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Résumé 
Mise en contexte : La réparation endovasculaire des anévrismes de l’aorte abdominale est limitée par le 

développement des endofuites, qui nécessite un suivi à long terme par imagerie. L’élastographie sonore de 

déformation a été proposée comme méthode complémentaire pour aider à la détection des endofuites et la 

caractérisation des propriétés mécaniques des anévrismes. On s’intéresse ici également à la possibilité de 

suivre l’embolisation des endofuites, qui est indiquée dans certains cas mais dont le succès est variable. Un 

nouvel agent d’embolisation a été récemment créé en combinant un hydrogel de chitosane radio-opaque 

(CH) et le sclérosant tetradecyl sulfate de sodium (STS), qui s’appelle CH-STS. Le CH-STS démontre des 

propriétés mécaniques in vitro favorables, mais son comportement in vivo et son effet sur l’évolution du sac 

par rapport à un agent non-sclérosant pourraient être mieux caractérisés. L’objectif de cette étude était la 

caractérisation des propriétés mécaniques des composantes des endofuites embolisées avec CH-STS et CH 

avec élastographie sonore de déformation. 

Méthodologie : Des anévrismes bilatéraux avec endofuites de type I ont été créés au niveau des artères 

iliaques communes chez neuf chiens. Chez chaque sujet, une endofuite a été embolisée avec CH, et l’autre, 

avec CH-STS, d’une façon aléatoire et aveugle. Des images d’échographie duplex et des cinéloops pour 

élastographie sonore de déformation ont été acquis à 1 semaine, 1 mois, 3 mois et (chez 3 sujets) 6 mois 

post-embolisation. La tomodensitométrie a été faite à 3 mois et (si pertinente) 6 mois post-embolisation. 

L’histopathologie a été faite au sacrifice. Les études radiologiques et les données d’histopathologie ont été 

co-enregistrées pour définir trois régions d’intérêt sur les cinéloops : l’agent d’embolisation (au sacrifice), 

le thrombus intraluminal (au sacrifice) et le sac anévrismal (pendant chaque suivi). L’élastographie sonore 

de déformation a été faite avec les segmentations par deux observateurs indépendants. La déformation axiale 

maximale (DAM) a été le critère d’évaluation principal. Les analyses statistiques ont été faites avec des 

modèles mixtes linéaires généralisés et des coefficients de corrélations intraclasses (ICCs).  

Résultats : Des endofuites résiduelles ont été trouvées dans 7/9 (77.8%) et 4/9 (44.4%) des anévrismes 

embolisés avec CH et CH-STS, respectivement. Le CH-STS a eu une DAM 66 % plus basse (p < 0.001) 

que le CH. Le thrombus a eu une DAM 37% plus basse (p = 0.010) que le CH et 77% plus élevée (p = 

0.079) que le CH-STS. Il n’y avait aucune différence entre les thrombi associés avec les deux traitements. 

Les sacs anévrismaux embolisés avec CH-STS ont eu une DAM 29% plus basse (p < 0.001) que ceux 

embolisés avec CH. Des endofuites résiduelles ont été associées avec une DAM du sac anévrismal 53% plus 

élevée (p < 0.001). Le ICC pour la DAM a été de 0.807 entre les deux segmentations. 

Conclusion : Le CH-STS confère des valeurs de déformations plus basses aux anévrismes embolisés. Les 

endofuites persistantes sont associées avec des déformations plus élevées du sac anévrismal.  

Mots clés : élastographie, anévrisme, endovasculaire, aorte, embolisation, endofuite, chitosane, STS 





 

Abstract 
Background: Endovascular aneurysm repair (EVAR) is the modality of choice for the treatment of 

abdominal aortic aneurysms (AAAs). EVAR is limited by the development of endoleaks, which necessitate 

long-term imaging follow-up. Conventional follow-up modalities suffer from unique limitations. Strain 

ultrasound elastography (SUE) has been recently proposed as an imaging adjunct to detect endoleaks and 

to characterize aneurysm mechanical properties. Once detected, certain endoleaks may be treated with 

embolization; however, success is limited. In this context, the embolic agent CH-STS—containing a 

chitosan hydrogel and the sclerosant sodium tetradecyl sulphate (STS)—was created. CH-STS demonstrates 

favorable mechanical properties in vitro; however, its behavior in vivo and impact on sac evolution 

compared to a non-sclerosing chitosan-based embolic agent (CH) merit further characterization. 

Purpose: To compare the mechanical properties of the constituents of endoleaks embolized with CH and 

CH-STS—including the agent, the intraluminal thrombus (ILT), and the overall sac—via SUE. 

Methods: Bilateral common iliac artery aneurysms with type I endoleaks were created in nine dogs. In each 

animal, one endoleak was randomly embolized with CH, and the other with CH-STS. Duplex ultrasound 

(DUS) and radiofrequency cine loops were acquired at 1 week, 1 month, 3 months, and—in 3 subjects—6 

months post-embolization. Contrast-enhanced CT was performed at 3 months and—where applicable—6 

months post-embolization. Histopathological analysis was performed at time of sacrifice. Radiological 

studies and histopathological slides were co-registered to identify three regions of interest (ROIs) on the 

cine loops: embolic agent (at sacrifice), ILT (at sacrifice), and aneurysm sac (at all follow-up times). SUE 

was performed using segmentations from two independent observers on the cine loops. Maximum axial 

deformation (MAD) was the main outcome. Statistical analysis was performed using general linear mixed 

models and intraclass correlation coefficients (ICCs). 

Results: Residual endoleaks were identified in 7/9 (77.8%) and 4/9 (44.4%) aneurysms embolized with CH 

and CH-STS, respectively. CH-STS had a 66 % lower MAD (p < 0.001) than CH. The ILT had a 37% lower 

MAD (p = 0.010) than CH and a 77% greater MAD (p = 0.079; trending towards significance) than CH-

STS. There was no difference in the ILT between treatment groups. Aneurysm sacs embolized with CH-

STS had a 29% lower MAD (p < 0.001) than those with CH. Residual endoleak increased MAD of the 

aneurysm sac by 53% (p < 0.001), regardless of the agent used. The ICC for MAD was 0.807 between 

readers’ segmentations. 

Conclusion: CH-STS confers lower strain values to embolized aneurysms. Persistent endoleaks result are 

associated with increased sac strain, which may be useful for clinical follow-up. 

Key words: elastography, abdominal aortic aneurysm, EVAR, embolization, endoleak, chitosan, STS 
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displacement surface of object surface parallel to shear force. Adapted from (180). ..................................68 
Figure 20 Schematic outlining the steps of elastographic imaging. A stimulus is applied to the tissue of 

interest. Imaging techniques are used to detect a response in the tissue. The measured pre- and post-

excitation tissue changes are used to infer the mechanical properties of the tissue. These mechanical 

properties can then be used for clinical characterization and diagnosis. Adapted from (184). ....................69 
Figure 21 Different types of ultrasound elastography with their commercial counterparts. Ultrasound 

elastography can be divided into two major categories: strain imaging and shear wave imaging. In strain 

imaging, a force parallel to the transducer is used to generate tissue deformation, which is subsequently 

measured. Strain elastography (a subtype of stain imaging) relies on the use of an external or internal 

compressive force to generate deformation. Acoustic radiation force impulse (ARFI) strain imaging, in 

contrast, uses an acoustic pushing pulse to displace the tissue. In shear wave imaging, shear waves are 

generated to calculate tissue elasticity. 1D transient elastography uses a mechanical vibrating device to 

create shear waves that travel parallel to the incident wave. In contrast, both point shear wave elastography 

and 2D shear wave elastography techniques use ARFIs to generate shear waves which travel perpendicularly 

to the transducer. In point shear wave elastography, one focal point is interrogated to calculate Young’s 

modulus. In 2D shear wave imaging, ARFIs are directed in multiple focal zones, which generate multiple 

perpendicularly travelling shear waves. This allow for real time quantitative elastographic analysis during 

imaging. Harmonic elastography is not included in the present figure but will be described subsequently. 

Adapted from (180). .....................................................................................................................................70 
Figure 22 One form of strain elastography calculates the displacement of radiofrequency signals pre- and 

post-compression to estimate the mechanical properties of the imaged structure. Dl = change in length; RF 

= radiofrequency. Adapted from (180). ........................................................................................................72 
Figure 23 Schematic of strain imaging. On the left, a normal mechanical force is applied to a homogenous, 

compressible tissue. This causes a uniform displacement over the imaged depth and, consequently, strain 

analysis reveals a uniform strain. On the right, a stiff region is incorporated into tissue. When a similar 

normal mechanical force is applied, there is no displacement along the length of the stiff area, while the 
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remainder of the tissue deforms as in the schematic on the left. Strain analysis reveals a lower strain in this 

region. This can be used as an additional feature to characterize imaged tissue. Adapted from (166). .......73 
Figure 24 Shear wave imaging relies on the generation of shear waves. In shear waves, the particle motion 

is perpendicular to the direction of travel of the wave. The shear wave speed can be calculated to give an 

estimate of the shear modulus, which can be converted the elastic modulus via Poisson’s ratio. cs = wave 

speed; G = shear modulus; r = tissue density. Adapted from (180). ...........................................................75 
Figure 25 Bilateral iliac aneurysm model for testing of embolic agents. (A) Contrast-enhanced fluoroscopic 

image demonstrating the surgically created bilateral iliac artery aneurysm model. The arrows point to the 

implanted outflow tracts. (B) Schematic of the same model status post bilateral endovascular aneurysm 

repair and creation of type Ia endoleaks. Figures adapted from/with reference to (40, 43, 170, 171). ........82 
Figure 26 Procedural and imaging follow-up timeline. Surgical aneurysm creation was undertaken eight 

weeks prior to EVAR and endoleak creation. Embolization was performed on the same day as EVAR. (A) 

Six of the subjects were followed with imaging for three months after EVAR before sacrifice and 

histopathological analysis. Ultrasound-based acquisitions were obtained at all follow-up times (one week, 

one month, and three months); CT images were obtained at sacrifice. (B) Three of the subjects were followed 

with imaging for six months after EVAR before sacrifice and histopathological analysis. US-based 

acquisitions were obtained at all follow-up times (one week, one month, three months, and six months); CT 

was performed at three and six months. For both groups, all ultrasound-based acquisitions were obtained of 

the proximal, middle, and distal aneurysm sac. The aneurysm sac region of interest was segmented at all 

follow-up time points; the thrombus and embolic agent were only segmented at sacrifice. B-Mode: 

brightness mode ultrasound; CT: Computed tomography; DUS: Duplex ultrasound; Elasto: ultrasound cine 

loops for strain elastography; EVAR: endovascular aneurysm repair; FU: follow-up. ...............................85 
Figure 27 Multimodal image co-registration and segmentation at sacrifice of the mid-level aneurysm sac 

region of interest (segmented in green) for an endoleak three months post-embolization with the chitosan 

hydrogel embolic agent. The arrows indicate the stent-graft. (A) Selected B-mode image of the mid level of 

the aneurysm demonstrates the segmentation of the entire aneurysm sac. Note that the stent-graft was 

excluded. (B) Corresponding duplex ultrasound image suspected to have been taken at a slightly more 

caudal location, where an endoleak is visualized. Note that it has been excluded from the segmentation. (C) 

Contrast-enhanced CT examination of the aneurysm sac at the same level of (A) and the other remaining 

images. Note that an endoleak was not identified at this level, but was identified a few slices lower, 

suggesting that the image in (B) was more caudal. (D) and (E) Macroscopic cut and histopathological slide 

of the mid-level of the aneurysm; note that no endoleak is visible on these levels; an endoleak was confirmed 

more inferiorly (not shown). (F) Selected segmented B-mode image from the obtained cine loop used to 

produce the elastograms. Part of the aneurysm sac was not included because there was potentially an 
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endoleak in this region; this was done to avoid the high strains associated with signal decorrelation. The 

segmentation mask was propagated through the remainder of the cine loop using a semiautomatic technique. 

Appropriate segmentation requires the integration of all of the imaging modalities. ..................................88 
Figure 28 Multimodal image co-registration, segmentation, and post-processing of the embolic agent 

region of interest (segmented in green) for an endoleak three months post-embolization with the chitosan 

hydrogel embolic agent (CH) at sacrifice. (A) B-mode image of the mid level of the aneurysm demonstrates 

the segmentation of the embolic agent, which is slightly hyperechoic and heterogenous. (B) Duplex 

ultrasound image. Note that the endoleak has been excluded. (C) Contrast-enhanced CT examination. Note 

that the embolic agent and thrombus cannot be differentiated (the former’s radiopacity is lost after 48 hours). 

(D) Macroscopic cut demonstrating the embolic agent. (E) Selected segmented B-mode image from the cine 

loop used to produce the elastogram. The segmentation mask was propagated through the remainder of the 

cine loop using a semiautomatic technique. (F) Instantaneous axial deformation elastogram of the embolic 

agent superimposed over a cine frame during systole. (G) Instantaneous axial deformation curve; the 

maximum axial deformation parameter (average of all peaks) is labelled. (H) Raw cumulative axial 

deformation curve. (I) Cycle-adjusted cumulative axial deformation curve adjusted for the cardiac cycle 

(thicker curve; the thinner curve is the axial deformation curve). The range cumulative axial deformation 

parameter is labelled. Some of these images have been included in (31, 43). .............................................90 
Figure 29 Multimodal image co-registration, segmentation, and post-processing of the agent region of 

interest (segmented in green) for an aneurysm three months after embolization with the chitosan hydrogel 

with sodium tetradecyl sulphate embolic agent (CH-STS) at sacrifice. The arrows indicate the stent-graft. 

All images were taken at approximately the same level but were subject to operator variability. The region 

indicated by (*) did not have a correlate on the cine loop and was therefore not included in the final 

segmentation. (A) B-mode image of the mid level of the aneurysm. The embolic agent is slightly 

hyperechoic and heterogenous. (B) Corresponding segmented duplex ultrasound image demonstrating an 

endoleak. (C) Corresponding contrast-enhanced CT confirming an endoleak. (D) Corresponding 

macroscopic cut demonstrating the agent and the endoleak. (E) Selected segmented B-mode image from the 

cine loop used to produce the elastograms. This image was likely obtained at a slightly different level 

compared to (A) and (D), resulting in a slightly different-appearing segmentation mask. It was important to 

exclude the endoleak and intraluminal thrombus to have a homogenous region of interest. (F) Instantaneous 

axial deformation elastogram of CH-STS superimposed over a cine frame during systole. (G) Instantaneous 

axial deformation curve. The maximum axial deformation parameter is labelled. (H) Raw cumulative axial 

deformation curve. (I) Cycle-adjusted cumulative axial deformation curve (thicker curve; the thinner curve 

is the axial deformation curve). The range cumulative axial deformation parameter is labelled. ................91 
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Figure 30 Multimodal image co-registration, segmentation, and post-processing of the thrombus region of 

interest (segmented in green) for an aneurysm three months post-embolization with the chitosan hydrogel 

with sodium tetradecyl sulphate embolic agent (CH-STS) at sacrifice. The arrows indicate the stent-graft. 

All images were taken at approximately the same level but were subject to operator variability. (A) B-mode 

image of the mid level of the aneurysm. The hyperechoic region corresponds to CH-STS and the hypoechoic 

regions correspond to thrombus. (B) Corresponding duplex ultrasound. (C) Corresponding contrast-

enhanced CT image. (D) Corresponding macroscopic cut. (E) Selected segmented B-mode image from the 

cine loop used to produce the elastograms. (F) Cumulative axial deformation elastogram of the thrombus 

superimposed over a cine frame during systole. (G) Instantaneous axial deformation curve; the maximum 

axial deformation parameter is labelled. (H) Raw cumulative axial deformation curve. (I) The cycle-adjusted 

cumulative axial deformation curve (thicker curve; the thinner curve is the axial deformation curve). The 

range cumulative axial deformation parameter is labelled. Of note, only complete cardiac cycles without 

motion artifact (seen on the cine) were included in the post-processing. .....................................................92 
Figure 31 Multimodal image co-registration, segmentation, and post-processing of the aneurysm sac region 

of interest (segmented in green) for an aneurysm six months after successful embolization with the chitosan 

hydrogel embolic agent with sodium tetradecyl sulphate (CH-STS) at sacrifice. The arrows indicate the stent 

graft. (A) B-mode image of the distal level of the aneurysm demonstrates the segmentation of the sac. (B) 

Corresponding duplex ultrasound image; there is no endoleak to be excluded. (C) Corresponding contrast-

enhanced CT image confirming the absence of endoleak. (D) Corresponding macroscopic cut. (E) Selected 

segmented B-mode image from the cine loop used to produce the elastograms. (F) Cumulative axial 

deformation elastogram of the sac superimposed over a cine frame during systole. (G) Instantaneous axial 

deformation curve; the maximum axial deformation parameter (average of all peaks) is labelled. (H) The 

cycle-adjusted cumulative axial deformation curve (thicker curve; the thinner curve is the axial deformation 

curve). The range cumulative axial deformation parameter is labelled. Note that frames containing motion 

artifact (seen on the cine loops) were excluded from the analysis. ..............................................................93 
Figure 32 Breakdown of the elastograms generated using the segmentations independently performed by 

each reader. The elastograms contain the data used to derive the maximum axial deformation, range 

cumulative axial deformation, and the range cumulative axial shear. (A) Elastograms generated of the 

aneurysm sac ROI. (B) Elastograms generated of the embolic agent ROI. *One subject embolized with CH-

STS did not have any residual embolic agent, thus this ROI could not be segmented for the subject. (C) 

Elastograms generated of the ILT ROI. CH: Chitosan hydrogel; CH-STS: Chitosan hydrogel with sodium 

tetradecyl sulphate; FU: follow-up; ILT: intraluminal thrombus; ROI: region of interest; t: time. .............98 
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AAA  Abdominal aortic aneurysm 

A-mode  Amplitude mode 

ARFI  Acoustic radiation force impulse 

BGP  β-glycerophosphate 

B-mode  Brightness mode 

CH   Chitosan hydrogel embolic agent 

CH-STS  Chitosan hydrogel with sodium tetradecyl sulphate embolic agent 

CI   Confidence interval 

CT   Computed tomography 

DAM  Déformation axiale maximale 

DMSO  Dimethyl sulfoxide 

DUS  Duplex ultrasound 

EVAR  Endovascular aneurysm repair 
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HU   Hounsfield units 

ICC  Intraclass correlation coefficient 

ILT   Intraluminal thrombus 

LSME  Lagrangian speckle model estimator  

MAD  Maximum axial deformation 

M-Mode  Motion mode 

MMP  Matrix metalloproteinase 

MRI  Magnetic resonance imaging 

NIVE  Noninvasive vascular elastography 

OAR  Open aneurysm repair 

QSUE  Quasi-static ultrasound elastography 

RCAD  Range cumulative axial deformation 

RCAS  Range cumulative axial shear 

RF   Radiofrequency 

ROI  Region of interest 

STS  Sodium tetradecyl sulphate 

SUE  Strain ultrasound elastography 

SWE  Shear wave elastography 
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SWI  Shear wave imaging 
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Part I - Introduction 
 



 

Chapter 1 – Summary  
Abdominal aortic aneurysm (AAAs) are defined as pathological dilatations of the abdominal aorta 

measuring > 3.0 cm (1). They are most prevalent in elderly Caucasian men with a history of smoking (2-4). 

The most feared complication of AAAs is rupture, which carries a high mortality (5, 6). AAAs were 

traditionally repaired with open aneurysm repair (OAR), an invasive surgery associated with a high 

incidence of post-operative complications (7-10). More recently, endovascular aneurysm repair (EVAR) 

has emerged as a minimally invasive alternative to OAR. In EVAR, an intravascular stent is percutaneously 

inserted into the abdominal aorta to bypass the diseased segment (11, 12). EVAR is associated with superior 

periprocedural outcomes and has become the preferred therapeutic modality for the treatment AAAs (6, 8, 

9, 13, 14). However, EVAR is limited by the development of endoleaks—defined as persistent perfusion of 

the aneurysm sac around the stent—as well as other complications (15). There are five different types of 

endoleaks, which are described in further detail in Figure 1. Endoleaks may be associated with aneurysm 

growth, increased intervention, and potential rupture. Therefore, all patients post-EVAR require regular 

follow-up imaging (1, 16). 

Ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI) have all been 

described as non-invasive modalities for the surveillance of post-EVAR complications. However, each is 

associated with unique limitations. US with Doppler imaging (also called Duplex ultrasound (DUS)) is the 

least expensive and most widely available modality, but it is operator dependent and is the least sensitive 

(17, 18). Contrast-enhanced CT is the reference standard, but it is expensive, exposes patients to ionizing 

radiation, and may be associated with contrast reactions or contrast-induced nephropathy (1, 19, 20). MRI 

has the greatest sensitivity for endoleaks (21), but it is limited by high cost, low availability, and long 

acquisition times. 

Strain ultrasound elastography (SUE) has emerged as a potential imaging adjunct for AAAs post-

EVAR. SUE calculates tissue elasticity based on changes in US signal after the application of a force, such 

as from the pulsations of the cardiovascular system (22-24). Elasticity is of particular interest in the follow-

up of AAA patients as thrombus immaturity is linked with aneurysm expansion pre-EVAR (25) and with 

aneurysm non-shrinkage post-EVAR (26). Stiffer intraluminal contents also tend to better decrease 

aneurysm wall stress (27). Therefore, the detection of immature sac contents may be useful in guiding 

management. SUE has previously been shown to be able to detect endoleaks and differentiate organized and 

fresh thrombus (28, 29). Other forms of elastography (such as shear wave imaging/elastography 

(SWI/SWE)) have been used to characterize aneurysm sac contents and endoleaks; however, these forms of 

elastography suffer from poor penetration and utilize algorithms that rely on potentially inappropriate 

assumptions about the underlying tissue composition (30-33). 



 

 

 

Figure 1 Schematic representation of the different types of endoleaks. Type I endoleaks are caused by blood flow into the aneurysm sac along the 

proximal or distal attachment sites of the EVAR stent, termed type Ia and type Ib endoleaks, respectively. Type II endoleaks are caused by collateral, 

retrograde flow into the aneurysm sac from a vessel that once was supplied by the aneurysm sac, such as the inferior mesenteric artery. Type III 

endoleaks are due to graft tears or component separation of the EVAR stent. Type IV endoleaks are caused by the transient passage of blood through 

pores in the stent graft during deployment on angiography. Type V endoleaks, also termed endotension, entail enlargement of the sac without blood 

flow visualized into the sac on imaging. Adapted from (101). EVAR: Endovascular aneurysm repair. 

 

 



 

 

Once an endoleak is detected, therapy is directed at its type. Type II endoleaks—caused by retrograde 

blood flow into the aneurysm sac through collateral vessels (34)—are the most common and are typically 

treated via embolization when associated with aneurysm growth (1). There are several embolic agents that 

are available—including Onyx, coils, cyanoacrylate glue, and thrombin—however, they each suffer from 

disadvantages, including price, interference with follow-up imaging, technical difficulty during deployment, 

and efficacy (35-38). Furthermore, type II endoleaks are often refractory to treatment, with a long-term 

success of only approximately 40% across therapies (35). Endoleak persistence post-embolization is thought 

to be due to poor occlusivity of the embolic agent and the presence/persistence of endothelial cells lining 

the endoleaks (39, 40). 

In this context, an embolization agent containing a biocompatible, radiopaque chitosan hydrogel mixed 

with the sclerosant sodium tetradecyl sulphate (STS), named CH-STS, was developed. CH-STS has 

demonstrated favorable in vitro mechanical properties and is associated with lower endoleak persistence 

post-embolization compared to a non-sclerosing chitosan hydrogel embolic agent (CH) (41-43). However, 

its behavior in vivo and its and impact on the mechanical properties of the associated intraluminal thrombus 

(ILT) and the overall aneurysm sac—in comparison to CH—merit further characterization using a robust 

and penetrating elastographic technique, such as SUE. 

The goal of the present mémoire is to characterize the constituents of endoleaks embolized with 

chitosan-based embolic agents (both with and without STS) using SUE. 

In the first section of the mémoire (Part I), a background literature review is provided, comprising 

Chapters 1 to 5. In Chapter 1 (the present chapter), the reader is oriented to the contents of the mémoire. 

In Chapter 2, the circulatory system, the aorta, and the pertinent epidemiological, pathophysiological, and 

clinical details regarding AAAs are introduced. In Chapter 3, the treatment modalities available for AAAs 

are summarized, with particular emphasis on EVAR. In Chapter 4, endoleaks are re-introduced, the major 

imaging modalities that are used for their detection are described, and the most common options available 

endoleak for therapy are outlined (with particular emphasis on type II endoleaks). To conclude the chapter, 

the embolic agent CH-STS is introduced. In Chapter 5, elastography is described, with particular reference 

to SUE. The potential role of SUE to characterize AAA mechanical properties as well as to differentiate the 

mechanical properties of embolic agents is emphasized to set the stage for its use as the foundational imaging 

modality for this study. Part II is the experimental section of the mémoire. In Chapter 6, the specific 

objectives and hypotheses of the project are detailed. In Chapter 7, the methodology of the study is 

described. In Chapter 8, the results of the study are presented. Finally, in Chapter 9, the results of the study 

are interpreted with reference to the literature, the limitations of the study are described, and the future 

implications of the study are proposed. 



 

 

Chapter 2 – Abdominal Aortic Aneurysms 

2.1 The Aorta  

2.1.1 Anatomy and Physiology of the Circulatory System 

The cardiovascular (circulatory) system is a complex distribution system responsible for the delivery of 

essential substances throughout the body as well as for the removal of waste. The center of this system is 

the heart, which is a muscular pump that transmits blood in a unidirectional fashion throughout the 

cardiovascular system through two interlinked circuits called the pulmonary and systemic circulations (see 

Figure 2). Each circulation has its own arterial, capillary, and venous network. Blood enters the arterial 

system first, which is composed of arteries. Arteries are thick-walled vessels with varying amounts of 

smooth muscle cells, elastin, and collagen that distribute blood to end organs. Arteries divide in number 

exponentially as they course distally. This not only enables blood to be directed to different parts of the 

body but also increases the system’s overall hypothetical cross-sectional area, resulting in slower blood flow 

velocities for eventual nutrient exchange (44). The most distal arteries are called arterioles. Arterioles are 

the entry points of the microcirculation. The microcirculation is the functional site of exchange between the 

circulatory system and the surrounding tissues and comprises vessels measuring less than 20 µm (45). 

Arterioles eventually divide into capillaries, which are tiny, thin-walled vessels through which blood cells 

may travel in single file. Capillaries are the site where nutrient, waste, and gas exchange occur with the 

surrounding tissues. Capillaries then drain into venules, which are the exit point of the microcirculation and 

the entrance into the venous system. Veins then combine as they course closer to the heart, eventually 

draining into one of the atria of the heart (46). 

There are important differences between the pulmonary and systemic circulations. Blood in the 

pulmonary system is pumped by the right heart, beginning in the right atrium and then passing to the right 

ventricle, the pulmonary arteries, the pulmonary capillaries, the pulmonary veins, and then finally returning 

to the left heart. The major functions of this circuit the collection of O2 and the offloading of CO2 within the 

lungs. Once blood returns to the left side of the heart—passing through the left atrium and the left ventricle—

it is pumped through the systemic circulation. The systemic circulation is responsible for the delivery of 

oxygen, nutrients, hormones, and other substances to the tissues throughout the body. Similar to the 

pulmonary system, the exchange of these substances occurs at the level of the capillary. Systemic venous 

blood drains into the right atrium of the heart via the superior vena cava (which drains the head, thorax, and 

upper extremities) and the inferior vena cava (which drains the abdomen/pelvis and lower extremities). See 

Figure 2 for further details and exceptions (46).  
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Figure 2 Schematic of the circulatory system. The pulmonary circulation and the systemic circulation are 

organized in series with the heart, which acts as a central pump. Within the systemic circulation, there are 

several parallel circuits supplying different organ systems. In general, blood is distributed by the arterial 

system to the peripheral tissues, where—at the level of the capillary—gas, nutrient, and waste exchange 

occurs. Blood is then returned to the heart via the venous system. There are several exceptions to this rule—

such as in the digestive and the renal systems, where there is more than one capillary network and complex 

arterial inputs—but this is beyond the scope of the present document. Adapted from (46). 

 



33 

2.1.2 Anatomy of the Aorta  

The aorta is the largest artery in the human body, spanning both the thoracic and abdominal cavities. It 

transmits blood from the left heart and is the first vessel of the systemic circulation. Within the chest, the 

aorta is defined by three anatomic regions: the ascending aorta, the aortic arch, and the descending aorta. 

The ascending aorta originates at the level of the aortic valve and it is covered by fibrous pericardium that 

extends from the heart. At its base, the ascending aorta gives off the left and right coronary arteries, which 

perfuse the heart. The ascending aorta then courses antero-superiorly and slightly towards the right in a 

vertical-oblique fashion to the level of the second costal cartilage. At this level, the aorta becomes the aortic 

arch, where it takes a predominantly horizontal, curved orientation, coursing posterolaterally towards the 

left. The arch gives off three major branches that perfuse the upper extremities and head: the brachiocephalic 

artery (which gives off the right common carotid and right subclavian arteries), the left common carotid 

artery, and the left subclavian artery. Distal to the left subclavian artery, the aorta again takes a more vertical, 

inferiorly-directed course as it becomes the descending aorta (47). The descending aorta courses slightly to 

the left of the anterior aspect of the vertebral column and gives the intercostal arteries, the bronchial arteries, 

as well as branches to the esophagus, the mediastinum and pericardium, and the thoracic wall (48, 49).  

The abdominal aorta courses through the abdomen and is responsible for supplying blood to the 

abdominopelvic cavity as well as the lower extremity (see Figure 3). Its superior margin is defined by the 

aortic hiatus of the diaphragm, which occurs at the level of the 12th thoracic vertebra (T12), and its inferior 

margin is defined by its bifurcation into the left and right common iliac arteries at approximately the level 

of the 4th lumbar vertebra (L4) (48, 50). The normal diameter of the aorta is reported to be between 1.5-2.5 

cm (51). There are several arteries that arise from the abdominal aorta that supply the abdominal viscera 

and parts of the abdominal wall; notable branches are detailed in Table 1.  
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Figure 3 Illustration of the abdominal aorta with several its branches. The abdominal aorta originates at the 

aortic hiatus (at the level of the 12th thoracic vertebra) and terminates at the bifurcation of the common iliac 

vessels at (at the level of the 4th lumbar vertebra). Branches arise from the anterior, lateral, and posterolateral 

aspects of the abdominal aorta. Adapted from (48). 
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Branch of the 

aorta 

Location End organ 

Celiac artery Anterior aorta, T12-L1 
Liver, gallbladder, spleen, stomach, pancreas, 

duodenum 

Superior 

mesenteric 

artery 

Anterior aorta, L1 

Pancreas, duodenum, jejunum, ileum, colon 

(cecum, ascending colon, transverse colon 

until the splenic flexure), appendix 

Inferior 

mesenteric 

artery 

Anterior aorta, L3 

Colon distal to the splenic flexure (distal 

transverse colon and descending colon), 

superior rectum 

Paired inferior 

phrenic artery 

Posterolateral, superior aorta (just 

inferior to the hiatus) 
Diaphragm, adrenal gland 

Paired middle 

suprarenal 

arteries 

Posterolateral, superior abdominal 

aorta, slightly inferior to the 

inferior phrenic arteries, at the level 

of the superior mesenteric artery 

Adrenal glands. Note that the paired superior 

suprarenal arteries and the paired inferior 

suprarenal arteries also perfuse the adrenal 

glands and arise from the inferior phrenic 

arteries and renal arteries, respectively. 

Lumbar arteries 
Posterolateral aorta, along vertebral 

segments (L1-L4) 

Lumbar spinal cord and ganglia, lumbar 

vertebrae (osseous and soft tissue 

components), posterior abdominal wall 

Renal arteries 

Either side of the aorta, just below 

the takeoff of the superior 

mesenteric artery, approximately 

L1  

Kidneys, ureters, adrenal glands 

Gonadal arteries 
Slightly inferior to renal arteries 

bilaterally 
Testicles or ovaries 

Median sacral 

artery 

Midline, posterior, just above the 

common iliac bifurcation, L4-L5 
L4-L5, sacrum, coccyx 

 

Table 1  Origins of notable branches of the abdominal aorta and examples of end organs that they perfuse. 

The table was generated using descriptions from (48, 50). T: thoracic vertebra; L: lumbar vertebra. 
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2.1.3 Histology of the Aorta 

Arteries comprise three layers: the tunica intima, tunica media, and tunica adventitia (see Figure 4). 

The tunica intima is the thinnest, most internal layer and is composed of a single layer of endothelial cells 

resting on top of a basal lamina and subendothelial connective tissue. The tunica media is the thickest layer 

and contains elastin, collagen, and smooth muscle cells. Finally, the tunica adventitia is the outer support 

layer that contains connective tissue—including elastin and collagen—as well vessels and nerves— termed 

the vaso vasorum and nervi vasorum, respectively (44). The adventitial layer is critical for resisting vessel 

expansion (52).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Illustration demonstrating the various layers of a representative artery, including the tunica intima, 

tunica media, and tunica adventitia. Adapted from (44). 

The aorta is termed an elastic artery because of its high content of elastin (44). Elastin is a biopolymer 

that is responsible for resilience and elastic recoil within several tissues of the body (53). The aorta has a 

well-developed internal elastic lamina—found between the intima and the media—that is rich in elastin 

(44). The media also contains several layers of elastin (elastic lamellae), which alternate with layers of 

smooth muscles cells. The high proportion of elastin within this layer allows for the kinetic energy 

transmitted from the heart during systole to be stored as potentially energy, which is then released as kinetic 

energy during diastole. This allows for continuous blood flow throughout the arterial system during the 

cardiac cycle (54). Finally, the adventitia of the aorta is also particularly well developed and—in addition 

to elastin, collagen, nerves, and vessels—it contains fibroblasts, macrophages, mast cells, and lymphatic 
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vessels. There is an external elastic lamina between the media and adventitia as well, however, it is less 

distinctive when compared to more distal arteries (44). Please see Figure 5 for further details. 

The more distal arteries will be discussed briefly. Beyond the elastic arteries are found the muscular 

arteries and the arterioles. The muscular arteries have a much greater contribution of smooth muscle cells 

to the media (about 75% by mass). Furthermore, the overall proportion of elastin within the walls of the 

muscular arteries is less (although their external elastic lamina is more prominent). Arterioles are found 

distally to the muscular arteries and are the entry point into the microcirculation, as previously described. 

Their internal elastic lamina is either highly porous or absent. The smooth muscles cells of the arteriolar 

wall are tightly wound, which—in addition to the extensive connections with the autonomic nervous 

system—allows for strict regulation of blood flow into the capillary network (44). 

 

 

Figure 5 The aorta is considered an elastic artery given its high content of elastin fibers. (A) Schematic of 

elastin in its relaxed and stretched states. The tendency for elastin to return to its relaxed state allows for 

recoil of the aorta during the cardiac cycle. Adapted from (55). (B) Histopathological slide of the human 

aorta that has been stained dark purple for elastic fibers. The aorta is rich in elastin, which provides resilience 

and elastic recoil. The superior aspect of the image is the vessel lumen and the inferior aspect of the image 

is the adventitia. Deep to the endoluminal surface, there is well-developed internal elastic lamina (arrow). 

Beneath this structure, the thick media contains several dark purple, undulating lines corresponding to layers 

of elastin fibers. Along the superficial aspect of the vessel, the elastic fibers can be seen blending with the 

adventitia. Adapted from (44). 
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2.2 Introduction to Abdominal Aortic Aneurysms 

2.2.1 Definition 

Abdominal aortic aneurysms (AAAs) are conventionally defined as aneurysmal dilatations of the 

infrarenal abdominal aorta measuring ≥ 3.0 cm (1). AAAs have also been defined as dilatations of the 

abdominal aorta measuring 1.5 times that of the normal vessel (56). The average diameter of the abdominal 

aorta is dependent on several factors, including age, body surface area, and sex, but is approximately 2.0 

cm (57). In defining AAAs, the maximum aneurysmal dilatation is typically measured below the renal ostia 

(i.e. in the infrarenal region); however, the aneurysmal dilatation may extend superiorly to involve the renal 

ostia or the suprarenal abdominal aorta (see Figure 6). Morphologically, AAAs may be fusiform or saccular. 

Fusiform aneurysms entail circumferential dilatation of the aorta, whereas saccular aneurysms entail a more 

focal outpouching. AAAs in the conventional sense refer to true aneurysms that involve all three layers of 

the vessel (the intima, media, and adventitia) (58); these aneurysms will be the focus of the present mémoire.  

Aneurysms of the abdominal aorta that do not involve all three layers of the wall are termed 

pseudoaneurysms and will be briefly described. Pseudoaneurysms typically appear as focal outpouchings 

within the wall (i.e. having a saccular morphology) and are generally provoked by trauma, infection, or 

chronic inflammation. They result when a focal injury in the vessel wall allows blood to dissect and expand 

the surrounding media or adventitia (59). Aortic pseudoaneurysm are classically identified in thoracic aorta 

after trauma at the level of the isthmus but may be found in the abdominal aorta as well. Pseudoaneurysms 

tend to have a small neck with a more dilated pouch (60, 61) and are considered abnormal even at diameters 

< 3.0 cm (62). The distinction of a pseudoaneurysm and from a true saccular aneurysm may be difficult with 

imaging alone and often requires correlation with patient demographics, history of presenting illness, and 

prior imaging. Rapid interval onset, irregularity of involved wall, and adjacent hematoma may favor the 

presence of a pseudoaneurysm (63). Abdominal aortic pseudoaneurysms are considered at a high risk of 

rupture and merit rapid treatment (62). Given that these are a rare form of abdominal aortic dilatation, the 

remainder of the mémoire refers to conventional, true aneurysms of the abdominal aorta. 

2.2.2 Epidemiology and Risk Factors 

AAAs have an overall prevalence of 4.8% across studies (4) with an incidence of 0.4% per year in 

Western populations (64). Most aneurysms identified in screening programs are small (<4.0 cm) (65). There 

is a greater prevalence of AAAs in males (6.0%) than in females (1.6%) (4); however, it is unclear if this is 

due to underlying protective factors (such as estrogen) or due to underdiagnosis (66). There is heterogeneity 

in the prevalence of AAAs between different countries and ethnic groups; for example, AAAs are more 

prevalent in Western countries than in Asian countries (4). Similarly, in the United States of America,  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Abdominal aortic aneurysms (AAAs) may be classified with respect to their location relative to the renal arteries. Suprarenal AAAs extent 

superiorly to the renal arteries and can involve visceral branches such as the superior mesenteric artery or celiac artery. In pararenal AAAs, the renal 

arteries are involved but the aneurysmal dilatation does not extend superiorly to them. Juxtarenal AAAs extent to involve just the inferior aspect of 

the renal arteries. Infrarenal AAAs, the most common type of AAAs, begin at least 1 cm distal to the renal arteries. All aneurysm shown are of the 

fusiform morphology, although saccular aneurysms are possible. Finally, aneurysms may extend inferiorly to the common iliac arteries (or even 

more distal branches). Adapted from (67). 

 



 

Caucasians have a higher prevalence of AAAs compared to other ethnic groups (3). While literature in the 

early 2000s suggested that there was an increasing incidence of AAAs (58), more recent studies have found 

that the prevalence of AAAs has been decreasing (68). This has been mainly attributed to the decrease in 

prevalence of smoking (69). 

Smoking is the dominant risk factor for the development and growth of AAAs (2, 3). In a study of 126 

196 participants, participants with a history of smoking had 2.97 times greater odds of having an aneurysm 

between 3.0-3.9 cm and 5.07 times greater odds of having an aneurysm ≥ 4.0 cm. In fact, three quarters of 

aneurysms ≥ 4.0 cm were accounted for by the excess prevalence of smoking (70). The number of cigarettes 

smoked and the duration of smoking are also associated with increased odds of having an AAA, while the 

number of years since cessation of smoking is inversely correlated with AAA incidence (3). The impact of 

smoking on the pathophysiology of AAAs has not been completely elucidate; however, it may be due to 

activation of matrix metalloproteinases (MMPs) (see Section 2.2.3) (71). 

AAAs are more prevalent in the elderly population and increasing age is a significant risk factor for 

developing an AAA. For example, one study found that individuals between the ages of 80-84 had an odds 

ratio of 28.37 of having an AAA, while those between 55-59 had an odds ratio of 2.76 of having an AAA 

(3). One cohort study in Norway found no individuals under the age of 48 with an AAA (65). This 

observation supports the theory that most AAAs—particularly those that are fusiform—develop chronically. 

AAAs are also thought to have a genetic basis. 10-20% of individuals with an AAA report disease 

within a first degree relative (72), with the highest prevalence amongst brothers (32%) (73). A twin study 

from Sweden also revealed that the odds ratio of a monozygotic twin having an AAA when their twin had 

one was 71 (74). The increased prevalence of AAAs in Caucasian men may have a genetic etiology (66). 

Studies have implicated mutations in genes responsible for forming constituents of the extracellular matrix, 

such as those involving collagen (such as collagen III), in the development of AAAs, although likely with 

low penetrance (75, 76). Genome-wide sequencing has implicated several other genes involved in lipid 

metabolism, the cell cycle, inflammation, cell signaling, and the renin-angiotensin system (77). Certain 

known connective tissue diseases, such as Marfan syndrome—caused by an autosomal dominant mutation 

in the FBN1 gene—or Ehlers-Danlos syndrome—caused by a variety of mutations—are also highly 

associated with AAAs (78, 79)  

Studies have also found a positive association between AAAs and dyslipidemia, atherosclerosis 

elsewhere within the body, aneurysms elsewhere within the body, and hypertension (3). Some of these 

findings give credence to the hypothesis that AAAs and atherosclerosis share similar developmental 

pathways; however, as will be seen Section 2.2.3, this explanation is incomplete.  
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The minority of aneurysm are thought to arise from a singular pathology, such as trauma, prior surgery, 

a penetrating atherosclerotic ulcer, or infection (58). These aneurysms are more likely to be saccular in 

morphology (28). 

2.2.3 Pathophysiology 

The precise pathophysiology underpinning the formation of AAAs is not completely understood. 

Conventionally, AAA development was thought to be a sequela of atherosclerosis (80). However, 

histopathological and biochemical data have called this conclusion into question. Atherosclerosis is 

predominantly an intimal disease characterized by the development of lipid-laden plaques. AAAs, in 

contrast, demonstrate profound degradation of the media and adventitia with evidence of oxidative stress, 

fragmentation of elastin and collagen fibers, depletion of vascular smooth muscle cells (likely through 

apoptosis), and inflammatory cell infiltration (77, 81, 82). While some of these features may be seen in 

atherosclerosis, others are somewhat distinct. Therefore, while atherosclerosis may play a role in the 

development of AAAs (or may simply co-exist with AAAs), it is felt that inflammation is the primary driver 

of AAA pathophysiology (83). 

Matrix metalloproteinases (MMPs) are key role players in this inflammatory pathway (52). MMPs are 

secreted by mesenchymal cells and break down constituents of the extracellular matrix, including collagen, 

elastin, proteoglycans, and fibronectin (81). Elastin and collagen degradation are thought to be associated 

with aneurysmal distension and rupture, respectively (72), although some studies have emphasized the role 

of collagen degradation in both of these processes (84). When elastin within the media is attenuated and the 

vessel expands, the adventitia remodels and becomes thicker and more fibrotic. However, this wall, which 

is composed of water-soluble collagen, is weak and can be further degraded by MMPs (82). Smoking has 

been associated with increased MMP activity (85) and estrogens may be associated with decreased MMP 

activity (86). 

The baseline composition of the abdominal aorta may also contribute to aneurysm formation. The 

infrarenal aorta has fewer functional units of elastin compared to more proximal parts of the aorta, which 

may predispose it to expansion (77). The media within the infrarenal aorta is poorly vascularized and reliant 

on simple diffusion for nutrient exchange, which may predispose it to inflammatory damage (77, 83). 

Finally, the precursor cells of the vascular smooth muscle cells of the abdominal aorta appear to be more 

susceptible to aneurysm formation in comparison to those that develop into the thoracic aorta (83).  

2.2.4 Complications of AAA 

The natural history of AAAs is progressive expansion and the most feared complication of AAAs is 

rupture (87). Aneurysm rupture occurs when the mechanical stress imposed on the aortic wall is greater than 
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the wall strength (88) (see Figure 7). In hospital mortality rates for ruptured AAAs were found to be up to 

65.9% in England and 53.05% in the United States (5); however, many cases may not present to the hospital, 

and mortality rates may be higher (6). Other potential complications of AAAs include peripheral thrombotic 

disease (from thrombi originating in the aneurysm) and erosion into the surrounding structures (89). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Abdominal aortic aneurysm (AAA) rupture. (A) Schematic of focal discontinuity within the wall 

of an abdominal aortic aneurysm indicating rupture. C: calcifications, which are displaced. (B) and (C) 

Contrast enhanced axial computed tomography angiogram images demonstrating rupture of an AAA. In 

(B), iodinated contrast material—which under normal circumstances is found within the confines of the 

arterial system on arterial imaging—is visualized leaving the confines of the enlarged, dysmorphic AAA 

lumen (L) and travelling into the retroperitoneum (R), as denoted by the arrows. This finding is termed 

extravasation and is specific for aneurysm rupture. In (C), the massively enlarged aorta is again visualized, 

with the extravasated contrast seen tracking inferiorly. Adapted from (90). 
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Aneurysm size is the most commonly used clinical parameter to predict risk of rupture. Smaller 

aneurysms tend to remain uncomplicated; in fact, elderly patients with small aneurysms are likely to die 

from other issues than from rupture. Larger aneurysms, conversely, are at a much higher risk of rupture 

(91). For example, aneurysms measuring greater than 8.0 cm have an annual risk of rupture of 30-50% per 

year, while those measuring <4 cm may have a rupture risk as low as almost 0% per year (92). 

There are several additional factors that may predict aneurysm rupture. Aneurysms that grow rapidly (> 

1 cm/year) are considered to be at higher risk for rupture (92). Continued smoking is associated with 

continued aneurysm expansion and rupture (2, 93). Women tend to present to hospital with rupture more 

commonly than men (21% vs. 15%) (94). Previous guidelines have indicated that saccular aneurysms are at 

higher risk of rupture due to the asymmetry of the wall (95, 96); however, some clinical reports have noted 

that saccular aneurysms do not have an increased growth rate compared to fusiform aneurysms (97). Other 

factors, such as hypertension, history of transplant, peak aortic wall stress, recent surgery, and antibiotic use 

may also be associated with an increased risk of rupture (83). 

2.2.5 Clinical Presentation 

AAAs may be detected asymptomatically, symptomatically, or as a ruptured aneurysm (89). The 

majority of AAAs are clinically silent. Asymptomatic AAAs may be detected through screening programs 

(98), as a pulsatile abdominal mass on physical exam (99), during the work-up for the management of 

peripheral vascular disease (such for claudication or after the discovery of a peripheral aneurysms) (89), or 

incidentally in the context of other radiological examinations (100). Symptomatic (non-ruptured) aneurysms 

typically present with abdominal pain, although pain radiating to the back, flank, or groin is possible (101). 

The pain may be dull, aching, and non-specific; it is thought to be secondary compression/erosion of the 

surrounding structures, rapid expansion, and/or low-grade inflammation (89). Symptomatic AAAs may also 

present with acute limb ischemia secondary to embolization of thrombus or debris (102). Ruptured AAAs 

present as severe acute abdominal pain with hemodynamic instability; however, presentation to medical 

attention may be delayed given the tamponading effect of the retroperitoneum (89). 

2.2.6 Screening for AAAs 

The United States Preventative Task Force published guidelines in 2019 recommending ultrasound 

screening for AAAs in men between the ages of 65-75 with a history of smoking (103). Furthermore, they 

also recommended selective US screening in men who were non-smokers between the ages of 65-75 (such 

as those with a family history). The task force recommended against screening women without family 

history or a history of smoking and cited insufficient evidence to recommend for/against the screening of 

women between 65-75 with a history of smoking or with a family history of AAAs (98). In contrast, the 
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Society of Vascular Surgery recommends the inclusion a one-time screening for women who have smoked 

or who have a family history of AAAs (1, 104). Screening in men over 65 has been shown to decrease 

mortality rate secondary to AAAs as well as ruptures rates; however, it is not associated with an overall 

improvement in mortality (105). 



 

Chapter 3 – Treatment of Abdominal Aortic Aneurysms  
This chapter will outline the two methods of treatment of AAAs: open aneurysm repair (OAR) and 

endovascular aneurysm repair (EVAR). 

3.1 Indications for Intervention 

The indications for treatment of AAAs are stratified based on the clinical presentation of the patient. In 

the elective, asymptomatic population, treatment is directed towards the prevention of complications—

predominantly of rupture—and is predicated on the aneurysm size and growth. Repair is indicated for 

aneurysms that are ≥ 5.5 cm in diameter (1). Women with aneurysms ≥ 5.0 cm in diameter may also be 

considered for repair given their tendency to present with rupture at smaller aneurysm sizes. (1, 66). 

Asymptomatic aneurysms that grow rapidly (≥ 1 cm year in diameter) should also considered for repair 

(106). In the symptomatic patient (particularly in the case of rupture), prompt treatment is indicated (1).  

3.2 Open Aneurysm Repair 

OAR is an invasive surgical procedure. It may be performed via a transperitoneal or a retroperitoneal 

approach. The transperitoneal approach will be described as it is the more classic form, although the 

retroperitoneal approach may be favored in certain circumstances (such as in the case of a hostile abdomen). 

OAR is performed under general anesthesia. The surgeon performs a midline laparotomy to gain access to 

the abdominal cavity. The overlying structures are mobilized and retracted to visualize the aorta and its 

major branches. The surgeon cross-clamps the aorta proximal to the aneurysm, and, more distally, cross-

clamps either the distal aorta (less common), iliac arteries, or external iliac arteries (depending on the extent 

of repair desired); distal control may be achieved first to prevent embolic showering to the pelvis/lower 

extremities. The aorta is then transected vertically and a graft made of polyester or polytetrafluoroethylene 

is anastomosed to the proximal and distal sites. The aortic wall is sewn over the graft and the abdomen is 

closed (107). See Figure 8 for further details.  

OAR tends to be a more durable repair when successful performed; however, it is limited by high peri-

procedural morbidity and mortality. Studies quote periprocedural mortality in the region of 3-5% (7-10); 

death tends to be caused by multi-organ failure (107). In surviving patients, OAR is also associated with 

more frequent end-organ complications (including cardiopulmonary, renal, and gastrointestinal 

complications) in comparison to EVAR, with cardiopulmonary complications being most common. There 

is also the risk of development of an anastomotic aneurysm, graft infection, and lower extremity ischemia 

(1). A substantial number of patients post-OAR will also have long term laparotomy complications (108). 

OAR is contraindicated when the risk of rupture is outweighed by the risk of the procedure. Other factors, 
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such as obesity and significant medical or surgical comorbidities, may act as relative contraindications to 

OAR and steer the treating team towards EVAR (107). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Schematic demonstrating open aneurysm repair of an abdominal aortic aneurysm (AAA). On the 

left, an infrarenal AAA is visualized. On the right, major steps in aneurysm repair are visualized. The aorta 

and the common iliac arteries can be seen cross-clamped. The aneurysm has been incised and a graft is 

being sewn in place at the level of the proximal and distal aneurysm. After the graft is sewn into place, the 

aorta is sewn over to cover the graft. Adapted from (109). 

3.3 Endovascular Aneurysm Repair 

EVAR is the minimally invasive counterpart to OAR in the treatment of AAAs (72). EVAR may be 

performed under conscious sedation (73). In EVAR, an intraluminal stent-graft (see Figure 9) is deployed 

within the abdominal aorta under fluoroscopic guidance with the use of injected intravascular contrast agents 

for localization. Access to the aorta is achieved in a retrograde fashion using vascular sheaths that are 

inserted in the common femoral arteries either percutaneously or via a surgical cutdown (73). The 

deployment device, as well as various other catheters, are inserted into the aorta to deploy the stent. Once 

deployed, the stent excludes blood flow from the aneurysm sac, thereby allowing the sac to depressurize, 

shrink, and thrombose (74). After a successful EVAR, the aneurysm sac tends to decrease in diameter over 

time (75). See Figure 10 for further procedural details. 

Several anatomic considerations may preclude the performance of EVAR and should be identified on 

pre-procedural imaging. Of note, a hostile proximal neck (the region between the aneurysm and the renal 
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arteries) that is short, angulated, tortuous, or highly thrombosed/calcified may act as a relative 

contraindication to EVAR. While EVAR is best suited for smaller, infrarenal AAAs, fenestrations within 

the graft as well as more advanced techniques make the treatment of juxtarenal, pararenal, and suprarenal 

aneurysms possible (74, 76). 

The principle complications of EVAR include endoleaks (77), ischemic complications (78), and stent-

graft migration/kinking (79). Endoleaks are a broad topic and will be discussed in Chapter 4. The ischemic 

complications of EVAR are diverse and may include colonic ischemia, spinal ischemia, buttock 

claudication, and lower limb ischemia. They may occur due to branch occlusion during stent deployment, 

thrombosis of a stent-graft limb, or the showering of thrombi. (78). Of note, many of these complications 

are shared with OAR (12). Stent-graft migration refers to caudal migration of the stent, which may 

incompletely exclude blood flow from the aneurysm sac. Histopathological examinations of explanted 

stented aortas reveal that there is often little tissular infiltration of the stent-graft from the aorta to promote 

anchoring (80); thus, the graft relies mechanical forces to retain its configuration. Over time, the downward 

pulsation of blood flow in combination with changes in aneurysm morphology may overcome these resistive 

forces. Clinically, risk of migration has been associated with small proximal fixation length (79) as well as 

dilatation of the infrarenal aortic neck (81). Stent-graft migration may be treated with the insertion of an 

extensor module, conversion to open repair, or watchful waiting (79). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Endovascular aneurysm repair (EVAR) stent. This is a unibody model (AFX; Endologix). Other 

stents may have a separate, modular component for one of the iliac limbs. Adapted from (110). 
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Figure 10 Intraprocedural angiograms demonstrating endovascular aneurysm repair (EVAR) stent 

deployment. (A) The common femoral artery (CFA) has been punctured, catheterized and opacified with 

contrast material. CFA catheterization enables access to the abdominal aorta. (B) The deployment catheter 

(containing the EVAR stent, which is labelled Main Body) is visualized just inferiorly to the renal arteries. 

RA; renal artery. Rt: right; Lt: left. (C) The main body of the stent has been deployed. Of note, there is a 

long limb that extends to the ipsilateral side of the common iliac puncture. There remains a short limb that 

must be catheterized from the contralateral side. (D) The short limb is catheterized via a contralateral 

approach through the left CFA. (E) The deployment device for the short limb is passed into the gate for the 

short limb. Deployment is not shown. (F) Completion angiogram demonstrating opacification of the stent. 

Adapted from (82). 
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3.4 Comparison of Open Aneurysm Repair and Endovascular 

Aneurysm Repair 

EVAR has emerged as the preferred therapeutic modality for AAAs in the elective population. In the 

cohort included in the National Surgical Quality Improvement Program between 2005 and 2011, 74.9% of 

AAA repairs were performed endovascularly (12). EVAR is associated with a significantly lower peri-

procedural mortality (0.5-1.7%) in comparison to OAR (3-4.7%). However, there was no significant 

difference between the two modalities with respect to aneurysm-related mortality or overall mortality at 

intermediate follow-up (up to four years) or long-term follow-up (greater than four years) (6, 8, 9, 13, 14). 

Procedural time, loss of blood, and length-of-stay (in both the intensive care unit and the hospital overall) 

are lower with EVAR. However, patients who undergo EVAR are more likely to require secondary 

reinterventions (although the majority are minimally invasive) (6). OAR is associated with only a 1.4% 

rupture rate on long-term follow-up, in contrast to 5.4% with EVAR. Given this, OAR may be safer in a 

low-to-moderate risk group with minimal comorbidities, good pre-operative fitness, and a longer life 

expectancy (111).  

Both EVAR and OAR may also be used in the context of ruptured AAAs. A 2017 Cochrane review 

demonstrated that—given the limitations of the paucity of data available—there was moderate evidence 

suggesting that there was no difference between EVAR and OAR with respect to periprocedural mortality 

in the treatment of ruptured aneurysms (112). The review could not comment upon the mid- and long-term 

effectiveness of either treatment. Clinical guidelines, however, recommend EVAR over OAR whenever 

possible in this context (1).  

The data within the literature regarding the cost effectiveness of the OAR and EVAR are inconsistent 

but appear to favor OAR. For example, a systematic review and economic model of the mid-term data of 

the major clinical trials comparing OAR and EVAR suggested that EVAR was not a cost-effective 

alternative to OAR with respect to quality adjusted years of life (113). In contrast, a systematic review of 

the long-term data suggested that EVAR may be cost-effective in the United States, but not in European 

countries, with EVAR costing £73 000 for every quality adjusted life year due to surveillance and 

reintervention in the United Kingdom (114). A more recent review has suggested that the answer is simply 

unclear, given the underlying heterogeneity of the data reported in the literature (115). However, given the 

rapid evolution of stent-graft technology, changes in fee structures, improved technical expertise with 

respect to EVAR, changes in indications for reintervention for EVAR-related complications, and the cultural 

shift in preference of EVAR, it is unclear as to how relevant these cost analyses will be in future years.  

 



 

Chapter 4 – Endoleaks  

4.1 Definition and Types 

Endoleaks are the most common complication of EVAR and may occur in upwards of approximately 

35% of cases. They are defined as blood flow within the aneurysm sac but outside of the stent-graft (15, 

116). There are five types of endoleaks (see Figure 1 in Chapter 1).  

Type I endoleaks occur when blood travels beyond the proximal or distal stent-graft attachment sites 

into the aneurysm sac in an anterograde or retrograde fashion. These are subdivided as type IA endoleaks 

(proximal attachment site) and type IB endoleaks (distal attachment site). Type I endoleaks tend to occur in 

patients with complex anatomy, extensive calcification, or extensive thrombus formation at the level of the 

proximal neck or common iliac arteries (117). They may also develop over time as the configuration of the 

aneurysm changes (118). Type I endoleaks are considered high pressure endoleaks and are associated with 

aneurysm growth and rupture (1, 118). 

Type II endoleaks are the most common type of endoleak and have a pooled prevalence of 22% across 

studies (34). They occur secondary to retrograde blood flow into the aneurysm sac through a collateral 

vessel—such as the inferior mesenteric artery or a lumbar artery. This flow may be low velocity and low 

pressure (118) or reach close to systemic pressures (119). Type II endoleaks that are not associated with 

aneurysm growth may be followed with serial imaging, as many remain stable in size or spontaneously 

regress (120). However, type II endoleaks that persist over six months are associated with adverse outcomes 

such as aneurysm expansion, increased intervention, conversion to open repair, and rupture (121).  

Type III endoleaks are caused by a defect/tear in the graft material or a disconnection between the 

modular components of the graft, allowing blood to enter the aneurysm sac. These defects may be caused 

by repetitive stress on the graft from aortic pulsations or due to changes in biomechanics of the graft as the 

aneurysm shrinks (117). These, like type I endoleaks, are considered high pressure leaks (118). 

Type IV endoleaks refer to the transient flow of blood through the stent graft material seen 

intraprocedurally on angiography. These tend to resolve once intraprocedural anticoagulation is halted. 

While they are of little clinical concern, care should be taken to exclude other types of endoleak (117, 118) 

Type V endoleaks refer aneurysm expansion without radiological evidence of blood flow into the 

aneurysm sac. These endoleaks are also called endotension. The nature of type V endoleaks are unclear; 

they may be positional, secondary to a slow flowing or even sealed endoleaks, or be secondary to the 

accumulation of fresh thrombus (26, 122). These are considered low pressure endoleaks (118). 
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4.2 Follow-up Timeline 

Routine imaging post-EVAR is mandatory to assess for complications, namely for endoleaks, but also 

for stent-graft migration, kinking, and thrombosis (amongst other complications). The Society for Vascular 

Surgery recommends that a follow-up computed tomography (CT) examinations be performed 1 month and 

12 months post-procedurally (12); if the 1-month CT demonstrates evidence of a complication that does not 

require immediate intervention (such as a type II endoleak), then an additional CT at 6 months can be 

performed (100). If there is no complication after one year of follow-up, patients may be followed with 

duplex ultrasound (DUS). While MRI is more sensitive than both CT and DUS (see below), it is not 

specifically recommended for routine surveillance and is typically reserved for problem solving. Endoleaks 

may present years after EVAR, thus, life-long surveillance is mandatory (12). 

4.3 Conventional Imaging Modalities for EVAR Follow-up 

4.3.1 Computed Tomography 

Computed tomography is a form of cross-sectional imaging that employs X-rays, a form of ionizing 

electromagnetic radiation. CT scanners contain multiple X-ray tubes with diametrically opposed detectors 

that are affixed to a circular gantry that rotates around the patient during acquisition. As the gantry rotates, 

the patient is moved through a predetermined scan field on a motorized table to acquire three dimensions of 

images. During each acquisition, X-rays are projected from the X-ray tubes towards the patient; some of 

these X-rays are attenuated (absorbed or scattered) by the patient, while others pass through the patient and 

are detected by the detectors (see Figure 11). The amount of energy that is detected is inversely related to 

amount of energy that is attenuated by the patient’s body. Within a given axial cross-section of the patient’s 

body, different tissues will attenuate X-rays differently. The tissue attenuation (expressed mathematically 

as its attenuation coefficient) is related to the tissue’s density as well as its atomic numbers. Structures with 

high attenuation coefficients (e.g. bone and metal) will attenuate much of the incident X-ray beam, while 

structures with low attenuation coefficients (e.g. air and fat) will attenuate less of the incident X-ray beam. 

The detected X-rays can be used to generate maps (images) of the relative attenuation values for the different 

tissues within the patient’s cross-section, with each pixel on this map corresponding to a particular 

attenuation coefficient. Clinically, the attenuation coefficients are expressed as Hounsfield units (HU). By 

definition, water is 0 HU and air is -1000 HU. Fat is less than 0 HU (usually around -100 HU) and bone is 

much greater than 0 HU (usually > 1000 HU). On greyscale CT imaging, structures with higher attenuation 

coefficients appear brighter/whiter (123). 

Intravenous contrast agents are often employed during CT examinations to improve contrast resolution. 

CT contrast agents contain iodine, which has a high atomic number and a high attenuation coefficient. The 
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distribution of contrast material through the body is considered to be flow-limited; thus, the location of 

enhancement (i.e. area of increased attenuation) is dependent on where it has been pumped by the 

cardiovascular system. Contrast is typically administered via a peripheral vein and progressively travels 

through the venous system, the right heart, the pulmonary circulation, the left heart, the systemic circulation, 

the end organs, and then back through the venous system; eventually, it is excreted by the kidneys into the 

bladder. Different structures will show greater enhancement depending on when the image is taken with 

respect to the time of injection of the contrast (124). Contrast administration is crucial in the assessment of 

post-EVAR complications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Simplified schematic of a computed tomography (CT) imaging system. The X-ray tube produces 

X-rays. The filter and collimator alter the beam-shape to optimize patient coverage. The X-ray detectors are 

located opposite to the X-ray tubes and detect incident X-rays that have not been attenuated by the patient. 

The gantry, which actually contains several X-ray tubes and detectors, rotates during acquisition while the 

motorize table moves the patient through the scan field. Adapted from (125). 

CT is the reference standard for EVAR follow-up given its high sensitivity and specificity for endoleaks 

(92% and 90%, respectively) (105), low-intermediate cost, and widespread availability (106). See Figure 

12 for an example of an endoleak diagnosed with CT. In the follow-up of EVAR, imaging is typically 

performed in the unenhanced, arterial, and portovenous phases (107). The unenhanced phase is useful for 

the detection of mural calcification and other spontaneously hyperdense materials that may be 

misinterpreted as an endoleak on the enhanced phases. Contrast-enhanced studies are mandatory to assess 

for stent patency as well as for the presence of an endoleak, which will be seen as contrast opacification 
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outside of the stent but inside the aneurysm sac. The portovenous study is useful for the detection of slow 

flow endoleaks and also provides the optimal enhancement of the end-organs visualized within the study. 

The specific imaging characteristics of a given endoleak will be predicated on its type, as seen in Table 2. 

All phases may be used to detect sac growth, stent kinking, and stent migration. The use of CT is limited by 

the cumulative radiation exposure associated with multiple follow-up studies; the potential harm of contrast 

agents, which are nephrotoxic and which may cause allergic reactions; and the cumulative cost of repeated 

studies (106). Furthermore, given that it is a static modality, CT may misclassify endoleaks (108). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 Type Ia endoleak. (A) and (B) Computed tomography (CT) angiograms post-EVAR 

demonstrating contrast opacification of the aneurysm sac originating from the region of the proximal 

attachment site (white arrowheads). (C) Angiography confirms the presence of a type I endoleak (black 

arrowheads). Adapted from (118). 
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Endoleak type CT imaging features 

Type I: General: Often associated with sac expansion when compared to prior imaging. 

Unenhanced: May detect spontaneously hyperdense material within the aneurysm sac 

near the proximal or distal attachment site, suggestive of acute hemorrhage. 

Enhanced: Collection of contrast material inside the sac, visibly arising from the 

proximal or distal attachment sites (types Ia or Ib endoleaks, respectively). 

Type II: General: Often not associated with increased sac size; may spontaneously decrease in 

size or thrombose. 

Unenhanced: Spontaneously hyperdense material within the periphery aneurysm sac 

(i.e. may be away from the stent) near a collateral vessel 

Enhanced: Contrast material within the aneurysm sac adjacent to an enhancing 

collateral branch (e.g. lumbar, inferior mesenteric artery), which may represent an 

inflow vessel. There may be delayed opacification given that some of these endoleaks 

are slow flow. Note that an opacified vessels may not necessarily be source of the 

endoleak, but rather the outflow vessels from a type I or type III endoleak  

Type III:  General: Often associated with sac expansion when compared to prior imaging. 

Unenhanced: Spontaneously hyperdense acute hemorrhage near the body of the stent-

graft, away from the attachment sites. May see component separation. 

Enhanced: Large enhancing collection near the body of the stent-graft. Contrast may 

be seen exiting a defect in the stent or at a site of component separation. 

Type IV: Not applicable. Type IV endoleaks are transiently seen during stent-graft implantation 

and resolve once anticoagulation has been halted. 

Type V:  General: Sac expansion without demonstrable evidence of an endoleak (i.e. no 

contrast opacification of the sac).  

 

Table 2  Computed tomography (CT) findings of endoleaks. Adapted from (126, 127). 
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4.3.2 Magnetic resonance imaging  

Magnetic resonance imaging (MRI) applies the principles of electromagnetism to generate diagnostic 

images (128). MRI machines apply a strong, uniform magnetic field to the patient. This causes hydrogen 

atoms, which are found ubiquitously throughout the body—although in different amounts and in different 

microstructural environments—to precess (or spin) at the Larmor frequency, either anti-parallel, or, more 

frequently, parallel to the uniform magnetic field (see Figure 13). This creates a net weak nuclear 

magnetization in the direction of the applied field. Radiofrequency (RF) pulses can then be applied—using 

RF coils—at the Larmor frequency perpendicular to magnetic field to cause a net magnetization shift into 

the transverse plan (i.e. perpendicularly to the previously described direction of net nuclear magnetization). 

The hydrogen atoms may then return to the original direction of net nuclear magnetization. The changes in 

magnetization induce voltages within the RF coil and, after many repetitions, the signal can then be used to 

generate images. Additional coils—called gradient coils—are used concurrently to help with signal 

localization in either two dimensions or three dimensions—the latter of which is useful for creating 

multiplanar reformats.  

Two major imaging sequences—T1- and T2-weighted images—can be derived from the received signal. 

The signal intensities (brightness) of a given tissues in each sequence depends on the environment of the 

hydrogen atoms (128). On T1 images, fat is hyperintense and water is hypointense, whereas on T2 images, 

fat and water are hyperintense. Modifications can be applied to these sequences to improve contrast 

resolution (for example, fat-suppression techniques on T2 imaging, so that only water is hyperintense), but 

the specifics are beyond the scope of the present document (128, 129). Gadolinium-based contrast agents—

much like iodinated contrast agents in CT—can be used to increase signal intensity and improve tissue 

contrast, such within the arterial system. In contrast to iodinated contrast agents—which attenuate X-rays—

gadolinium-based contrast agents decrease the T1 relaxation time, resulting in increased T1 signal (129).  

MRI protocols for EVAR follow-up include several sequences. A standard protocol may include an 

axial T2-weighted sequence, an axial T1-weighted pre-contrast study, two bolus-timed 3D T1-weighted 

post-contrast studies (the addition of the second study is thought to improve sensitivity, although it is not 

universal), and a final axial post-contrast T1 weighted 2D sequence (130-132). On MR, endoleaks are 

defined as areas of enhancement within the aneurysm sac but outside on the stent-graft on gadolinium-

enhanced T1-weighted images (see Figure 14). They may be categorized in a similar fashion compared to 

Table 2 for CT (130-132). T2 imaging may also be used to identify fresh clot (hyperintense), which may be 

contributory to endotension or sac non-shrinkage (26). 
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Figure 13 Select illustrated principles of magnetic resonance imaging (MRI). (A) Every proton in the 

human body has an axis of nuclear magnetization termed a spin (dotted arrow). (B) When a homogenous 

magnetic field (B0) is applied to a tissue, its protons will align themselves either parallel or antiparallel to 

the magnetic field and then precess (rotate) at the Larmor frequency. More protons will align their axes of 

nuclear magnetization parallel to B0, so the net magnetization of the protons (Mz) will be in the direction of 

B0. (C) The Mz is again shown in the direction of B0. Adapted from (128). 

 

Figure 14 Magnetic resonance images of a type II endoleak. (A) Computed tomography (CT) of an 

abdominal aortic aneurysm status post endovascular aneurysm repair (EVAR) and surgical clipping of 

paired lumbar arteries (arrows). As per the authors, the endoleak was occult. (B) T1 post-contrast axial 

image of the corresponding aneurysm demonstrates hyperintense contrast extending from the region of the 

clips (arrow) into the aneurysm sac, suggestive of a type II endoleak. Adapted from (108). 
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MRI is the most sensitive modality for detecting endoleaks. It is considered superior to the reference 

standard, CT, given its superior soft tissue contrast (130). A review published in 2013 found that MRI was 

able to detect 126 additional endoleaks compared to CT, although it did miss two. While the majority of the 

endoleaks detected by MRI were type II endoleaks (69%), 10% were type III endoleaks (which typically 

require urgent therapy); the remainder were indeterminate. The use of albumin-binding contrast agents, 

which remain intravascularly longer and result in increased T1-shortening, may improve sensitivity for 

endoleaks (21). The majority of present-day stent-grafts, which are nitinol-based, do not result in significant 

susceptibility artifact (signal alteration due to magnetic field inhomogeneities), except perhaps at the level 

of the struts. MRI also avoids the use of ionization radiation and, like CT, is much less operator dependent 

than ultrasound. While these advantages make MRI an enticing modality for post-EVAR follow-up, it does 

suffer from several disadvantages. MRI has increased scan times compared to CT. It may be poorly tolerated 

by claustrophobic patients. It is less widely available compared to CT and ultrasound. Its use is 

contraindicated in patients with certain implanted devices (such as certain pacemakers). Finally, stainless 

steel and Elgiloy® alloy EVAR stent-grafts may generate susceptibility artifacts, which may decrease the 

sensitivity of the study (130).  

4.3.3. Ultrasound 

Ultrasound (US) imaging will be described in detail because it is the basis of elastography, which will 

be further described in Chapter 5. 

US imaging involves the emission and detection of high frequency (1-20 MHz) ultrasound waves. US 

waves are mechanical pressure waves that propagate through media via the sequential compression and 

rarefaction of particles (see Figure 15). In US imaging, US waves are produced and detected using handheld 

probes that contain piezoelectric crystal transducer elements. These crystals convert electrical energy into 

ultrasound waves and vice-versa. A conventional probe may have several elements organized in an array, 

each of which emits and detects ultrasound waves along a line of sight. Each element sequentially emits a 

short pulse of sound waves through the tissue; they then detect subsequently reflected soundwaves and 

convert the energy into an electrical signal. This signal contains information regarding depth and contrast 

of the underlying tissue (133). The totality of the lines of sight can be used to produce an US image (134). 
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Figure 15 Ultrasound transducers use piezoelectric crystals to high frequency pressure waves with 

alternating regions of high pressure and low pressure. Adapted from (133). 

 

A fundamental concept that allows for tissue contrast in ultrasonography is acoustic impedance. 

Acoustic impedance is the product of tissue density and the speed at which sound travels through the tissue. 

Sound waves travel faster in non-compressible materials (such as bone) and slower in compressible 

materials (such as air). When two tissues of dissimilar acoustic impedances are adjacent, ultrasound waves 

will reflect from their interface and may be detected by the transducer. Tissues with greater differences in 

acoustic impedance will reflect a greater proportion of incident ultrasound waves (133).  

Another important US principle is scatter. Incident US waves scatter in random directions away from 

the beam when they encounter structure much smaller than their wavelength. Many organs/tissues have a 

complex microstructure that cause characteristic ultrasound wave scattering patterns. These patterns are 

intrinsic to the tissues and changes in the speckle pattern may be indicative of disease. On imaging, different 

tissues and lesions may be described by their relative echogenicity in comparison to surrounding tissues. 

Tissues that are hyperechogenic scatter more than the surrounding tissue, while the opposite is true for 

tissues that are hypoechoic (133).  

Depth on US imaging is derived from the time it takes for an emitted US bream to return to the probe. 

Ultrasound technology assumes that waves travel through tissue at a constant velocity of 1540 cm/s. Thus, 

once a pulse is emitted, a reflected echo that takes longer to be detected by an element is calculated to be 

farther away from the probe than one that is detected sooner. Of note, the further away an object is from the 

transducer, the more signal is lost (such as from scattering and absorption)—this is termed attenuation. A 

time gain compensation is applied to the received signal to compensate for this (134). Lower frequency 

transducers attenuate less (and therefore penetrate more) and may be used to image deeper structures; 

however, they also tend to have lower spatial resolution (133). The fundamental assumption that ultrasound 

waves travel at 1540 cm/s is fairly accurate for soft tissue, but not for other structures (such as bone and 

air), which may result in signal loss or artifacts. 
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There are several different modes of US display. Regardless of the method of presentation, the raw 

signal (radiofrequency (RF) signal) must be post-processed to create a diagnostic image. Two of the most 

common modes of display are B-mode (brightness mode) and M-mode (motion mode) imaging. In B-mode 

imaging, a brightness value—related to the detected signal amplitude—is presented at each depth for each 

line of sight (on the y-axis) across the lateral distribution of the scan lines (x-axis). This provide a real time 

cross-sectional image of the scan field. B-mode imaging is the most common display mode used in 

diagnostic imaging (see Figure 16). M-mode imaging, in contrast, presents time on the x-axis and depth on 

the y-axis, again with different tissue echogenicities presented at each depth, for a narrow line-of-sight. M-

mode is useful for analyzing motion of a limited line of sight over time, such for visualizing cardiac valves. 

A-mode imaging, which plots depth on the x-axis and signal amplitude on the y-axis is infrequently used 

clinically but is involved in 1-D transient elastography (see Section 5.3) (134). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16 Schematic of brightness mode (B-mode) ultrasound (US) imaging of the kidney. High-

frequency sound waves are emitted by the ultrasound probe, which are returned back to the ultrasound 

probe due to reflection and scattering induced by the underlying tissue. The mechanical energy of the 

returning sound wave is converted into an electrical signal, which is used to produce brightness values on 

a coordinate system defined by the x-axis and y-axis. Adapted from (135). 
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Doppler imaging is an important adjunct to B-mode imaging and is used to characterize moving objects. 

Doppler analysis hinges on the Doppler effect: as a moving source of sound comes closer to an observer, 

the perceived frequency of the sound increases; as the source moves further away, the perceived frequency 

of the sound decreases. Similarly, in the context of US, as an object moves closer to the transducer, the 

frequency of its backscattered echoes increases; as it moves away, the frequency of these echoes decreases. 

One of the main uses of Doppler analysis is in the characterization of blood flow. Color Doppler analysis 

presents the average frequency shifts of the individual pixels within a region of interest (such as a blood 

vessel) as a two-dimensional image. The average value of these shifts is color-coded; by convention, red 

indicates motion towards the probe, and blue represents motion away from the probe. Color Doppler signals 

are generally superimposed upon B-mode images to combine motion information with the baseline reflector 

characteristics of the tissue. This is termed Duplex ultrasound (DUS). Pulse-wave Doppler is another form 

of Doppler imaging that allows for waveform characterization of a small region of interest (134). 

Both B-mode and Doppler imaging are critical in sonographic follow-up post-EVAR. B-mode imaging 

is used to assess for changes in aneurysm diameter as well as to assess stent-graft morphology and location. 

Given that the probe can be angulated to adjust for the tortuosity of aneurysmal vessels, US may have a 

greater sensitivity for true aneurysmal diameter than axial CT slices (although the standard is to use 

obliquely reformatted CT images when the aneurysm is tortuous) (136). Endoleaks may be visualized as 

mobile echoes within the aneurysm sac but are best characterized as abnormal regions of Doppler signal 

within the aneurysm sac, outside of the stent-graft (see Figure 17). The type of endoleak will be predicated 

on the origin of Doppler flow within the aneurysm sac. While certain wave forms patterns on Doppler 

imaging have been associated with endoleak closure, progression, or resistance to treatment, these findings 

are controversial (137).  

 

Figure 17 Duplex ultrasound examination demonstrating foci of Doppler signal outside of the stent but 

inside the aneurysm sac (arrows) in keeping with endoleaks. Adapted from (137). 
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Duplex ultrasound is recommended for follow-up imaging after EVAR once there is no evidence of 

complications on post-procedural CT scans (1). It is safe, widely available, inexpensive, and avoids the 

harms of ionizing radiation. It is also dynamic; high velocity endoleaks (favoring type I or type III) may be 

missed or misinterpreted as type II endoleaks on static CT images (138, 139). However, US is operator 

dependent (140), may be non-diagnostic in obese patients due to low penetration (141), and may be 

technically limited due to obscuration of the sonographic window by overlying structures. Ultrasound is 

also less sensitive and specific than CT. An early meta-analysis comparing the two modalities (with CT 

being considered the reference standard) found that US had a pooled sensitivity of 69.1% and a specificity 

of 90.6% (18); a more recent Cochrane review found that ultrasound had a sensitivity of 82% and a 

specificity of 93% for endoleaks (17). In addition, US may miss or overcall findings that may change 

management. For example, in one study, US missed 27 endoleaks in 17 patients, two of which were type I 

endoleaks. There was also poor correlation between changes in aneurysm size detected by US in comparison 

to CT (141). However, other authors have suggested that the majority of endoleaks that are missed by US 

are type II endoleaks (142) and that CT identifies too many endoleaks that do not require therapy (138). 

Contrast-enhanced ultrasound, which uses a non-nephrotoxic contrast agent that contains echogenic 

microbubbles, has improved sensitivity for endoleaks (143). However, it may not be sensitive enough to 

detect stent-graft migration or kinking (144); its use is contraindicated in patients with certain underlying 

cardiac pathologies (144); and there are barriers to its uptake in clinical practice (145). 

4.4 Treatment of Endoleaks 

The treatment of endoleaks are geared towards their type. Special attention will be paid to type II 

endoleaks. 

4.4.1 Treatment of Type I Endoleaks 

Type I endoleaks are associated with high velocity blood flow and elevated sac pressures. As a result, 

they are at a high risk for sac expansion and rupture and are generally promptly treated. Type Ia endoleaks 

may be treated with balloon angioplasty, placement of a balloon expandable stent, placement of an extension 

cuff, placement of a fenestrated stent-graft (if the extension will extend above the renal, mesenteric and/or 

celiac arteries), or placement of endoluminal staples or anchors (1, 146). Embolization with coils and glue 

may also be considered (147). Type Ib endoleaks usually treated by inserting a leg extension (1). Refractory 

type I endoleaks may necessitate conversion to open repair (1). 
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4.4.2 Treatment of Type II Endoleaks 

Type II endoleaks are commonly seen intraprocedurally during EVAR as well as on follow-up imaging. 

There is currently no indication for the treatment of type II endoleaks discovered intraprocedurally, as 

approximately half of type II endoleaks will spontaneously resolve (1). One study found that that while type 

II endoleaks were found in 24% of cases intraprocedurally, they were found in only 9% of cases at 6 months 

follow-up (148). When a persistent type II endoleak is present, approximately 25% of aneurysm will regress 

in size while approximately 25% will grow (1). Type II endoleaks may also spontaneously appear over one 

year after EVAR secondary to the recruitment of alternative vascular pathways; these endoleaks are 

suggested to have a lower tendency to resolve, with approximately 55% requiring intervention. Some 

authors have suggested increased screening and a lower threshold to intervene in these cases (149). 

Ultimately, there is controversy within the literature regarding the most appropriate time to intervene on 

type II endoleaks (150), with authors suggesting that a selective approach is both safer and more cost-

effective (151). One review suggested that therapy should be pursued only if there is sac growth after six 

months, persistence of the endoleak over 12 months without sac growth, or if sac pressures reach over 20% 

of the systolic pressure (152). In contrast, another study found there was insufficient evidence to recommend 

a threshold for therapy (150). Overall, the majority of type II endoleaks do not require intervention (153). 

When treatment of a type II endoleak is indicated, the favored approach is embolization (see Figure 

18). Several approaches to embolization have been identified, including transarterial, translumbar, and 

transcaval embolization. The transarterial approach is currently favored when feasible as both diagnostic 

angiography and therapy can be performed simultaneously; however, a translumbar approach is an 

acceptable alternative (154). Complete embolization of the entire sac as well as the feeding and outflow 

vessels is recommended, as embolization of the feeding vessel alone may allow for the recruitment of other 

vessels. This behavior has led some to compare type II endoleaks to arteriovenous malformations (36, 37, 

155). Several embolic agents—including thrombin, coils, n-butyl cyanoacrylate, and Onyx (ethylene vinyl 

copolymer acetate)—have been reported in the literature with varying degrees of success (see Section 4.5.1) 

(156-161). Surgical ligation of the feeding vessel is a more invasive possibility (162); however, this again 

may result in additional vascular recruitment. Regardless of the agent or approach used, type II endoleaks 

tend to be refractory to therapy, with overall long-term success in only approximately 40% of cases (35).  

Prophylactic interventions to prevent endoleaks during stent deployment have also been reported. Such 

maneuvers include embolization of the lumbar vessels (163) and inferior mesenteric artery (164) or 

immediate thrombin injection within the aneurysm sac (165). However, given their associated risks, costs, 

and mixed evidence in the literature (166), these approaches have not been widely adopted. The one 

exception to this is prophylactic embolization of the internal iliac artery when its orifice will be covered by 

the stent (127). 
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Figure 18 Transarterial coil embolization of a type II endoleak. (A) A type II endoleak fed by a lumbar 

artery is identified on contrast enhanced computed tomography (CT); the arrow points to the feeding vessel. 

(B) Selective angiogram of the right internal iliac artery demonstrates that the lumbar vessel (arrows) is fed 

by the right iliolumbar artery. (C) A microcatheter is advanced to the endoleak. (D) The endoleak nidus and 

feeding artery have been coiled. There is no opacification of the endoleak upon contrast administration. 

Adapted from (36). 

4.4.3 Treatment of Type III Endoleaks 

Type III endoleaks—like type I endoleaks—are associated with rapid aneurysm expansion and rupture 

and merit prompt treatment. These endoleaks may be treated with redeployment of a new stent-graft to reline 
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the original stent-graft, thereby covering the membrane perforation or bridging the gap between the stent-

graft modules (1, 146). 

4.4.4 Treatment of Type IV Endoleaks 

Type IV endoleaks require no treatment and spontaneously resolve after re-normalization of coagulation 

parameters. 

4.4.5 Treatment of Type V Endoleaks 

Endotension is treated on an individualized approach. As type V endoleaks are not, by definition, 

associated with radiological evidence of blood flow within the aneurysm sac, they may be monitored 

clinically and radiologically. Follow-up imaging may reveal an occult type I-III endoleak, and treatment 

would be predicated on the type. Alternatively, if no other type of endoleak is found and there is continued 

expansion, therapy may involve relining the stent-graft with a new material, adding extension cuffs, or 

conversion to open repair (146). 

4.5 A New Agent to Treat Endoleaks: CH-STS 

4.5.1 Limitations of Current Embolic Agents for the Treatment of Type II 

Endoleaks 

Type II endoleaks remain a therapeutic puzzle with long term success of only approximately 40% across 

therapies (35).  

Onyx appears to be the most successful agent, with a clinical success rate of approximately 79% (157). 

Onyx is composed of ethylene vinyl alcohol copolymer (EVOH), which is dissolved in a solution of 

dimethyl sulfoxide (DMSO) prior to deployment. It also contains radiopaque tantalum powder to aid in 

fluoroscopic visualization. The major advantage of Onyx is that it can be deployed slowly to form a cast 

within the endoleak, enabling controlled embolization of the nidus as well as the inflow and outflow vessels 

(37). However, Onyx suffers from several disadvantages. While demonstrating superior initial clinical 

success when used as the primary therapeutic agent, its success rate is only about 50% when used after 

initial treatment failure, performing no better than other therapeutic options (35). Onyx is very expensive, 

costing approximately $2500 per 1 mL vial. It is tedious to prepare—as the powder and solvent must be 

heated and agitated—and it must be deployed slowly (0.16 mL/minute). DMSO is also a toxic solvent and 

that requires specialized catheters to prevent catheter damage. Finally, tantalum powder is permanently 

radiopaque, causing streak artifact on follow-up CT imaging that may limit the detection of recurrent 

endoleaks (35). 
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There are several other embolic agents that have been reported in the literature, all of which suffer from 

similar disadvantages. Coil embolization is the most widely used treatment option (36). However, it is 

associated with increased rates of reintervention due to preserved flow within the tracts between the 

individual coils. Furthermore, coils cause permanent streak artifact and can decrease the sensitivity of 

follow-up imaging for recurrent endoleaks. They are also expensive (although less so than Onyx) (35, 167). 

Cyanoacrylate glue is another commonly used agent (168). However, it is technically difficult to prepare 

and to deploy as it must be titrated with the contrast agent lipiodol, which affects polymerization time. This 

may result in non-target embolization and inadvertent gluing of the catheter to the surrounding structures 

(37). Thrombin is another proposed agent; however, even when used intraprocedurally, it is not associated 

with a significant decrease in post-procedural endoleaks (38). 

Given the limitations of commercially available embolic agents, there was a demonstrable need for an 

improved therapeutic option for the treatment of type II endoleaks. Research in endovascular therapy has 

established that persistence of the endothelial lining is associated with treatment failure after embolization 

(169). Preclinical AAA models have shown that that endoleaks comprise channels lined with endothelial 

cells (39, 40) and that the mechanical ablation of the endothelial layer of the aneurysm wall promotes the 

closure of endoleaks. However, this effect is mitigated when a collateral vessel is present. Therefore, 

endoleak recanalization is thought to be mediated both by persistent blood flow as well as the deposition of 

progenitor endothelial cells (170, 171). It was therefore hypothesized that an embolic agent that promotes 

both vascular occlusion and endothelial denudation would be particularly valuable in the treatment of 

endoleaks (172). 

4.5.2 Development and Evaluation of CH-STS in vitro and in vivo 

Based on this hypothesis, Drs. Lerouge and Soulez collaborated at the Centre de recherche du Centre 

hospitalier de l’Université de Montréal (CRCHUM) to develop a sclerosing embolic agent named CH-STS. 

It has been patented and licensed to Cook Medical, an international leader in endovascular therapy.  

CH-STS is an embolic agent that comprises chitosan, the sclerosant sodium tetradecyl sulphate (STS), 

and a non-ionic contrast agent. Chitosan is a biopolymer that is derived from chitin, which is found in fungi 

and the shells of crustaceans (173). It is non-toxic and—when combined with a gelation agent such as β-

glycerophosphate (BGP)—it forms a thermosensitive hydrogel, transitioning from a non-Newtonian fluid 

to a gel when heated (174). Consequently, chitosan hydrogels may be injectable at room temperature and 

occlusive at body temperature (42). Chitosan hydrogels are also biodegradable, which may allow for 

progressive aneurysmal thrombosis, fibrosis, and shrinkage (43, 175). STS is an anionic surfactant that is 

commonly used in venotherapy. It causes endothelial denudation, local inflammation, and promotes 

vascular occlusion. In high flow situations, STS is often combined with an embolic agent, such as Gelfoam 
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or coils, to promote stasis and prevent non-target embolization (176). Finally, CH-STS contains the contrast 

agent VisipaqueTM (GE Healthcare), which is a non-ionic, iodinated contrast agent used in diagnostic CT 

and angiographic examinations. VisipaqueTM diffuses out of the agent over 48 hours, which allows for 

precise image-guided visualization during embolization without negatively impacting follow-up CT 

imaging (41-43). 

CH-STS has demonstrated favorable characteristics for endoleak embolization both in vitro and in vivo. 

An initial iteration of CH-STS—containing chitosan 2% weight/volume, BGP 12% weight/volume, 

Isovue® 300 20% volume/volume, and STS 3% weight/volume—demonstrated almost immediate gelation 

after preparation with a storage modulus of 1357 Pa, above the threshold of 800 Pa thought to be necessary 

for vascular occlusion (42, 43, 177). The storage modulus of the gel also increased over time, reaching 

approximately 3000 Pa after 1 week (42). In addition, CH-based embolic agents with STS have been shown 

to effectively remove the endothelial layer from vessels in ex vivo arterial assays (42) and, when used to 

embolize the auricular arteries of rabbits, CH-STS with a concentration of 3% STS resulted in a greater 

occlusion length compared to lower concentrations of STS (41). In a preliminary canine bi-iliac endoleak 

model, none of the three aneurysms embolized with CH-STS had persistent endoleaks on long term follow-

up (42).  

The most recent formulation of CH-STS—composed of chitosan 2% weight/volume, 12% w/v β-GP, 

VisipaqueTM 320 30% volume/volume (changed to increase its visibility on fluoroscopy), and STS 3% 

weight/volume—again demonstrated a storage modulus greater than 800 Pa upon preparation and could 

also withstand pressures up to 220 mm Hg when tested with an in vitro embolization bench test (43). The 

gel was also noted to form a continuous thread during injection, which was useful to completely occlude 

endoleak niduses. In the same canine bi-iliac endoleak model, embolization with this formulation of CH-

STS was associated with an 88% initial technical success and a 77% long term success. In comparison to 

embolization with a non-sclerosing chitosan hydrogel embolic agent (CH; composed of chitosan 2% 

weight/volume, β-GP 20% weight/volume, and VisipaqueTM 320 30% volume/volume), CH-STS was 

associated with an 85% lower probability of residual endoleak. Finally, as seen in the ex vivo arterial study, 

the aneurysms embolized with CH-STS showed evidence of endothelial denudation on histopathological 

analysis (43).  

The ability of CH-STS to promote endothelial denudation has been established, as have its favorable 

mechanical properties in vitro. However, given the importance of occlusivity in preventing endoleak 

recurrence post-embolization, it is of interest as to how the agent affects the mechanical properties of 

embolized aneurysms in vivo over time. Ultrasound elastography, described in the following chapter, is well 

suited to address this question. 



 

Chapter 5 – Elastography  

5.1 Introduction to Elastography 

In clinical applications, elastography is a predominantly image-based technique that measures tissue 

elasticity. Elasticity is a mechanical property that refers to a tissue’s ability to resist deformation when a 

force is applied and its tendency to resume its original configuration thereafter. It has long been observed 

that tissues and organs undergo changes in their mechanical properties as they undergo physiological and 

pathological processes (22). For example, a developing scirrhous breast cancer will demonstrate much 

different mechanical properties than its surrounding fibroglandular and adipose tissues (22, 178). 

Elastography is able to characterize these changes in a similar manner to the physical exam maneuver of 

palpation; however, it can better characterize deeper, smaller structures and can provide semi-quantitative 

or quantitative information as well (178, 179). Different imaging modalities have been investigated in the 

pursuit of elastographic analysis; however, US elastography has gained particular interest given that US is 

widely available, inexpensive, and safe (180). While B-mode imaging is limited in its ability to characterize 

changes in tissue elasticity (as tissue echogenicity in of itself may not correlate with stiffness), the use the 

basic principles outlined in Section 4.3.3 can be used—with the application of additional sources of 

deformation and intensive post-processing—to calculate tissue elasticity (178). Using these means, 

ultrasound elastography can provide information regarding tissue stiffness, depth, and contrast (180). 

The concepts of stress and strain are fundamental to elastography. Stress (σ) is a force per area (with 

units N/m2) and strain (e) is a dimensionless deformation (expansion, compression, or change in 

configuration). Hooke’s law relates the stress imposed upon an elastic material to its strain, whereby a 

material’s strain is directly proportional to the applied stress (of note, this only applies to linear elastic 

materials or within the linear-elastic portion of the stress-strain curve for reversible deformation). The factor 

that relates these two parameters is the elastic modulus. There are different moduli depending on the type 

of force applied. In the case of a normal stress (σn)—a force applied perpendicularly to a surface—that 

causes a normal strain (en)—being a relative change in length that is parallel to the stress—the modulus that 

relates these two parameters is called Young’s modulus (E). Similarly, when a tangential stress (σs)—being 

a force that is applied tangentially to a surface—causes a shear strain (es)—being an angular change in 

configuration—the modulus that relates these two parameters is called the shear modulus (G). Materials that 

have greater elastic moduli are stiffer (180). Visual descriptions of the described stresses, strains, and elastic 

moduli are provided in Figure 19. 
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Figure 19 Stress, strain, and elastic moduli. Elastic moduli are material properties that relate an applied 

stress to the strain that the material undergoes. The first column of shapes describes Young’s modulus. 

When a normal force per area (stress, σn) is applied to an object, there is a resultant relative change in its 

dimension along the vector of the force called the strain (en). Young’s modulus (E) is the ratio of the normal 

stress to the normal strain. The second column of shapes describes the shear modulus. When a tangential 

force per unit area (shear stress, σs) is applied to the surface of a material, the material undergoes an angular 

change in configuration, called the shear strain (es). The shear modulus (G) is the ratio of the shear stress to 

the shear strain. Fn = normal force; Fs = shear force; A = area (normal stress: area perpendicular to the force 

vector; shear stress: area parallel to the force vector); l = length; q = angle describing the shear; Dt = linear 

displacement surface of object surface parallel to shear force. Adapted from (180). 

 

 

 

 

 

 

 

es = Dt/l = tanq 
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In all types of elastography, a stress is applied to the tissue, the tissue’s resulting perturbations are 

measured, and the tissue’s mechanical properties are inferred to aid in the characterization of pathology 

(179) (see Figure 20). There are several different methods of elastography, the most popular of which can 

be divided into strain imaging and shear wave imaging. Generally, in strain imaging, a normal stress is 

induced mechanically (22) or through an acoustic pushing pulse (181) to deform the tissue, and the normal 

strain is subsequently measured. Strain may be used as a surrogate/estimate for the Young’s modulus. More 

sophisticated techniques may allow for multidirectional analysis and the calculation of shear using these 

techniques (182). In shear wave imaging, a mechanical device or an acoustic radiation force (183) is used 

to create a dynamic stress; this creates shear waves in the tissue, which may be measured either parallel or 

perpendicular to the initial force to calculate quantitative measurements of tissue strain and the elastic 

modulus (180). Further details regarding the types of impulses used in strain and shear wave imaging are 

provided in Figure 21. The present document will focus on strain ultrasonography, with reference to shear 

wave imaging as a comparison. Shear wave imaging in fact belongs to broader category of elastography 

termed dynamic elastography, which includes harmonic elastography; this type of elastography will be 

described briefly but will not be focused upon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 Schematic outlining the steps of elastographic imaging. A stimulus is applied to the tissue of 

interest. Imaging techniques are used to detect a response in the tissue. The measured pre- and post-

excitation tissue changes are used to infer the mechanical properties of the tissue. These mechanical 

properties can then be used for clinical characterization and diagnosis. Adapted from (184). 
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Figure 21 Different types of ultrasound elastography with their commercial counterparts. Ultrasound 

elastography can be divided into two major categories: strain imaging and shear wave imaging. In strain 

imaging, a force parallel to the transducer is used to generate tissue deformation, which is subsequently 

measured. Strain elastography (a subtype of stain imaging) relies on the use of an external or internal 

compressive force to generate deformation. Acoustic radiation force impulse (ARFI) strain imaging, in 

contrast, uses an acoustic pushing pulse to displace the tissue. In shear wave imaging, shear waves are 

generated to calculate tissue elasticity. 1D transient elastography uses a mechanical vibrating device to 

create shear waves that travel parallel to the incident wave. In contrast, both point shear wave elastography 

and 2D shear wave elastography techniques use ARFIs to generate shear waves which travel perpendicularly 

to the transducer. In point shear wave elastography, one focal point is interrogated to calculate Young’s 

modulus. In 2D shear wave imaging, ARFIs are directed in multiple focal zones, which generate multiple 

perpendicularly travelling shear waves. This allow for real time quantitative elastographic analysis during 

imaging. Harmonic elastography is not included in the present figure but will be described subsequently. 

Adapted from (180). 
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5.2 Strain Imaging 

Strain imaging traces its roots back to the early 1990s to the work by Ophir et al (22). Strain imaging 

generally relies on the application of a force during ultrasonographic examination to obtain RF signals both 

pre- and post-compression. In the original description of strain elastography, cross-correlation techniques 

were used to make pairwise comparisons between US A-mode signal lines to determine the amount of axial 

displacement of the tissue using a time-delay estimation (22, 178, 185) (see Figure 22). Since the 1990s, 

several innovations have been made in strain imaging with regards to the type signal information that can 

be used to calculate the strain as well as the number of dimensions that can be incorporated into the analysis 

(e.g. two and three dimensions) (185). Ultimately, in these techniques, tissues that are stiffer displace less 

on post-compression images and will have correspondingly lower measured strains (or deformations); this 

is used as a surrogate for a greater Young’s modulus (see Figure 23) (180). Only small amounts of tissue 

compression are required during acquisition (0.1-2% axial dimension); since tissues deform non-linearly, 

excessive force may result in inaccurate/unreproducible strain measurements (185-187). The advantages of 

strain imaging lie in its favorable penetration and in its robustness (188). The major limitation of strain 

imaging is that since the stress distribution within the tissue is generally unknown, the Young’s modulus 

cannot be readily calculated (179, 187). Strain imaging is therefore generally considered a qualitative 

technique, although quantitative estimates of strain may be provided. Despite this, strain imaging has gained 

interest in the characterization of breast lesions (189), thyroid lesions (190), and other pathologies (191).  

The majority of strain elastography techniques fall under the category of quasi-static ultrasound 

elastography (QSUE). The descriptor “quasi-static” refers to the minimal transducer motion used during 

acquisition. Under the umbrella of quasi-static elastography, there are three broad categories of stress 

application (185). In the first type, the ultrasound transducer is used to elicit tissue deformation (22, 185). 

This method corresponds to the original method described by Ophir et al (22). Transducer pressure can be 

applied manually or with the aid of an apparatus and may be performed with only a pre- and post-

compression images or with stepwise compressions (185, 192, 193). Another form of QSUE uses repetitive, 

cyclic, low-frequency deformations (1-10 Hz) to deform the tissue. This has been termed “palpation 

imaging”. These frequencies are so low that they do not generate shear waves, and the deformations can be 

measured in a similar fashion as previously described (194). Finally, QSUE can use internal, physiological 

processes to generate the force, such as from the respiratory system (195) or the cardiovascular system 

(including the heart and major blood vessels) (196-198). The major advantage of these techniques is that 

they reduce operator variability with respect to the stress applied. However, the deformations can only be 

measured in regions near physiological stresses (e.g. near the diaphragm, heart, or major blood vessels) and 

the stress may not be uniformly applied in space or in time.  
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Figure 22 One form of strain elastography calculates the displacement of radiofrequency signals pre- and 

post-compression to estimate the mechanical properties of the imaged structure. Dl = change in length; RF 

= radiofrequency. Adapted from (180).  

An additional, somewhat distinct form of strain imaging is acoustic radiation force impulse (ARFI) 

strain imaging (199). In this form of strain imaging, a short, intense, pushing pulse (ARFI) is directed 

towards the region of interest, which causes tissue displacement of a few hundred microns. The ultrasound 

probe then switches into speckle-tracking mode to calculate displacements using changes in the speckle 

pattern (180, 199). This technique stands in contrast to the shear wave ARFI imaging that uses ARFIs to 

generate shear waves, which will be described in the following section (180). 
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Figure 23 Schematic of strain imaging. On the left, a normal mechanical force is applied to a homogenous, 

compressible tissue. This causes a uniform displacement over the imaged depth and, consequently, strain 

analysis reveals a uniform strain. On the right, a stiff region is incorporated into tissue. When a similar 

normal mechanical force is applied, there is no displacement along the length of the stiff area, while the 

remainder of the tissue deforms as in the schematic on the left. Strain analysis reveals a lower strain in this 

region. This can be used as an additional feature to characterize imaged tissue. Adapted from (166). 

5.3 Dynamic Elastography – Shear Wave Elastography 

Shear wave imaging (SWI) or shear wave elastography (SWE) belong to a family of techniques known 

as dynamic elastography. There are essentially two major types of dynamic elastography: those that use 

harmonic excitation and those that use transient excitation (185). Harmonic elastography relies on the use 

of harmonic excitation to obtain a steady-state tissue response, which is subsequently used to infer the 

mechanical properties of the tissue (200). The steady-state excitation may be provided using vibration 

devices or acoustic radiation forces. Examples of dynamic elastography include sonoelastography (201, 

202), shear wave induced resonance elastography (203), vibroacoustography (204), and harmonic motion 

imaging (205). Dynamic elastography using transient stimuli, in contrast, relies on the use of transient (as 



74 

opposed to harmonic) stimuli to generate internal shear waves within the imaged area to calculate its 

mechanical parameters. The most common form of dynamic transient elastography is shear wave 

elastography. This technique has garnered a substantial amount of attention in the literature and will be 

discussed in further detail (179).  

There are three major forms of transient shear wave elastography: 1D transient elastography, point shear 

wave elastography, and 2D shear wave elastography. All forms of shear wave elastography involve the 

generation and characterization of shear waves to infer the imaged tissue’s mechanical properties. Shear 

waves are low-velocity (1–50 m/s), low-frequency (10 Hz–2 kHz) waves in which the particle motion is 

perpendicular to the direction of wave propagation (179) (see Figure 24). Measurements of shear wave 

speed can be used to calculate the shear modulus and, subsequently, the Young’s modulus.  

1D transient elastography is perhaps the most basic form of shear wave elastography. In this technique, 

a mechanical punching device is integrated into the head of the ultrasound probe, which generates low-

frequency, transient, spherical shear waves within the underlying tissue (206-208). Ultrafast imaging is used 

to detect tissue displacement via the diffused echoes to calculate the shear wave speed parallel to the probe, 

which can be used to estimate Young’s modulus. 1D transient elastography relies on A-mode imaging 

exclusively, thus diagnostic imaging is not performed concurrently (180, 200, 206-208). 1D transient 

elastography is commercially available as the Fibroscan® and has been validated for the characterization of 

cirrhosis (209). 

Point shear wave elastography and 2D shear wave elastography, in contrast, make use of ARFIs to 

create tissue deformation (183, 210, 211). In these techniques, ARFIs are directed into the underlying tissue, 

which are absorbed and generate perpendicularly-directed shear waves (212). These shear waves cause 

displacement of the tissues as they propagate and, again, by using an ultra-high frame rate scanner, the 

resulting wave speed within the tissue can be measured (for example, using a speckle-tracking algorithm). 

The wave speed can then be used to estimate the Young’s modulus (212). Point shear wave elastography 

relies on the interrogation of a single focal zone to estimate wave speed (213). 2D shear wave imaging (also 

called supersonic shear imaging), in contrast, makes use of multiple ARFIs to generate a cylindrical shear 

wave cone (called a Mach cone), which is interrogated rapidly over multiple focal zones (210). This allows 

for the real time generation of quantitative elastograms, which can be superimposed over the corresponding 

B-mode images (180). The major advantage of these techniques is that they are quantitative. However, these 

techniques tend to have limited penetration and they also may be less robust when imaging deep, 

heterogenous, and/or anisotropic tissues (30-32, 188). 
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Figure 24 Shear wave imaging relies on the generation of shear waves. In shear waves, the particle motion 

is perpendicular to the direction of travel of the wave. The shear wave speed can be calculated to give an 

estimate of the shear modulus, which can be converted the elastic modulus via Poisson’s ratio. cs = wave 

speed; G = shear modulus; r = tissue density. Adapted from (180). 

5.4 Quasi-static Elastography in Vessels: Non-invasive Vascular 

Elastography using a Lagrangian Speckle Model Estimator 

Vascular elastography is a subset of elastography concerned with the mechanical properties of the 

vascular system. It has gained particularly interest in the assessment of the carotid and coronary arteries 

(214). Intravascular, catheter-based elastography is a common technique described in the literature (215-

217); however, it is invasive and may not be suitable for routine screening or surveillance. Furthermore, 

factors such as catheter eccentricity, catheter movement within the vessel, and vessel asymmetry may result 

in signal decorrelation (23, 218). Thus, non-invasive forms of vascular elastography have been developed, 

employing both strain and shear techniques (219-221) One particular example of vascular elastography that 

employs QSUE has been entitled NIVE (non-invasive vascular elastography) (23). 

NIVE using QSUE utilizes physiological stresses to generate tissue deformations within vascular tissue 

(23, 218). Algorithms for NIVE must address to two key problems: the complexity of vessel motion and the 

heterogeneity of the tissue. As previously described, most forms of SUE calculate strain based on a normally 

applied stress. However, in a vessel that is imaged transaxially, the stress is directed radially, being parallel 

to the ultrasound beam at only 0° and 180°. Furthermore, vascular tissue is inherently heterogeneous and 

may contain areas of thrombus, plaque, calcification, and lipid. These various regions may respond non-

uniformly to the applied stress and have complex tissue deformations. Thus, one-dimensional correlation 
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techniques may be considered insufficient (23, 218). The Lagrangian speckle model estimator (LSME) was 

developed to respond to these limitations (24). 

The LSME uses speckle motion to aid in elastographic analysis (23). As previously described, the 

speckle pattern of a tissue on ultrasonography is related to its inherent microstructure (133). With 

compression, changes in speckle pattern may be secondary to the movement of the speckles or changes in 

their morphology. If the local speckle field is considered to be a continuum of the material’s mechanical 

property and (for small movements) the acoustic characteristics of the speckles are considered stable, then 

a Lagrangian description of movement can be applied. In this system, each speckle acts as its own coordinate 

system and its position is described as a function of time (24, 222). To apply this, a given region of interest 

is divided into small windows, in which motion is presumed to be affine (222). Speckle motion within each 

window is tracked using an optical flow algorithm, and displacement between frames is calculated from the 

Taylor series expansion (23). This generates a 2-D strain tensor as well as displacement maps between 

consecutive serial frames, which contain the strain and shear parameters (24, 198, 222). NIVE using LSME 

has been successfully utilized to discriminate vulnerable atherosclerotic plaques in the carotid arteries (198). 

Given the confusion of terms within the literature, SUE ultrasound elastography will be used as a general 

term to describe this technique in the remainder of the mémoire. 

5.5 Elastography in the Context of EVAR 

AAA diameter and growth rate are two of the most commonly used imaging parameters to guide 

management in patients post-EVAR; however, they are somewhat crude and do not identify all patients that 

are at risk for complications (88, 223, 224) Recently, the mechanical properties of aneurysm/endoleak 

constituents have been investigated for their ability to provide information regarding sac stability and 

evolution. After a successful EVAR procedure, blood that is trapped between the stent and the aortic wall 

eventually coagulates to form thrombus (in the absence of endoleak); however, it does not necessarily evolve 

into organized thrombus. In fact, there may be a mixture of fresh and organized thrombus within the 

aneurysm sac for years after EVAR (26). Fresh thrombus is unstructured and tends to be less stiff than 

organized thrombus (28, 30, 31). Speelman et al found that for a given thrombus volume in an idealized 

AAA model, intraluminal thrombi (ILTs) with greater shear moduli (which is proportional to the elastic 

modulus in soft tissue) tended to decrease wall stress to a greater extent than those with lower shear moduli 

(27). Furthermore, the accumulation of fresh thrombus may account for aneurysm non-shrinkage aneurysm 

or endotension (type V endoleaks), which may require subsequent intervention (26). Therefore, the in vivo 

characterization of the mechanical properties of AAA content post-EVAR may be useful in guiding 

management. 
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Elastography is well suited for this task. Both SUE and SWE have been used to characterize the 

constituents of aneurysms. In a canine preclinical model, SUE showed significant differences in the strain 

values between endoleaks, fresh thrombus, and organized thrombus (28). Of note, endoleaks tended to have 

the highest strain values because of signal decorrelation due to slow blood flow and the high deformations 

associated with the presence of immature thrombus (28, 29). Interestingly, this study found no difference in 

the mechanical properties of type I and type II endoleaks and that there was no correlation between sac 

pressure and the measured strain parameters. SWI has also been shown to be able to detect endoleaks, 

distinguish fresh from organized thrombus, characterize embolic agents, and demonstrate a trend towards 

increased thrombus organization over time after EVAR in preclinical studies (30, 31). Given the importance 

of both occlusivity and sac stiffness in preventing recanalization and adverse outcomes, the in vivo 

characterization of the mechanical properties of aneurysm sacs post-embolization with novel agents, such 

as CH-STS, are of clinical interest. This could be readily achieved using a penetrating and robust technique 

such as SUE.
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Chapter 6 – Objectives and Hypotheses 

6.1 Objectives  

Endoleak embolization using CH-STS is associated with a decrease in the persistence of endoleaks 

compared to embolization with a non-sclerosing chitosan hydrogel embolic agent (CH) (43). In addition to 

its ability to remove the endothelial layer, the success of CH-STS is suspected to be mediated by its favorable 

mechanical and biomechanical properties, which are thought to promote occlusivity and prevent 

recanalization (42). Stiffer intraluminal contents also better decrease wall stress (27), which may 

theoretically reduce the risk of catastrophic complications. In short-term in vitro studies, CH-STS has 

demonstrated stiffer mechanical properties than CH. However, the behavior of these agents in vivo over an 

extended time course merits further characterization. This would be readily achieved with SUE. The specific 

objectives of the present in vivo investigation are to use SUE to: 

1) Compare the mechanical properties of CH-STS and CH after embolization. 

2) Compare the mechanical properties of the ILTs generated by embolization with CH-STS and CH.  

3) Compare the mechanical properties of CH and CH-STS with the generated ILTs. 

4) Compare the effect of CH-STS and CH embolization on the mechanical properties of the overall 

aneurysm sac contents over time.  

5) Determine whether measurements of the mechanical properties of the above regions (embolic agent, 

ILT, aneurysm sac,) obtained using segmentations from two independent readers show favorable 

inter-observer reliability. 

6.2 Hypotheses 

1) CH-STS embolic agent will demonstrate stiffer mechanical properties than CH in vivo. 

2) There will be no difference detected in the mechanical properties of the ILT generated by either 

embolic agent. 

3) CH-STS will be stiffer than the ILT. CH will be less stiff than the ILT. 

4) The aneurysm sacs of endoleaks embolized CH-STS with demonstrate better mechanical properties 

than those embolized with CH; this effect will persist over time.  

5) The obtained measurements of mechanical properties will share favorable inter-observer reliability.  

 



 

Chapter 7 – Methodology 

7.1 Timeline and Ethical Considerations  

The study data were acquired prospectively. Image analysis was performed between 2017-2019. All 

protocols were approved by the institutional animal care committee at the CRCHUM in accordance with 

Canadian Council of Animal Care guidelines.  

7.2 Preclinical Canine Aneurysm and Endoleak Model 

Bilateral iliac artery aneurysms with a surgically implanted outflow vessel were created in nine female 

mongrel dogs according to a previously described technique by a vascular surgeon (IS) with over twenty 

years of experience (40, 171). The procedure will be briefly summarized. The surgery was performed under 

general anesthesia using sterile technique. First, a lateral neck incision was performed to harvest one of the 

external jugular veins, which was conserved in heparinized solution. Then, a low-midline laparotomy was 

performed to expose and mobilize the common iliac arteries and the sacroiliac trunks. The proximal and 

distal aspects of one common iliac vessel were cross-clamped and a longitudinal arteriotomy was performed. 

A branch of the sacroiliac trunk was then identified, transected, and its distal end was anastomosed to the 

arteriotomy lip to create the outflow vessel. A 45 mm patch was cut from the harvested external jugular vein 

and sutured over the arteriotomy to simulate aneurysm dilatation. This was then repeated on the contralateral 

common iliac artery. The incisions were closed. Post-operatively, the animals received analgesia. 

EVAR was performed eight weeks post-operatively by an interventional radiologist with over 20 years 

of experience (GS). Under fluoroscopic guidance, a 59-mm-long balloon-expandable stent-graft (iCAST; 

Atrium, Hudson, USA) was deployed in each aneurysm to a diameter of 7 or 8 mm, depending on the size 

of the proximal landing zone. Type Ia endoleaks were created by inflating a 3.5 mm balloon (Savvy; Cordis, 

Warren, New Jersey) in the proximal landing zone between the stent-graft and the wall to create a plastic 

deformation of the stent-graft. Of note, high flow type Ia endoleaks were created—as opposed to type II 

endoleaks—as they tended to create larger, more challenging endoleaks (171). The presence of an endoleak 

was confirmed with percutaneous angiography (Koordinat 3D II; Siemens Healthcare, Erlangen, Germany) 

using 20 mL of Isovue® 200 injected at 10 mL/s (Bracco Diagnostic, Anjou, Canada). Animals received 

aspirin 80 mg per day starting from the day of procedure until sacrifice. See Figure 25 for a schematic of 

the experimental set-up.  
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Figure 25 Bilateral iliac aneurysm model for testing of embolic agents. (A) Contrast-enhanced fluoroscopic 

image demonstrating the surgically created bilateral iliac artery aneurysm model. The arrows point to the 

implanted outflow tracts. (B) Schematic of the same model status post bilateral endovascular aneurysm 

repair and creation of type Ia endoleaks. Figures adapted from/with reference to (40, 43, 170, 171). 

7.3 Preparation of Agents and Endoleak Embolization  

CH-STS and CH were prepared according to previously described techniques (42, 43, 177); this will be 

briefly summarized. For CH-STS, chitosan (Marinard Biotech; Rivière-au-Renard, Canada) was dissolved 

in a solution of hydrochloric acid (0.1 M), deionized water, and VisipaqueTM 320 (GE Healthcare, Rahway, 

New Jersey). The solution was mixed for 24 hours and then sterilized using an autoclave. A second solution 

containing b-glycerophosphate disodium hydrate (BGP; Sigma Aldrich, Oakville, Canada) and STS (Sigma 

Aldrich, Oakville, Canada) was prepared and sterilized using a 0.2 µm filter. Immediately prior to 

embolization, the two solutions were mixed using two syringes and a luer lock connector, with a volume 

ratio of 3/2. The final concentration of the constituents of CH-STS were as follows: chitosan 2% 

weight/volume, VisipaqueTM 320 30% volume/volume, BGP 12% weight/volume, and STS 3% 

weight/volume. CH was prepared in a similar fashion with the following exceptions: the final concentration 

of BGP was 20% weight/volume and there was no STS included. 

In each animal, one iliac aneurysm was randomly assigned to be embolized with CH and the other was 

assigned to be embolized with CH-STS. Prior to each paired embolization, the embolic agents were prepared 

by the biomedical engineer, randomly coded as “1” or “2”, and then inserted into an appropriately labelled 

A B 
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envelope. The envelopes were then provided to the interventional radiologist, who independently selected 

one aneurysm to be embolized with “1” and the other to be embolized with “2”; thus, the interventional 

radiologist was blinded to the type of gel used. Transarterial embolization was performed through a 4 French 

catheter (Glidecath; Terumo, Tokyo, Japan) that was inserted into the aneurysm sac through a contralateral 

puncture before stent-graft deployment. Following stent-graft deployment and creation of the type I 

endoleak, 3-5 mL of gel was injected under fluoroscopic guidance (Koordinat 3D II; Siemens Healthcare, 

Erlangen, Germany) with a balloon inflated at the level of the proximal common iliac artery to temporarily 

occlude blood flow. The embolization endpoint was occlusion of the aneurysm sac and the origin of the 

outflow vessel. The side embolized by each coded agent was recorded. The numbers corresponding to each 

agent were decoded only at the termination of the experiment to determine which side was embolized with 

which agent.  

7.4 Imaging Follow-up and Sacrifice 

Six of the animals were followed with imaging for a total of three months before sacrifice and three of 

the animals were followed with imaging for a total of six months before sacrifice in the context of another 

experiment (43). The timing of follow-up for each modality is described below and summarized in Figure 

26. 

7.4.1 Ultrasound Imaging: Parameters and Follow-up Timeline 

Static B-mode images, DUS images, and RF cine acquisitions for SUE were obtained at one week, one 

month, and three months post-embolization in all nine animals; additional acquisitions were obtained at six 

months in three of the animals who were sacrificed at that time. Static B-mode and DUS images were 

obtained using the SuperLinearTM 256 element SL15-4 7.5 MHz transducer (Aixplorer, Aix-en-Provence, 

France). Static B-mode images were used to assess sac morphology (including aneurysm size and stent-

graft position) to aid in the image coregistration with other modalities. DUS was used to identify endoleaks 

and evaluate stent-graft patency. The following parameters were used: scale to 10 cm/s, smoothing to 0, 

wall filter to low, high-definition frame rate to middle, and steer angle to 0°, 60° right anterior oblique, and 

60° left anterior oblique. RF acquisitions for SUE were obtained using the Sonix TouchTM 128-element L14-

5/38 10 MHz transducer (Ultrasonix Medical Corporation; Vancouver, Canada). The transducer has a frame 

rate of 25 Hz and a bandwidth of 60%. RF acquisitions were sampled at 40 MHz for approximately 4 

seconds at each level. 
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7.4.2 CT Imaging 

CT angiograms were obtained with the SOMATOM Sensation 64 (Siemens Medical; Forcheim, 

Germany) using 60 mL of OmnipaqueTM 300 (GE Healthcare; Mississauga, Canada) injected at 4 mL/s. 

CTs were obtained at three months for all animals and at six months for the three of the animals that were 

sacrificed at that time. The studies were prospectively gated and reconstructions of 10 images/cycle were 

obtained during the diastolic phase. Acquisition parameters were as follows: voltage 120 kVp, current 724 

mA, pitch 0.2 mm, and collimation 0.6 mm.  

7.4.3 Sacrifice, Macroscopy and Histopathological Analysis 

Six of the subjects were sacrificed at three months and the remaining subjects were sacrificed at six 

months. The subjects were sacrificed with intravenous pentobarbital sodium (108 mg/kg; Bimeda-MTC 

Animal Health Inc., Cambridge, Canada). After sacrifice, the common iliac aneurysms were harvested en 

bloc and fixated in buffered formalin. Serial axial macroscopic sections of the aneurysms were produced 

using a cutting-grinding system (EXAKT Advanced Technologies GmbH, Norderstedt, Germany), which 

were then photographed for macroscopic analysis. Histological correlation was performed on conventional 

slides obtained after stent graft removal and paraffin embedding.  
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Figure 26 Procedural and imaging follow-up timeline. Surgical aneurysm creation was undertaken eight 

weeks prior to EVAR and endoleak creation. Embolization was performed on the same day as EVAR. (A) 

Six of the subjects were followed with imaging for three months after EVAR before sacrifice and 

histopathological analysis. Ultrasound-based acquisitions were obtained at all follow-up times (one week, 

one month, and three months); CT images were obtained at sacrifice. (B) Three of the subjects were followed 

with imaging for six months after EVAR before sacrifice and histopathological analysis. US-based 

acquisitions were obtained at all follow-up times (one week, one month, three months, and six months); CT 

was performed at three and six months. For both groups, all ultrasound-based acquisitions were obtained of 

the proximal, middle, and distal aneurysm sac. The aneurysm sac region of interest was segmented at all 

follow-up time points; the thrombus and embolic agent were only segmented at sacrifice. B-Mode: 

brightness mode ultrasound; CT: Computed tomography; DUS: Duplex ultrasound; Elasto: ultrasound cine 

loops for strain elastography; EVAR: endovascular aneurysm repair; FU: follow-up. 
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7.5 Elastographic Analysis  

7.5.1 Defining Regions of Interest 

The mechanical properties of three regions of interest (ROIs) were assessed:  

1. Embolic agent. The embolic agent ROI refers to the region of the sac that contains either CH or CH-

STS. Previously published data suggests that the embolic agent remains largely distinct from the 

associated ILT on histopathological analysis (43). Given the relative homogeneity of the agent in vivo, 

the ROI was only segmented at the level where it was best visualized (either proximal, middle, or distal 

aneurysm). This ROI was only segmented on the studies at the time of sacrifice as it required 

macroscopic and histopathological correlation to distinguish it reliably from the ILT. 

2. ILT. This ROI was also only segmented at sacrifice using the level where it was best visualized, as it 

required macroscopic and histopathological correlation to distinguish it reliably from the embolic 

agent. 

3. Aneurysm sac. The aneurysm sac ROI includes both the embolic agent and the ILT, corresponding to 

the entire aneurysm sac contents excluding the stent-graft and any endoleak. This region of interest was 

defined as a surrogate for the overall mechanical properties of the aneurysm. Clinically, this ROI would 

be useful for follow-up after post-embolization because of the poor contrast between thrombus and 

embolic agent on B-mode imaging. To account for the heterogeneity of the composition of this ROI 

throughout the aneurysm sac, the mechanical properties for all three levels (proximal, middle, and 

distal) of the aneurysm sac were measured. These measurements were performed at each imaging 

follow-up until sacrifice. 

The imaging and histopathological characteristics of each of these regions of interest are outlined in 

Table 3.  

7.5.2 Display of RF Data for Elastography and Image Co-registration  

The raw RF acquisitions obtained of the proximal, middle, and distal sac of each aneurysm at each time 

point were imported to a third-party imaging platform (ORS Visual, Object Research Systems, Montreal, 

Canada) and were displayed as B-mode cines. The B-mode cines were then coregistered with the relevant 

static B-mode images, DUS images, CT studies, and histopathological studies at all applicable follow-up 

time points to help identify the various ROIs. Co-registration was based on the level of acquisition, the 

aneurysm size, and the relative position of the stent-graft in the aneurysm. See Figure 27 for an example.  
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Region B-mode/DUS CT Macroscopy Microscopy 

Embolic 
agent (CH or 
CH-STS)*  

Hyperechoic 
to thrombus 

Indistinguishable 
from thrombus† 

Yellow-brown, 
homogenous, 

friable material 

Red/purple material 
lacking cellular content 
or tissular organization 

Thrombus*  
Hypoechoic to 
embolic agent 

Indistinguishable 
from embolic 

agent† 

Organized: Dense 
yellow, organized 

tissue. 
 

Fresh: Dark blue, 
unorganized 

tissue. 

Organized: Layered 
network of fibrin. 

 
Fresh: Free, 
unstructured 
erythrocytes  

Aneurysm 
sac‡ 

 
Entire aneurysm content minus endoleak and stent-graft 

Endoleak¶ 

Mobile echoes 
on B-mode 

cine.  
Doppler signal 

on DUS. 

Contrast 
enhancement 

within the 
aneurysm but 

outside of the stent-
graft 

Defect within the 
aneurysm sac 

Defect within the 
aneurysm sac 

Stent-graft 
Hyperechoic 

ring 
Hyperdense ring Self-evident 

Removed for 
histological processing 

 

Table 3  Brightness mode (B-mode), Duplex ultrasound (DUS), CT (computed tomography), and 

histopathological appearance of various regions of interest (ROIs) to be characterized by strain ultrasound 

elastography (agent, thrombus, and aneurysm sac), as well as other ROIs used to help delineate them 

(endoleak and stent-graft). * Measured at the most representative level per aneurysm. † CH (CH hydrogel 

embolic agent) and CH-STS (chitosan hydrogel embolic agent with STS) are radiopaque given that they 

contain VisipaqueTM (for visibility under fluoroscopy); however, their radiopacity lasts for only 48 hours 

(225). ‡The aneurysm sac mechanical properties represent sac stability. To account for the heterogeneity of 

the composition of the aneurysm sac, the mechanical properties for three levels of the sac (proximal, middle, 

and distal) were measured. ¶ Endoleaks were not assessed as an ROI using elastography because they had 

already been characterized as regions of high deformation caused by the heterogeneous effects of signal 

decorrelation due to slow blood flow and the presence of immature thrombus (28, 29). 
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Figure 27 Multimodal image co-registration and segmentation at sacrifice of the mid-level aneurysm sac 

region of interest (segmented in green) for an endoleak three months post-embolization with the chitosan 

hydrogel embolic agent. The arrows indicate the stent-graft. (A) Selected B-mode image of the mid level of 

the aneurysm demonstrates the segmentation of the entire aneurysm sac. Note that the stent-graft was 

excluded. (B) Corresponding duplex ultrasound image suspected to have been taken at a slightly more 

caudal location, where an endoleak is visualized. Note that it has been excluded from the segmentation. (C) 

Contrast-enhanced CT examination of the aneurysm sac at the same level of (A) and the other remaining 

images. Note that an endoleak was not identified at this level, but was identified a few slices lower, 

suggesting that the image in (B) was more caudal. (D) and (E) Macroscopic cut and histopathological slide 

of the mid-level of the aneurysm; note that no endoleak is visible on these levels; an endoleak was confirmed 

more inferiorly (not shown). (F) Selected segmented B-mode image from the obtained cine loop used to 

produce the elastograms. Part of the aneurysm sac was not included because there was potentially an 

endoleak in this region; this was done to avoid the high strains associated with signal decorrelation. The 

segmentation mask was propagated through the remainder of the cine loop using a semiautomatic technique. 

Appropriate segmentation requires the integration of all of the imaging modalities. 
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7.5.3 Static Ultrasound Elastography of the Regions of Interest 

SUE (via the LSME) was implemented in ORS Visual. The regions of interest defined in Section 7.5.1 

were manually segmented on the first frame of the B-mode cine loops by two independent readers (LS 

[radiology trainee] and GS [radiologist with 20 years’ experience]) with reference to the co-registered 

studies (see Section 7.5.2). 39 ROIs were used to train the junior interpreter; these were resegmented by the 

junior interpreter one year later. Observers were blinded to the type of embolic agent used in each aneurysm. 

The segmentation curves were propagated to the remainder of the frames of the B-mode cine using a semi-

automatic technique (226). Instantaneous strain and shear values between frames were calculated with the 

LSME using computational windows measuring 80 x 20 pixels (height x width). Their averaged value over 

the segmented area was then plotted over time. In the post-processing phase, performed by LS, the axial 

strain and shear curves were divided into cardiac cycles to generate three elastography parameters: 

maximum axial strain (main outcome), range cumulative axial strain, and range cumulative axial shear. 

Please see Figures 28-31 for examples of the post-processing technique. Please see Table 4 for the 

derivation of each of the parameters.



 

 

 

Figure 28 Multimodal image co-registration, segmentation, and post-processing of the embolic agent region of interest (segmented in green) for 

an endoleak three months post-embolization with the chitosan hydrogel embolic agent (CH) at sacrifice. (A) B-mode image of the mid level of the 

aneurysm demonstrates the segmentation of the embolic agent, which is slightly hyperechoic and heterogenous. (B) Duplex ultrasound image. Note 

that the endoleak has been excluded. (C) Contrast-enhanced CT examination. Note that the embolic agent and thrombus cannot be differentiated (the 

former’s radiopacity is lost after 48 hours). (D) Macroscopic cut demonstrating the embolic agent. (E) Selected segmented B-mode image from the 

cine loop used to produce the elastogram. The segmentation mask was propagated through the remainder of the cine loop using a semiautomatic 

technique. (F) Instantaneous axial deformation elastogram of the embolic agent superimposed over a cine frame during systole. (G) Instantaneous 

axial deformation curve; the maximum axial deformation parameter (average of all peaks) is labelled. (H) Raw cumulative axial deformation curve. 

(I) Cycle-adjusted cumulative axial deformation curve adjusted for the cardiac cycle (thicker curve; the thinner curve is the axial deformation curve). 

The range cumulative axial deformation parameter is labelled. Some of these images have been included in (31, 43). 
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Figure 29 Multimodal image co-registration, segmentation, and post-processing of the agent region of interest (segmented in green) for an 

aneurysm three months after embolization with the chitosan hydrogel with sodium tetradecyl sulphate embolic agent (CH-STS) at sacrifice. The 

arrows indicate the stent-graft. All images were taken at approximately the same level but were subject to operator variability. The region indicated 

by (*) did not have a correlate on the cine loop and was therefore not included in the final segmentation. (A) B-mode image of the mid level of the 

aneurysm. The embolic agent is slightly hyperechoic and heterogenous. (B) Corresponding segmented duplex ultrasound image demonstrating an 

endoleak. (C) Corresponding contrast-enhanced CT confirming an endoleak. (D) Corresponding macroscopic cut demonstrating the agent and the 

endoleak. (E) Selected segmented B-mode image from the cine loop used to produce the elastograms. This image was likely obtained at a slightly 

different level compared to (A) and (D), resulting in a slightly different-appearing segmentation mask. It was important to exclude the endoleak and 

intraluminal thrombus to have a homogenous region of interest. (F) Instantaneous axial deformation elastogram of CH-STS superimposed over a 

cine frame during systole. (G) Instantaneous axial deformation curve. The maximum axial deformation parameter is labelled. (H) Raw cumulative 

axial deformation curve. (I) Cycle-adjusted cumulative axial deformation curve (thicker curve; the thinner curve is the axial deformation curve). The 

range cumulative axial deformation parameter is labelled.  
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Figure 30 Multimodal image co-registration, segmentation, and post-processing of the thrombus region of interest (segmented in green) for an 

aneurysm three months post-embolization with the chitosan hydrogel with sodium tetradecyl sulphate embolic agent (CH-STS) at sacrifice. The 

arrows indicate the stent-graft. All images were taken at approximately the same level but were subject to operator variability. (A) B-mode image of 

the mid level of the aneurysm. The hyperechoic region corresponds to CH-STS and the hypoechoic regions correspond to thrombus. (B) 

Corresponding duplex ultrasound. (C) Corresponding contrast-enhanced CT image. (D) Corresponding macroscopic cut. (E) Selected segmented B-

mode image from the cine loop used to produce the elastograms. (F) Cumulative axial deformation elastogram of the thrombus superimposed over a 

cine frame during systole. (G) Instantaneous axial deformation curve; the maximum axial deformation parameter is labelled. (H) Raw cumulative 

axial deformation curve. (I) The cycle-adjusted cumulative axial deformation curve (thicker curve; the thinner curve is the axial deformation curve). 

The range cumulative axial deformation parameter is labelled. Of note, only complete cardiac cycles without motion artifact (seen on the cine) were 

included in the post-processing.  
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Figure 31 Multimodal image co-registration, segmentation, and post-processing of the aneurysm sac region of interest (segmented in green) for 

an aneurysm six months after successful embolization with the chitosan hydrogel embolic agent with sodium tetradecyl sulphate (CH-STS) at 

sacrifice. The arrows indicate the stent graft. (A) B-mode image of the distal level of the aneurysm demonstrates the segmentation of the sac. (B) 

Corresponding duplex ultrasound image; there is no endoleak to be excluded. (C) Corresponding contrast-enhanced CT image confirming the absence 

of endoleak. (D) Corresponding macroscopic cut. (E) Selected segmented B-mode image from the cine loop used to produce the elastograms. (F) 

Cumulative axial deformation elastogram of the sac superimposed over a cine frame during systole. (G) Instantaneous axial deformation curve; the 

maximum axial deformation parameter (average of all peaks) is labelled. (H) The cycle-adjusted cumulative axial deformation curve (thicker curve; 

the thinner curve is the axial deformation curve). The range cumulative axial deformation parameter is labelled. Note that frames containing motion 

artifact (seen on the cine loops) were excluded from the analysis.



 

 
Table 4  Derivation of the strain (deformation) and shear elastography parameters obtained using strain 

ultrasound elastography using a Lagrangian speckle model estimator. ROI: Region of interest. 

7.6 Statistical Analysis 

Statistical analysis was performed using R software (version 3.6.0; R Foundation, Vienna, Austria). 

Data generated from the segmentations performed by both readers are presented. Statistical analyses were 

performed on the outcomes obtained by reader GS’ segmentations. The outcomes obtained by the 

segmentations performed by both GS’ and LS’ segmentations were used for inter-observer reliability 

assessment. Outcomes were log-transformed to produce better model fits. The level of significance for all 

comparisons was set at α = 0.05. Multivariable linear mixed-effects models were used to model the 

mechanical properties of the agent and thrombus ROIs as well as to compare the mechanical properties of 

CH and CH-STS with those of the ILT. Multivariable linear mixed-effects models were also used to model 

the mechanical properties of the aneurysm sac ROI. The inter-observer reliability of the outcomes obtained 

by the two readers was calculated via intraclass correlation coefficients using a two-way random effects 

model for a single measure for consistency. 

 

Parameter Derivation of parameter 

Maximum axial 

deformation (%) 
• This parameter is derived from the time-varying axial strain curve.  

• It is the average of the maximum strain value of the ROI during each cardiac 

cycle averaged across all cardiac cycles.  

Range cumulative 

axial deformation 

(%) 

• This parameter is derived from the time-varying cumulative axial strain curve. 

In this curve, each point corresponds to the sum of the previous average strain 

values of the ROI, which are reset at the beginning of each cardiac cycle.  

• To obtain this parameter, the range of the cumulative axial strain curve in each 

cardiac cycle is obtained and then averaged across the cardiac cycles. 

Range cumulative 

axial shear (%) 
• This parameter is derived from the time-varying cumulative axial shear curve. 

In this curve, each point corresponds to the sum of the previous average shear 

values of the ROI, which are reset at the beginning of each cardiac cycle.  

• To obtain this parameter, the range of the cumulative axial shear curve in each 

cardiac cycle is obtained and then averaged across the cardiac cycles. 
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7.7 Relationship with Other Investigations and Original Contribution 

In accordance with the guidelines of the Canadian Council on Animal Care—which mandates that the 

number of subjects used to test experimental hypotheses be minimized (227, 228)—a total of three studies 

were planned to be derived from the subjects included the present investigation. In the first study, Zehtabi 

et al optimized CH-STS and compared its effectiveness to CH for the treatment of endoleaks; the study 

included several of the subjects included in the present study (43). The second study, by Bertrand-Grenier 

et al, used SWI to characterize the mechanical properties of aneurysms after embolization with CH-STS and 

CH—using the same subjects as in the present study (with the exception of one)—with a similar imaging 

follow-up and coregistration paradigm as detailed in Sections 7.4 and 7.5.2 (31). The present study, which 

represents the third of the three studies, characterizes the mechanical properties of the ROIs detailed in 

Section 7.5—again, using several of the same subjects in the prior two studies—but this time using SUE. 

Therefore, the study by Bertrand-Grenier et al and the present study could be viewed as complementary 

studies that use different techniques (SWI versus SUE) to characterize the in vivo mechanical properties of 

aneurysms after embolization with CH-STS and CH. The characterization of these ROIs via SUE is of 

relevance because it is thought to be a more penetrating and robust technique compared to SWI, and 

therefore may be better able to assess the mechanical properties of the intraluminal contents (30-32, 188); 

these differences will be expounded upon in the discussion section where appropriate. Since the present 

study represents one facet of a larger experimental investigation involving the subject cohort, and that it will 

be published third, it necessarily reincorporates data that have also been used in the aforementioned papers 

with respect to experimental model construction, agent preparation, non-strain related imaging acquisition, 

and histopathological preparation. As such, the contributions of the relevant authors of/contributors to the 

aforementioned papers have been noted in the Acknowledgments section of the mémoire; these individuals 

will also be included as co-authors or mentioned in the acknowledgments section in the submitted scientific 

article where appropriate. Additionally, individuals who have contributed exclusively to the present project 

have also been/will also be credited in a similar fashion. 

Given the interrelatedness of the present investigation with the previously described studies, the 

originality of the present mémoire must be emphasized. In the present investigation, SUE analysis of the 

ROIs detailed in Section 7.5 was performed on B-mode cine loop acquisitions of the proximal, middle, and 

distal aneurysm obtained at all follow-up times; these acquisitions were not analyzed in the studies by 

Bertrand et al and Zehtabi et al. As such, the resulting SUE analysis of these images has not been previously 

published in a scientific journal. Preliminary SUE results of the subjects in the present study were previously 

presented at conferences (229, 230); however, in the present study, the ROIs assessed at each of the follow-

up time points were streamlined (and have actually evolved since the study by Bertrand-Grenier et al), more 
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reliable outcome parameters were selected, a completely revised segmentation protocol was implemented 

to improve accuracy (the previously described preliminary results were not suitable for publication), two 

new readers performed the segmentations with the revised technique to generate measures of 

reproducibility, the post-processing was re-performed, a formal statistical analysis was performed, and the 

results were reinterpreted. Therefore, all of the elastographic results and statistical analyses presented in this 

mémoire are unique and have not been presented or published previously. The results and discussion 

sections of this mémoire focus on the newly acquired data. 

Finally, the role of the primary author of the mémoire must be emphasized. The author performed the 

background literature review. The author was responsible for all aspects of the project related to the SUE 

analysis of the cine loops and of the resultant interpretation. The author shared responsibility for the coding 

of the presence of residual endoleaks and identifying post-procedural complications. The author performed 

one of the two independent segmentations of the ROIs using the previously detailed coregistration 

technique. The author helped facilitate the independent segmentation of the ROIs by the other reader. The 

author was responsible for performing the post-processing of the segmentations to obtain the imaging 

parameters outlined in Table 4. The author shared responsibility for identifying the most relevant outcome 

parameters and collected the data from the post-processing software’s output. The author performed 

preliminary analyses of the outcomes and was involved extensively in the designing of the statistical 

analysis plan (with the contribution of the study director and a statistician). The author either contributed to 

or created several of the figures included in the methods and results section. Finally, the author provided the 

interpretation of the outcomes, which are outlined in the discussion section.  

 



 

Chapter 8 – Results 

8.1 Baseline Characteristics 

Surgical aneurysm construction, stent-graft deployment, and type Ia endoleak creation were successful 

in both iliac arteries of all nine canine subjects, creating a total of 18 paired type Ia endoleaks. Nine paired 

embolizations of CH and CH-STS were performed in each animal. Post-embolization, 7/9 (78%) of 

aneurysms embolized with CH had residual endoleaks while 4/9 (44%) of aneurysm embolized with CH-

STS had residual endoleaks. There was one complication of stent-graft thrombosis in the CH group. This 

subject also had a residual endoleak, which may have prevented the development of lower extremity 

ischemia. Although stent-graft thrombosis may have entailed a loss of a primary internal deforming force, 

the subject was included in the final analysis. 

RF cine acquisitions for SUE, static B-mode images, DUS images, CT examinations, and 

macro/microscopic images/slides were successfully obtained in both treatment groups and were successfully 

coregistered for all subjects. All anticipated ROIs on the B-mode cines were identified after image 

coregistration with one exception: one failed CH-STS embolization had no residual embolic agent 

remaining; thus, this ROI could not be identified. In total, 430 elastograms were generated, 215 from each 

reader. The following breakdown of elastograms is expressed per reader. For each treatment group, 90 total 

elastograms were generated each for the aneurysm sac ROI. Six of the animals had 9 observations for each 

aneurysm (three levels [proximal, middle, distal sac] at three follow-up time points [1 week, 1 month, 3 

months]), while three of the animals had 12 observations for aneurysm (three levels at four follow-up time 

points [additional follow-up at 6 months]). Alternatively put, there were 27 observations per treatment group 

at each time point until 3 months, and there were 9 observations per treatment group at 6 months. There 

were 9 elastograms generated for each treatment group for the thrombus ROI per reader. There were 9 

elastograms generated for the embolic agent ROI in the CH group per reader; there were only 8 elastograms 

generated for the embolic agent ROI in the CH-STS group per reader (one subject with failed embolization 

had no residual endoleak). See Figure 32 for a summary of the elastograms generated.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32 Breakdown of the elastograms generated using the segmentations independently performed by each reader. The elastograms contain the 

data used to derive the maximum axial deformation, range cumulative axial deformation, and the range cumulative axial shear. (A) Elastograms 

generated of the aneurysm sac ROI. (B) Elastograms generated of the embolic agent ROI. *One subject embolized with CH-STS did not have any 

residual embolic agent, thus this ROI could not be segmented for the subject. (C) Elastograms generated of the ILT ROI. CH: Chitosan hydrogel; 

CH-STS: Chitosan hydrogel with sodium tetradecyl sulphate; FU: follow-up; ILT: intraluminal thrombus; ROI: region of interest; t: time.



 

8.2 Elastograms of the Embolic Agent ROI  

The means and standard deviations of the maximum axial deformation, range cumulative axial 

deformation, and range cumulative axial shear for the embolic agent ROI stratified by type of embolic agent 

used and presence of endoleak, as obtained from the GS and LS segmentations, are presented in Table 5. 

The multivariable linear mixed-effects model fitted to the outcomes obtained from the GS segmentations 

revealed that endoleak was not a clinically or statistically significant predictor and was removed from the 

final model. The final predictive model for the elastographic parameters stratified by agent used are 

presented in Table 6. CH-STS was associated with a 66% lower maximum axial deformation (95% 

confidence interval [CI]: -80% to -42%, p < 0.001) and a 67% lower range cumulative axial deformation 

(CI: -79% to -47%, p < 0.001) than CH. The range cumulative axial shears of the embolic agents were not 

significantly different between the two treatment groups.  

 

Embolic 
agent 

Endoleak 
Present 

Maximum Axial 
Deformation (%) 

Range Cumulative Axial 
Deformation (%) 

Range Cumulative 
Axial Shear (%) 

CH-STS 
Yes (n=3) 0.111 ± 0.09 0.226 ± 0.098 0.759 ± 0.184 

No (n=5) 0.088 ± 0.082 0.188 ± 0.127 0.681 ± 0.210 

CH 
Yes (n=7) 0.224 ± 0.099 0.535 ± 0.280 0.855 ± 1.044 

No (n=2) 0.262 ± 0.056 0.691 ± 0.084  1.188 ± 0.934 
 

Embolic 
agent 

Endoleak 
Present 

Maximum Axial 
Deformation (%) 

Range Cumulative Axial 
Deformation (%) 

Range Cumulative 
Axial Shear (%) 

CH-STS 
Yes (n=3) 0.093 ± 0.042 0.176 ± 0.058 0.745 ± 0.305 

No (n=5) 0.075 ± 0.070 0.138 ± 0.068 0.717 ± 0.205 

CH 
Yes (n=7) 0.171 ± 0.074 0.514 ± 0.297 0.911 ± 1.053 

No (n=2) 0.215 ± 0.017 0.633 ± 0.380 0.403 ± 0.108 
 

Table 5  Mean (± standard deviation) of the maximum axial deformation, range cumulative axial 

deformation, and range cumulative axial shear of the embolic agent region of interest, at sacrifice, stratified 

by type of embolic agent used and presence of residual endoleak, as determined by (A) reader GS and (B) 

reader LS. CH: Chitosan hydrogel embolic agent; CH-STS: Chitosan hydrogel with sodium tetradecyl 

sulphate embolic agent; n: number of aneurysms.

(B) 

(A) 



 

Predictor 

Maximum axial deformation Range cumulative axial deformation Range cumulative axial shear 

Estimate 95% confidence 
interval p-value Estimate 95% confidence 

interval p-value Estimate 95% confidence 
interval p-value 

Intercept 0.22% 0.15% – 0.32% <0.001 0.52% 0.37% – 0.73% <0.001 0.65% 0.42% – 0.98% 0.042 

Use of CH-
STS  

 
-66% -80% – -42% <0.001 -67% -79% – -47% <0.001 6% -42% – 96% 0.845 

 

Table 6  Multivariable linear mixed-effects model demonstrating the effect of use of CH-STS (versus CH) on the elastographic parameters of 

maximum axial deformation, range cumulative axial deformation, and range cumulative axial shear of the embolic agent region of interest obtained 

using the segmentations by reader GS. The estimate for the predictor CH-STS refers to the percentage change of the outcome parameter when CH-

STS is used. CH: Chitosan hydrogel embolic agent. CH-STS: Chitosan hydrogel with sodium tetradecyl sulphate embolic agent. 

 



 

8.3 Elastograms of the ILT ROI  

The means and standard deviations for the maximum axial deformation, range cumulative axial 

deformation, and range cumulative axial shear for the ILT ROI stratified by type of embolic agent used and 

presence of endoleak—as obtained from the GS and LS segmentations—are presented in Table 7. The 

multivariable linear mixed-effects model fitted to the outcomes obtained from the GS segmentations 

revealed that neither the agent used nor presence of endoleak were significantly predictors of the outcomes 

(Table 8).  

 

 

Embolic agent Endoleak Present 
Maximum Axial 
Deformation (%) 

Range Cumulative 
Axial 

Deformation (%) 

Range Cumulative 
Axial Shear (%) 

CH-STS 
Yes (n=4) 0.185 ± 0.108 0.380 ± 0.192 0.865 ± 0.793 

No (n=5) 0.126 ± 0.053 0.288 ± 0.164 0.458 ± 0.236 

CH 
Yes (n=7) 0.155 ± 0.076 0.366 ± 0.152 0.671 ± 0.419 

No (n=2) 0.133 ± 0.018 0.284 ± 0.069 0.462 ± 0.411 

 

 

Embolic agent Endoleak Present 
Maximum Axial 
Deformation (%) 

Range Cumulative 
Axial 

Deformation (%) 

Range Cumulative 
Axial Shear (%) 

CH-STS 
Yes (n=4) 0.222 ± 0.136 0.470 ± 0.296 0.723 ± 0.199 

No (n=5) 0.112 ± 0.060 0.291 ± 0.149 0.672 ± 0.269 

CH 
Yes (n=7) 0.153 ± 0.055 0.308 ± 0.112 0.994 ± 0.614 

No (n=2) 0.135 ± 0.061 0.234 ± 0.061 0.527 ± 0.035 

 

Table 7  Mean (± standard deviation) of the maximum axial deformation, range cumulative axial 

deformation, and range cumulative axial shear of the intraluminal thrombus region of interest stratified by 

type of embolic agent used and presence of endoleak at sacrifice as determined by (A) reader GS and (B) 

reader LS. CH: Chitosan hydrogel embolic agent. CH-STS: Chitosan hydrogel with sodium tetradecyl 

sulphate embolic agent. 

 

(B) 

(A) 



 

Predictor 

Maximum axial deformation Range cumulative axial deformation Range cumulative axial shear 

Estimate 
95% confidence 

interval 
p-value Estimate 

95% confidence 
interval 

p-value Estimate 
95% confidence 

interval 
p-value 

Intercept 0.11% 0.07% – 0.19% <0.001 0.26% 0.17% – 0.39% <0.001 -0.34% 0.16% – 0.69% 0.003 

Use of CH-
STS 

3% -32% – 58% 0.877 -3% -28% – 32% 0.864 24% -36% – 141% 0.529 

Presence of 
endoleak 

30% -20% – 112% 0.292 35% -7% – 97% 0.110 62% -20% – 228% 0.183 

 

Table 8  Multivariable linear mixed-effects model demonstrating the effect of embolization with CH-STS (versus CH) and presence of residual 

endoleak (versus not) on the elastographic parameters of maximum axial deformation, range cumulative axial deformation, and range cumulative 

axial shear of the intraluminal thrombus obtained using the segmentations performed by reader GS. The estimates for the non-intercept predictors 

refer to the percentage change of the outcome when CH-STS is used (in comparison to CH) or when a residual endoleak is present (in comparison 

to not). CH: Chitosan hydrogel embolic agent. CH-STS: Chitosan hydrogel with sodium tetradecyl sulphate embolic agent.



 

8.4 Comparison of the Embolic Agents and the ILT 

The mechanical properties of the CH and CH-STS agent ROIs were compared with those of the ILT 

ROIs. Using the segmentations obtained by reader GS, the ILT was found to have a 37% lower maximum 

axial deformation (CI: -56 % to -10%, p = 0.010) and a 37% lower range cumulative axial deformation (CI: 

-57% to -8%, p = 0.017) than CH. In contrast, the ILT had a 77% greater maximum axial deformation (CI: 

-6% to 234%, p = 0.079; approaching significance) and a 59% greater range cumulative axial deformation 

(CI: 1% to 153%, p = 0.047) than CH-STS. Therefore, the strain values of the ILT were between those of 

CH and CH-STS, being stiffer than the former and less stiff than the latter. There was no significant 

difference between the shear values of CH or CH-STS compared to the ILT. 

8.5 Elastographic Analysis of Aneurysm Sac ROI 

The means and standard deviations of the maximum axial deformation, range cumulative axial 

deformation, and range cumulative axial shear of the aneurysm sac ROI—stratified by the type of embolic 

agent used, the presence of endoleak, and time—are presented in Table 9 and Table 10 for readers GS and 

LS, respectively. The initial multivariable linear mixed-effects model fitted to the outcomes for the 

aneurysm sac ROI obtained from the GS segmentations are presented in Table 11. Time and the interaction 

terms were either not clinically or statistically relevant and were excluded from the final model.  

The final multivariable linear mixed-effects model included the type of embolic agent and the presence 

of endoleak as predictors (see Table 12). The use of CH-STS was associated with a 29% decrease in 

maximum axial deformation (CI: -41% to -14%, p <0.001), a 28% decrease in range cumulative axial 

deformation (CI: -40% to -14%, p <0.001), and a 27% decrease in range cumulative axial shear (CI: -39% 

to -13%, p < 0.001), while controlling for the presence of endoleak. The presence of an endoleak was 

associated with a 53% increase in maximum axial deformation (CI: 21% to 92%, p < 0.001) and a 60% 

increase in range cumulative axial deformation (CI: 27% to 101%, p < 0.001), while controlling for the type 

of agent used. There was no significant impact of presence of endoleak on the range cumulative axial shear. 
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Embolic 
Agent 

Presence of 
endoleak 1 week 1 month 3 months 6 months 

CH-STS 
Yes 0.143 ± 0.073 

n = 4 
0.124 ± 0.098 

n = 4 
0.151 ± 0.106 

n= 4 
0.117 ± 0.039 

n = 1 

No 0.081 ± 0.037 
n = 5 

0.061 ± 0.028 
n = 5 

0.068 ± 0.046 
n = 5 

0.073 ± 0.023 
n = 2 

CH 
 

Yes 0.230 ± 0.195 
n = 7 

0.172 ± 0.083 
n = 7 

0.122 ± 0.069 
n = 7 

0.122 ± 0.066 
n = 1 

No 0.101 ± 0.053 
n = 2 

0.081 ± 0.042 
n = 2 

0.133 ± 0.043 
n = 2 

0.138 ± 0.087 
n = 2 

 

 

Embolic 
Agent 

Presence of 
endoleak 1 week 1 month 3 months 6 months 

CH-STS 
Yes 0.335 ± 0.197 

n = 4 
0.243 ± 0.177 

n = 4 
0.474 ± 0.541 

n = 4 
0.276 ± 0.091 

n=1 

No 0.201 ± 0.090 
n = 5 

0.164 ± 0.092 
n = 5 

0.169 ± 0.118 
n = 5 

0.158 ± 0.079 
n=2 

CH 
 
 

Yes 0.558 ± 0.484 
n = 7 

0.440 ± 0.268 
n = 7 

0.415 ± 0.419 
n = 7 

0.247 ± 0.157 
n=1 

No 0.223 ± 0.106 
n = 2 

0.198 ± 0.133 
n = 2 

0.323 ± 0.130 
n = 2 

0.261 ± 0.089 
n=2 

 

 

Embolic 
Agent 

Presence of 
endoleak 1 week 1 month 3 months 6 months 

CH-STS 
Yes 0.583 ± 0.311 

n = 4 
0.430 ± 0.285 

n = 4 
0.859 ± 0.853 

n = 4 
0.258 ± 0.084 

n=1 

No 0.512 ± 0.367 
n = 5 

0.456 ± 0.277 
n = 5 

0.458 ± 0.244 
n = 5 

0.575 ± 0.209 
n=2 

CH 
Yes 0.900 ± 0.698 

n = 7 
0.725 ± 0.390 

n = 7 
0.832 ± 1.114 

n = 7 
0.463 ± 0.362 

n=1 

No 0.486 ± 0.405 
n = 2 

0.459 ± 0.270 
n = 2 

0.527 ± 0.164 
n = 2 

0.698 ± 0.396 
n=2 

 

Table 9  Mean (± standard deviation) of the (A) maximum axial deformation, (B) range cumulative axial 

deformation, and (C) range cumulative axial shear of the aneurysm sac region of interest stratified by 

embolic agent used (CH versus CH-STS), presence of residual endoleak, and time, as obtained by reader 

GS. CH: Chitosan hydrogel embolic agent. CH-STS: Chitosan hydrogel with sodium tetradecyl sulphate 

embolic agent; n: number of aneurysms (with three observations per aneurysm). 

 

(A) Maximum Axial Deformation (%) 

(A)  

(B) Range Cumulative Axial Deformation (%) 

(B)  

(C) Range Cumulative Axial Shear (%) 

(C)  
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Embolic 
Agent 

Presence of 
endoleak 1 week 1 month 3 months 6 months 

CH-STS 
Yes 0.190 ± 0.228 

n = 4 
0.131 ± 0.101 

n = 4 
0.138 ± 0.092 

n= 4 
0.102 ± 0.058 

n = 1 

No 0.076 ± 0.035 
n = 5 

0.076 ± 0.046 
n = 5 

0.083 ± 0.045 
n = 5 

0.063 ± 0.020 
n = 2 

CH 
 

Yes 0.230 ± 0.213 
n = 7 

0.175 ± 0.080 
n = 7 

0.109 ± 0.057 
n = 7 

0.105 ± 0.046 
 n = 1 

No 0.114 ± 0.018 
n = 2 

0.075 ± 0.012 
n = 2 

0.149 ± 0.043 
n = 2 

0.122 ± 0.033 
n = 2 

 

 

Embolic 
Agent 

Presence of 
endoleak 1 week 1 month 3 months 6 months 

CH-STS 
Yes 0.347 ± 0.307 

n = 4 
0.260 ± 0.176 

 n = 4 
0.375 ± 0.329 

 n = 4 
0.222 ± 0.125 

 n=1 

No 0.178 ± 0.083 
n = 5 

0.190 ± 0.108 
n = 5 

0.179 ± 0.095 
n = 5 

0.135 ± 0.021 
n=2 

CH 
 
 

Yes 0.551 ± 0.485 
n = 7 

0.439 ± 0.252 
n = 7 

0.375 ± 0.329 
n = 7 

0.191 ± 0.090 
n=1 

No 0.269 ± 0.125 
n = 2 

0.202 ± 0.072 
n = 2 

0.339 ± 0.110 
n = 2 

0.284 ± 0.066 
n=2 

 

 
Embolic 
Agent 

Presence of 
endoleak 1 week 1 month 3 months 6 months 

CH-STS 
Yes 0.620 ± 0.376 

n = 4 
0.444 ± 0.305 

n = 4 
0.695 ± 0.632 

n = 4 
0.239 ± 0.020  

n=1 

No 0.533 ± 0.383 
n = 5 

0.451 ± 0.228 
n = 5 

0.430 ± 0.206 
n = 5 

0.650 ± 0.344 
n=2 

CH 
Yes 0.895 ± 0.696 

n = 7 
0.733 ± 0.421 

n = 7 
0.846 ± 1.207 

n = 7 
0.349 ± 0.306 

 n=1 

No 0.491 ± 0.307 
n = 2 

0.510 ± 0.443 
n = 2 

0.601 ± 0.284 
n = 2 

0.833 ± 0.289 
n=2 

 

Table 10  Mean (± standard deviation) of (A) maximum axial deformation, (B) range cumulative axial 

deformation, and (C) range cumulative axial shear of the aneurysm sac region of interest stratified by 

embolic agent, presence of residual endoleak, and time, as obtained by reader LS. CH: Chitosan hydrogel 

embolic agent. CH-STS: Chitosan hydrogel with sodium tetradecyl sulphate embolic agent; n: number of 

aneurysms (three observations per aneurysm). 

(A) Maximum Axial Deformation (%) 

(B) Range Cumulative Axial Deformation (%) 

(C) Range Cumulative Axial Shear (%) 



 

Predictor 

Maximum axial deformation Range cumulative axial deformation Range cumulative axial shear 

Estimate 95% confidence 
interval 

p-
value Estimate 95% confidence 

interval p-value Estimate 
95% 

confidence 
interval 

p-value 

Intercept 0.11% 0.07% – 0.16% <0.001 0.23 0.15% – 0.34% <0.001 0.63 0.41% – 0.98% 0.041 

CH-STS -41% -61% – -9% 0.019 -32% -55% – 5% 0.084 -31% -54% – 5% 0.083 

Time 0% 0% – 0% 0.514 0% 0% – 0% 0.813 0% 0% – 0% 0.72 

Presence of 
endoleak 38% -5% – 99% 0.087 62% 12% – 132% 0.01 -12% -39% – 26% 0.472 

Interaction: 
Agent and 

time 
0% 0% – 0% 0.387 0% 0% – 0% 0.515 0% 0% – 0% 0.339 

Interaction: 
Agent and 
endoleak 

17% -30% – 95% 0.535 -3% -41% – 60% 0.904 -6% -42% – 54% 0.815 

 

Table 11  Multivariable linear mixed-effects model demonstrating the effect of embolization with CH-STS (vs. CH), presence of residual endoleak 

(vs. not), and time on the elastographic parameters of maximum axial deformation, range cumulative axial deformation, and range cumulative axial 

shear obtained using the segmentations by reader GS. The estimates for the non-intercept predictors refer to the percentage change of the outcome 

when the predictor is present. CH: Chitosan hydrogel embolic agent. CH-STS: Chitosan hydrogel with sodium tetradecyl sulphate embolic agent. 
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Predictor 

Maximum axial deformation Range cumulative axial deformation Range cumulative axial shear 

Estimate 95% confidence 
interval p-value Estimate 95% confidence 

interval p-value Estimate 95% confidence 
interval p-value 

Intercept 0.09% 0.07% – 0.12% <0.001 0.22% 0.17% – -0.30% <0.001 0.66% 0.47% – 0.92% 0.015 

Use of CH-
STS -29% -41% – -14% <0.001 -28% -40% – -14% <0.001 -27% -39% – -13% <0.001 

Presence of 
endoleak 53% 21% – 92% <0.001 60% 27% – 101% <0.001 -14% -31% – 8% 0.186 

 

Table 12  Multivariable linear mixed-effects model examining the effect of embolization with CH-STS (vs. CH) and presence of residual endoleak 

(vs. not) on the elastographic parameters maximum axial deformation, range cumulative axial deformation, and range cumulative axial shear of the 

aneurysm sac obtained using the segmentations by reader GS. The estimates for the non-intercept predictors refer to the percentage change of the 

outcome when the predictor is present. CH: Chitosan hydrogel embolic agent. CH-STS: Chitosan hydrogel with sodium tetradecyl sulphate embolic 

agent.



 

8.6 Comparison Between Readers 

The ICC of the maximum axial deformation, range cumulative axial deformation, and range cumulative 

axial shear obtained from the GS and LS segmentations are provided in Table 13. The ICC of the point 

estimates for all three outcomes were good (falling between the range of 0.75-0.9) as per Portney and Gross 

(231). Further interpretation of these findings will be presented in the discussion. 

 

Parameter Intraclass 
correlation 

95% confidence 
interval 

Maximum Axial Deformation 0.807 0.754 – 0.849 

Range Cumulative Axial 
Deformation 0.842 0.798 – 0.877 

Range Cumulative Axial Shear 0.874 0.838 – 0.902 

 

Table 13  Intraclass correlation coefficients comparing the inter-observer reliability of the maximum axial 

deformation, range cumulative axial deformation, and range cumulative axial shear obtained from the 

segmentations performed by the readers GS and LS. 

 



 

Chapter 9 – Discussion 

9.1 Orientation of Discussion Section 

The goal of the present study was to characterize the mechanical properties of the constituents of 

aneurysm sacs post-EVAR and embolization with sclerosing and non-sclerosing chitosan-based hydrogels 

using SUE. In the present chapter, the most important results will be summarized (Section 9.2). The 

mechanical properties of the embolic agents and the ILT will then be interpreted, as they represent the most 

homogenous structures (Sections 9.3 and 9.4, respectively); their mechanical properties will then be 

compared in Section 9.5. The interpretation of the aneurysm sac mechanical properties will be described 

subsequently (Section 9.6) as this builds upon the understanding of the mechanical properties of the former 

two ROIs. Next, the inter-observer reliability of the technique will be contextualized (Section 9.7). Finally, 

the limitations of the study will be described (Section 9.8).  

9.2 Summary of Results 

1. CH-STS demonstrated a 66 % lower maximum axial deformation (p < 0.001) and a 67% lower range 

cumulative axial deformation (p < 0.001) than CH. 

2. There was no significant difference in the mechanical properties of the ILT ROIs between treatment 

groups.  

3. CH-STS was stiffer than the ILT and the ILT was stiffer than CH.  

• The ILT had a 37% lower maximum axial deformation (p = 0.010) and a 37% lower range 

cumulative axial deformation (p = 0.017) than CH. 

• The ILT had a 77% greater maximum axial deformation (p = 0.079; trending towards significance) 

and a 59% greater range cumulative axial deformation (p = 0.047) than CH-STS. 

4. (A) Aneurysm sacs embolized with CH-STS had a 29% lower maximum axial deformation (p < 0.001), 

a 28% lower range cumulative axial deformation (p < 0.001), and a 27% lower range cumulative axial 

shear (p < 0.001) than those embolized with CH, even when controlling for presence of endoleak. 

(B) The presence of residual endoleak post-embolization was associated with a 53% increase in 

maximum axial deformation (p < 0.001) and a 60% increase in range cumulative axial deformation (p 

< 0.001), even when controlling for type of agent used. 

5. The ICCs of the mechanical properties obtained via SUE using the segmentations performed by two 

independent readers demonstrated good inter-observer reliability, with point estimates ranging between 

0.807-0.874. 
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9.3 Elastographic Analysis of the Embolic Agents 

The importance of embolic agent stiffness on the treatment of endoleaks reflects two fundamental 

principles: occlusivity and wall stress reduction. Agents that can withstand higher stresses are thought to be 

better able resist blood flow, theoretically reducing the risk of technical and clinical failure (42, 43). Stiffer 

embolic agents may also provide a stabilizing effect on the aneurysm by decreasing wall stress, which is an 

important determinant for aneurysm rupture (232).  

CH-STS demonstrated significantly lower strain values than CH in vivo at sacrifice. This finding 

corresponds with the rheometry studies performed by Fatimi et al and Zehtabi et al, both of which 

demonstrated that the addition of STS to chitosan-based embolic agents increased the gels’ storage moduli, 

likely by increasing chitosan chain aggregation (42, 43). Injected CH-STS had a storage modulus of 

approximately 6 kPa, while injected CH had a storage modulus of approximately 1 kPa. It should be noted, 

however, that both CH and CH-STS were able to achieve storage moduli over 0.8 kPa in these studies, 

which was considered the threshold for vascular occlusion based on an in vitro bench test (42, 43). 

Interestingly, the presence of endoleak was not a significant predictor of the strain or shear values of the 

embolic agent at sacrifice. The suggests that the measured differences in strain may actually represent 

intrinsic differences in the mechanical properties of the agents, rather than being significantly confounded 

by the presence of an additional deforming force.  

The in vivo mechanical properties of CH and CH-STS have been previously assessed using SWI by 

Bertrand-Grenier et al (31). They found that CH-STS tended to have a greater elastic modulus than CH at 

three-months post-embolization, but not at six-months post-embolization. However, there were several 

limitations to their analysis. First, their observations at six months may have been biased given that there 

were fewer subjects. Second, statistical analyses were not performed to compare the treatment groups to 

determine if the aforementioned differences were significant. Third, the level of expertise of the observers 

performing the segmentations was different. Fourth, true differences between the embolic agents may have 

been masked due to inaccurate SWI measurements caused by (a) violations of the fundamental assumptions 

of SWI regarding tissue homogeneity and tissue isotropy, which are often inaccurate in intravascular tissues 

and (b) poor ARFI penetration (31, 32). Therefore, the results of the present SUE analysis, particularly given 

that they reflect the in vitro data, are thought to be more accurate. The study by Bertrand-Grenier et al did 

not attempt to control for the presence of endoleak as a predictor for the elasticity of the agent (31), therefore 

the impact of residual endoleak on elasticity cannot be compared directly between SUE and SWI. However, 

given that SWI utilizes ARFIs instead of an internal deforming force to generate tissue deformation, the 

presence of an endoleak should also not theoretically impact the elasticity measurements. There is limited 
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additional data in the literature regarding the in vivo characterization of other solid embolic agents for 

further comparison; this would be of interest for future studies.  

9.4 Elastographic Analysis of the ILT 

ILTs are found in the majority of AAAs (233). However, their role in the pathogenesis of aneurysmal 

rupture remain unclear. Some authors suggest that ILTs reduces sac pressure and peak wall stress, thereby 

acting as a mechanical shield/cushion (234, 235). Others state that ILTs are associated with pro-

inflammatory processes (236) and that larger thrombi are associated with aneurysm expansion and rupture—

perhaps acting as a surrogate marker for decreased aortic wall strength (27, 237, 238). In reality, both of 

these hypotheses may have merit. Regarding specifically the mechanical properties of ILTs, it has been 

demonstrated that not only does the presence of ILT impact the wall stresses, but that stiffer ILTs decrease 

wall stress better than less stiff ILTs (27). In general, thrombi become stiffer as they become more organized 

(28, 30, 31) and poor thrombus organization may account for the non-shrinkage of aneurysms and 

endotension, both of which may require subsequent intervention (26). The predictive value of thrombus 

organization on the presence of endoleak has not been established (26, 28, 32).  

The impact of embolization with CH-STS versus CH as well as the presence of residual endoleak on 

overall ILT stiffness was assessed in the present study; there were no significant differences in the strain or 

shear parameters of the ILT with respect to these predictors. The finding that there was no difference in the 

ILT between the treatment groups was not necessarily surprising. First, while STS is thrombogenic (176), 

it is unclear as to whether its use would result in the formation of thrombus of greater quality, as thrombus 

formation is dependent on many factors, including endothelial damage, stasis, and coagulability (43, 239). 

Interestingly, while the use of low concentration STS (0.075–0.1%) is associated with strong clot formation, 

the use of high concentration STS (³ 0.3%) has been shown to generate weak clots that are susceptible to 

lysis, likely due to inhibition/destruction of clotting factors (240). Since the concentration of STS released 

from CH-STS into the aneurysm sac is presently unknown, however, at maximum, the present study 

suggests that the quality of thrombus produced by CH-STS may not be superior. Second, given that the 

surgical creation of aneurysms was performed eight weeks before EVAR, it is possible that a portion of the 

sac thrombus was deposited prior to the intervention, as is seen with the deposition of ILT in human AAAs. 

Finally, as shown by Soulez et al in 2008, the presently used endoleak model is expected to generate ILT 

after EVAR even without embolization; this would have the effect of mitigating differences between 

treatment groups (171). The culmination of these factors suggests that the measured mechanical properties 

of the thrombus could reasonably be expected to be the same between treatment groups. Unfortunately, the 

SWI study by Bertrand-Grenier et al on the subjects used in the present study did not compare the elasticity 

of the total thrombus by the type of embolic agent used to verify these results (31). 
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The finding that the presence of endoleak was not a significant predictor of thrombus strain/shear values 

was somewhat unexpected. On the one hand, previous SUE results have shown that the mechanical 

properties of the thrombi generated in association with type I and type II endoleaks are similar (28); 

therefore, the primary deforming force may not be from the endoleak (as type I endoleaks are generally 

thought to provide a greater deforming force than type II endoleaks), but from the pulsations through the 

stent-graft. Additionally, the extent to which partially embolized endoleaks are able to deform the 

surrounding tissue is unclear and poorly described, particularly given the heterogeneity of the morphologies 

of the residual endoleaks (28, 241, 242). On the other hand, one might expect that the ILT in aneurysm sacs 

with residual endoleaks would be less stiff as they would be supplied directly with antithrombotic substances 

(243). The impact of residual endoleak on the measured strain and shear parameters of the thrombus may 

have therefore been limited by type II error given the relatively low sample sizes. This conclusion is 

supported by two findings: 1) There was a trend for decreased strain values of the thrombus in the no 

endoleak group in comparison to the endoleak group, regardless of agent used (see Section 8.3) and 2) the 

presence of endoleak did have an effect on the aneurysm sac ROI mechanical properties independent of the 

type of embolic agent (see Section 9.6 for further details).  

The mechanical properties of the ILT post-EVAR have been assessed via elastography in several 

studies, with conflicting results. SUE and SWI have both demonstrated that organized ILTs in a preclinical 

endoleak model have significantly lower strain values and significantly greater elastic moduli than fresh 

ILTs (28, 30). However, the clinical impact of these findings remains unclear, as these subtypes of thrombi 

cannot be distinguished on routine imaging. In a study by Bando et al, patients who underwent immediate 

post-EVAR 2D SWI that eventually went on to develop endoleaks had ILTs with a greater elasticity index 

(greater stiffness) compared to those who did not. The group suggested that a stiffer thrombus may prevent 

a decrease in sac contraction and pressure, creating favorable conditions for a type II endoleak (33). This is 

a controversial conclusion, however, as one could argue that a stiffer thrombus should prevent blood flow 

and recanalization. In contrast, a clinical study comparing patients with and without endoleaks using SWI 

demonstrated that thrombus elasticity was not statistically different between the groups (32). Finally, the 

study by Bertrand-Grenier et al using subjects in the present study found a trend towards increased thrombus 

stiffness in aneurysms without residual endoleak (although this was not statistically significant); the 

advantage of this study was that it could demonstrated thrombus evolution over time (31). Ultimately, there 

is no clear consensus within the literature regarding the predictive value of thrombus stiffness on presence 

of endoleak. However, it should be noted that there is heterogeneity amongst these studies with respect to 

the subjects (humans versus. animals), experimental conditions (status post embolization or not), time of 

elastography, and length of follow-up. Further studies with larger sample sizes are required to better 

elucidate the relationship between ILT mechanical properties and endoleaks in vivo. 
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9.5 Comparison of the Elastographic Properties of the Embolic 

Agents and the ILT 

CH-STS was found to be stiffer than the ILT (as well as CH, as was discussed in Section 9.3) and CH 

was found to be less stiff than the ILT. Given the previously described benefits of incorporating a stiffer 

substance into the aneurysm sac to reduce wall stress and to prevent endoleak recurrence, this finding 

legitimizes the use of CH-STS as an embolic agent (27, 177). However, this difference is difficult to interpret 

in the context of real-world intrinsic mechanical properties given that 1) SUE gives measurements of 

strain/deformation as opposed to elastic moduli and 2) reported in vitro mechanical properties of CH-

STS/CH and of ILTs are technique dependent and vary between sources. As previously described, prior 

studies have found that the storage moduli of CH-STS and CH—calculated using a rheometer with a fixed 

stress amplitude of 1 Pa—are approximately 6 kPa and 1 kPa, respectively (43, 177). Van Dam et al reported 

that the storage modulus of the ILT was approximately 1.7 ± 1.3 kPa for small strains using a different, non-

linear multimode model (244). However, it is unclear as to whether these two techniques have reasonable 

agreement. There is also substantial variability in the moduli reported for ILTs in the literature, given the 

differences in techniques and the types of thrombi measured (245). Adding to the confusions, other 

commonly reported elasticity measures of the ILT, such as the Young’s modulus, are currently unknown 

for CH-STS and CH. Therefore, caution must be used in comparing the mechanical properties of the gels 

and thrombi across studies. Future investigations studies could be geared towards more systematic in vitro 

comparisons of these entities as well as towards the direct correlation in vitro and in vivo findings. 

The most direct comparison of the in vivo results obtained in the present study comes from the study by 

Bertrand-Grenier et al, which used SWI to characterize the subjects in the present study. In contrast to the 

SUE results, they found no significant difference between the agents (pooling CH and CH-STS together) 

and organized thrombus, with elasticity measurements on the order of approximately 50 kPa (31). However, 

these results are called into question because this technique did not show significant differences between 

the mechanical properties of CH and CH-STS, whereas SUE could (better reflecting the in vitro data (see 

Section 9.3)). The suspected superiority of SUE is this regard is thought to be due to the technical limitations 

of SWI. As previously described, SWI relies on several assumptions with regards to tissue homogeneity and 

isotropy that might not be accurate in the intravascular setting Furthermore, signal loss due to poor 

penetration of the ARFIs may have also decreased the sensitivity of SWI (31, 32, 188). Ultimately, further 

studies using similar techniques may be necessary to adequately compare the mechanical properties of the 

embolic agents in comparison to their associated ILT. 
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9.6 Elastographic Analysis of the Aneurysm Sac  

The aneurysm sac is heterogeneous in its composition, containing both embolic agent and ILT. 

Therefore, the mechanical properties of this region of interest represent a composite of the mechanical 

properties of these two constituents. Aneurysm sac stiffness is a useful clinical parameter because it can be 

easily segmented on clinical follow-up imaging and can provide information regarding the overall stability 

of the aneurysm (31). In the context of an embolized endoleak, a stiffer sac is taken to represent a favorable 

outcome because it would indicate that there is an increased resistance to flow and that less stress would be 

transmitted to the aneurysm wall (27, 177) (see Section 9.3). To limit biasing secondary to the 

heterogeneous distribution of the embolic agent and ILT in the aneurysm sac, measurements of sac stiffness 

at multiple levels is mandatory.  

Aneurysm sacs embolized with CH-STS had significantly lower strain and shear values than those 

embolized with CH, even when controlling for the presence of residual endoleak. It is suspected that the 

embolic agent—as opposed to the associated ILT—was the primer driver for this difference, as discussed 

in Section 9.3. While the ILT also contributes to the overall sac stiffness, it appears that their mechanical 

properties were not significantly different between the embolization groups, as outlined in Section 9.4.  

The presence of a residual endoleak post-embolization was associated with greater aneurysm sac strain 

values. This has two potential interpretations. The first is that endoleaks create a second deforming force on 

the constituents of the sac—in addition to the pulsations through the aortic stent—which resulted in 

increased strain measurements not related to the sacs’ mechanical properties. However, this raises the 

question as to why a similar relationship was not seen between endoleak persistence and the strain values 

of the individual agent ROIs and ILT ROIs. One possibility is that these were type II errors, particularly 

with respect to the ILT (as detailed previously in Section 9.4); since the aneurysm sac ROI had more data 

points, the significance of this relationship was only correctly elucidated for this parameter. Another 

possibility is that since the mechanical properties of the aneurysm sac were calculated to include three 

different levels, it was more sensitive to local deformations by residual endoleaks. For example, by only 

selecting one level for the characterization of the agent and ILT ROIs for each aneurysm, asymmetrically 

distributed sac pressures from a residual endoleak (which may have been located at another extreme of the 

aneurysm) may not have deformed the region of interest. However, this limitation was unavoidable because 

the individual ILT and embolic agent ROIs may not have been present at all levels of the aneurysm sac. A 

third possibility is that, although not significantly, time may have impacted the effect of endoleaks. On 

review of the mean strain values in Tables 9 and 10, it appears as though the greatest differences in the 

strain values between the endoleak and no endoleak groups were at 1 week, but that this difference was less 
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appreciable over time. Therefore, at sacrifice, a significant impact of endoleak on the mechanical properties 

of the agent or ILT may not have been elucidated.  

A second interpretation of the observed relationship between the presence of residual endoleak and 

increased sac strain is that because certain aneurysm sacs were less stiff, endoleaks were more likely to 

form. This hypothesis is supported by the previously described role of mechanical occlusivity in preventing 

blood flow into the sac (43). However, other factors, such as vascular de-endothelialization, may have also 

played a role in this relationship. Ultimately, the potentially confounding role of endoleaks points to a 

weakness of SUE in measuring the mechanical properties of sac contents: the measured strains/shears are 

dependent on the magnitude of the force applied, which is unknown. In the study by Bertrand-Grenier et al, 

total aneurysm sac was not identified as a region of interest, therefore comparisons with SWI (which does 

not rely on internally derived deformations) cannot be made (31). However, given that the aneurysm sac 

ROI is inherently heterogenous, its characterization by SWI may not have been appropriate.  

Regardless of the origin of this relationship, the finding that residual endoleaks are associated with 

greater sac strain values is a highly useful clinically. Salloum et al have demonstrated that SUE can 

characterize endoleaks as areas of high signal decorrelation (aliasing) (28). The present study demonstrates 

that even when these areas are excluded, there are differences in sac strain that can be detected in subjects 

with and without endoleaks. This information could be useful for future non-invasive characterization of 

aneurysm sacs, particularly when there is clinical equipoise regarding the presence of an endoleak or 

whether an identified endoleak is clinically significant (particularly with respect to type II or V endoleaks). 

It should be noted, however, that sac mechanical parameters were not used to predict the presence of 

endoleak; this would be of interest in future studies. Future studies could also be directed at using SUE to 

monitor sac healing with non-embolized aneurysm sacs. 

That time was not a clinically significant predictor of sac mechanical properties or the embolized 

aneurysm sacs was an unexpected finding. The hypothesized natural history of successful EVAR, as well 

of successful endoleak embolization, is a progressive decrease in sac pressure (246, 247). The current 

findings somewhat challenge this hypothesis. One possible reason is that embolization is an all-or-nothing 

phenomenon; successful embolization decreases sac strain, while unsuccessful embolization does not. As 

previously descried, patient’s status post EVAR may have high proportions of fresh thrombus within the 

aneurysm sac for years after EVAR (26), therefore progressive thrombus organization is not necessarily the 

rule. Another possibility is that there were two counteracting processes occurring over time. Bertrand-

Grenier et al showed that there was a non-significant trend towards increased thrombus organization of 

embolized endoleaks over the course of follow-up (31). However, since the aneurysm sacs contained 

biodegradable CH-based agents, it is possible that decreased strain/shear values of the ILT were offset by 
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the degradation—and increased strain/shear values—of the gel agents over time (43). Ultimately, further 

studies regarding the evolution of sac stiffness and pressures over time following embolization are required.  

9.7 Inter-observer Reliability 

There was good inter-observer reliability of the strain and shear measurements derived from the 

independent segmentations of the aneurysm sac, embolic agent, and ILT ROIs, with point estimates ranging 

from 0.807 to 0.874 (231). Given that SUE is proposed as an adjunctive technique to conventional DUS, as 

opposed to one that will replace it, the authors believe that these early results indicate that SUE has sufficient 

inter-observer reliability to justify its further investigation clinically.  

Upon review of Tables 5, 7, 9, and 10, however, there were important differences noted between the 

strain and shear parameters obtained by the two readers’ segmentations. This was likely due to a 

combination of factors. First, there is expected variability with US-based segmentation techniques due to 

the limited contrast resolution. This is especially true given that that some of the ROIs (such as the ILT ROI 

and agent ROI) could not be precisely delineated on B-mode cines and that their distinction relied on 

correlation with other imaging and histopathology (which is subject to individual interpretation and 

misregistration). Second, the spurious inclusion of the stent-graft, the aneurysm wall, or any endoleak into 

any of the ROIs by one of the readers may have significantly biased the results; both readers attempted to 

mitigate this by segmenting conservatively. Third, there was an important difference in experience between 

the junior and senior interpreter; with interpreters of similar, advanced experience, the inter-observer 

variability would be expected to be improved. Finally, the small sample sizes for each subgroup presented 

in the aforementioned tables makes the individual means susceptible to sampling bias. Therefore, it is felt 

that the ICCs, which compare the obtained values more globally, were better suited for comparing the results 

of the two observers. 

Unfortunately, there is little data available in the literature to contextualize the inter-observer reliability 

demonstrated in the present study. Shear wave imaging has been found to a have moderate-to-strong level 

of agreement with respect to its ability to detect endoleaks (30, 32, 248); however, the inter-observer 

reliability with respect to the prediction of a categorical outcome addresses a fundamentally different 

question than the one posed by the present study. Thus, at maximum, this study adds to the body of evidence 

that suggests elastography is a reliable tool for the characterization of aneurysms post-EVAR. Future studies 

with the inclusion of additional sources of variability that may arise in clinical practice—as well as the 

exclusion of parts of the imaging processing workflow that could be automated—are required for further 

validation.  
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9.8 Study Limitations 

9.8.1 Limitations of the Canine Model 

The use of a canine bilateral common iliac aneurysm model poses several limitations. Dogs are the 

standard experimental subjects for arterial graft studies given their similar thrombotic profile and similar 

resistance to neo-endothelial formation as compared to humans (249). However, the surgical creation of 

aneurysms in otherwise healthy subjects does not reflect the underlying cardiovascular pathologies from 

which AAAs tend to originate. For example, the surgically implanted venous patches do not have the 

features of inflammation or wall weakening that characterize AAAs (77, 81, 82). In contrast, the model did 

allow for the reliable recreation of similar aneurysms and endoleaks in an all subjects (171); furthermore, 

for the purposes of the present study, the wall characteristics were not particularly relevant. Secondly, the 

use of a bilateral common iliac aneurysm model may have removed some of the unique hemodynamic 

stresses that act upon the abdominal aorta (83). However, this approach did allow for the reliable creation 

of high flow type I endoleaks (which may be seen clinically with a communicating lumbar or inferior 

mesenteric artery) as well as for a more controlled comparison of the effects of CH-STS and CH with fewer 

subjects. Thirdly, the endoleaks in this model were created by deformation of a balloon expandable stent, 

which is dissimilar to EVAR in two ways: 1) EVAR stents are self-expandable and more rigid and 2) type 

I endoleaks tend to occur secondary to hostile landing zone anatomy or changes in the aneurysm 

configuration over time (117, 118). In contrast, the use of a self-expandable arterial stent in this model 

would have impeded balloon deformation, and the reliable recreation of hostile landing zone characteristics 

would have been untenable on a short-term scale. Finally, in clinical practice, transarterial endoleak 

embolization is first line therapy for type II endoleaks, as opposed to the type I endoleaks that were used in 

the present study (1). The type I endoleak model was favored, however, because it creates larger, more 

challenging endoleaks, which lends greater robustness to the conclusions regarding gels’ impact (171). 

Moreover, embolization is an acceptable alternative for the treatment of type I endoleaks (1). 

9.8.2 Limitations of SUE 

There are several limitations associated with the use of SUE for the characterization of the contents of 

embolized endoleaks. First, as with all methods of strain elastography, SUE cannot calculate intrinsic tissue 

parameters (i.e. the elastic moduli) of the imaged regions of interest because the internal stress distribution 

is unknown (187). This makes the generalizability of the values obtained in the present study unclear. Of 

note, intrasac pressure measurements were not performed to attempt to quantify the stress distribution, as 

previous experiments indicated that mean sac pressures did not correlate with the strain of the sac contents 

(28). Furthermore, sac pressure measurements are invasive and are not routinely performed clinically. While 
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other forms of elastography (e.g. SWI) can attempt to calculate the tissue elastic moduli of the sac content, 

their limitations have already been described, and SUE tends to have greater penetration and robustness (30-

32, 188). Second, the ultrasound probe used for SUE has superior axial, rather than lateral resolution. This 

was thought to be why the shear measurements tended to less frequently show significant differences for 

the various comparisons. Third, calculation of elastographic parameters using SUE is limited by the fact 

that it is a two-step process: in the first step, raw RF acquisition are obtained at the bedside, and in the 

second step, the acquisitions are post-processed on a separate workstation. This entails two separate issues: 

(a) repeat scans cannot be performed to improve the quality of the acquisitions prior to elastographic analysis 

(such as when there is out-of-plane or breathing motion); and (b) the multiple steps make the process labor 

intensive, which may limit clinical uptake. Future iterations of SUE that provide real-time elastographic 

analysis may mitigate these limitations. Fourth, the use of internal deformations to generate tissue stress in 

SUE is limited technically by the application of spurious additional forces (such as respiratory motion or 

patient movement), which result in out of plane artifacts as well as the application of an additional stresses 

not accounted for by the pulsations of the aorta. Clinically, an experienced operator who provides clear 

instructions (such for breath-holds) could be reduce these artifacts. Finally, with respect to characterizing 

the individual constituents of aneurysm sacs clinically, SUE is limited by the ability of B-mode imaging to 

distinguish different ROIs for segmentation. However, this is where the utility of composite measures (such 

as the aneurysm sac ROI) emerges. As such, post-embolization, SUE may be better suited for following 

changes in a given aneurysm sac’s mechanical properties over time, rather than for comparing aneurysms 

that have been embolized with different agents.  

9.8.3 Limitations of the Experimental Design 

The major limitation of the study lies in its ability to predict future outcomes. For example, while the 

presence of residual endoleak was associated with significantly higher strain values of the aneurysm sac, 

this exploratory study was not designed to predict at what strain values an endoleak was likely to be present. 

Furthermore, while the strain/shear values added additional information to the characterization of embolized 

endoleaks, their relevance to hard clinical outcomes—such as sac expansion or rupture—cannot be 

extrapolated due to the short time frame and the limitations of the surgical model (see Section 9.8.1). Finally, 

while the use of a stiffer agent (CH-STS) was associated with favorable outcomes and supports its further 

development as an embolic agent, given that there are no current commercial agents that offer a similar 

therapeutic profile for the treatment of endoleaks (being both occlusive and sclerosing), the immediate 

clinical application of these results to embolic agent selection is limited. 

Another important limitation of the study’s experimental design is the low sample size. As previously 

described, it is possible that a significant relationship between the presence of residual endoleak and the ILT 
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strain/shear outcomes was not elucidated because of this limitation. Furthermore, actual differences in shear 

outcomes (with respect to other comparisons where significant differences between strain outcomes were 

identified) may have also gone undetected given the relatively low number of subjects coupled with the 

technical limitations of measuring shear described in Section 9.8.2. Ultimately, while the present study 

demonstrates that SUE shows promise for the characterization aneurysm contents, further studies with larger 

cohorts are required. 

9.9 Conclusion 

SUE was used to characterize the mechanical properties of endoleaks embolized with CH-STS and CH. 

CH-STS had significantly lower strain values than CH. CH-STS also had lower strain values than the ILT. 

Overall, aneurysm sacs embolized with CH-STS tended to have lower strain values than those embolized 

with CH, even when controlling for the presence of endoleak. These findings lend legitimacy to the use of 

CH-STS as an embolic agent for the treatment of endoleaks. Additionally, residual endoleaks were 

associated with greater sac strain, regardless of embolic agent used, which may be a useful clinical finding 

in the follow-up of patients post-embolization. 
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