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RÉSUMÉ

Les techniques d’apprentissage profond ont fait un bond au cours des dernières années,

et ont considérablement changé la manière dont les tâches de traitement automatique du

langage naturel (TALN) sont traitées. En quelques années, les réseaux de neurones et les

plongements de mots sont rapidement devenus des composants centraux à adopter dans

le domaine.

La supervision distante (SD) est une technique connue en TALN qui consiste à géné-

rer automatiquement des données étiquetées à partir d’exemples partiellement annotés.

Traditionnellement, ces données sont utilisées pour l’entraînement en l’absence d’anno-

tations manuelles, ou comme données supplémentaires pour améliorer les performances

de généralisation.

Dans cette thèse, nous étudions comment la supervision distante peut être utilisée

dans un cadre d’un TALN moderne basé sur l’apprentissage profond. Puisque les algo-

rithmes d’apprentissage profond s’améliorent lorsqu’une quantité massive de données

est fournie (en particulier pour l’apprentissage des représentations), nous revisitons la

génération automatique des données avec la supervision distante à partir de Wikipédia.

On applique des post-traitements sur Wikipédia pour augmenter la quantité d’exemples

annotés, tout en introduisant une quantité raisonnable de bruit.

Ensuite, nous explorons différentes méthodes d’utilisation de données obtenues par

supervision distante pour l’apprentissage des représentations, principalement pour ap-

prendre des représentations de mots classiques (statistiques) et contextuelles.

À cause de sa position centrale pour de nombreuses applications du TALN, nous

choisissons la reconnaissance d’entité nommée (NER) comme tâche principale. Nous ex-

périmentons avec des bancs d’essai NER standards et nous observons des performances

état de l’art. Ce faisant, nous étudions un cadre plus intéressant, à savoir l’amélioration

des performances inter-domaines (généralisation).

Mots clés: Supervision distante, Wikipédia, Représentation de mots, NER, Gé-

néralisation.



ABSTRACT

Recent years have seen a leap in deep learning techniques that greatly changed the

way Natural Language Processing (NLP) tasks are tackled. In a couple of years, neural

networks and word embeddings quickly became central components to be adopted in the

domain.

Distant supervision (DS) is a well used technique in NLP to produce labeled data

from partially annotated examples. Traditionally, it was mainly used as training data in

the absence of manual annotations, or as additional training data to improve generaliza-

tion performances.

In this thesis, we study how distant supervision can be employed within a modern

deep learning based NLP framework. As deep learning algorithms gets better when

massive amount of data is provided (especially for representation learning), we revisit the

task of generating distant supervision data from Wikipedia. We apply post-processing

treatments on the original dump to further increase the quantity of labeled examples,

while introducing a reasonable amount of noise.

Then, we explore different methods for using distant supervision data for representa-

tion learning, mainly to learn classic and contextualized word representations. Due to its

importance as a basic component in many NLP applications, we choose Named-Entity

Recognition (NER) as our main task. We experiment on standard NER benchmarks

showing state-of-the-art performances. By doing so, we investigate a more interesting

setting, that is, improving the cross-domain (generalization) performances.

Keywords: Distant Supervision, Wikipedia, Word Representation, NER, Gen-

eralization
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Deep Learning algorithms [81] appeared to be a very powerful techniques, leading

to impressive advances in various fields, such as computer vision, and speech process-

ing. Natural Language Processing (NLP) is not an exception, indeed, neural networks

architectures (such as Recurrent [102] and Convolutional [74] Neural Networks, and

Transformer [160]) became a natural choice to model a large scale of tasks. Since its

emergence in 2010, transfer learning powered by word representation learning tech-

niques such word2vec [104] in 2013; ELMo [120] in 2017; and BERT [41] in 2019

have and continue to prove that it is a practical, powerful and task-independent solution

to boost performances with minimal human intervention. The approach consists of train-

ing an encoder on large scale unlabeled data and transferring the learned representations

to another supervised task (trained on labeled data).

Deep learning algorithms are data hungry [12, 105], that is, good performances are

observed when large scale, manually annotated, in domain data is available. Thus, the

advancement in deep learning algorithms for NLP was accompanied by an increasing

interest in creating large scale crowd sourced 1 gold benchmarks that support multiple

tasks such as: SST [146] for sentiment analysis; SQUAD1.0 [130], SQUAD2.0 [131]

and RACE [77] for question answering; SNLI [22] and MNLI [166] for natural language

inference.

In real world applications, machine learning models must be able to generalize from

small amount of in-domain or even out-of-domain data in some case, mainly because

human annotation is an expensive, time consuming and error prone process. Despite the

advancement made in representation learning and deep algorithms, multiple studies have

shown that current models are still data dependent.

1. mostly using Amazon mechanical Turk services



Train/Test CoNLL Finance
CoNLL (240 tokens) 83 17
Finance (40 tokens) - 83
CoNLL + Finance - 79

Table 1.I – Accuracy (F1 score) from the experiments done by Alvarado et al. [6] on
the impact of domain mismatch on Named entity Recognition models performances.
Figures between parentheses show the size of the datasets in term of number of tokens.

Table 1.I, shows the results of domain mismatch experiments done by Alvarado et al.

[6] on Named Entity Recognition (see Chapter 3 for an overview on the task). The

authors compared the performances of models trained and tested on news (the CONLL

dataset [154] ) and finance data. The authors observe that the model trained on news

preform poorly (17%) when tested on finance compared to the one trained on finance

(83%). Furthermore, the system trained on finance only (83%) outperforms the one

trained on both news and finance (79%) when tested on finance (despite being trained on

6 times more data).

An extensive empirical study by Augenstein et al. [10] on memorization and gener-

alization of current NER systems confirm the previous observation. Also, a recent study

by McCoy et al. [100] has shown that the state-of-the-art representation learning model

BERT [41] rely on heuristics that are effective for frequent examples in SNLI bench-

mark [22] to solve textual entailment (a binary classification task). Consequently, the

model breaks down on a more challenging dataset where heuristics fail. In nutshell, the

out-of-domain (generalization) performance remains an old-new problem in NLP.

The small amount and limited scope of annotated data available for training NLP

systems, have motivated some researchers to create a large-scale automatically labeled

corpus. Distant supervision techniques are very promising as they can be used to over-

come the lack of large-scale labelled data in NLP applications. This technique mainly

consists in generating training data out of partly annotated examples (e.g. Wikipedia)

that are linked to a knowledge base (such as Freebase). Surface forms of links that

point to knowledge base entries are considered the main source of annotations, which in

turn are used to train supervised models as by Mintz et al. [106] for Relation Extrac-
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tion (RE), Al-Rfou et al. [5], Nothman [111] for NER and [91] for Fine-Grained Entity

Typing (FGET).

In this thesis, we revisit distant supervision in the light of recent advancements in

deep learning techniques for NLP. Otherwise said, we study how distant supervision can

be employed within a modern deep learning based NLP framework. When we analyzed

this subject thoroughly, we identified two possibilities for contribution:

• Revisit the automatic annotation process in order to get more data.

• Study the utility of distant supervision data for word representation learning.

Wikipedia is widely used as the backbone for distant supervision, mainly due to its

availability, structure, diversity and the presence of human annotations (e.g. hyperlinks

and infoboxes). However, most prior works use the resource as is (direct map of hyper-

links), or increment the number of hyperlinks with simple heuristics (see Chapter 3).

In our opinion, this is mainly due to the fact that data played a much less important

role at that time. In the last ten years, distant supervision was intended to be used to train

classic machine learning systems that require a limited amount of data and relies more

on feature engineering. However, the emergence of deep learning algorithms and the

increasing availability of computational resources have changed the rules. Features are

learned directly from data, and the more data we have, the better deep learning models

can perform.

Motivated by the increasing need of large scale annotated data, it was important to

revisit distant supervision techniques applied to Wikipedia. We argue that the resource

has a special structure and characteristics that allow to mine much more annotations than

by only relying on human made hyperlinks. We propose heuristics rules that are adapted

to the nature of Wikipedia in order to enrich it with hyperlinks. Our main objective is to

gather as many annotations as possible, while introducing the less amount of noise.

At the time of writing this thesis, two very recent papers have been introducing an

alternative approach to improve distant supervision for NER [178] and FGET [3] using

deep models as annotator (more details Chapter 3). They do not compare directly with

our methods, which we leave for future comparisons. However, these works reveal the

increasing interest in distant supervision as a reasonable solution to acquire cheap yet
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useful annotated data.

Traditionally, distant supervision has been used to directly train a supervised model

on the end task. Although models trained on distant supervision data improve general

domain performances, they perform poorly in domain-specific evaluations due to multi-

ple reasons:

1. Annotation scheme The training data needs to be engineered specifically to a

desired annotation scheme and rules. In most cases, it is infeasible to exactly

match the scheme of the test data, which gives a large advantage for in-domain

gold datasets despite the size of the silver ones [5].

2. In-domain data Current models are predisposed towards high-frequency obser-

vations [122], where test data must come from the same distribution of train data

in order to obtain the desired performances [159].That is, training on small in-

domain datasets is preferred on training on large out-of-domain ones.

3. Noisy data Commonly, NLP models are trained on high quality datasets, yet

automatically annotated corpora are know to contain a portion of noise (in our

case study at around 20%). The main reason behind this is that the heuristics for

automatically annotating training data sometimes fails, which leads to noise. Pre-

vious studies [27, 43], show that the final performance of high capacity models

(e.g. deep neural networks) is harmfully affected by datasets diluted with noisy

examples.

The small amount of annotated data in NLP have tied word representations learning

to unsupervised tasks like context prediction and language modeling, or supervised task

with limited amount of data (like NMT). The main reason behind this is the absence of

large-scale manually labelled data for most NLP tasks. Motivated by the great success of

representation learning techniques, we were curious about the ability of learning useful

representations from distant supervision data. Also, motivated by the limitations in using

distant supervision data as training material, we propose to leverage distant supervision

in order to learn word representations that can be further used as features. We argue that,

if massive amount of labelled data is available, good representations could be learned on
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downstream supervised tasks. To the best of our knowledge, this subject has not been

yet explored.

Although, distant supervision is applied to a wide range of tasks (e.g. RE, NER,

FGET), we choose NER as our end application for comparison and evaluation. We

focus on NER because it is a fundamental and prerequisite for a wide range of high level

NLP tasks like question answering and dialogue systems. Also, because most of prior

works on data generation methodologies with distant supervision map, and evaluate on

NER, this facilitates the comparison with previous works.

1.2 Contributions

This thesis presents an improvement of existing methods to generate annotated data

from Wikipedia with distant supervision. We show its applications to NER using modern

representation learning paradigms. The main contributions of this thesis are as follows:

• We revisit the idea of mining distant supervision data out of Wikipedia. We aim

to detect the maximum number of annotations (hyperlinks) while introducing the

minimum amount of noise. We propose rule-based labelling heuristics that are

adapted to the specificity of Wikipedia. We created two variants of our data in

order to support experiments on two downstream NLP tasks: WiNER for NER,

and WiFiNE for fine-grained entity typing.

• We propose a cross-domain evaluation metric for NER, and compare perfor-

mances between multiple approaches. Results show that feeding models with

distant supervision annotations improves cross-domain performance, and that

deep neural models benefit the most.

• We propose a simple yet efficient feature-based classifier to improve named entity

classification. It computes 12 features computed over an arbitrary large part of

distant supervision data.

• We evaluate the impact of WiFiNE as training material on the state-of the-art

fine-grained entity typing system on 2 manually annotated benchmarks (FIGER

(GOLD) and ONTONOTES). Experiments show that training the system on
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WiFiNE improves the performances on both benchmarks compared by the one

trained on previously proposed distant supervision data, leading to state-of-art

performances.

• We further propose to embed words and entity types into a low dimensional vec-

tor space, we train from annotated data produced by distant supervision. By

doing so we can learn, for each word, a vector that encodes the similarity with

entity types. Adding this vector as features into a vanilla RNN model leads to

state-of-the-art performances on 2 standard NER benchmarks.

• We describe a special type of deep contextualized word representation that is

learned from distant supervision annotations and dedicated to named entity recog-

nition. Our extensive experiments on 7 datasets show systematic gains across all

domains over strong baselines, and demonstrate that our representation is com-

plementary to previously proposed ones. Also, we report new state-of-the-art

results on 2 standard NER benchmarks.

• Wikipedia automatically annotated corpora, pre-trained word representations,

and source code developped during this thesis are made publicly available and

can be downloaded from

http://rali.iro.umontreal.ca/rali/en/wikipedia-ds-cont-emb.

1.3 Previously Published Material

Distant supervision annotated data produced in this thesis are built on top of the work

that was done during my master [51]. Two articles - preliminary works to this thesis

- that study coreference phenomena in Wikipedia where then published in conference

proceedings:

• Abbas Ghaddar and Philippe Langlais. WikiCoref: An English Coreference-

annotated Corpus of Wikipedia Articles. In Proceedings of the Tenth Interna-

tional Conference on Language Resources and Evaluation (LREC 2016), Por-

torož, Slovenia, 05/2016 2016
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• Abbas Ghaddar and Phillippe Langlais. Coreference in Wikipedia: Main concept

resolution. In Proceedings of The 20th SIGNLL Conference on Computational

Natural Language Learning, pages 229–238, 2016

The research documented in this thesis has been published in three conference pro-

ceedings and one workshop:

1. Abbas Ghaddar and Phillippe Langlais. Winer: A wikipedia annotated corpus

for named entity recognition. In Proceedings of the Eighth International Joint

Conference on Natural Language Processing (Volume 1: Long Papers), pages

413–422, 2017

2. Abbas Ghaddar and Philippe Langlais. Transforming Wikipedia into a Large-

Scale Fine-Grained Entity Type Corpus. In Proceedings of the Eleventh Interna-

tional Conference on Language Resources and Evaluation (LREC 2018), 2018

3. Abbas Ghaddar and Phillippe Langlais. Robust Lexical Features for Improved

Neural Network Named-Entity Recognition. In Proceedings of the 27th Interna-

tional Conference on Computational Linguistics, pages 1896–1907, 2018

4. Abbas Ghaddar and Philippe Langlais. Contextualized Word Representations

from Distant Supervision with and for NER. In Proceedings of the 5th Workshop

on Noisy User-generated Text (W-NUT 2019), pages 101–108, 2019

(55 total citations as for 31/12/2019)

1.4 Thesis Structure

• Chapter 2 gives an overview on state of the art methods for representation learn-

ing in NLP.

• Chapter 3 presents the task of Named Entity Recognition (NER), and review

approaches, resources and applications of distant supervision for NER.

• Chapter 4 describes our methods to generate distant supervision data out of

Wikipedia, and the creation of two corpora to support entity typing tasks (Ar-

ticle 1 and 2).
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• Chapter 5 evaluates the annotation quality intrinsically on a manually labeled set

of mentions) and extrinsically by using the corpus as training data for: named-

entity recognition and fine-grained entity typing (Article 1 and 2).

• Chapter 6 presents our approach to induce low-dimensional lexical features and

its application to NER (Article 3).

• Chapter 7 explores the idea of generating a contextualized word representation

from entity type distant supervision annotations (Article 4).

• Chapter 8 summarizes the work of this thesis and suggests future work directions.
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CHAPTER 2

REPRESENTATION LEARNING

For roughly two decades, natural language processing tasks have been tackled by

number of hard-coded features that were known to correlate well with a given task,

which in turn are fed to a machine learning algorithm. The goal of Deep Learning (DL)

is to learn multiple layers of representations, or features, of increasing complexity and

abstraction [59]. One important field of DL for NLP is word representation learning,

where the goal is to develop algorithms that learn (in an unsupervised manner) general,

low dimensional representations of word (called embeddings). The ultimate dream of

such approaches is to be able to replace hand-engineered features in supervised NLP

tasks. This chapter review main approaches, and the evolution of representation learning

in the last decade.

2.1 Word embeddings

Word representations [103, 118, 157], also known as word embeddings, are fea-

ture vectors generated using unsupervised training on large quantities of unlabelled text.

Word representations encode useful semantic and syntactic information about individual

words into a low-dimensional space. Word representations are based on the assump-

tion that words sharing similar neighbors tend to have similar representations. They are

considered as a key element in multiple NLP tasks. In entity classification, it has been

shown that entities with the same type have similar word representations, which makes

them useful features. For example, company names like Google, Microsoft, Facebook

will hopefully have similar word representations, as will do person names like Obama,

Clinton, and Trump.

In an early stage, Bengio et al. [16] proposed an interesting architecture of Neu-

ral Language Model (NLM) to learn jointly a language model and word representa-

tions. The main motivation behind this work was to replace the one-hot encoding (a



feature vector that has the same length as the size of the vocabulary) of words by a low-

dimensional continuous vector as a solution of the curse of dimensionality [15]. This

work has attracted the neural network community to develop more efficient methods for

neural word embeddings [32, 33, 102, 157].

Figure 2.1 – Illustration of the CBOW and the Skip-gram models proposed by Mikolov
et al. [104]. Source [104]

Since 2010, two popular approaches for learning word embeddings dominated the

field: word2vec [104] and glove [118]. In word2vec, the authors proposed two efficient

models to formulate the task: CBOW and Skip-gram (Left and right sides of Figure 2.1).

Given a sentence s = (w1, ...,wn), the first task consists in predicting the word (wt) given

its context (wt+2
t−2), while Skip-gram goals is to predict the context given a word. For a

target word at position t and its context at position c, the binary logistic loss for Skip-

gram model is computed as follows:

l = log
(

1+ e−s(wt , wc)
)
+ ∑

n∈Nt,c

log
(

1+ es(wt , n)
)
,

where s(wt ,wc) = u>wt
vwc is the scoring function between the target word and its

context. uwt and vwc , are the trainable word embeddings vectors corresponding to wt
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and wc respectively. Nt,c is a set of negative examples sampled from the vocabulary

used to estimate the negative log-likelihood. Furthermore, Mikolov et al. [103] show

that semantic relations can be extracted with simple arithmetic over the learned vectors.

Figure 2.2 shows that words with similar meaning (country, capital) end up laying close

in the vector space. For example, we can induce the capital of Germany using analogies

over word vector with: France−Paris+Germany≈ Berlin.

Figure 2.2 – Two-dimensional representation of the vector space of word2vec embed-
dings of selected cities and their respective capitals. Source [104]

Pennington et al. [118] argues that word2vec embeddings omit global information

(corpus statistics). The authors propose an entirely different starting points to calculate

words embeddings that capture both local and global information, leading to the so called

Glove embeddings. The approach leverages the matrix of word-word co-occurrence

counts in order to represent semantic relations between words.

Figure 2.3 shows co-occurrence probabilities and ratios between two target words

(ice and steam and 4 selected context words. For example P(solid|ice) is the probability

that the word solid appears in the context of word ice. The basic idea behind Glove is
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Figure 2.3 – word-word co-occurrence probabilities and ratio between the target words
(ice and steam) and 4 selected context words. Source [118].

that the co-occurrence ratios between two words in a context are strongly connected to

meaning. For example, we can observe that the nature relation (nature_o f (ice,solid)

and nature_o f (steam,gas)) can be extracted directly from the ratio probability. The

ratio P(solid|ice)/P(steam|gas) is large (or small in the other sense) while the ratio of

words that are related (e.g. water) or unrelated (e.g. fashion) to both target words is

near one. In a nutshell, the objective in Glove is to learn word vectors such that their dot

product equals the logarithm of words probability of co-occurrence. Given words i and

j, the objective is to minimize the weighted least squares regression loss:

l = f (Xi j)(wT
i w̃ j +bi + b̃ j− logXi j)

2
(2.1)

f (x) = min(1,x/x
3
4 ) is a weighting function, Xi j is the number of times word j oc-

curs in the context of word i. wi and w̃ j are word vectors to learn for words i and j

respectively, while bi and b̃ j are bias terms.

Glove and WORD2VEC are still considered as an essential component and are widely

used as input features in state of the art systems for Semantic Role Labeling [61, 152],

Coreference Resolution [83, 84], or Entity Linking [80, 144]. Nevertheless, there have

been several endeavors to extend previous methods in order to enrich word embeddings

and overcome some of their shortcomings.

Levy and Goldberg [85] generalize the Skip-gram model to support arbitrary syntac-

tic context rather than a fixed-size windows context. First, they automatically parsed the

corpus with dependency labels as in Figure 2.4, and the context of a target word is the

set of words which modify the target coupled with their corresponding relations. For ex-
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ample, the context for the word discoveries is: scientist/nsubj, star/dobj, telescope/prep-

with, compared with the original word2vec model (window of 2): Australian, scientist,

star and with. Dependency-based contexts allow the model to avoid accidental target-

context words (discoveries,Australian), while capturing important words at any distance

(discoveries,telescope) without the need to use a large window size that introduces noisy

context.

Figure 2.4 – Example of a sentence with dependency labels used in the work of Levy
and Goldberg [85]. Source [85]

Neelakantan et al. [108] present an extension to the Skip-gram model that learns

separate vectors for each word sense to better represent linguistic phenomenon like pol-

ysemy.

Figure 2.5 – Sentences with dependency labels from Neelakantan et al. [108], where
parse tree is used to obtain arbitrary context words. Source [108]

Figure 2.5 illustrates the architecture of the Multi-Sense Skip-gram (MSSG) model,

given a word at position t word sense embedding is calculated as follows:
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1. the context vectors ct = {wt−k, . . . ,wt−1,wt+1, . . . ,wt+k} (k equals 2 in our ex-

ample) are averaged into (vcontext(ct)).

2. the authors use cosine similarity between vcontext(ct) and context cluster cen-

ters to determine the nearest cluster µ(wt , i) and consequently the corresponding

word sense embedding v(wt , i) (i = 3 in the Figure 2.5).

3. Only the vector of the selected word sense is used to predict context vectors ct .

In FastText [19], the authors propose to enrich the original Skip-gram model of [104]

by sub-words information. Each word is represented by the sum of its n-grams character

embeddings in order to better model rare words.

2.2 Contextualized Word Representation

my dog is cute , he likes playing

Encoder (Transformer or LSTM)

dog is cute , he likes playing </s>

h2

h1 h1

h2

h1

h2

h1

h2

Figure 2.6 – The general framework of language model pre-training. Given a sentence,
the goal is to predict, at each step, the next word given the previous context. A sequence
encoder such as LSTM or Transformer is employed to encode syntactic and semantic
features. The hidden state are considered as contextualized word representations because
they varies for each word depending on the context.

Pre-trained word embeddings have been shown useful in NLP tasks, but cannot pro-

vide information about the exact sense in a particular context. For instance, with pre-

trained embeddings, the word France will be initialized with the same -country like-

14



embedding in both input sentences: « France is a developed country » and « Anatole

France began his literary career ». Depending on previous and future contexts, the em-

bedding of France in the latter example should resemble to a given name.

In the last 2 years, several endeavors have attempted to learn context-dependent rep-

resentations. One approach consists in training an encoder for a large NLP task (lan-

guage modeling in Figure 2.6), and transferring the learned representations to another

supervised task. Previous works [119, 120] has explored using language models in ad-

dition to word embeddings with positive results. The approach consists in learning an

unsupervised deep language model on a large text corpus. Figure 2.7 illustrates a com-

monly used architecture for language modeling: 2 LSTM [63] layers [71]. The unsuper-

vised task consists in predicting the next word given its previous context. The chain rule

is used to model joint probabilities over word sequences:

p(w1, ....,wn) =
N

∏
i=1

p(wi|w1..wi−1)

The context of all previous words is encoded with an LSTM, and the probability over

words is predicted using a Softmax (or NCE) over the output layer. The representations

(red rectangle in Figure 2.7) at the input layer and hidden LSTM layers capture context-

dependent aspects of word meaning using future (forward LM) and previous (backward

LM) context words. After training the model, LM internal states can be used to generate

representations that vary across linguistic contexts. The context-based representation of

each word is a function of all words in the sentence. This approach produces a rich syn-

tactic and semantic word representation [14], and can handle the limitations of traditional

embeddings, among which is polysemy.

To add contextual embeddings to NLP downstream tasks (Figure 2.7), we first run

the encoder on the input sentence and then concatenate the internal states and pass the

enhanced representation into the task specific supervision. In our example, the word

France will get a « last name » representation because family names will get high prob-

ability by using either forward LM (p(X = last_name|Anatole)), or backward LM
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Figure 2.7 – Context-based representations generated by a neural language model for an
input sentence of a specific supervised task (NER, QA,...).

(p(X = writer_last_name|writer a is)). Peters et al. [120] show significant im-

provements (Table 2.I) over the state of the art across six challenging NLP problems

using LM embeddings (called ELMo). Due to its effectiveness, ELMo became a default

choice for NLP applications, where plugging ELMo into an existing system typically

leads to better accuracy.

TASK PREVIOUS SOTA BASELINE
ELMO +
BASELINE

INCREASE
(ABSOLUTE/
RELATIVE)

SQuAD Liu et al. [94] 84.4 81.1 85.8 4.7 / 24.9%
SNLI Chen et al. [26] 88.6 88.0 88.7 0.7 / 5.8%
SRL He et al. [61] 81.7 81.4 84.6 3.2 / 17.2%
Coref Lee et al. [83] 67.2 67.2 70.4 3.2 / 9.8%
NER Peters et al. [119] 91.9 90.1 92.2 2.1 / 21%
SST-5 McCann et al. [99] 53.7 51.4 54.7 3.3 / 6.8%

Table 2.I – Gains over state-of-the-art models (at that time) by adding ELMo [120] as
feature to single model baselines across six benchmark NLP tasks: Reading Compreh-
sion (SQuAD), Textual Entailment(SNLI), Semantic Role Labeling (SRL), Coreference
Resolution (Coref), Named Entity Recognition (NER), and Sentiment Analysis (SST-
5).Source [120]

Taking advantage of the abundance of machine translation data, one can generate

contextualized embeddings using a supervised task. The approach consists in using rep-
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resentations produced by neural machine translation encoders. In CoVe [99], the authors

trained an English-to-German machine translation system (left side of Figure 2.8), and

use the internal states of the encoder as input for supervised tasks (right side of Fig-

ure 2.8). Similarly, Conneau et al. [35] used the internal states of neural models pre-

trained on large Natural Language Inference datasets as features vectors for downstream

tasks.

Figure 2.8 – Left Figure: An encoder decoder neural machine translation model is trained
offline. Right Figure: the encoder is used to obtain representations, which in turn are
used as input for supervised tasks. Source [99]

Peters et al. [121] study the impact of the language model architecture (e.g. LSTM [71],

CNN [39], or Transformer [160]) on the end performance on four NLP tasks, and the

properties of representations learned by each architecture. While all architectures pro-

duce high quality representations, empirical results show that downstream tasks benefits

the most from contextual information driven from the bi-LSTM LM. The representation

of each token is the concatenation of representations crafted from left-to-right and right-

to-left language models. Due its sequential nature, the biLM suffers from slow training

and inference time, which limits the possibility to scale up model size and data regime.

The authors suggest that a very large model based on a computationally efficient archi-

tecture (e.g. transformer) and trained on massive amount of data could further improve

the results.
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2.3 Fine tuning Approaches

Transferring the knowledge from pre-trained LM to downstream supervised tasks in

the form of additional feature vectors has proven to be effective, but one still needs to

design a specific model architecture for each task. Therefore, recent researches have

looked to push forward this approach by designing a fine-tunable pre-trained model.

That is, the pre-trained language model is fine-tuned for a supervised downstream task,

thus few parameters are learned from scratch. Howard and Ruder [67] proposes a uni-

versal LSTM-based language model that can be fine-tuned for text classification tasks.

OpenAI GPT[127] is a Transformer-based fine-tunable language model that improves

upon the state of the art in 9 NLP tasks including: commonsense reasoning, question

answering, and textual entailment.

At the end of 2018, a group of researchers from Google released BERT [41], which

was considered by many as a game-changer in NLP. BERT (Bidirectional Encoder Representations

from Transformers) builds on top of previously proposed methods for self-training to

overcome the limitation (unidirectionality) of a standard language model objective. Trans-

former [160] is a multi-layer bidirectional sequence encoder that was originally designed

for machine translation. A single Transformer layer is build upon feed forward neural

networks, residual connections and an attention mechanism (see the original paper for a

detailed description).

Figure 2.9 – Key differences between BERT [41], OpenAI GPT [127] and Elmo[120]
pre-training objectives. Source [41]

In BERT, the authors propose two novel tasks for pre-training: Masked Language

Model and next sentence prediction. The goal of the first task is to predict masked
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tokens (marked by [MASK] in Figure 2.10) in the input sequence, while the goal of

the second task is to predict if sentence B is the actual next sentence of A. The authors

randomly masked 15% of the word input, where a softmax on the vocabulary is used to

predict masked tokens 1. For the next sentence prediction task, 50% of the time B is the

actual next sentence of A, and 50% of the time it is a random sentence from the corpus.

Figure 2.10 – Illustration of an input sequence of BERT [41]. Some words are randomly
masked in the input sentence and the goal is to predict them at the output. No masked
word are ignored in the loss calculation (transparent rectangle).

Both tasks enable the bidirectionality during pre-training (BERT in Fig. 2.9) com-

pared with the left-to-right language model of (OpenAI GPT in Fig. 2.9), or the shallow

concatenation of independently trained left-to-right and right-to-left language models

(ELMo in Fig. 2.9). During pre-training, the input of BERT (Figure 2.10) consists of

a special classification token [CLS], tokens of a sentence A, a special token separator

[SEP], and the tokens of a sentence B. To improve the handling of rare and unknown

words, the input sequence consists of WordPiece tokens [167].

As shown in Figure 2.11, BERT can easily be fine-tuned for a large range of sentence-

level and token-level tasks including: single and sentence pair classification (e.g. senti-

ment analysis, textual entailment), where only a feed forward and a softmax layer (on top

of the [CLS] token) are learned from scratch. Also, multiple choice selection tasks [177]

can be framed as a binary classification of sentence pair using BERT. The paragraph and

1. No prediction is made for unmasked tokens.
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Figure 2.11 – Illustration of how BERT[41] can be fine tuned for a wide range of NLP
tasks. Source [41]
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answer are concatenated (separated by [SEP]) as input, where sequences with correct

answer are treated as positive examples and those with wrong answers as negative. BERT

support tasks extractive question answering [130], as well as sequential tagging tasks by

predicting a label for each token in the input sequence. BERT improves state-of-the-art

results on no less than eleven natural language processing tasks. Furthermore, BERT in-

ternal states can be used as a contextualized representation. The authors of BERT show

for instance competitive results when BERT vectors are plugged as input features in a

vanilla bi-LSTM model for NER.

Following the great success of BERT, a series of papers built on top of the original

model to support new tasks and domains:

• spanBERT[70] for span-level tasks like coreference resolution and relation ex-

traction.

• GlossBERT [68] for word sense disambiguation [107].

• Andor et al. [7] generalize BERT to perform lightweight numerical reasoning for

reading comprehension.

• BioBERT [82] a special version of BERT to generate domain specific representa-

tions for biomedical NLP tasks.

• For information extraction related tasks like: passage re-ranking [109] and open-

domain question answering [169].

In XLNet [170], the authors propose a new model that overcomes two of BERT

main weaknesses: the fixed length context, and pre-train fine-tune mismatch due to the

special [MASK] tokens. The model uses Transformer-XL [37], which adds a memory

cell to the original Transformer architecture to handle very long sequences with a re-

cursive mechanism. In addition, during pre-training the authors replaced the masked

LM by a permutation LM task, where the model can be conditioned on an arbitrary se-

quence to predict the target token. For example, the model might be asked to calculate

P(x3|x5,x7,x1), while standard LM can only be conditioned on P(x3|x<3) or P(x3|x>3).

Thus, the bidirectionality of the model is maintained without the need to corrupt the

input sequence with the [MASK] tokens.

In RoBERTa [95], the authors have found that BERT was under-trained. They pro-
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pose some modifications and better way to fine-tune the model that systematically im-

proves the results. Modifications includes: (1) using 10 times more data (160GB) for

pre-training; (2) removing the next sentence prediction task; (3) dropping short input

sequences; (4) larger batch size and training steps; (5) tuning the optimizer hyper-

parameters. The authors shows that carefully tuning the original BERT outperforms all

models published so far.

In ALBERT [79], yet another variant of BERT, the main focus of the authors is on re-

ducing the model size. They propose to share the parameters across the Transformer lay-

ers, and to project embeddings into a low dimensional space of size E, and then project it

to the hidden space H >> E (factorized embedding). These modifications significantly

reduce the number of parameters (by x10), which in turn increase the training speed of

BERT and reduces memory consumption. In addition, the authors argue that randomly

picking 2 segments made the next sentence prediction task easy and consequently inef-

fective. For generating negative examples, they swap 2 consecutive segments rather than

picking them randomly from the corpus. The Inter-sentence coherence task, as they call

it improves performances on downstream tasks.

2.4 Conclusion

This chapter gave an overview of the two main approaches for word representa-

tion learning: classic (fixed) embeddings, and contextualized representations. Also, we

pass through fine-tunable language models (BERT) approaches that emerged as the Swiss

Army Knife for NLP applications. We detailed the main methods for each approach, and

reviewed other refinements to improve over them. While most of these works focus

on learning representations from unlabeled text, we explore the usefulness of massive

amount of automatically annotated data for classic and contextualized word representa-

tion learning.
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CHAPTER 3

DISTANT SUPERVISION FOR NER

In this chapter, we first present the task of named entity recognition and the distant

supervision methods for automatic data augmentation for this task.

3.1 Named Entity Recognition

Named Entity Recognition (NER) is the task of identifying textual mentions and

classifying them into a predefined set of types. While NER task focuses on a small

set of types (between 4 and 17), fine-grained entity typing deals with a larger type sets

(between 89 and 112). The top part of Figure 3.1 shows an example of NER with coarse

types like: PERSON, LOCATION, ORGANIZATION, while the bottom part shows the

task with more fine grained types that are stored in a hierarchical structure.

Figure 3.1 – An illustration of the named entity recognition task. Given a sentence, the
goal is to identify entity mentions and to classify them into predefined categories. The
top part shows NER with coarse categories, while the bottom part shows the task with
more fine grained types.

NER plays a vital role in natural language understanding and fulfill lots of down-

stream applications, such as entity linking, relation extraction, coreference resolution

and question answering. For example, knowing that an entity mention is a PERSON

would:



1. prevent an entity linking system from linking that entity to a no person Wikipedia

page.

2. limit the number of possible relations with other entities in relation extraction.

3. prevent coreference resolution system from merging that entity with a cluster of

location entities.

4. be a great indicator for q question answering system of certain type of questions

(e.g. PERSON entities are potential answer for who question).

Due its importance, the NER task is an active domain of research, where it is being

investigated from dataset creation and feature engineering to modeling and evaluation.

3.2 Datasets

In the last two decades, named entity recognition imposed itself on the natural lan-

guage processing community as an independent task in a series of evaluation campaigns

such as MUC-1996 [60], MUC-1997 [29] and CoNLL-2003 [154]. This gave birth to

various corpora designed in part to support training, adapting or evaluating named entity

recognizers. Most of the aforementioned datasets were created on top of news docu-

ments, which limited the scope of applications of the technology. It is now widely ac-

cepted that NER systems trained on newswire data perform poorly when tested on other

text genres [10, 111]. Thus, there is a crucial need for annotated material of more text

genres and domains. This need has been partially fulfilled by some initiatives that man-

ually created datasets in order to study NER on different domains, such as biomedical

(I2B2[153]), social media (W-NUT [40, 150]), and finance (FIN [6]) domains.

Table 3.I summarizes the main characteristics of manually annotated NER datasets.

CONLL-2003 and ONTONOTES 5.0 are considered as the standard benchmarks for

evaluating and comparing systems. The CONLL-2003 NER dataset [154] is a well

known collection of Reuters newswire articles that contains a large portion of sports

news. It is annotated with four entity types: Person (PER), Location (LOC), Organiza-

tion (ORG) and Miscellaneous (MISC). The four entity types are fairly evenly distributed,

and the train/dev/test datasets present a similar type distribution. The ONTONOTES
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Corpus Year Text Source #Tags URL
MUC-6[60] 1995 Wall Street Journal texts 7 https://catalog.ldc.upenn.edu/

LDC2003T13
MUC-6 Plus[28] 1995 Additional news to

MUC-6
7 https://catalog.ldc.upenn.edu/

LDC96T10
MUC-7[29] 1997 New York Times news 7 https://catalog.ldc.upenn.edu/

LDC2001T02
CoNLL03[154] 2003 Reuters news 4 https://www.clips.uantwerpen.

be/conll2003/ner/
ACE[42] 2000 - 2008 Transcripts, news 7 https://www.ldc.upenn.edu/

collaborations/past-projects/
ace

OntoNotes[66] 2007 - 2012 Magazine, news, conver-
sation, web

89 https://catalog.ldc.upenn.edu/
LDC2013T19

W-NUT[40, 150] 2015 - 2018 User-generated text 18 http://noisy-text.github.io
BBN[162] 2005 Wall Street Journal texts 64 https://catalog.ldc.upenn.edu/

ldc2005t33
NYT[140] 2008 New York Times texts 5 https://catalog.ldc.upenn.edu/

LDC2008T19
WikiGold [113] 2009 Wikipedia 4 https://figshare.com/articles/

Learning_multilingual_named_
entity_recognition_from_
Wikipedia/5462500

WebPages [132] 2009 Web 4 https://cogcomp.seas.upenn.edu/
page/resource_view/28

FIGER(GOLD)[91] 2012 Wikipedia 113 https://github.com/xiaoling/
figer

N3[139] 2014 News 3 http://aksw.org/Projects/
N3NERNEDNIF.html

GENIA[73] 2004 Biology and clinical
texts

36 http://www.geniaproject.org/
home

FSU-PRGE 2010 PubMed and MEDLINE 5 https://julielab.de/Resources/
FSU_PRGE.html

BC5CDR[34] 2013 PubMed 3 http://bioc.sourceforge.net/
NCBI-Disease[44] 2014 PubMed 790 https://www.ncbi.nlm.nih.gov/

CBBresearch/Dogan/DISEASE/
I2B2[153] 2015 Clinical Data 23 https://www.i2b2.org/NLP/

DataSets
FIN[6] 2015 8k financial report 4 http://people.eng.unimelb.

edu.au/tbaldwin/resources/
finance-sec/

DFKI[141] 2018 Business news and social
media

7 https://dfki-lt-re-group.
bitbucket.io/product-corpus/

Table 3.I – List of manually annotated datasets for English NER, with the number of
entity types (#Tags). source [86].

5.0 dataset [66, 124] includes texts from five different genres: broadcast conversation

(200k), broadcast news (200k), magazine (120k), newswire (625k), and web data (300k).

This dataset is annotated with 18 entity types, and is much larger than CONLL.
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3.3 Approaches to NER

In this thesis, we treat NER as a sequential labeling problem, which is the most com-

monly used approach in the literature. Figure 3.2 illustrates the high level architecture

of a sequential tagger for NER. Each token at the input sequence is represented by a set

of features. Based on these features, many machine/deep learning algorithms have been

proposed to learn a model to produce a sequence of labels that represent the entity type

assigned to each input token.

John was born in Montreal
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Figure 3.2 – High level architecture for NER model as a sequence labeling problem.
Each word in the input is represented by a set of features. These features are fed into a
classifier (gray box) which in turn produces a label per token at the output layer indicat-
ing the entity type of the token.

Traditional approaches to NER rely on heavy feature engineering coupled with clas-

sic machine learning algorithm like CRF [49, 50], SVM [87] and perceptron [132] as

shown in Figure 3.2. Feature design is crucial for NER performance, especially when

classic machine learning algorithms are used. Literature is fruitful with a wide range

of local and global features that encode syntactic and semantic characteristics of words.

We list the most commonly used word-level features by traditional approaches to NER:
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• One hot encoding of the current, previous and next word n-grams.

• Brown clusters [23] (as a binary feature) of each word. The Brown algorithm

assigns words with similar contexts (e.g. Friday and Tuesday) to the same cluster.

• Gazetteers are binary features that encodes the presence of word n-grams in a

predefined lists of NEs such as lists of known persons, locations and organiza-

tions. These features are used in traditional [132] as well as in deep learning [30]

approaches.

• Capitalization, also known as word shape features, characterize certain categories

of capitalization patterns such as allUpper, allLower, upperFirst, upperNotFirst,

numeric or noAlphaNum features.

• Part-of-speech tags of the current word as well as previous and next n-grams tags

(usually n <= 3).

• List of prefix and suffix character n-grams, which are strong predictors of the

syntactic function of the word.

• Also, some works [76] assign document topics (e.g with topic modeling [18]) as

features for each word.

On the other hand, deep learning approaches focus on a small set of features that

are fed into neural networks encoder followed by a tag decoder. Popular approach to

NER such as the systems [30, 119] use Bi-LSTMs and Convolutional Neural Networks

(CNNs) as a sequence encoder, along with a CRF decoder. CNNs are used to encode

character-level features (prefix and suffix), while LSTM is used to encode word-level

features. Finally, a CRF is placed on top of those models in order to decode the best tag

sequence. Pre-trained embeddings obtained by unsupervised learning are core features

of those models. The capability of deep learning models to learn directly from the data,

and the advancement in representation learning techniques has made NER systems to

rely more on these features that includes:

• Word embeddings such as word2vec[104] and Glove [118].

• Deep contextualized word representation from language models like ELMo [120],

GPT [127], FLAIR [4] and BERT [41].

• Character-level embeddings [78, 98] which are randomly initialized and learned
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during training.

3.4 Metrics

In evaluation, we need to compare the true set of entities produced by human annota-

tors, the predicted set of entities. In the literature, NER is traditionally evaluated in terms

of precision (P), a measure of exactness, and recall (R), a measure of completeness, and

the F-score corresponds to their harmonic mean:

Precision =
T P

T P+FP
Recall =

T P
T P+FN

F-score = 2× Precision×Recall
Precision+Recall

where T P (True Positive) are entities or tokens that are recognized by the system and

match ground truth; FP (False Positive) are those that are recognized by the system and

do not match ground truth; and FN (False Negative) are entities in the ground truth that

are not recognized by the system.

When comparing results on standard benchmarks, the F1 score at the entity level [154]

is commonly used. A more loose metric, F1 score at the token level is mostly used in out-

of-domain evaluations due to annotation scheme mismatch [132]. At the entity level, the

system receives a full score if it correctly predicts the segment and label of a given entity

otherwise zero. At token level, the score is per token, that is, if the entity is composed

of 3 tokens and 2 of them are predicted correctly the F1 score is 0.67. For an in-depth

result analysis, some papers report per-class, macro- and micro-averaged F-scores. The

macro-averaged F-score treats all entity types equally by computing the F-score inde-

pendently for each class. In micro score all entities are treated equally by aggregating

the contributions of entities from all classes.

Table 3.II shows the entity level F1 score on test sets of CONLL-2003 and ONTONOTES

5.0 for a wide range of approaches for NER. The top part of the table list feature-based

supervised learning approaches for NER, while the bottom part lists the deep neural net-
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Model CoNLL Ontonotes
Linear CRF [49] 86.86 82.48
Averaged Perceptron [132] 90.88 83.45
Joint Model NER, CR, EL [45] - 84.04
Joint Model NER and EL [97] 91.20 -
Multi task learning [33] 89.56 -
BiLSTM-CRF [98] 91.21 -
BiLSTM-Char-CRF [30] 91.60 86.28
Iterated Dilated CNN [151] 90.54 86.99
LM-LSTM-CRF [93] 91.71 -
BiLSTM-CRF+LM [119] 92.20 -
BiLSTM-CRF+ELMo [120] 92.20 -
CVT + Multi-Task [31] 92.61 88.81
BERT Large [41] 92.80 -
Flair embeddings [4] 93.01 89.71
Shared LSTM [96] 92.60 -
CNN Large + fine-tune [11] 93.50 -

Table 3.II – Entity level F1 scores on test sets of CONLL-2003 and ONTONOTES 5.0
respectively. The model description show the main contribution of the paper. The first
set are feature-based (classic) models; the second set are neural models without external
knowledge as feature; the last set are neural models with external knowledge.

works systems. 93.50 and 89.71 are the state-of-the-art performances on CONLL-2003

and ONTONOTES 5.0 respectively at date of writing the thesis. However, 89.71 for in-

domain evaluation is not considered as strong result, which challenge the robustness of

current state-of-the-art models in real world application. We further detail this issue in

Chapter 5.

3.5 Distant Supervision for NER

One major drawback of NER (and other NLP tasks) is the absence of a large-scale

manually labeled data for most domains, which limits the use of NER in real world

applications. Distant Supervision (DS) techniques are very promising as they can be

used to overcome the lack of large-scale labelled data for NER. This technique mainly

consists in generating training data out of partly annotated examples (e.g. Wikipedia)
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that are linked to a knowledge base (such as Freebase). Surface form of links that point

to knowledge base entries are considered the main source of annotation.

In NER distant supervision, human-created hyperlinks within web pages (Section 3.5.1

or encyclopedias entries like Wikipedia (Section 3.5.2) are considered the main sources

of annotations. Despite being larger, web pages are considered noisier, less structured,

and contains fewer links per page compared to Wikipedia articles. In addition, Wikipedia

has the advantage of being supported by structured knowledge bases like Freebase [21],

Yago [72] and Wikidata [161]. In this thesis, we choose Wikipedia as our source of

annotation, following pioneer works on distant supervision for NER, thus facilitating

comparisons.

3.5.1 Web page based Corpora

In 2012, Singh et al. [145] released the Wikilinks corpus which consists of non-

Wikipedia web pages that contain links to English Wikipedia. First they crawl the web

to discover these, then they apply several filters to ensure quality annotations, including:

(1) Discarding web pages if they overlap significantly (>70%) with a single Wikipedia

page; (2) Discarding all links that appear in tables, near images, or in obvious boilerplate

material; (3) Keep a link if its anchor has a common token with either the Wikipedia page

title or with one of its name variants (alias, redirect). Wikilinks 1 gathers roughly eleven

million web pages that incorporate over 40 millions links to Wikipedia. According to

authors, the corpus can be used for within/cross document coreference, entity linking,

entity tagging among other tasks. Similarly to Wikilinks, Google released a version

of the English-language web pages from Clueweb12 [47] automatically annotated with

Freebase entities. While the annotation procedure is not described in the documentation,

the team claims that the corpus contains high precision but low recall mentions. The

corpus 2 comprises around 456 million web documents that contains at least one entity,

annotated with over 6 billion mentions. These distant supervision generated corpora

have been employed in a number of tasks including entity linking [92, 165]; and question

1. http://code.google.com/p/wiki-links
2. http://lemurproject.org/clueweb12/FACC1/
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answering [133, 171].

3.5.2 Wikipedia for NER

Wikipedia is a large, multilingual, highly structured, multi-domain encyclopedia,

providing an increasingly large wealth of knowledge. It is known to contain well-formed,

grammatical and meaningful sentences, compared to say, ordinary internet documents.

It is therefore a resource of choice in many NLP systems, see [101] for a review of some

pioneering works.The English version, as of 13 April 2013, contains 3,538,366 articles

thus providing a large coverage knowledge resource.

Figure 3.3 – Excerpt from the Wikipedia article Barack Obama

An entry in Wikipedia provides information about the concept it mainly describes.
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A Wikipedia page has a number of useful reference features, such as internal links (hy-

perlinks) which link a surface form (Label in figure 3.3) into other articles (Wiki Article

in figure 3.3) in Wikipedia); redirects which consist in misspelling and names variations

of the article title; infoboxes that are structured information about the concept being de-

scribed in the page; and categories which is a semantic network classification. The aim

of Freebase [20] was to structure human knowledge into a scalable tuple database, by

collecting structured data from the web, where Wikipedia structured data (infoboxes)

forms the skeleton of Freebase. As a result, each Wikipedia article has an equivalent

page in Freebase, which contains well structured attributes related to the topic being

described. Figure 3.4 shows some structured data from the Freebase page of Barack

Obama.

Figure 3.4 – Excerpt of the Freebase page of Barack Obama

Transforming Wikipedia into a corpus of named entities annotated with entity types

is a task that received attention in a monolingual setting [112, 155], as well as in a

multilingual one [5, 137]. Because only a tiny portion of texts in Wikipedia are anchored,

some strategies are typically needed to infer more annotations. Such a process typically

yields a noisy corpus for which filtering is required.
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Figure 3.5 – Wikipedia to named-entity annotated corpus pipeline of Nothman et al.
[112]. source [112]

Nothman et al. [112] describe an approach (Figure 3.5) that exploits links between

articles in Wikipedia in order to produce named-entity mentions (person, location,

organization, miscellaneous). They are making use of hand-crafted rules spe-

cific to Wikipedia, and a bootstrapping approach for identifying a subset of Wikipedia

articles where the type of the entity can be predicted with confidence. Since anchored

texts in Wikipedia lack coverage (in part because Wikipedia rules recommend that only

the first mention of a given concept be anchored in a page), the authors also describe

heuristics based on redirects to identify more named-entity mentions. They tested sev-

eral variants of their corpus on three NER benchmarks and showed that systems trained

on Wikipedia data may perform better than domain-specific systems in an out-domain
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setting. The same technique was applied in [5, 114] on numerous foreign-language

Wikipedia dumps, in order to generate named-entity annotations for these languages.

Ling and Weld [91] also used Wikipedia in the same manner to produce fine-grained

entity type annotations. Each entry in Wikipedia that appears as an anchor link is as-

signed by types from its Freebase equivalent page, which in turn are mapped to a prede-

fined entity tag set (113). The authors release their data, which has been used for training

in a number of studies such as [135, 136, 143].

3.6 Enriching Wikipedia with Links

As discussed in the previous section, only a small set of hyperlinks are annotated due

to the Wikipedia linking policy 3. Previous works have proposed methods to identify

missing links inside Wikipedia. In Noraset et al. [110], the authors tackle the task as an

Entity Linking problem, and introduce W3, a classifier that identifies concept mentions

in Wikipedia text using Wikipedia-specific features. Although the system produces high-

precision links (0.98), it suffers from low recall (0.38). In average, W3 find 7 new links

in each Wikipedia article.

Another direction is the work of West et al. [164], which focuses on only adding links

that improve the navigability of the resource. For example, Flower is an important

concept to identify in the Botany article, but is useless in articles like Wedding or

Montreal. They build their system on the top of logs of a Wikipedia-based human

game that consists in finding the shortest path from a source to a target article.

Lastly, we introduce the method proposed by Raganato et al. [128] which is the

most similar work to ours 4. The authors use rule-based heuristics that are based on

the structure of Wikipedia itself, and structured data from BabelNet (an ontology that

combines various encyclopedias and dictionaries, e.g. WordNet and Wikipedia among

others). The heuristics mainly consists in lexicalization matching of name variants and

synonyms of concepts found in Wikipedia and BabelNet with potential missing links

in Wikipedia pages. Also, they have heuristics to propagate verb, adjective and adverb

3. http://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style_(linking)
4. We build on top and extends the heuristics proposed by the authors
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senses extracted from WordNet. Their method increases by 3.5 times the number of links

in Wikipedia, with a precision of 0.94 (measured on 1500 manually labelled example).

The authors evaluated the usability of their corpus as a training materiel on different

tasks (Entity Linking and Word Similarity).

Corpus # Links # Entities # Documents Link/Doc
Wikipedia (2014) 71.5 2.9 4.3 16.6
Wikilinks [145] 40.3 2.9 10.9 3.7
ClueWeb12 [47] 11240 5.1 1104 10.2
SWE [128] 162.6 4.0 4.3 37.8

Table 3.III – Comparison of different link-enriched corpora. Counts (# columns) are in
millions.

Table 3.III summarizes the main characteristics of a number of existing automatically-

annotated corpora. Although Wikilinks and ClueWeb12 corpora contain a large number

of documents, they do suffer from low coverage and noise, compared to Wikipedia-based

corpora. In the next Chapter, we describe a resource for NER that increases the number

of links in Wikipedia without sacrificing much precision, for the sake of applications.

Our approach is based on the early observations made by Ghaddar and Langlais [52,

55] on the special characteristics of coreference phenomena in Wikipedia. The authors

show that a Wikipedia-adapted coreference resolution approach can resolve the task with

high accuracy. In this thesis, we study and develop a number of Wikipedia coreference

labeling heuristics (Chapter 4) such as following out-links and out-links of out-links to

enrich Wikipedia with hyperlinks. By mapping hyperlinks to their corresponding entity

types we build two automatically labeled datasets WiFiNE and WiFiNE for NER and

FGET receptively.

3.6.1 Recent works on DS

Despite the success of pre-trained language models for NER, they still need in-

domain annotated data to predict NER labels (fine-tuning process). Consequently, many

improvements can be made if large scale annotated data is provided to these strong mod-
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els. Recently 5, two studies [172, 178] have revisited distant supervision for NER. They

describe a similar approches to ours, except they incorporate deep learning in the anno-

tation process. These works show the importance of the problem we tackle and reflect

the increasing need for larger datasets in multiple domains. While they acknowledge the

similarity to our work, they do not compare their resource to ours 6.

DocRED [172] is a collection of Wikipedia introductions (first paragraphs) annotated

with named entities and relations originally designed for document-level relation extrac-

tion [117, 126]. There are 2 versions of the dataset, one small manually annotated and

a large one obtained via distant supervision [106]. To construct the dataset, more 107k

documents where automatically annotated using spaCy [65] for NER and TagMe [48]

for Entity Linking, Wikidata 7 [46, 161] was used to infer relations between entities.

Then, a randomly picked subset of 5k documents where manually corrected by human

annotators.

AnchorNER [178], is yet another Wikipedia-based corpus automatically annotated

with named entity mentions. The authors map all hyperlinks in Wikipedia abstracts to

entity types using DBpedia [9] attributes. Then, they use neural model trained on Do-

cRED [172] to augment the dataset with false negative (missed) entity type annotations.

Results shows that models (e.g. BERT) trained on AnchorNER perform well in cross-

domain evaluation. HAnDS [3] is a framework that extends the methods of Ling and

Weld [91] by augmenting Wikipedia with internal links using heuristic rules for fine-

grained entity typing.

3.7 Conclusion

In this chapter, we presented the task of named entity recognition, a prerequisite for

many NLP applications such as dialogue systems and question answering. We give an

overview on dataset, features, models and evaluation metrics for NER. Then, we review

5. during the writing of this document
6. Also, they use different evaluation process which make the comparison difficult, thus we leave to

future work
7. An equivalent of Freebase

36



distant supervision methods that aim to automatically generate annotated data for NER.

We choose NER as the main application to demonstrate and evaluate the usefulness of

distant supervision data either as training data for supervised models or as a resource to

learn representation.

In this thesis, we propose a pre-processing pipeline to automatically extract anno-

tations from Wikipedia that is mainly based on coreference. While previous works use

Wikipedia as is or with simple matching heuristics, we build on their works by deeply

exploiting coreference resolution for entity in Wikipedia. That is, we extend previous

works by exploiting special type of coreference heuristics that are designed based on the

structure of Wikipedia. The main goal is to increase the quantity of labeled examples,

while introducing the a reasonable amount of noise. We propose an iterative annotation

procedure that follow an easy first strategy (high to low precision matching).
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CHAPTER 4

FROM WIKIPEDIA TO WINER AND WIFINE

4.1 Overview

In this part of the thesis, our goal is to augment Wikipedia with as much seman-

tic information as possible by detecting missing hyperlinks. Our approach relies on a

heuristic labelling method to automatically generate training data from Wikipedia. We

only use the structure of Wikipedia itself, and information from Freebase in order to en-

rich Wikipedia with missing links. Then, we assign to these links a coarse and fine entity

types, leading to 2 corpora: WiNER and WiFiNE respectively. This chapter presents the

methodologies we follow to obtain the aforementioned corpora. Content of this chapter 1

was published in:

• Abbas Ghaddar and Philippe Langlais. WikiCoref: An English Coreference-

annotated Corpus of Wikipedia Articles. In Proceedings of the Tenth Interna-

tional Conference on Language Resources and Evaluation (LREC 2016), Por-

torož, Slovenia, 05/2016 2016

• Abbas Ghaddar and Phillippe Langlais. Coreference in Wikipedia: Main concept

resolution. In Proceedings of The 20th SIGNLL Conference on Computational

Natural Language Learning, pages 229–238, 2016

• Abbas Ghaddar and Phillippe Langlais. Winer: A wikipedia annotated corpus

for named entity recognition. In Proceedings of the Eighth International Joint

Conference on Natural Language Processing (Volume 1: Long Papers), pages

413–422, 2017

• Abbas Ghaddar and Philippe Langlais. Transforming Wikipedia into a Large-

Scale Fine-Grained Entity Type Corpus. In Proceedings of the Eleventh Interna-

tional Conference on Language Resources and Evaluation (LREC 2018), 2018

1. the first 2 publication were done during my master [51]



4.2 A Four Stage Approach

Given a Wikipedia page, we attempt to find proper name, nominal and pronominal

mentions that refer to an entity (or concept) in Wikipedia. We propose an approach

that mainly relies on Wikipedia markup (anchor link, redirect, link-out), and structured

data from Freebase (gender, number, aliases, etc.). Our approach follows an easy-first

strategy in order to increment Wikipedia from highest to lowest precision annotations.

We treat the task as a Coreference Resolution (CR) problem, and define a pipeline of 4

steps:

(1) Find Main Concept (MC) mentions in each Wikipedia Page.

(2) Track entities that don’t appear as anchored links.

(3) Resolve proper and nominal coreference mentions of entity links.

(4) Resolve pronominal coreference using an adapted version of the rule-based coref-

erence model of [129].

An overview of our annotation process is illustrated in Figure 4.1, and subsequent

sections will detail the process.

Figure 4.1 – Illustration of the process with which we gather annotations into WiNER
for the target page https://en.wikipedia.org/wiki/Chilly_Gonzales.
Square Bracketed segments are the annotations; curly brackets indicate main concept
mentions from Ghaddar and Langlais [55]; while underlined text are anchored texts in
the corresponding Wikipedia page. OLT represents the out-link table (which is compiled
from the Wikipedia out-link graph structure), and CT represents the coreference table we
gathered from the resource.
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4.2.1 Main Concept Mention Detection

The first step in our pipeline consists in identifying in a Wikipedia article all the

mentions of the concept being described by an article. This part of the annotation process

was done during the master thesis [51], thus we give only a general overview of this step.

We refer to this concept as the “main concept” (MC) henceforth. For instance, within

the article Chilly_Gonzales, the task is to find all proper (e.g. Gonzales, Beck),

nominal (e.g. the performer) and pronominal (e.g. he) mentions that refer to the MC

“Chilly Gonzales”. Due to the specificity of Wikipedia articles (the entire article de-

scribe one concept), these mentions can be identified with high accuracy. According

to [52] 25% of coreferential mentions in Wikipedia refer to main concepts. We frame

the task of MC detection as a binary classification problem, where one has to decide

whether a detected mention refers to the MC. We use an SVM classifier [36] that ex-

ploits carefully designed features extracted from Wikipedia markup and characteristics,

as well as structured data from Freebase.

Figure 4.2 – The first step of our process: main concept mentions detection. Given the
article of Chilly Gonzales the goal is to find all nominal and pronominal mentions (red
span) that refer to Chilly Gonzales.

The classifier was trained on WikiCoref [52], 30 English Wikipedia articles manually

coreference-annotated. It comprises 60k tokens annotated with the OntoNotes project

guidelines [125]. Each mention is annotated with three attributes: the mention type

(named-entity, noun phrase, or pronominal), the coreference type (identity, attributive or

copular) and the equivalent Freebase entity if it exists. The resource contains roughly

7 000 non singleton mentions, among which 1 800 refer to the main concept, which is

to say that 30 chains out of 1 469 make up for 25% of the mentions annotated. The

classifier trained on WikiCoref can detect MC mentions with an an accuracy of 89%.
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We generate a special Wikipedia dump 2 of all the mentions in English Wikipedia

(version of April 2013) that our classifier identified as referring to the main concept,

along with information we extracted from Wikipedia and Freebase. We build on top of

this dump to increment each article with non primary (secondary) entity links.

4.2.2 Secondary Entities Mentions Detection

Within an article, we refer to Wikipedia entities that are different from the main con-

cept as secondary entities. That is, all Wikipedia entries that are present in the article

of Chilly Gonzales (e.g. France, Warner Bros. in Figure 4.2) except the main concept

entity. We follow a similar path as Raganato et al. [128] in order to identify secondary

entities mentions, that is, by using string matching heuristics. We differ from their ap-

proach by: (1) attempting to solve nominal and pronominal mentions; (2) incorporating

entities from Freebase; (3) using an extended list of coreferent mentions. In addition,

we adopt an easy-first strategy in order to select high confident annotation first, which

reduces errors.

Because the number of anchored texts in Wikipedia is rather small — less than 3%

of the text tokens according to [5] — we propose to leverage the out-link structure of

Wikipedia, coupled with the information of all the surface strings used in a Wikipedia

article used to express the main concept being described. For the latter, we rely on a

the resource that described in Section 4.2.1 that lists, for all the articles in Wikipedia, all

the text mentions that are coreferring to the main concept of an article. Our strategy for

collecting extra annotations is described in the following:

Following out-links We follow out-links of out-links, and search in the target article

(by an exact string match) the titles of the articles reached. Figure 4.3 illustrate

this process, in the left part of the figure, we search for the strings Europe, France,

Napoleon, as well as other article titles from the out-link list of the article Paris.

2. http://rali.iro.umontreal.ca/rali/?q=en/wikicoref
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Figure 4.3 – Two examples that illustrate the first step of our process: link detection by
following link out of link out.

Proper and nominal mentions coreference We consider direct out-links of the tar-

get article (Chilly Gonzales in our ongoing example). We search the titles of the

articles we reach that way. We also search for their coreferences as listed in the

main concept resource of [55]. As illustrated in Figure 4.4, we search (exact

match) Warner Bros. Records and its coreferences (e.g. Warner, Warner Bros.)

in the target article.

Figure 4.4 – The second step of our process: proper and nominal coreference mention
detection. The text box is our outgoing example, and the bullet list contains coreference
mention of entities that we match in the paragraph (e.g. Warner Bros.).
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Pronominal mentions coreference Last, we adapt the multi-sieve rule-based coref-

erence resolver of [129] to the specificity of Wikipedia in order to find pronom-

inal mentions antecedent referents 3. The heuristic rules 4 link a pronoun to its

best antecedent mention based on attributes agreement (same gender, number,

entity type,etc ...). We apply the pronominal coreference resolver on each article,

then discard all pronouns that do not refer to a Wikipedia entity mention.

4.2.3 Manual evaluation of link augmentation

During this process, some collisions may occur. We solve the issue of overlapping

annotations by applying the steps exactly in the order presented above. Our steps have

been ordered in such a way that the earlier the step, the more confidence we have in the

strings matched at that step. It may also happen that two out-link articles contain the

same mention (for instance Washington_State and George_Washington both

contain the mention Washington), in which case we annotate this mention with the

type of the nearest full name already annotated. Step 1 raises the coverage from less

than 3% to 9.5%, step 2 raise it to 11.5 %, while step 3 and 4 increase it to 23% and

30% respectively. Our corpus actually contains many more annotations than existing

Wikipedia-based annotated corpora as shown in Table 4.I.

Corpus # Links # Entities # Documents Link/Doc
Wikipedia (2014) 71.5 2.9 4.3 16.6
Wikilinks [145] 40.3 2.9 10.9 3.7
ClueWeb12 [47] 11240 5.1 1104 10.2
SWE [128] 162.6 4.0 4.3 37.8
Our method 182.7 3.0 3.2 57.0

Table 4.I – Comparison of different link-enriched corpora. Counts in columns Links,
Entities and Documents are in millions.
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Figure 4.5 – All entity links in our outgoing example are mapped to 4 entity types ac-
cording to CONLL-2003 annotation scheme.

4.3 WiNER

In general, a Wikipedia article has an equivalent page in Freebase. We associate a

category with each mention by a simple strategy, similar to Al-Rfou et al. [5], which con-

sists in mapping Freebase attributes to CONLL-2003 four classes annotation scheme as

shown in Figure 4.5. We map organization/organization, location/location

and people/person notable_type attributes to ORG, LOC and PER, respectively. If

an entry does not belong to any of the previous classes, we tag it as MISC. Figure 4.6

illustrates the mapping of the entity link Paris from its Wikipedia -> Freebase page ->

notable_type attribute to the LOC type.

WiNER contains 3.2M Wikipedia articles, comprising more than 1.3G tokens ac-

counting for 54M sentences, 41M of which contain at least one named-entity annota-

tion. Table 4.II shows the counts of token strings annotated with at least two types. For

instance, there are 230k entities that are annotated in WiNER as PER and LOC. It is

reassuring that different mentions with the same string are labelled differently. The cells

on the diagonal indicate the number of mentions labelled with a given tag.

We generated a total of 106M annotations (an average of 2 entities per sentence).

We manually examined a random subset of 100 strings that were annotated differently

(in different contexts) and found that 89% of the time, the correct type was identified.

For instance in the sentence I didn’t want to open up my Rolodex and

get everyone to sing for me in the Chilly_Gonzales article, the men-

3. e.g. finding the it or they that refer to France and Warner Bros. respectively
4. last sieve of Raghunathan et al. [129] system, please refer to the article for more details
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Figure 4.6 – Illustration of mapping entity link (Paris in this example) to named entity
annotation through Freebase.

PER LOC ORG MISC

PER 28M 230k 80k 250k
LOC - 29M 120k 190k
ORG - - 13M 206k
MISC - - - 36M

Table 4.II – Number of times a text string (mention) is labelled with (at least) two types
in WiNER. The cells on the diagonal indicate the number of annotations.

tion Rolodex was labelled as ORG, while the correct type is MISC. Our process failed

to disambiguate the company from its product.

4.4 WiFiNE

We created a second version of the corpus that contains fine-grained entity type men-

tions. WiFiNE gathers 182.7M mentions: 95.1M proper, 62.4M nominal and 24.2M

pronominal ones. Following previous works, we map Freebase notable_type at-

tributes of each entity mention detected to a set of fine-grained types. In the last few

years, two popular mapping schemes (see Figure 4.8) emerged: FIGER [91] (112 label)

and GILLICK [58] (89 label).

They are both organized in a hierarchical structure, where children labels also inherit
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Figure 4.7 – Illustration of mapping entity link (Paris in this example) to hierarchical
fine grained entity types through Freebase.

the parent label. FIGER defines a 2-level hierarchy (e.g. /person and

/person/musician); while GILLICK uses 3 levels of types (e.g. /person and

/person/artist, /person/artist/musician).

An entity mention is said to be clean if its labels belong to only a single path (not

necessarly a leaf); otherwise, it is noisy. For example, the mentions France or Ger-

many with labels /location and /location /country are considered clean. On

the other hand, the entity mention Chilly Gonzales annotated with 5 labels (/person,

/person/artist, /person/artist/musician, /person/artist/actor,

and /person/artist /author) is considered noisy because only one of the last

three types is qualified in a given context.

Most resolved entities have multiple type labels, but not all of them typically apply

in a given context. One solution consists in ignoring the issue, and instead relying on

the robustness of the model to deal with heterogeneous labels; this approach is adopted

by [143, 173]. Another solution involves filtering. In [58, 91], the authors apply hard

pruning heuristics:

— Sibling pruning Removes sibling types if they came from a single parent type.

For instance, a mention labelled as /person/artist/musician and
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(a)

(b)

Figure 4.8 – (a) FIGER [91] annotation scheme consists of 112 entity types that are stored
in a 2 level hierarchical structure (red rectangles indicate parent types). (b) GILLICK [58]
defines 3 levels of types, a total of 89 labels (separated by boxes). source [91] and [58]
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Figure 4.9 – Illustration of the de-noise heuristics rules. Spans in bold are entity men-
tions, and blue labels are relevant labels, while red are irrelevant ones.

/person/artist/actor would be tagged by /person/artist and

/person.

— Minimum count pruning All labels that appear once in the document are re-

moved. For example, if multiple entities in a document are labelled as

/person/artist/musician and only one of them have

/person/artist/actor as an extra label, the latter is considered noisy.

Such heuristics decrease the number of training data by 40-45% according to [58,

136]. Ren et al. [136] propose a distant supervision approach to deal with noisy labelled

data. Their method consists in using unambiguous mentions to de-noise mentions with

heterogeneous labels that appear in a similar context.

We measured that 23% of mentions in WiFiNE that have two labels or more do

not belong to a single path (noisy), and 47% of those have more than 2 noisy labels (e.g.

Gonzales in Fig. 4.9). We propose to eliminate noisy labels in WiFiNE using rules based

on the high coverage of entity mentions, coupled with Freebase triples and the paragraph

and section structure of Wikipedia:

1. Freebase Relation Type: We label the mention by the type indicated by the

relation. A Freebase relation is a concatenation of a series of fragments. The first

two fragments of the relation indicate the Freebase type of the subject, and the

third fragment indicates the relation type. In example (a) of Fig. 4.9, the triple

(arg1: Chilly Gonzales; rel: /people/person/place_of_birth; arg2:

Montreal) found in Freebase indicates that only /person should apply to the

48



Gonzales mention in this context.

2. Common Attribute Sharing: If a non-ambiguous mention (Jamie Lidell in ex-

ample (b)) has a type set which is a subset of another mention with noisy labels

(he, referent of Chilly Gonzales) occurs in the same sentence, we assign to the

noisy mention the common labels between both mentions.

We first apply our rules at the sentence level, then at the paragraph and section level.

Whenever we de-noise an entity mention in such a way, all its coreferent mentions (in

the scope) receive the same type.

Heuristic Pre Rec F1
w/o Rules 31.8 100.0 48.3
Rule-1 only 48.8 87.2 62.3
Rule-2 only 56.4 85.6 68.0
Both Rules 79.2 81.8 80.5

Level of Application
Sentence 66.5 85.5 73.7

+ Paragraph 72.7 82.6 78.6
+ Section 79.2 81.8 80.5

Table 4.III – De-noising rules evaluation on 1000 hand-labelled mentions following
GILLICK type hierarchy.

We assessed the quality of our de-noising rules on 1000 randomly selected noisy

mentions. Table 4.III reports precision, recall and F1 scores on the ablation study of

the proposed heuristics. We start with an accuracy of 48% when no rule is applied.

We measure performance after removing labels identified as noisy by rule one, two and

both. Also, we measure the accuracy when the rules are applied at sentence, paragraph

and section levels. Results show that our rules greatly improve the annotation quality

by roughly 32%. Also, we observe that the first rule is more important than the second,

but both rules complement each other. As expected, applying the rules at paragraph and

section levels further improve the performance.

We identify two sources of errors: (1) pruning heuristics do not apply to 11% of

mentions; (2) our rules failed to pick up the correct label in 9% of the cases. Ex-
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ample (a) of Figure 4.10 illustrates such a mistake where Gonzales is labelled as mu-

sician rather than author because Feist is considered as musician in this context. In

example (b), Gonzales is wrongly labelled as person even thought that the relation

/people/person/nationality exists between both entity but the sentence do

not state it.

a) [Gonzales] musician? returned as a contributor on [Feist] musician’s 2007 al-
bum...

b) [Gonzales] person? said in an interview: My experiences in [Canada] country
had been disappointing

Figure 4.10 – Examples of errors in our de-noising rules. Faulty annotations are marked
with a star.

Table 4.IV illustrates a randomly-picked selection of mentions annotated in WiFiNE,

along with their type according to the GILLICK scheme. The last two examples illustrate

noisy annotations. In the first example 5, our process failed to distinguish between the

company and its product. The second example is a mention detection error, we couldn’t

recognize Viitorul Homocea as an entity, because this soccer team does not have a page

in Wikipedia or Freebase.

4.4.1 Corpus Statistics

WiFiNE is built from 3.2M Wikipedia articles, comprising more than 1.3G tokens

accounting for 54M sentences, 41M of which contain at least one entity mention. Over-

all, it gathers 182.7M mentions: 95.1M proper, 62.4M nominal and 24.2M pronominal

ones. Table 4.V summarizes the mention statistics and label distribution over the number

of levels of FIGER and GILLICK type hierarchies.

First, we note that the total number of mentions in FIGER and GILLICK is less than

the total number of entity mentions. This is because: (a) we remove noisy mentions that

our rules failed to disambiguate (11%), (b) some mentions cannot be mapped to either

5. second last line in table 4.IV
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FIGER GILLICK
Total mentions 159.4 111.1
Proper mentions 82.5 (52%) 64.8 (58%)
Nominal mentions 55.9 (35%) 29.8 (27%)
Pronominal mentions 21.0 (13%) 16.5 (15%)
Total Labels 243.2 230.9
Level 1 153.8 (63%) 111.1 (48%)
Level 2 89.5 (37%) 90.0 (39%)
Level 3 - 29.8 (13%)

Table 4.V – Mention statistics and label distribution (in millions and percentages) over
the number of levels of FIGER and GILLICK type hierarchy.

schemes (e.g. fictional characters). Second, we note that FIGER mentions outnumber

those of GILLICK, simply because their scheme covers more types (112 vs 89). Follow-

ing the GILLICK scheme, each mention has 2 types on average, where 39% of them are

of level 2, and 13% are of level 3. The distribution of level 2 and 3 labels in WiFiNE

exceed its equivalent in the ONTONOTES [58] dataset (29% and 3% respectively).

Figure 4.11 – Distribution of entity type labels according to the FIGER type hierarchy.

Figure 4.11 illustrates the percentage of types that recieve a given number of men-

tions in WiFiNE. It shows that the majority of types have more than 100k mentions and

roughly 25% (like city, company, date) exceeds 1M mentions. Also, we observe

that 5% of the types have less than 10k mentions (e.g. /event/terrorist_attack),
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and none of them has less than 1k mentions 6.

4.5 Conclusion

We revisited the task of using Wikipedia for generating annotated data suitable for

entity detection and typing. We significantly extended the number of annotations of

non anchored strings in Wikipedia, thanks to coreference information and an analysis

of the link structure. We applied our approach to a dump of English Wikipedia from

2013, leading a corpus of enriched links which surpasses other similar corpora in term

of density. Then, we map entity links to coarse and fine entity type annotations leading

to WiNER and WiFiNE respectively. In the next Chapter, we will evaluate annotation

quality extrinsically by using the corpus as training data for: named-entity recognition

and fine-grained entity typing tasks.

6. A similar distribution is obtained with GILLICK type hierarchy.
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CHAPTER 5

DISTANT SUPERVISION DATA FOR TRAINING

5.1 Overview

In this chapter, we focus on usefulness of WiNER and WiFiNE as training data for

entity typing tasks, the traditional approach for evaluating distant supervision. We per-

form extensive experiments on NER and fine-grained entity typing with off-the-shelf

toolkits. This allowa us to compare WiNER and WiFiNE with distant supervision train-

ing data. In order to ensure fair and meaningful comparison between datasets, we tried

as possible to train all systems under the same conditions (such as parameters, resource,

training time and size). The chapter is divided into 2 parts: experiments on NER with

WiNER in Section 5.2, and experiments on fine-grained entity typing with WiFiNE in

Section 5.3. Content of this Chapter was published in:

• Abbas Ghaddar and Phillippe Langlais. Winer: A wikipedia annotated corpus

for named entity recognition. In Proceedings of the Eighth International Joint

Conference on Natural Language Processing (Volume 1: Long Papers), pages

413–422, 2017

• Abbas Ghaddar and Philippe Langlais. Transforming Wikipedia into a Large-

Scale Fine-Grained Entity Type Corpus. In Proceedings of the Eleventh Interna-

tional Conference on Language Resources and Evaluation (LREC 2018), 2018

5.2 Experiments on WiNER

We explore WiNER by using it as training material to improve NER models behavior

in three different scenarios:

1. WiNER compared with distant supervision corpus of previous work in Section 5.2.4.

2. WiNER to improve cross-domain (generalization) performances in Section 5.2.5.

3. Scale to full WiNER with a simple and fast Named Entity classifier in Sec-



tion 5.2.6.

Just before getting into our experiments, we introduce gold-standard datasets used in

this study (section 5.2.1). We provide a brief description of various NER systems used

in this work (section 5.2.2). Section 5.2.3 describes the evaluation metrics.

5.2.1 Data Sets

We used a number of datasets in our experiments. For CONLL, MUC and ONTONOTES,

that are often used to benchmark NER, we used the test sets distributed in official splits.

For the other test sets, that are typically smaller, we used the full dataset as a test material.

CONLL the CONLL-2003 NER Shared Task dataset [154] is a well known collec-

tion of Reuters newswire articles that contains a large portion of sports news. It

is annotated with four entity types (PER, LOC, ORG and MISC).

MUC the MUC-6 [28] dataset consists of newswire articles from the Wall Street

Journal annotated with PER, LOC, ORG, as well as a number of temporal and

numerical entities that we excluded from our evaluation for the sake of homo-

geneity.

ONTO the OntoNotes 5.0 dataset [123] includes texts from five different text gen-

res: broadcast conversation (200k), broadcast news (200k), magazine (120k),

newswire (625k), and web data (300k). This dataset is annotated with 18 fine

grained NE categories. Following [111], we applied the procedure for mapping

annotations to the CONLL tag set. We used the CONLL 2012 [124] standard

test set for evaluation.

WGOLD WikiGold [13] is a set of Wikipedia articles (40k tokens) manually anno-

tated with CONLL-2003 NE classes. The articles were randomly selected from

a 2008 English dump and cover a number of topics.

WEB Ratinov and Roth [132] annotated 20 web pages (8k tokens) on different topics

with the CONLL-2003 tag set.

TWEET Ritter et al. [138] annotated 2400 tweets (comprising 34k tokens) with 10

named-entity classes, which we mapped to the CONLL-2003 NE classes.
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5.2.2 Reference Systems

We chose two feature-based models: the StanfordNER [50] CRF classifier, and

the perceptron-based Illinois NE Tagger [132]. Those systems have been shown

to yield good performance overall. Both systems use handcrafted features; the latter

includes gazetteer features as well.

We also deployed two neural network systems: the one of [33], as implemented by

Attardi [8], and the LSTM-CRF system of Lample et al. [78]. Both systems capitalize

on representations learnt from large quantities of unlabeled text. 1 We use the default

configuration for each system.

5.2.3 Metrics

Since we use many test sets in this work, we are confronted with a number of in-

consistencies. One is the definition of the MISC class, which differs from a dataset to

another, in addition to not being annotated in MUC. This led us to report token-level

F1 score for 3 classes only (LOC, ORG and PER). We computed this metric with the

conlleval script. 2

We further report ODF1, a score that measures how well a named-entity recognizer

performs on out-domain material. We compute it by randomly sampling 500 sentences 3

for each out-domain test set, on which we measure the token-level F1. Sampling the

same number of sentences per test set allows weight each corpus equally. This process is

repeated 10 times, and we report the average over those 10 folds. On average, the newly

assembled test set contains 50k tokens and roughly 3.5k entity mentions. We excluded

the CONLL-2003 test set from the computation since this corpus is in-domain 4 (see

section 5.2.5).

1. We use the pre-trained representations.
2. http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt
3. The smallest test set has 617 sentences
4. Figures including this test set do not change drastically from what we observe hereafter.
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5.2.4 Comparing with other Wikipedia-based Corpora

We compare WiNER to existing Wikipedia-based annotated corpora. Nothman et al.

[112] released two versions of their corpus, WP2 and WP3, each containing 3.5 million

tokens. Both versions enrich the annotations deduced from anchored texts in Wikipedia

by identifying coreferences among NE mentions. They differ by the rules used to con-

duct coreference resolution. We randomly generated 10 equally-sized subsets of WiNER

(of 3.5 million tokens each).

On each subset, we trained the Illinois NER tagger and compared the perfor-

mances obtained on the CONLL test set by the resulting models, compared to those

trained on WP2 and WP3. Phrase-level F1 score are reported in Table 5.I. We also re-

port the results published in [5] with the Polyglot corpus, which is unfortunately not

available.

with MISC w/o MISC
WP2 68.2 72.8
WP3 68.3 72.9

Polyglot - 71.3
WiNER 71.2 [70.3,71.6] 74.5 [73.4,75.2]

Table 5.I – Performance of the Illinois toolkit on CONLL, as a function of the
Wikipedia-based training material used. The figures on the last line are averaged over the
10 subsets of WiNER we randomly sampled. Bracketed figures indicate the minimum
and maximum values.

Using WiNER as a source of annotations systematically leads to better performance,

which validates the approach we described in Chapter 3. Note that in order to generate

WP2 and WP3, the authors applied filtering rules that are responsible for the loss of 60%

of the annotations. Al-Rfou et al. [5] also perform sentence selection. We have no such

heuristics here, but we still observe a competitive performance. This is a satisfactory

result considering that WiNER is much larger.

57



5.2.5 Cross-domain Evaluation

In this experiment, we conduct a cross-domain evaluation of the reference systems

described in Section 5.2.2 on the six different test sets presented in Section 5.2.1. Fol-

lowing a common trend in the field, we evaluate the performance of those systems when

they are trained on the CONLL material. We also consider systems trained on CONLL

plus a subset of WiNER. We report results obtained with a subset of 3 million tokens

randomly chosen, as well as a variant where we use as much as possible of the train-

ing material available in WiNER. Larger datasets were created by randomly appending

material to smaller ones. Datasets were chosen once (no cross-validation, as that would

have required too much time for some models). Moreover, for the comparison to be

meaningful, each model was trained on the same 3M dataset . The results are reported

in Table 5.II.

CONLL ONTONOTES MUC TWEET WEBPAGES WIKIGOLD ODF1
CRF
CONLL 91.6 70.2 80.3 38.7 61.9 68.4 67.0
+WiNER(3M) - - - - - - -
+WiNER(1M) 89.3 (-2.4) 71.8 (+1.7) 78.6 (-1.8) 49.2 (+10.5) 63.0 (+1.1) 69.1 (+0.8) 69.2(+2.2)
Illinois
CONLL 92.6 71.9 84.1 44.9 57.0 71.4 68.3
+WiNER(3M) 85.5 (-6.9) 71.4 (-0.5) 76.2 (-7.9) 51.1 (+6.2) 65.5 (+8.5) 71.8 (+0.4) 69.5(+1.2)
+WiNER(30M) 82.0 (-10.6) 71.6 (-0.3) 75.6 (-8.5) 52.2 (+7.3) 63.3 (+6.3) 71.6 (+0.3) 69.0(+0.7)
Senna
CONLL 90.3 68.8 73.2 36.7 58.6 70.0 64.3
+WiNER(3M) 86.6 (-3.7) 70.1 (+1.3) 73.9 (+0.7) 43.2 (+6.4) 62.6 (+4.0) 69.9 (-0.1) 67.0(+2.7)
+WiNER(7M) 86.8 (-3.5) 70.0 (+1.2) 72.9 (-0.4) 44.8 (+8.1) 61.5 (+2.9) 69.3 (-0.7) 66.2(+1.9)
LSTM-CRF
CONLL 92.3 71.3 76.6 36.7 57.4 68.0 65.0
+WiNER(3M) 91.5 (-0.8) 74.7 (+3.4) 84.7 (+8.1) 48.1 (+11.4) 62.7 (+5.2) 73.2 (+5.2) 72.0 (+7.0)
+WiNER(5M) 91.1 (-1.2) 76.6 (+5.3) 84.0 (+7.4) 48.4 (+11.7) 64.4 (+7.0) 74.3 (+6.4) 73.0 (+8.0)

Table 5.II – Cross-domain evaluation of NER systems trained on different mixes of
CONLL and WiNER. Figures are token-level F1 score on 3 classes, while figures in
parentheses indicate absolute gains over the configuration using only the CONLL train-
ing material.

First, we observe the best overall performance with the LSTM-CRF system (73%

ODF1), the second best system being a variant of the Illinois system (69.5% ODF1).

We also observe that the former system is the one that benefits the most from WiNER

(an absolute gain of 8% in ODF1). This may be attributed to the fact that this model can
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explore the context on both sides of a word with (at least in theory) no limit on the context

size considered. Still, it is outperformed by the Illinois system on the WEBPAGES

and the TWEET test sets. Arguably, those two test sets have a NE distribution which

differs greatly from the training material.

Second, on the CONLL setting, our results are satisfyingly similar to those reported

in [132] and [78]. The former reports 91.06 phrasal-level F1 score on 4 classes, while

our score is 90.8. The latter reports an F1 score of 90.94 while we have 90.76. The

best results reported so far on the CONLL setting are those of [30] with a BiLSTM-

CNN model, and a phrasal-level F1 score of 91.62 on 4 classes. So while the models we

tested are slightly behind on CONLL, they definitely are competitive. For other tasks,

the comparison with other studies is difficult since the performance is typically reported

with the full tagset.

Third, the best performances are obtained by configurations that use WiNER, with

the exception of CONLL. That this does not carry over to CONLL confirms the ob-

servations made by several authors [5, 50]. These authors highlight the specificity

of CONLL’s annotation guidelines as well as the very nature of the annotated text, where

sport teams are overrepresented. These teams add to the confusion because they are of-

ten referred to with a city name. We observe that, on CONLL, the LSTM-CRF model

is the one that registers the lowest drop in performance. The drop is also modest for the

CRF model. The WiNER’s impact is particularly observable on TWEET (an absolute

gain of 8.8 points) and WEBPAGES (a gain of 5.5), again two very different test sets.

This suggests that WiNER helps models to generalize.

Last, we observe that systems differ in their ability to exploit large training sets. For

the two feature-based models we tested, the bottleneck is memory. We did train models

with less features, but with a significantly lower performance. With the CRF model,

we could only digest a subset of WiNER of 1 million tokens, while Illinois could

handle 30 times more. As far as neural network systems are concerned, the issue is

training time. On the computer we used for this work — a Linux cluster equipped with

a GPU — training Senna and LSTM-CRF required over a month each for 7 and 5

millions WiNER tokens respectively. This prevents us from measuring the benefit of the
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complete WiNER resource.

5.2.6 Scaling up to WiNER

Because we were not able to employ the full WiNER corpus with the NER systems

mentioned above, we resorted to a simple method to leverage all the annotations avail-

able in the corpus. It consists in decoupling the segmentation of NEs in a sentence —

we leave this to a reference NER system — from their labelling, for which we train a

local classifier based on contextual features computed from WiNER. Decoupling the two

decision processes is not exactly satisfying, but allows us to scale very efficiently to the

full size of WiNER, our main motivation here.

5.2.6.1 Contextual representations

Our classifier exploits a small number of features computed from two representations

of WiNER. In one of them, each named-entity is bounded by a beginning and end token

tags — both encoding its type — as illustrated on line MIX of Figure 5.1. In the second

representation, the words of the named entity are replaced by their type, as illustrated on

line CONT. The former representation encodes information from both the context and

the words of the segment we wish to label while the second one only encodes the context

of a segment.

WiNER [Gonzales]PER will be featured on [Daft Punk]MISC .

MIX 〈B-PER〉 Gonzales 〈L-PER〉 will be featured on 〈B-MISC〉 Daft Punk 〈L-MISC〉

CONT 〈PER〉 will be featured on 〈MISC〉 .

Figure 5.1 – Two representations of WiNER’s annotation used for feature extraction.

With each representation, we train a 6-gram backoff language model using kenLM [62].

For the MIX one, we also train word embeddings of dimension 50 using Glove [118]. 5

Thus, we have the embeddings of plain words, as well as those of token tags. The lan-

guage and embedding models are used to provide features to our classifier.

5. We used a window size of 5 in this work.
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5.2.6.2 Features

Given a sentence and its hypothesized segmentation into named-entities (as provided

by another NER system), we compute using the Viterbi algorithm the sequence of to-

ken tags that leads to the smallest perplexity according to each language model. Given

this sequence, we modify the tagging of each segment in turn, leading to a total of 4

perplexity values per segment and per language model. We normalize those perplexity

values so as to interpret them as probabilities. Table 5.III shows the probability given by

both language models to the segment Gonzales of the sentence of our running example.

We observe that both models agree that the segment should be labelled PER. We also

generate features thanks to the embedding model.

This time, however, this is done without considering the context: we represent a

segment as the sum of the representation of its words. We then compute the cosine

similarity between this segment representation and that of each of the 4 possible tag

pairs (the sum of the representation of the begin and end tags); leading to 4 similarity

scores per segment. Those similarities are reported on line EMB in Table 5.III.

LOC MISC ORG PER

CONT 0.11 0.35 0.06 0.48
MIX 0.26 0.19 0.18 0.37
EMB 0.39 0.23 0.258 0.46

Table 5.III – Features for the segment Gonzales in the sentence Gonzales will be featured
on Daft Punk.

To these 4 scores provided by each model, we add 16 binary features that encode

the rank of each token tag according to one model (does 〈tag〉 has rank 〈i〉 ?). We also

compute the score difference given by a model to any two possible tag pairs, leading to

6 more scores. Since we have 3 models, we end up with 78 features.
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5.2.6.3 Training

We use scikit-learn [116] to train a Random Forest classifier 6 on the 29k men-

tions of the CONLL training data. We adopted this training material to ensure a fair

comparison with other systems that are typically trained on this dataset. Another possi-

bility would be to split WiNER into two parts, one for computing features, and the other

for training the classifier. We leave this investigation as future work. Because of the

small feature set we have, training such a classifier is very fast.

5.2.6.4 Results

We measure the usefulness of the complete WiNER resource by varying the size of

the training material of both language models and word embeddings, from 5M tokens

(the maximum size the LSTM-CRF mode could process) to the full WiNER resource

size.

CO ON MU TW WE WG ODF1
5M 84.3 72.0 78.7 39.8 61.9 70.2 68.1

50M 86.8 75.6 82.3 44.9 64.7 73.8 71.7
500M 88.9 76.2 84.8 45.8 66.6 75.5 74.1

All 90.5 76.9 85.9 46.6 65.3 77.0 74.7

Table 5.IV – Influence of the portion of WiNER used in our 2-stage approach for the
CONLL test set, using the segmentation produced by LSTM-CRF+WiNER(5M). These
results have to be contrasted with the last line of Table 5.II.

To this end, we provide the performance of our 2-stage approach on CONLL, us-

ing the segmentation output by LSTM-CRF+WiNER(5M). Results are reported in Ta-

ble 5.IV. As expected, we observe that computing features on the same WiNER(5M)

dataset exploited by LSTM-CRF leads to a notable loss overall (ODF1 of 68.1 versus

73.0), while still outperforming LSTM-CRF trained on CONLL only (ODF1 of 65.0).

More interestingly, we observe that for all test sets, using more of WiNER leads to

6. We tried other algorithms provided by the platform with less success.
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better performance, even if a plateau effect emerges. Our approach does improve sys-

tematically across all test sets by considering 100 times more WiNER data than what

LSTM-CRF can handle in our case. Using all of WiNER leads to an ODF1 score of 74.7,

an increase of 1.7 absolute points over LSTM-CRF+WiNER(5M).

CRF Illinois Senna LSTM-CRF
CONLL 73.6 (+6.6) 74.4 (+6.1) 70.1 (+5.8) 69.7 (+4.7)
+3M - 74.2 (+4.7) 70.8 (+3.8) 74.8 (+2.8)
+max 73.0 (+2.8) 74.3 (+4.3) 72.0 (+5.8) 74.7 (+1.7)

Table 5.V – ODF1 score of native configurations, and of our 2-stage approach (RF) which
exploits the full WiNER corpus. Figures in parentheses indicate absolute gains over the
native configuration.

Table 5.V reports the improvements in ODF1 of our 2-stage approach (RF), which

uses all of the WiNER material and the segmentation produced by several native sys-

tems. Applying our 2-stage approach systematically improves the performance of the

native configuration. Gains are larger for native configurations that cannot exploit a

large quantity of WiNER. We also observe that the 2-stage approach delivers roughly

the same level of performance (ODF1 ' 74) while using the segmentation produced by

the Illinois and the LSTM-CRF systems.

5.2.6.5 Error Analysis

Table 5.VI indicates the number of disagreements between the LSTM-CRF+WiNER(5M)

system (columns) and the 2-stage approach (rows). The table also shows the percentage

of times the latter system was correct. For instance, the bottom left cell indicates that, on

38 distinct occasions, the classifier changed the tag PER proposed by the native system

to ORG and that is was right in 85% of these occasions. We exclude errors made by

both systems, which explains the low counts observed (1.7% is the absolute difference

between the two approaches).

We observe that in most cases the classifier makes the right decision when an entity

tag is changed from PER to either LOC or ORG (86% and 85% respectively). Most often,
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PER LOC ORG

PER - 50% [12] 25% [12]
LOC 86% [20] - 21% [28]
ORG 85% [38] 81% [19] -

Table 5.VI – Percentage of correctness of the 2-stage system (rows) when tagging a
named-entity differently than the LSTM-CRF+WiNER(5M) (columns). Bracketed fig-
ures indicate the average number of differences over the out-domain test sets.

re-classified entities are ambiguous ones. Our approach chooses correctly mostly by

examining the context of the mention. For instance, the entity Olin in example (a) of

Figure 5.2 is commonly known as a last name. It was correctly re-classified as ORG

thanks to its surrounding context. Replacing its by his in the sentence makes the classifier

tag the entity as PER. Similarly, the entity Piedmont in example (b) was re-classified as

ORG, although it is mostly used as the region name (even in Wikipedia), thanks to the

context-based CONT and MIX features that identify the entity as ORG (0.61 and 0.63

respectively).

(a) . . . would give [Olin]PER→ORG access to its production processes . . .

(b) Wall Street traders said [Piedmont]LOC→ORG shares fell partly . . .

(c) ? . . . performed as a tenor at New York City ’s [Carnegie Hall]ORG→LOC.

Figure 5.2 – Example of entities re-classified by our 2-stage approach.
Misclassification errors do occur, especially when the native system tagged an entity

as ORG. In such cases, the classifier is often misled by a strong signal emerging from one

family of features. For instance, in example (c) of Figure 5.2, both MIX — p(ORG) =

0.39 vs. p(LOC) = 0.33 — and EMB — p(ORG) = 0.39 vs. p(LOC) = 0.38 — features

are suggesting that the entity should be tagged as LOC, but the CONT signal — p(LOC) =

0.63 vs. p(ORG) = 0.1 — strongly impacts the final decision. This was to be expected

considering the simplicity of our classifier, and leaves room for further improvements.
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5.3 Experiments on WiFiNE

In order to test the WiFiNE, we pick up the state of the art model (at that time)

and re-trained on WiFiNE. We compare the results with that of models that are trained

on distant or weak supervision data (including Wikipedia). Experiments on WiFiNE

as training data are limited comparing with that on WiNER because fine-grained entity

typing is less popular than NER in the community (e.g. few labeled data to support the

task). However, in the next chapters we extensively explore WiFiNE as a resource for

classic and contextualized word representation learning. The next two sections describe

the experimental protocol, while the subsequent ones state ans analyze the results we

obtain.

5.3.1 Reference System

Figure 5.3 – An illustration of the attentive encoder neural model of Shimaoka et al.
[143] predicting fine-grained semantic types for the mention “New Zealand” in the ex-
pression “a match series against New Zealand is held on Monday”. source [143]

In all experiments, we deploy the off the shelf neural network model of [143]. Given

a mention in its context, the model uses three representations in order to associate the

mention with the correct types.
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— Mention representation: the average of the mention words embedding.

— Context representation: a Bi-LSTM model is applied on the left and right con-

text of the mention, then an attention layer is placed on top of the model.

— Feature Representation: Learning of the representations of hand-crafted fea-

tures.

We trained the tagger on various subsets of WiFiNE as described in the next section.

We use the default configuration of the tagger, except the batch size which we set to 100

rather than 1000 and the learning rate that we changed from 0.001 to 0.0005 7

5.3.2 Datasets and Evaluation Metrics

We evaluate the model on two manually annotated benchmark: FIGER (GOLD) [91]

and ONTONOTES [58]. The first consist of 18 news reports annotated following FIGER

scheme, while the second are 77 documents from the OntoNotes 5.0 [163] test set an-

notated according to the GILLICK scheme. Following previous works, we used Strict,

loose Macro-averaged, and loose Micro-averaged F1 scores as metrics for evaluation.

Strict measures exact match, while losses metrics measure macro/micro partial matches

between gold and system labels. Macro is the average of F1 scores on all types, while

Micro is the harmonic mean. Table 5.VII and 5.IX compared the performance ob-

tained by the resulting models with those of previous works on FIGER (GOLD) and

ONTONOTES test set respectively. We perform an ablation test on our 4-step process of

Section 4.2.2 by training the model on 7 variants of WiFiNE:

— Line 1-3: hyperlinks + proper name coreference mentions (step 1 and 2 of Sec-

tion 4.2.2 )

— Line 4: hyperlinks + proper name + nominal coreference mentions (step 1-3 of

Section 4.2.2).

— Line 5: hyperlinks + proper name + pronominal coreference mentions (step 1, 2

and 4 of Section 4.2.2).

— Line 6-7: hyperlinks + proper name + nominal + pronominal coreference men-

tions (all steps).

7. We observed better results on the held-out development set.
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The goal is to validate if proper name, nominal and pronominal coreference mentions

are necessary for fine-grained entity typing performance. For each variant, we report

the average score on 5 randomly generated subsets. To be comparable with previous

works, we used training material up to 4 million mentions, and leave experiments on the

usefulness of the full WiFiNE for future work.

5.3.3 Results on FIGER (GOLD)

Previous works trained their models on 2.6 million mentions obtained by mapping

hyperlinks in Wikipedia articles to Freebase 8.

Models Strict Macro Micro
FIGER [91] 52.30 69.90 69.30

FIGER+PLE [136] 59.90 76.30 74.90
Attentive [143] 59.68 78.97 75.36

Abhishek et al. [2] 65.80 81.20 77.40
Proper Nominal Pronominal This work

(1) 1 0 0 61.99 76.20 75.12
(2) 2 0 0 63.77 77.56 76.25
(3) 3 0 0 63.41 78.03 76.32
(4) 1 1 0 64.83 79.26 77.36
(5) 1 0 1 63.06 79.00 76.77
(6) 1 1 1 65.19 79.59 77.55
(7) 2 1 1 66.07 79.94 78.21

Table 5.VII – Results of the reference system trained on various subsets of WiFiNE,
compared to other published results on the FIGER (GOLD) test set. Training data (in
millions) include: proper name; nominal and pronominal mentions.

Our model trained on 4M mention (line 7) outperforms the initial model of [143] by

6.2, 1.0 and 2.9 on strict, micro, macro F1 scores, and the state-of-the-art of [2] by 0.3

and 0.9 strict and macro F1 scores. First, we observe that using hyperlinks and proper

name mentions (line 3) for training improves the performance of the original model

of [143] that uses data driven from hyperlinks only. Second, we notice that models

trained on a mix of proper name and nominal (line 4) or pronominal (line 5) coreference

8. The dataset is distributed by [136]
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mentions outperform the model trained on proper name mentions (line 2) solely. Third,

we observe that the combination of 3 mention types (line 6-7) is required in order to

outperform the state-of-the-art, which validate our 4-step method of Section 4.2.2.

Label type FIGER (GOLD) WiFiNE
/person 31.5% 16.6%
/organization 16.9% 7.7%
/location 13.2% 13.6%
/location/city 5.0% 4.3%
/organization/sports_team 4% 1.0%

Table 5.VIII – Comparison of the distribution of the top 5 types present in FIGER
(GOLD) test set to that of WiFiNE.

Table 5.VIII shows the 5 most frequent types the FIGER (GOLD) test set compared

to those in WiFiNE. FIGER (GOLD) is a small dataset, it contains only 523 mentions

annotated with 41 different labels. We observe that the type distribution in this dataset

follows a zipfian curve, while the distribution of types in WiFiNE is similar to a nor-

mal distribution (Figure 4.11). Figure 5.4 illustrates some errors committed on FIGER

(GOLD) dataset. Error mostly occur on mentions with labels that don’t belong to a

single path (example a), and on ambiguous mentions (example b).

(a) . . . bring food for the employees at [Safeway] . . .
Gold: /location /location/city

/organization /organization/company
Pred: /organization /organization/company

(b) With the huge popularity of [EyeFi] cards . . .
Gold: /product
Pred: /organization

Figure 5.4 – Examples of mentions erroneously classified in FIGER (GOLD) dataset.

5.3.4 Results on OntoNotes

Ren et al. [136], Shimaoka et al. [143] and Abhishek et al. [2] trained their models
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on newswire documents present in OntoNotes [163], where entity mentions were auto-

matically identified and linked to Freebase using DB-pedia Spotlight [38]. On

the other hand, Gillick et al. [58] and Yogatama et al. [173] used an entity linker to auto-

matically annotate 113k news documents. Results on the ONTONOTES dataset validate

the observation we obtained on FIGER (GOLD). Models trained on proper names in

addition to nominal (line 4 in Table 5.IX) or pronominal (line 5) coreference mentions

is better than only training on proper names (line 2). In addition, training on the combi-

nation of all coreference mentions (line 6-7) systematically improves performances.

Models Strict Macro Micro
Gillick et al. [58] N/A N/A 70.0

K-WASABIE [173] N/A N/A 72.98
FIGER+PLE [136] 57.20 71.50 66.10

Attentive [143] 51.74 70.98 64.91
Abhishek et al. [2] 52.20 68.50 63.30

Proper Nominal Pronominal This work
(1) 1 0 0 55.25 68.21 61.49
(2) 2 0 0 57.05 71.96 66.03
(3) 3 0 0 57.47 72.87 66.97
(4) 1 1 0 57.17 73.07 67.30
(5) 1 0 1 57.50 73.08 67.35
(6) 1 1 1 57.80 73.60 67.82
(7) 2 1 1 58.05 73.72 67.97

Table 5.IX – Results of the reference system trained on various subsets of WiFiNE, com-
pared to other published results on the ONTONOTES test set. Training data (in millions)
includes: proper name; nominal and pronominal mentions.

We outperform best results reported by previous works on strict, macro F1 scores by

0.9 and 2.3 respectively. On the other hand, we underperform [58] and [173] and by

3 and 5 point on the micro metric respectively. In [58, 173], the authors do not report

results on strict and macro metrics and neither their models nor their training data are

available. Consequently, we couldn’t identify the cause of the gap on the micro metric,

but we report some improvement over [143] model on the loose metrics. A potential

reason for this gap is that the text genre of their training data and that of ONTONOTES is
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the same (newswire). Our models were trained on randomly picked Wikipedia sentences

(out of domain). Also, we note that in order to generate their corpus, [58, 173] applied

filtering rules that are responsible for the loss of 45% of the mentions. We have no such

heuristic here, but we still observe competitive performances.

Label type Onto Test WiFiNE
/other 44.0% 20.0 %
/organization 10.5% 6.3 %
/person 8.4% 17.6%
/organization/company 7.7% 2.3%
/location 7.6% 11.8%

Table 5.X – Comparison of the distribution of the top 5 types present in ONTONOTES

test set to that of WiFiNE.

trouble
addition
personal reasons
some complications
additional evidence
diplomatic relations
a modest pretax gain
the active role taken
in the affairs of United
quotas on various economic indicators
the invitation of the Foreign Affairs Institute
amounts related to areas where deposits are received

Table 5.XI – Examples of non-entity mentions annotated as /other in the of OntoNotes
test set.

Table 5.X shows the 5 most frequent types in the ONTONOTES dataset and in WiFiNE.

Although ONTONOTES is much larger the FIGER (GOLD) 9, we still observe that the

distribution of types in this dataset is zipfian. We also note that the type /other is

over-represented (44%) in this dataset, because Gillick et al. [58] annotated all non-

entity mentions (examples in table 5.XI) as /other. We observe that 73% of the wrong

9. It contains roughly 9000 mentions annotated with 88 different types
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decisions that our model made on ONTONOTES are committed on this type. In WiFiNE,

/other always refers to an entity mention, and in most cases the mention has an addi-

tional level two and three labels.

5.4 Conclusion

In the first part of this chapter, we perform a qualitative analysis of WiNER as a

training data by comparing our corpus with those of other works. In addition, we analyze

the behavior of various approaches when training data is enhanced by subsets from our

corpus. More precisely, we evaluated the impact of WiNER our corpus on 4 reference

NER systems with 6 different NER benchmarks. The LTSM-CRF system of [78] seems

to be the one that benefits the most from WiNER overall. Still, shortage of memory or

lengthy training times prevent us from measuring the full potential of our corpus. Thus,

we proposed an entity-type classifier that exploits a set of features computed over an

arbitrary large part of WiNER. Using this classifier for labelling the types of segments

identified by a reference NER system yields a 2-stage process that further improves

overall performance. WiNER and the classifier we trained are available at http://

rali.iro.umontreal.ca/rali/en/winer-wikipedia-for-ner.

In the second part of this chapter, we evaluated the impact of WiFiNE on a neu-

ral network tagging system based on 2 human made benchmarks. Experiments shows

state-of-the-art performances on both benchmarks, when WiFiNE is used as training ma-

terial. Our analysis on both datasets leads to the following observations. First, enriching

Wikipedia articles with proper names, nominal and pronominal mentions systematically

leads to better performance, which validates our 4-step approach. Second, the correla-

tion between the train and test type distribution is an important factor to entity typing

performance. Third, models could benefit from an example selection strategy based on

the genre of the test set.
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CHAPTER 6

ROBUST LEXICAL FEATURES FOR IMPROVED NEURAL NETWORK

NAMED-ENTITY RECOGNITION

6.1 Overview

In the previous chapter, we explored the typical use of distant supervision data as

training materiel for supervised models. However, the emerging of representation learn-

ing techniques have open door for new usages of any sort of data. One can use the data

to learn word representations on massive amount of data, then to plug these features in

a supervised model for any NLP task. While most research focus on unsupervised word

representation learning, we were curious about the ability to learn useful representations

from distant supervision data. This chapter is an endeavor to learn a special type of clas-

sic word embeddings (such as word2vec [104]) from entity type annotation of WiFiNE.

The content of this chapter was published in:

“Abbas Ghaddar and Phillippe Langlais. Robust Lexical Features for Improved Neu-

ral Network Named-Entity Recognition. In Proceedings of the 27th International Con-

ference on Computational Linguistics, pages 1896–1907, 2018”

Neural network approaches to Named-Entity Recognition (NER) reduces the need

for carefully hand-crafted features. While some features do remain in state-of-the-art

systems, lexical features have been mostly discarded, with the exception of gazetteers.

In this work, we show that that this is unfair: lexical features are actually quite useful. We

propose to embed words and entity types into a low-dimensional vector space we train

from annotated data produced by distant supervision. From this, we compute offline a

feature vector for representing each word. When used with a vanilla RNN model, this

representation yields substantial improvements. We establish a new state-of-the-art F1

score of 87.63 on ONTONOTES 5.0, while remaining very competitive on the CONLL-

2003 dataset.



6.2 Introduction

Named-Entity Recognition (NER) is the task of identifying textual mentions and

classifying them into a predefined set of types. Various approaches have been proposed

to tackle the task, from hand-crafted feature-based machine learning models like condi-

tional random fields [50] and perceptron [132], to deep neural models [33, 98, 151].

Word representations [104, 157], also known as word embeddings, are a key ele-

ment for multiple NLP tasks including NER [33]. Due to the small amount of reference

named-entity annotated data, embeddings are used to extend, rather than replace, hand-

crafted features in order to obtain state-of-the-art performance [78].

Recent studies [147, 168] have explored methods for supplying deep sequential tag-

gers with complementary features to standard embeddings. Peters et al. [119] and Tran

et al. [156] tested special embeddings extracted from a neural language model (LM)

trained on a large corpus. LM embeddings capture context-dependent aspects of word

meaning using future (forward LM) and previous (backward LM) context words. When

this information is added to standard features, it leads to significant improvements in

NER. Also, Chiu and Nichols [30] showed that external knowledge resources (namely

gazetteers) are crucial to NER performance. Gazetteer features encode the presence of

word n-grams in predefined lists of NEs.

In this work, we discuss some of the limitations of gazetteer features and propose an

alternative lexical representation that is trained offline and that can be added to any neural

NER system. In a nutshell, we embed words and entity types into a joint vector space

by leveraging a large amount of automatically annotated mentions with entity types (120

labels). From this vector space, we compute for each word a 120-dimensional vector,

where each dimension encodes the similarity of the word with an entity type. We call

this vector an LS representation, for Lexical Similarity. When included in a vanilla

LSTM-CRF NER model, LS representations lead to significant gains. We establish a

new state-of-the-art F1 score of 87.63 on ONTONOTES 5.0, and obtain near state-of-the-

art performance on the CONLL-2003 dataset, without making use of LM embeddings

as features.

73



We first motivate our work in Section 6.3. We present how we compute our LS

vectors in Section 6.4. We describe our system in Section 6.5 and report results in

Section 6.6. In Section 6.7 we discuss related works, before concluding in Section 7.7.

6.3 Motivation

Gazetteers are lists of entities that are associated with specific NE categories. They

are widely used as a feature source in NER, and have been successfully included in

feature-based [132] and neural [30] models. Typically, lists of entities are compiled

from structured data sources such as DBpedia [9] or Freebase [20]. The surface form of

the title of a Wikipedia article, as well as aliases and redirects are mapped to an entity

type using the object_type attribute of the related DBpedia (or Freebase) page.

Figure 6.1 – An example from Chiu and Nichols [30] that show the limitation of binary
encoded gazetteer features. For instance, the word China appear as entry in 4 lists of
named entities, in real world it mostly refer to the country. However, binary features
evenly attribute the same weight for the 4 classes. source [30]

Ratinov and Roth [132] use this methodology to compile 30 lists of fine-grained

entity types extracted from Wikipedia, while Chiu and Nichols [30] create 4 gazetteers

that map to CoNLL categories (PER, LOC, ORG and MISC). Despite their importance,

gazetteer-based features suffer from a number of limitations.

— Binary representation. As shown in Figure 6.1, gazetteer features encode only

the presence of an n-gram in each list and omit its relative frequency. For exam-

ple, the word « France » can be used as a person, an organization, or a location,
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while it likely refers to the country most of the time. Binary features cannot

capture this preference.

— Generation. At test time, we need to match every n-gram (up to the length of

the longest lexicon entry) in a sentence against entries in the lexicons, which is

time consuming. In their work, Chiu and Nichols [30] use 4 lists that count over

2.3M entries.

— Non-entity words. Gazetteer features do not capture signal from non-entity

words, while earlier feature-based models strived to encode that some words

(or n-grams) trigger specific entity types. For instance, words such as « eat »,

« directed » or « born » are words that typically appear after a mention of type

PER.

To overcome these limitations, we propose an alternative approach where we embed

annotations mined from Wikipedia into a vector space from which we compute a fea-

ture vector that represents a word. This vector compactly and efficiently encodes both

gazetteer and lexical information. Note that at test time, we only have to feed our model

this feature vector, which is efficient.

6.4 Our Method

6.4.1 Corpus Description

In this work, we use WiFiNE, described in Chapter 4 as the source of annotations.

In addition, we augmented the corpus with automatically annotated with 7 temporal

and numeric entity types (such as Currency, Ordinal, etc...). The overall consists of

157.4M entity mentions that are labelled with 120 fine-grained entity type folowing us-

ing FIGER [91] annotation scheme.

6.4.2 Embedding Words and Entity Types

We used this very large quantity of automatically annotated data for jointly embed-

ding words and entity types into the same low-dimensional space. The key idea consists

in learning an embedding for each entity type using its surrounding words. For instance,
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the embedding for /product/software will be trained using context words that

surround all entities that were (automatically) labelled as /product/software in

Wikipedia. In practice, we found that simply concatenating a sentence (v1) with its an-

notated version (v2), as illustrated in Figure 6.2, offers a simple but efficient way of

combining words and entity types so that embeddings can make good use of them.

(v1) On October 9, 2009, the Norwegian Nobel Committee announced that
Obama had won the 2009 Nobel Peace Prize.
(v2) On /date, the /organization/government_agency announced that
/person/politician had won the /award.

Figure 6.2 – Example of the two variants of a given sentence.

We use the FastText toolkit [19] to learn the uncased embeddings for both words

and entity types. We train a skipgram model to learn 100-dimensional vectors with a

minimum word frequency cutoff of 5, and a window size of 5. This configuration (rec-

ommended by the authors) performs the best in the experiments described in Section 6.6.

Since FastText learns representations of character n-grams, it has the ability to produce

vectors for unknown words.

Figure 6.3 illustrates a T-SNE [158] two-dimensional projection of the embedding

of 6 entity types and a sample of 1500 words. Entity type embeddings are marked by

big Xs, while circles indicate words. For visualization proposes, we only plot single-

word mentions that were annotated with one of those 6 types. Words were randomly

and proportionally sampled according to the frequency of each entity type. In addition,

words have the color associated with the most frequent type they were annotated with in

our resource.

We observe that mentions often annotated by a given type in our resource tend to

cluster around this entity type. For instance, « firefox » is close to the type /product

/software, while « enzyme » is close to the biology entity type. We also notice

that words that are labelled with different types tend to appear between types they were

annotated with. For instance, « gpx2 », which is used both as a software and as a gene,

has its embedding appear in between /product/software and /biology.
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Figure 6.3 – Two-dimensional representation of the vector space which embeds both
words and entity types. Big Xs indicate entity types, while circles refer to words (i.e.
named entities, here).

We inspected some of the words plotted in Figure 6.3, and found that « jrun » and

« xp » were incorrectly labelled as /product/weapon during the annotation process.

But since these words are seen in a software context, their embeddings are closer to the

/product/software embedding than the /product/weapon one. We feel this

tolerance to noise is a desirable feature, one that allows a better distant supervision.

Last, we also observe the tendency of rare words to cluster around their entity type.

For instance, « iota » and « x.org » are embedded near their respective types, despite the

fact that they appear less than 30 times in the version of Wikipedia we use.

6.4.3 LS Representation

This joint vector space only serves the purpose of associating to each word a LS

representation. A LS representation is a 120-dimensional vector where the ith coefficient
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is a value in the [−1,+1] interval, equal to the cosine similarity 1 between the word

embedding and the embedding of the ith entity type (we have 120 types).

Word Entity Type Similarity

hilton
/building/hotel 0.58
/building/restaurant 0.46
/person/actor 0.37

gpx2
/biology 0.69
/product/software 0.56

jrun
/product/software 0.64
/product/weapon 0.23

dammstadt
/location/city 0.45
/location/railway 0.44

located
/location 0.47
/location/city 0.44

directed
/person/director 0.60
/art/film 0.55

in
/date 0.58
/location/city 0.54

won
/award 0.53
/event/sports_event 0.53

Table 6.I – Topmost similar entity types to a few single-word mentions (first four) and
non-entity words (last four).

Table 6.I shows the topmost similar entity types for proper names (first four rows)

and common words (last four rows). We observe that ambiguous mentions (those an-

notated with several types) are adequately handled. For instance, the LS representation

of the word « hilton » encodes that it more often refers to a hotel or a restaurant than

to an actress. Also, we observe that entity words that are either not or rarely anno-

tated in our resource are still adequately associated with their right type. For instance,

« dammstadt », which appears only 5 times in our corpus, and which refers to the Damm

city in Germany, is most similar to /location/city and /location/railway.

Interestingly, it turns out that this mention does not have its page in English Wikipedia.

Furthermore, we observe that non-entity context words have a strong similarity to

1. The cosine similarity outperforms other metrics in our experiments.
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types they precede or succeed. For instance the verb « directed » is very close to /person

/director, an entity type that usually precedes it, and to /art/film, that usually

follows it. Likewise, the preposition « in » is near /date and /location/city,

which frequently follow "in".

6.4.4 Strength of the LS Representation

To summarize, we propose a compact lexical representation which is computed of-

fline, therefore incurring no computation burden at test time. This representation is

tolerant to the inherent noise of distant supervision. It encodes the preference of an

entity-mention word for a given type, an information out of reach from binary gazetteer

features. It also lends itself nicely to the inclusion of lexical features that have been suc-

cessfully used in earlier feature-based systems [97, 132]. Also, because entity types are

well represented in our resource, their embeddings are robust: Our representation does

accommodate unfrequent words.

6.5 Our NER System

In order to test the efficiency of our lexical feature representation, we implemented a

state-of-the-art NER system we now describe.

6.5.1 Bi-LSTM-CRF Model

We adopt the popular Bi-LSTM-CRF architecture (Figure 6.4), a de facto baseline in

many sequential tagging tasks [78, 147, 151].

6.5.2 Features

In addition to the LS vector, we incorporate publicly available pre-trained embed-

dings, as well as character-level, and capitalization features. Those features have been

shown to be crucial for state-of-the-art performance.
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Figure 6.4 – Main architecture of our NER system.

6.5.2.1 Word Embeddings

We experimented with several publicly available word embeddings, such as Senna [33]

Word2Vec [104], GloVe [118], and SSKIP [175]. We find that the latter performs the best

in our experiments. SSKIP embeddings are 100-dimensional case sensitive vectors that

where trained using a n-skip-gram model [175] on 42B tokens. These embeddings were

previously used by [78, 151], who report good performance on CONLL, and state-of-

the-art results on ONTONOTES 5.0 respectively. Note that these pre-trained embeddings

are adjusted during training.

6.5.2.2 Character Embeddings

Following [78], we use a forward and a backward LSTM to derive a representation

of each word from its characters. A character lookup table is randomly initialized, then

trained at the same time as the Bi-LSTM model sketched in Section 6.5.1. Figure 6.5

illustrates our architecture to generate the character-level representation of each word.

First, a character lookup table is randomly initialized. We use a forward and a backward

LSTM to derive a representation of each word from its characters. This approach has
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been used in the recent work of [78].

Figure 6.5 – Character representation of the word « Roma » given to the bidirectional
LSTM of Figure 6.4.

6.5.2.3 Capitalization Features

Similarly to previous works, we use capitalization features for characterizing certain

categories of capitalization patterns: allUpper, allLower, upperFirst, upperNotFirst

, numeric or noAlphaNum. We define a random lookup table for these features, and

learn its parameters during training.

6.5.2.4 LS Features

Contrarily to previous features, lexical vectors are computed offline and are not ad-

justed during training. We found useful in practice to apply a MinMax scaler in the

range [−1,+1] to each LS vector we computed; thus, [..,0.095, ..,0.20, ..,0.76, ..] be-

comes [..,−1, ..,−0.67, ..,1, ..].
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6.6 Experiments

6.6.1 Data and Evaluation

We consider two well-established NER benchmarks: CONLL-2003 and ONTONOTES

5.0. Table 6.II provides an overview of the two datasets. As we can see, ONTONOTES

is much larger. For both datasets, we convert the IOB encoding to BILOU, since pre-

vious work [132] found the latter to perform better. In keeping with others, we report

mention-level F1 score using the conlleval script 2.

The CONLL-2003 NER dataset [154] is a well known collection of Reuters newswire

articles that contain a large portion of sports news. It is annotated with four entity types:

Person (PER), Location (LOC), Organization (ORG) and Miscellaneous (MISC). The four

entity types are fairly evenly distributed, and the train/dev/test datasets present a similar

type distribution.

The ONTONOTES 5.0 dataset [66, 124] includes texts from five different genres:

broadcast conversation (200k), broadcast news (200k), magazine (120k), newswire (625k),

and web data (300k). This dataset is annotated with 18 entity types, and it’s much larger

than CONLL. Following previous researches [30, 151], we use the official train/dev/test

split of the CoNLL-2012 shared task [123]. Also, we exclude (both during training and

testing) the New Testaments portion as it does not contains gold NE annotations.

6.6.2 Training and Implementation

Training is carried out by mini-batch stochastic gradient descent (SGD) with a mo-

mentum of 0.9 and a gradient clipping of 5.0. The mini-batch is 10 for both datasets,

and learning rates are 0.009 and 0.013 for CONLL and ONTONOTES respectively. More

sophisticated optimization algorithms such as AdaDelta [176] or Adam [75] converge

faster, but none outperformed SGD in our experiments.

Our system uses a single Bi-LSTM layer at the word level whose hidden dimensions

are set to 128 and 256 for CONLL and ONTONOTES respectively. For both models, the

character embedding layer is 25, and the hidden dimension of the forward and backward

2. http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt
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Dataset Train Dev Test
CONLL #tok 204,567 51,578 46,666

#ent 23,499 5,942 5,648
ONTO #tok 1,088,503 147,724 152,728

#ent 81,828 11,066 11,257

Table 6.II – Statistics of the CONLL-2003 and ONTONOTES 5.0 datasets. #tok stands
for the number of tokens, and #ent indicates the number of named-entities gold anno-
tated.

character LSTMs are set to 50. To mitigate overfitting, we apply a dropout mask [148]

with a probability of 0.5 on the input and output vectors of the Bi-LSTM layer. For both

datasets, we set capitalization embeddings to 25 and trained the models up to 50 epochs.

We tuned the hyper-parameters by grid search, and used early stopping based on the

performance on the development set. We varied dropout ([0.25,0.5,0.65]), hidden units

([50,128,256,300]), capitalization ([10,20,30]) and chars ([25,50,100]) embedding di-

mensions, learning rate ([0.001,0.015] by step 0.002), and optimization algorithms and

fixed the other hyper-parameters. We implemented our system using the Tensorflow [1]

library, and ran our models on a GeForce GTX TITAN Xp GPU. Training requires about

1.5 hours for CONLL and 5 hours for ONTONOTES.

6.6.3 Results on Dev

Table 6.III shows the development set performance of our final models on each

dataset compared with the work of Chiu and Nichols [30]. The authors use a architecture

similar to ours, but use a binary gazetteer feature set, while we use our LS representa-

tion. Since our systems involve random initialization, we report the mean as well as

the standard deviation over five runs. The improvements yielded by our model on the

CONLL dataset are significant although modest, while those observed on ONTONOTES

are more substantial. We also observe a lower variance of our system over the 5 runs.
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CONLL ONTO
C&N. 2016 94.03 (± 0.23) 84.57 (± 0.27)
Our model 94.53 (± 0.10) 86.20 (± 0.14)

Table 6.III – Development set F1 scores of our best hyper-parameter setting compared
to the results reported by [30].

6.6.4 Results on CONLL

Table 6.IV reports the our model’s performance 3 on the CONLL-2003 test set, as

well as the performance of systems previously tested on this test set (the figures are those

published by the authors). Because of the small size of the training set, some authors

[30, 119, 168] incorporated the development set as a part of training data after tuning the

hyper-parameters. Consequently, their results are not directly comparable, so we do not

report them.

First, we observe that our model significantly outperforms models that use extensive

sets of hand-crafted features [88, 132] as well as the the system of [97] that uses NE and

Entity Linking annotations to jointly optimize the performance on both tasks. Second,

our model outperforms as well other NN models that only use standard word embed-

dings, which indicates that our lexical feature vector is complementary to standard word

embeddings.

Third, our system delivers competitive performance with state-of-the-art models that

use a more complex architecture and more elaborate features. Tran et al. [156] use

three layers of Stacked Residual RNN (Bi-LSTM) with bias decoding. Our model is

much simpler and faster. They report a performance of 90.43 when using an architecture

similar to ours. The two systems that have slightly higher F1 scores on the CONLL

dataset both use embeddings obtained from a forward and a backward Language Model

trained on the One Billion Word Benchmark [25]. They report gains between 0.8 and

1.2 points by using such LM embeddings, which suggests that LS lexical vectors are

indeed efficient. Unfortunately, due to time and resource constraints 4, we were not able

3. Standard deviation on the test set is reported in Table 6.VII due to space constraints in Table 6.IV
4. LM embeddings are not publicly available, and according to Jozefowicz et al. [71], they required
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Model L G C E c M S F1
Finkel et al. [50] + + + • • • • 86.86
Ratinov and Roth [132] + + + • • • • 90.88
Lin and Wu [88] + + + • • • • 90.90
Luo et al. [97] + + + • • • • 91.20
Collobert et al. [33] • + + + • • • 89.56
Huang et al. [69] • • + + + • • 90.10
Lample et al. [78] • • + + + • • 90.94
Ma and Hovy [98] • • + + + • • 91.21
Shen et al. [142] • • + + • • • 90.89
Strubell et al. [151] • • + + • • • 90.54
Tran et al. [156] • • + + + + • 91.69
Liu et al. [93] • • + + + + • 91.71
This work • + + + + • + 91.61

Table 6.IV – F1 scores on the CONLL test set. The first four systems are feature-based,
the others are neuronal. The LGCEcMS column indicates the feature configuration of
each system. L stands for Lexical feature, G for Gazetteers, C for Capitalization, E for
pre-trained Embeddings, c for character embeddings, M for language Model Embeddings,
and S for the proposed LS feature representation. + indicates that the model use the
feature set.

Model BC BN MZ NW TC WB
Finkel and Manning [49] 78.66 87.29 82.45 85.50 67.27 72.56
Durrett and Klein [45] 78.88 87.39 82.46 87.60 72.68 76.17
Chiu and Nichols [30] 85.23 89.93 84.45 88.39 72.39 78.38
This work 86.25 90.41 85.87 89.67 75.41 80.39

Table 6.V – Per-genre F1 scores on ONTONOTES (numbers taken from Chiu and Nichols
[30]). BC = broadcast conversation, BN = broadcast news, MZ = magazine, NW =
newswire, TC = telephone conversation, WB = blogs and newsgroups.

to measure whether both features complement each other.

6.6.5 Results on ONTONOTES

Table 6.VI reports the F1 score of our system compared to the performance reported

by others on the ONTONOTES test set. To the best of our knowledge, we surpass previ-

three weeks to train on 32 GPUs.
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ously reported F1 scores on this dataset. In particular, our system significantly outper-

forms the Bi-LSTM-CNN-CRF models of [30] and [151] by an absolute gain of 1.35

and 0.64 points respectively. Less surprisingly, it surpasses systems with hand-crafted

features, including Ratinov and Roth [132] that use gazetteers, and the system of Dur-

rett and Klein [45] which uses coreference annotation in ONTONOTES to jointly model

NER, entity linking, and coreference resolution tasks.

Model L G C E c M S F1
Finkel and Manning [49] + + + • • • • 82.42
Ratinov and Roth [132] + + + • • • • 84.88
Passos et al. [115] + + + • • • • 82.24
Durrett and Klein [45] + + + • • • • 84.04
Chiu and Nichols [30] • + + + + • • 86.28
Shen et al. [142] • • + + + • • 86.52
Strubell et al. [151] • • + + + • • 86.99
This work • + + + + • + 87.63

Table 6.VI – F1 scores on the ONTONOTES test set. The first four systems are feature-
based, the following ones are neuronal. See Table 6.IV for an explanation of the
LGCEcMS column.

The ONTONOTES benchmark is annotated with 18 types (e.g. LAW, PRODUCT) and

contains many rare words, especially in the Web data collection. Chiu and Nichols [30]

note that the 4-class gazetteer they used yielded marginal improvements on ONTONOTES

, contrarily to CONLL. In particular, they observe that mentions that match LOC entries

in their gazetteer often match GPE, NORP and lists. They suggest that a finer-grained

gazetteer could improve the performance of their system on ONTONOTES. Our results

confirm this, since we use 120 types.

We further detail the gains we observed for each sub-collection of texts in the test set.

Table 6.V reveals that major improvements over [30]’s model are on noisier collections

such as telephone conversations (+3 points) and blogs or newsgroups (+2 points). Those

type of texts are characterized by a large set of infrequent words, for which classical

embeddings are typically poorly trained. Our approach does not seem to suffer from this

problem as severely, as discussed in Section 6.3.
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6.6.6 Ablation Results

In this experiment, we directly compare the LS representation with the SSKIP word-

embedding feature set. In order to maintain a high level of performance, both character

and capitalization features are used in all configurations. We want to point out that LS

vectors are not adapted during training, contrarily to the SSKIP embeddings. Similarly

to Section 6.6.3, we report in Table 6.VII, for each feature configuration, the average F1

score as well as the standard deviation over five runs.

We observe that on both CONLL and ONTONOTES, the SSKIP model outperforms

our feature vector approach by 0.65 F1 points on average. The difference is not has high

as we first expected, especially since the SSKIP model is adjusted during training, while

our representation is not. Still, LS representations seem to encode a large portion of

the information needed to model the NER task. Also, it is worth mentioning that our

embeddings are trained on 1.3B words compared to 42B for SSKIP.

Model CONLL ONTONOTES
SSKIP 90.52 (± 0.18) 86.57 (± 0.10)
LS 89.94 (± 0.16) 85.92 (± 0.12)
all 91.61 (± 0.10) 87.63 (± 0.13)

Table 6.VII – F1 scores of differently trained systems on CONLL-2003 and
ONTONOTES 5.0 datasets. Capitalization (Section 6.5.2.3) and character features (Sec-
tion 6.5.2.2) are used by default by all models.

We also observe that models that use both feature sets significantly outperform other

configurations. To confirm that the gains came from our feature vector and not from

increasing the number of hidden units, we tested several SSKIP models by increasing the

LSTM hidden layer dimension so that number of parameters is the same as the model

with LS vectors. We observed a degradation of performance on both datasets, mostly

due to overfitting on the training data. From those results, we conclude that our lexical

representation and the SSKIP one are complementary.
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6.7 Related Works

Traditional approaches to NER, like CRF-based [50] and Perceptron-based systems

[132] have dominated the field for over a decade. They rely heavily on hand-engineered

features [97] and external resources such as gazetteers. One major drawback of such an

approach is its weak generalization power [78].

Current state-of-the art systems [30, 151] use a combination of Convolutional Neural

Networks (CNNs), Bi-LSTMs, along with a CRF decoder. CNNs are used to encode

character-level features (prefix and suffix), while LSTM is used to encode word-level

features. Finally, a CRF is placed on top of those models in order to decode the best tag

sequence. Pre-trained embeddings obtained by unsupervised learning are core features

of these models. In this work, we show that deep NN architectures can also benefit from

lexical features, at least when encoded in the compact form we propose.

Tran et al. [156] and Peters et al. [119] propose an alternative semi-supervised ap-

proach different from ours. They incorporate LM embeddings that were pre-trained on

a large unlabelled corpus as features for NER. These embeddings allow to generate a

representation for a word depending on its context. For instance, the LM embeddings of

the word France in « France is a developed country » is different than that in « Anatole

France began his literary career ». Such embeddings are trained on very large amount

of texts. Our feature set is crafted from distant supervision applied to Wikipedia, a much

less time-consuming process which we showed to be nevertheless adapted to rare words.

Chiu and Nichols [30] used gazetteer features in order to establish state-of-the-art

performance on both CONLL-2003 and ONTONOTES5.0. They mined DBPedia in order

to compile 4 lists of named-entities that contain over 2.3M entries. We show that LS

representations outperform their gazetteer features.

6.8 Conclusion

In this chapter, we have explored the idea of generating lexical features (considered

seen as classic word embeddings) for NER out of distant supervision data. We used

WiFiNE to train a vector space that jointly embeds words and named-entities. This vec-
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tor space is used to compute a 120 dimensional vector per word, which encodes the simi-

larity of the word to each of the entity types. Our results suggest that our proposed lexical

representation, even though it is not adjusted at training time, provides very competitive

results compared to more complex approaches on the well-studied CONLL dataset, and

delivers a new state-of-the-art F1 score of 87.54 on the more diversified ONTONOTES

dataset. We further observe larger gains on collections with more unfrequent words. The

source code and the data we used in this work are publicly available at http://rali.

iro.umontreal.ca/rali/en/wikipedia-lex-sim, with the hope that other

researchers will report gains, when using our lexical representation. As a future work, we

want to investigate the usefulness of our LS feature representation on other NER tasks,

including NER in tweets where out-of-vocabulary and low-frequency words represent a

challenge.

89

http://rali.iro.umontreal.ca/rali/en/wikipedia-lex-sim
http://rali.iro.umontreal.ca/rali/en/wikipedia-lex-sim


CHAPTER 7

CONTEXTUALIZED WORD REPRESENTATIONS FROM DISTANT

SUPERVISION WITH AND FOR NER

7.1 Overview

In this Chapter, we describe a special type of deep contextualized word representa-

tion that is learned from distant supervision annotations and dedicated to named entity

recognition. Our extensive experiments on 7 datasets show systematic gains across all

domains over strong baselines, and demonstrate that our representation is complemen-

tary to previously proposed embeddings. Furthermore, we show that simply stacking

various representations significantly boost performances. By doing so, we obtained new

state-of-the-art results on two well-established datasets: CONLL-2003 and ONTONOTES 5.0:

0.4 and 1.1 absolute improvements respectively.

7.2 Introduction

Contextualized word representations are nowadays a resource of choice for most

NLP tasks [120]. These representations are trained with unsupervised language mod-

elling [71], masked-word prediction [41], or supervised objectives like machine transla-

tion [99]. Despite their strength, best performances on downstream tasks [4, 61, 84] are

always obtained when these representations are stacked with traditional (classic) word

embeddings [104, 118]. This indicates that traditional and contextualized embeddings

do not encode the same information; indeed they complement each other. This in turn

leaves the door open for further improvements using embeddings obtained with other

source of data and objectives.

Our main contribution in this work is to revisit the idea proposed in the previous

chapter. Motivated by the recent success of pre-trained language model embeddings, we

propose a contextualized word representation trained WiFiNE. We do so by training a

model to predict the entity type of each word in a given sequence (e.g. paragraph).



We run extensive experiments feeding our representation, along side with previ-

ously proposed traditional and contextualized ones, as features to a vanilla Bi-LSTM-

CRF [98]. Results show that our contextualized representation leads to significant boost

in performance on 7 NER datasets of various sizes and domains. The proposed represen-

tation surpasses the one of Ghaddar and Langlais [57] and is complementary to popular

contextualized embeddings like ELMo [120].

By simply stacking various representations, we report new state-of the-art 1 perfor-

mances on CONLL-2003 [154] and ONTONOTES 5.0 [124] with a F1 score of 93.22

and 89.95 respectively.

7.3 Data and Preprocessing

We leverage the entity type annotations in WiFiNE, we use the fine-grained type

annotation available in the resource (e.g. /person/politician). Also, inspired by

the recent success of masked-word prediction [41], we further apply preprocessing to

the original annotations by (a) replacing an entity by a special token [MASK] with a

probability of 0.2, and (b) replacing primary entity mentions, e.g. all mentions of Barack

Obama within its dedicated article, by the special mask token with a probability of 0.5.

Obama

Obama

first  daughter , Malia

Sequence Encoder

/person/politician

Ann was born in 1998 at atChicago , Illinois

/date /location/city /location/province

.... ....

Figure 7.1 – Input (rose) and output (yellow) sequences used by our encoder to learn
contextualized representations. Transparent yellow box indicates that no prediction is
made for the corresponding token.

In WiFiNE, named-entities that do not have a Wikipedia article (e.g. Malia Ann in

Figure 7.1) are left unannotated, which introduces false negatives. Therefore, we mask

1. as of January 2019
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non-entity words when we calculate the loss. Although contextualized representation

learning has access to arbitrary large contexts (e.g. the document), in practice represen-

tations mainly depend on sentence level context [24]. To overcome this limitation to

some extent, we use the Wikipedia layout provided in WiFiNE to concatenate sentences

of the same paragraphs, sections and document up to a maximum size of 512 tokens.

An illustration of the preprocessing is depicted in Figure 7.1 where for the sake

of space, a single sentence is shown. Masked entities encourage the model to learn

good representations for non-entity words even if they do not participate in the final

loss. Because our examples are sections and paragraphs, the model will be forced to

encode sentence- as well as document-based context. In addition, training on (longer)

paragraphs is much faster and memory efficient than batching sentences.

7.4 Learning our Representation

E1 E2 E3 E4 ....... E509 E510 E511 E512

D-CNN Encoder

hcnn hcnn hcnn hcnn hcnn hcnn

Self-attention Layerhsa hsa hsa hsa hsa hsa

EnType EnType EnType EnType EnType EnType

Figure 7.2 – Illustration of the architecture of the model used for learning our represen-
tation. It consists of stacked layers of dilated convolutional neural network followed by
a self-attention layer. The input is a sequence of tokens with a maximum length of 512,
where the output is the associated entity type sequence. We use the hidden state of the
last DCNN layer and the self-attention layer as our representation.
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We use a model (Figure 7.2) composed of a multi-layer bidirectional encoder that

produces hidden states for each token in the input sequence. At the output layer, the last

hidden states are fed into a softmax layer for predicting entity types. Following [151],

we used as our encoder the Dilated Convolutional Neural Network (DCNN) with an

exponential increasing dilated width. DCNN was first proposed by [174] for image

segmentation, and was successfully deployed for NER by [151]. The authors show that

stacked layers of DCNN that incorporate document context have comparable perfor-

mance to Bi-LSTM while being 8 times faster. DCNN with a size 3 convolution window

needs 8 stacked layers to incorporate the entire input context of a sequence of 512 to-

kens, compared to 255 layers using a regular CNN. This greatly reduces the number of

parameters and makes training more scalable and efficient.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

(a)

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

(b)

Figure 7.3 – Difference between Regular (sub-figure a) and Dilated (sub-figure b) CNN.
Like typical CNN layers, dilated convolutions operate on a sliding window of context
over the sequence, but unlike conventional convolutions, the context need not be consec-
utive.

Because our examples are paragraphs rather than sentences, we employ a self-attention

mechanism on top of DCNN output with the aim to encourage the model to focus on
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salient global information. In this paper, we adopt the multi-head self-attention formu-

lation by Vaswani et al. [160]. Comparatively, Transformer-based architectures [41] re-

quire a much larger 2 amount of resources and computations. To improve the handling of

rare and unknown words, our input sequence consists of WordPiece embeddings [167] as

used by Devlin et al. [41], Radford et al. [127]. We use the same vocabulary distributed

by the authors, as it was originally learned on Wikipedia.

Figure 7.4 – An artificial example that illustrate how attention weights of a self-attention
layer can behave if the outputs to predict are entity types. For example, the word born
that precedes John is a strong indicator that the latter should be tagged as person. Simi-
larly, for the target word Montreal and its context born in.

We use 8 stacked layers of DCNN to encode input sequences of maximum length

of 512. WordPiece and position embeddings, number of filters in each dilated layer and

self-attention hidden units were all set to 384. For self-attention, we use 6 attention

heads and set intermediate hidden unit to 512. We apply a dropout mask [148] with a

probability of 0.3 at the end of each DCNN layer, and at the input and output of the self-

attention layer. We adopt the Adam [75] optimization algorithm, set the initial learning

rate to 1e−4, and use an exponential decay. We train our model up to 1.5 millions steps

with mini-batch size of 64. We implemented our system using the Tensorflow [1] library,

and training requires about 5 days on a single TITAN XP GPU.

2. Actually prohibitive with our single GPU computer.
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7.5 Experiments on NER

7.5.1 Datasets

To compare with state-of-the-art models, we consider two well-established NER

benchmarks: CONLL-2003 [154] and ONTONOTES 5.0 [123]. To further determine

how useful our learned representation is on other domains, we also considered three ad-

ditional datasets: WNUT17 [40] (social media), I2B2 [153] (biomedical), and FIN [6]

(financial). In addition, we perform an out-domain evaluation for models trained on

CONLL-2003 and tested on WIKIGOLD [13] (wikipedia) and WEBPAGES [132] (web

pages).

# entities
Dataset Domain Types train dev test
CONLL news 4 23499 5942 5648
ONTONOTES news 18 81828 11066 11257
WNUT17 tweet 6 1975 836 1079
I2B2 bio 23 11791 5453 11360
FIN finance 4 460 - 120
WIKIGOLD wikipedia 4 - - 3558
WEBPAGES web 4 - - 783

Table 7.I – Statistics on the datasets used in our experiments.

Table 7.I lists the dataset used in this study domain, label size, and number of men-

tions in train/dev/test portions. We used the last 2 datasets to perform an out-of-domain

evaluation of CONLL models. Those are small datasets extracted from Wikipedia arti-

cles and web pages respectively, and manually annotated following CONLL-2003 an-

notation scheme.

7.5.2 Input Representations

Our NER model is a vanilla Bi-LSTM-CRF [98] that we feed with various represen-

tations (hereafter described) at the input layer. Our system is a single Bi-LSTM layer

with a CRF decoder, with 128 hidden units for all datasets except for ONTONOTES and
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I2B2 where we use 256 hidden units. For each learned representations (ours, ELMo,

FLAIR, BERT), we use the weighted sum of all layers as input, where weights are learned

during training. For each word, we stack the embeddings by concatenating them to form

the input feature of the encoder.

John

...ELMosskip WS

B-PER

LSTM

LSTM

was

...ELMosskip WS

O

LSTM

LSTM

born

...ELMosskip WS

O

LSTM

LSTM

in

...ELMosskip WS

O

LSTM

LSTM

Montreal

...ELMosskip WS

B-LOC

LSTM

LSTM

Figure 7.5 – Main architecture of NER model used in this work. Green circle at the input
layer show baseline features, while blue ones show contextualized word representations
that are added.

Training is carried out by mini-batch of stochastic gradient descent (SGD) with a

momentum of 0.9 and a gradient clipping of 5.0. To mitigate over-fitting, we apply a

dropout mask with a probability of 0.7 on the input and output vectors of the Bi-LSTM

layer. The mini-batch is 10 and learning rate is 0.011 for all datasets. We trained the

models up to 63 epochs and use early stopping based on the official development set.

For FIN, we randomly sampled 10% of the train set for development.
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7.5.2.1 Word-Shape Features

We use 7 word-shape features: allUpper, allLower, upperFirst, upperNotFirst,

numeric, punctuation or noAlphaNum. We randomly allocate a 25-dimensional

vector for each feature, and learn them during training.

7.5.2.2 Traditional Word Embeddings

We use the 100-dimensional case sensitive SSKIP [90] word embeddings. We also

compare with the previously described 120-dimensional vector representation of [57],

they call it LS.

7.5.2.3 Contextualized Word Embeddings

We tested 3 publicly available contextualized word representations: ELMo [120]:

dim = 1024, layers = 3; FLAIR [4]: d = 2048, l = 1; and BERT [41]: d = 1024, l = 4.

For the latter, we use the hidden state of the 4 last layers of the Large model. For

the proposed representation, we use the hidden state of the last DCNN layer and the

self-attention layer as feature input (d = 384, l = 2). Following Peters et al. [120], each

representation (including ours) is the weighted sum of the hidden layers, where weights

are learned during training. We use concatenation to stack the resulting representations

in the input layer of our vanilla Bi-LSTM-CRF model, since ? ] show that concatenation

performs reasonably well in many NLP tasks.

7.6 Experiments

7.6.1 Comparison to LS embeddings

Since we used the very same distant supervision material for training our contextual

representation, we compare it to the one of Ghaddar and Langlais [57]. We concentrate

on CONLL-2003 and ONTONOTES 5.0, the datasets most often used for benchmarking

NER systems.

97



Conll Ontonotes
X LS ours X LS ours

ws+sskip 90.37 91.23 (+0.9) 91.76 (+1.4) 86.44 87.95 (+0.9) 88.13 (+0.9)
ws+sskip+elmo 92.47 92.49 (+0.0) 92.82 (+0.4) 89.37 89.44 (+0.1) 89.68 (+0.3)
ws+sskip+elmo+flair 92.69 92.75 (+0.1) 93.22 (+0.5) 89.55 89.59 (+0.0) 89.73 (+0.2)
ws+sskip+elmo+flair+bert 92.91 92.87 (+0.0) 93.01 (+0.1) 89.66 89.70 (+0.0) 89.95 (+0.3)
Peters et al. [120] 92.20 -
Clark et al. [31] 92.61 88.81
Devlin et al. [41] 92.80 -

Table 7.II – F1 scores over five runs on CONLL and ONTONOTES test set of ablation
experiments. We evaluate 4 baselines without additional embeddings (column X ) and
with LS embeddings [57] or ours. Figures in parenthesis indicate the gain over the
baselines.

Table 7.II reports results of 4 strong baselines that use popular embeddings (column

X ), further adding either the LS representation [57] or ours. In all experiments, we

report the results on the test portion of models performing best on the official develop-

ment set of each dataset. As a point of comparison, we also report 2018 state-of-the-art

systems.

First we observe that adding our representation to all baseline models leads to sys-

tematic improvements, even for the very strong baseline which exploits all three con-

textual representations (fourth line). The LS representation does not deliver such gains,

which demonstrates that our way of exploiting the very same distant supervision ma-

terial is more efficient. Second, we see that adding our representation to the weakest

baseline (line 1), while giving a significant boost, does not deliver as good performance

as when adding other contextual embeddings. Nevertheless, combining all embeddings

yields state-of-the-art on both CONLL and ONTONOTES.

7.6.2 Comparing Contextualized Embeddings

Table 7.III reports F1 scores on the test portion of the 7 datasets we considered, for

models trained with different embedding combinations. Our baseline is composed of

word-shape and traditional (SSKIP) embeddings. Then, contextualized word represen-

tations are added greedily, that is, the representation that yields the largest gain when
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considered is added first and so forth.

Expectedly, ELMo is the best representation to add to the baseline configuration,

with significant F1 gains for all test sets. We are pleased to observe that the next best

representation to consider is ours, significantly outperforming FLAIR. This is likely due

to the fact that both FLAIR and ELMo embeddings are obtained by training a language

model, therefore encoding similar information.

In Domain Out Domain
Conll Onto WNUT FIN I2B2 WikiGold WebPage

WS+SSKIP 90.73 86.44 32.30 81.82 86.41 66.03 45.13
+ELMo 92.47 89.37 44.15 82.03 94.47 76.34 54.45

+Ours 92.96 89.68 47.40 83.00 94.75 78.51 57.23
+FLAIR 93.22 89.73 46.80 83.11 94.79 77.77 56.20

+BERT 93.02 89.97 46.47 81.94 94.92 78.06 56.84

Table 7.III – Mention-level F1 scores. The baseline (first line) uses word shape and
traditional (classic) embeddings. Variants stacking various representations are presented
in decreasing order of F1 return. So for instance, ELMo is the best representation to add
to the baseline one.

Continuously aggregating other contextual embeddings (FLAIR and BERT) leads to

some improvements on some datasets, and degradations on others. In particular, stack-

ing all representations leads to the best performance on 2 datasets only: ONTONOTES

and I2B2. Those datasets are large, domain diversified, and have more tags than other

ones. In any case, stacking word-shapes, SSKIP, ELMo and our representation leads

to a strong configuration across all datasets. Adding our representation to ELMo, actu-

ally brings noticeable gains (over 2 absolute F1 points) in out-domain settings, a very

positive outcome.

Surprisingly, BERT did not perform as we expected, since they bring minor (ONTONOTES)

or no (CONLL) improvement. We tried to reproduce the results of fine-tuned and

feature-based approaches reported by the authors on CONLL, but as many others, 3 our

results were disappointing.

3. https://github.com/google-research/bert/issues?utf8=%E2%9C%93&q=
NER
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7.6.3 Analysis

Figure 7.6 – An illustration on how we analyze the impact of self-attention in influencing
document context. We check the words that received the highest attention weights inside
each document for CONLL dev portion.

We suspect one reason for the success of our representation is that it captures docu-

ment wise context. As shown in Figure 7.6, we inspected the words the most attended

according to the the self-attention layer of some documents, an excerpt of which is re-

ported in Figure 7.7. We observe that attended words in the document are often related

to the topic of the document.

84 economic Stock, mark, Wall, Treasury, bond
148 sport World, team, record, game, win
201 news truck, Fire, store, hospital, arms

Figure 7.7 – top 5 attended words for some randomly picked documents in the dev set
of CONLL. Column 1 indicate document number, while column 2 is our appreciation of
the document topic.

We further checked whether the gain could be imputable to the fact that WiFiNE

contains the mentions that appear in the test sets we considered. While this of course

happens (for instance 38% of the test mentions in ONTONOTES are in the resource), the

performance on those mentions with our representation is no better than the performance
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on other mentions.

7.7 Conclusion

We have explored the idea of generating a contextualized word representation from

distant supervision annotations coming from Wikipedia, improving over the LS static

representation we proposed in Chapter 6. When combined with popular contextual ones,

our representation leads to state-of-the-art performance on both CONLL and ONTONOTES.

We are currently analyzing the complementarity of our representation to others.

We plan to investigate tasks such as coreference resolution and non-extractive ma-

chine reading comprehension, where document level context and entity type information

is crucial. The source code and the pre-trained models we used in this work are publicly

available at http://rali.iro.umontreal.ca/rali/en/wikipedia-ds-cont-emb
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CHAPTER 8

CONCLUSION AND FUTURE WORKS

In this thesis, we proposed to enrich Wikipedia with multiple levels of annotation

using its own structure. We developed an easy first iterative method to maximize the

number of extracted annotations while introducing a reasonable amount of noise. We

significantly extended the number of annotations of non anchored strings, thanks to

coreference information and an analysis of the Wikipedia’s link structure. We applied

our approach to a dump of English Wikipedia from 2013 and produced coarse- and fine-

grained named-entity annotations. WiNER and WiFiNE surpasses other similar corpora,

both in terms of quantity and of annotation quality. We evaluated annotation quality

intrinsically (on manually labeled mentions) and extrinsically by using the corpus as

training data for named-entity recognition, and fine-grained entity typing. We ran sev-

eral experiments in order to use this massive amount of data in two ways:

1. directly as training material for entity typing supervised classifier.

2. indirectly as a source to generate classic and contextual word representations that

can be easily added to supervised classifiers.

Our first endeavor through generating representations via supervised tasks consists

in encoding classical lexicon features (word n-grams and gazetteer) into a compact form

we called LS (Lexical Similarity). We represent each word by a 120-dimensional vector,

where each dimension encodes the similarity of the word with an entity type.

Motivated by the great success and the gain in performances of ELMo [120] and

BERT [41], we explored the utility of WiFiNE for learning contextualized word repre-

sentations. Our main contribution lies in using semi-supervised approach for contextual-

ized word representation learning. We trained an encoder that predicts the entity type of

each input token. That is, compared to language modeling our model predicts an entity

type rather than a word. Contrary to LS, the contextualized representation is a function

of the entire sequence that can be a document.



We included our representations (LS and contextualized) as additional features in

a vanilla LSTM-CRF NER model. The evaluation we conducted on 7 NER datasets

of different genre and sizes shows that simply stacking various representations signifi-

cantly boost performances across all domains over strong baselines. We reported sys-

tematic gains using the contextualized representation compared to models trained with

LS. Ablation results show that our representations complement existing static and con-

textualized embeddings. Finally, we obtained new state-of-the-art performance 1 on two

standard benchmarks: CONLL-2003 and ONTONOTES 5.0.

8.1 Future Work

At the time of writing this thesis, we observed an increasing interest in using Wikipedia

in a distantly supervised setting. DocRED [172] is a newly created dataset of Wikipedia

articles that are annotated with named-entities and relations for a document-level relation

extraction task. The corpus has a manually labeled 2 version that consists of 5k docu-

ments with over 123k entities. Also, the authors produced a distantly supervised version

of DocRED obtained by running the SpaCy [64] NER toolkit on 107k Wikipedia arti-

cles, which leads to a corpus with 2.2 millions annotated entities.

Abhishek et al. [3] revisit heuristic approaches to automatically convert Wikipedia

to a high recall dataset for the fine-grained entity typing. The authors propose a staged

pipeline which maps Wikipedia links to entities, matching them to Freebase, and then

expanding them using some string matching, and then finally pruning sentences using

heuristics. They evaluated their method by training state-of-the-art models trained on

their new corpus. They show gains in recall and a small loss in precision when compared

to the original existing wiki datasets with distant supervision. Their Wiki-FbF corpus is

the most similar to WiFiNE, with two main differences. Because we match coreference

mentions, the number of entities in Wiki-FbF is 4 times smaller than WiFiNE. While

in WiFiNE we have rules that filter heterogeneous entity types (Section 4.4), this step

1. We report 93.2 and 89.9 on CONLL-2003 and ONTONOTES 5.0 respectively. The current state-of-
the-art performances at the time of writing are 93.5 and 90.3 for the aforementioned datasets.

2. CONLL-2003 4 classes
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is omitted by Abhishek et al. [3]. Although, the authors report higher performances on

FIGER (GOLD), the results are not directly comparable because different models are

used for training.

Zhu et al. [178] propose a two stage semi-supervised annotation framework to pro-

duce entity type annotations from Wikipedia abstracts 3. In stage one, AnchorNER, is

build by mapping Wikipedia hyperlinks to their respective types via attributes in DB-

pedia [9]. In stage two, the authors propose a machine learning approach, rather than

heuristics, to rectify noisy labels. To improve the quality of the annotations, they lever-

age abstracts that exists in both AnchorNER and the manually-labeled DocRED dataset,

where the latter labels are treated as ground truth. That is, the model is trained on words

with their respective AnchorNER labels at the input, while the output are DocRED [172]

gold labels. This model is applied on the rest of AnchorNER to correct the false-negative

entity labels. The authors show systematic gains on 6 datasets when AnchorNER is used

as training data. AnchorNER is similar to WiNER, nevertheless the authors did not per-

form a direct comparison with WiNER.

These approaches show that distant supervision with Wikipedia is a promising tech-

nique, however, they also reflect many limitations that must be addressed.

One major drawback of these approaches is the necessity of manually-labeled datasets

in the annotation pipeline. For example, both WiNER and AnchorNER require Wikipedia

manual annotated data. Further, the former corpus was build thanks to coreference anno-

tations from Wikicoref [52], while the latter employs DocRED [172] gold labels to train

a correction model. This limits the utility of these approaches for other languages even

if Wikipedia exists in 282 languages. Future research must focus on refining automatic

annotations without the need of human labeled data.

A big caveat of these approaches (including ours) is that it is very tailored towards

Wikipedia texts, and it is unclear how it can generalize beyond. Since these approaches

are meant for downstream training of NER models, they will be limited to Wikipedia-

style texts. Or maybe it is not a limitation at all? It would be already good if we could

show that NER systems trained on this Wikipedia-style texts do perform well in the open

3. That is, the first paragraph of a Wikipedia article
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domain scenario, or under other challenging settings.

The extrinsic analysis of distantly supervised corpora, and measuring the robustness

of NER models remains an open problem. In Section 5.2.5, we proposed ODF1 to mea-

sure the generalization performance on 6 datasets of different domains. Very recently,

Lin et al. [89] conducted an empirical analysis on the robustness of NER models in the

open domain scenario, and show that NER models are biased by strong name regular-

ities, and the high mention coverage in standards benchmarks. Bernier-Colborne and

Langlais [17] proposed hardEval, an evaluation protocol to measure the robustness of

NER models on a subset of entities with unknown words, label shift, and those that are

ambiguous.

Distant supervision assumptions have enabled the creation of large-scale datasets,

the increased coverage often comes with increased noise. It could be researched how

the quantity\quality trade-off in DS impacts the final performance in NER. For instance,

AnchorNER [178] is relatively small compared to WiNER. The first is constructed from

Wikipedia abstracts, while latter uses full articles. As noted by Nothman et al. [112],

abstracts contain a high density of hyperlinks, but mostly full name of the entity is used

as anchor. Abstract annotations have higher quality, but smaller size and less challenging

training data comparing to annotations extracted from the entire article.

Although our overall 4 stage method shows gains on NER end performance, indi-

vidual stages have their own limitations. As future work, it important to do a step back

and revisit this 4 stage pipeline process, in order to identify these limitations. This can

be done by directly measuring the gain of each step of the pipeline for the end task such

as in Zhu et al. [178]. Also, it would be interesting to extrinsically compare between

various methods for DS (WiNER and [178], WiFiNE and [3]), where models, training

data size and test sets are immutable. To be comparable, it would require to apply our

annotation process on recent Wikipedia dumps, with an up-to-date knowledge base such

as WikiData [161]. This step is expected to further increase the number of entities, and

also our rules would become more accurate by having access to more hyperlinks and KB

relations.

A legitimate continuation of representation learning with distant supervision is to
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measure if our classic or contextualized embeddings can improve results for other tasks

by simply plugging them in existing models. We believe that our embeddings can im-

prove results for tasks where entity type is crucial such as coreference resolution [83],

relation extraction [106], and information extraction [149]. Preliminary experiments we

conducted showed minor improvements for tasks like POS tagging, or sentiment anal-

ysis where entity type is not a key information for solving the task. We plan to study

Relation Extraction (RE) because we believe that NE annotations to be useful.

Relation Extraction (RE) is defined as the task of extracting semantic relations be-

tween arguments. Arguments can either be entity types such as Person, Organization;

or instances of such types (e.g. Chilly Gonzales, Warner Bross). Relation between en-

tities are extracted from a predefined relation set such as bornIn(PER, LOC) and

founderOf(PER, ORG).

Example (a): [Hercule Poirot]E1 is a fictional Belgian detective , created by
[Agatha Christie]E2.
Relation: character_created_by (E1, E2)

Example (b): [Conan Doyle]E1 acknowledged basing his detective stories on the
model of [Edgar Allan Poe]E2 ’s [C. Auguste Dupin]E3.
Relation: influence_by (E1, E2) | character_created_by (E3, E2)

Example (c): [Gonzales]E1 said in an interview: « My experiences in [Canada]E2
had been disappointing. »
Relation: nationality (E1, E2)

Example (d): When Christie ’s daughter , Rosalind Hicks , observed Ustinov
during a rehearsal , [she]E1 said: « That ’s not [Poirot]E2 ! »
Relation: character_created_by (E2, E1)

Figure 8.1 – Example of correct (a-b) and wrong (c-d) relations annotated using distant
supervision.

The task is challenging because relations may not be explicitly expressed in the sen-

tence. It is a pipelined classification task that consists of two phases: named-entity
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identification and relation classification. One way to apply distant supervision for this

task would be to assume that a relation in a sentence holds between 2 arguments in a

sentence hold if both arguments are present in a triple in Freebase. Figure 8.1 shows

examples of correct (example a and b), and noisy (example c and d) triples obtained on

our Wikipedia enriched corpus.
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