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Résumé 

Les lipides « switch » - bascules - appartiennent à la famille des matériaux sensibles à un stimulus. 

Quand ces lipides bascules sont incorporés aux nanoparticules lipidiques (LNP), ils permettent la 

délivrance contrôlée grâce à un changement de conformation activé par une baisse de pH. Des 

expériences précédentes avaient démontré que les LNP bascules ont transfecté le petits ARN 

interférents (siRNA) in vitro et in vivo, silençant la protéine fluorescente verte (GFP) et la protéine 

hépatique Facteur VII, respectivement. La double administration de micro ARN (miRNA) et 

d'agent anticancéreux melphalan a également été réalisée par les LNP bascule sur un modèle de 

rétinoblastome murin. Ces résultats prometteurs nous ont encouragé à élargir les applications de 

LNP bascules en tant que vecteur de siRNA. De plus, le mécanisme par lequel les LNP bascules 

induisent la déstabilisation de la membrane et la libération de matériaux encapsulé au milleu 

acide reste obscur. La compréhension de ce mécanisme est cruciale pour cerner les avantages et 

les limites des LNP bascules, pour proposer des futures applications et pour prévenir leur toxicité. 

Dans ce mémoire, nous avons comme objectif d’évaluer le potentiel des LNP bascules pour le 

traitement du cancer. Nous avons évalué les LNP bascules comme vecteur de livraison du siRNA 

ciblant l'une des protéines cancéreuses les plus spécifiques découvertes à ce jour, la survivine. En 

parallèle, nous avons étudié le comportement biophysique des membranes contenant des lipides 

bascules dans des vésicules de taille micromètrique. 

Dans la première étude, nous avons démontré que les LNP bascules ont permis le silençage de la 

survivine dans une gamme de lignées cellulaires cancéreuses (poumon, cervical, ovaire, sein, 

côlon, rétinoblastome). Dans les cellules du rétinoblastome humain (Y79), nous avons examiné 

plusieurs agents cytotoxiques utilisés en clinique quant à leur synergie avec le silençage de la 

survivine: melphalan, topotécan, téniposide et carboplatine. Le prétraitement avec les LNP 

chargées de siRNA-survivine a amélioré de manière synergique la cytotoxicité du carboplatine et 

du melphalan mais dans une moindre mesure celle du topotécan et du téniposide. Cet effet était 

spécifique aux cellules cancéreuses car les cellules saines (ARPE.19) n'exprimaient pas de 

survivine. L'inhibition de la survivine par silençage de siRNA s'est révélée plus spécifique et moins 
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dommageable pour les cellules saines (ARPE.19) que le YM155, un inhibiteur moléculaire de la 

survivine. 

Dans la deuxième étude, nous avons observé par microscopie confocale que les lipides bascules 

induisaient rapidement le stress, la fission et une courbure positive dans les membranes des 

vésicules unilamellaires géantes lorsqu'elles étaient exposées à des conditions acides. La 

dynamique de la membrane a été confirmée par des expériences de diffusion dynamique de la 

lumière (DLS) et de fuite de calcéine. Ces phénomènes ont également été observés lorsque des 

lipides bascules ont été incorporés dans une membrane hybride polymère/lipide, fournissant des 

propriétés sensibles au pH aux vésicules hybrides. À notre connaissance, c'est la première fois 

qu'une vésicule hybride sensible au pH est reportée. 

Nos résultats corroborent l'applicabilité des LNP bascules en tant qu'agents de vectorisation des 

siRNA pour le traitement du cancer grâce au silençage de la survivine, en particulier comme 

adjuvant à la chimiothérapie. L'investigation biophysique a révélé que les lipides bascules agissent 

sur la fluidité de la membrane, en particulier à pH acide. Cette sélectivité en pH garantit leur 

biocompatibilité à pH neutre ainsi que la libération efficace et rapide de leur cargo à pH acide. La 

compatibilité avec les vésicules hybrides polymère/lipide ouvre de nouvelles applications au 

niveau de vésicules biomimétiques et l'administration de médicaments. 

Mots-clés : lipides bascules cationiques, nanoparticules lipidiques bascules, siRNA ciblant la 

survivine, rétinoblastome, vésicules géantes unilamellaires, vésicules géantes hybrides 

polymère/lipide unilamellaires, vesicules pH-sensibles 

 



 

Abstract 

Cationic switchable lipids belong to the class of stimuli-responsive materials. When incorporated 

in lipid nanoparticles (LNP), switchable LNP promote pH-triggered delivery of payload based on a 

molecular switch mechanism. Previous studies have demonstrated that switchable LNP 

successfully delivered small interferring RNA (siRNA) in vitro and in vivo, promoting the silencing 

of a reporter Green Fluorescencen Protein (GFP) protein and liver-produced factor VII, 

respectively. Dual delivery of micro RNA (miRNA) and anticancer agent melphalan was also 

achieved through switchable LNP in a retinoblastoma rat model. These promising results 

encouraged us to enlarge the applications of switchable LNP as siRNA carrier. Moreover, the 

mechanism whereby switchable LNP mediate acid-triggered membrane destabilization and, thus, 

payload release remains elusive. Understanding this mechanism is crucial to draw the advantages 

and limitations of switchable LNP, and to tailor their future applications and prevent their 

potential toxicity. 

In this dissertation, we aimed to further understand the potential of switchable LNP for cancer 

treatment. We assessed switchable LNP as a siRNA delivery carrier by targeting one of the most 

specific cancer protein discovered to date, survivin. Meanwhile, we investigated the biophysical 

behavior of switchable-lipid containing membranes in micron-sized vesicles. 

In the first study, we demonstrated that switchable LNP efficiently silenced survivin in a range of 

cancer cell line models (lung, cervical, ovary, breast, colon, retinoblastoma). In retinoblastoma 

(RB) cells (Y79), several clinically used cytotoxic agents were screened for their synergy with 

survivin silencing: melphalan, topotecan, Teniposide, and carboplatin. Pretreatment with LNP 

loaded with siRNA targeted against survivin synergistically enhanced the cytotoxicity of 

carboplatin and melphalan but in lesser extent topotecan and teniposide. This effect was specific 

to cancer cells since healthy cells (ARPE.19) did not express survivin. Survivin inhibition through 

siRNA silencing revealed more specific and less damageable for healthy cells (ARPE.19) than a 

molecular approach, such as YM155. 
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In the second study, we observed by confocal microscopy that switchable lipids rapidly induced 

stress, fission, and positive curvature in giant unilamellar vesicles’ membranes when submitted 

to acidic conditions. The membrane dynamics was confirmed by dynamic light scattering and 

calcein leakage experiments. Remarkably, these phenomena were also observed when 

switchable lipids were embedded into a hybrid polymer/lipid membrane, providing pH-sensitive 

properties to hybrid vesicles. To the best of our knowledge, this is the first time a pH-sensitive 

hybrid vesicle is reported.   

Our findings corroborate with the applicability of switchable LNP as siRNA delivery agents for 

cancer treatment through survivin silencing, especially as an adjuvant to chemotherapy. The 

biophysical investigation revealed that the switchable lipids act on the membrane fluidity, 

specifically at acidic pH. This pH selectivity guarantees their biocompatibility at neutral pH as well 

as its efficient and quick release of their cargo at acidic pH.  Their compatibility with hybrid 

polymer/lipid vesicles opens new applications in biomimetic vesicles and drug delivery. 

Keywords : cationic switchable lipid, switchable lipid nanoparticle, survivin-targeted siRNA, 

retinoblastoma, giant unilamellar vesicles, giant hybrid polymer/lipid unilamellar vesicles, pH-

sensitive vesicles. 
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Chapter 1 – Introduction 

1.1. Cancer 

1.1.1 History and definition 

A swelling mass accompanied by a grieving prognosis, for which no treatment was available. That 

might have been the first-ever recorded description of the group of diseases currently named 

cancer (1). It belongs to the Edwin Smith Papyrus dating back to 3000 BC, and the Egyptians might 

have encountered cancer many times throughout their history, making their medical records a 

valuable source of understanding that cancer is a long-lived unwanted brother in human history 

(2). It was not before Hippocrates (460-370 BC), however, that the word cancer started being 

fashioned, but it belongs to the Roman physician Galen (130-200 AD) the first register of the term 

onkos, that later coined the scientific field dedicated to the study of cancer: oncology.  

The World Health Organization (WHO) classifies cancer as the second leading cause of death 

worldwide (3). In 2018, 18.1 million people were estimated to be diagnosed with cancer, while 

9.6 million were expected to have died from the same disease (4). Interestingly, for the same 

year, the global incidence is higher than mortality in all WHO world regions’, but in Africa and 

Asia, where incidence shares were estimated to be 5.8% and 48.4%, while mortality reached 7.3% 

and 57.3%, respectively (5). Multiple factors can contribute to high mortality statistics, but the 

economy plays an important role in cancers’ fate. Late diagnosis, difficult access to health care, 

non-compliance with drug therapy and high rates of relapse are a few examples shared among 

low- and middle-income countries that deeply impact cancer’s prognosis and cure (6, 7). Such 

problematic becomes more evident when analyzing the statistics for pediatric cancers, which 

reaches 80% of cure in high-income countries, but drops to 20% in low- and middle- income ones 

(7). One specific type of pediatric cancer has its prognosis deeply affected by the country it is 

diagnosed: retinoblastoma. The implication of a late diagnosis on Retinoblastoma’s progression 

and treatment will be further discussed in this chapter (in section 1.1.1). 
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A normal cell evolves progressively towards a malignant state through the acquisition of 

mutations on specific pathways that provides adaptative traits to the cancer cell. In 2011, 

Hanahan and Weinberg  (8)  proposed the Hallmarks of Cancer, categorizing the acquired 

mutations by tumors during the neoplastic development. Dividing the complex tumorigenesis 

process into key altered pathways enabled researchers to exploit tumor’s characteristics by 

looking for vulnerabilities and specificities within the hallmarks that could differentiate malignant 

cells from healthy ones and, thus, allowing us to propose more efficient and tailored therapies 

(Figure 1). 

 

Figure 1. –  The Hallmarks of Cancer and tailored startegies proposed (8).   

1.1.2. Chemotherapeutic strategies 

The debut of chemotherapy is attributed to the weaponry development during wartime when 

researchers linked the cytotoxicity of analogs of sulfur mustards to the proliferative state of the 
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targeted tissue (9). The leading study fostered the introduction of a series of alkylating agents 

into medical practice, some of which are still in use today, as melphalan (10, 11). Around the same 

time, Farber & Diamond (12) published the clinical success of aminopterin in treating acute 

leukemia in children, giving birth to another class of chemotherapeutics: the antimetabolites (13). 

By then, neither Farber nor Gillman were aware they have taken advantage of one of the 

hallmarks of cancer (sustained proliferative signaling, Figure 1), but the wave of compounds 

followed by their discovery have significantly killed cancer halting the vital activated tumor 

intracellular machinery that enables replicative immortality. Researchers have long envisaged a 

universal therapy that specifically targeted cancer cells and cancer cells only. The utopic idea of 

the magic bullet proposed by Paul Ehrlich (14) nearly thrived with the advent of first targeted 

therapy in cancer research. Herceptin was the first FDA-approved monoclonal antibody against 

solid cancer that selectively targeted the HER2/neu surface receptor enriched in cancer cells, but 

not in healthy ones, a biomarker-driven drug discovery that halted the sustained proliferative 

signaling (Figure 1).  

In 2003, the genomic era flourished with the terminus of the Human Genome Project and 

alongside it came the improvement of sequencing and genomic techniques, which enabled 

researchers to understand molecular events that define cancer at a personalized level, as well 

finding targets that are specifically activated and expressed by malignant cells. A valuable 

resource that emerged in the genomic era was the small interfering RNA (siRNA) technology. The 

Nobel prize-winning discovery (15) allowed scientists to interrogate virtually any target within the 

cell to understand or block key components of the hallmarks that might not be spatially available 

for antibody targeting or harbor a catalytic site for small molecule inhibition.  

1.1.3. Retinoblastoma 

In 1872, Hilário de Gouvêia, a Brazilian ophthalmologist practicing in Rio de Janeiro, identified 

retinoblastoma (RB) in a young boy and removed the eye surgically. Years later, the now-grown-

man married a healthy woman and two of their offspring were diagnosed by Dr. Gouvêia with 

bilateral RB (16). Although largely obliviated by the scientific community, Dr. Gouvêia pioneer 

identification of a familiar case of RB laid ground to the “Two-hit-hypothesis” proposed by 
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Knudson in 1971, who explained that two consecutive mutations, either one inherited or both 

acquired somatically, are necessary to trigger retinal tumorigenesis (17). Knudson theory was 

validated after the identification of the tumor suppressor Rb1 gene in the chromosome 13, a 

sequence that was inactivated in all patient-derived RB samples (18). Now, a multi-hit hypothesis 

is commonly accepted for the tumorigenesis process (19). In RB, the Rb1 gene inactivation is a 

tumor-driven trigger during the maturation of cone-precursor cells that culminates in a malignant 

state after further genetic and epigenetic alterations (20) (Figure 2).  
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Figure 2. –  Genetic causes of RB1-associated retinoblastoma. Adapted from (20) 

Heritable cases of RB are characterized by a constitutive RB1 mutation (Mutation 1, M1). A second 

hit (M2) is somatically acquired in a susceptible retinal cell. In non-heritable cases, the two 

mutations occur somatically in the same retinal cell. A benign retinoma evolves towards a malign 

state (retinoblastoma, RB) through a third (M3) or more (Mn) genetic or epigenetic alterations. 
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Although not presented in Figure 2,  a third rare genetic subtype of RB is known. It is characterized 

by the presence of wild-type RB1 and amplification of the MYCN oncogene (RB1+/+ MYCNA). 

RB remains a rare type of cancer with an overall 8000 new cases per year worldwide (20). It is the 

most common intraocular cancer in children, being responsible for 3% of all cases of childhood 

malignancies. The overall survival (OS) of RB varies considerably according to the economic 

development of the region it is diagnosed in. Whereas the OS is higher than 95% in high-income 

countries (21, 22), the OS is lower than 40% in low-income ones (23, 24). Difficult access to 

healthcare, unavailability of clinical resources and, thus, late diagnosis and treatment, 

enucleation denial by the family and incompliance to chemotherapy are a few examples 

underlying such discrepancy (20). To tackle the difference, international engagement to promote 

awareness and collaboration between countries are playing an important role to fight RB in 

economically undeveloped regions of the globe (25, 26). 

The International Classification of Intraocular Retinoblastoma (IIRC) categorizes RB in 6 stages, 

from a 0 phase, where no disease is detected, to stage A through E, corresponding to a minor 

tumor with less than 3 mm to a more severe case with diffuse vitreous seeds and potential 

extraocular invasion, respectively. As later the diagnosis, the worse the prognosis is, once the 

tumor tends to migrate back through the optic nerve to colonize the brain, when it becomes 

incurable. Therefore, RB staging is crucial to determine the clinical protocol. Clinical management 

of RB takes into consideration the probability of survival of the patient, salvage of the eye, vision 

preservation and reducing secondary tumors (Figure 3).  
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Figure 3. –  Retinoblastoma classification according to the IIRC and recommended therapeutic 

interventions (27). 

RB treatment could be classified in chemotherapy (either systemic or locally delivered), focal 

therapy and enucleation (27-29). 

• Systemic, or intravenous, chemotherapy (IVC) is usually a combination of 2 to 3 drugs with 

different mechanisms of action. Standard drugs include alkylating agents (carboplatin, 

cisplatin), topoisomerase II inhibitors (etoposide, topotecan, and teniposide) and vinka 

alkaloids (vincristine). A major drawback in IVC is the reduced drug bioavailability in the 

vitreous due to the blood-retina barrier. As a result, IVC by itself rarely eradicates the 

tumor, being commonly combined with focal therapies.  

• Local administration includes intra-arterial (IAC), intravitreal or periocular chemotherapy. 

IAC has been successfully applied for the initial stages of RB. For stages D and E, IAC can 

be combined with IVC. IAC requires highly skilled physicians at dedicated cancer centers, 

which are not usually available in developing countries. Intervention is made through a 

micro-catheter through the femoral artery up to the ophthalmic artery of the affected eye 

where melphalan, a mustard alkylating agent, is delivered. A drug combination is also 

preferred if extensive vitreous seeds are present. Intravitreal chemotherapy is the chosen 
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intervention for advanced stages with extensive vitreous seeds unresponsive to IVC or IAC, 

as it bypasses the drug delivery challenge of nonvascularized vitreous. Melphalan can be 

solely injected or in combination with topotecan. Special concern is given during needle 

withdrawal. It’s important to seal the site of injection with cryotherapy as the tumor could 

migrate through needle track after the intervention. Finally, the periocular injection of 

either carboplatin or topotecan allows rapid and high vitreous concentration. It can be 

used to control retinoblastoma or as an adjuvant of IVC for advanced stages of RB with 

the presence of vitreous seeds.  

• Focal therapy is the primary treatment for initial stages of retinoblastoma and englobes 

laser therapy, cryotherapy, and plaque radiotherapy. Laser therapy is designed to either 

cytotoxically heat the tumor directly using an 810-nm diode laser (thermotherapy) or a 

510-nm argon laser to coagulate blood vessels that supply the tumor (laser 

photocoagulation). Cryotherapy uses a metal probe cooled to very low temperatures to 

freeze and kill small tumors. Plaque radiotherapy consists of implementing a radiative 

robe, usually Iodine-125 and ruthenium-106, to deliver ionizing radiation to small tumors 

over 4-7 days. 

• Enucleation remains the ultimate and most effective intervention for advanced stages of 

RB (group E). It is the first-line treatment in non-familiar cases of RB, as the disease is 

usually identified at later stages.  

1.2. Survivin 

1.2.1. Definition 

Baculoviral IAP repeat-containing protein 5, commonly known as survivin, is the smallest member 

of the inhibitors of apoptosis protein family (IAP). Survivin is a multitask protein implicated in 

proliferation and cell cycle progression (30), angiogenesis (31), DNA repair (32), cancer 

invasiveness and stemness properties (33) and mediates resistance to chemotherapeutics by 

inhibiting both extrinsic and intrinsic apoptosis signaling (34) through a complex mechanism yet 

to be fully elucidated. Possessing such a vast network of interaction, survivin’s nodal function can 

be viewed as two-fold: (i) a key role in cell division (mediating microtubule dynamics and their 



35 

attachment to the centrosomes – kinetochore survivin) and (ii) cell death and genomic fidelity 

regulator (Figure 4). 

 

Figure 4. –  Connectivity links between the survivin cell division and cell death networks. The 

functions of survivin intersect with mechanisms of cell division control, genomic fidelity, mitotic 

spindle assembly, subcellular trafficking, checkpoint regulation and apoptosis (35). CHK2 ; XIAP, 

X-linked inhibitor of apoptosis protein; PKA, protein kinase A;  CDK1, cyclindependent kinase 1; 

HSP90, heat shock protein 90; MCAK, mitotic centromere-associated kinesin; TD60, telophase 

disk protein of 60 kD; MEN, mitotic exit network; SGO2, shugoshin 2; CRM1, chromosome region 

maintenance protein 1; INCENP, inner centromere protein antigens. 

There is a large room for debate about survivin’s importance in cellular homeostasis. Although 

one may categorize its function at two levels as described above (Figure 4), we should not rule 

out that many of the survivin’s pathways could be connected, demanding a holistic or systems 
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biology interpretation of its cellular role. Such a nodal protein implicated in key cellular pathways 

became an obvious target for scientific investigation, especially in cancer, where it is abnormally 

overexpressed (36).  

1.2.2. Survivin and cancer 

Since its discovery (37), survivin has puzzled cancer biologists: it is extensively expressed in 

embryonic development, silenced in most healthy adult differentiated cells, but it rises again at 

the malignancy stage. Survivin is deeply implicated in cancer resistance to chemotherapeutics, 

radiation, and usually associated with poor patient prognosis in colorectal (38), breast (39) and 

bladder cancer (40), as human gliomas (41), melanoma (42) and retinoblastoma (43). Besides, 

survivin has been linked to other hallmarks of cancer beyond its firstly reported ability to confer 

resistance to cell death (Figure 5A). This is why reports involving survivin considerably increased 

in the last 15 years (Figure 5B).  

 

Figure 5. –  Survivin and cancer research. (A) Arrows indicate scientific evidence of survivin and 

the hallmarks of cancer. (B) Number of publications from 1997 to 2019 retrieved from Web of 

Science (Thomson Scientific) using the entry “Survivin” on Title, Abstract or Keyword. Total 
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number of publications: 10.304, as of October 22 of 2019. Left side, a 3D crystallography 

representation of survivin protein (PDB entry: 1E31). 

There is scientific evidence of survivin’s implication on the following hallmarks of cancer: 

resistance to cell death (44); Enabling replicative immortality (here, survivin as key player in cell 

division (45),  which is highly exploited by cancer cells, as well as its possible contribution to 

stemness properties in cancer (46, 47)), were considered as a link to this hallmark); activation of 

metastasis and invasion (48, 49); and inducer of angiogenesis (50).  

Furthermore, survivin was unveiled to be the 4th most expressed transcript in colon, brain, breast 

and lung cancer, and melanoma in comparison to their corresponding normal tissues (36). Not 

surprisingly, many anti-survivin strategies have been pursued in vitro and in vivo with a few fruitful 

approaches reaching clinical trials. It must be noted, however, that targeting survivin isn’t an easy 

strategy. As an intracellular protein, localized in different subcompartments (nucleus, 

mitochondria, and cytosol), one of each possibly contributing to circumvent cell death, and 

lacking a catalytic site for small molecules inhibitors, survivin can easily be considered an 

“undruggable” target (51, 52). Therefore, scientists used to target survivin with: (i) 

immunotherapies that recognize survivin as a tumor-associated antigen (TAA), (ii) agents capable 

of regulating survivin at DNA level repressing its promoter region or (iii) at mRNA precursors.  

1.2.2.1. Immunotherapies  

Survivin emerged as a good candidate for immune-based strategies (53) due to its poor 

expression in healthy adult cells and high expression in cancer cells (37). As a result, multiple 

clinical trials are being carried with Survivin-targeting cytotoxic T lymphocytes (54) and survivin-

directed immunization (55, 56), the later also combined with immune checkpoint blockers 

(NCT03349450). However, caveats to immune-based therapies remain the high cost associated 

to adoptive T cell therapy (57), tumor heterogeneity with regards to TAAs (58) and absence of 

long-lasting efficiency in survivin-directed immunization (59). 

1.2.2.2. Small molecules inhibitors  

The most studied survivin-targeting small molecule is the imidazolium-based compound, YM155. 

The molecule’s mechanism of action was first assumed to be due to inhibition of survivin’s 
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promoter region at the DNA level (60). Later on, it was speculated that YM155 actually induced 

DNA damage and resulted in survivin inhibition in an unspecific fashion (61, 62). Regardless of its 

true pharmacodynamics, YM155 inhibited tumor growth in several cancer models either alone or 

in combination with other anti-cancer strategies both in vitro (63, 64) and in vivo (65-67). YM155 

sensitized human RB cells (Y79) to carboplatin, in vitro and in an orthotopic RB model (68). Finally, 

the molecule gathered enough evidence to move forward towards clinical trials. Although 

encouraging results were reported combining YM155 with CD20-targeting monoclonal antibody 

to treat relapsed aggressive B-cell Non-Hodgkin lymphoma (69), only modest efficacy or failure 

to achieve primary endpoints were reported in other trials (70-73). No clinical trial is currently 

active to investigate YM155 as an interventional drug to treat cancer (clinicaltrials.gov as of 

October 23 of 2019).   

1.2.2.3. mRNA targeting strategies 

Another strategy to circumvent the undruggable survivin protein is to repress its expression by 

cleaving the mRNA precursor. Ribozymes are enzymatic RNAs capable of recognizing an mRNA 

target and cleaving it, impairing protein translation (74). Survivin-targeted ribozymes sensitized 

prostate cancer (75), lung adenocarcinoma (A549) (76) and breast cancer cells (MCF7) (77) to 

etoposide, and head and neck squamous cell carcinomas to etoposide and carboplatin (78). 

Although interesting results were achieved in vitro, no survivin-targeting ribozyme-based strategy 

was further developed in vivo. 

A second survivin mRNA-targeted strategy is antisense oligonucleotides (ASO). ASO are a single 

RNA or DNA strand complementary to a target mRNA sequence. ASO may exert their repressive 

effect by recruiting enzymes to cleave the ASO-mRNA complex, modulating mRNA splicing or 

steric blocking of ribosome-mediated translation (79). LY2181308 is an ASO against survivin that 

demonstrated good human tolerability (80), tumor bioaccumulation, evident survivin silencing 

and restored tumor apoptosis signaling (81) in a phase I human trial, but failed to achieve its 

primary endpoint at a subsequent trial in combination with docetaxel (82, 83).  No clinical trial is 

currently active using LY2181308 as an anti-survivin strategy (clinicaltrials.gov). 



39 

Finally, small interfering RNA (siRNA) has been used as anti-survivin strategies. siRNA is a double-

stranded RNA that, when incorporated into the cells, activates the well-conserved naturally 

occurring RNAi mechanism to mediate mRNA cleavage and protein silencing (84). Mechanistically, 

once inside the cell, the double-stranded siRNA is incorporated into the RNA-induced silencing 

complex (RISC) which unwinds and cleaves the sense strand through the argonaute 2 (AGO2) 

enzyme-containing within the RISC. The antisense strand remains in the RISC and the now active 

RISC-antisense strand complex seeks the complementary RNA sequence to mediate mRNA 

suppression (Figure 6). Long double-stranded siRNA follows the same pathway once it is cleaved 

in the cytoplasm into siRNA by the enzyme DICER. The silencing complex is regenerated after each 

mRNA cleavage, being capable of promoting gene silencing for less than a week in rapidly dividing 

cells, but up to 3 weeks in slow dividing ones (85). 

 

Figure 6. –  Mechanism of siRNA-mediated mRNA silencing (86).   
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Survivin-targeting siRNA has demonstrated tumor growth inhibition in patient-derived colorectal 

cancer (87) and glioblastoma (88) xenografts. In retinoblastoma, survivin-targeted siRNA inhibited 

human RB cells (Y79) proliferation, growth and invasiveness, in vitro (89, 90). As an adjuvant 

therapy, siRNA against survivin sensitized SKOV-3 cells to cisplatin (91), synergistically improved 

paclitaxel tumor growth inhibition in breast-cancer bearing mice (92) and reversed Apo2L/TRAIL 

resistance in melanoma cells (93).  

Despite the remarkable success in vitro, siRNA-based therapies face considerable challenges to 

be translated in vivo. Biological barriers naturally evolved to prevent eukaryotic cell infection by 

exogenic nucleic materials. Of many naturally occurring biological barriers that need to be 

surmounted before clinical translation, 3 are primarily addressed during in vitro optimization: 

poor serum stability, low cell penetration due to electrostatic impairment and lysosomal 

degradation of the fraction uptaken by the cell (94). Fortunately, it is possible to circumvent the 

pitfalls that restrain siRNA delivery using viral or non-viral vectors (95). In fact, the latter approach 

has recently been responsible for OnPattro, the first RNAi-based drug to be approved by the FDA 

in 2018 (96), a milestone for gene therapies that shed a hopeful light into the future of gene 

medicines. Lipid nanoparticles (LNP), a non-viral vector approach for gene medicines delivery, as 

taken the siRNA strategy from the bench to the bedside. 

1.3. siRNA delivery 

1.3.1. Challenges and vector rational design 

Gene silencing through siRNA technology has significantly pushed the medical frontier forward. 

Numerous siRNA-based therapeutics are now on clinical trials (97) following the steps of the first 

FDA-approved RNAi-based drug, OnPattro (Patisiran). Considering non-viral vector approaches, 

siRNA could be delivered as lipoplexes or polyplexes, if carried through a lipid or polymer 

formulation, respectively. A first essential step before proposing an optimal carrier to enable 

siRNA delivery is to understand the chemical nature of siRNAs to identify their weakness and 

biologically imposed barriers.  



41 

Structurally, siRNA is a double-stranded RNA, containing ~21-23 base pairs anchored in a ribose 

backbone linked by anionic phosphodiester bonds (Figure 7). The hydroxyl group in the 2’ position 

of ribose moiety renders chemical susceptibility to siRNA, especially to serum nucleases. The 2’ 

position is often used for chemical modification to improve siRNA stability (98).  

 

Figure 7. –  General structure of unmodified siRNA. 

By its structure, it is possible to identify the siRNA as a highly hydrophilic and negatively charged 

macromolecule with susceptible instability against nucleases. The first chemical characteristic 

implies two additional challenges: big macromolecules as siRNAs (i) cannot cross the cell 

membranes due to electrostatic impairment and low lipophilicity (94), and (ii) are rapidly 

eliminated through renal clearance (99). Considering that an intact siRNA reaches the desired cell 

and is internalized, nature imposes yet another challenge; upon endocytosis, the siRNA must 

escape the endosomal compartment before vesicle maturation and eventual lysosomal 

degradation of siRNA (100). Based on these assumptions, a good vector candidate must minimally 

act at 3 levels: (i) complex the siRNA, protect it from nuclease degradation and avoid fast renal 

clearance, (ii) promote cell internalization and (iii) allow endosomal escape and cytosolic delivery 

of intact siRNA. The aforementioned barriers and other physiological challenges to be 

circumvented by siRNA strategies are summarized below (Figure 8). 
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Figure 8. –  Physiological barriers faced by siRNA strategies. (86). The vector carrying the siRNA 

should (a) avoid renal clearance, phagocytosis and protect siRNA from blood stream degradation; 

(b) be transported across endothelial barrier; (c) reach the target site; (d) be taken up into the 

cell; (e) mediate endosomal escape; (f) promote cytosolic delivery of siRNA.   

Being aware of the limitations involved in siRNA delivery, we can now propose a bottom-up 

approach to design an optimal non-viral vector harboring the essential moieties required to 

overcome each challenge.  

1.3.1.1. siRNA Complexation and serum stability  

An ideal candidate for siRNA delivery would be able to closely pack the siRNA, protecting it from 

nuclease degradation. Obvious candidates would take advantage of the negatively charged 

phosphate groups within siRNA backbones. That’s the case of cationic lipids, as 1,2-dioleoyl-3-

trimethylammonium-propane (DOTAP), 3ß - [N-(N0,N0-dimethylaminoethane) - carbamoyl] 
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cholesterol hydrochloride (DC-Chol) and N-[1-(2,3-dioleoyloxy)propyl] - N,N,N-

trimethylammonium chloride (DOTMA), which in combination with other neutral lipids, as 

cholesterol and 1,2-dioleyl-sn-glycerol-3-phosphoethanolamine (DOPE), self-assemble with 

siRNA into lipoplexes for efficient gene delivery in vitro (101-103). The branched cationic polymer 

polyethylenimine (PEI), as its lipids counterpart, also self-assembles with nucleic acids into 

polyplexes (104). However, the resulting positively charged lipo- and polyplexes (nanocomplexes) 

are rapidly coated by negatively charged serum proteins in vivo, halting transfection ability and 

promoting its recognition and cleareance by macrophages (105). An elegant approach to hinder 

the nanocomplexes from reticuloendothelial system-mediated clearance and serum proteins 

adsorption was incorporating polyethylene glycol (PEG)-grafted lipids or polymers can provide to 

nanocomplexes stealth properties due to new hydrophilic surface coating (106). Caution must be 

considered when incorporating PEG-grafted elements into nanovectors since the steric hindrance 

provided by PEG might also prevent endocytosis and endosomal escape of genetic cargo, 

impairing siRNA transfection (107).  

Another strategy to avoid opsonization and fast serum clearance is to eliminate the net positive 

charge of nanocomplexes. Ionizable cationic lipids are able to electrostatically complex siRNA at 

an acidic pH, where amino groups are protonated, but reach neutrality as the pH is graduality 

elevated at physiological values (108). After synthesizing a library of ionizable lipids, Jayaraman 

and coworkers (109) found DLin-MC3-DMA as the leading component with the highest silencing 

efficiency in vitro. The authors unveiled the pKa for ionizable lipids between 6.2 and 6.5 is a critical 

parameter effective hepatocyte gene silencing. Lipid chain length from 10 to 13 carbons was 

another parameter unveiled by combinatorial synthesis reported to influence siRNA efficient 

silencing in vivo (110, 111).  

1.3.1.2. Cell internalization 

The self-assembly of the cationic vector with siRNA at the right proportion (measured as the ratio 

between nitrogen groups per cationic lipid/polymer and phosphate moieties in the siRNA, 

proportion known as the N/P ratio) results in a complex able to electrostatically bind to the 

negatively charged cell membrane if the overall charge of the vector is positive (112, 113). After 

binding, different endocytic pathways could be activated to mediate nanocomplex internalization 
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(Figure 9) (114-116). The mechanisms whereby nanocomplexes enter the cells are still the focus 

of many studies, since it relies on various parameters such as nanoparticles structure, shape, size, 

surface charge, but also the cell type and culture conditions. Nevertheless, a deeper 

understanding of these mechanisms would truly contribute to the rational design of nanovectors 

to gene therapy.  

 

Figure 9. –  Possible pathways of nanoparticles internalization (117). 

1.3.1.3. Endosomal escape  

Once internalized, nanocomplexes must avoid lysosomal degradation. Intriguingly, the majority 

of the cargo and vector is degraded upon endosomal maturation or recycled back to the 

extracellular space (115, 116, 118). Therefore, the nanocomplexes require fusogenic or 

endosomolytic properties to allow endosomal escape and, thus, the release of siRNA within the 

cytosol.  

Cationic lipids are not only able to self-assemble with siRNA into lipoplexes, but also mediate 

endosomal escape through a mechanism known as “ion-pair” theory (119). Once inside the 

endosome, cationic lipids interact with the negatively charged lipids in the inner leaflet of the 

endosomal lumen forming an ion-pair complex, a non-lamellar (HII) structure that mediates 
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endosomal disruption (120). Non-lamellar lipids, like cholesterol and DOPE, known as “helper 

lipids”, facilitate HII transition, thus improving transfection efficiency (119) (Figure 10). 

 

Figure 10. –  Schematic diagram of the ion-pair membrane disruption mechanism mediated by 

cationic lipids (120). Lamellar lipids support bilayer structures whereas cone shape lipids adopt a 

non-bilayer conformation. The structure formed by the electrostatic interaction between cationic 

and anionic lipids (ion-pair) behave as a cone shape lipid, hence adopting an inverted hexagonal 

phase (HII) and disrupting the bilayer structure.  

However, the endosomal destabilization mediated by cationic lipids is far beyond its full efficacy, 

as already demonstrated that only 1-2% of siRNA was released from the endosomal when 

encapsulated in lipid nanoparticles (LNP) containing the gold standard ionizable lipid DLin-MC3-

DMA, cholesterol as helper lipid, DMG-PEG for stealth properties and disteroylphosphatidyl 

choline (DSPC) as membrane structural lipid (116). Therefore, endosomal entrapment is still a 

major barrier that prevents full translation of siRNA therapies mediated by non-viral vectors. 

Researchers have addressed this issue by developing responsive materials to improve endosomal 

escape, thus enhancing cytosolic delivery of siRNA. Adding a pH-responsive material into lipoplex 

composition has shown to promote cytosolic delivery of siRNA and efficient silencing in vivo (121, 

122).  
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Based on these premises, an ideal classical non-viral vector for siRNA delivery would contain at 

least, but not limited to, the following components:    

General:  

• A cationic moiety for siRNA complexation and initial cell-binding; 

• A PEG-grafted component for stealth properties; 

For lipoplexes: 

• A “helper” lipid to ameliorate non-bilayer transition and boost endosomal escape and; 

• A structural lamellar-forming lipid. 

Such a design was employed in the development of OnPattro (Patisiran) formulation, the first 

RNAi-based drug to be approved by the FDA (table 1). 

Lipid component Function 

DLin-MC3-DMA 

• Complexes siRNA at values below pKa 

• Mediates endosome disruption (ion-pair 

complex with negatively charged lipids 

inside the endosome lumen) 

Cholesterol • helper lipid 

DSPC1 • Structural lipid 

DMPG-PEG2 • Provides stealth property 
1DSPC: 1,2-distearoyl-sn-glycero-3-phosphocholine; 2DMPG-PEG: 1,2-dimyristoyl-rac-glycero-3-

methoxypolyethylene glycol-2000  

 OnPattro (Patisiran) composition and role of each lipid component (120). 

Lipid nanoparticles (LNP) are the most advanced non-viral vectors for gene medicines. Therefore, 

we will focus on methods of preparation for LNP, exemplifying in vitro or in vivo approaches of 

siRNA delivery. Next-generation of responsive LNP capable to boosting cytosolic delivery of siRNA 

upon endosomal acidification, pH-sensitive LNP, will also be presented.     
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1.3.2. Methods of preparation for lipid nanoparticles (LNP) 

1.3.2.1. Lipid nanoparticles (LNP) 

Liposomes are defined as spherical structures composed of an aqueous core enclosed by one or 

more lipid bilayers. Initially proposed by Bangham as simplified cell membrane models in the early 

60s (123, 124), the potential of liposomes as drug and gene carriers has significantly advanced 

(94, 120, 125).  

The classic method for designing liposomes to enable siRNA delivery consist of (A) formulating 

cationic liposomes, (B) submitting resulting lipid vesicles to size reduction and homogenization 

and (C) incubation with siRNA to afford LNP (Figure 11).  

A. Pre-formulated liposomes are prepared by hydrating a lipid film. Briefly, the lipids are 

selected based on the rational design of a gene delivery vector as aforementioned 

discussed, and solubilized in an organic solvent, preferentially ethanol to decrease in vivo 

toxicity of traces of organic solvent. In a round bottom flask, the organic solvent is 

evaporated under reduced pressure, forming a thin lipid film, which is then hydrated with 

an aqueous solution of low concentrated buffer or 5 % dextrose solution to maintain 

human osmolarity compatibility (Figure 7A). Hydration of the lipid film will afford 

multilamellar vesicles (MLV). 

B. MLV are subsequently submitted to size reduction by extrusion through polycarbonate 

membranes of defined porosity (Figure 7B). The resulting homogeneous vesicles could be 

classified as small unilamellar liposomes (SUV) if smaller than 100 nm or large unilamellar 

liposomes (LUV) if bigger than 100 nm but smaller than 1000 nm. 

C. SUV or LUV are diluted in dextrose 5% to achieve the desired N/P ratio before combining 

with genetic cargo to afford a complex structure containing a centered aqueous core with 

the genetic cargo complexed between the multilayers of the lipoplex (120, 126)  (Figure 

7C).  

The hydration of the lipid film, extrusion and self-assemble of SUV with genetic material into 

lipoplexes are carried at a temperature above the gel-to-liquid transition (Tm) point for the lipid 

composition. 
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Figure 11. –  Stepwise representation of LNP preparation by combining preformed liposomes 

with siRNA. See the text for details. Big square: left: schematic representation of PEGylated 

lipoplex with siRNA complexed within lipid bilayers; right: cryo-TEM micrograph of cationic 

lipid/siRNA complexes (bis (guanidinium)-tren-cholesterol (BGTC):siRNA) (127). Small boxes 

highlight the siRNA complexed within the bilayers of the lipoplex. *, † and ‡ indicate steps 

performed under heating.      

A second approach consists of an all-in-one fast mixing step of an organic (ethanol) lipid solution 

with an aqueous solution containing the genetic cargo to spontaneously afford lipid 

nanoparticles. The strategy was further optimized with the advent of microfluidic devices for the 

controlled and reproducible mixing process.  
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Briefly, two syringe pumps are oppositely placed, one loaded with an aqueous miscible organic 

solvent containing a mixture of desired lipids, whilst the second contains the genetic cargo 

solubilized in an aqueous solution. Pumps are connected into a mixing Tee, or a microfluidic 

chamber, with an exit tubing towards a sterile container to receive the resulting LNP (Figure 12). 

The lipid and nucleic acid solutions are mixed at a controlled ratio and speed and, as the polarity 

of the system is increased, the lipids spontaneously self-assemble onto the genetic cargo brought 

together by electrostatic interaction (Figure 12A). The inverted micelles containing the genetic 

cargo enclosed at internalized aqueous cores are finally surrounded by PEGylated lipids, which 

maintain the hydrophilic head group orientated towards the exterior aqueous medium (figure 

12B). LNP is dialyzed against low concentration buffer or 5% dextrose to remove the ethanol 

(Figure 12C). 

 

Figure 12. –  Schematic representation of siRNA encapsulated LNP formulated by microfluidics 

technique. (A) represents the interior of the mixing tee chamber. As the polarity is increased, the 

siRNA precipitates at the interior of the newly formed LNP. (B) Left in black and white: schematic 
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representation of LNP. Middle, colored: Molecular representation of LNP. Yellow, cyan and pink 

represent lipids; red is the complexed siRNA, while blue is the PEGylated shell. Right, colored: 

zoom view of the LNP interior. (C) Dialysis against an aqueous solution as the final step to remove 

the solvent. Adapted from (120, 128).   

T tube/microfluidics mixing affords smaller LNP than when prepared by pre-formulate liposomes 

due to all-in-one precipitation of materials at the interior of LNP rather post-complexation of 

siRNA within the multilayers of lipoplexes (Figure 13). 

 

Figure 13. –  Cryogenic transmission electron microscopy (Cryo-TEM) micrographs of extrusion- 

and microfluidics-formulated liposomes. Left: POPC:Cholesterol (1:1 mol/mol) liposomes 

formulated by the extrusion method. Unilamellar liposomes formulated by this method present 

an aqueous core surrounded by a lipid bilayer. Right: Cationic liposomes formulated by 

microfluidics technique (DLinKC2-DMA/DSPC/Chol/PEG-lipid (40/11.5/47.5/1 mol/mol). Adapted 

from (128). 

1.3.2.2. pH-sensitive liposomes  

Stimuli-responsive delivery systems take advantage of early endosomal acidification to promote 

membrane destabilization and fast cytosolic cargo delivery. It is now recognized that optimal lipid 

formulation requires a pH-sensitive component. To this end, numerous pH-sensitive materials, 
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based on polymers, peptides, or hydrolyzable chemical bonds, have been developed. Our 

laboratory previously demonstrated the efficiency of a pH-sensitive liposome based on a  

principle of a molecular switch (129). In this lipid structure, the di(methoxyphenyl)-pyridine is in 

a trans conformation with the pyridine nitrogen (Figure 14A). The protonation of pyridine 

(predicted pKa » 5.28) at a value within the early endosomal pH (∼5–6), triggers the conformation 

change to enable H bonding between di(methoxyphenyl) group and the protonated pyridine 

(Figure 14B). By consequence, the alkyl chains change from a lipid stacking bilayer-favoring 

position to an open bilayer-disfavoring conformation that might destabilize the endosomal 

membrane, promoting siRNA cytosolic delivery (Figure 14C).  

 

Figure 14. –  pH-sensitive lipid undergoes conformation change upon acidification leading to 

switchable LNP destabilization and siRNA delivery. (A) Left: Schematic representation of 

switchable LNP Right: Structural representation of cationic switchable lipid. * is the 

di(methoxyphenyl)-pyridine pH-switchable unit; † site of protonation under acid environment; ‡ 

cationic polar group responsible for complexing the genetic material. (B) protonation-induced 

conformational change of switchable lipid. (C) Schematic representation of the destabilized 

switchable LNP and siRNA delivery upon tweezer-like proton-induced conformational change. 

Adapted from (121).  

The switchable LNP successfully delivered hydrophilic cargo in vitro (130) and it was further 

optimized into a cationic switchable LNP, able to deliver a GFP-targeted siRNA in vitro (Figure 

15A). Three different switchable lipids, CSL1, CSL3 and CSL3 were synthesized on that study. CSL3 

possessed a predicted pKa within the early endosomal pH and constituted the most efficient 
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cationic switchable LNP in the in vitro assay. The transfection ability of CSL3 (from this point on in 

this investigation, one will refer to CSL3 only as CSL) was further evaluated in a proof-of-concept 

in vivo study using the cationic switchable LNP carrying the factor VII-targeted siRNA for hepatic 

targeting (Figure 15B) (121). The specific pH-triggered siRNA delivery through cationic switchable 

LNP was confirmed by the inability of the non-switchable LNP (formulated with compound CSL4) 

in silencing the targeted protein both in vitro and in vitro. CSL4 does not possess the two methoxy 

moieties necessary to initiate pH-triggered intramolecular hydrogen bonding with the protonated 

pyridine, thus preventing conformational switch and LNP destabilization.  

 

Figure 15. –  Cationic switchable LNP efficiently delivered siRNA in vitro and in vivo. (A) GFP In 

vitro knockdown and viability of GFP-HELA cells after GFP-targeted siRNA transfection by cationic 

switchable LNP. (B) In vivo hepatic targeting of cationic switchable LNP carrying factor VII-targeted 

siRNA (121).   

Importantly, the efficient cytosolic delivery of genetic cargo was not impaired by PEGylated 

liposomes formulated by either microfluidics for in vivo siRNA hepatic targeting or, as 

demonstrated recently, by extrusion method for intravitreal delivery of micro RNA (mir-181a) 

(122). In that study, Tabatabaei and coworkers demonstrated that cationic switchable lipid 

prepared with indocarbocyanine dye accumulated within retinoblastoma cell lines as soon as 2 

hours after transfection, with strong internalization visualized 24 hours initial incubation (Figure 

16A). Previously, the same group had attested that the switchable LNP preferentially accumulated 

within RB tumor cells, sparing retinal and adjacent tissues after intravitreal injection in an 

A B
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orthotopic rabbit RB model (Figure 16B) (131). The ability of cationic switchable LNP to 

accumulate within human RB cells (Y79) was reflected by the decreased viability of Y79 cells after 

treatment with mir-181a in vitro (Figure 16C) (122). Mir-181a was previously demonstrated to be 

downregulated in tumors and play a regulatory role during cancer development and progression 

(132). Finally, Tabatabaei and coworkers (122) co-encapsulated the anticancer drug melphalan 

and miR-181a in switchable LNP for a proof-of-concept in vivo study. Intravitreal injection of 

switchable LNP containing both melphalan and miR-181 in an orthotopic RB rat model 

significantly decreased the number of viable cells, as compared with animals treated with either 

melphalan or mir-181a-encapsulated switchable LNP (Figure 15D). 

 

Figure 16. –  Switchable LNP as a transfection vector for retinoblastoma cells (Y79). (A) 

switchable LNP doped with the fluorescent molecule DilC18 accumulates within Y79 cells 24 hours 

of transfection (exposure time 300ms, objective 40X – scale bar is 15 μm). (B) switchable LNP 
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doped with DilC18 preferentially accumulates in tumor cells after intravitreous injection in an 

orthotopic RB rabbit model xenografted with Y79 cells. (C) 25 and 50 nM of mir-181a transfected 

by cationic switchable LNP impairs Y79 cells viability 48 horus after initial incubation. (D) 

intravitreous injection of melphalan and mir-181a coencapsulated in cationic switchable LNP 

significantly affected retinoblastoma cells in vivo as expressed by the ratio of live cells between 

treated and untreated cells (122, 131).   

1.4. Hybrid polymer/lipid vesicles 

1.4.1. Polymersomes: definitions and structure 

Liposomes are the simplest analog model of a cell membrane, consisting of a controllable cell-like 

synthetic approach to investigate the complexity of living cells. Although liposomes benefit from 

the resemblance with the naturally occurring bilayers, especially their biocompatibility when 

formulated with phospholipids, the lipid vesicles lack stability, possess limited chemical 

functionally and are relatively permeable (133).  

To overcome liposomes’ limitations, a new class of cell membrane’s analog has been proposed: 

polymersomes. Polymersomes are composed of amphiphilic block copolymers capable of self-

assemble into a vesicle when in an aqueous solution (133). Unlike the hard-polymeric core 

nanoparticles covered so far, polymersomes consist of an aqueous hollow core surrounded by an 

amphiphilic polymeric shell (Figure 17). 
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Figure 17. –  Graphic representation of a liposome and a polymersome. Adapted from (133). 

The advantages of polymersomes over their lipidic counterparts are their increased stability and 

high versatility of chemical functionalities. Furthermore, polymersomes are generally less leaky 

than liposomes due to a lower lateral molecule diffusion and higher molecular weight of their 

building block copolymers. In such structures, the release of encapsulated content occurs only 

through passive diffusion across the vesicle membrane (134). Nevertheless, given the feasibility 

and versatility of polymer chemistry, it is possible to tune polymersomes’ membrane parameters 

and permeability (135). For example, polymersomes based on poly(dimethylsiloxane)-graft-

poly(ethylene oxide) (PDMS-g-PEO) possess high fluidity and self-assemble into a vesicular 

structure with a membrane thickness of 5 nm, close to a typical lipid bilayer (136). Moreover, 

chemical modifications on amphiphilic block copolymers allow the design of “smart” 

polymersomes that are envisaged as nanocarriers to deliver payloads at specific locations and/or 

under certain microenvironments (137) or as nanoreactors (138). 
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Despite the physicochemical advantages of polymersomes over liposomes, the former is based 

on synthetic made amphiphilic copolymers, whilst the latter is made of phospholipids structurally 

related to biocomponents of cell membranes. In order to overcome the limited biocompatibility 

of polymersomes, efforts are being made to use biodegradable (139) and/or biosourced (140) 

copolymers. In addition, doping lipids into the polymeric membrane has been envisaged as an 

interesting strategy to provide biomimetic functions for those vesicles. Such a design affords 

structures known as hybrid polymer/lipid vesicles.  

1.4.2. Hybrid polymer/lipid vesicles: definition, preparation and recent 

developments 

Hybrid polymer/lipid system consists of amphiphilic block copolymers and lipids combined in a 

new single hybrid membrane vesicle (134) (Figure 18). The hybrid design merges the stability and 

chemical versatility of polymersomes with the biocompatibility of naturally occurring 

phospholipids. The modulation of nature and proportion between amphiphilic block co-polymers 

and lipids allows fine-tuning modification of membrane properties, a useful resource to study 

membrane-like cells (141) or envision novel drug delivery systems.  

 

Figure 18. –  Fluorescence microscopy observation of pure giant liposomes (POPC, red), 

polymersomes (PB-PEO, green) and hybrid polymer/lipid vesicles (Hybrids, merged color, 

composed of 70:30 % mol PB-PEO:POPC) (142). 
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It is important to note that critical parameters govern the structure of hybrid polymer/lipid 

vesicles. The balance between the hydrophobic length of the amphiphilic block copolymer and 

the hydrophobic tail of the lipid (hydrophobic mismatch), the temperature of the gel-to-liquid 

phase transition of lipidic components and the ratio between polymers and lipids are parameters 

that deeply influence hybrid membrane organization (133, 134, 143). Modulation of those 

parameters might lead to a homogeneous hybrid membrane (Figure 19A), the presence of lipid 

nanodomains (Figure 19B) or budding and eventual segregation of the hybrid vesicle into pure 

liposomes and polymersomes (Figure 19C). 

 

Figure 19. –  Graphical representation of possible hybrid membrane phase arrangements (133). 

Research carried by Chemin and coworkers (144) and the implications thereof, further reviewed 

by Le Meins and coworkers (134), provided a well-accepted understanding of the parameters 

governing the spatial disposition of lipids and polymers within a hybrid vesicle. Considering a 

above micron hybrid system composed of PDMS-g-PEO, which naturally self-assembles into 

polymersomes with approximately 5 nm membrane thickness, close to liposomes’ thickness 

(133), the hybrid membrane arrangement relies on the molar proportion between the polymer 

and lipids and the thermodynamic phase of the phospholipids (Figure 20). For instance, a 

hypothetical hybrid polymer/lipid composed of amphiphilic diblock PDMS-g-PEO and the 

phospholipid POPC, which is the liquid state at room temperature, will present a homogeneous 

membrane at lipid content up to 60% (Figure 20). Molar amounts higher than this threshold will 

lead to lipid/polymer demixing, budding and eventual fission originating pure liposomes and 

polymersomes.       

Homogeneous hybrid vesicle Vesicle with subdomains Vesicle budding leads to fission to afford 
individual liposome and polymersome

A B C
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Figure 20. –  Different membrane arrangements of a hybrid vesicle with regard to molar 

proportion between the polymer and lipid content and the thermodynamic phase of the 

phospholipid.  Adapted from (134).  

The applications of hybrid vesicles are still in their infancy. But it is fairly accepted that blending 

amphiphilic block copolymers and lipids into a single membrane gives rise to a new structure with 

advantages of both isolated polymeric and lipidic vesicles. It is, hence, of utmost importance to 

understand the parameters that rule the self-assembly of a hybrid vesicle in order to precisely 

modulate its membrane properties to reach the desired application. The fine control of the hybrid 

membrane would allow researchers to interrogate complex biological processes using a simple 

analog vesicle. For example, the formulation of lipid rafts-bioinspired hybrid vesicle containing a 

lipid reservoirs would help clarify processes governed by those lipid microdomains that naturally 

occur in living cells, such as virus uptake (145), signaling (146) trafficking (147) and other biological 

events (148). At the pharmaceutical level, the polymeric feature adds stiffness to the pure lipidic 

membranes to circumvent liposomes’ low stability in circulation. Such a robust vehicle would be 

desired for the development of drug carriers resistant to the strong osmotic pressure and high 

flow shear present in the in vivo environment.  

Lipid content (% mol)
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Cautious consideration of preliminary data sheds the first light on the application of hybrid 

polymer/lipid vesicles. Hybrid vesicles composed of poly(ethylene oxide)-block-polybutadiene 

copolymer (PEO-PBD) and hydrogenated soy phosphatidylcholine (HSPC) at 75:25 molar ratio 

were not significantly toxic to human fibroblast NIH 3T3 in vitro up to 200 μM of polymeric 

content (Figure 21A). Furthermore, HER2/neu-targeted hybrid vesicles, at the same molar ratio, 

significantly accumulated at the tumor site in T6–17 tumor-bearing mice 24 h post injection when 

compared to pure HER2/neu-targeted polymeric vesicles (Figure 21B) (149). The authors did not 

precise the spatial disposition of the components within the hybrid membrane.   

 

Figure 21. –  In vitro toxicity (A) and in vivo targeting (B) of HER2/neu-targeted hybrid vesicles. 

Arrow indicates tumor site. Adapted from (149).  

Similarly, Khan and coworkers (150) introduced a hybrid polymer/lipid nanovesicle composed of 

an amphiphilic diblock copolymer containing the FDA-approved PEG and biodegradable 

polycaprolactone (PCL) (PEG-PCL) and the biocompatible POPC as a promising drug carrier. The 

tunable hybrid vesicle had better incorporation of a small hydrophilic molecule when compared 

to the pure polymersome and decreased the burst release observed in pure liposomes. 

In the context of cell biomimicry, the ability to modulate the composition and self-assembly of 

the polymer/lipid membrane turns the hybrid vesicles into a prospect attractive tool to 

interrogate biological processes. For example, phospholipids are unevenly distributed between 

the cell membrane’s outer and inner leaflets (151). This biological event is not fully understood 

but conversely important, as lipids asymmetry mediates important biological events, as cell death 
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marker activation when phosphatidylserine asymmetrically accumulates at the outer leaflet 

(152).  

Hybrid polymer/lipid vesicles might help cell biologists to better understand this phenomenon.  

Recently, Peyret and coworkers (153) proposed a versatile and easy approach to formulate 

asymmetric hybrid polymer/lipid vesicles containing POPC at the outer leaflet, whilst 

poly(butadiene)-b-poly(ethylene oxide) (PBut-b-PEO) formed the inner polymeric shell (Figure 

22). Interestingly, the asymmetric hybrid vesicle presented phospholipid’s lateral diffusion at 

values in agreement to ones found for lipids in biological cells, giving further support to hybrid 

vesicles as analog models for cell-like studies.    

 

Figure 22. –  Illustrative representation of the preparation of asymmetric giant hybrid vesicles 

containing an outer lipid layer and an inner amphiphilic diblock copolymer shell surrounding an 

aqueous nucleus core.  Adapted from (153).   

1.4.3. Methods of preparation for hybrid polymer/lipid vesicles 

Liposomes, polymersomes or hybrid polymer/lipid vesicles can be formulated above the micron 

scale (> 1 μm) to generate giant vesicles (Figure 23). The supramolecular structures might help to 

visually interrogate the behavior of stimuli-responsive components in bio-inspired environments, 

such as the acidified endosome. Such measurement can be highly interesting to understand the 

mechanism whereby lipids or polymers act inside cell compartments when formulated at 

nanoscale size for pharmaceutical applications, as gene vectors.  
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Figure 23. –  Liposomes and polymersomes can be formulated at giant scale (higher than 1 μm). 

SUV: small unilamellar vesicles (< 100nm); LUV: large unilamellar vesicles (100 nm < LUV < 1000 

nm); GUV: giant unilamellar vesicles (GUV > 1000 nm). Adapted from (133).    

The preparation of giant hybrid polymer/lipid unilamellar vesicles is usually performed using two 

different techniques: the natural swelling or the electroformation methods. Either one could 

equally be used to prepare giant liposomes or polymersomes (154). 

The natural swelling method is the simplest and practical technique for both multilamellar and 

unilamellar giant vesicles (154). It can be carried out for the preparation of giant vesicles with 

charged lipids (155). The method is similar to the one presented earlier for the preparation of 

liposomes, except that the hydration of the hybrid film is mandatorily executed overnight without 

any agitation.  

The electroformation method is the most widely used method to prepare giant vesicles, and was 

proposed in 1986 (156). The principle of the method relies on the hydration of the lipid film by an 

external electric field (AC) (Figure 24). The method is successfully applied to the formation of giant 

vesicles with uncharged lipids or cationic charged lipids with slight modifications (157). 

SUV LUV GUV

Liposomes Polymersomes
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Briefly, a stock organic solution of polymer, lipid or a mixture of both is deposited over two indium 

tin oxide (ITO) coated glasses oppositely attached by an O-ring, the electroformation chamber. 

The electroformation chamber is further dried under reduced pressure for at least two hours. 

Afterward, both ITO glasses are connected to an AC generator (2 V, 10 Hz) and filled with a sucrose 

100 mM solution. After 45 minutes, lipid or polymer GUV, or GHUV are harvested with aid of a 

21-gauge needle and dispensed into a clean tube. GUV prepared using the electroformation 

method are normally unilamellar and are ready for visualization and/or further testing under 

confocal microscopy. The internalized sucrose solution is important when vesicles are deposited 

into a glucose solution-containing chamber. The density difference allows vesicles to sediment at 

the bottom of the observation chamber and provides a higher contrast between the inner and 

outer media, facilitating visualization (154).  

 

Figure 24. –  Schematic representation of Giant Unilamellar Vesicles (GUV) formed by the 

electroformation method.  Adapted from (156, 158).  

1.4.4. pH-sensitive hybrid vesicles: an opportunity for pH-sensitive lipids 

Tuning the characteristics of the hybrid polymer/lipid membrane is achievable by balancing the 

nature and proportion between the amphiphilic components (134). To further boost the 

applicability of hybrid vesicles, it is of all interest to design responsive vesicles by adding stimuli-

triggered components to the membrane composition, such as pH-sensitive lipids (130).  

Several pathologies develop an acidic microenvironment as a natural physiological response. In 

cancer, the extracellular matrix is acidified (159). Moreover, specific cellular subcompartments, 
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as the ones involved in the endocytic pathway, are also marked by lower pH values (160). 

Exploiting this distinguishing feature by envisaging “smart” vesicles capable of a specific response 

to pH stimuli can have a wide range of applications, such as drug delivery systems (161, 162).  

Polymersomes hold promises as drug carriers, since they are more stable, robust and retain 

encapsulated cargo to a better extent than liposomes. Due to the versatility of polymer chemistry, 

pH-responsive polymers are easily designed. A few examples of pH-responsive polymersomes 

were developed (163, 164). Both investigations encapsulated doxorubicin hydrochloride within 

polymersomes core. However, a system that allowed the fast pH-triggered release of the payload 

was not achieved since half of the drug amount was released at pH 5 after 24 hours of incubation 

in the two investigations.  

Zong et al. (165) developed a responsive hybrid vesicle based on tertiary amine methacrylate-

based block copolymers blended with phospholipids in a 70:30 weight proportion. Phospholipids 

consisted of a mix of neutral lipid POPC and the cationic 1-palmitoyl-2-oleoyl-sn-glycero-3-

ethylphosphocholine (POEPC). The authors observed that 200 nm-extruded hybrid vesicles were 

readily taken up by cells and, by tracking lysosomes inside the cells, they observed that the 

vesicles did not fully colocalize with lysosomal compartments, suggesting that hybrid vesicles 

promoted lysosomal escape (Figure 25). However, more data is needed in order to confirm a pH-

mediated lysosomal escape mechanism and investigate the lipid spatial distribution in the 

blended membrane.   

 

Figure 25. –  Confocal observation of extruded hybrid polymer/lipid vesicles composed of 

cholesteryl Methacrylate (pCMA)-block-poly(2-(dimethylamino)-ethyl Methacrylate) blended 

with POPC and the cationic lipid POEPC (7:2:1 % wt). Hybrid vesicles were incubated for 1.5 h with 
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RAW 264.7 macrophages cells before visual distribution of particles within the cell. Red: 

lysoTracker Red DND-99-stained lysosomes. Green: NBD-tagged polymer. PCC: Pearson 

correlation coefficient; 1 for perfect correlation and 0 for perfect no correlation. Adapted from 

(165).  

Therefore, tuning polymersome membrane’s properties by doping pH-sensitive lipids to generate 

smart hybrid polymer/lipid vesicles becomes an opportunity to maintain the stiffness and 

robustness related to polymersomes at physiological pH, but responsive membrane properties at 

acidic environments. So far, no pH-sensitive hybrid vesicle based on a stimuli-responsive lipid was 

reported in the literature.  

1.5. Project presentation 

1.5.1. Research hypothesis 

This project aims at developing further the applications of switchable lipids for drug and gene 

delivery, while investigating further its biophysical pH-responsive mechanism at both nano and 

micro scale. We believe that a deeper understanding of the behavior of the system will help 

defining its avantages and limitations, thereby guiding the potential applications. More precisely, 

at the nanoscale, we aim to apply switchable LNP to deliver survivin-targeted siRNA in vitro in a 

range of cancer cells and evaluate its synergy with chemotherapeutics using a retinoblastoma 

model in vitro. At the microscale, we aim to visually interrogate the influence of the pH-triggered 

conformational change of switchable lipid when formulated in a lipid or a blended polymer/lipid 

membrane.    

Our general objective is supported by the following points gathered after the literature review:  

(I) Scientific evidence has shown that cationic switchable lipid (Figure 13) is a promising 

building block to design pH-sensitive lipid nanoparticles (LNP). The pH-induced 

conformational change of switchable lipid enabled endosomal escape and cytosolic 

delivery of encapsulated siRNA in vitro and in vivo (121);   
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(II) Switchable LNP preferentially targeted retinoblastoma tumor cells (Y79) after 

intravitreous injection (Figure 15), mediating miRNA delivery in an orthotopic human 

RB rat model (122);  

(III) Survivin stands as a cancer-specific target deeply implicated in tumors progression and 

resistance to cell death (Figure 5), but survivin-tailored strategies failed to reach the 

clinics when engaged as monotherapy (51).  

Furthermore, the mechanism whereby the pH-triggered conformational change of switchable 

lipids mediates membrane destabilization and cargo release remains to be elucidated. To this 

end, we assume that: 

(IV) Giant Unilamellar Vesicles are a resourceful tool to visually investigate membranes 

response face to external stimulus (133); 

(V) Hybrid polymer/lipid unilamellar vesicle combines the advantages of its two 

forerunners, liposomes and polymersomes, into a single new hybrid membrane. But 

hybrid polymer/lipid vesicles lack responsive properties (134).  

Based on the aforementioned premises, our hypothesis is two-fold: 

• Switchable LNP might be capable of delivering survivin-targeted siRNA in vitro, improving 

therapeutic response to chemotherapeutics in cancer cells; such a design holds potential 

as a future intravitreous strategy to ameliorate the benefit to risk ratio in retinoblastoma 

chemotherapeutic protocol;  

• Giant unilamellar vesicles might provide visual insights into the behavior of lipid or hybrid 

polymer/lipid membrane containing the pH-sensitive switchable lipid when submitted to 

acidic environment mimicking the endosomal compartments; 

1.5.2. Specific objectives  

To confirm our hypotheses, we proposed the following specific objectives, divided into 2 studies: 
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1.5.2.1. 1st publication: 

In the first publication, we will evaluate the ability of switchable LNP in delivering survivin-

targeted siRNA and the chemotherapeutic benefits thereof, in vitro. The specific objectives are 

the following: 

1. To screen the mRNA survivin silencing ability of survivin-targeted siRNA delivered by 

switchable LNP (siLNP) in 14 cell lines representative of 6 different types of cancer; 

2. To confirm survivin protein downregulation in Y79 cells-transfected with siLNP by western 

blot; 

3. To screen the impact of  carboplatin, topotecan, melphalan, and teniposide after 

incubation with Y79 cells on the mRNA levels of survivin and caspase 3; 

4. To calculate the synergistic effect of a temporal approach consisting of first downregulate 

survivin by siRNA delivery mediated by lipofectamine RNAiMAX or switchable LNP, 

followed by incubation with cytotoxic agents; 

5. To investigate the siRNA specificity of our strategy by transfecting Y79 cells with 

switchable LNP carrying scrambled siRNA followed by carboplatin or melphalan 

incubation; 

6. To investigate the cancer specificity of our stragey by transfecting siLNP into non-survivin 

expressing ARPE.19 cells followed by carboplatin incubation; 

1.5.2.2.  2nd publication 

In the second publication, we will examine the acid-triggered effects on switchable lipid-

containing giant unilamellar vesicles (GUV) and giant hybrid polymer/lipid unilamellar vesicles 

(GHUV) by confocal microscopy. The specific objectives are the following: 

1. To confirm the incorporation of switchable lipid into GUV and GHUV by 1H NMR; 

2. To evaluate and categorize the membrane structural changes of switchable GUV and 

GHUV when submitted to HCl treatment; 

3. To correlate the membrane behavior of switchable GUV and GHUV with previous results 

obtained with switchable LNP and switchable lipid-containing large unilamellar vesicles 

(LUV) and large hybrid polymer/lipid unilamellar vesicles (LHUV); 
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4. To assess the pH-induced changes on membrane’s permeability of calcein-loaded 

switchable GUV and GHUV.  
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* Correspondence: jeanne.leblond-chain@inserm.fr 

2.2. Abstract 

Survivin stands out as one of the most specific cancer targets discovered to date. Although single 

inhibition, e.g. through small interfering RNA (siRNA), has shown modest results in clinical trials, 

its combination with drugs holds promise to sensitize cancer cells to chemotherapeutics. In this 

study, we propose a sequential treatment of siRNA survivin followed by chemotherapy. Firstly, 

we demonstrated that siRNA-loaded switchable lipid nanoparticles (siLNP) silence survivin in a 

panel of cancer cell lines. Subsequently, we selected retinoblastoma (RB) as our model to screen 

four chemotherapeutic agents: carboplatin, topotecan, melphalan or teniposide. The effect of 

drugs on survivin expression and caspase-3 was investigated by RT-qPCR. The best drug 
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combination was selected measuring the viability, survivin expression and the selectivity of the 

treatment. Our stepwise method revealed that siRNA delivery by switchable LNP sensitized Y79, 

but not the healthy APRE-19 cell line, to carboplatin and melphalan cytotoxicity. This ability was 

validated on primary human RB cells. Finally, the distinct behavior of the drugs demonstrated that 

a diligent screening of drugs should be envisioned when looking for synergy with survivin. Our 

sequential approach highlighted carboplatin and melphalan as agents to be investigated in future 

survivin-associated in vivo testing to tackle RB. 

Keywords: Cationic switchable lipid, Survivin targeting siRNA, Retinoblastoma, Cancer 

2.3. Introduction 

More than 20 years ago, Ambrosini and co-workers reported the discovery of the smallest 

member of the inhibitors of apoptosis protein (IAP) family, survivin (37).  Interestingly, the protein 

is remarkably expressed in human cancers, but not in healthy differentiated adult tissues (166).   

Its expression has been associated with poor prognosis for several cancers such as lung, colon, 

pancreas, prostate, breast (37), cervical (167) retinoblastoma (168), as well as lymphomas and 

acute myeloid leukemia (37, 169, 170). Therefore, downregulating survivin expression has been 

actively pursued in the last decades (52, 171). Several inhibitors have reached the clinics (166), 

such as sepantronium bromide YM155 (72), or antisense oligonucleotides (82).  Unfortunately, 

survivin-targeted therapy has shown limited success in clinical trials as a single treatment (172).  

In retrospective studies, the role of survivin in resistance to chemotherapeutics has been 

established in several cancer models (31, 166, 173-175).  Thus, combination treatments with 

doxorubicin (169, 175-177), etoposide (169), carboplatin (68), topotecan (178), paclitaxel (179), 

or a cocktail of siRNA targeting multiple cellular pathways (88) have been explored to improve 

chemotherapeutics efficacy in preclinical studies, in vitro and in vivo (180). In retinoblastoma, 

combining YM155 with topotecan, carboplatin or radiation, induced apoptosis and reduced the 

tumor growth in a mice orthotopic retinoblastoma model (68). Nevertheless, antisense therapy, 

as many gene-based products, face crucial delivery issues. Nanomedicine has recently shown its 

ability to deliver RNAi-based therapeutics in humans, as witnessed by the FDA approval of 

OnPattro, a lipid nanoparticle-based formulation siRNA delivery for the treatment of a hereditary 
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liver disease (96). Such lipid nanoparticle formulations have also shown promise for cancer 

targeting, such as mantle cell lymphoma,(181) leukemia,(182) glioblastoma (183) and prostate 

cancer.(184)   

Our team has recently developed switchable Lipid Nanoparticles (switchable LNP), based on a pH-

triggered molecular switch. Its unique structure undergoes a conformational change upon acidic 

pH, that triggers membrane destabilization, promotes endosomal escape and cytosolic release of 

its cargo (130). Such pH-sensitive particles have demonstrated efficient siRNA transfection both 

in vitro and in vivo (121). Recently, fluorescence imaging demonstrated that switchable LNP 

possessed high affinity for retinoblastoma cells (Y79), in vitro and in vivo (122). The switchable 

LNP were used as a dual delivery system for miRNA and melphalan, and empowered the synergy 

of both drugs in human primary cells as well as in a rat model of retinoblastoma (122). 

Retinoblastoma (RB) is the most common cancer affecting the eye in children and accounts for 

3% of all childhood malignancies (185). Therapeutic success relies in the early diagnosis as 

advanced stages of RB are usually refractory to chemotherapy, likely to metastasize to brain and 

can only be handled by enucleation (20). Current regimens are based on chemotherapeutics such 

as DNA-crosslinking agents (Carboplatin (CBDA)), DNA topoisomerase 2 inhibitors (Topotecan 

(TOPO), Teniposide (TENI)), Vinca alkaloids (Vincristine) and alkylating drugs (Melphalan (MELPH)) 

(27). In the past decades, a paradigm shift has favored local administration such as intravitreal or 

intraarterial injection, especially in cases of presence of vitreous seeds and refractory tumor to 

standard methods (27, 28). Advantages of site-directed delivery includes overcoming the blood-

retinal barrier, promoting bioaccumulation of chemotherapeutics in the poor-vascular vitreous 

and limiting systemic exposure and side effects (186).  

In this study, we screen the ability of switchable LNP in downregulating survivin in a variety of 

cancer cell lines using survivin-targeted siRNA. Then, using RB as our cancer model, we stepwise 

evaluate the benefits of survivin downregulation followed by incubation with four standard 

chemotherapeutics in the RB protocol: carboplatin, melphalan, topotecan and teniposide, as a 

rational approach to select the best candidate to benefit from survivin downregulation in future 

clinical applications.    
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2.4. Materials and method 

All solvents (HPLC grade), chemicals and reagents were obtained from Sigma-Aldrich (Oakville, 

ON, Canada) and Thermo Scientific (Waltham, MA, USA). 1,2-distearoyl-sn-glycero-3-

phosphocholine (DSPC) and N-(carbonyl-methoxypolyethyleneglycol 2000)-1,2-distearoyl-sn-

glycero-3- phosphoethanolamine, sodium salt (DSPE-PEG2k) were purchased from Avanti Polar 

Lipids (Alabaster, AL, USA). Cholesterol was obtained from Sigma-Aldrich. Cationic switchable lipid 

was synthesized as previous described (121). Dextrose, sodium chloride, Tween-20, Carboplatin, 

Melphalan and survivin inhibitor YM155 were purchased from Sigma-Aldrich (Oakville, ON, CA). 

Topotecan was prepared from concentrated solution (Topotecan Hospira, Pfizer Europe, Brussels, 

Belgium) and Teniposide used as received (Vumon, Bristol-Myers Squibb Company, New York, NY, 

USA).  

Survivin-targeted siRNA is an Ambion In Vivo Pre-designed siRNA purchased from Thermo 

Scientific (Waltham, ON, CA). Negative control siRNA (scramble siRNA) does not target any human 

transcript and was purchased from Alpha DNA (Montreal, QC, CA). Both sequences are listed in 

Table 2.  

siRNA Sense Antisense 

siRNA survivin GGACCACCGCAUCUCUACATT UGUAGAGAUGCGGUGGUCCTT 

siRNA Scramble UAGCGACUAAACACAUCAAUU UUGAUGUGUUUAGUCGCUAUU 

 siRNA sequences used in the study 

2.4.1. Preparation of cationic switchable lipid nanoparticles  

Cationic switchable lipid nanoparticles (switchable LNP) for in vitro survivin screening were 

prepared by hydration of a lipid film followed by extrusion. Briefly, ethanolic stock solutions of 

cationic switchable lipid (CSL), DSPC, Cholesterol (Chol) and DSPE-PEG2000 were mixed at a molar 

ratio of 50:10:37.5:2.5, respectively. Ethanol was removed under reduced pressure. The obtained 

dried lipid film was hydrated with 1 mL of sterile 5% dextrose solution. This solution was vortexed, 

heated to 65 °C and stepwise extruded 11 times through 400, 200 and 100 nm polycarbonate 
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membranes using a heated LiposoFast manual extruder (Avestin Inc., Ottawa, ON, Canada). The 

resulting liposomes were stored at 4 °C until further use.  

For survivin silencing in retinoblastoma cells in vitro and in vivo, switchable LNP were prepared 

by microfluidic mixing. Briefly, an ethanolic solution containing CSL, DSPC, DSPE-PEG2000 and Chol 

was mixed with a 5% dextrose solution at a flow rate of 12 mL/min, at a 5%Dex/lipid solution ratio 

of 3:1 using two syringe pumps (KDS-200, KdSientific, Holliston, MA, USA). The final switchable 

LNP suspension was dialyzed against 5% dextrose using Pur-ALyzerTM Maxi dialysis tubes MWCO 

12-14 kDa (Sigma-Aldrich, Oakville, ON, CA), overnight, at room temperature and under gently 

stirring followed by sterilization using 0.22 μm polyethersulfone 13 mm syringe filter (Pall 

Corporation, Mississauga, ON, Canada). Formulation was stored at 4 °C until further use. 

Switchable LNP prepared either by microfluidic mixing or manual extrusion was characterized 

similarly with regards to size, surface zeta potential and CSL amount.  

2.4.2. Physiochemical characterization of switchable LNP 

The amount of CSL in each batch was quantified by HPLC-UV/MS using an Agilent 1260 Infinity 

HPLC equipped with a PDA detector, a column (Agilent Poroshell 120 EC -C8 (2.7 m) 3 × 30 mm) 

and a 6120 single-quad mass spectrometer (Mississauga, ON, Canada) against a calibration curve 

of switchable lipid (25-400 μg/mL; from ethanol stock solution). Liposomal formulation was 

diluted 25X in HPLC grade methanol and vigorously vortexed. The quantification method 

employed consisted of a mobile phase A (acetonitrile 95/5 + 0.1% acetic acid) and mobile phase 

B (acetonitrile +0.1% acetic acid). The mobile phase gradient was: 0 min – 90% A; 1 min – 100% 

B; followed by a column re-equilibration time of 3 min with the following properties: Flow 

1.5 mL/min; UV detection: 254 nm and; Injection volume: 10 μL.  

Liposome hydrodynamic diameter, polydispersity index (PDI) and ζ-potential were measured at 

20°C using a Malvern Zetasizer Nano ZS (Malvern, Worcestershire, UK). Samples were diluted 10X 

in dextrose 5% to a final volume up to 1 mL. Size measurements were performed with a scattered 

angle of 173° and reported as Z-average (intensity). The voltage for ζ-potential was set at 150V. 

Measurements were performed at least in triplicate. 



73 

 2.4.3. siRNA complexation, characterization and encapsulation efficiency 

Equal volumes of survivin-targeted siRNA (siSurvivin) or the negative control scramble-siRNA 

(siScramble) and switchable LNP were prepared in sterile dextrose 5% in order to achieve a N/P 

ratio of 4 (number of amino groups of the cationic switchable lipid / number of phosphate groups 

of siRNA). Each solution was equilibrated at room temperature for 5 minutes, then siRNA was 

added into the lipid solution, upon gently mixing. Complexation was completed upon incubation 

of siRNA-LNP solution during 15 minutes at 50 °C under vigorous mixing (1200 rpm) in a Labnet 

VortempTM 56 (Diamed, Mississauga, ON, CA). siSurvivin or siScramble switchable lipid 

nanoparticles (siLNP and scrLNP, respectively) were then diluted to achieve final siRNA 

concentration in either dextrose 5% for further characterization or in Opti-MEM (Wisent, 

Montreal, QC, CA) for in vitro transfection.  

The encapsulation efficiency of siRNA was performed using the SYBR® Gold assay (Thermo 

Scientific, Waltham, MA, USA). Briefly, complexes were prepared in dextrose 5% with a final siRNA 

concentration of 40 nM in 500 µL with N/P ratio ranging from 2 to 16. After 15 minutes incubation 

at 50 °C under vigorous mixing, complexes were submitted to centrifugation at 20 000 g for 30 

minutes. 100 µL of the supernatant was added in a black 96-well plate (Corning Inc., Corning, NY, 

USA) followed by 60 µL of SYBR® Gold 4X. Free siRNA was quantified against a calibration curve of 

SYBR® Gold (5 to 80 nM of siRNA) using Safire microplate reader (Tecan, Seestrasse, Switzerland; 

λex/em = 495/537). siRNA encapsulation efficiency was calculated as follows: 

𝐸𝐸	(%) = 	
40	(nM) − siRNA	concentration	in	the	supernant	(nM)

40	(nM) 	x	100 

For the physicochemical characterization of siRNA switchable LNP, samples were diluted 10X in 

dextrose 5% and their size, PDI and ζ-potential were measured as described previously.  

 2.4.5. Cell culture 

Hela cells (CCL-2TM, ATCC, Manassas, VA, USA) were cultured in Dulbecco’s Modified Eagle’s 

Medium (DMEM, Wisent, Montreal, QC, Canada) supplemented with 10% FBS (Wisent, Montreal, 

QC, CA). A549 cells were kindly provided by Dr. Sylvain Meloche (IRIC, Univ. Montréal, QC, 

Canada) and were cultured in Kaighn's Modification of Ham's F-12 Medium (F-12K, Wisent, 
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Montreal, QC CA) supplemented with 10% FBS. MCF-7 were kindly provided by Dr. Sylvie Mader 

(IRIC, Univ. Montréal, QC, Canada) and were cultured in Minimum Essential Medium Alpha 

Medium (AMEM, Wisent, Montreal, CA) supplemented with 10% FBS and 1% L-Glutamine (Gibco, 

Burlington, ON, Canada). MDA-MB-231, MDA-MB-436, OV90, HEYA 8, H460, H1299, HT29, 

SKOV3, BT474 and ME180 cells were kindly provided by Dr. Christine Allen (University of Toronto, 

ON, Canada). MDA-MB-231 and MDA-MB-436 cells were cultured in DMEM/HAMF 12 (1:1 mix) 

supplemented with 10% FBS. HEYA 8, H460 and H1299 cells were cultured in RPMI 1640 (Gibco, 

Burlington, ON, Canada) supplemented with 10% FBS. HT29 and SKOV3 cells were cultured in 

McCoy’s 5A (Gibco, Burlington, ON, Canada) supplemented with 10% FBS. The culture media of 

BT474 was composed by DMEM H21 (Wisent, Montreal, QC, CA) supplemented with 10% FBS. 

OV90 cells was cultured in MCDB 105/M199 (1:1 mix) (Gibco, Burlington, ON, CA) supplemented 

with 10% FBS. ME-180 cells were cultured in alpha-minimal essential medium (α-MEM, Gibco, 

Burlington, ON, CA) supplemented with 10% FBS. ARPE-19 cells (CRL-2302, ATCC, Manassas, VA, 

USA) were cultured in DMEM supplemented with 10% FBS. Y79 cells (ATCC HTB-18; Manassas, 

VA, USA) were cultured in RPMI 1640 (Gibco, Burlington, ON, CA) supplemented with 10 mM 

HEPES (Gibco, Burlington, ON, CA), 1 mM sodium pyruvate (Gibco, Burlington, ON, CA) and 10% 

FBS. Y79-Luc cells were kindly donated by Dr. Andrew Davidoff (St. Jude Children's Research 

Hospital, TN, USA) and cultivated similarly Y79 cells. Human RB tumor samples were obtained 

from the primary-site intra-ocular RB of a young patient at CHU Sainte-Justine (Montreal, QC, 

Canada), in accordance with the Ethic Committee of CHU Sainte-Justine. The primary cells were 

obtained during a surgical procedure and no information about patient’s previous chemotherapy 

treatment was available. Primary human RB cells were processed and cultured as previously 

described (122, 187). Cells were incubated at 37°C under a water-saturated atmosphere 

supplemented with 5% CO2. 

2.4.6. Cell transfection 

Switchable LNP and survivin siRNA were complexed at N/P ratio of 4 for a final siRNA 

concentration of 10, 20 or 40 nM per well. siLNP were diluted in Opti-MEM then added to 

trypsinized cells or suspension cells diluted in their culture media. Cells were finally incubated for 

48 hours at 37°C under a water-saturated atmosphere supplemented with 5% CO2. As a positive 
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control, cells were treated with Lipofectamine RNAiMAX (Thermo Scientific, Waltham, MA, USA) 

according to the manufacturer’s reverse transfection protocol with minor modifications. Briefly, 

0.1875 µL of Lipofectamine RNAiMAX (LF) was mixed in sterile dextrose 5% with 20 nM of siRNA 

for a single well followed by 5 minutes incubation at RT and dilution in Opti-MEM. Reagents were 

scaled up accordingly to the number wells, type of plate and siRNA concentration. For the 

negative control, cells were transfected with scramble siRNA following the same protocol 

described herein.      

 2.4.7. Relative quantification of target genes by RT-qPCR 

For the RNA extraction and qPCR assay, 10x104 cells were plated in a 12 well-plate and transfected 

according to the procedure previously described. The extraction of total RNA of transfected cells 

or cells treated with cytotoxic was performed using the Total RNA Purification kit (NorgeneBiotek, 

Thorold, ON, CA) or RNeasy mini kit (Qiagen, Hilden, Germany) according to the manufacturer 

protocol. Total RNA was quantified by nanodrop (Thermo Scientific, Waltham, MA, USA) by 

measuring the absorbance at 260 nm. The RNA purity was determined with same instrument by 

calculating 260/230 and 260/280 ratios. A ratio of 1.8 is acceptable for pure DNA and 2.0 for pure 

RNA. The RNA integrity was evaluated by the ratio of 28S/18S ribosomal RNA using the Agilent 

BioAnalyzer 2100 (Agilent Technologies, Mississauga, ON) following the manufacturer’s protocol. 

Several RNA extracts from transfected cells were checked before RT-qPCR to confirm that the 

transfection by the switchable LNP and the extraction method preserved RNA integrity. 

RNA extracts were reverse transcribed into cDNA using the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Waltham, MA, USA) following the manufacturer protocol. 

A noRT control (no reverse transcriptase) was added to check any genomic DNA contamination. 

PCR reactions were done in 384-well plate using 1.5 µL of diluted cDNA samples, 5 µL of 2X 

Taqman Fast qPCR MasterMix (Applied Biosystems, Waltham, Ca, USA) 0.05 µL of mix oligos 

specific for each gene (50 µM, Applied Biosystems, refer to Table 2 for full sequences), 1 µL of 

specific Universal Probe Library (1 µM, Roche, Basel, Switzerland) and 2.45 µL of RNase-free water 

(Thermo Scientific, Waltham, ON, CA). No Template Control was added by replacing cDNA with 

water to check any contamination in qPCR products.  
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Real-Time PCR System (Applied Biosystems® ViiA™ 7, Waltham, CA, USA) was programmed in Fast 

mode with an initial step of 3 minutes at 95°C followed by 40 cycles of 5 seconds at 95°C and 30 

seconds at 60°C. The Ct (cycle threshold) was used for quantification. b-actin (ACTB) was used as 

endogenous control (Table 3). 

The relative expression (RQ) of target genes was determined using the ∆∆CT method (RQ=2(-∆∆CT), 

∆∆CT= ∆Ct Sample- ∆Ct Calibrator). Real time PCR data were analyzed using Expression Suite 

Software. 

 Forward 5ʹ–3ʹ Reverse 5ʹ–3ʹ UPL 

Probe 

ACTB1 attggcaatgagcggttc tgaaggtagtttcgtggatgc 11 

BIRC52 gcccagtgtttcttctgctt ccggacgaatgctttttatg 11 

CASP33 ttgtggaattgatgcgtgat ggctcagaagcacacaaaca 68 

1b-actin; 2 survivin; 3 caspase-3 

 The sequence of oligos used in PCR analysis. 

2.4.8. Western blot assay 

Protein profile expression was evaluated by Western immunoblotting assay. For the Western blot 

assay, 1.2 x 106 cells were plated in a 6-well plate and transfection was carried as described above. 

Briefly, transfected cells and/or cytotoxic treated cells were collected at different time points and 

treated with M-PER (Thermo Scientific, Waltham, MA, USA) containing 1X protease inhibitors 

(Thermo Scientific, Waltham, MA, USA) to obtain whole cell lysate. Proteins concentration were 

quantified using the Bradford assay (Thermo Scientific, Waltham, MA, USA). Equivalent amounts 

of proteins (40 µg) were denatured in 4X laemmeli buffer (Bio-Rad laboratories, Hercules, CA, 

USA) for 5 min at 95°C and, then, eletrophoretically separated on 15% polyacrylamide gel for 1 

hour before transferring to Immun-Blot PVDF membranes (Bio-Rad Laboratories, Hercules, CA, 

USA) overnight at 30V in a cold room. Membranes were blocked with either 3% bovine serum 

albumin (BSA, Sigma Aldrich) for survivin detection or 5% skimmed milk for the other proteins for 
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1 hour and then incubated overnight at 4°C with either rabbit anti-survivin (1:500 in 3% BSA, 

#2803, Cell Signalling Technology, Danvers, MA, USA), rabbit anti-p21 (1:400, #2947, Cell 

Signalling Technology), mouse anti-p53 (1:500, sc-126, Santa Cruz Biotechnology, Santa Cruz, CA, 

USA) or mouse anti-B-actin (1:5000, sc-8432, Santa Cruz Biotechnology, Santa Cruz, CA, USA) 

antibodies. Membranes were washed thrice with TBST (0.15M NaCl, 0.02M Tris-HCl pH 7.4, 0.1% 

Tween 20 (v/v)) and then incubated with either anti-rabbit (1:5000, sc-2004, Santa Cruz 

Biotechnology) or anti-mouse (1:5000, sc-2005, Santa Cruz Biotechnology, Santa Cruz, CA, USA) 

secondary horseradish peroxidase-conjugated antibodies at room temperature for 1 hour 

followed by washing with TBST and incubation with either Clarity max ECL substrate (Bio-Rad 

Laboratories, Hercules, CA, USA) for survivin detection or Western Lightning Plus-ECL, Enhanced 

Chemiluminescence Substrate (PerkinElmer, Waltham, MA, USA) for all other proteins for 5 

minutes before imaging. Proteins were visualized using the ECL Western blotting detection 

system (Perkin Elmer). Digital images were treated using ImageJ software. Chemicals for buffer 

preparation were obtained from Sigma-Aldrich (Oakville, ON, Canada). 

2.4.9. Viability assay 

For the viability assay, 4 x 104 cells were plated in a 96-well plate for subsequent transfection 

and/or drug treatment. The viability of transfected Y79, Y79-luc, ARPE-19 and/or cytotoxic 

treated Y79, Y79-luc and ARPE-19 was assessed 96 hours after seeding using a resazurin-based 

cell viability assay (PrestoBlue, Thermo Scientific, Waltham, ON, CA). Briefly, 48 hours after 

incubation with siLNP or scrLNP, cells were treated with solutions of different concentrations of 

either carboplatin, Teniposide, Topotecan, Melphalan or a combination of carboplatin and 

topotecan. Non-treated cells received media only and were used as negative control. Thereafter 

drug treatment, 20 μL of PrestoBlue was added per well and cells were incubated for 24 hours at 

37ºC and 5% CO2. Fluorescence was measured at λex/em = 570/600 nm using a Safire microplate 

reader (Safire, Männedorf, Zürich, Switzerland). Cellular viability was normalized to the negative 

control. When indicated, cells were incubated from the day of seeding until viability 

measurement with a 2 nM solution of survivin inhibitor YM155. The drug concentration required 

to reduce cell viability down to 50% after 48 hours of drug incubation (IC50), with or without prior 

survivin silencing, was calculated using GraphPad 7 software (La Jolla, CA, USA). 
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2.4.10. Synergistic effect 

The effect of survivin silencing followed by carboplatin, topotecan, melphalan or Teniposide 

treatment was evaluated by combination index (CI) theorem proposed by Chou and Talalay (188) 

using the CompuSyn software (Paramus, NJ, USA). CI values were calculated when the combined 

siRNA and drug treatment decreased the cells’ viability more than 50% compared to drug only 

treated cells. A CI lower than 1 indicates synergism, whilst CI = 1 or CI > 1 indicate additive or 

antagonistic effect, respectively. When calculated, CI are presented above each viability chart bar 

for a specific drug concentration-siRNA treated cells.   

2.4.11. Statistical analysis 

Experiments were carried at least in triplicate unless stated otherwise and expressed as mean ± 

standard deviation (SD). Data were plotted in Prism Software (GraphPad Software, La Jolla, CA, 

USA) and statistical significance was calculated by Student t-test and expressed as: * (p < 0.5), ** 

(p < 0.05), *** (p < 0.005) or **** (p < 0.0001). 

2.5. Results  

2.5.1. Preparation of switchable lipid nanoparticles   

The cationic switchable lipid (CSL), previously reported for siRNA transfection in vitro and in vivo 

(121, 122) was evaluated in this project for survivin silencing. Switchable lipid nanoparticles 

(switchable LNP) were prepared as previously described, using CSL, DSPC, Cholesterol and DSPE-

PEG2000, either by microfluidics or by manual extrusion (Table 4). Both methods yielded 

nanometric particles, with narrow distribution, cationic surface zeta potential and high siRNA 

encapsulation efficiency, as assessed by fluorescence intercalation assay. As previously observed 

(121), microfluidics yielded smaller particles than manual extrusion, with or without siRNA. This 

difference can be attributed to the precipitation method involving nucleic acids and lipid 

precipitation in one step, rather than post incubation of liposomes with siRNA (189). 

Nevertheless, we have previously shown that switchable LNP retain their pH-sensitive properties 

and transfection ability whatever the preparation method (121). In this project, extrusion method 

was used for cancer cell screening. Microfluidics was preferred for further investigation on 
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retinoblastoma in vitro and in vivo models, thanks to its scalable and reproducible properties 

(190).  

Liposome composition 

 
Zave ± SD PDI ± SD Zeta ± SD EE % ± SD 

CSL dosage ± 

SD (mM) 

Microfluidic method      

CSL/DSPC/Chol/PEG* 59 ± 1 0.18 ± 0.01 49.9 ± 2.7 N/A 0.85 ± 0.04 

CSL/DSPC/Chol/PEG* + 

siSurvivin 

(N/P = 4) † 

133 ± 2 0.17 ± 0.02 31.5 ± 4.06 96.37 ± 1.35 0.85 ± 0.04 

Extrusion method      

CSL/DSPC/Chol/PEG* 146 ± 2 0.10 ± 0.01 34.3 ± 1.3 N/A 0.95 ± 0.05 

CSL/DSPC/Chol/PEG* + 

siSurvivin (N/P = 4) 
162 ± 1 0.13 ± 0.03 31.6 ± 1.0 ND ND 

* 50:10:37.5:2.5 molar proportions of lipids †N/P : number of amino groups (CSL) / number of 

phosphate groups (siRNA); N/A: not applicable; ND: not determined 

 Physicochemical characteristics of switchable LNPs, through two preparation 

methods   

2.5.2. In vitro survivin silencing by switchable LNP   

The versatility of the switchable LNP to silence survivin was assessed on 13 cell lines standing for 

breast, colon, lung, cervix, ovary and retinoblastoma cancer models by RT-qPCR (Figure 26, Table 

S5).  
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Figure 26. –  Heat map of survivin downregulation on a range of cancer cells using siSurvivin 

switchable LNP. siRNA against survivin was used at 40 nM and prepared by manual extrusion for 

all cell lines, except for retinoblastoma cells (Y79), which were transfected with microfluidics-

formulated switchable LNP and 20 nM siRNA. Lipofectamine® RNAiMAX (LF) reagent was 

prepared using 40 nM siRNA. Untreated cells were used as controls. Gene downregulation was 

assayed by RT-qPCR 48 h after incubation (n = 3). B-actin mRNA (ACTB) was used as endogenous 

control. The relative expression of target gene was determined using the ∆∆CT method (see 

materials and methods). Image was processed using GraphPad 7 software (La Jolla, CA, USA) 

from full data presented on Table S5.  

The results show a significant variability according to the cell lines. The switchable system silenced 

survivin to a better extent than Lipofectamine (LF) in MCF7 (84 %), A549 (78 %) and Hela cells (92 

%) and similar in MDA-MB-231 (60 %), and Y79 (34 %). The lineage-specific survivin silencing might 

suggest particular endocytic processes ruling internalization process of siRNA-cationic switchable 

lipid nanoparticle. As for our project, we selected retinoblastoma cancer model since both 

switchable LNP silenced survivin to a comparable extent than LF (Fig 27A) and since we previously 

developed an in vitro and in vivo model of this disease (122). Since mRNA silencing not necessarily 

reflects protein downregulation, we assessed the survivin protein downregulation in Y79 cells 

over time (Fig 27B).  
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Figure 27. –  In vitro survivin downregulation in Y79 cells with switchable LNP. (A) mRNA relative 

expression was assayed by RT-qPCR 48 h after transfection (n = 3). ACTB was used as endogenous 

control, Lipofectamine® RNAiMAX (LF) reagent at 20 nM and non-treated cells were used as 

positive and negative controls, respectively. The relative expression of target gene was 

determined using the ∆∆CT method (see materials and methods). (B) Downregulation of survivin 

protein in Y79 cells was assessed by western blot. Cells were harvested at 0, 24 and 48 hours after 

transfection with either siRNA survivin (siLNP) or siRNA scramble (scrLNP) at 20 nM. Non-treated 

Hela cells were used as positive control of survivin expression.   

A 48 h delay was required to observe a significant decrease in survivin protein level in Y79 cells. 

Similar results were obtained using LF to silence survivin in Y79 and in a Y79-luciferase cell line 

(Figure S33), used in orthotopic in vivo RB model to measure tumor growth non-invasively. 

Importantly, siRNA was specific to survivin since scramble siRNA did not silence survivin at the 
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protein level (Figure 27B). Therefore, in subsequent combination studies, cells were pretreated 

with switchable LNP for 48 h before addition of chemotherapeutics. This order, although the most 

rational, was not always observed in combination studies with survivin inhibitors (180). 

2.5.3. Drugs used in the RB protocol induce survivin expression differently  

Several drugs are currently administered by intravitreal injection in retinoblastoma clinical 

setting. The most used is melphalan, which has shown a success rate of 83% in retinoblastoma 

with recurrent vitreous seeds (27).  Melphalan is a DNA alkylating agent, promoting crosslinking 

intra- and inter- DNA strands, preventing from DNA transcription. Topoisomerase inhibitors (e.g. 

topotecan, teniposide) or platinium-based antineoplasic (e.g. carboplatin) are also administered, 

alone or in combination, through intraarterial injection (27). We first determined IC50 of those 

drugs in Y79 cell line (Figure S34). Y79 cells were found to be sensitive to topotecan and 

melphalan, which was consistent with previous studies (122, 191), but highly resistant to 

carboplatin (IC50 = 282 µM) (192) and teniposide (IC50 not determined).  

In order to investigate the synergy of survivin silencing with current chemotherapeutics, we first 

examined the impact of drug treatment on survivin mRNA and protein levels (Figure 28). Caspase 

3 levels were also determined, since survivin is known to interfere with Caspase-3 apoptotic 

pathway (52). Thus, a chemotherapeutic that upregulated survivin and downregulated Caspase 3 

could be identified as a suitable candidate for further testing with survivin downregulation.  
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Figure 28. –  RT-qPCR and western blot of Y79 cells after 48 h incubation with different 

chemotherapeutics. (A) mRNA relative downregulation was assayed by RT-qPCR 48 hours after 

incubation with drugs (n = 3). B-actin mRNA (ACTB) was used as endogenous control. Non-treated 

cells were used to normalize mRNA values. CBDA: Carboplatin; TENI: Teniposide; TOPO: 

topotecan; MELPH: Melphalan. (B) Western blotting profile of Y79 cells treated with different 

chemotherapeutics.   

Regarding the qPCR assessment, two behaviors could be distinguished: carboplatin (25 µM) and 

teniposide (5 µM) both upregulated survivin and downregulated caspase-3 mRNA levels by 1.5 

and 2-fold, respectively, suggesting a resistance to apoptotic pathways, consistently with their 

IC50 values (Figure S34). On the other side, topotecan and melphalan upregulated both survivin 

and capase-3 mRNA levels by 1.5-fold at the highest concentrations. Considering protein 
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expression, survivin was mildly expressed after the treatments, but no significant change could 

be concluded before and after drug treatment at a protein level. On the contrary, all drugs 

upregulated the proapoptotic proteins p53 and p21 in comparison to non-treated cells after 48 

hours of drug incubation, which confirmed the cytotoxic activity of drugs.  

Considering that all drugs tested upregulated survivin at mRNA levels but could not be 

discriminated based on their protein expression profile, we pursued our combination 

investigation with all four drugs. Our working hypothesis was that survivin downregulation prior 

drug treatment could lead to a better cytotoxicity of chemotherapeutics in Y79 cells.  

2.5.4. Survivin downregulation followed by drug treatment on Y79 cells 

 

Figure 29. –  Viability of Y79 cells after survivin downregulation by siRNA/LF for 48 h followed 

by treatment with either (A) carboplatin, (B) topotecan, (D) melphalan or (E) teniposide for 48 h. 

(C) Y79 survivin protein expression of cells treated with siRNA/LF (48 h) followed by 50 µM  CBDA 

(48 h). Non-treated cells and siRNA/LF (48 h) or 50 µM CBDA (48 h) only following the same time 

sequencing were used as control. Cells were harvest 96 h from seeding for western blotting assay. 

Black bars represent non-treated cells. Synergistic effect was expressed as combination index (CI) 

and indicated above each graph. Statistical analysis was performed using student t-test, where * 

(p < 0.05), ** (p < 0.005), *** (p < 0.0005), **** (p < 0.0001) and ns means no significant 

difference.  
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The synergy of survivin downregulation with chemotherapeutics was first screened using LF 

loaded with siRNA targeted against survivin (Figure 29). Three out of four drugs benefitted from 

survivin downregulation. Carboplatin, topotecan and melphalan exhibited a higher cytotoxicity 

after siRNA treatment when compared to drug alone (Figure 29). As a result, the IC50 of these 

drugs was decreased when survivin silencing preceded drug treatment: both melphalan and 

topotecan encountered a 77% decrease in their IC50 value and CBDA’s IC50 decreased by 23%, 

which is substantial for a resistant behavior (Figure S34). Only Teniposide toxicity was not 

significantly impacted by survivin downregulation at any concentration tested (Figure 29E). The 

synergistic effect of siRNA pretreatment was also quantified when the fraction affected was 

higher than 0.5 (more than 50% of cell death) using the combination index (CI) theorem proposed 

by Chou and Talalay (188), where CI lower than 1 indicates synergism. Survivin silencing prior drug 

treatment synergistically improved carboplatin, topotecan and melphalan’s cytotoxicity at 

specific concentrations (Fig 29A, B, and D). CI values ranged from 0.83, when siRNA was combined 

with carboplatin at 300 μM, to a maximum effect of 0.24, when siRNA synergistically improved 

melphalan’s cytotoxicity at 3.25 μM. The involvement of survivin into carboplatin’s resistance 

mechanism was confirmed by western blot (Figure 29C). Pretreatment of Y79 cells with survivin-

targeted siRNA attenuated the increase in survivin protein level raised by carboplatin exposure. 

In this assay, survivin increase induced by carboplatin was more obvious than in Figure 28B. This 

is in agreement with previous reports, which showed similar restoration of survivin levels using 

YM155 and carboplatin (68).  

Moreover, survivin silencing was investigated with a ternary drug combination of carboplatin and 

topotecan (Figure S35). After survivin pretreatment, 50% cell viability was reached with only 30 

μM and 0.25 μM of carboplatin and topotecan respectively, as compared to 191 μM and 0.5 μM 

when the drugs were used individually.  

Taken together, the findings confirm that survivin silencing resulted in reduced therapeutic dose 

of carboplatin, melphalan an topotecan, alone or in combination, but not teniposide.  
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Figure 30. –  Viability of (A) Y79 and (B) Y79-luc cells 96 hours after siSurvivin delivery by 

switchable LNP (48 h, siLNP) followed by carboplatin incubation (48 h). (C) Western blot of Y79-

Luc cells treated or not with siSurvivin (LF, 20 nM siRNA) and/or Carboplatin (25 µM). Black bars 

represent non-treated cells. Synergistic effect was expressed as combination index (CI) and 

indicated above each graph. Statistical analysis was performed using student t-test, where * (p < 

0.05), ** (p < 0.005), *** (p < 0.0005), **** (p < 0.0001) and ns means no significant difference.  

Since these results were obtained with LF, we further assessed switchable LNP ability to trigger 

such a synergy between survivin silencing and CBDA in retinoblastoma cancer model (Figure 30). 

When compared to LF, switchable LNP performed as efficiently and siRNA survivin pretreatment 

significantly improved carboplatin toxicity in both Y79 (Figure 30A) and Y79-Luc (Figure 30B) cells. 

Survivin silencing followed by CBDA at 200 μM treatment resulted in synergistic interaction with 
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similarly to its non-luciferase counterpart with regards to upregulation of apoptosis-related 

proteins, p53 and p21, and abrogation of survivin re-expression upon drug treatment (compare 

Fig 30C and 29C). Altogether, these results yielded robust evidence that pretreatment with 

survivin silencing siRNA carried by either LF or switchable LNP sensitizes retinoblastoma cells to 

carboplatin.  

2.5.5. Specificity of survivin downregulation 

 

Figure 31. –  Carboplatin cytotoxicity in (A) Y79 cells transfected with scramble (scrLNP, 20nM 

siRNA) or survivin-targeted siRNA switchable LNP (siLNP, 20 nM siRNA) and in (B) ARPE.19 cells 

transfected with siSurvivin (LF, 20 nM siRNA). (C) Survivin immunoblotting of non-treated Y79 

and ARPE.19 prior and after survivin silencing (LF, 20 nM siRNA).  Black bars represent non-

treated cells.. Statistical analysis was performed using student t-test, where * (p < 0.05), ** (p < 

0.005), *** (p < 0.0005), **** (p < 0.0001) and ns means no significant difference. 

Specificity of treatment is a crucial issue in cancer treatment. The specificity of the transfection 

of siLNP was assessed using siRNA scramble (Figure 31A) and the specificity of the treatment for 

retinoblastoma cancer cells was evaluated in a noncancer cell line (ARPE.19, Figure 31B). 
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As expected, scramble siRNA did not enhance CBDA toxicity since no difference can be seen 

between non treated cells and cells treated with scramble siRNA, as opposed to siRNA targeted 

against survivin (Figure 31A). This result confirmed that the selected siRNA sequence is specific to 

survivin, and that switchable LNP did not yield further toxicity on Y79 cells, which was consistent 

with our previous report (122). In addition, survivin silencing did not impact cell viability nor 

carboplatin toxicity (Figure 31B, striped bars). By reducing the IC50 of carboplatin, the survivin 

pretreatment also minimized the concomitant toxicity observed on healthy cells. For instance, 

survivin treatment followed by carboplatin 100 µM induced 40% cell toxicity in Y79 cells (Figure 

31A) but only 10% in ARPE.19 cells (Figure 31B). This could be rationally explained since ARPE.19 

cells did not overexpress survivin (Figure 31C). These results confirm that survivin is a relevant 

and specific target for retinoblastoma, and that siRNA treatment improved the treatment 

selectivity. The specificity of survivin silencing as an adjuvant for targeting retinoblastoma cells 

was further confirmed as the siRNA treatment did not impact Y79 nor ARPE.19 cell’s viability, as 

opposed to the highly cytotoxic activity of survivin inhibitor YM155 on both cell lines (Figure S36). 

The same experiments were conducted on melphalan and topotecan using switchable LNP, since 

both drugs also exhibited improved efficacy with survivin silencing with lipofectamine (Figure 29). 

As expected, melphalan benefited from survivin silencing through switchable LNP, enhancing the 

toxicity of the drug treatment at 26 and 52 µM (Figure 32A). At the latter concentration, siLNP 

followed by melphalan treatment killed more than 50% of Y79 at a calculated CI of 0.71, indicating 

a synergistic cooperation. Here again, the scramble version of siRNA did not yield any 

improvement of melphalan’s activity, confirming the selectivity of siRNA targeted against 

survivin. Surprisingly, this effect was not observed for topotecan (Figure 32B). In this experiment, 

neither scramble nor switchable LNPs impacted the efficacy of topotecan, although lipofectamine 

was able to yield a significant effect in a previous experiment (Figure 29B). This suggested that 

even if survivin is downregulated, this effect was not significant to reduce cell viability.  

Finally, we validated this combination strategy transfecting primary human RB cells with siLNP 

prior to treatment with carboplatin and melphalan, the two drugs selected from cytotoxicity 

screening with RB immortalized cells. As observed with Y79 cells, survivin downregulation by 

switchable LNP sensitized primary cells to carboplatin and melphalan (Figure 32C). The viability 
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of primary RB cells treated with siLNP followed by carboplatin at 200 μM or melphalan at 52 μM 

was reduced to 61 and 49%, whilst the viability of cells transfected with scrLNP and treated with 

either drug at the same concentration was not impacted. Interestingly, primary RB cells were 

resistant to carboplatin at 100 μM and 200 μM and melphalan at 26 and 52 μM, behaving 

differently from their immortalized counterpart (compare Figures 31 and 32A and B with Figure 

32C). This result suggests that the stepwise strategy of downregulating survivin with switchable 

LNPs followed by drug treatment can revert the resistance to melphalan and carboplatin in a 

closely related clinical model of retinoblastoma. 
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Figure 32. –  Viability of Y79 (A and B) and primary RB cells (C) after siLNP or scrLNP transfection 

followed by chemotherapeutics. Y79 cells were treated with (A) melphalan or (B) topotecan. 

Primary RB cells were treated with either carboplatin or melphalan. Black bars represent non-

treated cells. Viability of primary Statistical analysis was performed using student t-test, where * 

(p < 0.05), ** (p < 0.005), *** (p < 0.0005), **** (p < 0.0001) and ns means no significant 

difference.  
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2.6. Discussion 

Retinoblastoma treatment has encountered major advances in the last decade. Understanding of 

the molecular biology of cancer enabled more targeted therapies, and have improved the survival 

rates in developed countries (27). Survivin has been identified as one of the most specific cancer 

targets, due to its high difference of expression in cancer vs. healthy cells. Survivin was found to 

be overexpressed in RB tumor samples and positively correlated to RB staging (43, 90). In our 

studies, we indeed confirmed that retinoblastoma cells Y79 overexpressed survivin whereas 

healthy cells ARPE.19 did not (Figure 31). Therefore, the latter were not affected by the silencing 

treatment, with or without CBDA treatment (Figures 31 and S36A). This major advantage justifies 

the development of survivin-targeted treatments for retinoblastoma.  

In this project, we used siRNA targeted against survivin to downregulate survivin before 

chemotherapy. Previous reports have reported the use of YM155, a small molecule inhibitor of 

survivin. Its mechanism of action was further revised for a DNA-damage inducing agent that led 

to survivin inhibition, but not specifically (61). YM155 has reached clinical trials but unfortunately 

failed because of low efficacy as a single agent. Its use in combination is explored in several 

preclinical cancer models (180, 193), including retinoblastoma (68). In our study, we observed 

that YM155 was cytotoxic regardless of the survivin expression level, as YM155 significantly 

reduced cell viability in both Y79 and ARPE.19 cells as compared to siRNA treatment (Figure S36). 

Therefore, siRNA treatment is seen as a more specific treatment, limiting the toxicity on healthy 

cells. As far as we know, this study is the first report on survivin-targeted siRNA for retinoblastoma 

(180).  

Several delivery strategies have been explored for siRNA delivery. In particular, survivin-targeted 

siRNA has been delivered by polymeric nanoparticles, micelles, or liposomes (88, 180). In this 

project, we focused on the switchable lipid nanoparticles, previously developed for miRNA 

delivery to retinoblastoma in vivo (122).  

We confirmed that switchable LNP were as efficient as lipofectamine for siRNA delivery on several 

cancer cell lines (Figures 26, 27, 29, 30) and can be used as a reliable transfection agent for 

immortalized and primary retinoblastoma cells. Caution must be exercised when interpreting the 
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results of survivin downregulation. Both qPCR (several cell lines transfected) and Western blot 

(Y79 and Y79-Luc) demonstrated that survivin knockdown was not achieved after treatment with 

siRNA against survivin. In Y79 cells, survivin protein was still detected following transfection with 

either siLNP (Figure 27B) or lipofectamine RNAiMAX (Figure 29C). As discussed earlier, survivin is 

a multifunctional protein intersecting with cell death and cell division pathways (51). 

Furthermore, survivin is distributed in different subcellular localizations, where each 

subpopulation can play a key role in survivin’s nodal activity (51, 52). Therefore, we may 

hypothesize that protein knockdown was not observed due to subcellular populations detected 

by Western blot and qPCR 48 hours following transfection of 20 nM of siRNA against survivin. 

Although the confirmation of this hypothesis is beyond the scope of this investigation, our results 

are in agreement with other investigations where survivin downregulation, but not a knockdown, 

was identified by Western blot following transfection of siRNA or short hairpin RNA (shRNA) 

against survivin (88, 89, 194).  

Nonetheless, the protein downregulation mediated by siLNP or LF was sufficient to significantly 

improve the cytotoxicity of carboplatin and melphalan in Y79 cells. Only the result of combination 

studies with topotecan differed between both agents (Figures 29 and 32). Cell viability could be 

reduced after lipofectamine/survivin treatment but not significantly by switchable LNP. Since cell 

viability is not a direct measurement of transfection efficiency, and alike results were observed 

for the two other drugs, we might hypothesize that survivin silencing through LNP might not be 

sufficient to impact topotecan’s activity and result in viability decrease in these conditions. This 

mitigated effect was also observed by Ferrario et al. (68). Incubation with YM155 and topotecan 

induced apoptosis and reduced viability, but this effect was not significant in Y79 cells. In another 

study, Sato et al. reported the same range of viability for topotecan in combination with survivin-

targeted siRNA/lipofectamine in a renal cancer model (195). Since topotecan is a topoisomerase 

I inhibitor and acts on the apoptotic cascade (196), further studies on apoptotic cascade 

intermediates could reveal potential interferences between topotecan and survivin mechanisms.  

The cytotoxic drugs selected in this study (melphalan, carboplatin, teniposide, topotecan) were 

inspired from the clinical guidelines of retinoblastoma management (27). In order to select the 

candidate exhibiting the best synergy with survivin silencing, we conducted a stepwise evaluation 
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of four drugs. Although all drugs impacted mRNA survivin levels, they behaved very differently on 

this retinoblastoma model. Y79 were found to be resistant to teniposide, and survivin silencing 

did not reverse this phenomenon, suggesting that resistance in this cell line was not involving 

survivin. Resistance to teniposide has been reported to involve altered topoisomerase II levels 

associated to multidrug resistance in leukemic cells (197). Y79 were also found to be resistant to 

carboplatin, but its IC50 could be reduced by a third after survivin downregulation (Figure S34). 

This synergy was also observed in Y79 cells for YM155 and carboplatin by Ferrario et al. (68). 

Finally, melphalan was also potentialized by survivin downregulation, cutting by two third the 

required dose to kill retinoblastoma cells. This would alleviate the toxicity burden on healthy cells 

surrounding retinoblastoma in the eye. In a recent report, survivin inhibition was reported to 

reverse melphalan resistance in myeloma cells (198). Since melphalan is the most used 

chemotherapeutics in local administration of retinoblastoma in clinics (27), we believe that this 

strategy would significantly improve the tolerance of chemotherapy. In addition, we confirmed 

the cooperation between survivin silencing and carboplatin or melphalan on primary human RB 

cells. Similarly to immortalized Y79 cells, survivin silencing by switchable LNPs significantly 

enhanced the cytotoxicity of both drugs at the highest concentration tested.  

To further improve the therapeutic effect, encapsulation of drugs into liposomes could be 

envisaged, as it enhanced melphalan efficacy in RB primary cells and might help overcoming 

multidrug resistance. In this case, the temporal sequence of siRNA and melphalan should be 

carefully studied (sequential or simultaneous) to optimize the synergy, as previously reported 

(180).  

2.7. Conclusion 

In this study, we explored the ability of switchable lipid nanoparticle to silence survivin in several 

cancer in vitro models. This ability was confirmed in retinoblastoma model, establishing its 

potential as a transfection agent in vitro. Further studies are required to understand the variability 

between cell lines and potential prediction. In addition, we have explored the synergy between 

survivin silencing and chemotherapeutics in two retinoblastoma in vitro models: immortalized 

Y79 cells and primary RB human cells. The distinct behavior of the drugs demonstrated that the 
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survivin strategy cannot be applied to any cytotoxic agent and that a diligent screening should be 

envisioned when looking for synergy with survivin. Teniposide and topotecan were not 

significantly impacted by survivin downregulation, whereas carboplatin and melphalan were. The 

benefit of survivin downregulation by switchable LNPs on the cytotoxicity of melphalan and 

carboplatin was confirmed in human RB primary cells. The efficacy of this combination in a closer 

to the clinics model provides extra support for translating this strategy to in vivo assays.  Further 

studies will be focused on survivin silencing prior to chemotherapy with melphalan and/or 

carboplatin in a rat model of retinoblastoma. Monitoring of the colocalization with the tumor cell 

(Y79-luc), regression of the tumor size, and biocompatibility studies will be envisaged. The 

selectivity of survivin siRNA treatment is a promising strategy to reduce the therapeutic dose of 

drugs and alleviate toxicity on healthy cells.   

2.8. Supporting information 

Table 5: Relative (%) survivin mRNA expression in different cancer cell lines after switchable LNP 

transfection 

Figure 33: Lipofectamine RNAiMAX carrying siRNA survivin (20nM) downregulates survivin 

protein in both Y79 and Y79-luc cell 

Figure 34: Y79 cells viability 48 hours upon (A) carboplatin, (B) topotecan, (C) melphalan or (D) 

teniposide treatment. (E) IC50 before and after survivin silencing treatment with siRNA/LF (20nM) 

Figure 35: Effect of survivin silencing on carboplatin and topotecan combined therapy in Y79 cells. 

Figure 36: Viability of Y79 (A) and ARPE.19 (B) cells 48 hours after treatment with LF carrying 

siSurvivin (20 nM) or chemical inhibitor YM155 (2 nM). 

 

Model Cells 

relative survivin mRNA expression 

Non treated 

LNP Lipofectamine 

10 nM 20 nM 40 nM 40 nM 

Breast MCF7 92.87 ± 8.82 31.6 ± 4.75 16.53 ± 9.29 15.63 ± 5.09 19.86 ± 5.10 

 MDA-MB-231 100.93 ± 7.54 78.01 ± 6.47 51.43 ± 11.45 60.30 ± 8.90 51.30 ± 7.56 

 MDA-MB-436 93.53 ± 10.98 52.43 ± 2.11 34.03 ± 1.62 39.16 ± 2.99 6.43 ± 0.83 
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 BT474 103.80 ± 6.67 67.85 ± 4.45 81.01 ± 15.87 48.16 ± 8.79 9.96 ± 1.10 

Colon HT29 90.30 ± 13.71  70.36 ± 3.21 66.40 ± 2.82 70.43 ± 5.16 49.66 ± 6.98 

Lung A549 96.50 ± 14.69 82.50 ± 2.97 60.01 ± 3.11 21.56 ± 1.65 45.33 ± 5.97 

 H460 91.15 ± 12.51 66.75 ± 29.91 79.95 ± 16.61 72.56 ± 8.41 26.10 ± 15.96 

 H1299 102.36 ± 5.82 61.90 ± 17.58 76.60 ± 16.31  49.60 ± 11.33  8.96 ± 0.90 

Cervix HeLa 93.45 ± 7.30 22.03 ± 5.05 11.10 ± 2.12 7.56 ± 0.58 16.93 ± 1.07 

 ME180 92.93 ± 6.95 91.70 ± 5.65 80.00 ± 6.42 80.36 ± 5.05 24.33 ± 1.51 

Ovary OV90 96.76 ± 4.36 101.00 ± 10.95 103.20 ± 4.17 91.46 ± 11.19 31.96 ± 11.39 

 HEYA8 104.70 ± 6.64 95.55 ± 2.90 79.65 ± 14.35 63.73 ± 13.36 21.10 ± 4.59 

 SKOV3 97.73 ± 10.09 72.16 ± 7.37 67.26 ± 6.88 48.30 ± 9.32 6.50 ± 1.15 

 

 Relative (%) survivin mRNA expression in different cancer cell lines after switchable 

LNP transfection.  siRNA against survivin was used at 10, 20 or 40 nM and prepared by manual 

extrusion for all cell lines. Lipofectamine® RNAiMAX (LF) reagent was prepared using 40 nM 

siRNA. Untreated cells were used as controls. Gene downregulation was assayed by RT-qPCR 48 

h after incubation (n = 3). B-actin mRNA (ACTB) was used as endogenous control. The relative 

expression of target gene was determined using the ∆∆CT method (see materials and methods). 

 

Figure 33. –  Lipofectamine RNAiMAX carrying siRNA survivin (20nM) downregulates survivin 

protein in both Y79 and Y79-luc cells. Cells were harvested at 48 hours after transfection with 

siRNA/LF Non-treated cells were used as control of survivin expression. 
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Figure 34. –  Y79 cells viability 48 hours upon (A) carboplatin, (B) topotecan, (C) melphalan or 

(D) teniposide treatment. (E) IC50 before and after survivin silencing treatment with siRNA/LF 

(20nM).   
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Figure 35. –  Effect of survivin silencing on carboplatin and topotecan combined therapy in Y79 

cells.  Viability of Y79 cells after survivin downregulation by siRNA/LF (20nM) for 48 h followed by 

concomitant treatment with carboplatin (30µ) and topotecan (0.25 µM). Non-treated cells, cells 

treated with CBDA or TOPO only, or siRNA/LF only for 48 h following the same sequencing 

regimen were used as control. Cell’s viability was measured 96 hours from seeding using 

PrestoBlue fluorescence assay. Statistical analysis was performed using student t-test, where * (p 

< 0.05), ** (p < 0.005), *** (p < 0.0005), **** (p < 0.0001) and ns means no significant difference. 
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Figure 36. –  Viability of Y79 (A) and ARPE.19 (B) cells 48 hours after treatment with LF carrying 

siSurvivin (20 nM) or chemical inhibitor YM155 (2 nM).  Statistical analysis was performed using 

student t-test, where * (p < 0.05), ** (p < 0.005), *** (p < 0.0005), **** (p < 0.0001) and ns means 

no significant difference. 
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3.2. Abstract 

Blending amphiphilic copolymers and lipids constitutes a novel approach to combine the 

advantages of polymersomes and liposomes into a new single hybrid membrane. Efforts have 

been made to design stimuli-responsive vesicles, in which the membrane’s dynamic is modulated 

by specific triggers. In this investigation, we proposed the design of pH-responsive hybrid vesicles 

formulated with poly(dimethylsiloxane)-block-poly(ethylene oxide) backbone (PDMS36-b-PEO23) 

and cationic switchable lipid (CSL). The latter undergoes a pH-triggered conformational change 

and induces membrane destabilization. Using confocal imaging and DLS measurements, we 

interrogated the structural changes in CSL-doped lipid and hybrid polymer/lipid unilamellar 
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vesicles at the micro- and nanometric scale, respectively. Both switchable giant unilamellar lipid 

vesicles (GUV) and hybrid polymer/lipid unilamellar vesicles (GHUV) presented dynamic 

morphological changes, including protrusions and fission upon acidification. At the submicron 

scale, scattered intensity decreased for both switchable large unilamellar vesicles (LUV) and 

hybrid vesicles (LHUV) under acidic pH. Finally, monitoring the fluorescence leakage of 

encapsulated calcein, we attested that CSL increased the permeability of GUV and GHUV in a pH-

specific fashion. Altogether, these results show that switchable lipids provide a pH-sensitive 

behavior to hybrid polymer/lipid vesicles that could be exploited for the triggered release of 

drugs, cell biomimicry studies, or as bioinspired micro/nanoreactors. 

Keywords: hybrid polymer/lipid membrane; pH-sensitive liposomes; switchable lipid  

3.3. Introduction 

Liposomes were initially developed as simplified cell membrane analogs and rapidly recognized 

as promising vesicles for a wide range of pharmaceutical applications (125), especially as drug 

delivery carriers (199). More than fifteen liposomal-based drug formulations have reached the 

market (200) (e.g. AmBisome®, Doxil®/Caelyx®, and DepoCyt®), and, recently, lipid nanoparticles 

enabled the delivery of the first RNAi-based drug (OnPattro®), a milestone for gene therapy (201). 

Nonetheless, liposomes still suffer from short shelf-life due to low stability and poor control over 

membrane leakage. On the other end, polymersomes have been developed to overcome these 

limitations. Such vesicles are composed of amphiphilic copolymers able to self-assemble into 

vesicles similarly than liposomes, exhibiting more robust properties, such as a more stable and 

less permeable membrane (133).  

Recently, it became possible to combine the advantages of both polymersomes and liposomes 

into a new single hybrid unilamellar vesicle. Hybrid polymer/lipid vesicles combine the stiffness 

and stability of polymersomes with the biocompatibility and chemical functionality of 

phospholipids (134).  Modulation of the structuration of the hybrid membrane is possible by 

playing with the nature of polymer and lipids used and the polymer-to-lipid molar ratio (144). 

However, the membrane permeability remains an issue, as passive diffusion or membrane 

disruption are the main methods of payload release (137). Therefore, efforts have been made to 
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formulate “smart” hybrid polymer/lipid vesicles, which would be able to change their membrane 

properties in response to specific triggers (202). In particular, pH-sensitive vesicles allow specific 

drug delivery at acidic conditions, as present at certain pathological microenvironment, e.g. 

cancer (159), inflammation (203) and ischemia (204, 205), or upon vesicle endocytosis in early 

endosomes. We have recently developed pH-sensitive lipids that undergo a conformational 

switch at acidic pH (130). Incorporated into lipid nanoparticles, they destabilize the lipid 

membrane in a pH-responsive fashion through a mechanism involving fusion. Thanks to their 

endosomal escape ability, they massively release their cargo in less than 30 min, resulting in good 

in vitro and in vivo transfection of siRNA, for cancer (122) and hypercholesterolemia applications 

(121).   

In polymersomes, stimuli-responsive materials have been explored thanks to the versatility of 

polymer chemistry (137). Chen et al. formulated pH-sensitive polymersomes based on a PEG-

moiety-grafted acid-labile polycarbonate able to encapsulate both paclitaxel and doxorubicin 

hydrochloride (DOX.HCl) and promote their release upon acid-triggered hydrolysis (163). 

Similarly, Liu et al. encapsulated DOX and DOX.HCl in pH-sensitive polymersomes based on 

poly(D,L-lactide)-block-poly(2-methacryloyloxyethyl phosphorylcholine) (164). However, in both 

cases, only partial drug release was obtained after 24 hours of incubation. Quicker responding 

systems would be desired to trigger burst drug release at the target site or to match the time 

course of endosomal maturation, which is under 1 h.  

In this study, we hypothesized that doping polymeric membranes composed of poly-(ethylene 

oxide)-grafted poly(dimethylsiloxane) (PDMS-PEO) with switchable lipids would provide pH-

sensitive properties to the resulting hybrid polymer/lipid vesicles. PDMS-b-PEO was selected 

because both blocks are biocompatible and PDMS exhibits flexible chains, which is required to 

prepare giant vesicle by the hydration process. In addition, such PDMS-b-PEO polymersomes have 

demonstrated their ability to form stable hybrid edifices. We exploited the development of giant 

unilamellar vesicles (206) to investigate the dynamic behavior of switchable lipids in either lipid 

or hybrid polymer/lipid unilamellar membranes (GUV and GHUV) at an acidic environment using 

confocal imaging. We compared the results with DLS measurements of micrometer large 

unilamellar lipid or hybrid polymer/lipid vesicles (206) (LUV and LHUV) at acidic pH. Lastly, we 
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analyzed, qualitatively and quantitatively, the influence of switchable lipids on membrane’s 

permeability of calcein-loaded GUV and GHUV in acidic microenvironment.   

3.4. Materials and methods 

All organics solvents and chemicals were purchased from Sigma-Aldrich (Sigma-Aldrich Chimie, 

Saint Quentin Fallavier, France) and Thermo Scientific (Waltham, MA, USA). 1-Palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-

(lissamine rhodamine B sulfonyl) (Rhodamine-PE) were obtained from Avanti Polar Lipids Inc. 

(Alabaster, AL, USA). PDMS-NBD and  Poly-(ethylene oxide)-grafted poly(dimethylsiloxane) 

backbone (PDMS36-b-PEO23, Mn 4000 g.mol-1) were synthesized as previously described 

(Polymers, 2019, submitted) and is known to spontaneously form polymersomes with a 

membrane thickness of 9.9 nm. Cationic switchable lipid (CSL) was synthesized as previously 

described (121). Sucrose and all other chemicals were purchased from Sigma-Aldrich (Saint 

Quentin Fallavier, France). Liquid nuclear magnetic resonance was acquired on a Brucker AVANCE 

400 MHz spectrometer, using residual CHCl3 for peak calibration.  

 3.4.1. GUV and GHUV preparation 

Giant Unilamellar Vesicles (GUV) and Giant Hybrid Unilamellar Vesicles (GHUV) were prepared by 

the electroformation method proposed by Angela et al. (207). Briefly, a 1.4 mg.mL-1 solution of 

lipids (POPC or a mixture of POPC:CSL at a ratio 80:20 or 50:50 %mol) in chloroform or a mixture 

of polymer (PDMS36-b-PEO23) and lipid (POPC or CSL) at specific ratio (polymer:lipid 80:20 or 50:50 

%mol) was deposited thrice in each side of ITO-coated slide (Sigma Aldrich, Saint Quentin 

Fallavier, France) using a capillary tip. For confocal visualization, two probes were added to the 

appropriate lipid or polymer/lipid organic solution: Rhodamine-PE at 0.1% w/w for lipid bilayer 

visualization and/or PDMS-NBD at 1% w/w for polymer visualization. The electroformation 

chamber was set by connecting both ITO-covered slides using a rubber O-ring, which were, then, 

dried under vacuum overnight. The next day, samples were connected to an AC generator and an 

alternative voltage (10 Hz, 2 V) was applied, followed by immediate addition of 200 µL of 100 mM 

sucrose solution. GUV or GHUV were collected after 45 minutes using a syringe with 21-gauge 

needle. Samples were prepared the same day as experimentation.  



103 

3.4.2. LUV and LHUV preparation 

Large unilamellar vesicles (LUV) and large hybrid unilamellar vesicles (LHUV) were prepared using 

the lipid film hydration method. A lipid or a polymer/lipid solution in chloroform at the desired 

ratio (for LUV, 80:20 or 50:50 %mol POPC:CSL; for GHUV, 80:20 or 50:50 %mol PDMS36-b-

PEO23:CSL) was added in a 25 mL round-bottom flask, dried under reduced pression in a rotary 

evaporator and further dried under vacuum for at least 2 hours before hydration with 10 mL of 

ultrapure water at room temperature without any agitation to yield a 1.4 mg.mL-1 lipid 

suspension. Afterwards, the suspension was extruded 11 times through a 1 µm polycarbonate 

membrane (Avanti Polar Lipids Inc., Alabaster, AL, USA) for DLS measurement. 

3.4.3. 1H NMR measurement 

For 1H NMR measurements only, GUV or GHUV were prepared by the hydration of the lipid film 

as mentioned above for LUV and LHUV, in order to get the sufficient amount of particles. After 

hydration, vesicles were not extruded but rather transferred to another 150 mL round-bottom 

flask for further freeze-drying. Then, the powder was resuspended in 500 μL of deuterated 

chloroform for 1H NMR analysis to reach a final CSL concentration of 7 mg mL−1. Other 

components were calculated according to the POPC:CSL ratio, in GUV, or PDMS36-b-PEO23:CSL in 

GHUV. Samples were analyzed the same day as preparation. 

3.4.4. Dynamic and static light scattering  

Hydrodynamic diameter and ζ-potential of LUV or LHUV suspension were measured at 20°C using 

a Malvern Zetasizer Nano ZS (Malvern, Worcestershire, UK). Samples were diluted in Milli-Q water 

(1:2 v/v) to a final volume of 1 mL. Size measurements were performed with a scattered angle of 

173° and reported as Z-average (intensity). The voltage for ζ-potential was set automatically by 

the equipment. In order to evaluate the effect of pH change on the LUV or LHUV properties, 

samples were acidified with HCl 0.01 mM and monitored using pH-meter until a drop of pH from 

6.8 to 2.8. When applicable, equivalent amount to HCl of NaCl at the same molarity was added to 

vesicles suspension as a control. Measurements were performed at least in triplicate. Graphs 

were plotted using GraphPad (Prism 7, GraphPad Software Inc., San Diego, CA, USA). 



104 

3.4.5. Confocal imaging 

All images were acquired on a Leica TCS SP5 (Leica Microsystems CMS GmbH, Mannheim, 

Germany) inverted confocal microscope (DMI6000). A 50-μL aliquot of 100 mM sucrose 

suspension of GUV or GHUV was added into 150 μL iso-osmolar (100 mOsm L−1) glucose solution 

containing in an eight-well μ-Slide (Ibidi, Martinsried, Germany). Vesicles were allowed to 

sediment for at least 2 min before imaging. It is important to stress that vesicles were formulated 

in sucrose 100 mM and allowed to sediment in a glucose solution prepared at same concentration 

to avoid osmolarity shock. In order to evaluate the morphological and/or loaded-calcein intensity 

changes upon acidification, 39 μL of an iso-osmolar HCl solution in glucose (100 mOsm L−1, 4 × 

10−4 mM) was added directly in the well chamber. This volume of HCl was sufficient to, within 2 

min, drop the pH down to 4.7, which was a value lower than the pH of the CSL conformation 

switch [16]. As a control, the same volume of an iso-osmolar sucrose solution of NaCl was added 

to the vesicles-containing chamber. PDMS-NBD/calcein and rhodamine-PE were stepwisely 

imaged using an argon laser line with an excitation/range of emission of 488 nm/500–530 nm 

(PDMS-NBD/calcein) and 514 nm/600–700 nm (Rhodamine-PE). Images were processed using 

Fiji/ImageJ software.  

To calculate the overall fluorescence intensity of loaded calcein immediately before and after (2 

min) HCl treatment, 13 images per condition were processed by ImageJ software on the same 

Region of Interest (ROI). Fluorescence intensity ranged from 0 to 250 and the number of pixels 

for each intensity was normalized by the total amount of pixels measured. A normal distribution 

of fluorescence intensity was plotted using GraphPad (Prism 7, GraphPad Software Inc., San 

Diego, CA, USA). 

3.5. Results 

3.5.1. CSL was successfully inserted into LUV or LHUV 

In order to assess the incorporation of cationic switchable lipid (CSL) in lipid and hybrid 

polymer/lipid membranes, we prepared a series of vesicles and assessed their hydrodynamic 

diameter and polydispersity index (PDI) by DLS, their surface charge by electrophoretic light 
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scattering (ELS), and their composition by 1H NMR. CSL was incorporated (0, 20, 50 mol %) into 

POPC large unilamellar vesicles (LUV) or into PDMS36-b-PEO23 large hybrid unilamellar vesicles 

(LHUV) formed by the hydration method (Table 1). Their non-switchable counterparts (POPC only 

and PDMS36-b-PEO23:POPC 80:20 and 50:50 mol %) were prepared in a similar fashion and used 

as control throughout the experiments (Table 6). 

Name 
 

Composition 
(% w/w) 

Measured 
Molar Ratio 

(1H NMR)  

Hydrodynamic 
Diameter (nm) PDI ζ Potential 

(mV) 

LUV-POPC POPC n/a 687± 6 0.254 −26 ± 1 

LUV-CSL  POPC:CSL 80:20 80:20  101 ± 24 0.279 +29 ± 1 
POPC:CSL 50:50 54:46  245 ± 3 0.338 +38 ± 1 

LHUV-POPC PDMS36-b-PEO23:POPC 80:20 N/D 234 ± 0 0.339 −14 ± 1 
PDMS36-b-PEO23

:POPC 50:50 N/D 165 ± 9 0.290 −8 ± 1 

LHUV-CSL  PDMS36-b-PEO23:CSL 80:20 83:17  228 ± 2 0.354 +31 ± 1 
PDMS36-b-PEO23:CSL 50:50 51:49  320 ± 1 0.340 +35 ± 1 

N/D: not determined 

 Physico-chemical properties of LUVs and LHUVs. 

The ratio of 1H NMR aromatic peaks of CSL and methyl of POPC (CSL/POPC) and CSL and methyl 

of PDMS36-b-PEO23 (CSL/ PDMS36-b-PEO23) was used to determine actual ratio amount of CSL after 

preparation in LUV and LHUV, respectively (Figures S40-S43). The values, close to the initial 

feeding ratio, indicate that switchable lipid was successfully incorporated into LUV and LHUV. 

After extrusion using a 1 µm size filter, surprisingly, the vesicles exhibited a submicron size, which 

was characteristic of LUV and LHUV (206). The incorporation of CSL into LUV reversed the ζ-

potential, which was due to the cationic character of CSL. The ζ-potential varied according to the 

CSL amount within LUV or LHUV, accounting for the incorporation of CSL into the membranes. 

Regarding the hydrodynamic diameter, a strong decrease is observed upon incorporation of CSL 

into LUV, while the evolution is less clear for LHUV and depends on the amount of CSL 

incorporated.  
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3.5.2. Acid-related morphological modifications 

3.5.2.1. DLS and ζ-measurements 

CSL have been reported to undergo a conformational change upon acidification (predicted pKa » 

5.39), destabilizing liposomes membrane and promoting fast cytosolic delivery of siRNA if 

incorporated at 50% mol (121). In this study, the hydrodynamic size distribution and derived 

count rate (DCR), accounting for the number of particles detected, were examined before and 

after global decrease of pH from 6.8 to 2.8 (Figure 37, Figure S44 and Table S8). 

 

Figure 37. –  DLS and zeta potential measurements of LUV and LHUV at pH 6.8 and 2.8. (a) Size 

distribution and correlogram of LUV-CSL 50%; (b) Derived count rate and zeta potential of both 

LUV-POPC and LUV-CSL 50% at both pHs; (c) Size distribution and correlogram of LHUV-CSL 50% 

at both pHs and after NaCl addition; (d) Derived count rate and zeta potential of LHUV-POPC 50%, 

LHUV-CSL 20% and 50% at both pHs and after NaCl addition. Data represents mean ± SD (n = 3). 

Student’s t-test, where * (p < 0.05); ** (p < 0.005) and **** (p < 0.0001).  
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The presence of CSL strongly impacted the properties of both LUV and LHUV as compared to non-

switchable vesicles. Upon acidification, LUV-CSL 50% became smaller (from 245 to 126 nm, Table 

S1) and presented a 2-fold decrease in the derived count rate, whilst exhibiting a suitable 

correlogram profile (Figure 37A and B). In comparison, LUV-POPC did not show any significant 

change upon acidification (Figure 37B, S44 and Table S8). This observation confirms the presence 

of CSL into the lipid bilayer and suggests a rearrangement of the vesicles, that might involve fusion 

as previously reported (121). Interestingly, similar behavior was observed for hybrid vesicles. 

Acidification significantly decreased LHUV-CSL size (Figure 1c for LHUV-CSL 50% and Figure S5 for 

LHUV-CSL 20%) and DCR (Figure 1d and Table S1). The more CSL incorporated into the LHUV, the 

more marked these effects (Figure 37D). In comparison, LHUV-POPC 20% was not impacted by 

acidification, neither in size (Figure S44) nor DCR (Figure 37D). LHUV-POPC 50% showed a slight 

increase in size (Figure S44 and Table S8) but not in DCR (Figure 37D). This increase could result 

from aggregation when the remaining negative charges of POPC-based vesicles were eventually 

neutralized. Notably, the lowering in size and DCR at CSL-containing LHUV were not caused by 

osmotic changes, as addition of same volume of NaCl at similar molarity did not impact 

hydrodynamic diameter and only slightly DCR at the highest CSL concentration (Figure 37D, and 

Table S8). Altogether, those results attest that LUV-CSL and LHUV-CSL exhibit pH-dependent 

modifications, which are due to the presence of switchable lipid embedded in vesicles’ 

membrane.       

3.5.2.2. Confocal observations  

We further investigated the pH-triggered modifications in membranes bearing switchable lipid by 

macroscopic observations using confocal microscopy. We incorporated CSL into Giant Unilamellar 

Vesicles (GUV-CSL) or Giant Hybrid Unilamellar Vesicles (GHUV-CSL) prepared by 

electroformation, since their micrometric size is better adapted to confocal microscopy. Their 

morphological alterations upon global decrease of pH was experimentally examined under 

confocal microscopy and posteriorly categorized as vesicles with inward or outward structures 

(tubular protrusions, membrane attached aggregation), internalized vesicles or membrane 

fluctuation (non-round shaped vesicles) (208) and assembled in a table with values presented as 

relative percentage of total vesicles counted (Table 7). As previously, non-switchable Giant 
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Unilamellar Vesicles (GUV-POPC) or Giant Hybrid Unilamellar Vesicles (GHUV-POPC) were used as 

control. It has to be noted that we failed to harvest switchable GHUV containing 50% of CSL after 

45 minutes of electroformation. Therefore, we assessed the acid-induced modifications on GUV-

POPC, GUV-CSL 20% (Figure S45) and GUV-CSL 50% (Figure S46), GHUV-CSL 20% (Figure S47) and 

GHUV-POPC 20% (Figure S47).  

 
Number of 

Vesicles Analyzed 

Vesicles with 
Inward 

Structures 
1 

Internalized 

Vesicles 

Vesicles with 

Outward 
Structures 

1 

Membrane 

Fluctuation 
2
 

GUV-POPC 64 15% 5% 1.5% 0 

GUV-POPC+ 
NaCl 77 18%  5% 6.5% 0 

GUV-POPC + 
HCl 79 18% 4% 1% 0 

GUV-CSL 20% 125 11% 13%  3% 16% 

GUV-CSL 20% 
+ HCl 130 11%  16% 20% 4.6% 

GUV-CSL 50% 140 9% 6% 6% 9% 

GUV-CSL 50% 

+ NaCl 
254 6% 6% 2% 8% 

GUV-CSL 50% 

+ HCl 
208 14.5% 7% 14% 4% 

GHUV-POPC 
20% 135 14% 28% 4% 0 

GHUV-POPC 
20% + HCl 183 11.5% 13% 2% 0 
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GHUV-CSL 
20%  

43 

 
28% 37% 0  0 

GHUV-CSL 
20% + HCl 112 11% 40% 14% 7% 

1 nanotube, aggregations; 2 fluidity, non-rounded vesicles 

 Morphological changes in GUV and GHUV upon HCl or NaCl treatment. 

The most remarkable observation concerned outward structures after acidification. GUV-CSL 20% 

and GUV-CSL 50% vesicles responded to acidification by projecting outward tubular protrusions, 

since 20% and 14% of the vesicles analyzed presented such structures, respectively (Table 7). 

Membrane-derived structures pointing outward are commonly referred as positive curvatures 

(208), whilst negative curvature denotates membrane-arisen structures pointing inward. In the 

images, we could observe a positive membrane curvature in GUV-CSL 20% and 50% as a result of 

treatment with HCl but not NaCl (Figures S45 and S46). Nevertheless, it is difficult to correlate the 

number of outward structures to the proportion of CSL in the lipid composition, since our 

preparation method does not guarantee the incorporation of similar amount of lipids in each 

vesicle.  

Interestingly, this phenomenon was concomitant with a relative decrease in membrane 

fluctuation (Table 7), which could be associated to a transition from irregular shaped-vesicles 

towards more spherical shaped-vesicles after acid treatment (Figure S45, S46). Those effects were 

not observed in non-switchable vesicles, which did not show any substantial changes upon 

acidification (GUV-POPC, Table 7). Here again, these effects were not due to osmotic shock, since 

NaCl treatment did not impact CSL-GUV morphology (Table 7, Figure S45). Finally, In HCl-treated 

GUV-CSL 50%, the number of inward vesicles increased after acidification. This could be 

attributed to the further rearrangement of irregular-shaped vesicles, dividing into two daughter 

vesicles, as shown in the video S1 (Centre left, frame 1 to 8, Figure S46 and Video S1).  

Regarding the hybrid polymer/lipid structures, similar observations could be drawn, although 

exhibiting a different morphology. Whilst GHUV-POPC 20% exhibited spherical and isolated 

vesicles in agreement with previous reports (209), the presence of CSL in the membrane resulted 
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in aggregated multilamellar structures (Figure S47). Interestingly, the dual labeling of lipids 

(Rhodamine-PE) and polymers (PDMS-NBD) indicated that polymers and lipids were mixed 

homogeneously within the membrane (Figure S47). Quantitatively, 28% of GHUV-CSL 20 % 

displayed inward structures and 37% of population had internalized vesicles under confocal 

observation, but no outward protruding tubes or membrane fluctuation were observed before 

acidification. After a global decrease of pH, up to 14% of switchable GHUV projected outward 

tubes, in a similar fashion than switchable GUV (Table 7, Figure S47). Such quantitative 

observations, as well as qualitative observations (Figure S48 and video S2), demonstrate that 

positive curvature of membranes is a pH-triggered response due to CSL, regardless the 

membrane’s composition. For GHUV-CSL, this process was accompanied by an increase in the 

membrane fluidity (from 0 to 7%) and a reduction of the inward structures (Table 7). Furthermore, 

pH-triggered membrane distortions, leading to hybrid vesicles fission, was another similarity 

between CSL-bearing GUV and GHUV (GHUV-CSL 20%, frame 1-8, central left vesicle, Figure S48 

and Video S2).  

3.5.3. Study of the pH-Triggered Membrane Permeability to GUV and GHUV 

3.5.3.1. pH-triggered calcein release from GUV 

Since CSL provided membrane modifications to both lipid-based and hybrid lipid/polymer-based 

vesicles, we wondered if this behavior could result in pH-triggered permeability and/or drug 

release ability. Calcein (10 μM) was successfully encapsulated into GUV-CSL 50% and GUV-POPC 

50% using the electroformation method. GUV-CSL 20% were not studied since morphological 

changes were less significant than for GUV-CSL 50% (Table 7). Calcein was homogenously 

distributed in the core of GUV-POPC vesicles (Figure S49). Notably, calcein was not so evenly 

encapsulated into GUV-CSL 50%, which exhibited aggregation and calcein distribution within the 

core and the membrane of the vesicles (Figure S50). The permeability of calcein-loaded GUV was 

monitored by confocal microscopy upon acid treatment and the overall fluorescence intensity of 

vesicles was quantified before and after acidification (Figure 38)  
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Figure 38. –  Overall calcein fluorescence intensity in GUVs before and after acidification (pH 6.8 

and 4.8). (a) Calcein loaded GUV-POPC and (b) calcein-loaded GUV-CSL 50%.  

Acidification did not change the morphology (Figure S49) nor the fluorescence intensity (Figure 

2a) of the GUV-POPC vesicles. Conversely, GUV-CSL 50% lost their fluorescent content (Figure 

38B), demonstrating the release of calcein (Figure S50), qualitatively and quantitatively. These 

results confirm the pH-triggered release of hydrophilic probes reported for switchable lipids 

previously (130). In addition, the time course of these experiments (analysis after 2 min 

acidification) agree with the fast conformational switch of the lipids (130). Remarkably, an uneven 
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distribution of calcein intensity inside GUV-CSL 50% population was observed after acidification 

(Figure 38). This suggests that all the vesicles did not incorporate the same amount of CSL, since 

we previously reported that magnitude of release was related to the proportion of CSL in the lipid 

composition (130).  

3.5.3.2. pH-triggered calcein release from GHUV 

The impact of CSL incorporation on the behavior of hybrid lipid/polymer vesicles was monitored 

the same way. Calcein was incorporated successfully into all hybrid lipid/polymer vesicles, 

yielding homogeneous spherical vesicles, even for GHUV-CSL 50%, which were not harvested 

without calcein (Figure 39 and S51). GHUV-CSL 20% were also much less aggregated and more 

unilamellar than their empty counterparts (compare Figure S8 and 39B). We could hypothesize 

that the presence of calcein at the interface, due to its amphiphilic nature, might modify surface 

properties and prevent membrane collapse and vesicle aggregation. 

Global decrease of pH slightly impacted the intensity of GHUV-POPC 20% vesicles, but not the 

regular round morphology (Figure 39A). In contrast, GHUV-CSL 20% drastically lose their 

fluorescent content in few minutes, resulting in mostly empty vesicles (Figure 39B). Video 

recording demonstrated that the rate of release could vary according to the particles (Video S3). 

As previously checked, this release was not due to osmotic shock, since NaCl treatment did not 

trigger any release from the GHUV-CSL 20% (Figure 39C). Importantly, significant morphological 

changes were observed in GHUV-CSL 20% and 50% (Figure 39B and S51, respectively). Protruding 

and membrane fluidity (Figure 39B and Video S3) was observed at acidic pH, consistently with 

unloaded GHUV-CSL (Figure S9). In addition, vesicles became multilamellar and more aggregated 

(Figure S12), similarly to unloaded GHUV-CSL vesicles (Figure S48). In the case of calcein-loaded 

GHUV-CSL 50%, only a few aggregated vesicles were visualized after HCl treatment (Figure S51), 

as the hybrid system disrupted with global acidification (Video S4).  
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Figure 39. –  Overall calcein fluorescence intensity distribution in GHUVs before and after 

acidification. (a) overall intensity in GHUV-POPC 20% followed by confocal pictures before and 

after acidification; (b) overall intensity of loaded-calcein in GHUV-CSL3 20% followed by 

representative pictures before and after acidification or (c) NaCl treatment. Scale bar: 10 µm. 
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3.6. Discussion 

Molecular tweezers have been recently explored for pharmaceutical applications (129). Their 

defined molecular structure allows a fine-tuned control over their conformation, which can be 

monitored by external stimuli, such as pH, ions, or light (210). We have previously developed 

switchable lipids, which exploit a pH-triggered conformational change in order to destabilize a 

lipid membrane and release hydrophilic drugs and oligonucleotides in the cytoplasm of cells (121, 

130). Although the microscopic mechanism of membrane destabilization by CSL is not yet 

elucidated, we demonstrated that fusion occurred in a pH-responsive fashion and could explain 

endosomal escape (121). In this study, we investigated further the biophysical behavior of the 

lipid membrane upon acidification, to understand deeper the membrane deformation upon 

acidification. Although different types of vesicles were examined (LUV and GUV composed of 

POPC and CSL, on the one hand, and hybrid polymer lipid, LHUV and GHUV composed of PDMS-

b-PEO diblock copolymer, POPC and CSL, on the other hand), several common features were 

observed and could be attributed to the presence of the switchable lipid. Firstly, the pH-triggered 

release of calcein confirmed the fluorescence studies of sulforhodamine B release from 

switchable liposomes according to the pH (130). In latter study, 88% of the content was released 

in less than 15 min. The amplitude of release was related to the amount of the switchable lipid in 

the lipid composition, and to the pH. In addition, the confocal live observations were consistent 

with a fast responding system leading to quick release (less than 15 min). Secondly, we show for 

the first time that CSL-containing LUV undergo a size change (Table S8) under acidic treatment 

and that CSL-containing GUV present morphological alterations (Figure S45 and Table 7). 

Therefore, this study brings additional evidence that pH-triggered macroscopic changes of the 

lipid membranes are due to the conformational switch of the CSL. Remarkably, the difference 

between neutral and acidic conditions demonstrates the pH selectivity, which ensures 

biocompatibility with biological membranes at pH 7.4. 

Then, such properties were then exploited for hybrid lipid/polymer membranes, in order to 

provide pH-responsive ability to polymersomes. Hybrid lipid/polymer vesicles have been 

designed with the idea of overcoming the drawbacks of each component (leakage and mechanical 
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instability for liposomes, low permeability for polymersomes) and combining the benefits of each 

component (biocompatibility and permeability of liposomes, toughness of polymersomes) (134) 

Some studies comment about their potential use as nano/micro reactors (211) and/or as drug 

delivery agents (212), where membrane permeability is of prime importance. Without stimuli-

responsive properties, payload release is only achieved by passive diffusion. In this study, we 

selected PDMS-b-PEO diblock copolymers, as they are able to form hybrid vesicles in association 

with POPC (213). We used lipid/polymer composition leading to a homogenous phase distribution 

and the pH-sensitive properties were maintained in GHUV, demonstrating the potential of the 

switchable lipid. 

Macroscopically, GUV-CSL 50% and GHUV-CSL 20% shared a remarkable feature when submitted 

to HCl treatment: both lipid and hybrid polymer/lipid vesicles underwent morphological changes 

after global acidification (Table 7, Figure S45 and S47). In particular, the observation of outward 

structures upon acidification were specific to CSL-containing vesicles, since POPC-containing 

vesicles did not exhibit such deformations, and they were not due to osmotic changes. Another 

interesting observation shared among minimal membrane system and hybrid polymer/lipid 

vesicles was intense membrane fluctuation leading to vesicles fission (Figure S46 and S48). 

Altogether, the morphological changes observed in this study at a nanometer (LHUV) or 

micrometer scale (GHUV) are due to the presence of the switchable lipid, which is able to 

destabilize polymer membranes, reported to be much stiffer than lipid membranes (133, 135, 

214) . To our knowledge, the morphological changes reported here are the first report of pH-

sensitive lipid/polymer hybrid vesicles (LHUV or GHUV).  

3.7. Conclusion 

In this study, we show how a cationic switchable lipid (CSL) impacts the membrane dynamics of a 

lipid or hybrid lipid/polymer membrane in a pH-responsive manner. At a nanometer scale (LUV 

and LHUV), the incorporation of CSL resulted in decreased size and count rate, which was not 

observed for non-responsive vesicles. At a micrometer scale (GUV and GHUV), CSL incorporation 

resulted in pH-triggered membrane morphological changes and increased membrane 

permeability. This study gives additional insight to the biological behavior of CSL-based lipid 
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nanoparticles previously reported and open new perspectives in hybrid lipid/polymer vesicle 

design. In future studies, it would be important to screen different polymers or lipid/polymer 

blends to investigate the possibility of domains formation, which could lead to a pH-responsive 

gate in synthetic vesicles. In this case, we need to further develop a fluorescent-tagged switchable 

lipid to address their distribution within lipid and hybrids polymer/lipid membranes. Moreover, 

anisotropic NMR could unveil whether the tweezer-like structure arisen from pH-triggered 

conformational change are responsible for a bilayer incompatible polymorphism. 

3.8. Supporting information 

Figure 40 : 1H NMR of GUV-CSL 20% in CDCl3 

Figure 41 : 1H NMR GUV-CSL 50% in CDCl3 

Figure 42 : 1H NMR GHUV-CSL 20% in CDCl3 

Figure 43 : 1H NMR GHUV-CSL 50% in CDCl3 

Figure 44: Size distribution and correlogram fit of LUV and LHUV at pH 6.8 and 2.8 

Table8: Physico-chemical properties of LUVs and LHUVs before and after treatment with HCl or 

NaCl. 

Figure 45: Morphological changes of GUVs upon HCl or NaCl treatment. 

Figure 46: Snapshots of morphological changes in GUV-CSL 50% treated with HCl. 

Figure 47: Morphological changes of GHUVs upon HCl treatment.  

Figure 48: Snapshots of morphological changes in GHUV-CSL 20% treated with HCl. 

Figure 49: Permeability of calcein-loaded GUV-POPC 50% treated with HCl. 

Figure 50: Snapshots of morphological changes in GUV-CSL 50% treated with HCl. 

Figure 51:. Snapshots of calcein-loaded GHUV-CSL 50% treated with HCl. 
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Figure 40. –  1H NMR spectrum of GUV-CSL 20% in CDCl3 

 

 

Figure 41. –  1H NMR spectrum of GUV-CSL 50% in CDCl3 
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Figure 42. –  1H NMR spectrum of GHUV-CSL 20% in CDCl3 

 

 

Figure 43. –  1H NMR spectrum of GHUV-CSL 50% in CDCl3 
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Figure 44. –  Size distribution and correlogram fit of LUV and LHUV at pH 6.8 and 2.8.  (a) LUV-

POPC, (b) LHUV-POPC 20%, (c) LHUV-POPC 50%, (d) LHUV-CSL 20%. 
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Name 
Composition 

(% mol) 

Hydrodynamic diameter 
(nm) 

DCR 
 (Derived count rate) 

pH 6.8 pH 2.8 NaCl pH 6.8 pH 2.8 NaCl 
LUV-POPC 

n/a 687± 6 657 ± 9 ND1 
1.0 x 105 ± 
0.6 x 103 

0.9 x 105 ± 
0.4 x 103 

ND 

LUV-CSL 
POPC:CSL 50:50 245 ± 3 126 ± 1 ND 

2.4 x 105 ± 
1.3 x 103 

1.2 x 105 ± 
0.2 x 103 

ND 

LHUV-POPC PDMS36-b-PEO23: 
POPC 80:20 

234 ± 1 232 ± 3 ND 
6.1 x 104 ± 
0.2 x 103 

6.1 x 104 ± 
0.1 x 103 

ND 

PDMS36-b-PEO23
: 

POPC  50:50 
165 ± 2 216 ± 1 ND 

4.5 x 104 ± 
0.1 x 103 

4.8 x 104 ± 
3.7 x 103 

ND 

LHUV-CSL PDMS36-b-PEO23: 
CSL 80:20 

228 ± 2 177 ± 1 242 ± 8 
6.4 x 104 ± 
1.0 x 103 

6.1 x 104 ± 
0.07 x 103 

6.7 x 104 ± 
2.2 x 103 

PDMS36-b-PEO23: 
CSL 50:50 

320 ± 1 183 ± 1 
312 ± 

10 
8.4 x 104 ± 
0.8 x 103 

6.3 x 104 ± 
0.3 x 103 

9.0 x 104 ± 
0.5 x 103 

1Not determined 

 Physico-chemical properties of LUVs and LHUVs before and after treatment with 

HCl or NaCl. 
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Figure 45. –  Morphological changes of GUVs upon HCl or NaCl treatment. Open arrows: vesicles 

with outward projections. Full arrows: membrane fluctuation events. Scale bar: 10 µm. 
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Figure 46. –  Snapshots of morphological changes in GUV-CSL 50% treated with HCl. White 

boxes in the upper left corner indicate frame order. Scale bar: 10 µm. Time-lapse between 

pictures is 0.143 second; total time-lapse is 1.86 seconds. Scale bar: 10 µm.  

 

 

Figure 47. –  Morphological changes of GHUVs upon HCl treatment. Open arrows: vesicles with 

outward projections. Full arrows: membrane fluctuation events. Scale bar: 10 µm.     
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Figure 48. –  Snapshots of morphological changes in GHUV-CSL 20% treated with HCl. Merged 

PDMS-NBD and Rhodamine-PE filters. Scale bar: 10 µm. Time-lapse between pictures is 0.694 

second; total time-lapse is 6.25 seconds. Scale bar: 10 µm.         
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Figure 49. –  Permeability of calcein-loaded GUV-POPC 50% treated with HCl. Snapshots of 

morphological changes in GUV-POPC 50% treated with HCl. Rhodamine, calcein and merged 

filters. Scale bar: 10 µm 
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Figure 50. –  Snapshots of morphological changes in GUV-CSL 50% treated with HCl. Rhodamine, 

calcein and merged filters. Scale bar: 10 µm 
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Figure 51. –  Snapshots of calcein-loaded GHUV-CSL 50% treated with HCl. Calcein filters. 

Scalebar: 10 µm. 
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Chapter 4 – Discussion and perspectives 

4.1. Switchable lipids : a robust delivery platform  

The general objective of this investigation was to gather more scientific evidence about the 

cationic switchable lipid (CSL). This structure has emerged in our research team from a technology 

transfer from molecular tweezers into pharmaceutical sciences (129). Molecular tweezers are 

biomimetic recognition hosts, displaying a spatial cavity defined by two arms and a linker (210). 

Such structures allow fine control over the conformation of the molecules and their potential 

interactions. Dynamic tweezers could be obtained by introducing a stimulus-responsive unit, 

controlling a conformational change upon a stimulus. In our project, the pH-sensitive unit was 

composed of anicole-pyridine-anisole motif. This unit allowed the pH-triggered binding and 

release of an anticancer drug model (215). When introduced into a lipid structure, it provided pH-

responsive drug release properties to the lipid particles. Since the first proof-of-concept of 

cytosolic delivery (130), two generations of lipids have been identified: a non-cationic lipid 

(C12diMe,(130)), yielding negatively charged lipid nanoparticles, and a cationic counterpart, CSL, 

used in this study, designed for nucleic acid delivery (121). Interestingly, this lipid has now been 

assessed in various applications, gathered in Table 9: 

Lipid Formulation Drug/gene 
Application 

Cell/animal model 
Vitro/vivo ref 

C12diMe 

C12COOH 

C12NH2 

C12diMe/DSPC

/DSPE-PEG 
Sulforhodamine B 

Endosomal escape 

HeLa 
In vitro (130) 

CSL1 

CSL2 

CSL3  

CSL4 

CSL/Chol/DSPC

/DSPE-PEG 

siRNA GFP 

siRNA PCSK9 

siRNA FVII 

HeLa 

Liver targeting: 

Hypercholesterolemia 

(Huh-7) 

Coagulation cascade 

In vitro 

in vivo 
(121) 
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CSL3 
CSL/Chol/DSPC

/DSPE-PEG 

Melphalan 

miR-181a 
Retinoblastoma (Y79) 

In vitro 

In vivo 
(122) 

CSL3 
CSL/Chol/DSPC

/DSPE-PEG 
Poly (I/C) 

Pulmonary 

administration 

(bronchial cells 

submerged/well-

differentiated) 

In vitro 
(216-

218) 

CSL3 
CSL/Chol/DSPC

/DSPE-PEG 
siRNA 

Placenta cells (human 

primary villous 

cytotrophoblasts) 

Macrophages 

In vitro (219) 

CSL3 
CSL/Chol/DSPC

/DSPE-PEG 
siRNA survivin 

Lung, breast, colon, 

cervix, ovary, 

retinoblastoma 

In vitro 1 

CSL3 
POPC/CSL3 

PDMS-PEO 
calcein GUV, GHUV In vitro 1 

CSL3 

C12diMe 

CSL/Chol/DSPC

/DSPE-PEG 

C12diMe/DSPC

/DSPE-PEG 

Blank LNP Zebrafish toxicity In vivo 2 

1This M.Sc, 2Not published 

 Applications of switchable LNP as a drug/gene carrier.   

Therefore, based on the scientific evidence accumulated to the present moment, including the 

results provided in this M.Sc thesis, we add more evidence to switchable LNP as a robust platform 

for drug and gene delivery, when nanovectors are formulated with C12diMe or CSL3 as the 

switchable lipid component, respectively. Furthermore, LNP containing the cationic switchable 

lipid (CSL) has demonstrated to be a versatile carrier for gene transfection, as show by: miRNA 

(122), Poly (I/C) (mimic of viral double-stranded RNA) (216-218), siRNA (121) and pDNA (ongoing 

investigation). Notably, the composition of switchable LNP designed for gene delivery was 
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inspired from the OnPattro formulation. Tailoring the composition of switchable LNP for each 

variety of genetic cargo (e.g. mRNA) could be envisaged to improve the potency of switchable 

LNP as transfection carrier (126, 220). The optimization might include varying the excipients 

formulated alongside the CSL to afford switchable LNP or structural modifications in the cationic 

lipid but preserving the switchable unit responsible for the fast pH-triggered release of cargo.  

Several cancer cell models have been assessed. This investigation has demonstrated that 

switchable LNP display a variable activity in downregulating survivin at the mRNA level. Cells 

reported as “easy-to-transfect” (HeLa, MCF-7, A549) exhibited good transfection in this 

investigation, corroborating with data obtained in previous studies, where switchable LNP 

efficiently transfected HeLa (121) and macrophages (217). Importantly, switchable LNP also 

delivered cargo to hosts reported as difficult to transfect by non-viral vectors, such as primary 

cells (218, 219). Further work should focus on explaining the variability of survivin mRNA levels 

among cell lines after siLNP transfection encountered in this work. Potential points to be 

addressed in a cell-specific fashion include, but not limited to LNP-cell interaction, cell uptake, 

endosomal escape rate and intracellular fate of switchable lipid.  

Interestingly, the transfection efficiency of switchable LNP can be compared with commercial 

agents. In vitro, we have previously demonstrated that switchable LNP promoted GFP knockdown 

in stable GFP expressing HeLa cells similarly to lipofectamine (121). In this investigation, we 

demonstrated that switchable LNP silenced survivin and synergistically enhanced the cytotoxicity 

of CBDA and MELPH as did lipofectamine. In vivo, switchable LNP silenced Factor VII (FVII) in 

values compared with that to the 1st generation of ionizable cationic lipid (DLinDMA) (Figure 52), 

which was the precursor that paved the way to the synthesis of DLin-MC3-DMA, the major 

component of OnPattro formulation.  
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Figure 52. –  Comparison of in vivo dose-dependent silencing of FVII by switchable LNP (CSL3, 

filled circles, left) or ionizable lipid-containing LNP (1st and 2nd generations, right). Adapted from 

(121, 221) 

Finally, in chapter 3, we developed a new hybrid switchable lipid/polymer vesicle. The 

compatibility of switchable lipids with a diblock copolymer (PDMS36-b-PEO23) adds more evidence 

into the robustness of switchable lipids as building blocks for responsive vesicles.  This opens new 

possibilities of vesicle formulations or biomimetic synthetic cells. Overall, the transfection ability 

of switchable LNP was assessed in several cell lines. The good performance observed encourage 

us, in the future, to seek further potential applications of switchable LNP as delivery vectors. 

Possible applications will involve an extensive investigation of stability and transfection efficiency 

of switchable LNP as a carrier for different cargos, e.g. mRNA and CRISPR/Cas-9. 

4.1.1. Targeting survivin : advantages and limitations  

To explore the opportunity of switchable LNP in cancer, we selected a target that was common 

to several cancers: survivin. This study allowed us to discern the advantages and limitations of 

this target. 

Advantages of survivin targeting 

• The relationship between survivin and cancer, as the implications thereof, has been 

largely reported in the literature. Although its mechanism is still not fully elucidated, much 
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evidence sustain the involvement of survivin in cancer resistance to apoptosis. Therefore, 

anti survivin strategies could be envisaged to ameliorate the cytotoxicity of virtually any 

drug that encountered resistance; 

• Survivin is virtually expressed in all malignancies, becoming a universal cancer target. As 

we demonstrated that survivin silencing in retinoblastoma synergistically improved the 

cytotoxicity of selected chemotherapeutics, we could translate this strategy to other cell 

lines. As the survivin intracellular network is deeply implicated in many signaling pathways 

(Figure 4), some cell lines might rely more on survivin as an apoptosis guardian, thus 

combining survivin silencing with anti-cancer drugs in such lineages would result in a 

better cytotoxicity efficiency; 

• Survivin stands out as a cancer-specific target: it is overexpressed in malignancies, but 

silenced in healthy and well-differentiated adult cells. We have confirmed that survivin 

was not expressed in healthy cells. This opportunity reflected in a targeted treatment with 

a better benefit to risk ratio with that of YM155 for instance (Figure 36). 

Limitations of survivin targeting 

• Survivin protein levels are not uniformly expressed. Survivin is a cell cycle-dependent 

protein (222). It is important that experiments are carried out with synchronized cells to 

assure a homogeneous level of survivin to discriminate the role of survivin in preventing 

apoptosis followed by treatment with chemotherapeutics. Furthermore, it is unknown 

whether survivin level varies upon cell passage. As an example: cells originating from the 

same source, such as Y79 and Y79 stably expressing luciferase (Y79 Luc), did not show the 

same mRNA survivin levels after siLNP transfection (Figure 30). Different cell passage or 

intracellular pathways altered by lentiviral modification might perturb the phenotypic 

response of survivin silencing. Those factors add difficulty in the reproducibility of 

experiments and raise precaution before translating assumptions of survivin benefits to 

chemotherapeutics to in vivo experimentation; 

• Interconnexion with drug mechanism: the lesson from this study is that not any drugs can 

be combined with anti-survivin strategies. The straightforward thinking that survivin 

silencing will synergistically improve the cytotoxicity of drugs is not always valid. To 
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rationally choose a good candidate, one must perform experiments that interrogate the 

relationship between survivin and the drug candidate differently. For example, we 

assessed the survivin and caspase-3 mRNA levels in Y79 cells after the incubation with the 

4 drugs under investigation. We expected to select our candidate based on the survivin 

overexpression, accompanied by a downregulation of caspase 3, as a response to DNA 

damage-inducing agents. That was not the case as no drug presented such a pattern 

clearly. In the cytotoxicity study, we confirmed that survivin silencing as an adjuvant 

therapy synergistically ameliorated the cytotoxicity of carboplatin and melphalan, but not 

teniposide. Therefore, more experiments are necessary to clarify the interaction between 

melphalan and survivin, or carboplatin and survivin (e.g. survivin and/or drug treatment 

at different cell-cycle phase, investigation of apoptosis by flow cytometry using annexin/PI 

co-staining, caspase activity by immunoassays, blockage of p53/p21 prior survivin/drug 

incubation). To this end, we have observed that transfection with siRNA prior drug 

treatment abrogated survivin overexpression in carboplatin-treated Y79 cells (Figure 20C). 

Moreover, carboplatin induces p21 and p53 protein expression in luciferase-expressing 

Y79 cells (Figure 29C). Blocking p53 or p21 activity could add more data to the hypothesis 

that survivin is overexpressed in Y79 cells as a defense mechanism against carboplatin-

induced apoptosis and that the synergistic effect observed is mediated by the p53/p21 

axis. Other experiments were envisaged in this study, but must be cautiously considered 

due to reproducibility (n=1). Among those experiments, we observed that transfection of 

siRNA survivin (20 nM) arrested Y79 cells in the G2/M phase 96 hours after transfection 

and delayed cells’ proliferation during the 10-days course of the experiment as compared 

with that of non-treated cells (Figure 53).  
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Figure 53. –  Effects of transfection of siRNA survivin (20 nM) on cell cycle and proliferation in 

Y79 cells. N=1  

Other considerations into survivin targeting strategies 

• Co-delivery of siRNA and drugs. Here we demonstrated that the incubation of 

chemotherapeutics with Y79 cells 48 hours after transfection of the siRNA against survivin 

led to better cytotoxicity of drugs. By Western blotting, we observed that 48 hours was 

required for protein downregulation after LF or switchable LNP siRNA survivin transfection 

(compare Figure 27 (siLNP) with 33 (LF)). Temporal investigation of drug and siRNA 

adjuvant therapy might help to elucidate the best kinetics to observe synergism between 

the two treatments; 
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• Drugs that target survivin pathway. As a nodal protein involved in cell division and cell 

death, cancer cells might strongly depend on survivin for proliferation. Liu et al. (89) and 

Samuel et al. (90) transfected Y79 cells with 100 nM of siRNA against survivin and observed 

that survivin downregulation induced apoptosis and impaired cells’ proliferation and 

viability. We did not observe such effects when we transfected 20 nM of siRNA against 

survivin in Y79 cells, although this amount of siRNA was enough to ameliorate drugs 

cytotoxicity. To improve this effect, one might combine a dual-targeting strategy (e.g. 

targeting proliferation signaling, SYK, and apoptosis regulator, survivin) inspired by the 

synthetic lethality approach. See further consideration of this proposal in the perspective 

section;    

• A final general comment relies upon the prospective applicability of the survivin-targeted 

siRNA compared with the survivin-suppressant molecule, YM155. The later did not 

achieve its primary endpoints in clinical trials, although it was generally well tolerated (51, 

73). Two reasons might justify the failure of YM155 in reaching the bedside: the molecule 

is chemically unstable, as serum concentration of YM155 rapidly decreased once the drug 

infusion stopped (223);  secondly, YM155 was first believed to mediate specific survivin 

silencing through inhibition of its promoter region (60). Further studies put that into 

question and the exact mechanism whereby the molecule mediates survivin silencing is 

not fully elucidated (61). As recently advocated by Lin et al. (224), numerous anticancer 

candidates might be failing in achieving clinical benefits due to a misconceived mechanism 

of action. YM155 may fall into that category. Strategies based on siRNA technology might 

circumvent this issue by specifically inhibiting the mRNA target. Here we put forward more 

in vitro evidence that switchable LNP stands out as a promising non-viral siRNA carrier. 

However, caution must be exercised as a single siRNA is not sufficient to ascertain 

specificity because of possible off-target effects; 2 or more different siRNA against the 

same target would reinforce the results obtained. 

In conclusion, we show more evidence that survivin is a promising target but its mechanism within 

the cancer model under investigation should be better understood. Otherwise, results might fail 

on reproducibility or significance. Although significant, the results drawn in this study might not 
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be sufficient to go on in vivo experimentation. Drug concentration is still high and further 

clarification on survivin mechanism might help to rationally select a better drug candidate and/or 

treatment protocol. Under the light of good animal care handling, our studies could still be 

optimized before in vivo testing.  

4.3. pH-triggered switch : a selective fluidity modulation  

The driving hypothesis of the switchable lipid was that the pH-triggered switch could occur in 

diverse environments. The various applications in this study and previous ones showed that it is 

indeed the case. In particular, it is important to note that the switch could overcome the 

hydrophobic stacking of lipids in bilayers. Here we demonstrated that this is also the case when 

CSL is embedded in the hybrid polymer/lipid membrane. This is a major asset to develop further 

the portfolio of formulations involving CSL. 

Several mechanisms could be proposed to explain cytosolic release of cargo by pH-sensitive lipids 

(225, 226): (A) non-endosomal processes, which would include fusion of liposomes with 

cytoplasmatic membrane and thus cargo release and (B) processes involving endosomal escape 

pathways. The later could more better detailed into (i) fusion between liposomal and endosomal 

membranes, (ii) active cargo transport via endosomal membrane proteins or liposomal 

destabilization and passive diffusion of cargo across endosome membrane, (iii) transient 

disruption of endosomal membrane and (iv) lysis of endosome and cytosolic delivery of cargo 

(Figure 54).  
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Figure 54. –  Endosomal escape pathways mediated by pH-sensitive liposomes. Adapted from 

(118) 

 
Since the first proof-of-concept of switchable LNP as a platform for cytosolic delivery of drugs 

(130), we have gathered several evidences that: 

• Endosomal pathway is involved. Switchable LNP mediates cargo release via endosomal 

destabilization. Fluorescence co-visualization of endosomal pathway and encapsulated 

cargo demonstrated that switchable LNP are internalized through the endosomal pathway 

(130). Moreover, blockade of the endosomal acidification with Bafilomycin A1 or 

formulating an LNP containing a non-switchable CSL-analog abrogated siRNA silencing, 

confirming the acidification is a key trigger in the endosomal escape process (121).  
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• Fusion is involved in the pH-triggered release. Lipid mixing assay confirmed that fusion 

events were observed for C12DiMe and CSL3 at the nanoscale (121, 130). We might then 

hypothesize that this lipid mixing is occurring with the endosomal membrane. In our study, 

we indeed confirmed high membrane fluidity leading to intermembrane fusion and fission 

events in GUV (Figure 46) and GHUV (Figure 48). Further experiments using fluorescence 

resonance energy transfer (FRET) can investigate both switchable lipid and siRNA fate 

within the cell upon internalization; lipid colocalization with early/late endosomes would 

clarify whether CSL is transferred to the endosomal membrane after destabilization event; 

finally, a dual-labeled switchable lipid would unravel the integrity and fate of CSL after 

endocytosis and endosomal destabilization.    

• Vesicles are maintained after acidification (no lysis). At the nanoscale, the mixing and 

fusion events that were reported in previous investigations could be correlated with a 

decrease in derived count rates observed in our studies (Figure 37D). Here we also 

observed that vesicles were preserved in the acidic environment, as reflected by the 

correlogram fit and particle distribution (DLS measurements, Figure 37C). Moreover, at 

the microscale, giant vesicles were maintained after acidification. Such observations were 

valid whether switchable lipids were formulated in giant liposomes or hybrid 

polymer/lipid vesicles. Properties observed at the micrometer scale must be cautiously 

investigated before translating to vesicles at the nanoscale (206). Therefore, further 

physicochemical analyses are still needed to understand the role of CSL in mediating 

endosomal disruption and cytosolic delivery of siRNA. Such clarification is of utmost 

importance in the development of more efficient switchable lipid-based formulations. To 

this end, we also pursued atomic force microscopy (AFM), Transmission electron 

cryomicroscopy (cryo-TEM), and NMR studies to follow the morphology of particles at 

different pH (ongoing studies).  

Our study confirmed the following observations: 

• The dynamic of switchable lipid-containing membranes is significantly higher at acidic pH 

rather than at neutral pH (qualitati and quantitative observations). GUV containing CSL at 

20 and 50 % molar ratio induced positive membrane curvature (outward protruding 
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nanotubes) and a high degree of membrane fluidity upon acidification, as observed 

quantitatively (Table 7) and qualitatively (Figure 45 and 46). Remarkably, molar amount 

of CSL as low as 20 % added responsive properties to the stiff PDMS36-b-PEO23 membrane, 

quantitatively (GHUV-CSL, Table 7) and qualitatively (Figure 47 and 48). Again, this is a 

major asset to broaden the portfolio of novel formulations containing CSL.  

• CSL lipids are homogeneously distributed within the membrane, ruling out the “pore 

transient destabilization” hypothesis (iii). 

• Finally the mechanism is due to the pH-switching unit, as we confirmed that osmotic shock 

(NaCl treatment) did not trigger structural changes nor did it confer fluidity in CSL-

containing GUV/GHUV membranes. Moreover, such observations required the presence 

of CSL within membranes, as controlled vesicles (GUV and GHUV formulated with neutral 

lipid POPC and blended PDMS36-b-PEO23/POPC, respectively) did not behave similarly upon 

HCl treatment. To further confirm the role of the switchable unit, we observed that giant 

unilamellar vesicles formulated with 50% of C12diMe (GUV-C12diMe, non-cationic 

switchable lipid, (130)) also presented structural changes (positive membrane curvature) 

when exposed to an acidic environment (Table 10 and Figure 55, left). Finally, the pH-

switching unit is responsible for modulating membrane fluidity as calcein-loaded GUV-

C12diMe rapidly (less than 2 minutes) released encapsulated cargo when exposed to HCl. 

The quick-release of encapsulated cargo was reported previously in C12diMe containing 

liposomes (130).  
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 Morphological changes in GUV-Di12diMe 50% treated with HCl. 
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Figure 55. –  GUV-C12diMe 50% and calcein-loaded GUV-C12diMe 50% submitted to HCl 

treatment. Left: GUV-C12diMe 50% exposed to HCl treatment. Bottom left: 3D visualization of 

GUV-C12diMe 50% exposed to HCl. Right:  calcein-loaded GUV-C12diMe 50% exposed to HCl and 

NaCl. Calcein filter. Open arrows indicate positive membrane curvature. Scale bar: 10 µm.    

Therefore, this study is a crucial step in the understanding of the membrane behavior of 

switchable lipids. It is also very important to note that this membrane fluidity is selective at acidic 

pH. The vesicles are stable at pH 7, which prevents from fusion with cellular membranes, and 

potential non-specific toxicity (eg.; red blood cells and hemolysis). Indeed, all the toxicity tests 

that have been pursued to date did not reveal any toxicity of the switchable lipids when 

incorporated into liposomes with or without siRNA complexation (hemolysis tests, resazurin-

based cell viability assay, LDH and zebrafish model (121, 122, 130, 216) this investigation and 

ongoing studies). We strongly believe that this difference of membrane fluidity between neutral 

and acidic pH guarantee switchable LNP biocompatibility.    

4.4. Perspectives 

4.4.1. Optimizing survivin targeting strategy in RB 

Retinoblastoma is a particular tumor with considerable genomic stability (227). The whole-

genome sequence of RB samples identified RB1 as the sole tumor-driver gene to be mutated 

(228). Further analysis of epigenetic changes identified the tyrosine kinase SYK as a novel proto-

oncogene essential for tumor cell survival in RB (228). RB cells are sensitive to SYK inhibition, as 

demonstrated by Qiu et al. (229). In that study, it was demonstrated that lymphocyte-derived 

microparticles downregulated SYK inducing RB cells (Y79) apoptosis through activation of p53 and 

p21-dependent pathway (Figure 56).  

 

A B
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Figure 56. –  Lymphocyte-derived microparticles (LMPs) mediate SYK silencing (A) and induce 

p53 and p21 expression (B) (229). 

Survivin plays a key role in preventing apoptosis in tumor cells. In this study, we demonstrated 

that survivin silencing synergistically improved the cytotoxicity of carboplatin, which induced a 

p53-p21 response in Y79 cells. Therefore, concomitant targeting of survivin and SYK might be an 

interesting strategy to potentialize the therapeutic benefit of drugs that induce apoptosis through 

the p53-p21 axis. Co-encapsulaiton of the SYK inhibitor, the hydrophobic molecule BAY 61-3606, 

and survivin-targeted siRNA in switchable LNP might emerge as a potential anti-RB strategy.   

4.4.2. Optimizing pH-responisve hybrid polymer/lipid vesicles 

Hybrid vesicles combine the advantages of both liposomes and polymersomes in a single 

membrane. Studies are focused on tuning membrane properties to maximize hybrids vesicles 

applicability in cell mimicry studies and as novel drug delivery agents. We demonstrated that it is 

possible to formulate large and giant hybrid vesicles combining PDMS36-b-PEO23 and CSL in an 

80:20 molar ratio. Such proportion is in agreement with previous studies, confirming that molar 

amount up to 60% of lipids in the fluid phase (gel-to-liquid transition phase for CSL is ~ 5 °C) form 

homogeneous hybrid vesicles with PDMS-PEO (Figure 19). Zong et al. (165) demonstrated that 

the introduction of 17.5% of cholesterol in a hybrid vesicle composed of blended pCMA-block-

poly(2-(dimethylamino) Ethyl Methacrylate (polymer, P3) and fluid phase phospholipid POPC 

produced stable hybrid vesicle with nanodomain’s formation (Figure 57). Therefore, adding 

cholesterol in the blend PDMS-PEO and CSL might yield hybrid vesicle with the presence of pH-

responsive gate domains. 
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Figure 57. –  Giant hybrid polymer/lipid vesicle formulated with P3, POPC and cholesterol. 

Polymers are labelled in green (filter I), lipids are labelled in red (filter II). Filter III, merged filters. 

Scale is 20 μm (165).  

4.4.3. Further investigation on the mechanism whereby switchable lipid 

mediates membrane destabilization 

The presence of CSL induced structural changes in giant vesicles irrespective of the membrane 

composition. Characterizing the structure adopted by CSL in acidic conditions by 31P NMR 

techniques might unveil if the switchable lipid adopts a non-lamellar phase behavior (Hii) at lower 

pH-values. Such behavior is the key structure supporting the ion-pair theory (Figure 9) (119). We 

hypothesize that the switchable lipid is capable of adopting an HII phase without the need for 

mixing with negatively charged lipids. The proposed technique might as well discriminate if the 

HII and lamellar phases coexist in acidified CSL-containing GUV/LUV, as we observed that 

switchable LUV and GUV maintained their vesicular structure at acidic environment. 

P3:POPC:Cholesterol P3:POPC:Cholesterol
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Chapter 5 – Conclusion 

The unarguable benefits of lipid nanoparticles (LNP) for pharmaceutical applications have led to 

more than 15 liposomal-based drugs in the clinics. Recently, Patisiran (Onpattro) shed the first 

light on the promising roadway of RNAi technology. The long term outcomes of the first FDA-

approved RNAi-based drug needs to be closely monitored as it will dictate the future of 

technologies developed now. In this investigation, we added more evidence into the applicability 

of switchable LNP as a siRNA carrier. We have met all the specific objectives proposed for the 1st 

publication. (I) We demonstrated that switchable LNP successfully silenced survivin in different 

cancer models in vitro; (II) we confirmed survivin protein downregulation in Y79 cells by Western 

blot; (III) we rationale selected carboplatin and melphalan as the two drugs which cytotoxicity in 

Y79 cells were benefited from survivin silencing and; (IV) we observed that survivin silencing using 

siRNA against survivin was not harmful to non-transformed ARPE.19 cells in terms of viability, 

whereas the survivin chemical inhibitor YM155 was. Therefore, we confirmed our hypothesis that 

switchable LNP is capable of delivering survivin-targeted siRNA in vitro, promoting improved 

cytotoxicity of chemotherapeutics in survivin-expressing cells only. Subsequently, we 

demonstrated that cationic switchable lipids preserve their pH-triggered conformation change at 

the microscale. We have also met the specific objectives for our 2nd publication. (I) We 

successfully formulated CSL-containing GUV and GHUV, confirming CSL incorporation by DLS 

measurement and H1 NMR spectroscopy; (II) we categorized structural changes arising from pH-

triggered conformation change of CSL in switchable GUV and GHUV; (III) finally, we observed that 

such structural changes were accompanied by an increased permeability. Taken together, we 

gathered visual and physicochemical information about the biophysical behavior of switchable 

membranes in the acidified environment, satisfying, thus, our 2nd hypothesis. Therefore, this work 

provides a solid basis to develop further switchable lipids in pharmaceutical applications, 

especially for gene delivery in cancer cells. The membrane dynamics observation also strengthens 

the knowledge of its mechanism and supports the low toxicity observed to date. 
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