier, H. Mahini, and S. Sed-
dighin. From duels to battlefields: Computing equilibria of Blotto and other
games. Mathematics of Operations Research, 2019.

K. Ahuja, K. Shanmugam, K. Varshney, and A. Dhurandhar. Invariant risk mini-
mization games. arXiv preprint arXiw:2002.04692, 2020.

G. Alain, N. Le Roux, and P.-A. Manzagol. Negative eigenvalues of the hessian in
deep neural networks. arXiv, 2019.

C. D. Aliprantis and K. C. Border. Infinite Dimensional Analysis A Hitchhiker’s
Guide. Springer, 2006.

T. Anthony, T. Eccles, A. Tacchetti, J. Kramar, I. Gemp, T. C. Hudson, N. Porcel,
M. Lanctot, J. Pérolat, R. Everett, et al. Learning to play no-press diplomacy
with best response policy iteration. arXiv preprint arXiv:2006.04635, 2020.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial net-
works. In ICML, 2017.

M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. Invariant risk minimiza-
tion. arXiv preprint arXiv:1907.025893, 2019.

S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang. Generalization and equilibrium
in generative adversarial nets (GANs). In ICML, 2017.

K. J. Arrow, H. Azawa, L. Hurwicz, and H. Uzawa. Studies in linear and non-linear
programming, volume 2. Stanford University Press, 1958.

K. E. Atkinson. An introduction to numerical analysis. John Wiley & Sons, 2003.

96

R. J. Aumann. Subjectivity and correlation in randomized strategies. Journal of
mathematical Economics, 1(1):67-96, 1974.

R. Axelrod and W. D. Hamilton. The evolution of cooperation. science, 211(4489):
1390-1396, 1981.

W. Azizian, 1. Mitliagkas, S. Lacoste-Julien, and G. Gidel. A tight and unified anal-
ysis of extragradient for a whole spectrum of differentiable games. In AISTATS,
2020a.

W. Azizian, D. Scieur, I. Mitliagkas, S. Lacoste-Julien, and G. Gidel. Accelerating
smooth games by manipulating spectral shapes. In AISTATS, 2020b.

J. P. Bailey, G. Gidel, and G. Piliouras. Finite regret and cycles with fixed step-size
via alternating gradient descent-ascent. In COLT, 2020.

D. Balduzzi. Cortical prediction markets. In AAMAS, 2014.

D. Balduzzi, S. Racaniere, J. Martens, J. Foerster, K. Tuyls, and T. Graepel. The
mechanics of n-player differentiable games. In ICML, 2018.

J. F. Bard. Practical bilevel optimization: algorithms and applications, volume 30.
Springer Science & Business Media, 2013.

N. Bard, J. N. Foerster, S. Chandar, N. Burch, M. Lanctot, H. F. Song, E. Parisotto,
V. Dumoulin, S. Moitra, E. Hughes, et al. The hanabi challenge: A new frontier
for ai research. Artificial Intelligence, 280:103216, 2020.

J. Baxter, A. Tridgell, and L. Weaver. Learning to play chess using temporal
differences. Machine Learning, 40(3):243-263, 2000.

M. Bellmore and G. L. Nemhauser. The traveling salesman problem: a survey.
Operations Research, 16(3):538-558, 1968.

S. Ben-David, N. Eiron, and P. M. Long. On the difficulty of approximately max-
imizing agreements. Journal of Computer and System Sciences, 66(3):496-514,
2003.

H. Berard, G. Gidel, A. Almahairi, P. Vincent, and S. Lacoste-Julien. A closer look
at the optimization landscapes of generative adversarial networks. In ICLR, 2020.

C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison, D. Farhi,
Q. Fischer, S. Hashme, C. Hesse, et al. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019.

D. P. Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.

97

M. Binkowski, J. Donahue, S. Dieleman, A. Clark, E. Elsen, N. Casagrande, L. C.
Cobo, and K. Simonyan. High fidelity speech synthesis with adversarial networks.
In ICLR, 2020.

E. Borel. La théorie du jeu et les équations intégrales a noyau symétrique. Comptes
rendus de I’Académie des Sciences, 173(1304-1308):58, 1921.

A. J. Bose, G. Gidel, H. Berrard, A. Cianflone, P. Vincent, S. Lacoste-Julien, and
W. L. Hamilton. Adversarial example games. arXiv preprint arXiv:2007.00720,
2020.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In NeurlPS,
pages 161-168, 2008.

S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press,
2004.

R. Bozulich. The go player’s almanac. Ishi Press, 1992.

L. M. Bregman. The relaxation method of finding the common point of convex sets
and its application to the solution of problems in convex programming. USSR
computational mathematics and mathematical physics, 7(3):200-217, 1967.

A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training for high fidelity
natural image synthesis. In ICLR, 2019.

N. Brown and T. Sandholm. Safe and nested subgame solving for imperfect-
information games. In NeurIPS, 2017.

N. Brown and T. Sandholm. Superhuman AI for multiplayer poker. Science, 2019.

R. E. Bruck. On the weak convergence of an ergodic iteration for the solution
of variational inequalities for monotone operators in hilbert space. Journal of
Mathematical Analysis and Applications, 1977.

M. Campbell, A. J. Hoane Jr, and F.-h. Hsu. Deep blue. Artificial intelligence,
134(1-2):57-83, 2002.

A. Cauchy. Méthode générale pour la résolution des systemes d’équations simul-
tanées. Comp. Rend. Sci. Paris, 25(1847):536-538, 1847.

A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of mathematical imaging and vision, 40
(1):120-145, 2011.

A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order
primal-dual algorithm. Mathematical Programming, 159(1-2):253-287, 2016.

98

T. Chavdarova, G. Gidel, F. Fleuret, and S. Lacoste-Julien. Reducing noise in gan
training with variance reduced extragradient. In NeurlPS, pages 393-403, 2019.

G. H. Chen and R. T. Rockafellar. Convergence rates in forward—backward split-
ting. SIAM Journal on Optimization, 1997.

C.-K. Chiang, T. Yang, C.-J. Lee, M. Mahdavi, C.-J. Lu, R. Jin, and S. Zhu. Online
optimization with gradual variations. In COLT, pages 6-1, 2012.

A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun. The loss
surfaces of multilayer networks. In AISTATS, pages 192-204, 2015.

B. Colson, P. Marcotte, and G. Savard. An overview of bilevel optimization. Annals
of operations research, 2007.

V. Conitzer and T. Sandholm. Computing the optimal strategy to commit to. In
Proceedings of the Tth ACM conference on Electronic commerce, pages 82-90,
2006.

A. A. Cournot. Recherches sur les principes mathématiques de la théorie des
richesses. 1838.

G. P. Crespi, A. Guerraggio, and M. Rocca. Minty variational inequality and
optimization: Scalar and vector case. In A. Eberhard, N. Hadjisavvas, and D. T.
Luc, editors, Generalized Convexity, Generalized Monotonicity and Applications,
2005.

P. Dasgupta and E. Maskin. The existence of equilibrium in discontinuous economic
games, i: Theory. The Review of economic studies, 53(1):1-26, 1986.

C. Daskalakis and I. Panageas. The limit points of (optimistic) gradient descent
in min-max optimization. In NeurIPS§, 2018.

C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of
computing a nash equilibrium. SIAM Journal on Computing, 39(1):195-259,
2009.

C. Daskalakis, A. Ilyas, V. Syrgkanis, and H. Zeng. Training GANs with optimism.
In ICLR, 2018.

Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio.
Identifying and attacking the saddle point problem in high-dimensional non-
convex optimization. In NeurIPS, 2014.

E. L. Denton, S. Chintala, R. Fergus, et al. Deep generative image models using a
laplacian pyramid of adversarial networks. In NeurIPS, 2015.

99

C. Domingo-Enrich, S. Jelassi, A. Mensch, G. Rotskoff, and J. Bruna. A mean-field
analysis of two-player zero-sum games. arXiv preprint arXiv:2002.06277, 2020.

Z. Dou, X. Yan, D. Wang, and X. Deng. Finding mixed strategy nash equilibrium
for continuous games through deep learning. arXiv preprint arXiv:1910.12075,
2019.

F. Draxler, K. Veschgini, M. Salmhofer, and F. Hamprecht. Essentially no barriers
in neural network energy landscape. In ICML, 2018.

S. S. Du, C. Jin, J. D. Lee, M. I. Jordan, A. Singh, and B. Poczos. Gradient
descent can take exponential time to escape saddle points. In NeurlPS, pages
1067-1077, 2017.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learn-
ing and stochastic optimization. JMLR, 12(7), 2011.

A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun.
Dermatologist-level classification of skin cancer with deep neural networks. na-
ture, 542(7639):115-118, 2017.

K. Fan. Minimax theorems. Proceedings of the National Academy of Sciences of
the United States of America, 1953.

W. Fedus, M. Rosca, B. Lakshminarayanan, A. M. Dai, S. Mohamed, and 1. Good-
fellow. Many paths to equilibrium: GANs do not need to decrease a divergence
at every step. In ICLR, 2018.

V. Feldman, V. Guruswami, P. Raghavendra, and Y. Wu. Agnostic learning of
monomials by halfspaces is hard. STAM Journal on Computing, 41(6):1558-1590,
2012.

A. Ferdowsi, A. Sanjab, W. Saad, and T. Basar. Generalized colonel Blotto game.
In 2018 Annual American Control Conference (ACC), 2018.

T. Fiez, B. Chasnov, and L. J. Ratliff. Implicit learning dynamics in stackelberg
games: Equilibria characterization, convergence analysis, and empirical study,
2020.

J. Foerster, F. Song, E. Hughes, N. Burch, I. Dunning, S. Whiteson, M. Botvinick,
and M. Bowling. Bayesian action decoder for deep multi-agent reinforcement
learning. In ICML, 2019.

V. Frangois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau. An
introduction to deep reinforcement learning. arXiv preprint arXiv:1811.12560,
2018.

100

M. Fréchet. Commentary on the three notes of Emile Borel. Econometrica: Journal
of the Econometric Society, pages 118-124, 1953.

Y. Freund, R. E. Schapire, et al. Adaptive game playing using multiplicative
weights. Games and Economic Behavior, 1999.

M. Gardner. Mathematical games: The fantastic combinations of john conway’s
new solitaire game “life”. Scientific American, 223(4):120-123, 1970.

M. Genesereth, N. Love, and B. Pell. General game playing: Overview of the AAAI
competition. Al magazine, 26(2):62-62, 2005.

E. Ghadimi, H. R. Feyzmahdavian, and M. Johansson. Global convergence of the
heavy-ball method for convex optimization. In FCC, 2015.

G. Gidel, T. Jebara, and S. Lacoste-Julien. Frank-Wolfe algorithms for saddle
point problems. AISTATS, 2017.

G. Gidel, F. Pedregosa, and S. Lacoste-Julien. Frank-wolfe splitting via augmented
lagrangian method. In AISTATS, 2018.

G. Gidel, F. Bach, and S. Lacoste-Julien. Implicit regularization of discrete gradient
dynamics in linear neural networks. In NeurIPS, 2019a.

G. Gidel, H. Berard, P. Vincent, and S. Lacoste-Julien. A variational inequality
perspective on generative adversarial nets. In ICLR, 2019b.

G. Gidel, R. A. Hemmat, M. Pezeshki, R. Lepriol, G. Huang, S. Lacoste-Julien, and
I. Mitliagkas. Negative momentum for improved game dynamics. In AISTATS,
2019c.

I. Gilboa and E. Zemel. Nash and correlated equilibria: Some complexity consid-
erations. Games and Economic Behavior, 1(1):80-93, 1989.

. L. Glicksberg. A further generalization of the kakutani fixed point theorem, with
application to nash equilibrium points. Proceedings of the American Mathemat-
ical Society, 3(1):170-174, 1952.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. In AISTATS, 2010.

I. Goodfellow. Nips 2016 tutorial: Generative adversarial networks.
arXiv:1701.00160, 2016.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In NeurIPS, 2014.

101

I. J. Goodfellow, O. Vinyals, and A. M. Saxe. Qualitatively characterizing neural
network optimization problems. In ICLR, 2015.

S. Gould, B. Fernando, A. Cherian, P. Anderson, R. S. Cruz, and E. Guo. On
differentiating parameterized argmin and argmax problems with application to
bi-level optimization. arXiv preprint arXiv:1607.05447, 2016.

P. Grnarova, K. Y. Levy, A. Lucchi, T. Hofmann, and A. Krause. An online
learning approach to generative adversarial networks. In ICLR, 2018.

[. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved
training of wasserstein GANs. In NeurIPS, 2017.

J. Y. Halpern and R. Pass. Algorithmic rationality: Game theory with costly
computation. Journal of Economic Theory, 156:246-268, 2015.

P. T. Harker and J.-S. Pang. Finite-dimensional variational inequality and nonlin-
ear complementarity problems: a survey of theory, algorithms and applications.
Mathematical programming, 1990.

S. Hart. Discrete colonel Blotto and general lotto games. International Journal of
Game Theory, 2008.

E. Hazan, K. Singh, and C. Zhang. Efficient regret minimization in non-convex
games. In ICML, 2017.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs
trained by a two time-scale update rule converge to a local Nash equilibrium. In
NeurIPS, 2017.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, et al. Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. IEEFE
Signal processing magazine, 29(6):82-97, 2012.

J.-B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization algo-
rithms. 1993.

K. Hornik, M. Stinchcombe, H. White, et al. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359-366, 1989.

Y .-P. Hsieh, C. Liu, and V. Cevher. Finding mixed nash equilibria of generative
adversarial networks. In ICML, 2019.

Y.-P. Hsieh, P. Mertikopoulos, and V. Cevher. The limits of min-max opti-
mization algorithms: convergence to spurious non-critical sets. arXiv preprint
arXiv:2006.09065, 2020.

102

G. Huang, H. Berard, A. Touati, G. Gidel, P. Vincent, and S. Lacoste-Julien.
Parametric adversarial divergences are good task losses for generative modeling.
arXiv preprint arXiw:1708.02511, 2017.

A. Tbrahim, W. Azizian, G. Gidel, and 1. Mitliagkas. Linear lower bounds and
conditioning of differentiable games. In ICML, 2020.

A. Tusem, A. Jofré, R. L. Oliveira, and P. Thompson. Extragradient method with
variance reduction for stochastic variational inequalities. SIAM Journal on Op-
timization, 2017.

C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan. How to escape saddle
points efficiently. In ICML, 2017.

C. Jin, P. Netrapalli, and M. I. Jordan. What is local optimality in nonconvex-
nonconcave minimax optimization? arXiv preprint arXiv:1902.00618, 2019.

A. Juditsky, A. Nemirovski, and C. Tauvel. Solving variational inequalities with
stochastic mirror-prox algorithm. Stochastic Systems, 2011.

E. Kalai. Bounded rationality and strategic complexity in repeated games. In
Game theory and applications, pages 131-157. Elsevier, 1990.

H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-tojasiewicz condition. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages
795-811. Springer, 2016.

T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of GANs for
improved quality, stability, and variation. In ICLR, 2018.

G. Kasparov. Chess, a drosophila of reasoning. Sci, 362(6419):1087-1087, 2018.

K. Kawaguchi. Deep learning without poor local minima. In NeurlPS, pages 586—
594, 2016.

G. Kerg, K. Goyette, M. P. Touzel, G. Gidel, E. Vorontsov, Y. Bengio, and G. La-
joie. Non-normal recurrent neural network (nnrnn): learning long time depen-
dencies while improving expressivity with transient dynamics. In NeurIPS, 2019.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

G. Korpelevich. The extragradient method for finding saddle points and other
problems. Matecon, 1976.

103

S. Kraus and D. Lehmann. Diplomat, an agent in a multi agent environment: An
overview. In Seventh Annual International Phoenix Conference on Computers
an Communications. 1988 Conference Proceedings, pages 434-438. IEEE, 1988.

S. Kraus, D. Lehmann, and E. Ephrati. An automated diplomacy player. Heuristic
Programming in Artificial Intelligence: The 1st Computer Olympia, pages 134—
153, 1989.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In NeurlPS, 2012.

T. Larsson and M. Patriksson. A class of gap functions for variational inequalities.
Math. Program., 1994.

N. Lay and A. Barbu. Supervised aggregation of classifiers using artificial prediction
markets. In ICML, 2010.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database. 2010.

C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,
A. Tejani, J. Totz, Z. Wang, et al. Photo-realistic single image super-resolution
using a generative adversarial network. In CVPR, 2017.

J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht. Gradient descent only
converges to minimizers. In COLT, pages 1246-1257, 2016.

L. Lessard, B. Recht, and A. Packard. Analysis and design of optimization algo-
rithms via integral quadratic constraints. SIAM Journal on Optimization, 2016.

A. Letcher. On the impossibility of global convergence in multi-loss optimization.
arXiv preprint arXiw:2005.12649, 2020.

H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape
of neural nets. In NeurIPS, 2018.

Y. Li, A. Schwing, K.-C. Wang, and R. Zemel. Dualing GANs. In NeurlPS, 2017.

T. Liang and J. Stokes. Interaction matters: A note on non-asymptotic local
convergence of generative adversarial networks. In AISTATS, 2019.

M. W. Libbrecht and W. S. Noble. Machine learning applications in genetics and
genomics. Nature Reviews Genetics, 16(6):321-332, 2015.

104

R. J. Lipton and N. E. Young. Simple strategies for large zero-sum games with
applications to complexity theory. In Proceedings of the twenty-sizth annual
ACM symposium on Theory of computing, pages 734-740, 1994.

A. Lomepal. Mome, 2019.

Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The expressive power of neural
networks: A view from the width. In NeurIPS, 2017.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep
learning models resistant to adversarial attacks. In ICLR, 2018.

B. Martinet. Breve communication. régularisation d’inéquations variationnelles
par approximations successives. Revue francaise d’informatique et de recherche
opérationnelle. Série rouge, 4(R3):154-158, 1970.

E. Mazumdar, L. J. Ratliff, and S. S. Sastry. On gradient-based learning in con-
tinuous games. SIAM Journal on Mathematics of Data Science, 2(1):103-131,
2020.

E. V. Mazumdar, M. I. Jordan, and S. S. Sastry. On finding local nash equi-
libria (and only local nash equilibria) in zero-sum games. arXiv preprint
arXiv:1901.00838, 2019.

R. D. McKelvey and T. R. Palfrey. Quantal response equilibria for normal form
games. Games and economic behavior, 10(1):6-38, 1995.

P. Mertikopoulos, B. Lecouat, H. Zenati, C.-S. Foo, V. Chandrasekhar, and G. Pil-
iouras. Optimistic mirror descent in saddle-point problems: Going the extra
(gradient) mile. In ICLR, 2019.

L. Mescheder, S. Nowozin, and A. Geiger. The numerics of GANs. In NeurlPS,
2017.

L. Mescheder, A. Geiger, and S. Nowozin. Which Training Methods for GANs do
actually Converge? In ICML, 2018.

L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative adversarial
networks. In ICLR, 2017.

G. J. Minty. On the generalization of a direct method of the calculus of variations.
Bulletin of the American Mathematical Society, 73(3):315-321, 1967.

M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint
arXiw:1411.1784, 2014.

105

I. Mitliagkas, C. Zhang, S. Hadjis, and C. Ré. Asynchrony begets momentum, with
an application to deep learning. In 2016 54th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), 2016.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for
generative adversarial networks. In ICLR, 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 2015.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning.
MIT press, 2012.

A. Mokhtari, A. Ozdaglar, and S. Pattathil. A unified analysis of extra-gradient and
optimistic gradient methods for saddle point problems: Proximal point approach.
In AISTATS, 2020.

D. Monderer and L. S. Shapley. Potential games. Games and economic behavior,
1996.

R. D. Monteiro and B. F. Svaiter. Complexity of variants of tseng’s modified fb
splitting and korpelevich’s methods for hemivariational inequalities with appli-
cations to saddle-point and convex optimization problems. SIAM Journal on
Optimization, 21(4):1688-1720, 2011.

M. Miiller. Computer go. Artificial Intelligence, 134(1-2):145-179, 2002.

K. G. Murty and S. N. Kabadi. Some np-complete problems in quadratic and
nonlinear programming. Technical report, 1985.

V. Nagarajan and J. Z. Kolter. Gradient descent GAN optimization is locally
stable. In NeurIPS, 2017.

J. Nash. Non-cooperative games. Annals of mathematics, pages 286295, 1951.

J. F. Nash et al. Equilibrium points in n-person games. Proceedings of the national
academy of sciences, 1950.

A. Nedi¢ and A. Ozdaglar. Subgradient methods for saddle-point problems. J
Optim Theory Appl, 2009.

A. Nemirovski. Prox-method with rate of convergence O(1/t) for variational in-
equalities with lipschitz continuous monotone operators and smooth convex-
concave saddle point problems. SIAM J. Optim., 2004.

106

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approx-
imation approach to stochastic programming. SIAM Journal on optimization,
2009.

Y. Nesterov. A method of solving a convex programming problem with convergence
rate O(1/k%). In Sov. Math. Dokl, volume 27, 1983.

Y. Nesterov. Squared functional systems and optimization problems. In High
performance optimization, pages 405-440. Springer, 2000.

Y. Nesterov. Introductory lectures on convexr optimization: A basic course, vol-
ume 87. Springer Science & Business Media, 2004.

Y. Nesterov. Dual extrapolation and its applications to solving variational inequal-
ities and related problems. Math. Program., 2007.

J. v. Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100
(1):295-320, 1928.

J. v. Neumann. Communication on the Borel notes. FEconometrica: journal of the
Econometric Society, 1953.

J. v. Neumann and O. Morgenstern. Theory of games and economic behavior.
Princeton University Press, 1944.

A. Neyman. Bounded complexity justifies cooperation in the finitely repeated
prisoners’ dilemma. Economics letters, 19(3):227-229, 1985.

H. Nikaido, K. Isoda, et al. Note on non-cooperative convex games. Pacific Journal
of Mathematics, 5(Suppl. 1):807-815, 1955.

N. Nisan et al. Introduction to mechanism design (for computer scientists). Algo-
rithmic game theory, 9:209-242, 2007.

S. Nowozin, B. Cseke, and R. Tomioka. f-GAN: Training generative neural samplers
using variational divergence minimization. In NeurIPS, 2016.

A. Odena, J. Buckman, C. Olsson, T. B. Brown, C. Olah, C. Raffel, and I. Good-
fellow. Is generator conditioning causally related to gan performance? In ICML,
2018.

F. A. Oliehoek, R. Savani, J. Gallego, E. van der Pol, and R. Grof}. Beyond local
nash equilibria for adversarial networks. In Benelur Conference on Artificial
Intelligence, pages 73-89. Springer, 2018.

Y. Ouyang, Y. Chen, G. Lan, and E. Pasiliao Jr. An accelerated linearized alter-
nating direction method of multipliers. SIAM Journal on Imaging Sciences, 8
(1):644-681, 2015.

107

B. Palaniappan and F. Bach. Stochastic variance reduction methods for saddle-
point problems. In NeurlPS, 2016.

C. H. Papadimitriou. The complexity of finding nash equilibria. Algorithmic game
theory, 2:30, 2007.

C. H. Papadimitriou and M. Yannakakis. On complexity as bounded rationality. In
Proceedings of the twenty-sixth annual ACM symposium on Theory of computing,
pages 726-733, 1994.

P. Paquette, Y. Lu, S. S. Bocco, M. Smith, O.-G. Satya, J. K. Kummerfeld,
J. Pineau, S. Singh, and A. C. Courville. No-press diplomacy: Modeling multi-
agent gameplay. In NeurIPS, pages 4474-4485, 2019.

W. Paul. Electromagnetic traps for charged and neutral particles. Reviews of
modern physics, 1990.

B. A. Pearlmutter. Fast exact multiplication by the hessian. Neural computation,
6(1):147-160, 1994.

F. Pedregosa. Hyperparameter optimization with approximate gradient. In /CML,
2016.

F. Pedregosa and G. Gidel. Adaptive three operator splitting. In ICML, 2018.

D. Pfau and O. Vinyals. Connecting generative adversarial networks and actor-
critic methods. arXiv preprint arXiv:1610.01945, 2016.

B. T. Polyak. Gradient methods for minimizing functionals. Zhurnal Vychislitel'noi
Matematiki i Matematicheskoi Fiziki, 3(4):643-653, 1963.

B. T. Polyak. Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics, 1964.

L. D. Popov. A modification of the arrow-hurwicz method for search of saddle
points. Mathematical notes of the Academy of Sciences of the USSR, 1980.

N. Qian. On the momentum term in gradient descent learning algorithms. Neural
networks, 1999.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. In ICLR, 2016.

108

A. Rakhlin and K. Sridharan. Online learning with predictable sequences. In
COLT, 2013.

L. J. Ratliff, S. A. Burden, and S. S. Sastry. On the characterization of local nash
equilibria in continuous games. In IEEE Transactions on Automatic Control,
2016.

A. Razavi, A. van den Oord, and O. Vinyals. Generating diverse high-fidelity
images with vg-vae-2. In NeurIPS, 2019.

S. J. Reddi, S. Kale, and S. Kumar. On the convergence of adam and beyond. In
ICLR, 2019.

H. Robbins and S. Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400-407, 1951.

B. Roberson. The colonel Blotto game. Economic Theory, 2006.
R. T. Rockafellar. Convez analysis. Princeton university press, 1970.

R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM
journal on control and optimization, 14(5):877-898, 1976.

A. Rubinstein and C.-j. Dalgaard. Modeling bounded rationality. MIT press, 1998.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211-252, 2015.

L. Sagun, L. Bottou, and Y. LeCun. Eigenvalues of the hessian in deep learning:
Singularity and beyond. arXiv, 2016.

L. Sagun, U. Evci, V. U. Guney, Y. Dauphin, and L. Bottou. Empirical analysis
of the hessian of over-parametrized neural networks. arXiv, 2017.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen.
Improved techniques for training GANs. In NeurIPS, 2016.

A. L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of research and development, 1959.

J. Schaeffer. The games computers (and people) play. In Advances in computers,
volume 52, pages 189-266. Elsevier, 2000.

A. Shaban, C.-A. Cheng, N. Hatch, and B. Boots. Truncated back-propagation for
bilevel optimization. In AISTATS, 2019.

109

S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From the-
ory to algorithms. Cambridge university press, 2014.

M. Sibony. Méthodes itératives pour les équations et inéquations aux dérivées
partielles non linéaires de type monotone. Calcolo, 7(1-2):65-183, 1970.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):
484-489, 2016.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-
bert, L. Baker, M. Lai, A. Bolton, et al. Mastering the game of go without human
knowledge. nature, 2017.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, et al. A general reinforcement learning algo-
rithm that masters chess, shogi, and go through self-play. Science, 362(6419):
1140-1144, 2018.

H. Simon and W. Chase. Skill in chess. In Computer chess compendium, pages
175-188. Springer, 1988.

H. A. Simon. The sciences of the artificial. MIT press, 1969.

M. Sion et al. On general minimax theorems. Pacific Journal of mathematics, 8
(1):171-176, 1958.

H. v. Stackelberg. Marktform und gleichgewicht. J. springer, 1934.

. Sutskever. Training recurrent neural networks. University of Toronto Toronto,
Canada, 2013.

I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initializa-
tion and momentum in deep learning. In ICML, 2013.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. In NeurlPS, 2014.

G. Tesauro. Temporal difference learning and td-gammon. Communications of the
ACM, 1995.

R. Thompson, T. Harmon, and M. Ball. The rotating-saddle trap: A mechanical
analogy to rf-electric-quadrupole ion trapping? Canadian journal of physics,
2002.

110

P. Tseng. On linear convergence of iterative methods for the variational inequality
problem. Journal of Computational and Applied Mathematics, 60(1-2):237-252,
1995.

H. J. Van Den Herik, J. W. Uiterwijk, and J. Van Rijswijck. Games solved: Now
and in the future. Artificial Intelligence, 134(1-2):277-311, 2002.

V. Vapnik. FEstimation of dependences based on empirical data. Springer Science
& Business Media, 2006.

S. Vaswani, A. Mishkin, I. Laradji, M. Schmidt, G. Gidel, and S. Lacoste-Julien.
Painless stochastic gradient: Interpolation, line-search, and convergence rates.
In NeurIPS, 2019.

F. Verhulst. Nonlinear differential equations and dynamical systems. Springer
Science & Business Media, 19809.

W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The
Journal of finance, 16(1):8-37, 1961.

C. Villani. The wasserstein distances. In Optimal Transport, pages 93-111.
Springer, 2009.

O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo,
A. Makhzani, H. Kiittler, J. Agapiou, J. Schrittwieser, et al. Starcraft II: A new
challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung,
D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, pages 1-5, 2019.

Y. Wu, J. Donahue, D. Balduzzi, K. Simonyan, and T. Lillicrap. LOGAN:
Latent optimisation for generative adversarial networks. arXiv preprint
arXiv:1912.00953, 2019.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747,
2017.

A. Yadav, S. Shah, Z. Xu, D. Jacobs, and T. Goldstein. Stabilizing adversarial
nets with prediction methods. In ICLR, 2018.

Y. Yazici, C.-S. Foo, S. Winkler, K.-H. Yap, G. Piliouras, and V. Chandrasekhar.
The unusual effectiveness of averaging in gan training. In ICLR, 2019.

111

F. Yousefian, A. Nedi¢, and U. V. Shanbhag. Optimal robust smoothing extragra-
dient algorithms for stochastic variational inequality problems. In CDC. IEEE,
2014.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep
learning requires rethinking generalization. In ICLR, 2017.

F. Zhang. The Schur complement and its applications. Springer Science & Business
Media, 2006.

G. Zhang, P. Poupart, and Y. Yu. Optimality and stability in non-convex smooth
games. arXiv preprint arXiw:2002.11875, 2020.

J. Zhang and 1. Mitliagkas. Yellowfin and the art of momentum tuning. 2019.

J. Zhang, M. Hong, and S. Zhang. On lower iteration complexity bounds for the
saddle point problems. arXiv preprint arXiv:1912.07481, 2019.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In ICCV, pages 2223-2232, 2017.

M. Zhu and T. Chan. An efficient primal-dual hybrid gradient algorithm for total
variation image restoration. UCLA CAM Report, 34, 2008.

112

Minimax Theorem for
Nonconcave-Nonconvex
Games Played with Neural

Networks

1 Relevance of the Minimax theorem in the
Context of Machine Learning

A notorious ML application which has a minimax formulation is adversarial
training where a classifier is trained to be robust against adversarial attack. From
a game-theoretic perspective, the adversarial attack is picked after the classifier f
is set and thus it corresponds to a best response. From a learning perspective, the
goal is to learn to be robust to adversarial attacks specifically designed against the
current classifier. Such an equilibrium is called a Stackelberg Equilibrium [Conitzer
and Sandholm, 2006].

In games with imperfect information such as Colonel Blotto, Poker, or StarCraft
IT the players must commit to a strategy without the knowledge of the strategy
picked by their opponent. In that case, the agents cannot design attacks specific
to their opponent, because such attacks may be exploitable strategies. It is thus
strictly equivalent to consider that the players simultaneously pick their respective
strategies and then reveal them. Thus, a meaningful notion of playing the game
must have a value and an equilibrium.

In machine learning applications, each player is trained using local informa-
tion (though gradient or RL based methods). Because the behavior of the players
changes slowly, they cannot have access to the best response against their oppo-
nent. In order to illustrate that point, let us consider the example of Generative
Adversarial Networks. The two agents (the generator and the discriminator) are
usually sequentially updated using a gradient method with similar step-sizes. Dur-
ing training, one cannot expect an agent to find a best response in a single (or few)
gradient steps. To sum-up, since local updates are performed one must expect to
reach a point (if it exists) that is locally stable. In this work, we show that there
actually exists a global approximate equilibrium for a large class of parametrized
games.

2 Interpretation of Equilibria in Latent Games

In latent games, players embed in mapping spaces in order to solve the game.
When we consider a standard normal form game ¢ that we try to solve using

113

mappings to approximate mixtures of strategies, we are actually playing a lim-
ited capacity version of the game that heavily depends on the expressivity of the
mappings in the classes F and G.

Such a limitation may be interpreted as limitations on the skills of the players.
It intuitively makes sense that such limitations would change the optimal way to
play the game: the optimal way to play StarCraft II is different for players that
can perform 10 versus 100 actions per second. Thus, if the goal is to train agents
to compete with humans, one needs to set a class G that (roughly) corresponds
to human skills. Setting “fair” constraints on the RL agents trained to play the
game of StarCraft II has been an important issue Vinyals et al. [2019] and can be
understood as setting the right class G in a latent game.

Similarly a player would not play poker the same way if they had no memory
of their opponents’ behavior in previous games.

Similarly, in the context of Generative Adversarial Networks, it has been ar-
gued that setting a restricted function class for the discriminator provides a more
meaningful loss and describes an achievable learning task for the generator Arora
et al. [2017], Huang et al. [2017]. The final task is to generate pictures that are
realistic according to the human metric. Such task is way looser — and thus easier
to achieve — than for instance minimizing the KL divergence or the Wasserstein
distance between the real data distribution and the generated distribution.

To sum-up, the equilibrium of a latent game provides a notion of limited-
capacity-equilibrium that can define a target that correspond to agents with ex-
pressive and realistic behavior. In many tasks, our goal is to train agents that
outperform human using human realistic limitations: it is important to constrain
the agent in order to prevent it to play 10° actions per minute but it is also impor-
tant to constrain its opponent because we would like opponent to try to exploit the
main agent in a semantically meaningful way and not by designing very specific
"adversarial example’ strategies —e.g., very precise positions of units that breaks
the vision system of the main agent — that a human player could not perform.

This idea of modeling the limitations of realistic players play suboptimally is
related to the notion of games with bounded rationality [Simon, 1969, Rubinstein
and Dalgaard, 1998, Papadimitriou and Yannakakis, 1994, Kalai, 1990] or bounded
computation [Halpern and Pass, 2015]. However, bounded rationality models play-
ers that do not optimize their reward function [Rubinstein and Dalgaard, 1998|,
the corresponding literature aims to model a process a choice for players not al-
ways maximizing their reward. Bounded computation refers to studies of games
where players pay for the (time) complexity of the strategy they use. The notion
of limited-capacity in latent games is a limitation on the representative power of
the function (or distribution) spaces. The literature has not thoroughly considered
limitations on representational power — a gap that is critical to address, given that
neural nets are now a major workhorse in AI and ML.

114

3 Proof of results from Section 5

3.1 Proof of Proposition 1

Before proving this proposition let us state Sion’s minimax theorem.

Theorem 1 (Minimax theorem [Sion et al., 1958]). If U and V are conver and
compact sets and if the sublevel sets of ¢(-,v) and —p(u,-) are convex then,

g v e v) = g o) @1

Let us now state our proposition.

Proposition 1. Let ¢ be a game that follows Assumption 1. If Go and Fq are
compact, then there exist a value for the game such that,

V(Q,0):= su inf &(f,p)= inf su o(f,p), 5.5

() fehuul(ofg)péhull(ge)) p€hull(Ge) fehullI()]:Q) Pfp) (5:5)

where hull(Gg) and hull(Fq) are either defined in (5.3) or in (5.4), depending on
the type player.

Proof. For simplicity and conciseness we note, F = Fo and G = Gg. The sets
hull(F) and hull(G) are convex by construction. However, they are not compact in
general. However, since G is assumed to be a compact set we then have that under
mild assumptions (namely, that F and G belong to a completely metrizable locally
convex space) that the closure of hull(G) is compact [Aliprantis and Border, 2006,
Theorem 5.20]. Thus, we can apply Sion’s theorem to get,

i ’; = i D 2
chlosg*}cl(r}}ull(g)) feclosgl(?(ﬁull(]:)) SO(f?p) f€clos{1rrlca(§ull(]:))peclosinml(rﬁull(g)) QO(f,p) (3)
[

Moreover there exists (w;)i>o0, (fi)iz0, A > 0,X50A = 1 and

pi > 0, 20 pi = 1 such that,

V(Q,0)= 95(2 Aifuis sz‘pei) . (3.3)

i>0 i>0

This comes from the fact that any element in closure(hull(F)) can be written as
>0 Ai fuw;:

Lemma 1. Let U be a compact set that belongs to a completely metrizable locally

convez space. Then the closure of the convex hull of U is compact and we have that
closure(hull(U)) = {Xis0 At , Ai >0, Xiso i =1, u; € U},

Proof. Let us consider a sequence (u,) € conv(U)Y, we have u, = Y5 XinWin,
where u;,, € U, Vi,n € N. Since \;,, € [0,1] and u;,, € U that are compact
sets these sequences have a convergent subsequence. By Cantor diagonalization
process, (x,) has a convergent subsequence. n

115

{ Output space: y = f(z) —

O $i,2 3«"i,1 @,2 xé,l 1
Input space: z € [0, 1]

(a) ReLU networks of width p can represent any p-
piecewise linear function. The point-wise average f3 of
two ReLU neural networks f; and f2 is a piecewise lin-
ear function that can be represented by a wider ReLU
neural network.

e
o

Output space: z ~ g(z)

Latent space: z ~ U([0, 1])

(b) Latent mixture of g1 and g2: For k € {1,2,3}
the transformation g; maps the uniform distribution on
[0, 1] into a distribution on the output space: = ~ pg,
iff x = gi(z), z ~ U([0,1]). In that case, pg; and pg,
are respectively the uniform distribution over I; and
I>. The function g3 represents a distribution that puts

half of its mass uniformly on I; and the other half on
Is.

Figure A.1l: Difference between pointwise averaging of function and latent mixture of
mapping.

3.2 Proof of Theorem 2

We will prove a result a bit more general that the result stated in the main
paper,
Theorem 2. Let ¢ a game that satisfies the assumptions of Proposition 1. If ¢ is
bilinear and o is L-Lipschitz then,

4D,

2

4D
and KP < 6—fln(./\/'(Q,i))

K2 < 220N, 7)) (3.4)

€
where N'(H,€') is the number of €-balls necessary to cover the set A and the
quantities D,, and Dy are defined as D, := maxy . ge(w,0) — p(w',6) and
Dg = 1naXy g6/ cp(w, (9) — QO(U), 6'/)

In the literature,the quantity N (H, ¢') is called covering number of the set H.
By definition of compactness, it is finite when H is compact. It is a complexity mea-
sure of the set H that has been extensively studied in the context of generalization
bounds [Mohri et al., 2012, Shalev-Shwartz and Ben-David, 2014].

Proof. This proof is largely inspired from the proof of [Lipton and Young, 1994,
Theorem 2] and [Arora et al., 2017, Theorem B.3]. The difference with [Arora et al.,
2017, Theorem B.3] is that we make appear a notion of condition number and we
provide this proof in a context more general than [Arora et al., 2017, Theorem B.3]
who was focusing on GANS.

116

One way to insure that D, amd Dy have bounded value is by assuming that
© and 2 have a finite diameter, we then have that the values of D, and Dy are
respectively bounded by L diam(0) and L diam(2). Note that is practice one also
may have that the payoff is bounded between —1 (losing) and 1 (winning).

By Proposition 1 we have that there exists f* and p* such

V(Q,0) = @(f*,p*) , (3.5)
where,
= Mefw, and p* =" prpa, (3.6)
k=1 k=1

where wy, 0, € QX O, pp, Ak >0, D02 A\ =D ey pr = L.
Now let us consider the mixture

=03 fw (3.7
where wg, 1 < k < n are defined in (3.6) and are drawn independently from the
multinomial of weights (Ax)g=1...co-

Let assume that © has a finite covering number NV (0, ¢/(2L)) (in the following
we will show that if {2 is compact then, its covering number is finite and we will give
an explicit bound on it when 2 C RP). Let us recall that covering number of © is the
smallest number of € balls needed to cover ©. Let us consider 6;, 1 <i < N(O, 57)
the center of these balls where L is the Lipschitz constant of ¢. Using Hoeffding’s

inequality, for any 6; , 1 <1 < N(©, 57) we have that,

7716

P(&(fr,pe.) — &(f*,po)) < €/2) < P (3.8)
where D,, is a bound on the variations of ¢ defined as

D, = max o(w,0) — p(w',0). (3.9)

Note that because we assumed that ¢ is bilinear, the bound on the variations of ¢
is also valid for the variations of ¢. More precisely, we have

Z)‘ fwmpe Z)\,fw 7]99 Z)\ ww (,0(?1);,9)) (310)

< ZAti = D,. (3.11)

Thus, using standard union bounds,
P(&(frp0) = @(f* p0) < €/2, V1 <i <N(G, 5))
2
<N(G

—TLE

e 2P (3.12)

’2L>

117

Let us now consider

) i 3(F* p) = in @(f* 1
Do €arg min - P(fa:p) = argmin (f7, po) (3.13)

Note that this minimum is achieved with ¢ € G because we assumed that the
function ¢ is bilinear (and thus a minimum with respect to a convex hull is always
achieved at an atom).! Thus there exists 0, € © such that DPn = D4, -

Since ¢ is L-Lipschitz and since we have that (6;) is an -~-covering there exists

2L
a 0; that is 53-close to 6, and thus,

[p(faspo,) — min &(fa,p)] znj% (Wi, 0;) — o(wi, 0,))| < €/2. (3.14)

pEclosure(hull(G))

When we have that @(f*, ps,)—@(f, pe,) < €/2 (which is true with high probability)
we have,

' D) > (fopa,) —€/2 1
pecoon) @(fn:p) = @(fn,po;) — €/ (3.15)
> @(f,po,) — € (3.16)
=V(Q2,0) —¢ (3.17)
Thus for n > *2b In(NV (0, 57)) we have,
IP)(pedosigel(rhlun(g)) p(farp) > V(2,0) — 5) <1 (3.18)

Since this probability is strictly smaller than one, for any ¢ > 0, among all the
possible sampled f there exist at least one such that

min o(fr,p) >V —e. (3.19)

peclosure(hull(G))

Thus,

4D
Q w €
K< 5 In(0,5). (3.20)

A similarly we can prove a bound on KP°.

]

Then, we will use a simple bound for the covering number © C R¢ that can be
found in Shalev-Shwartz and Ben-David [2014],

log N'(0, 57) < dlog(zxLRf) (3.21)
that leads to , /i
4D=d ALRd
K® < "2 log() (3.22)
E €

'Note that we could get rid of the bilinear assumption by replacing the covering number of ©
by the covering number of hull(G). However the asymptotic behavior of the latter (when € — 0)
may be challenging to bound. We thus decided to focus on bilinear examples since the covering
number for finite dimensional compact sets is a well studied quantity.

118

3.3 Proof of Proposition 3

Proposition 3. For all wy, € [-R,R|P, k = 1... K, there exists w € [—R, R]X?
such that %Zszl fuw, = fu-

Proof. We will prove this result for an abitrary convex combination. Let us recall
that a two-layers ReLU network of width W can be written as

w
g(z) =" a;ReLU(c; © + d;) + b; (3.23)

=1

where a;,b; € R%ut_ ¢; € R and d; € R. Then, let us consider K such functions
with p parameters, then any convex combination of these K functions can be

written as,
K Wy

f(@) =323 Ne(aie ReLU(¢) @ + di) + bi) (3.24)

k=1i=1
where A\, > 0,1 <k < Kan(j ZkK:l/\k: 1.
Setting a; j, := A\ga;r and b; 1= A\ib; i, we have that

f(x) =" @, ReLU(c] @ + d;) + by (3.25)
(i,k)

which is a ReLU network with K - p parameters. O

3.4 Proof of Proposition 2

Proposition 2. If d;,, = 1 and if for all 0 € ©, z € [0,1], go(z) € [0,1]% and gy
is constant outside of [0,1], then for any O, , ||0x]| < R, k =1...K, there exists
0 € [-KR, KR)X®+% such that dTV(% Zszlpgk,pg) < 1/R where dry is the total
variation distance.

Proof. We will prove the first part of this theorem for an arbitrary number K
of mappings. Let g be a two-layers ReLU network of width p, the probability
distribution 7, induced by g verifies,

m,(S) = £(g7*(S)), VS measurable in [0, 1]%"* . (3.26)

where ¢ is the Lesbegues measure on [0,1]%. The convex combination 7 of

Tgis- -, Tgy verifies,

w(S) = (Z A,) (5)
= MG (S)

1<k<K

119

Using the properties of the Lesbegues measure we have that VA > 0,0 € R
MU) =\U +b), (3.27)

where AU is the dilation of the set U and U + b its translation by b. thus, we have
that forany by e R, k=1... K,

m(S) = > Lwgi ' (S) + by)

1<h<K
Now notice that,
Mg H(S) + by = {\px + by, 2 €[0,1], gr(z) € S} (3.28)
={z : x € by, \p + bi), gr(x/A + ;) €S} (3.29)
Then, setting by := S5} A\, € [0,1], we get by construction that by = by + \g

and thus that the sets Si := [bg, A\x + bx] are a partition of [0, 1]. Finally, if we note
g the function,

We have by construction (and by the fact that Sy are disjoints)
K
m(S) = 3 Ui (S) + be) = (ngk)(& (3.31)
1<k<K k=1

However, the proof is not over because § is not continuous and thus is not a ReLU
network. We will now construct a ReLU network that approximate the distribution
induced by g. Let us recall that we assumed that gi(z) = ¢x(0), Vo < 0 and
gx(z) = gx(1), Vo > 1. Let us introduce the approximated "step" function hy that
is a ReLLU net with 3 parameters.

. . Oifx <0

x/§ otherwise.
Thus we can introduce the ReLLU net g defined as
f]k(l') = gk(CB/)\k + bk) - gk(())h(;(—z + bk;) — gk(l)h(;(fl? + bk—i—l) (333)

{Oifav<b/1€ or x > by
gk(l’/)\k—l-bk) ifby,+0<ax<bp—0

(3.34)

Finally we have that the sum of g; for £ = 1,... K is a ReLU neural network with
K (p + 6) parameters such that

TV(m 75, 5) = sup|a(S) — 7y, 5, (5
< K6

120

Moreover, since g has p parameters in [— R, R] we have that g, has p+6 parameters
that are in [—R/\g, R/A\g]. Since we assumed that the parameters of the ReLU
network should be bounded by K R we have that we cannot pick the parameters
g1(0)/6 andgy(1)/6 larger than K R.

Thus by setting A\, = 1/K, there exists a ReLLU network with K (p+ 6) param-
eters in [—K R, K R] such that,

TV(m, w5, 5) = sup|a(S) = my, 5,(5)
1

<
R

3.5 Proof of Theorem 1

Theorem 1. Let ¢ be a L-Lipschitz nonconcave-nonconver game with values
bounded by D that follows Assumption 1 for which the payoff @ is bilinear and L Lip-
schiz. The players are assumed to be parametrized by ReL U networks g : R? — Rout
with parameters smaller than R, and satisfies one of the three following cases:

e both players are functions and at least one of the function set is bounded
(for instance by clipping the parameters). For any ¢ > 0 there exists
(w?,0r) € [-R, R]* s.t.,

€7 7€

in (w, 0) + > max p(w,6;). (3.35)
o)<k lwl<R

I S —
where pe > 35 \/ Tog(4L/p/e) *

o The first player is a distribution with d;;, = 1 and the second player is a
function. This is for instance the setting of WGAN (Ezample 2).

. . L .
jin p(we, 0) + e+ - > max p(w,6). (3.36)
lol<r el <R

where p, > —L—— — 6 and R, > R%

2D \/ log(4L+/p/€)

e both players are distributions with d;, = 1. this is for instance the setting of
the Blotto game (Examples 3).

2L
: * - > *
Jnin p(we,0) + e+ — > max (w,0). (3.37)
loI<R |lw]|<Re

where pe > —FL —— — 6 and R, > R%

2D \/ log(4L+/p/€)

121

Proof. Let € > 0 and let us consider ReLU networks with p. parameters in [— R, R,]
(we will set those quantities later). For simplicity here Q = © = [—R,, R.]P. Theo-
rem 2 says that an e-equilibrium can be achieved with a uniform convex combination
of K. networks.

Let us consider the case where the first player is a function and the second
player is a distribution.

For the first player, one can apply Proposition 3 to say that such a convex
combination of K, functions can be expressed with a larger network that has K. - p.
parameters in [—R., R].

For the second player, once can apply Proposition 2 to get that that such
a uniform convex combination of K, functions can be expressed up to precision
1/K R, with a larger network that has K. - p. parameters in [—K R, K R.|.

Thus we get that a sufficient condition for e-approximate equilibrium of the
game @ to be achieved by a ReLLU network with p parameters in [—R, R] is that,

p>(p.+6)K. and R> KR, (3.38)
Let us set,
€ P De
= |=—=,/————<—6 d R.:=R— 3.39
’ &D (AL /5/0) J " y (3:39)

Using the fact that in Theorem 2, K, < %pe log <4LR2*/E) we have that

€ P 4D? ALR./De
< < .
bt 0K < e naL Ry @ bg(;)—p (3.40)

where we used the fact that p. < p and R, < R. Moreover, since p > (p. + 6) K,

we have that,
p

€

KR <

<R (3.41)

Finally, since in Proposition 2 we approximate such uniform convex combination up
to a TV distance 1/R and since we assumed that ¢ was L-Lipschitz (with respect
to the TV distance) we have the additional % term.]

122

A Variational Inequality
Perspective on Generative
Adversarial Networks

1 Definitions

In this section, we recall usual definitions and lemmas from convex analysis.
We start with the definitions and lemmas regarding the projection mapping.

1.1 Projection mapping

Definition 3. The projection Py onto) is defined as,

Po(w') € argmin |jw — '|3. (1.1)
w'eN

When (2 is a convex set, this projection is unique. This is a consequence of the
following lemma that we will use in the following sections: the non-erpansiveness
of the projection onto a convex set.

Lemma 2. Let Q a convex set, the projection mapping Pq : RY — Q is nonexpan-
stve, 1.e.,
|Pa(w) = Pa(@)z < lw —wlls, Voo, €. (1.2)

This is standard convex analysis result which can be found for instance in [Boyd
and Vandenberghe, 2004]. The following lemma is also standard in convex analysis
and its proof uses similar arguments as the proof of Lemma 2.

Lemma 3. Let w € Q and w' := Po(w + u), then for all w' € Q we have,
lo™ — '} < llw — W'l +2u (@7 — W) = [lwF —wlf3. (1.3)
Proof of Lemma 3. We start by simply developing,

lw® =[5 = [(wF —w) + (w - w3
= lw — W+ 2(w" —w) (W - o) + ot w3
= o = W+ 2(w" —w) (W — W) — Jw' - w3
Then since w™ is the projection onto the convex set Q of w + w, we have that
(Wh —(w+u) " (wh —w') <0, Vo' € Q, leading to the result of the Lemma. [

123

1.2 Smoothness and Monotonicity of the operator

Another important property used is the Lipschitzness of an operator.

Definition 4. A mapping F : RP? — RY is said to be L-Lipschitz if,
[1F(w) = F(w)]2 < Lljw — o]z, Vw, o' €. (1.4)

In this paper, we also use the notion of strong monotonicity, which is a gen-
eralization for operators of the notion of strong convexity. Let us first recall the
definition of the latter,

Definition 5. A differentiable function f :Q — R is said to be p-strongly convex
if
F@) 2 f@) + Vi) (@ -w) + Slw o} Ve,w' e (L5)

Definition 6. A function (8,¢) — L(0,y) is said convezr-concave if L(-,) is
convez for all ¢ € ® and L(0,-) is concave for all @ € ©. An L is said to be
p-strongly convea-concave if (0, @) — L(0,) — 4015+ 5|l|3 is convez-concave.

If a function f (resp. L) is strongly convex (resp. strongly convex-concave), its
gradient Vf (resp. [VoL —V,L]") is strongly monotone, i.e.,

Definition 7. For i > 0, an operator F : Q — RY is said to be pu-strongly monotone
if
(Flw) = F(w)) (w - o) > pllw - o'[f3. (1.6)

2 Gradient methods on unconstrained bilinear
games

In this section, we will prove the results provided in §3, namely Proposition 1,
Proposition 2 and Theorem 1. For Proposition 1 and 2, let us recall the context.
We wanted to derive properties of some gradient methods on the following simple
illustrative example

T max 0-¢ (2.1)

2.1 Proof of Proposition 1

Let us first recall the proposition:

124

Proposition 1. The simultaneous iterates diverge geometrically and the alternat-
ing iterates defined in (3.5) are bounded but do not converge to 0 as

Simultaneous: 07, +¢7,; = (1+7°)(0; +¢7), Alternating: 6; + ¢; = O(05 + ¢3)

(2.2)
where u, = O(v;) < 3a, B,tg > 0 such that Yt > to, av, < uy < Poy.
The uniform average (0y,¢) = 1Y '4(0s, ¢5) of the simultaneous updates

(resp. the alternating updates) diverges (resp. converges to 0) as,

_ _ 92 + ¢2 _ _ 92 + ¢2
CoLp2 T2 0T % 2 L2 T2 0T %
Sim.: 0; + ¢y = © (e (1+7n)t>, Alt.: 07 + ¢y = © (vl (2.3)

Proof. Let us start with the simultaneous update rule:

{9t+1 =0, — Ny (2.4)
Pr1 = ¢ + 10 .
Then we have,
071 + 071 = (00— 1de)® + (dr + 16y)° (2.5)
= (L+°)(0F + ¢7) . (2.6)
The update rule (2.4) also gives us,
=6,—0
{77¢t t t+1 (2.7)
nby = 41 — b1 -
Summing (2.7) for 0 <t < T — 1 to get telescoping sums, we get
(7°T%) (67 + 07) = (60 — 07)* + (b0 — ¢1)° (2.8)
= ((L+7")" +1)(65 + 65) — 2000 — 26067
=0 ((1+m)" (05 +¢))) - (2.10)
Let us continue with the alternating update rule
01 = 0, —
{ t+1 t— NP (2.11)
Gr11 = ¢ + N1 = ¢ + 1(0: — 1)
Then we have,
Ht-f—l 1 - 015
=) 2.12
th—i-l] [77 1- 7721 th] ()

L -

no1— 7721 has two complex

By simple linear algebra, for n < 2, the matrix M := [

conjugate eigenvalues which are

n +iv4 —n?

)\izl_n 9

(2.13)

and their squared magnitude is equal to det(M) = 1 —n*> + > = 1. We
can diagonalize M meaning that there exists P an invertible matrix such that
M = P~tdiag(A;, A_)P. Then, we have

et t 90 -1 3: t t 00
=M = P diag(Al_, A\)P 2.14
th] M log(A AP 4, (2.14)
and consequently,
Al 6] ||”
vt =||%|| =t aor]| <irnp@g) e
Dt Po||¢
where || - [|c is the norm in C? and ||P|| := max,cc2 |||I|ZT|‘(I‘ZC is the induced matrix

norm. The same way we have,

2 2

< IP7IPIOF + 67)

C
(2.16)
Hence, if 62 + ¢3 > 0, the sequence (6;, ¢;) is bounded but do not converge to 0.
Moreover the update rule gives us,

t Qt
= |

— Hp-l diag(A\;", A=) P m

QT_1¢:90_9T - bp—0r
{77¢t =0; — 01 T = ' T N r— nT
nby = ér — P11 n T_le _ Op_1— do +nby 0y — ¢r—1 — ¢o + nbo
T =" T nT

~+
o

(2.17)
Consequently, since 07 + ¢? = O(02 + ¢2),

/N2 2
VO + o7 =0 (W)) (2.18)
O

2.2 Implicit and extrapolation method

In this section, we will prove a slightly more precise proposition than Proposi-
tion 2,

Proposition 2. The squared norm of the iterates N} := 0? + ¢?, where the update
rule of 0; and ¢, is defined in (3.11), decrease geometrically for any 0 < n < 1 as,’!
; 2 2 | 4\ T2

T Extrapolation: N7, = (1—n"+7")N;, Vt>0
(2.19)

!Note that the relationship (2.19) holds actually for any 7 for the implicit method, and thus
the decrease is geometric for any non-zero step size.

Implicit: N2, | =

126

Proof. Let us recall the update rule for the implicit method

O 1 =0, — 14720, =0, —
{ t+1 = NP1 N { (772) t+1 t— NP (2.20)
Prv1 = Q1 + 111 (L+ 1) P11 = b + 10y
Then,
(U402 (071 + 071) = (6 — n6n)? + (1 + nbr)? (2.21)
=0 + ¢ ++0°(0F +), (222)
implying that
6)2 _+_¢2
Or 0t = 1o m n;’ (2.23)
which is valid for any 7.
For the extrapolation method, we have the update rule
{et"rl = et - 77(¢t + 779t) (224)
Grr1 = & +n(0r — 1Py)
Implying that,
071 + 0t = (00— (61 +160)° + (60 + (0 — 1)) (2.25)
=07 + ¢ — 200> + &%) + 0° (6 — 16)* + (& +10,)?) (2.26)
= (L—n*+1")(07 + ¢7) (2.27)
[

2.3 Generalization to general unconstrained bilinear objec-
tive

In this section, we will show how to simply extend the study of the algorithm
of interest provided in §3 on the general unconstrained bilinear example,

i 0"Ap—-b'0-c" 2.28

min max ¢ c o (2.28)

where, A € R>? b € R? and ¢ € R?. The only assumption we will make is

that this problem is feasible which is equivalent to say that there exists a solution
(0%, *) to the system

Ap*=0b
2.29
{ATO* =c. (2:29)
In this case, we can re-write (2.28) as
min max (6 —0*)" A(p — ") +c (2.30)

OcRd pERP

127

where ¢ := —0*T Ap* is a constant that does not depend on 8 and .

First, let us show that we can reduce the study of simultaneous, alternating,
extrapolation and implicit updates rules for (2.28) to the study of the respective
unidimensional updates (3.5) and (3.11).

This reduction has already been proposed by Gidel et al. [2019¢]. For com-
pleteness, we reproduce here similar arguments. The following lemma is a bit more
general than the result provided by Gidel et al. [2019¢]. It states that the study of
a wide class of unconstrained first order method on (2.28) can be reduced to the
study of the method on (2.1), with potentially rescaled step-sizes.

Before explicitly stating the lemma, we need to introduce a bit of notation to
encompass easily our several methods in a unified way. First, we let w; := (6, ¢;),
where the index t here is a more general index which can vary more often than
the one in §3. For example, for the extrapolation method, we could consider
W1 = Wy /o and wy = wy, where w' was the sequence defined for the extragradient.
For the alternated updates, we can consider w; = (07, ;) and wy = (07, ¢}) (this
also defines @, = 07), where 8’ and ¢’ were the sequences originally defined for
alternated updates. We are thus ready to state the lemma.

Lemma 4. Let us consider the following very general class of first order methods
on (2.28), i.e.,
0, € 6y + span(Fp(wy), ..., Fp(wy)), VteN,
Yt € o+ span(Fy(wp), ..., Fo(w)), VteN,
where wy := (0y, ;) and Fo(w;) := Ap, — b, Fy(w;) = AT6, — c. Then, we have

(2.31)

0, = UT(ét —0") and o=V (g —¢"), (2.32)

where A = UDV'" (SVD decomposition) and the couples ([0, [Pi)1<i<r follow
the update rule of the same method on a unidimensional problem (2.1). In particu-
lar, for our methods of interest, the couples ([04):, [@li)1<i<r follow the same update

rule with a respective step-size o;n, where o; are the singular values on the diagonal
of D.

Proof. Our general class of first order methods can be written with the following
update rules:

t+1

et—i—l = 00 + Z)\stA((Ps - 90*)
s=0
t+1
Pi+1 = ¥Po + Z ,ustAT(gs - 9*) 5
s=0

where A\, iy € R, 0 <7 <t+ 1. We allow the dependence on ¢ for the algorithm
coefficients A and p (for example, the alternating rule would zero out some of the

128

coefficients depending on whether we are updating 6 or ¢ at the current iteration).
Notice also that if both A1) and ji(441): are non-zero, we have an implicit scheme.
Thus, using the SVD of A = UDV ", we get

t+1
U'(0:1—60)=U"(6—6")+> \eDV' (s — ")
s=0
t+1
Vi1 —¢) =V (po— @)+ > uaD'UT (6, — 0,
s=0
which is equivalent to
~ ot
0t+1 = 00 + Z)\stD(tbs
s=0
1) (2.33)
Gri1=Po+ Y us D'y,
s=0

where D is a rectangular matrix with zeros except on a diagonal block of size r.
Thus, each coordinate of 6,1 and ¢,,; are updated independently, reducing the
initial problem to r unidimensional problems,

3 3 t+1
[0111)i = [O0)i + D Aat0i[@]
s=0
t+1 - =

[@r1]i = [@oli + Y pat0i[0);

s=0

(2.34)

where 01 > ... > 0, > 0 are the positive diagonal coefficients of D.

Finally, for the coordinate ¢ where the diagonal coefficient of D is equal to 0, we
can notice that the sequence ([0,];, [@:];) is constant. Moreover, we have the free-
dom to chose any [6*]; € R and [¢*]; € R as a coordinate of the solution of (2.28).
We thus set them respectively equal to [6g]; and [¢pg];. The update rule (2.34)
corresponds to the update rule of the general first order method considered on this
proof on the unidimensional problem (2.1).

Note that the only additional restriction is that the coefficients (As) and (o)
(that are the same for 1 < ¢ < r) are rescaled by the singular values of A. In
practice, for our methods of interest with a step-size 7, it corresponds to the study
of r unidimensional problem with a respective step-size o;n, 1 < i <. O

From this lemma, an extension of Proposition 1 and 2 directly follows to the
general unconstrained bilinear objective (2.28). We note

N? = dist(0;,0%)* + dist(¢;, *)?, (2.35)

where (©*, ®*) is the set of solutions of (2.28). The following corollary is divided in
two points, the first point is a result from Gidel et al. [2019¢] (note that the result on

129

the average is a straightforward extension of the one provided in Proposition 1 and
was not provided by Gidel et al. [2019¢]), the second result is new. Very similar
asymptotic upper bounds regarding extrapolation and implicit methods can be
derived by Tseng [1995] computing the exact values of the constant 7, and 7 (and
noticing that 73 = 0o) introduced in [Tseng, 1995, Eq. 3 & 4] for the unconstrained
bilinear case. However, since Tseng [1995] works in a very general setting, the
bound are not as tight as ours and his proof technique is a bit more technical. Our
reduction above provides here a simple proof for our simple setting.

Corollary 1. e Gidel et al. [2019¢]: The simultaneous iterates diverge geo-
metrically and the alternating iterates are bounded but do not converge to 0

as,

Simultaneous: N7, ; = (1 + (0min(A)n)*)N7, Alternating: N = O(Ng),
(2.36)

where u; = O(v;) & Ja, B,tg > 0 such that Vt > to, av, < uy < Pvg. The

uniform average (0, ¢¢) == + 3.4_4(0s, ¢s) of the simultaneous updates (resp.

the alternating updates) diverges (resp. converges to 0) as,
2

. 72 Ny 2\t 72 N§
Sim.: Nf <© t—2(1+ (omin(A)N)7)" |, Alt.: Ny =0O = |
e Extrapolation and Implicit method: The iterates respectively generated by
the update rules (3.8) and (3.10) on a bilinear unconstrained problem (2.28)
do converge linearly for any 0 < n < ﬁm) at a rate,?

. . 2 Nt?
Implicit: Ny < 14 (0min(A)n)?’

Extrapolation: N7 ; < (1 — (omin(A)N)* + (Gmin(A)7))NZ, VYVt > 0.
(2.38)

Vvt >0 (2.37)

Particularly, for n = 5 L Ay we get for the extrapolation method,

Extrapolation: N7, < (1—L)'Nj, Vt>0. (2.39)

where K := ?“?Xi((‘:)); is the condition number of AT A.

2.4 Extrapolation from the past for strongly convex objec-
tives

Let us recall what we call projected extrapolation form the past, where we used
the notation w; = w11/ for compactness,

Extrapolation from the past: w; = Polw, — nF'(w;_,)] (2.40)
Perform update step: w1 = Polw; — nF(w;)] and store: F(w;) (2.41)

2 As before, the inequality (2.38) for the implicit scheme is actually valid for any step-size.

130

where Pq|] is the projection onto the constraint set . An operator F': Q — R? is
said to be p-strongly monotone if

(F(w) = F(w)) (w - o) > pllw - o'[l3. (2.42)
If F is strongly monotone, we can prove the following theorem:

Theorem 1. If F' is p-strongly monotone (see Appendiz B §1 for the definition
of strong monotonicity) and L-Lipschitz, then the updates (3.13) and (3.14) with
n= ﬁ provide linearly converging iterates,

t
s — |2 < (1 _ 4’2) lwo — w2, VE>0. (2.43)
Proof. In order to prove this theorem, we will prove a slightly more general result,

* M *
Jeors = w3+ iy = w3 < (1= L) (o= w1+ oy — ol (2:44)

with the convention that w{ = w’; = w’,. It implies that

* * M ¢ *
e = w1 < e = 3+ lwoj = il < (1= 47) o — w7 (2.45)

Let us first proof three technical lemmas.

Lemma 5. If F' is p-strongly monotone, we have
i (= w3 = 2llw) —wil3) < 2P () (w] —w"), Ve eQ'. (246)
Proof. By strong monotonicity and optimality of w*,
2w, — w3 < 2F (") " (w) — w*) + 2pflw; — w3 < 2F(w)) " (w) — w") (247)

and then we use the inequality 2||w] — w*[|3 > ||w; — w*||3 — 2||w] — w;||3 to get the
result claimed. O

Lemma 6. If F' is L-Lipschitz, we have for any w € €1,

2 F(w)) " (w) = w) < [lwe = w3 = llwipr = wll3 = [Jw) — wel3 + 157 L]|wi_y — wil3.

(2.48)

Proof. Applying Lemma 3 for (w,u,w’,w') = (w,—nF(w)),w1,w) and
((.d, u, w+7 wl) - (wta _ntF(w{ffl)? wzlta wt+1>7 we get7

lwirr = w3 < llwy = w3 = 2mF(w;) (Wi — w) = [lwin — will3 (2.49)

and

lwi = w3 < llwr = wigalls = 2mF(wi)" (W) — i) = [lw] —will; . (2.50)

131

Summing (2.49) and (2.50) we get,
lwiir = w3 < llwy = w3 = 20 F(w;) " (Wi — w) (2.51)
=2 F(wi)" (W) = wepr) = lw) = wll; = lw) —wiall; - (252)
= llwe — wl3 — 2 F (W) (w] — w) = [lw] — w3 — llw; — well2
= 2(Fwi_y) = Flw)) " (W) — wipa) - (2.53)
Then, we can use the Young’s inequality 2a"b < ||al|3 + ||b]|3 to get,

lwrir = wll < flwe = w3 = 20 F (wp) " (w) — w) + 07| Flwi_y) = Fwp)llz

+llw — w3 = lw) — will = lwi — weall2 (2.54)

= llwe = wll3 = 20 F(w)) " (W) — w)
+ | F(wi) = Fw)lls = [lw) — will3

< wr — w3 = 20 F(wy) (W) — w) + 0 L[|lw;_; — will3 — [lw; — w3
(2.55)

[l
Lemma 7. For allt > 0, if we set W', = w' | = w| we have
ety — willz < 4llwr — will3 +4niy L¥|wi) — w3 — lwpy —will3. (2.56)
Proof. We start with |la + b||3 < 2]a]|* + 2||b]|*.
lwi) = will3 < 2llwr — will3 + 2flw; — wi 43 (2.57)

Moreover, since the projection is contractive we have that

Jwe = Wiyl < et — maF @) —wis — i Fw)3 - (258)
— 2 IF () — Flw_y)l3 (2.59)
<P L)y — Wil (2.60)

Combining (2.57) and (2.60) we get,

lew—y = wills = 2llwi—y = wll; = llw;—y — will; (2.61)
< Aflwr — will3 + 4llwe — wiy[l; = llwi, — @il (2.62)

< Al — wpll3 + 4y L lwp) — wpollz — [y —will3. (2.63)
O

Proof of Theorem 1. Let w* € Q* be an optimal point of (VIP). Combining
Lemma 5 and Lemma 6 we get,

miit ([lwr = w*[3 = 2|} — will3) < fwr — @[3 = llwrer — w*ll3

+ L wy oy — wills — [lw) — w3

132

leading to,

lwer — w3 < (1= o) o = W™l + 07 L?|lwi_y — willz = (1= 2me0) wp — will3
(2.64)
Now using Lemma 7 we get,

lwirr — w3 < (1= mp) llwp — w*|13 4 57 L? (47 LP||w;_y — W) _o]I3
— flwi_y = wyll3) = (1 = 2mp — 407 L?) |w; — wif3 (2.65)

1

Now with n, = ﬁ < i

we get,

N 1z N L1
s =l < (1=) o = w7l + 15 (G htr = wioall3 = iy — wiI5)

Hence, using the fact that {7 < % we get,

* H *
(2.66)
[

3 More on merit functions

In this section, we will present how to handle an unbounded constraint set €2
with a more refined merit function than (4.2) used in the main paper. Let F' be
the continuous operator and €2 be the constraint set associated with the VIP,

find w* € Q such that F(w")'(w—w*) >0, Ywe Q. (VIP)
When the operator F' is monotone, we have that
Flw) (w—w") < Flw) (w-w"), Yw,w". (3.1)

Hence, in this case (VIP) implies a stronger formulation sometimes called Minty
variational inequality [Crespi et al., 2005]:

find w* € Q such that F(w) (w—w*) >0, YVwecQ. (MVTI)

This formulation is stronger in the sense that if (MVI) holds for some w* € €,
then (VIP) holds too. A merit function useful for our analysis can be derived
from this formulation. Roughly, a merit function is a convergence measure. More
formally, a function g : 2 — R is called a merit function if g is non-negative such
that g(w) = 0 < w € Q* [Larsson and Patriksson, 1994]. A way to derive a merit
function from (MVI) would be to use g(w*) = sup,cq F(w)" (w* — w) which is

133

zero if and only if (MVI) holds for w*. To deal with unbounded constraint sets
(leading to a potentially infinite valued function outside of the optimal set), we use
the restricted merit function [Nesterov, 2007]:

E = Fw) (w — w). 3.2

() = max Fw) (@ -) 5:2)

This function acts as merit function for (VIP) on the interior of the open ball

of radius R around wy, as shown in Lemma 1 of Nesterov [2007]. That is, let
Qp = 0N{w: [[w—wy| < R}. Then for any point @ € Qg, we have:

EI‘I‘R((.:J) =0 we "Nk (33)

The reference point wy is arbitrary, but in practice it is usually the initialization
point of the algorithm. R has to be big enough to ensure that {2z contains a so-
lution. Errg measures how much (MVI) is violated on the restriction . Such
merit function is standard in the variational inequality literature. A similar one is
used in [Nemirovski, 2004, Juditsky et al., 2011]. When F' is derived from the gra-
dients (2.5) of a zero-sum game, we can define a more interpretable merit function.
One has to be careful though when extending properties from the minimization
setting to the saddle point setting (e.g. the merit function used by Yadav et al.
[2018] is vacuous for a bilinear game as explained in App 3.2).

In the appendix, we adopt a set of assumptions a little more general than the
one in the main paper:

Assumption 5. e [is monotone and €2 is convex and closed.

o R is set big enough such that R > ||wy —w*|| and F is a monotone operator.

Contrary to Assumption 4, in Assumption 5 the constraint set in no longer
assumed to be bounded. Assumption 5 is implied by Assumption 4 by setting R
to the diameter of €2, and is thus more general.

3.1 More general merit functions

In this appendix, we will note Errgl) the restricted merit function defined

in (3.2). Let us recall its definition,

ErlY(w) = max F(w) (w —w). (3.4)

When the objective is a saddle point problem i.e.,

F(0,p) =[VeL(0,) _VLP‘C(ea 90)]T (3.5)

134

and L is convez-concave (see Definition 6 in §1), we can use another merit function
than (3.4) on Qg that is more interpretable and more directly related to the cost
function of the minimax formulation:

SP
B (0 pr) == max | L(00) — L0, 1) (3.6)
[1(8,)—(B0,0) ISR

In particular, if the equilibrium (6%, ¢*) € Q* N Qg and we have that L(-, ¢*) and
—L(0*,-) are p-strongly convex (see §1), then the merit function for saddle points
upper bounds the distance for (0, ¢) € Qg to the equilibrium as:

:U’ * *
By (8,) = (116 — 6713+ lle — #"[13). (3.7)

In the appendix, we provide our convergence results with the merit functions (3.4)
and (3.6), depending on the setup:

Errgp) (w) if F'is a SP operator (2.5)

Errg(w) ::{ (3.8)

Errgl) (w) otherwise.

3.2 On the importance of the merit function

In this section, we illustrate the fact that one has to be careful when extending
results and properties from the minimization setting to the minimax setting (and
consequently to the variational inequality setting). Another candidate as a merit
function for saddle point optimization would be to naturally extend the subopti-
mality f(w) — f(w*) used in standard minimization (i.e. find w* the minimizer
of f) to the gap P(0,¢) = L(6,p*) — L(0*,). In a previous analysis of a mod-
ification of the stochastic gradient descent (SGD) method for GANs, Yadav et al.
[2018] gave their convergence rate on P that they called the “primal-dual® gap.
Unfortunately, if we do not assume that the function £ is strongly convex-concave
(a stronger assumption defined in §1 and which fails for bilinear objective e.g.), P
may not be a merit function. It can be 0 for a non optimal point, see for instance
the discussion on the differences between (3.6) and P in [Gidel et al., 2017, Sec-
tion 3]. In particular, for the simple 2D bilinear example £(0, ¢) = 0 - ¢, we have
that * = ¢* = 0 and thus P(6,p) =0 V0, ¢.

3.3 Variational inequalities for non-convex cost functions

When the cost functions defined in (2.3) are non-convex, the operator F' is no
longer monotone. Nevertheless, (VIP) and (MVI) can still be defined, though a
solution to (MVI) is less likely to exist. We note that (VIP) is a local condition for F’
(as only evaluating F' at the points w*). On the other hand, an appealing property
of (MVI) is that it is a global condition. In the context of minimization of a function

135

f for example (where F' = Vf), if w* solves (MVI) then w* is a global minimum
of f (and not just a stationary point for the solution of (MVT); see Proposition 2.2
from Crespi et al. [2005]). A less restrictive way to consider variational inequalities
in the non-monotone setting is to use a local version of (MVI). If the cost functions
are locally convex around the optimal couple (6%, ¢*) and if our iterates eventually
fall and stay into that neighborhood, then we can consider our restricted merit
function Errg(-) with a well suited constant R and apply our convergence results
for monotone operators.

4 Another way of implementing extrapolation
to SGD

We now introduce another way to combine extrapolation and SGD. This exten-
sion is very similar to AvgExtraSGD Alg. 2, the only difference is that it re-uses
the mini-batch sample of the extrapolation step for the update of the current point.
The intuition is that it correlates the estimator of the gradient of the extrapolation
step and the one of the update step leading to a better correction of the oscillations
which are also due to the stochasticity. One emerging issue (for the analysis) of this
method is that since w; depend on &, the quantity F(wyj, &) is a biased estimator
of F(wy).

Algorithm 5 Re-used mini-batches for stochastic extrapolation (ReExtraSGD)

1: Let wy € Q2

2: fort=0...T—1do

3: Sample & ~ P

4wy = Polwy — miF(wy, &)] > Extrapolation step
5wy = Polwy — ntF(wg, ft)] > Update step with the same sample
6: end for

7

: Return wp = Z;‘r’:_ol mwy/ ZtT:_ol U

Theorem 3. Assume that ||w] — wy|| < R, ¥Vt > 0 where (w));>0 are the iterates of
Alg. 5. Under Assumption 2 and 5, for any T > 1, Alg. 5 with constant step-size
n < ﬁ has the following convergence properties:

RQ 2 4L2 4R2 2 1 T-1
E[Errg(wr)] < T + na - (2 +o) where wr = = t:ZO w; .
Particularly, n, = & gives E[Errg(wr)] < %.

136

The assumption that the sequence of the iterates provided by the algorithm is
bounded is strong, but has also been made for instance in [Yadav et al., 2018]. The
proof of this result is provided in §6.

5 Variance comparison between AvgSGD and
SGD with prediction method

To compare the variance term of AvgSGD in (4.3) with the one of the SGD with
prediction method [Yadav et al., 2018], we need to have the same convergence cer-
tificate. Fortunately, their proof can be adapted to our convergence criterion (using
Lemma 8 in §6), revealing an extra ¢2/2 in the variance term from their paper.
The resulting variance can be summarized with our notation as (M?(1+ L) +0?)/2
where the L is the Lipschitz constant of the operator F. Since M > o, their
variance term is then 1 + L time larger than the one provided by the AvgSGD
method.

6 Proof of Theorems

This section is dedicated on the proof of the theorems provided in this paper
in a slightly more general form working with the merit function defined in (3.8).
First we prove an additional lemma necessary to the proof of our theorems.

Lemma 8. Let F' be a monotone operator and let (wy), (w}), (2¢), (Ar), (&) and ((;)
be siz random sequences such that, for all t > 0

2 F(w)) " (w) — w) < Ny — Nyt + 07 (My(wy, &) + Ma(w), ¢)) + 2mA/ (2 — w),

where Ny = N(wi,w,_|,w; o) > 0 and we extend (w;) with w' 4 = W' | = wy.
Let also assume that with Ny < R, E[||A|3] < o2, E[A¢z, Ao, ..., Ar 4] = 0,
E[M;i(ws, &)] < My and E[Ms(wy,)] < My, then,
B R2 M ‘l‘M + 2 T-1
E[Errp(@r)] < o + 217 5 (6.1)

where wp = ZtT:_ol nw;/Sr and St := ZtT:_ol Tt -

137

Proof of Lemma 8. We sum (8) for 0 <t < T — 1 to get,

T-1
2> nF(w) ' (w, —w) <
t=0
T—1
(N = Noyt) + 07 (M (@i, &) + Ma(w;, G)) + 2mA] (2 — w)] -
t=0

(6.2)
We will then upper bound each sum in the right-hand side,
Az —w)=A) (2 —w) + A (up — w)
where w1 := Po(u, — 1:Ay) and wg := wy. Then,
1 — wll < Jlue — wll3 = 20eA/ (we — w) + 07 [A3
leading to
20 (2 — w) < 20 (20— w) + Jlue — w3 — e — w3 + 07 A3 (6.3)

Then noticing that zg := wy, back to (6.2) we get a telescoping sum,

T-1

2 Z meF w) < 2N+ Y [(M (@i, &) + Ma(w;, 1) (6.4)

=0
+ 1 AB) +2mA (2 —w)| . (6.5)
If F is the operator of a convex-concave saddle point (2.5), we get, with
[
w, = (et) LPt)
F(WQ)T(WQ —w) > VeL(0:,) (6:—0) =V o L(6:, @) (1 —)
L0, p) — L(O1, p1) + L(Or, p1) — L(6, 1)
(by convexity and concavity)

= L(6:,) — L(0,p1)

then by convexity of L(-,) and concavity of £(8,-), we have that,

>
>

250 3 P (]) 2 250 3 (L)~ L0.00) (65)
t=0
> 257(L(0:,) — L(8. 1)) (6.7)
Otherwise if the operator F' is just monotone since
Flw)) (w) —w) > F(o') " (w; —w) (6.8)

138

we have that

T-1 T-1
257 3 mF(w)) ' (w) —w) > 257 3 e F (W) (w) — w) (6.9)
t=0 t=0

=257 F (W) (@0, — w) (6.10)

In both cases, we can now maximize the left hand side respect to w (since the RHS
does not depend on w) to get,

T-1
287 Errp(@,) < 2R2+ 3 [nF(Mi(wr, &)+ Ma(w], G)) + 1 Ad3) +2mA] (20— we)]
t=0

(6.11)
Then taking the expectation, since E[A;|z;, u] = E[Ai]zi, Ao, ..., Ay 4] = 0,
E, [|1A:13] < 02, B¢, [Mi(wy, &)] < My and Eg, [My(wy, ()] < M, we get that,

R2 M M. 2 T-1
E[Errp(@r)] < — + 1t M2 F0

~ Sr 257

2 (6.12)

t=0

O
6.1 Proof of Thm. 2

First let us state Theorem 2 in its general form,

Theorem 2. Under Assumption 2, 3 and 5, Alg. 1 with constant step-size 1 has
the following convergence rate for all T > 1,

2 M2+ 2
E[Errg(wr)] < al e

- 1 T-1
S o7 +n 5 where W 1= T g Wy . (6.13)
. . R . — RVM?+52
Particularly, n = Woanae) gives E[Errg(wr)] < TJF
Proof of Theorem 2. Let any w € (2 such that ||wy — w|2 < R,
lwer — w3 = [[Po(we = P (wr, &)) — wll3
< lwy = e F(wi, &) — w3
(projections are non-contractive, Lemma 2)
= [lw = wl3 = 2mF(wi, &) " (we — w) + [F(we €)1
Then we can make appear the quantity F(w;)" (w; — w) on the left-hand side,
20, F(wp) ' (wp — w) < [Jwi = w3 = llwesr — wlf3 + 57| Fwe, &) (6.14)
+ 277t(F(wt) — F(wt, ft))T(wt — (.U) (615)

139

we can sum (6.14) for 0 <¢ < 7T — 1 to get,

T-1
2 nF(w) (W —w) <
t=0

T—

—_

[(lwr = wl* = llwrrr = wl*) + 0| F (@i &3 + 2mA] (@ —w)| (6.16)

t=

where we noted A; := F(w;) — F(wy, &).
By monotonicity, F(w;)" (w; — w) > F(w) " (w; — w) we get,

T—1

257F () (0r —w) < Y |([lw — w|?* = [|wirr — w|?) (6.17)
=0
+ n7 || F(we, &5 + QTZtAtT(Wt —w)|, (6.18)

where St := Zf;ol 1 and wr = é Z;‘,':Ol MWy .
We will then upper bound each sum in the right hand side,

Al (wr —w) = Af (wr —wg) + A (uy — w)
where w1 := Po(u, — mA;) and wg = wp. Then,
[— w3 < [lu — w3 - QUtA:(Ut —w) + A
leading to
2 A (wy — w) <2 A (W — wy) + [y — w3 = [lwgs — w3 + 57 A5 (6.19)

Then noticing that ug := wy, back to (6.17) we get a telescoping sum,

T-1
257 F(w)" (@1 — w) < 2llwo = w|*+ Y 07 (1F(we, &3 + 1A13)
t=0

T-1
+2 Z ntAtT(wt - ut)
t=0

T-1 T-1
<2R+ Y n([|F(wn &5 + [1AR) +2 D7 mA/ (wr — w)
t=0 t=0

Then the right hand side does not depends on w, we can maximize over w to get,

T-1 T-1
25 Errg(wr) < 2R+ 3 17 (|1 F(wr, &I + 1A13) +2 D> mA/ (wi —uy) (6.20)
t=0 t=0

140

Noticing that E[A;|w;, u;] = 0 (the estimates of F' are unbiased), by Assumption 3
E[(||F(wy, &)||3] < M? and by Assumption 2 E[||A4]|3] < 02 we get,

. R M +o>&
EErg(@r)] < — + —o— > 07 (6.21)
Sy 25 =

particularly for n, = n and 7, = \/% we respectively get,

2R 7

E[EI‘I‘R(G)T)] S 777T —+ §(M2 + 0'2) (622)
and 4R M? 2
_ +o

EE <+ 2pIn(T+ 1) —m——— 6.23

[ITR(""’T)]—77\/T—_i_1_1+ 7711(+)\/T——I—l—l ()

]

6.2 Proof of Thm. 3

Theorem 3. Under Assumption 2 and 5, if E¢[F| is L-Lipschitz, then Alg. 2 with
a constant step-size n < ﬁ has the following convergence rate for any T > 1,

RrR* 7 1=
E[Errg(wr)] < T + 57702 where wWp = T ;} w, . (6.24)

Particularly, n = 2% gives E[Errq(wr)] < Y14He.

Proof of Thm. 3. Let any w € Q such that |wy — w|2 < R. Then, the up-
date rules become w1 = Po(wy — niF(w;, () and w; = Po(w; — nF(wy, &)).
We start by applying Lemma 3 for (w,u,w’,w™) = (w;, —nF(w}, (;), w,w;1) and
(w, u, W', w™) = (Wi, —neF (W, &), Wiy, W),

lwirt — w3 < flwr — w3 — 20 F(w}, &) T (wis1 — w) — [lwisr — wilf3

ot — wein |2 < llwe — wigally = 20eF (Wi, &) " (w1 — weir) = lwp — well3

Then, summing them we get

Wil — Wio = ||Wy — Wi|g — 2T 47 Wy, Gt) (W1 — W
| [13— 2m F(w), &) T ()

= 2 F(wy, &) (W) — witr) = wi = Wil = [lwier — Wil (6.25)
leading to

lwerr = wl3 < llwe = w3 = 20 F (W}, &) T (W) — w)

+ 20 (F(wi, G) — Flwr, &) (W — wir) = [lwr = will; — llwe — wi]l3

141

Then with 2a"b < ||al|3 + ||b]|3 we get
lwerr = wl3 < llwe = w3 = 20 F(w}, &) ' (W] — w)
— flwr = will3 + il F(wrs G) = Flwi, &)l
Using the inequality ||a + b+ c||3 < 3(||al|3 + ||b]]3 + ||c||3) we get,
lwisr — w3 < llwn = w3 = 20 F(wp,) ' (w) = w) = o — will3
+ 307 (|1 F(we) — F(wi, &) + [F(wp) = Flwr, 6|3
+[|F(w)) — Fwi)l)3)
Then we can use the L-Lipschitzness of F' to get,
lwerr = wl3 < [lwp — w3 = 2 F(w}, ¢) ' (W) = w) = [lw = wil3
+ 30 (| F (we) = Fwr, &)|I2
+ | F(w;) = Fwp, Gl + L?lw: — wif3)

As we restricted the step-size to n; < ﬁ we get,

20 F (W) (w) — w) < Jlwe — w3 = [lwe — w3

+2m(F(w)) — Flw,, ¢) ' (w, — w)

+ 30} | F(we) — Flwr, &)ll2 + 307 F(w) — F(awr, G)ll2
We get a particular case of (8) so we can use Lemma 8 where N; = |lw; — w3,
My(w, &) = 3||F(w) — Flon &I Ma(wi, G) = 3[[F(w) — F(w,, G,
A; = F(w)) — F(w},(;) and z; = w,. By Assumption 2, M; = My = 30% and by
the fact that
E[F(w;) = F(w}, G) |wt, Do, -, Ara] = BE[F(w)) = F(wt, G) [wil| Ao, -+ Ay

=0

the hypothesis of Lemma 8 hold and we get,

RQ 70_2 T—1
ElErrp(wr)] < — 4+ — 2 6.26
Brea@r)] € G+ 5o 3 i (6.20)

6.3 Proof of Thm. 4

Theorem 4. Under Assumption 2, if E¢[F)| is L-Lipschitz, then AvgPastExtraSGD
(Alg. 3) with a constant step-size n < ﬁ has the following convergence rate for
any T > 1,

R? 13 1

E[Errg(wr)] < T + ?7702 where wrp = 7 t:ZO w; . (6.27)

Particularly, n = 22 gives E[Errp(wr)] < Y252,

142

First let us recall the update rule

{th = Polw, — n F (Wi, &)

6.28
w£+1 = Polwipr — i F(wi, &) - ()

Lemma 9. We have for any w € (),
2F (w}, &) (W) — w) < [Jw = wlff = wern = wlf; = [[w) — wilf3
+ 3L |w) g — will3 + 307 [[|F (@], &-1) — Flew))3
+ || F(w) = F(wf, &)I3] - (6.29)

Proof. Applying Lemma 3 for (w,u,w™ ') = (w;, —nF(w}, &), w1, w) and
(W, u,w™, ') = (Wi, = F (W), 1), Wiy wii), we get,
lwirr = w3 < llwi — w3 = 20 F(wp, &) (Wer1 — w) = |wipr —will3 (6.30)
and
lwp = win |l < llwe = we I3 = 20 F (wi_y, &-1) " (W) = wi1) = [lw, —wilf5 . (6.31)
Summing (6.30) and (6.31) we get,
lwisr — w3 < Jlws — w3 = 2nF (W}, &) " (Wi — w)
= 2 F (W), €-1) ' (W) = wir) = [Jw] — w3 = o) — wenl3
= lwi = wll3 = 20 F(w. &) (Wi — w) = [lw; = will3 = [lw) — w3
=2 (F(wy_y,&1) — Fwy, ft))T(w,i — Wiy1) - (6.32)
Then, we can use the inequality of arithmetic and geometric means
2a"b < |lall3 + [III3 to get,

lwir — wlf < flw — w3 — 20 F (W}, &) T (w) — w)
+ [F(wioy, &1) — Flwr,)3

+lwt — w3 = [lw) — w3 — lw; = wenl3 (6.33)
= [Jw = w3 = 2 F(w}, &) " (w; — w)
| F(wisy, &-1) = Flwp &)l = lw) — wilf3 - (6.34)

Using the inequality ||a + b+ c||3 < 3(||la||? + ||b]|3 + ||c||3) we get,

1F (@, &-1) = Flwr, &Iz < 3(1F (w1, &-1) — Flwiy)ll2
+HIF(wp) = Fw)l3
+[|F(w)) = Flwr, &)]3) (6.35)
< 3(1F (w1, 61) = Flw,)5+ L¥lwiy — wjll3
+1F (w) = Flwp, &)1) (6.36)

143

where we used the L-Lipschitzness of F' for the last inequality.
Combining (6.34) with (6.36) we get,

lwier — wll} < [Jwr — wlf — 20 F(w], &) (w] — w) — [lw] — w3
+ 307 L |y — will3 + 307 || F(w]_y, &-1) — Flw_)13
+ |[F(w)) — Flo}, &)]3] - (6.37)
]

Lemma 10. For allt > 0, if we set W', = w' | = w{, we have

lwi) — will3 < 4w — will5 + 1277?71(\|F(w£71,€t71) — F(w;)3
+ L2||w£_1 - ‘*’2—2”3

+ 1F (@) = Flwi-p&2)[13)
— llwi s = ll5 (6.38)

Proof. We start with |la + b]|3 < 2]a]|* + 2||b]|*.
lwi—y = will3 < 2flwr — will3 + 2llwr — w4 13- (6.39)
Moreover, since the projection is contractive we have that

|w; — ‘-"2-1”% < w1 — 77t—1F<w£—17€t—1> — W1 — Ut—lF(w;s—zaftJ)”g (6.40)

= nt2—1||F(wz,€—lvft—1) - F(‘”Q—Qa@—ﬂ”% (6-41)
<3t (|1 F(w) 1. 6m1) = Flwp)3+ L2lw;_y — w)l13
+ [F(w)_) — Flw, 5. &-2)[3)) - (6.42)

where in the last line we used the same inequality as in (6.36). Combining (6.38)
and (6.42) we get,

oy = w3 = 2llwi_y — w3 = llwj_y — will3 (6.43)
< 4f|wy — will3 + 4llwy — wi |13 — llwf -y — w3 (6.44)
< dllwr — will3 + 1207, ([F (@], &1) = F(w]_)3
+ L wi_y = wi |3 + | F(w]_5) = Flw] s &-2)II3)
— lwj_y — will3 (6.45)

]

144

Proof of Theorem 4. Combining Lemma 10 and Lemma 9 we get,

2 F (W], &) (W] — w) < lwr = w3 = wis — wlf3
+ 3607 L (| F @iy, &1) — Fwl) 3
+ L2||wt71 - ‘-"272”3
+ (| F(w]_s) = F(w}_5,-0)|3)
=307 L2 wi_y — wil3 + (1207 L — 1) [} — w3
+ 302 1P (w1, &1) = F(w;)3
+ |[F(w)) = F(w}, &3] (6.46)

Then for n; < \f we have 36n2n? L* < 3n? L2,

2 F(w) ' (w; = w) < [lwp = w3 = |wer — wlf3
+ 3L2(771:2—1||“’£—1 - w2_2||§ - 77?”‘*’;—1 - ‘-"2”%)
+ 20, (F(wp) = Flwp, &) (w; - w)
+ 3| F (w5, &-2) — Flw))13
+ 2| F(w_y. &1) — Fwi_y)Il3
+ [F(wy) = F(wr, &)|3) - (6.47)

We can then use Lemma 8 where

N, = [lwr — wlf3 + 3L [lwyy — wi_sll3,
My (wy, &) =0
My(wy, &) = 3[|F(wp) — F(w}, &)l + 6] F(wi_1) — F(w,_1, &—1)ll3
+ 3| F(wj_p) — F(w;_s, &—2)II3
Ay = F(w;) — F(wy, &)

z = wj.
By Assumption 2, My = 1202 and by the fact that

E[F(w;) — F(wy, &) |w), Ao, - ., Ay_q] (6.48)
= E[E[F(w}) — F(w;, &) [wil| Ao, .., Ara] =0 (6.49)

the hypothesis of Lemma 8 hold and we get,

BlBin(@r)] < o+ e 57 z (6.50)

145

6.4 Proof of Theorem 3

Theorem 3 has been introduced in §4. This theorem is about Algorithm 5 which
consists in another way to implement extrapolation to SGD. Let us first restate
this theorem,

Theorem 3. Assume that ||w] — wp|| < R, ¥Vt > 0 where (w));>0 are the iterates of
Alg. 5. Under Assumption 2 and 5, for any T > 1, Alg. 5 with constant step-size
n < ﬁ has the following convergence properties:

RQ 2 4L2 4R2 2 1 T-1
E[Errg(wr)] < T +na i (2 +o) where wr = = t:ZO w; .
Particularly, n, = & gives E[Errg(wr)] < %.
Proof of Thm. 3. Let any w € Q such that |wy — w|2 < R.
Then, the wupdate rules become w;; = FPolw — nF(w;,&)) and
w, = Polwy — nF(wi,&)). We start the same way as the proof of Thm. 3
by applying Lemma 3 for (w,u,w w*) = (w;,—nF(w},&),w,wi) and

(wuuawlaw+) = (wta _ntF(wt)gt%wt—i—law{t)u

lwerr — w3 < Jlwr — w3 — 20 F(wy, &) T (wir1 — w) — [|lwir — wi[3

W, — w13 < lwr — wiga]3 = 20 F (i, &) T (w) — wirr) — [Jw; — w3

Then, summing them we get

lwer — wl3 < llwr — w3 = 20 F (W}, &) " (wes1 — w)

—2nF(wy, &) T (w) — wis1) — [Jw — wil|3 = [|wirr — wyl3 (6.51)

leading to

lwrir = wl3 < llwr = w3 = 20 F (W}, &) (W], — w)

+ 20 (F(w), &) = Flwi, &) ' (W) = wen) = llwf = will; = wen — i3
Then with 2a"b < ||al|3 + ||b]|3 we get

e = wlf3 < llwr = w3 = 20 F(w}, &) (w) — w)
| F(w), &) — Flw, &5 = llwr — will3

Using the Lipschitz assumption we get

lwirr = w3 < llwe — w3 = 20 F(wi, &) (Wi — w) + (7 L* = 1)|w; — will3

146

Then we add 27, F(w}) " (w] — w) in both sides to get,

2 F (wp) ' (w) = w) < Jlwp = w3 = wess — w3
= 2m(F(wy, &) — Flwp) (w) = w) + (5 L* = D]lw, — wi]l3 (6.52)

Here, unfortunately we cannot use Lemma 8 because F(wj,&;) is biased. We will
then deal with the quantity A = (F(w}, &) — F(w')) " (w, — w) . We have that,

A= (Fwp, &) — Flw, &) (@ — w)) + (Fwy) = Flw) ' (w — w))
+ (F(wi, &) = Flwy) ' (wr — w)) + (Fwr, &) — Fw) ' (w — wy)
< 2L[|w; — will2flw; — wll2 + [[F(wr, &) = Fw)lllw; — will2
+ (Flwy, &) = F(w)) ' (w — wy)
(Using Cauchy-Schwarz and the L-Lip of F)

Then using 2/|al[5]] < dllal3 + [1b]3, for 6 = 4.

=2 (F(w;, &) — Fwy)) ' (w] - w) < ;sz/e — wl* + 80y L?|w; — w3
+ || F(wr, &) — Fw)ll3
+ gt - il
+ 2y (F(wi, &) = Flw)) ' (w = wy)
leading to,

20 F(wp) (W) — w) < [Jwr — w3 = |lwi — wlf;
+ 20 (F(wr, &) — Fwy)) T (w — wr)
+ (L2 = Pllwr — wil3
+ 4} 2L7Jwi — w3 + [|[F(wr, &) — F(w)ll3)

If one assumes finally that ||w; — woll2 < R (assumption of the theorem) and that
e < 57 we get,

2 F(wp) ' (W) = w) < Jlwy = w3 = [wess — w3
+ 20 (F(wr, &) = Fwr)) ' (w — w)
+ 40 (AL R? + || F(wr, &) — F(wy)]l3)
where we used that [|w; — wlls < |Jw) — woll2 + ||lwo — w|2 < 2R. Once
again this equation is a particular case of Lemma 8 where N; = [jw; — w||3,

Mi(wy, &) = 44L°R? + [|[F(wi, &) — F(w)l3), Ma(wi, G) = 0, 2 = w; and
Ay = F(wy, &) — F(wy). By Assumption 2 E[M;(wy, &)] < 16L2R? + 40 and

147

E[A¢|wy, Ao, .., Ap1] = E[E[A|wy]| Ao, ..., A¢—1] = 0 so we can use Lemma 8
and get,
R?> 0?4+ 16L?R? + 402 12!

E[E or)] < — 2)
[Errp(wr)] < o + 25, t;) n; (6.53)

]

148

7 Additional experimental results

7.1 Toy non-convex GAN (2D and deterministic)

We now consider a task similar to [Mescheder et al., 2018] where the discrimi-
nator is linear D, (w) = ¢’ w, the generator is a Dirac distribution at 0, g9 = dg
and the distribution we try to match is also a Dirac at w*, p = d,+. The minimax
formulation from Goodfellow et al. [2014] gives:

min max — log (1 + e*QDT“’*) — log (1 + e‘PTe) (7.1)

Note that as observed by Nagarajan and Kolter [2017], this objective is concave-
concave, making it hard to optimize. We compare the methods on this objective
where we take w* = —2, thus the position of the equilibrium is shifted towards the
position (0,) = (—2,0). The convergence and the gradient vector field are shown
in Figure B.1. We observe that depending on the initialization, some methods can
fail to converge but extrapolation (3.11) seems to perform better than the other
methods.

Gradient Vector Field and Trajectory Training Curves

30
25 | //’_—‘

Simultaneous vy = 0.1
Alternated vy = 0.1
Averaging v = 0.1

Extrapolation from the Past v = 0.7

Extrapolation v = 0.7

Distance to the optimum

5 2 5 i 3 3 0 200 400 600 800 1000
0 Number of Iterations

Figure B.1: Comparison of five algorithms (described in Section 3) on the non-convex
GAN objective (7.1), using the optimal step-size for each method. Left: The gradient vec-
tor field and the dynamics of the different methods. Right:The distance to the optimum
as a function of the number of iterations.

7.2 DCGAN with WGAN-GP objective

In addition to the results presented in section §7.2, we also trained the DCGAN
architecture with the WGAN-GP objective. The results are shown in Table B.2.
The best results are achieved with wuniform averaging of AltAdamb. However, its
iterations require to update the discriminator 5 times for every generator update.

149

Generator

Input: z € R' ~ N(0,1)
Linear 128 — 512 x 4 x 4
Batch Normalization
ReLU
transposed conv. (kernel: 4x4, 512 — 256, stride: 2, pad: 1)
Batch Normalization
ReLLU
transposed conv. (kernel: 4x4, 256 — 128, stride: 2, pad: 1)
Batch Normalization
ReLU
transposed conv. (kernel: 4x4, 128 — 3, stride: 2, pad: 1)
Tanh(-)
Discriminator

[nput: = R3><32><32
conv. (kernel: 4x4, 1 — 64; stride: 2; pad:1)
LeakyReLU (negative slope: 0.2)
conv. (kernel: 4x4, 64 — 128; stride: 2; pad:1)
Batch Normalization
LeakyReLU (negative slope: 0.2)
conv. (kernel: 4x4, 128 — 256; stride: 2; pad:1)
Batch Normalization
LeakyReLU (negative slope: 0.2)
Linear 128 x 4 x4 x4 — 1

Table B.1: DCGAN architecture used for our CIFAR-10 experiments. When using the
gradient penalty (WGAN-GP), we remove the Batch Normalization layers in the discrim-
inator.

With a small drop in best final score, ExtraAdam can train WGAN-GP significantly
faster (see Fig. B.2 right) as the discriminator and generator are updated only twice.

7.3 FID scores for ResNet architecture with WGAN-GP

objective

In addition to the inception scores, we also computed the FID scores [Heusel

et al., 2017] using 50,000 samples for the ResNet architecture with the WGAN-
GP objective; the results are presented in Table B.4. We see that the results and
conclusions are similar to the one obtained from the inception scores, adding an
extrapolation step as well as using Exponential Moving Average (EMA) consistently

150

Model WGAN-GP (DCGAN)

Method no averaging uniform avg
SimAdam 6.00 .07 6.01 £ .08
AltAdamb 6.25 +.05 6.51+ .05
ExtraAdam 6.22 + .04 6.35 + .05

PastExtraAdam 6.27+0.06 6.23 +0.13

Table B.2: Best inception scores (averaged over 5 runs) achieved on CIFAR10 for every
considered Adam variant. We see that the techniques of extrapolation and averaging
consistently enable improvements over the baselines (in italic).

Inception Score
Inception Score

Pt o
w @ s = oo

gl -
o

2.0
0 1 2 3 4 5 0.0 0.2 0.4 0.6 0.8 1.0

Number of generator updates x10° Wall-Clock time in seconds x10t

o

Figure B.2: DCGAN architecture with WGAN-GP trained on CIFAR10: mean and
standard deviation of the inception score computed over 5 runs for each method using
the best performing learning rate plotted over number of generator updates (Left) and
wall-clock time (Right); all experiments were run on a NVIDIA Quadro GP100 GPU. We
see that ExtraAdam converges faster than the Adam baselines.

improves the FID scores. However, contrary to the results from the inception score,
we observe that uniform averaging does not necessarily improve the performance
of the methods. This could be due to the fact that the samples produced using
uniform averaging are more blurry and FID is more sensitive to blurriness; see §7.3
for more details about the effects of uniform averaging.

151

Generator

Input: z € R' ~ N(0,1)
Linear 128 — 128 x 4 x 4
ResBlock 128 — 128
ResBlock 128 — 128
ResBlock 128 — 128
Batch Normalization
ReLLU
transposed conv. (kernel: 3x3, 128 — 3, stride: 1, pad: 1)
Tanh(-)

Discriminator

Input: T C R3><32><32
ResBlock 3 — 128
ResBlock 128 — 128
ResBlock 128 — 128
ResBlock 128 — 128
Linear 128 — 1

Table B.3: ResNet architecture used for our CIFAR-10 experiments. When using the
gradient penalty (WGAN-GP), we remove the Batch Normalization layers in the discrim-
inator.

Model WGAN-GP (ResNet)

Method no averaging uniform avg EMA
SimAdam 23.74 £2.79 26.29+556 21.89+2.51
AltAdam5b 21.65 £0.66 19.91+043 20.69 £ 0.37
ExtraAdam 19.42+£0.15 18.13+0.51 16.78 +0.21

PastExtraAdam 19.954+0.38 2245+0.93 17.8540.40
OptimAdam 18.88 £ 0.55 21.23+1.19 16.9140.32

Table B.4: Best FID scores (averaged over 5 runs) achieved on CIFARI0 for every
considered Adam variant. OptimAdam is the related Optimistic Adam [Daskalakis et al.,
2018] algorithm. We see that the techniques of extrapolation and EMA consistently enable
improvements over the baselines (in italic).

152

Inception Score

1
0.50 0.75 1.00 1.50 1.75 2.7()[] 0.00 025 050 0.75 1.00 1.25 1.50 .75 2.00
x10° x10°

Number of generator updates Number of generator updates

1
0.00 0.25 1.25

(a) learning rate of 1073 (b) learning rate of 10~*

Figure B.3: Inception score on CIFAR10 for WGAN-GP (DCGAN) over number of
generator updates for different learning rates. We can see that AvgExtraAdam is less
sensitive to the choice of learning rate.

7.4 Comparison of the methods with the same learning rate

In this section, we compare how the methods presented in §7 perform with the
same step-size. We follow the same protocol as in the experimental section §7, we
consider the DCGAN architecture with WGAN-GP experiment described in App
§7.2. In Figure B.3 we plot the inception score provided by each training method
as a function of the number of generator updates. Note that these plots advan-
tage AltAdamb a bit because each iteration of this algorithm is a bit more costly
(since it perform 5 discriminator updates for each generator update). Neverthe-
less, the goal of this experiment is not to show that AltAdamb is faster but to
show that ExtraAdam is less sensitive to the choice of learning rate and can be
used with higher learning rates with less degradation. In Figure B.4, we compare
the sample quality on the DCGAN architecture with the WGAN-GP objective
of AltAdam5 and AvgExtraAdam for different step-sizes. We notice that for
AvgExtraAdam, the sample quality does not significantly change whereas the
sample quality of AltAdamb seems to be really sensitive to step-size tunning.
We think that robustness to step-size tuning is a key property for an optimization
algorithm in order to save as much time as possible to tune other hyperparameters
of the learning procedure such as regularization.

153

(c) AltAdam with n =10~

(d) AltAdam with n = 104

Figure B.4: Comparison of the samples quality on the WGAN-GP (DCGAN) experiment
for different methods and learning rate 7.

154

7.5 Comparison of the methods with and without uniform
averaging

In this section, we compare how uniform averaging affect the performance of
the methods presented in §7. We follow the same protocol as in the experimental
section §7, we consider the DCGAN architecture with the WGAN and weight
clipping objective as well as the WGAN-GP objective. In Figure B.5 and B.6, we
plot the inception score provided by each training method as a function of the
number of generator updates with and without uniform averaging. We notice that
uniform averaging seems to improve the inception score, nevertheless it looks like
the sample are a bit more blurry (see Figure B.7). This is confirmed by our result
(Figure B.8) on the Fréchet Inception Distance (FID) which is more sensitive to
blurriness. A similar observation about FID was made in §7.3.

Inception Score

AltAdam5 v =1-107*

.0 .0 T T T T T T
0.00 025 050 075 100 125 150 175 2.00 0.00 025 050 075 1.00 125 150 1.75 2.00
Number of generator updates <1 Number of generator updates

(a) with averaging (b) without averaging

Figure B.5: Inception Score on CIFAR10 for WGAN over number of generator updates
with and without averaging. We can see that averaging improve the inception score.

155

6.5 6.5

6.0 6.0

5.5 5.5
o)
5 5.0 = 5.0
551 sl
T 45 245
8 k)
£.40 £.40
8 8
=35 =35
=3 =3

30 —— AltAdam5 7 = 1- 104 30 AltAdams 7 = 1- 10

: —— SimAdam y = 1107 : SimAdam 5 =110
25 —— PastExtraAdam v = 1-10~* 254/ —— PastExtraAdam v =1-10"*
—— ExtraAdam v =5-10"" —— ExtraAdam v =5-10""
2.0 20+
0 1 2 3 4 5 0 1 2 3 4 5
Number of generator updates <10 Number of generator updates 107
(a) with averaging (b) without averaging

Figure B.6: Inception score on CIFARI0 for WGAN-GP (DCGAN) over number of
generator updates

156

A:um - m *L%"‘Ln
.hs-.. H'ﬁﬁ i fi‘“‘ﬂ@‘_
1 [[l
ﬁ-f 4 ——-t[&‘\ k-t' %/
g-“ -q r,r [e P
= l'"'"",,,w-.-.-m ,

. "
"-'

(¢) AltAdam5 without averaging (d) AltAdamb with averaging

Figure B.7: Comparison of the samples of a WGAN trained with the different methods
with and without averaging. Although averaging improves the inception score, the samples
seem more blurry

157

Convergence on CIFAR10 of WGAN

120 ¥
\ —— ReExtraAdam
110 4 --e-= AvgReExtraAdam
‘\y | ExtraAdam
1001 y‘y \\\ --e—— AvgExtraAdam
4 —— SimAdam
\ --e-- AvgSimAdam
901
AltAdam5
[m)] AvgAltAdam5
801
=
704
601
504
40 T

0.25 050 0.75 100 125 150 175 2.00
Number of Generator iterations 10t

Figure B.8: The Fréchet Inception Distance (FID) from Heusel et al. [2017] computed
using 50,000 samples, on the WGAN experiments. ReExtraAdam refers to Alg. 5 intro-
duced in §4. We can see that averaging performs worse than when comparing with the
Inception Score. We observed that the samples generated by using averaging are a little
more blurry and that the FID is more sensitive to blurriness, thus providing an explanation
for this observation.

158

8 Hyperparameters

(DCGAN) WGAN Hyperparameters

Batch size = 64
Number of generator update = 500,000
Adam [=0.5
Adam 5o =0.9
Weight clipping for the discriminator = 0.01
Learning rate for generator =5 x 107° (for ExtraAdam)
= 2 x 1079 (for the other algorithms)
Learning rate for discriminator =5 x 107 (for ExtraAdam)
= 2 x 10~* (for the other algorithms)
3 for EMA — 0.999

(DCGAN) WGAN-GP Hyperparameters

Batch size =64
Number of generator update = 500, 000
Adam (1 = 0.5
Adam [=0.9
Gradient penalty =10
Learning rate for generator =5 x 107* (for ExtraAdam)
=1 x 10~* (for the other algorithms)
Learning rate for discriminator = 5 x 10=% (for ExtraAdam)
=1 x 10~* (for the other algorithms)
8 for EMA = 0.999

159

(ResNet) WGAN-GP Hyperparameters

Batch size = 64
Number of generator update = 500, 000
Adam (1 = 0.5
Adam ,82 =09
Gradient penalty =10
Learning rate for generator =5 x 1075 (for ExtraAdam)
= 2 x 1075 (for the other algorithms)
Learning rate for discriminator = 5 x 10~% (for ExtraAdam)
=2 x 10~* (for the other algorithms)
g for EMA = 0.9999

160

Negative Momentum for
Improved Game Dynamics

1 Additional Figures

1.1 Maximum magnitude of the eigenvalues gradient de-
scent with negative momentum on a bilinear objective

In Figure C.1 we numerically (using the formula provided in Proposition 1
and 2) computed the maximum magnitude of the eigenvalues gradient descent
with negative momentum on a bilinear objective as a function of the step size 7
and the momentum 3. We can notice that on one hand, for simultaneous gradient
method, no value of n and [provide a maximum magnitude smaller than 1, causing
a divergence of the algorithm. On the other hand, for alternating gradient method
there exists a sweet spot where the maximum magnitude of the eigenvalues of the
operator is smaller than 1 insuring that this method does converge linearly (since
the Jacobian of a bilinear minmax proble is constant).

1.50
ni2-1 I
Y optimum=0.49 1.25

10 1.0
o~ N
o 110 X 1.10
IL 05 I os
-
Q 102 o 1.02
Il Il
0.0 1.00 0.0 1.00
Q. «Q
-
g 0% 3 0.98
E -05 Z -05
= =
g 09 & 0.90
g g
S -10 S -0
= I0.75 = I0.75
"800 o025 o050 o075 100 125 150 175 200 O "800 025 050 075 100 125 150 175 200 O
step-size 7 step-size 7

Figure C.1: Contour plot of the maximum magnitude of the eigenvalues of the polynomial
(x—1)%(x— B)2+n*2? (left, simultaneous) and (z —1)?(z — 8)% +n?2? (right, alternated)
for different values of the step-size 1 and the momentum [. Note that compared to (5.5)
and (5.7) we used 8; = B2 = § and we defined 7 := /172 without loss of generality. On
the left, magnitudes are always larger than 1, and equal to 1 for 8 = —1. On the right,
magnitudes are smaller than 1 for § —1 < 8 <0 and greater than 1 elsewhere.

161

1.2 Mixture of Gaussian

[Fig. C.2] In this set of experiments we evaluate the effect of using negative
momentum for a GAN with saturating loss and alternating steps. The data in
this experiment comes from eight Gaussian distributions which are distributed
uniformly around the unit circle. The goal is to force the generator to generate
2-D samples that are coming from all of the 8 distributions. Although this looks
like a simple task, many GANSs fail to generate diverse samples in this setup. This
experiment shows whether the algorithm prevents mode collapse or not.

Real data

Figure C.2: The effect of negative momentum for a mixture of 8 Gaussian distributions
in a GAN setup. Real data and the results of using SGD with zero momentum on the
Generator and using negative / zero / positive momentum (3) on the Discriminator are
depicted.

We use a fully connected network with 4 hidden ReLU layers where each layer
has 256 hidden units. The latent code of the generator is an 8-dimensional multi-
variate Gaussian. The model is trained for 100,000 iterations with a learning rate
of 0.01 for stochastic gradient descent along with values of zero, —0.5 and 0.5 mo-
mentum. We observe that negative momentum considerably improves the results
compared to positive or zero momentum.

2 Discussion on Momentum and Conditioning

In this section, we analyze the effect of the conditioning of the problem on the
optimal value of momentum. Consider the following formulation as an extension
of the bilinear min-max game discussed in §5, Eq. 2.4 (p = d = n),

162

min max «a|DY20|24+(1—a)0" Ap—a| DY?p|?, ac[0,1], AcR™™ (2.1)
OcR” peR”

where D is a square diagonal positive-definite matrix,

d, 0 0 0
0 dys O . .. 0
D = 0 0 d3,3 e 0 | and VJ S {1,n—1}, dj—l—l,j—i—l > dj,j > 0, (22)
0 0 o . . . 0
0 0 0 . . . du

and its condition number is k(D) = d,,,/d11. Thus, we can re-write the vector
field and the Jacobian as a function of a and D,

|-l —=a)8+2aDyp | 2aD (o — DI,
'U(QO,H,Q,D)— 20&D0—|—(1—CY)Q0) V’U((P,H,OC,D)— (1—0&)In 20D '
(2.3)
The corresponding eigenvalues A of the Jacobian are,
A =2 de + (1 — Oé)Z (24)

For simplicity, in the following we will note VF, 5 for VF, 5(¢, 0, a, D).
Using Thm. (3), the eigenvalues of VF, 3 are,

1 1

1+ A2 1— A3
p4(B,m, A) = (1 =nA+p) and g (B,m,A) = (1=nA+f)——. (2.5)
where A (=1 — ﬁ and A2 is the complex square root of A with positive

real part.

Hence the spectral radius of VF, 5 can be explicitly formulated as a function
of 5 and 7,

P(VEnp) = | gmax max{{u (B, Al [n-(8,m A} (2.6)

In Figure C.3, we numerically computed the optimal S that minimizes
pmaz(VF,) as a function of the step-size n, for n = 2, dy; = 1/k and dyp = 1.
To balance the game between the adversarial part and the cooperative part, we
normalize the matrix D such that the sum of its diagonal elements is n. It can
be seen that there is a competition between the type of the game (adversarial
and cooperative) versus the conditioning of the matrix D. In a more cooperative
regime, increasing k results in more positive values of momentum which is
consistent with the intuition that cooperative games are almost minimization
problems where the optimum value for the momentum is known [Polyak, 1964]

163

Optimal momentum (3°P")

4.0 T+
3.0 4 - 0.5
logigk 2.0 A Lo
1.0 4 F—0.5
0.0 T T T T L -1
0.0 0.2 0.4 0.6 0.8 1.0
fully adversarial « fully cooperative

Figure C.3: Plot of the optimal value of momentum by for different a’s and condition
numbers (logipk). Blue/white/orange regions correspond to negative/zero/positive values
of the optimal momentum, respectively.

to be g = (ﬁ:f Interestingly, even if the condition number of D is large,
when the game is adversarial enough, the optimum value for the momentum is
negative. This experimental setting seems to suggest the existence of a multidi-
mensional condition number taking into account the difficulties introduced by the
ill conditioning of D as well as the adversarial component of the game.

3 Lemmas and Definitions

Recall that the spectral radius p(A) of a matrix A is the maximum magnitude
of its eigenvalues.

p(A) :=max{|A| : A€ Sp(A)}. (3.1)

For a symmetric matrix, this is equal to the spectral norm, which is the operator
norm induced by the vector 2-norm. However, we are dealing with general matrices,
so these two values may be different. The spectral radius is always smaller than
the spectral norm, but it’s not a norm itself, as illustrated by the example below:

A= [8 é] then (Sp(A) — {0} = p(A) = 0)

but (ATA _ Ll) 8] — A = 1)

where we used the fact that the spectral norm is also the square root of the largest
singular value.
In this section we will introduce three lemmas that we will use in the proofs of

§4.

164

The first lemma is about the determinant of a block matrix.

Lemma 11. Let A, B,C, D four matrices such that C' and D commute. Then

A B

‘C D’ =|AD - BC (3.2)
where ’A‘ is the determinant of A.
Proof. See [Zhang, 2006, Section 0.3]. O]

The second lemma is about the iterates of the simultaneous and the alternating
methods introduced in §5 for the bilinear game. It shows that we can pick a
subspace where the iterates will remain.

Lemma 12. Let (0;, ¢;) the updates computed by the simultaneous (resp. alternat-
ing) gradient method with momentum (5.4) (resp. (5.6)). There exists are couple
(0%, *) solution of (5.1) only depending on (6, po) such that,

0, — 0" c span(AA") and @, —p* € span(ATA), Vt>0. (3.3)

Proof of Lemma 12. Let us start with the simultaneous updates (5.4).
Let UT DV = A the SVD of A where U and V are orthogonal matrices and

diag(oy,...,0.) 0,

D —) y Ur rp—r 3.4
[Od—r,r Od—r,p—’r ()
where 7 is the rank of A and oy > -+ > 0, > 0 are the (positive) singular values

of A. The update rules (5.4) implies that,

01 =60, — 1 Ap, + (0, — 0,_1) (3.5)
WYir1 = P+ A0, + Ba(pr — @i-1) '
Ul =U0, — DV, + U6 —6,_4) (3.6)
V1=V, +mD'U6, + B,V (p, — pi1) .
Consequently, for any 8, € R? and ¢, € R? we have that,
P SR
A |lu|. 0 —0 and AlvT]| 0 —0 (37
[UGO]T—H [V‘Po]rﬂ '
U604 | Vol

165

Since the solutions (0%, ¢*) of (5.1) verify the following first order conditions:
AT0*=0 and Ap* =0 (3.8)

One can set (0*,¢*) as in (3.7) to be a couple of solution of (5.1) such that
U(0y — 0*) € span(D) and V(o — ¢*) € span(D). By an immediate recurrence,
using (3.5) we have that for any initialization (68,) there exists a couple (6*, ¢*)
such that that for any ¢t > 0,

U6, — 0*) € span(D) and V(g — %) € span(D") (3.9)
Consequently,

0,—0" c span(A) = span(AAT) and @, —¢* € span(A") = span(ATA), t >0

(3.10)
The proof for the alternated updates (5.6) are the same since we only use the fact
that the iterates stay on the span of interest. O]

Lemma 13. Let M € R™™ and (u;) a sequence such that, u; 1 = Muy, then
we have three cases of interest for the spectral radius p(M):

o If p(M) < 1, and M is diagonalizable, then ||ulla € O((p(M))|uoll2)-

o If p(M) > 1, then there exist uy such that ||u|l2 € Q(p(M))*||uol|2-

o IfIN =1, VA€ Sp(M), and M is diagonalizable then ||u||2 € O(]|woll2)-
Proof. For that section we note || - ||2 the £ norm of C™:

o If p(M) < 1:
We have for t > 0 and any vy € R™ |

laell2 = [IM "o |2 < || M]][|o|2 (3.11)

Then we can diagonalize M = PDP~! where P is invertible and D is a
diagonal matrix. Hence using || - ||2 as the norm of C™ (because P can belong
to C"™*™) we have that,

[w|l2[PD* P [[[uollz < [P[[[P~][D*[[|eto] |2 (3.12)
< PP~ p(M)[|uoll2 (3.13)
= O((p(M))"|uo|2) (3.14)

o If p(M) > 1: We have for ¢t > 0 and any uy € R™ |

el = || M o[(3.15)

166

But we know that there exist a ug € R™ that only depends on M such that
|| M ugl|2 = || M?||||wol|2 (explicitly ug is the eigenvector associated with the
largest eigenvalue of M " M). But, using [Bertsekas, 1999, Proposition A.15]
we know that p(M) < ||M||2. Then we have that,

lwellz = p(M)"||uo] |2 (3.16)

If |\| =1, VA € Sp(M), we can diagonalize M such that M = PDP~!
where P is invertible and D is a diagonal matrix with complex values of
magnitude 1.

We have for ¢t > 0 and any ug € R™,

[wello = (| M ol (3.17)

= || PD' P~ || (3.18)

< [PIID 1P~ {[[lwoll2 = | PIII P~ || |ueoll2 (3.19)

Similarly,

luollz = [[M ™ a2 (3.20)

= [|[PD™ P~ (3.21)

<[P D[P~ [[well2 = I PIIP{|[2]l (3.22)

0

4

Proofs of the Theorems and Propositions

4.1 Proof of Thm. 1

Let us recall the Theorem proposed by Bertsekas [1999, Proposition 4.4.1]. We

also provide a convergence rate that was not previously stated in [Bertsekas, 1999].

Theorem 1. If the spectral radius pmax = p(VE,(w*)) < 1, then, for wy in a
neighborhood of w*, the distance of w; to the stationary point w* converges at a
linear rate of O((pmax + e)t) , Ve > 0.

Proof. For brevity let us write x; := (¢4, 0;) for t > 0 and 2* := (¢*,6*). Let € > 0.

By Proposition A.15 [Bertsekas, 1999] there exists a norm || - || such that its

induced matrix norm has the following property:

IVE)| < p(VEy(a®)) + 5. (4.1)

167

Then by definition of the sequence (z;) and since z* is a fixed point of F;,, we have
that,

[ty — 2™ = ([5y () — Fy(2)] (4.2)
Since F}, is assumed to be continuously differentiable by the mean value theorem
we have that

Ey () = Fy(27) + VE(Z) (2 — 27) (4.3)
for some #; € [z, z*]. Then,
1 — 27l < IVE, Gl — 2°| (4.4

where ||V F,(Z;)|| is the induced matrix norm of || - .
Since the induced norm of a square matrix is continuous on its elements and
since we assumed that VF, was continuous, there exists § > 0 such that,

IVFy(@) = VR <5, Vo o lle—a'] <56. (4.5)
Finally, we get that if ||x; — 2*|] < 4, then,
e — 2| < IV Fy (@)l — 27 (4.6)
< (IVE,@) + IVE(@) = VE@)D) e — 2" (47)
< (p(VEE) + 5+ 5) =o'l (18)

where in the last line we used (4.1) and (4.5). Consequently, if p(VF,(z*) < 1 and
if [|zg — 2*|| < 0, we have that,

|we — 2% < (p(VE,(x%)) + €)' ||wg — 2% 6, Ve >0. (4.9)

4.2 Proof of Thm. 2

We are interested in the optimal step-size for the Simultaneous gradient with no

momentum. Define the step-size associated to one eigenvalue A € C by /() := T/\(I/\Q))

Theorem 2. If the eigenvalues of Vv(w*) all have a positive real-part, then, the
best step-size Npest, which minimizes the spectral radius pmax(n) of VE,(¢*,0%), is
the solution of a (convex) quadratic by parts problem, and satisfies,

max sin(Yr)” < punax (Mest)” < 1= R(L/A1)3, (4.10)
with §:= min [M(ZRL/A) — R(L/A)) (4.11)
and RO/A) < Mot < 2R(1/\) (4.12)
where (A = 1) i1cpem = Sp(Vou(e*,0%)) are sorted such that

0 < R(1/N) < -+ < R(1/N\n). Particularly, when mpese = R(1/N\1) we are
in the case of the top plot of Fig.8.3 and ,Omax(nbest>2 = Sin(wl)Q)

168

Proof. The eigenvalues of VF, are 1 —nA, for A € Sp(Vv(¢p,0)). Our goal is to
solve
Pmax := Min max |1 —n);[? (4.13)

n>0 1<i<m
where {\1, ..., A} is the spectrum of Vo(p*, 0*). we can develop the magnitude
to get,

filn) == 11— nAil? =1- 2nR(\:) + 772’)\i|2 (4.14)
The function 1 — maxi<;<, f;(n) is a convex function quadratic by part. This
function goes to 400 as 7 gets larger, so it reaches its minimum over [0, 00). We

can notice that each function f; reaches its minimum for 7; = TA(:\"‘Q) = R(1/N).
Consequently, if we order the eigenvalues such that,

m<...<Mm (4.15)
we have that
film) <0, 1<i<m and fi(x)>1,Ve>2ny (4.16)
As a result,
M < Moest < 2 (4.17)
Moreover, it is easy to notice that,
11—\ = min |1 — nf? < min max |1 - nAil? (4.18)
Then developing |1 — m;\]?, we get that,
1= mAf? = (1= FARN[=1 — BAE = sin(y)? (4.19)

where \; = r1e™". Moreover, we also have that

—mi)2

Pmax = MR max [T —nAil (4.20)
< max [T —mA (4.21)
=1—m min 2R(\) —m[Al* = 1= R(1/M)d (4.22)
This upper bound is then achieved for n = R(1/A\). Moreover is

Sp(Vou(e*, 0%) C [u, L] we have that, A\; = L and that
§> min 2\ — */L =2 — /L (4.23)

A€lp,L]

2
Consequently we recover the standard upper bound p2,,, < 1-24+4 = (1—u/L)?
provided in the convex case.
O

169

4.3 Proof of Thm. 3

We are now interested in the eigenvalues of the Simultaneous Gradient Method
with Momentum.

Theorem 3. The eigenvalues of VF, g(w*) are

1+ A2
where A :=1— ﬁ, A € Sp(Vo(w*)) and Az is the complex square root of
A with positive real part'. Moreover we have the following Taylor approzimation,
_ nA 2
(B, X) = 1= A = s+ 08, (4.25)
p 2
_ A) =) 4.2
p-(B,m, A) 1_m+0(5) (4.26)

Proof. The Jacobian of F}, g is

ITL On
Its characteristic polynomial can be written:
Xm(X) = det(X I, — M) = ‘(X ! __f)I" ot ;?IIn (4.28)

where Vo(w*) = PTP~! and T is an upper-triangular matrix. Finally by
Lemma 11 we have that,

n

Xu(X) = [X((X =1=B) L, +0T) + 8L = [T (X((X = 1= 8) +n\) + B)

=1

(4.29)
where
)\1 * *
T = 0
0 0 A\
Let X one of the \; we have,
X(X=1-8)+n\)+8=X>~(1-nA+B)X+3 (4.30)

'If A is a negative real number we set Az = i/=A

170

The roots of this polynomial are

1l—n\+6-VA
2

1—nA+ B+ VA
2

where A := (1 —n\ + 3)? — 453 and A € Sp(Vv(w*)). This can be rewritten as,

e () = and j1_(A) = (4.31)

1+ A3

pe(B,m, A) = (1 —=nA + B) 5

(4.32)

where A :=1— 7= n/\+ﬁ o A€ Sp(Vv(p*,0%)) and A2 is the complex square root

of A with real positive part (if A is a real negative number, we set A2 =i/ —A).
Moreover we have the following Taylor approximation,

B
1 —

pe(BnN) =1 =nh = B £ O(8%) and i (B,m,) = 1+ O(8).

(4.33)
0

4.4 Proof of Thm. 4

We are interested in the impact of small Momentum values on the convergence
rate of Simultaneous Gradient Method.

Theorem 4. For any A € Sp(Vu(w*)) s.t. R(A) >0

AISO) A
Pra(0) > 05 e 1) = (T Tamo) -

Particularly, we have p g/, (0) = 2R(A)R(1/A) > 0 and if [Arg(A)| > F then,
(R(L/N),2R(1/N)) C I(N).

Proof. Recall the definitions of py and p_ from Thm. 3, and the definition of the
radius:

pan(B) == max { [y [*, [} (4.34)
When £ is close to 0, p_ is close also to 0 whereas . is close to 1 —npA. In

general 1 — n\ # 0, so around 0, py,(8) = |u+(8)|* = p+(B8)i+(8). The special
case where 1 — n\ = 0 is excluded from this analysis because it means that the

eigenvalue \ is not one constraining the learning rate as seen in Thm. 2. Computing

171

the derivative of p give us

Prn(0) = (4 i1)'(0) = 4 (0) iy (0) + 4 (0) 1 (0) (4.35)

— 2R (e, (), (0)) (4:36)
_ —n\
— 2R ((1 — 1) nﬂ> (4.37)
N A1 —nA)?
= R (H—W) (4.38)
= s [RO) = 202 + 77 APROY) (4:39)

which leads to,
2% | A2 — R\ (L + 7°|A]?)

/ =2 4.4
p)\,n(o) |1 _ 77/\|2 (0)
The sign of p} ,(0) is determined by the sign of
20|A[* = RO (L + 7 [APF) = =RO)AD* + 2[An — R(N) (4.41)

This quadratic function is strictly positive on the open interval (I/\l\/\—@%)l , M‘lﬁf(g\))‘)')

Moreover since R(1/A) = TA((\Q), we have that |1 — AR(1/N)? =1 - R(N)R(1/N)
(see Eq. 4.19) and then,

Prman(0) = 2R(A)R(1/A). (4.42)
Finally writting A = re™¥ we get that,

A =[SV 1 —[sin(@)] 1 — [sin()|
RO~ reos@) T s “43)
and
A[+ISW) 1+ [sin(¥)] 1 + [sin(v)]
BRO) — reos®) T ()P
Consequently, R(1/) R/
1) = (1 T sin(@)] 1— \m(@\) (4.44)
and |arg(\)| > 7 implies that (2R(1/), 2R(1/1)) O

4.5 Proof of Thm. 5

We are now in the special case of a bilinear game. We first consider the simul-
taneous gradient step with momentum The operator F; 3 is defined as:

0, 0, — 771AT80t + 51(60, — 6,_1)
sm | @t | |t +mA O+ Ba(pr — piq)
E5 g | = 0, . (4.45)
Pr-1 P

172

Proposition 1. The eigenvalues of VF;”E1 are the roots of the 4™ order polynomi-
als:
(x — 1)* (@ — B1)(x — B2) + mmeAz®, A € Sp(AT A). (4.46)

Particularly, when p; = Po = 0 and ny = ne = n we have,
Py(z) = 2*(2* =22+ 1+n*)\), A€ Sp(AT A) (4.47)

Proof. F;lgl is a linear operator belonging to R%*? for notational compactness let
us call m := d + p. Let us recall that I,,, and 04, are respectively the identity of
R™%™ and the zero matrix of R4P.

I 0 0;, —-mA 0 Bily 0gqp —pBilg Ogy
VF;}IBH = [Im Om‘| + 772AT Op mn + Op,d 52Ip Op,d _BQI]J
" 0.. 0, 0., 0..
(4.48)
Leading to the compressed form

(1+8)Is —nA —pils 04y

vEm = | nAl (148 04 —B, (4.49)

I, 0..
Then the characteristic polynomial of this matrix is equal to,
(X —1-=061)14 nA Bily 04y

X(X):=| —nAT (X —1=0)I, 0,4 poI, (4.50)

~I, X1,

Then we can use Lemma 11 to compute this determinant,

x(X) = det <X [(X —-1- Bl)Id mA] + [ﬁlId Od,p]> (4.51)

_UQAT (X —1- BZ)Ip Op,d 621-1;
X (X =1=01)+) mXA (4.52)
B —npXAT (X(X = 1= p2) + B2)I, '
_ |<X —B)(X = DL+ mmxr—gmn A A mXA
04,p (X = Bo)(X = 1)1,
(4.53)

Where for the last equality we added to the first block column the second one
multiplied by UQATm. It’s now time to introduce r the rank of A. We
can diagonalize AT A = U "diag(\1, ..., \,0,...,0)U to get the determinant of a

triangular matrix,

X(X) = P(X)P(X) (4.54)

173

Py(X) = (X = Bu)(X = 1) (X = Bo)(X = 1))P~" (4.55)

Px) =11 [X =)X = (X =)X~ D - X . (4.56)

This is the characteristic polynomial we were seeking, taking into account the null
singular values of A.
In particular, when 3; = 55 = 0, we get,
X(X) = XX =)™ [TIX = 1) + mnpde) (4.57)
k=1

O

Theorem 5. For any n1,m2 > 0 and B, = By = (3, the iterates of the simultaneous
methods (5.4) diverge as,

QA1+ 0’07 (A))) if B>0
At S o 1
Q(Ag(1 + Tomuldy) — 15 SB<0.
Proof of Thm. 5. We report the maximum magnitudes of the eigenvalues of the
polynomial from Prop. 1 in Fig. C.1. We observe that they are larger than 1. We

now prove it in several cases. Let us start with the simpler case 5; = 5o = 0. Using
Lemma 12, there exists (6%, ¢*) such that for any ¢t > 0,

0,—0* c span(A) = span(AAT) and @, —¢* € span(A") = span(ATA), t >0
(4.58)
Then, we have,

10:11 — 6> = [|0, — 6" — 2nA(p, — @] (4.59)
= (|0, — 6| — 2n(0, — 6") A(pr — ¢*) + 1*|| Al — ©)|* (4.60)

(4.58)
> 16, — 0% — 21(6, — 0*) A(ps — ") + o (A)llpr — 7|
(4.61)

where in line 1 we used that A¢* = 0 and in line 3 we used that ¢, — ¢* is
orthogonal to the null space of A, so that we lower bound the product by the
smallest non-zero singular value oy, (A). The same way, we get:

lpi — @17 = llp — *[I” + 206, — 0*) A(pr — %) + 27°|| AT (6 — 6%) |
(4.62)

(4.58)
e — @[+2n(0, — 0*)A(pr — ") + 0’0l (A)]60, — 6%
(4.63)

174

Summing (4.61) and (4.63), we get

A1 = (14 0°07,(A)) A, (4.64)
where 02, (A) is the minimal (positive) squared singular value of A.

Now we can try to handle the case where 51 = 6, = 8 # 0. To prove Thm. 5
we will prove the following Proposition

Proposition 2. Let F% the operator defined in (5.4).
o For 3 >0 its radial spectrum is lower bounded by 1 + nyneo?,. (A).

max

o for —1/16 < [< 0 its radial spectrum is lower bounded by
I+ 7717720-1%13,}((14)/17'

Proof of Proposition 2. Let us use Proposition 1 to get that the eigenvalues of
our linear operator are the solutions of

(z —1)*x— B +n*\x?, A€ Sp(ATA). (4.65)

Let us fix A > 0 belonging to Sp(AT A). For simplicity, let us note a® = n?\. We
can then notice that this polynomial can be factorized as

(z = 1)*(z = B)* + (ax)* = ((z — V(2 = B) +iaz) ((x — 1)(x — B) —iax) (4.66)
Then the roots of these 2 quadratic polynomials are

L+ B 4io+ (1+ 8+ ia)? —453)?

2 = 5 (4.67)

- 1+ 0 +io — ((1—;54—@'04)2 — 4B3)1/? (4.68)

- 1+6—m+((1+25—m)2—45)1/2 (4.60)

and 2 — 1+ 8 —ia— ((1—;B—z’a)2_45>1/2 | (4.70)

where 42'/2 are the complex square roots of z with positive imaginary part. Our

goal is going to be to show that z; has a magnitude larger than 1.
We are going to use the fact that

2] + R(=)
2

2| = R(2)

1/2y _
R(=17) 5

and I(21/?) = (4.71)

175

Let us first assume that g < 0. We have that,

— 2 _ ~2)\2 2 2 . 2 9
R(=1/2) \/((1 B)? — a?) +4a2(1+ﬁ) +(1-B)2—a
\/((1 — B)2 +a?)? 4+ 16028 + (1 — §)2 — a2
- 2
- (1—6)2+a2+16%+(1_5)2_a2
B 2
o
= (1—6)2+8m
>1-8+8 o’

(1=p)(?+(1-5)?)

(4.72)

(4.73)

(4.74)

(4.75)

(4.76)

where for the two inequalities we used v/1+ 2z > 1+ z, Vo < 0. With the same

ideas we can lower bound the Imaginary part of z!/2,

S(212) = \/((1 — 5)? —a?)? + 40422(1 +B)2—(1—B)2+ a2
\/((1 — B)2 +a2)? 4+ 16028 — (1 — B)2 + a2
- 2
- (1=B)+0a2+ 1655 55 — (1)2 + a2
a 2
_ o’
N a2+8a2+(1—/3)2
of
>Oé+8a2_+_(1_ﬁ)2

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)

Consequently we can use (4.76) and (4.81) to lower bound the magnitude of z;

(defined in Eq. 4.67) as,

217 = R(z1)? + S(z1)?

(4.82)

> (v g ra=am) a0

o’

a?B N
8—
; tas+ 2+ (=37

o’ + (1-p)
=1+a®+16a%3

>1+38

176

(4.84)

(4.85)

For —1/16 < 8 < 0 we have that o? + 16%153)2 > Cf—; Hence,

2

|zl|221+(f—7, V-1/16< 8 <0 (4.86)

Let us now consider the case f > 0. By wusing the fact that
Va+b>/a,Va,b> 0 we have that,

_ 3)2 212 2 B2 a2
%(z”?):W((l B 1 a?) +;6ozﬁ+(1 Rt o sy
and the same way,
_ 32 _ 42)2 2 2 (1 _ RB)2 2
S(ZI/Q)ZWu DRy U TSR
I then quickly leads to
|21 > 14 2. (4.89)
n

To conclude this proof we just need to combine Proposition 2 with Lemma 13
saying that if the spectral radius is strictly larger than 1 then the iterates diverge.
O

4.6 Proof of Thm. 6

Proposition 2. The eigenvalues ofVFri% are the roots of the 4™ order polynomials:
(. — 1)@ — B1)(x — Bo) + mmAa®, A € Sp(AT A) (4.90)

Particularly for 81 = By = 0 and mne = n* we get
Py(z) =2*((x —1)* + n°X2*, A€ Sp(ATA) (4.91)

Giving the following set of eigenvalues,

o\ 4+ 202 — 4N
{o}u {1 + 7 n ;7 AT e Sp(ATA)} (4.92)
Particularly for p; = —% and By = 0 we get
1
r[(x —1)*(x + 5) +n*A\z?], A€ Sp(ATA) (4.93)

177

proof of Proposition 2. Let us recall the definition of F;}E, (for compactness we
note 25 = F2°)

771»7727517ﬁ2
0, 0, —mAp, + £1(6: — 60,_1)
alt | Pt | |t A 0 + Ba(pr — pi-1)
Fnﬂ et—l T Ot (494)
Pr-1) Pt

0, — mAp;+ 51(0; — 0:_1)
Y + 772AT(0t —mA@, + £1(0; — 0:1)) + B2(pr — pi—1)

0,
Pt
(4.95)
Hence, the matrix F;;"lg, is,
(14)14 —mA —B11 04,
Fl = (1+B)mAT (14 o)L, —mmATA —pinpAT —B1, (4.96)
I, 0,
Then the characteristic polynomial of F;IE is equal to
(X —=1-51)14 mA Bila Ogy
Y(X) = —(1+ 51)772AT (X =1-=08)I, + mmATA fip AT B, (4.97)
—Id Od7p XId Od,p
0,4 -1, 0, XI,
(X —=1-5+ %)Id mA Bily 0gy
_ —(14 1+ %)UzAT (X —1-05+ %)Ip +mmATA B AT B,
Od Od,p XId Od,p
O4p 0, 0pa X1,
(4.98)

Where in the last line we added the third block column multiplied by % to the first
one.Then we have

(X —1—p+2)I, mA . By Oy
—X772AT (X —=1—-0F+32), 0,4 [oI
) — x4 Yp, P 4.99
X(X) 0, 0u, X1, 04, (4.99)
Od,p Op Op,d XIP

where we added to the second block line the first block line by —n, AT. Then our

178

determinant is triangular by squared blocks of size m x m and we can write,

_ (X —1-p1+ 51, mA
X(X) = det(XT,,) CxmAT (X1t i), (4.100)
_ (XX =1=p51) +)T, XmA
RS Y S C P S SRR 4 (101
_ X=X = /)T XmA
= X2, AT 1/5d x - 1)()1(AL (4.102)
_ (X =)X = pi) 1+ 771772ATAm XmA
0.4 (X =X = Bo)I,
(4.103)
Now we can diagonalize AT A to get,
X(X) = (X = BT (X = Bo)P (X — 1pra (4.104)
T (X = DX = B)(X = B1) + mm X3\ | (4.105)

k=1

where (\1,)1<r<, are the positive eigenvalues of A" A of rank r. Particularly, when
[1 = [o = 0 we have that,

r

X(X) = X™(X =)™ [T (X = 1)% + mmX) (4.106)
k=1

]

We report the maximum magnitudes of the eigenvalues of the polynomial from
Prop. 2 in Fig. C.1. We observe that they are smaller than 1 for a large choice of
step-size and momentum values. This is a satisfying numerical result but we want
analytical convergence rates. This is what we prove in Thm. 6.

Theorem 6. If we set n < m, B = —% and By = 0 then we have

A1 €0 (max{%, - nzarzﬂi“(A)}tAo) (4.107)

16

If we set B, =0 and By = 0, then there exists M > 1 such that for any ny,n2 > 0,
At - @(AO)

Proof. In Lemma 12 we showed of the affine transformations 6, — U (6; — 8*) and
pr — V(o — ¢*) allow us to work on the span of a diagonal matrix D. Then in
that case the eigenspace of D do not interact with each other. In the sense that for

179

each coordinate of [U(0; — 0%)]; and [V (p; — ¢*)]; (1 < i <r) we have from (3.5)
that

{ [U(6i1 —67)]: = [U(6; — 9*)]

V(e — @)l = V(e "

i —moi[V(er — @)i + 51[U (0, — ;1))
@)i + 205U (041 — 07)]i + B2[V (1 — @1-1))i

(4.108)
Consequently we only need to study the 4 dimensional linear operators
(L+B1) —Mo; —p1 0
L+ Bu)meoi (14 B2) —mipo? —Bino; —Pe (4.109)
I, 0,
for oy < --- < g, > 0 the positive singular values of A. These equations are a

particular case of (4.96). Using the proof of Proposition 2 the eigenvalues of these
matrices are the solution of

PX) = (X = DAX = B)(X — f) + mmXPo?, 1<i<r. (4110)
We will now consider two case:

e When, 8; = 35 = 0 we have that,
P(X)=X*((X = 1)* +mmXol), 1<i<r. (4.111)

Then the roots of P;(X) are 0 and two complex conjugate value with a mag-
nitude equal to the constant term of (X — 1) + n7mXo? which is 1. Since
these two eigenvalues are different, the matrix (4.109) is diagonalizable (for
B1 = P2 = 0 we can remove the state augmentation to only work with these
two eigenvector). Consequently our linear operator is diagonalizable and has
all its eigenvalues larger than 1 in magnitude, we can then apply Lemma 13
to conclude that A, = Q(4Ay).

e When,) = —3 and (5, = 0, we have that P;(X) = XQ;(X) where
Qi(X) = (X —1)*(X + 1) +mmX?e], 1<i<r. (4.112)
Then P(~1/2) = +2%% > 0 and B(~1) = 2+ mno?. W nup < % we

have P;(—1) < 0. Consequently, this polynomial has a negative root A_ such
that —1 < A_ < —1 < 0. Moreover the derivative of @Q;(X) is

QiX) = (X = DX +1) + (X = 1)” + 2mmXo] = (3X — 3 —mmpoy) X .
(4.113)

If mme < 32, then Qi(z) > 0,Vz > 0. Since Q;(0) = 1/2 > 0 then

Qi(z) > 0,Vz > 0 and consequently all the real roots of @); are negative.

180

Since by the root coefficient relationship the sum of the roots of (); has to be
equal to % — 7]17)20? > 0, all the roots of @Q); cannot be real (because the real
roots of @); are negative). Hence); has two conjugate roots A. and A and
one real negative root A,.. Let us consider —1 < A\, < —1/2, we have,

AN +H+aX < (AN - 12N+ H +ar =0, (4.114)
where we called a = n;7202. Thus we have,

2—|—\/4—2a</\<\/4—2a—2<2—a/2—a2/16—2 1 «
« " « - B

a 2 16
(4.115)

2 .
where we used 1—%—% > /1 —2x,1>x>0. Moreover the roots coefficient
relationship are

z —a=2R(\) + A, (4.116)
0= |A)* + 20, R(\) (4.117)
_; WL (4.118)

where we called a = 1,07, Plugging (4.116) into (4.117) we get
0=+ (3 —a—)\ (4.119)
Multiplying by A, and plugging (4.118) in we get

1 1
A2 — < 4.120
T 3-2a—2\ — 4-2a (4.120)

where we used that A\, < —%. Consequently, since in the theorem we assumed

that nyn, < m, we have that a < 1, we have
1 1 -1 1
A2 < <> and M= _——< <1-2 (4.121)
4—-2a0 — 2 2N T 1+ 16

where for the last inequality we used v1+x < 1+ 5,Vr € R and
l+2) ' <1—2/2,V0<z<1.

One last thing to say is that the four roots of P; which are the four eigen-
values of the matrix in (4.109) are different and consequently this matrix is
diagonalizable.

We can then apply Lemma 13 in a case of a spectral radius strictly smaller
that 1 to conclude that,

2

Ay < max{1/2,1 =y, 2l A (4.122)

181

where,

A= UO — 092+ |UO, — 63 (4.123)
+ [V (o1 —)5 + |V (e —)5 (4.124)
= (|01 — 0|24 116: — 07|12 + |l — @713+ e — 7|15 (4.125)

because U and V are orthogonal.

This concludes the proof. O

182

A Closer Look at the
Optimization Landscapes of

(zenerative Adversarial
Networks

1 Proof of theorems and propositions

1.1 Proof of Theorem 1

Let us recall the theorem of interest:

Proposition 1. Let us assume that (3.6) is an equality and that Vv(w*) is diago-
nalizable, then there exists a basis P such that the coordinates @(t) := P(w(t)—w™)
have the following behavior,

1. For \; € Sp Vu(w*), \; € R, we observe pure attraction: — @;(t) = e *'[@;(0) .
w;(t) @;(0)

2. For \; € SpVv(w*), R(\;) =0, b tation: | . =Ry |-~ .
or \j € Sp Vou(w*), R(\;) we observe pure rotation [wjﬂ(t)] I\t le+1<0)‘|

. @;(t) CRe(r. @;(0)
3. Otherwise, we observe both: | .’ = e ReWR [N J .
L"Hl(t)] Ot G 4(0)

The matriz R, corresponds to a rotation of angle p. Note that, we re-ordered the
eigenvalues such that the complex conjugate eigenvalues form pairs: if \; ¢ R then
)\j+1 -)‘j'

Proof. The ODE we consider is,

de(t
) — Golw)(wlt) - o) (11)

The solution of this ODE is
w(t) = e OV (1) — w*) + w* (1.2)

Let us now consider A an eigenvalue of Sp(Vwv(w*)) such that Re(A) > 0 and
Im(A\) # 0. Since Vov(w*) is a real matrix and Im(\) # 0 we know that the
complex conjugate A of A belongs to Sp(Vu(w*)). Let ug be a complex eigenvector
of A\, then we have that,

Vo(w ug =Auy = Vo(w)uy = \ug (1.3)

183

and thus uy is a eigenvector of A. Now if we set u; := ug+ uo and ius := ug — uy,
we have that

eftV'v(w*)ul — €7t/\’U/0 + eft’_\fao = Re(eit)»’u,l -+ Im<€7t/\)’UJ2 (14)
e VU@)iy = e P ug — e_t;\ﬂo = i(Re(e_t/\)u2 — Im(e_t)\)ul) (1.5)

Thus if we consider the basis that diagonalizes Vv(w*) and modify the complex
conjugate eigenvalues in the way we described right after 1.3 we get the expected
diagonal form in a real basis. Thus there exists P such that

Vv(w*) = PDP™! (1.6)

where D is the block diagonal matrix with the block described in Theorem 1. [J

1.2 Being a DNE is neither necessary or sufficient for being
a LSSP

Let us first recall Example 4.

Example 4. Let us consider Lg as a hyperbolic paraboloid (a.k.a., saddle point
function) centered in (1,1) where (1,¢) is the principal descent direction and
(—p, 1) is the principal ascent direction, while Lp is a simple bilinear objective.

L6(01,02,0) = (03— b — 1) = 2(0, + b —1)*, Lp(01,05,0) = (50, + 46, — 9)
We want to show that (1,1,0) is a locally stable stationary point.
Proof. The game vector field has the following form,

(2% — 1)0; — 3l + 20 + 1
v(01,02,0) = | (2—9*)0y —3pb —2+ ¢ (1.7)
50, 4+ 460, — 9

Thus, (67,05,¢") := (1,1,0) is a stationary point (i.e., v(07,05,0*) = 0). The
Jacobian of the game vector field is

202—1 —3p 2— 36,

Vo(l,0,0)=| =30 2—¢* 1-30,], (1.8)
5 4 0
and thus,
-1 0 -1
Vo(07,05,0)= 0 2 —=2]. (1.9)
5o 4 0

We can verify that the eigenvalues of this matrix have a positive real part with any
solver (the eigenvalues of a 3 x 3 always have a closed form) . For completeness we

184

provide a proof without using the closed form of the eigenvalues. The eigenvalues
V(07,05 ") are given by the roots of its characteristic polynomial,

X+1 0 1
x(X):=| 0 X-2 2[=X%-X?411X 2. (1.10)
-5 —4 0

This polynomial has a real root in (0,1) because x(0) = =2 <0 < 9 = x(1). Thus
we know that, there exists a € (0, 1) such that,

X3 X2+ 11X —2= (X —a)(X = \)(X =)a). (1.11)
Then we have the equalities,

Oé)\l)\g =2 (112)
a4+ =1. (1.13)

Thus, since 0 < a < 1, we have that,

e If \; and), are real, they have the same sign A\; A2 = 2/a > 0) and thus are
positive (A + g =1 —a > 0).

e If)\, is complex then Ay = \; and thus, 2RA) =AM+ X=1—a>0.
O

Example 4 showed that LSSP did not imply DNE. Let us construct an example
where a game have a DNE which is not locally stable.

Example 5. Consider the non-zero-sum game with the following respective losses
for each player,

L1(0,0) =40+ (3¢ —1)-0 and L5(0,¢) = (40 — 1)¢ + 26° (1.14)

This game has two stationary points for § = 0 and ¢ = £1. The Jacobian of
the dynamics at these two points are

Vv(O,l):G %g) and W(o,—1):<; j?;) (1.15)

Thus,

e The stationary point (0,1) is a DNE but Sp(Vv(0,1)) = {&T‘/ﬁ} contains
an eigenvalue with negative real part and so is not a LSSP.

e The statioanry point (0, —1) is not a DNE but Sp(Vwv(0,1)) = {&%ﬁ} con-
tains only eigenvalue with positive real part and so is a LSSP.

185

2 Computation of the top-k Eigenvalues of the
Jacobian

Neural networks usually have a large number of parameters, this usually makes
the storing of the full Jacobian matrix impossible. However the Jacobian vector
product can be efficiently computed by using the trick from [Pearlmutter, 1994].
Indeed it’s easy to show that Vv(w)u = V(v(w)’u).

To compute the eigenvalues of the Jacobian of the Game, we first compute
the gradient v(w) over a subset of the dataset. We then define a function that
computes the Jacobian vector product using automatic differentiation. We can
then use this function to compute the top-k eigenvalues of the Jacobian using the
sparse.linalg.eigs functions of the Scipy library.

3 Experimental Details

3.1 Mixture of Gaussian Experiment

Dataset. The Mixture of Gaussian dataset is composed of 10,000 points sam-
pled independently from the following distribution pp(z) = 3N (2,0.5)+ 1N (-2,1)
where N (1, 0?) is the probability density function of a 1D-Gaussian distribution
with mean p and variance o2. The latent variables z € R? are sampled from a stan-
dard Normal distribution NV (0, I;). Because we want to use full-batch methods, we
sample 10,000 points that we re-use for each iteration during training.

Neural Networks Architecture. Both the generator and discriminator are
one hidden layer neural networks with 100 hidden units and ReL.U activations.

WGAN Clipping. Because of the clipping of the discriminator parameters
some components of the gradient of the discriminator’s gradient should no be taken
into account. In order to compute the relevant path angle we apply the following
filter to the gradient:

1{(l¢| = c) and (signV,Lp(w) = —signep)} (3.1)

where ¢ is clipped between —c and c. If this condition holds for a coordinate of the
gradient then it mean that after a gradient step followed by a clipping the value of
the coordinate will not change.

3.2 MNIST Experiment

Dataset We use the training part of MNIST dataset LeCun et al. [2010] (50K
examples) for training our models, and scale each image to the range [—1,1].

186

Hyperparameters for WGAN-GP on MoG

Batch size = 10,000 (Full-Batch)
Number of iterations = 30,000

Learning rate for generator =1x1072

Learning rate for discriminator =1x1071!

Gradient Penalty coefficient =1x1073

Hyperparameters for NSGAN on MoG

Batch size = 10,000 (Full-Batch)
Number of iterations = 30,000

Learning rate for generator =1x 1071

Learning rate for discriminator =1x10"!

Architecture We use the DCGAN architecture Radford et al. [2016] for our

generator and discriminator, with both the NSGAN and WGAN-GP objectives.
The only change we make is that we replace the Batch-norm layer in the discrim-
inator with a Spectral-norm layer Miyato et al. [2018], which we find to stabilize
training.

Training Details

Hyperparameters for NSGAN with Adam

Batch size = 100
Number of iterations = 100, 000
Learning rate for generator =2x107*
Learning rate for discriminator =5x107°
b1 =0.5

Hyperparameters for NSGAN with ExtraAdam

Batch size = 100
Number of iterations = 100, 000
Learning rate for generator =2x10™*
Learning rate for discriminator =5x107°
51 =0.9

187

Hyperparameters for WGAN-GP with Adam

Batch size = 100
Number of iterations = 200, 000
Learning rate for generator = 8.6 x 107
Learning rate for discriminator =86x107°
B1 =0.5
Gradient penalty A =10

Critic per Gen. iterations A =5

Hyperparameters for WGAN-GP with ExtraAdam

Batch size = 100
Number of iterations = 200, 000
Learning rate for generator = 8.6 x 107°
Learning rate for discriminator = 8.6 x107°
By =0.9
Gradient penalty A =10

Critic per Gen. iterations A =5

Computing Inception Score on MNIST. We compute the inception score
(IS) for our models using a LeNet classifier pretrained on MNIST. The average IS
score of real MNIST data is 9.9.

3.3 Path-Angle Plot

We use the path-angle plot to illustrate the dynamics close to a LSSP. To
compute this plot, we need to choose an initial point w and an end point w’. We
choose the w to be the parameters at initialization, but w’ can more subtle to
choose. In practice, when we use stochastic gradient methods we typically reach a
neighborhood of a LSSP where the norm of the gradient is small. However, due to
the stochastic noise, we keep moving around the LSSP. In order to be robust to the
choice of the end point w’, we take multiple close-by points during training that
have good performance (e.g., high IS in MNIST). In all of figures, we compute the
path-angle (and path-norm) for all these end points (with the same start point),
and we plot the median path-angle (middle line) and interquartile range (shaded
area).

3.4 Instability of Gradient Descent

For the MoG dataset we tried both the extragradient method [Korpelevich,
1976, Gidel et al., 2019b] and the standard gradient descent. We observed that

188

gradient descent leads to unstable results. In particular the norm of the gradient
has very large variance compared to extragradient this is shown in Fig. D.1.

—— Gradien Descent
—— Extragradient
10—2 4
IS
—
(@]
=2
'E' 10—3 i
v
©
©
—
(O]
10—4 4
0.0 0.5 1.0 15 2.0 25

Nb of iterations led
Figure D.1: The norm of gradient during training for the standard GAN objective. We

observe that while extra-gradient reaches low norm which indicates that it has converged,
the gradient descent on the contrary doesn’t seem to converge.

3.5 Additional Results with Adam

0.005 0.015

0.004
0.010
0.003

0.002 0.005

0.001 0.000

Path Angle
ient Norn
Path Angle

0.000
—0.005

Gradien

—-0.001

-0.002 —0.010

-0.003 -0.015
04 05 06 07 08 09 10 11 04 05 06 07 08 09 1.0 11
Linear Path Linear Path
200
g O end o O end
301 ® init 1501 OQ @ init
+ 204 1001
5 5 &
2 104 T 504 &
> >
© 04 @®O o @© 04 O@»® @
c c
9 -104 2 -504 %
£ —20 E —-1004
(]
-301 © —-1501 (€]
i , , , , -200 ‘o .
0 500 1000 1500 2000 -75 =50 =25 0 25 50 75
Real Part Real Part
(a) NSGAN on MNIST, IS: 8.95 (b) WGAN-GP on MNIST, IS: 9.30

Figure D.2: Path-angle and Eigenvalues computed on MNIST with Adam.

189

O end
1000
0.003 @ init
£
0-002 © 500 ®
o a ®
=z ~ o001 2 >
€ [< g 0{©® ©00 00 o o
< R S < A IS S G Y S A, e —
= f 0.000 % %)
o
-0.001 g —5001 @
—0.002 10001
o
0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 ™ ™ T T T
Linear Path -200 -100 0 100 200
Real Part

Figure D.3: Path-angle and Eigenvalues for NSGAN on CIFAR10 computed on
CIFAR10 with Adam. We can see that the model has eigenvalues with negative
real part, this means that we’ve actually reached an unstable point.

190

	Contents
	Introduction
	Multiplayer games and Machine Learning
	Motivation: defining ’good’ task losses through games
	Foundations of Games for Machine Learning

	Overview of the Thesis Structure
	Defining a target for learning in games
	Building our theoretical understanding of game optimization
	Studying the practical vector field of games

	Excluded research

	Background
	Single Objective Optimization
	Convex Optimization
	Non-Convex Single-objective Optimization

	Multi-objective Optimization
	Minimax Problems and Two-player Games
	Extension to n-player Games
	Existence of Equilibria
	Merit functions for games
	Other multi-objective formulation
	Solving games with optimization

	Variational Inequality Problem
	Merit Functions for variational inequality problems
	Standard algorithms to Solve Variational Inequality Problems

	Neural Networks Training
	Generative Adversarial Networks
	Standard GANs
	Divergence minimization and Wasserstein GANs

	Prologue to First Contribution
	Article Details
	Contributions of the authors

	Minimax Theorems for Nonconcave-Nonconvex Games Played with Neural Networks
	Introduction
	Related work
	Motivation: Two-player Games in Machine Learning
	An assumption for nonconcave-nonconvex games
	Minimax Theorems
	Limited Capacity Equilibrium in the Space of Players
	Approximate minimax equilibrium
	Achieving a Mixture or an Average with a Single Neural Net
	Minimax Theorem for Nonconcave-noncavex Games Played with Neural Networks

	Application: Solving Colonel Blotto Game
	Discussion

	Prologue to the Second Contribution
	Article Details
	Contributions of the authors
	Modifications with respect to the published paper

	A Variational Inequality Perspective on Generative Adversarial Networks
	Introduction
	GAN optimization as a variational inequality problem
	GAN formulations
	Equilibrium
	Variational inequality problem formulation

	Optimization of Variational Inequalities (batch setting)
	Averaging
	Extrapolation
	Extrapolation from the past

	Optimization of VIP with stochastic gradients
	Combining the techniques with established algorithms
	Related Work
	Experiments
	Bilinear saddle point (stochastic)
	WGAN and WGAN-GP on CIFAR10

	Conclusion

	Prologue to the Third Contribution
	Article Details
	Contributions of the authors
	Modifications with respect to the published paper

	Negative Momentum for Improved Game Dynamics
	Introduction
	Background
	Tuning the Step-size
	Negative Momentum
	Bilinear Smooth Games
	Simultaneous gradient descent
	Alternating gradient descent

	Experiments and Discussion
	Related Work
	Conclusion

	Prologue to the Fourth Contribution
	Article Details
	Contributions of the authors

	A Closer Look at the Optimization Landscapes of Generative Adversarial Network
	Introduction
	Related work
	Formulations for GAN optimization and their practical implications
	The standard game theory formulation
	An alternative formulation based on the game vector field
	Rotation and attraction around locally stable stationary points in games

	Visualization for the vector field landscape
	Standard visualizations for the loss surface
	Proposed visualization: Path-angle
	Archetypal behaviors of the Path-angle around a LSSP

	Numerical results on GANs
	Evidence of rotation around locally stable stationary points in GANs
	The locally stable stationary points of GANs are not local Nash equilibria

	Discussion

	Conclusions, Discussions, and Perspectives
	Summary and Conclusions
	Discussions and Perspectives

	Minimax Theorem for Nonconcave-Nonconvex Games Played with Neural Networks
	Relevance of the Minimax theorem in the Context of Machine Learning
	Interpretation of Equilibria in Latent Games
	Proof of results from Section 5
	Proof of Proposition 1
	Proof of Theorem 2
	Proof of Proposition 3
	Proof of Proposition 2
	Proof of Theorem 1

	A Variational Inequality Perspective on Generative Adversarial Networks
	Definitions
	Projection mapping
	Smoothness and Monotonicity of the operator

	Gradient methods on unconstrained bilinear games
	Proof of Proposition 1
	Implicit and extrapolation method
	Generalization to general unconstrained bilinear objective
	Extrapolation from the past for strongly convex objectives

	More on merit functions
	More general merit functions
	On the importance of the merit function
	Variational inequalities for non-convex cost functions

	Another way of implementing extrapolation to SGD
	Variance comparison between AvgSGD and SGD with prediction method
	Proof of Theorems
	Proof of Thm. 2
	Proof of Thm. 3
	Proof of Thm. 4
	Proof of Theorem 3

	Additional experimental results
	Toy non-convex GAN (2D and deterministic)
	DCGAN with WGAN-GP objective
	FID scores for ResNet architecture with WGAN-GP objective
	Comparison of the methods with the same learning rate
	Comparison of the methods with and without uniform averaging

	Hyperparameters

	Negative Momentum for Improved Game Dynamics
	Additional Figures
	Maximum magnitude of the eigenvalues gradient descent with negative momentum on a bilinear objective
	Mixture of Gaussian

	Discussion on Momentum and Conditioning
	Lemmas and Definitions
	Proofs of the Theorems and Propositions
	Proof of Thm. 1
	Proof of Thm. 2
	Proof of Thm. 3
	Proof of Thm. 4
	Proof of Thm. 5
	Proof of Thm. 6

	A Closer Look at the Optimization Landscapes of Generative Adversarial Networks
	Proof of theorems and propositions
	Proof of Theorem 1
	Being a DNE is neither necessary or sufficient for being a LSSP

	Computation of the top-k Eigenvalues of the Jacobian
	Experimental Details
	Mixture of Gaussian Experiment
	MNIST Experiment
	Path-Angle Plot
	Instability of Gradient Descent
	Additional Results with Adam

