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Résumé

Le traitement auditif dans le cerveau humain et dans les systèmes informatiques consiste
en une cascade de transformations représentationnelles qui extraient et réorganisent les infor-
mations pertinentes pour permettre l’exécution des tâches. Cette thèse s’intéresse à la nature
des représentations acoustiques et aux principes de conception et d’apprentissage qui sou-
tiennent leur développement. Les objectifs scientifiques sont de caractériser et de comparer
les représentations auditives dans les réseaux de neurones convolutionnels profonds (CNN)
et la voie auditive humaine. Ce travail soulève plusieurs questions méta-scientifiques sur la
nature du progrès scientifique, qui sont également considérées.

L’introduction passe en revue les connaissances actuelles sur la voie auditive des mam-
mifères et présente les concepts pertinents de l’apprentissage profond. Le premier article
soutient que les questions philosophiques les plus pressantes à l’intersection de l’intelligence
artificielle et biologique concernent finalement la définition des phénomènes à expliquer et
ce qui constitue des explications valables de tels phénomènes. Je surligne les théories per-
tinentes de l’explication scientifique que j’espére fourniront un échafaudage pour de futures
discussions. L’article 2 teste un modèle populaire de cortex auditif basé sur des modula-
tions spectro-temporelles. Nous constatons qu’un modèle linéaire entraîné uniquement sur
les réponses BOLD aux ondulations dynamiques simples (contenant seulement une fréquence
fondamentale, un taux de modulation temporelle et une échelle spectrale) peut se généraliser
pour prédire les réponses aux mélanges de deux ondulations dynamiques. Le troisième article
caractérise la spécificité linguistique des couches CNN et explore l’effet de l’entraînement figé
et des poids aléatoires. Nous avons observé trois régions distinctes de transférabilité : (1) les
deux premières couches étaient entièrement transférables, (2) les couches 2 à 8 étaient éga-
lement hautement transférables, mais nous avons trouvé évidence de spécificité de la langue,
(3) les couches suivantes entièrement connectées étaient plus spécifiques à la langue mais
pouvaient être adaptées sur la langue cible. Dans l’article 4, nous utilisons l’analyse de simi-
larité pour constater que la performance supérieure de l’entraînement figé obtenues à l’article
3 peuvent être attribuées aux différences de représentation dans l’avant-dernière couche : la
deuxième couche entièrement connectée. Nous analysons également les réseaux aléatoires de
l’article 3, dont nous concluons que la forme représentationnelle est doublement contrainte
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par l’architecture et la forme de l’entrée et de la cible. Pour tester si les CNN acoustiques
apprennent une hiérarchie de représentation similaire à celle du système auditif humain, le
cinquième article compare l’activité des réseaux «freeze trained» de l’article 3 à l’activité
IRMf 7T dans l’ensemble du système auditif humain. Nous ne trouvons aucune évidence
d’une hiérarchie de représentation partagée et constatons plutôt que tous nos régions audi-
tifs étaient les plus similaires à la première couche entièrement connectée. Enfin, le chapitre
de discussion passe en revue les mérites et les limites d’une approche d’apprentissage profond
aux neurosciences dans un cadre de comparaison de modèles.

Ensemble, ces travaux contribuent à l’entreprise naissante de modélisation du système
auditif avec des réseaux de neurones et constituent un petit pas vers une science unifiée de
l’intelligence qui étudie les phénomènes qui se manifestent dans l’intelligence biologique et
artificielle.

mots clés : apprentissage profond, audition, neurosciences computationnelles, IRMf,
parole, analyse de similarité
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Abstract

Auditory processing in the human brain and in contemporary machine hearing systems
consists of a cascade of representational transformations that extract and reorganize relevant
information to enable task performance. This thesis is concerned with the nature of acoustic
representations and the network design and learning principles that support their develop-
ment. The primary scientific goals are to characterize and compare auditory representations
in deep convolutional neural networks (CNNs) and the human auditory pathway. This work
prompts several meta-scientific questions about the nature of scientific progress, which are
also considered.

The introduction reviews what is currently known about the mammalian auditory path-
way and introduces the relevant concepts in deep learning. The first article argues that the
most pressing philosophical questions at the intersection of artificial and biological intelli-
gence are ultimately concerned with defining the phenomena to be explained and with what
constitute valid explanations of such phenomena. I highlight relevant theories of scientific
explanation which we hope will provide scaffolding for future discussion. Article 2 tests a
popular model of auditory cortex based on frequency-specific spectrotemporal modulations.
We find that a linear model trained only on BOLD responses to simple dynamic ripples
(containing only one fundamental frequency, temporal modulation rate, and spectral scale)
can generalize to predict responses to mixtures of two dynamic ripples. Both the third and
fourth article investigate how CNN representations are affected by various aspects of train-
ing. The third article characterizes the language specificity of CNN layers and explores the
effect of freeze training and random weights. We observed three distinct regions of trans-
ferability: (1) the first two layers were entirely transferable between languages, (2) layers
2–8 were also highly transferable but we found some evidence of language specificity, (3)
the subsequent fully connected layers were more language specific but could be successfully
finetuned to the target language. In Article 4, we use similarity analysis to find that the
superior performance of freeze training achieved in Article 3 can be largely attributed to
representational differences in the penultimate layer: the second fully connected layer. We
also analyze the random networks from Article 3, from which we conclude that representa-
tional form is doubly constrained by architecture and the form of the input and target. To
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test whether acoustic CNNs learn a similar representational hierarchy as that of the human
auditory system, the fifth article presents a similarity analysis to compare the activity of
the freeze trained networks from Article 3 to 7T fMRI activity throughout the human au-
ditory system. We find no evidence of a shared representational hierarchy and instead find
that all of our auditory regions were most similar to the first fully connected layer. Finally,
the discussion chapter reviews the merits and limitations of a deep learning approach to
neuroscience in a model comparison framework.

Together, these works contribute to the nascent enterprise of modeling the auditory sys-
tem with neural networks and constitute a small step towards a unified science of intelligence
that studies the phenomena that are exhibited in both biological and artificial intelligence.

keywords: deep learning, audition, computational neuroscience, fMRI, speech, similarity
analysis
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Introduction

0.1. Motivation

Sound waves enter the ear and actuates the nervous system via vibrations of the ear
drum. From there, a cascade of sensory processing is needed to extract behaviourally rel-
evant information from the sensory information collected at the periphery. Similarly, in
machine hearing, microphones record auditory vibrations and computational models must
extract and transform the task-relevant information. One goal of auditory computational
neuroscience is to characterize the neural computations underlying human auditory per-
ception such that they can be implemented in machine hearing systems. Currently, the
best performing machine hearing systems use task-optimized deep neural networks (DNNs),
which also consist of a cascade of sensory processing stages, inspired by neural information
processing (Yu and Deng, 2015; Hinton et al., 2012; Deng et al., 2013). Machine hearing
algorithms don’t necessarily need to mimic the human brain, but they are ultimately trying
to accomplish the same tasks that humans perform, and so will be subject to the same task
constraints and fundamental limits of sensory acuity. In both machine and animal hearing, it
may be useful to consider sensory computation as process of ’untangling’ the relevant factors
of variation (DiCarlo and Cox, 2007). A shared goal of computational neuroscience and deep
learning is to understand how and under what conditions this untangling occurs. Machine
hearing systems provide a window into how such untangling can occur, not necessary how
it does occur in animals. However, if we assume that there exist some fundamental princi-
ples that govern sensory processing in biological and artificial systems, the study of machine
hearing systems may identify candidates of such principles. This presents an opportunity for
a virtuous cycle wherein the study of artificial systems can inform and generate hypotheses
for neuroscience and the study of brains can inform the development of new artificial sys-
tems. The characterization and comparison of artificial and biological neural pathways has
the potential to yield insights into the abstract computations underlying human auditory
perception.



0.2. The mammalian auditory system

Animal research in the last century has made significant progress in describing the phys-
iology of several structures along the auditory pathway and how these structures represent
and transform behaviourally relevant acoustic information.

0.2.1. Auditory representation in the brainstem, midbrain and thalamus

When sound pressure waves enter the ear, they vibrate the tympanic membrane which
in turn passes the vibrations to the cochlea via the ossicles. The cochlea amplifies and con-
verts these vibrations into neural signals. The cochlea consists of two liquid-filled chambers,
the basilar membrane and the tectorial membrane. The basilar membrane acts as a me-
chanical frequency analyzer to decompose complex sounds into frequency components. This
systematic representation of sound frequency along the length of the cochlea is referred to
as tonotopy (Hall, 2008).

Two types of cells lie along the basilar membrane: inner hair cells and outer hair cells.
The inner hair cells are the actual sensory receptors and their projections make up 95% of
the fibers in the auditory nerve (AN). The outer hair cells receive most of their input from
efferent axons of cells in the superior olivary complex (SOC). The outer hair cells are thought
to sharpen the frequency resolution of the cochlea by actively changing the stiffness of the
tectorial membrane at particular locations (Hall, 2008).

The AN carries sensory information from the inner hair cells to the cochlear nucleus
(CN). The response time of this transduction mechanism is so fast that frequencies up to
3kHz in humans can be represented in a one-to-one fashion, meaning that action potentials
will be generated at the same rate as the incoming sound pressure waves. This ability of hair
cells to follow the waveform of low-frequency sounds results in phase locking. This temporal
information from the two ears is crucial for the evaluation of interaural time differences,
which is one of the primary cues used for sound localization and the perception of auditory
space. However, this temporal coding or volley theory of auditory information transfer cannot
account for the perception of spectral information above 3kHz. Place coding or labeled-line
coding refers to an alternative coding mechanism that encodes frequency information by
preserving the tonotopy of the cochlea at higher levels in the auditory pathway. A single
AN fiber transmits information about only one part of the audible frequency spectrum.
Electrophysiology can be used to measure response properties of specific fibers, such as their
tuning curve and characteristic frequency. The topographic organization of characteristic
frequency is preserved as signals ascend the auditory pathway (Hall, 2008).

The AN innervates the three divisions of the CN: the antereoventral cochlear nucleus
(AVCN), the posteroventral cochlear nucleus (PVCN) and the dorsal cochlear nucleus (DCN).
The tonotopy from the cochlea is reproduced in each of the three sections of the CN (Hall,
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Figure 1. The Auditory Pathway. Afferent pathways from the cochlea up to auditory
cortex are shown. Copied from Hall (2008)
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2008). The division of the ventral cochlear nucleus (VCN) represent two main pathways to
extract and enhance frequency and timing information: the sound localization path (AVCN)
and the sound identification path (PVCN) (Young and Oertel, 1999). The AVCN provides
input to the SOC, the first structure where information from both ears is combined, where
interaural time differences (ITDs) and interaural level differences (ILDs) are mapped for
each frequency band separately (Carr, 1993). Broadly tuned cells in the PVCN compute
estimates of a level invariant spectral representation of sound (May et al., 1998). Both of
these information streams are carried to the central nucleus of the inferior colliculus (ICC)
where temporal and spectral information are both topographically but mutually orthogonally
mapped (Langner, 1992). Frequency-specific ITD and ILD maps are combined to create
a map of sound localization in the external nucleus of the inferior colliculus (ICX). The
temporal resolution of these differences is on the order of 10 microseconds. This auditory
space map is subsequently aligned with the retinotopic map of visual space and motor map of
gaze in the superior colliculus (SC) (Hyde and Knudsen, 2000). For a detailed description of
the neural mechanism underlying sound localization, see Hall (2008) and Eggermont (2001).

The medial geniculate body (MGB) in the thalamus is the auditory relay station between
the IC and auditory cortex (AC) and receives convergent inputs from the separate spectral
and temporal pathways in lower areas. Consequently, the MGB is the first structure where
cells are found to respond to specific spectro-temporal patterns. While preserving a tono-
topic organization (Imig and Morel, 1985), cells in the MGB are also selective to specific
combinations of frequencies and specific time intervals between frequencies (on the order of
milliseconds) (Hall, 2008). The STRF of an auditory neuron refers to that cell’s preferred
pattern in frequency and time. As we ascend the auditory pathway, STRFs become more
complex and lose temporal precision (see Figure 2).

Figure 2. STRFs at different levels of the auditory system. In IC, some neurons
have STRFs that are narrowly tuned in time, but broadly tuned in frequency (a) or narrowly
tuned in both time and frequency (b). Thalamic neurons have greater latencies than IC
neurons (c) and also demonstrate selectivity to patterns in time, e.g. a descending tone
sweep (d). STRFs are much slower and more complicated in auditory cortex (e, f). Copied
from Theunissen and Elie (2014)

Although midbrain and thalamic auditory areas have been well studied in several animal
models, our knowledge about these structures in humans is poor due to the small size of
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the IC and MGB and the spatial resolution of non-invasive imaging methods. Recently,
however, the development of new acquisition sequences for ultra-high field neuroimaging has
facilitated the functional mapping of these two areas in humans. De Martino et al. (2014a)
found that both the MGB and the IC were tuned to contralateral locations. They also found
a single frequency gradient in IC and two frequency gradients in the MGB.

0.2.2. The auditory cortex

In the monkey and several other species, the AC is organized hierarchically into several
primary or core areas that receive inputs from the thalamus and are surrounded by non-
primary or belt and parabelt regions (Kaas and Hackett, 2000; Rauschecker et al., 1995).
While it is generally agreed upon that the human auditory cortex is also arranged hierar-
chically with information passing from primary to secondary areas, the details of this model
break down in the human because of considerable anatomical differences. Currently, there
is no standard scheme for the functional parcellation of the human AC (Moerel et al., 2014).
Although the precise delineation and functional organization of human auditory cortex re-
mains an open question, new parcellation methods using pattern recognition and ultra-high
field neuroimaging have recently been proposed (De Martino et al., 2014b; Moerel et al.,
2014; Schönwiesner et al., 2014).

Despite cortical differences across species, several common representational mechanisms
have been identified. As in lower auditory areas, neurons in auditory cortex also exhibit fre-
quency selectivity and a tonotopic organization (Humphries et al., 2010). The exact number
and orientation of tonotopic gradients varies across species and is still a topic of debate in
human research (Moerel et al., 2014). Auditory cortical neurons have preferences for specific
spectro-temporal patterns (DeCharms et al., 1998). Physiological and psychoacoustic stud-
ies suggest that the cortical representation of sound involves the explicit encoding of spectral
and temporal modulations through dedicated modulation-detectors (Viemeister, 1979; San-
toro, 2014). Consequently, STRFs in auditory cortex are often parameterized by modulations
in both frequency and time. In the visual domain, it has been shown that cortical cells in
primary visual cortex (V1) respond selectively to specific patterns of sinusoidal gratings and
can be modeled as spatial modulation frequency filters (De Valois et al., 1979). The auditory
equivalent of a grating is the dynamic ripple, a complex broadband sound with a sinusoidal
spectral envelope that drifts along the logarithmic frequency axis over time (Kowalksi et al.,
1996). Such stimuli can be used to calculate spectro-temporal modulation transfer functions
(MTFs), whose 2-dimensional Fourier transform gives a STRF. Schönwiesner and Zatorre
(2009) used dynamic ripples and fMRI to find voxels tuned to combined spectro-temporal
modulations in the primary and secondary auditory cortex. The resulting spectro-temporal
modulation maps were highly reliable within subjects and highly variable across subjects,
highlighting the importance of building personalized models. It has been shown that STRFs
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in primary auditory areas are highly context-dependent and demonstrate rapid plasticity,
meaning that the response properties of an auditory cortical cell can change drastically in
response to top-down control signals (Mesgarani et al., 2009; David et al., 2012).

0.2.3. Neural processing of natural sounds

Most of the work summarized up to this point used simple, synthesized stimuli that could
be systematically varied. Conversely, much has also been learned from the neuroethological
approach, which employs natural and behaviourally relevant sounds as stimuli. Recent work
on the neural processing of natural sounds can be thought of as a merger between the
neuroethological and classical neurophysiological approaches facilitated by the analysis of
the statistical properties of natural sound and the use of machine learning methods to take
into account this statistical structure when estimating neural response characteristics.

0.2.4. The statistics of natural sound

Theunissen and Elie define natural sound as “environmental sounds that are not gen-
erated by human-made machines, such as the sounds of footsteps, wind, fire and rain; all
animal vocalizations, including human speech; and other sounds generated for communica-
tion by animals, such as stridulation in crickets, buttress drumming by chimpanzees and
instrumental music by humans.” (2014, p. 356) Describing the statistics of these types of
sounds helps us to understand what makes them special and to determine whether the au-
ditory system evolved to process them optimally. For instance, it has been observed that
perceptually relevant physical characteristics of isolated natural sounds follow a power law.
More specifically, certain fluctuating physical characteristics of natural sounds follow a 1/f
relationship, where f is frequency. This relationship does not hold for the sound spectrum
itself, but it holds for other slower properties such as loudness or pitch height. This re-
lationship also holds for the sound cepstrum (the power spectrum of the log of the sound
spectrum) (Singh and Theunissen, 2003), which is related to the timbre of a sound (Müller
and Ewert, 2010). Dependencies have also been observed in the modulation power spectrum
(frequencies of temporal and spectral modulations in the spectrogram). For example, many
animal vocalizations are dominated by relatively slow sounds with fine harmonic structure
(see Figure 3) (Theunissen and Elie, 2014).

These statistical characteristics of natural sounds have several implications. Firstly, the
power law relationship means that natural sounds have correlations over multiple timescales.
This clearly separates natural sounds from signals that are completely random or uncorre-
lated, such as white noise, and signals that are dominated by a single correlation time, such
as a perfect sine wave. Second, the properties that exhibit the power law relationship also
tend to be those that are of perceptual relevance. For example, we are unable to perceive
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Figure 3. Natural Sound Statistics Various acoustic features extracted from recordings
of a zebra finch song. Green graphs indicate common characteristics of natural sound and
orange graphs indicate those that are specific to each sound class. Copied from Theunissen
and Elie (2014)

the details of a sound pressure waveform, but we perceive attributes such as intensity fluc-
tuations, rhythm, and timbre, whose modulations follow a 1/f relationship (Theunissen and
Elie, 2014). It has also been shown that sounds with the same statistical properties as nat-
ural sound elicit higher information rates compared to synthetic sounds that lack some of
these properties (Hsu et al., 2004). Functional neuroimaging studies have also shown that
natural sounds elicit broader responses than synthetic stimuli (Moerel et al., 2012). Moerel
et al. (2012) suggest that natural sounds may be optimal for studying the functional archi-
tecture of higher order auditory areas since they engage auditory neurons in meaningful and
behaviourally relevant processing.

Natural sound statistics may also be related to the frequency tuning of mammalian au-
ditory nerve fibers and efficient coding schemes. It has been suggested that the shape of the
filters measured at the auditory nerve is optimal for representing the independent components
of animal vocalizations and environmental sounds; the lower-frequency narrow-band filters ef-
ficiently represent animal vocalizations and the higher-frequency broad-band filter efficiently
represent environmental sounds (Theunissen and Elie, 2014). Interestingly, human speech
contains both of these components. Human speech, though obviously very behaviourally
relevant now, cannot have had any effect on the evolution of vertebrate hearing. However,
one can assume that human speech evolved under the constraints of the existing auditory
and vocalization systems. It is not surprising then that human speech exhibits properties
of both animal vocalizations and environmental sounds such as steady-state harmonically
related frequencies, frequency modulations and noise bursts (Eggermont, 2001). In other
words, it seems likely that the physical characteristics of speech evolved to be optimally
represented in the auditory system (Lewicki, 2002).
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0.2.5. Functional neuroimaging of natural sound perception

FMRI is a noninvasive functional neuroimaging technique that provides an indirect mea-
sure of brain activity. The FMRI signal is called the blood oxygenation level-dependent
(BOLD) signal and is sensitive to local changes in deoxyhemoglobin which has been shown
to reflect local changes in brain activity (Ogawa and Tank, 1992). As a noninvasive measure
with high spatial resolution, fMRI has been extensively used in human studies of auditory
perception and cognition. The traditional goal has been to localize or compare the mag-
nitude of activity in regions of the brain that are responsible for a specific perceptual or
cognitive attribute. To do this, experimental conditions are constructed such that their neu-
ral responses can be contrasted to isolate task-related activity. Univariate statistical analyses
are performed within each voxel and subsequently corrected for multiple comparisons. Indi-
vidual brains are aligned to a common anatomical template to calculate group-level effects.
In auditory neuroscience, this approach has helped to identify and characterize regions that
are responsible for the perception of voices (Belin et al., 2000), the comprehension of speech
(Rodd et al., 2005), the perception and enjoyment of music (Peretz and Zatorre, 2005) and
auditory-motor interaction (Zatorre et al., 2007), among many other auditory capacities.
From a computational neuroscience perspective, this approach provides a broad road map
for the information processing path involved in complex human auditory perception, but
lacks the ability to probe the computational mechanisms at a finer scale. Some may ar-
gue that this is a limitation of fMRI itself (Mole and Klein, 2010). However, recent work
that combines computational modeling with functional neuroimaging suggests that fMRI
can indeed be a useful tool for studying computational mechanisms a finer scale.

Figure 4. Stimulus-response characterization Stimulus-response functions can be cal-
culated using natural sounds and regularized linear regression. Copied from Theunissen and
Elie (2014)

As was already discussed, fMRI can be used to estimate stimulus-response characteristics
using synthesized sounds such as pure tones and dynamic ripples. STRFs and MTFs can
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Figure 5. Overview of candidate encoding models tested in Santoro et al. (2014).
Features based on simple tonotopy, spectral modulations, temporal modulations, and joint
spectro-temporal modulations were extracted from the stimuli. Copied from Santoro et al.
(2014)

also be calculated using natural sound stimuli and regularized linear regression, as pictured
in Figure 4. An extension of this approach, referred to as system identification (SI) (Wu
et al., 2006), neural encoding (NE) (Naselaris et al., 2011) or model-based fMRI (O’Doherty
et al., 2007), has been used as a way of evaluating and comparing computational models of
sensory information processing in the brain. NE treats the problems of sensory receptive
field estimation as a regression problem and aims to build quantitative models that describe
how a neuron or voxel will respond to a potential stimulus (Wu et al., 2006). A NE ap-
proach involves collecting fMRI responses to a large number and variety of sounds. Acoustic
features are then extracted from these stimuli according to a computational model of neural
information processing or encoding model (see Figure 5 for an example of the types of candi-
date encoding models that have been tested). As pictured in Figure 6, models are evaluated
based on their ability to predict neural activity evoked by natural stimuli. This approach can
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be used in a hypothesis driven manner, where specific hypotheses about neural information
processing are embedded in the design of the computational model. It has been suggested
that the NE approach can also be used to generate hypotheses about sensory coding, even
in the absence of a prior theoretical or quantitative model (Wu et al., 2006).

Figure 6. Schematic of model estimation and evaluation in NE. (a) Encoding model
parameters for each voxel are estimated from a wide variety of stimulus-response pairs. (b)
Model performance is evaluated based on their ability to predict fMRI responses to an
independent set of stimuli. Copied from Santoro et al. (2014)

The NE approach was recently used by Santoro et al. (2014) to study role of spectro-
temporal modulations in the cortical encoding of natural sounds. They used ultra-high
field fMRI (7-Tesla) to measure brain activity while subjects listened to a variety of natural
sounds. They found that the cortical encoding of natural sounds involves multiple represen-
tations of the sound spectrogram at different degrees of spectral and temporal resolution.
Specifically, they found that posterior/dorsal auditory regions prefer coarse spectral informa-
tion with high temporal precision, while anterior/ventral regions prefer fine-grained spectral
information with low temporal precision. The authors suggest that this multi-resolution view
of natural sounds may be a crucial computational mechanism for flexible and behaviourally
relevant sound processing (Santoro et al., 2014).

38



0.3. Representation Learning

In the preceding sections, I have summarized the current understanding of the represen-
tational transformations performed by the auditory system. In the field of machine learning,
the domain of representation learning (RL) refers to a family of methods that learn useful
transformations of some raw input signal. When such a RL system involves more than one
intermediate representation, this is referred to as deep learning (DL). Sometimes RL systems
are used only for feature extraction and another machine learning system will be used to
make predictions. This is called feature learning (Lee et al., 2009a). Other times, inferences
will be made directly by the RL system. Recently, DNNs have significantly outperformed
other methods on complex tasks such as speech recognition (Hinton et al., 2012), visual ob-
ject recognition (Krizhevsky and Hinton, 2012) and natural language processing (Collobert
and Weston, 2008), which has led to increased research and development in this area. Much
of RL, especially that which evolved from the tradition of artificial neural networks (ANNs),
was inspired by early computational neuroscience models of neurons and neural populations.
In this regard, RL systems are more biologically plausible than other machine learning sys-
tems (Bengio et al., 2013). In the following sections, I will describe several common classes
of RL models and training algorithms.

0.3.1. Component analysis

Principle component analysis (PCA) is perhaps the simplest example of representation
learning. PCA identifies the axes of maximum variation in a given dataset. PCA learns
a linear transformation h = f(x) = W Tx + b of input x ∈ Rdx , where W is a dx × dh

matrix whose columns define the orthogonal directions of greatest variance in the training
set. The resulting dh features (components of representation h) are decorrelated. The data
can then be transformed to use these ’principal components’ as a basis set. Dimensionality
reduction is often performed by dropping the principal components that explain the least
variance. This new representation can be more convenient to work with than the original
representation.

0.3.2. Sparse coding

One way to investigate neural coding of natural stimuli is to analyze various ways of
encoding signals such as natural images and audio. We can consider two broad coding
strategies: efficient, compact coding and sparse, distributed coding. PCA-based dimension-
ality reduction is an example of efficient coding because it represents as much information
as possible in as few dimensions as possible. An alternative coding strategy, sparse coding
(a.k.a. minimum-entropy coding) is motivated by the fact that natural stimuli tend to have
a sparse structure and can be represented with a small number of descriptors out of a large
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set. A sparse code is a high-dimensional representation with only a small number of non-zero
elements.

A very influential paper from Olshausen and Field (1996) showed that a coding strategy
that maximizes sparseness is sufficient to account for receptive field (RF) properties of V1
neurons, namely spatial localization, orientation and bandpass. Further evidence for sparse
codes in V1 was provided by physiological work showing that responses elicited by natural
stimuli are more sparse than those elicited by synthetic stimuli (Vinje and Gallant, 2000).
Recent work in the auditory domain also showed that sparse codes for speech predicted
spectro-temporal RFs in the IC (Carlson et al., 2012). Sparse coding has many theoretical
and practical benefits. From the point of view of efficient resource use, having neurons
primarily inactive reduces metabolic consumption. Representations that are distributed
across a small number of active neurons is helpful for downstream computation because it
forces individual neurons to carry more explicit information and increases the signal-to-noise
ratio (Stansbury, 2014).

0.3.3. Perceptron

The perceptron, invented in 1958, was the first algorithmically described neural network
(Rosenblatt, 1958; Haykin, 2009). The perceptron is the simplest ANN that can classify
linearly separable patterns. Understanding this simplest form will help us to understand the
more complicated deep networks described in subsequent sections. The perceptron is a model
of a single neuron consisting of a linear combiner v and nonlinear hard limiter activation
function, diagrammed in Figure 7. Inputs x1 . . . xm are linearly weighted by weights w1 . . . wm

and bias b. The hard limiter input of the neuron is

v =
m∑

i=1
wixi + b (0.3.1)

The hard limiter applies a signum function to produce an output y(x) that is −1 if the hard
limited input is negative and 1 if it is positive. The perceptron parameters (weights and
bias) are adapted iteratively according to a supervised error-correction learning algorithm.
On each iteration, the weights and bias are adjusted with the following learning rule

w(n+ 1) = w(n) + η[d(n)− y(n)]x(n) (0.3.2)

where the vector w includes both the weights and the bias term, n indexes the iteration, d(n)
is the desired output, y(n) is the output produced by the perceptron and η is the learning
rate, which controls how much the parameters will change on each iteration. In the case of
two linearly separable classes, this algorithm has been proven to converge to a solution. See
Haykin (2009) for the full perceptron convergence theorem. The perceptron can be extended
to multi-class scenarios by adding additional neurons (Haykin, 2009).
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Figure 7. Signal flow graph of the perceptron. Inputs x1 . . . xm are linearly weighted
by weights w1 . . . wm and bias b. The sum of these weighted inputs (linear combiner v) is
passed through a signum function (hard limiter) to produce an output that is −1 if the hard
limited input is negative and 1 if it is positive. Copied from Haykin (2009).

0.3.4. Feed forward neural network/multilayer perceptron

The term MLP refers to a neural network with one or more hidden layers. In this case, the
use of the word “perceptron” is misleading since such a network is not actually a perceptron,
but the term MLP persists none the less. An MLP, shown in Figure 8, consists of layers of
neurons (or units) that include a nonlinear activation function that is typically differentiable.
Common activation functions include the logistic and the hyperbolic tangent functions. One
or more of these layers are hidden from both the input and output, meaning that they are
unknown, latent representations of the input. The hidden layers act as feature detectors
and allow for the network to solve nonlinear classification problems, unlike the perceptron
(Haykin, 2009).

An MLP can be trained using the back propagation algorithm, which consists of forward
phase and a backwards phase. In the forward phase, the synaptic weights are fixed and the
input signal is passed through the network producing an output signal. In the backward
phase, an error signal is calculated by comparing the output produced in the forward phase
to the desired output. This error signal is propagated back through the network, making
adjustments to the synaptic weights as it goes. As the learning progresses, the hidden
layers will discover useful representations of the training data, i.e. the hidden layers perform
a nonlinear transformation on the input data into a new feature space. Specifically, the
induced local field or preactivation function vj(n) of hidden unit j at iteration n can be
written as

vj =
m∑

i=0
wij(n)yi(n) (0.3.3)

where i indexes the m units in the previous layer that are connected to unit j and yi(n) is
the output of unit i on iteration n. We can define an error signal ek(n) produced at the
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Figure 8. Architectural graph of a MLP with two hidden layers The input signal
passes through two fully connected hidden layers (all units in one layer are connected to all
units in the subsequent layer) before reaching the output units. Each hidden layer represents
a latent representation of the input signal. Copied from Haykin (2009).

output of unit k as
ek(n) = dk(n)− yk(n) (0.3.4)

where dk(n) is the kth element of the desired output vector d(n). For the purposes of the
backpropagation algorithm, we will be concerned with the instantaneous error energy of
neuron k, defined by

ξk(n) = 1
2e

2
k(n) (0.3.5)

and the total instantaneous error energy of the whole network, defined as

ξ(n) =
∑
k∈C

ξk(n) (0.3.6)

= 1
2

∑
k∈C

e2
k(n) (0.3.7)

where the set C includes all output units. In the case of online learning, where the network
parameters are updated after every training example, the cost function to be minimized will
be ξ(n). In the batch learning scenario, we will minimize the average instantaneous error
energy or empirical risk ξav(N), averaged over all training examples in batch N . In the
online case, on each iteration n, the correction ∆wji(n) is applied to wji(n) where

∆wji(n) = −η ∂ξ(n)
∂wji(n) (0.3.8)

where η is the learning rate of the back propagation algorithm. This amounts to gradient
descent in weight space, i.e. seeking changes in the parameterization of the network that
reduces ξ(n) (Haykin, 2009).
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0.3.5. Convolutional neural network

A CNN is a special class of MLP designed to be invariant to certain types of information.
For example, in the context of object recognition from natural images, one may wish to
recognize two-dimensional shapes regardless of their spatial location, scale, orientation or
other forms of distortion within an image. The CNN uses several structural constraints to
accomplish this. Firstly, each neuron receives inputs from only a local receptive field in the
previous layer. Second, each convolutional layer of the network is composed of several feature
maps, within which neurons are constrained to share their input weights. Each feature is
convolved with the input. This has the effect that a feature will be detected regardless of
where it occurs in the input signal. This property is called shift invariance. Weight sharing
also reduces the number of free parameters, which makes the network easier to train. Third,
each convolutional layer is followed by a computational layer that performs local averaging or
pooling and subsampling. This reduces the resolution of the feature map and the sensitivity
to shifts and other distortions (Haykin, 2009).

Figure 9. Convolutional network for image processing Layers alternate between con-
volutional layers, whose units extract features from local receptive fields in the layer below,
and feature pooling or subsampling layer that combine or sample features extracted in the
previous convolutional layer. Copied from Haykin (2009).

0.4. Modeling neural representations using statistical features of
natural images

Given the recent successes and biological plausibility of DNNs as well as the increased use
of machine learning methods for neuroimage analysis, it has been suggested that DL could
be useful for neuroscience research (Hinton, 2011). One domain where DL methods have
enjoyed considerable success is in visual object recognition, a task that is also very familiar
to visual neuroscientists. The primate visual system is extremely good at determining the
category of a visually presented object. Neurophysiological studies have shown that this
ability is mediated by the IT, where neurons respond selectively to high-level visual object
categories (Hung et al., 2005). How the brain arrives at this categorical representation is not
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well understood and presents a prime opportunity for use of DL methods in neuroscience
research.

Figure 10. Linear-SVM generalization performance of neural and model repre-
sentations. The performance of an SVM trained on representations produced by the Zeiler
and Fergus (2014) CNN matches that of multi-unit recordings from IT. Copied from Cadieu
et al. (2014).

Cadieu et al. (2014) recently reported a series of experiments designed to compare the
performance and self similarity structure of representations learned by several DNNs to that
of brain activity recorded in the IT of macaque monkeys during visual stimulation. The au-
thors compared the neural recordings to three CNNs and several other biologically relevant
representations on an 8-class visual object classification task. Models of V1, secondary visual
cortex (V2) and the ventral visual stream, respectively, performed at or near chance when
an support vector machines (SVM) was trained to predict visual object categories from the
representations they produced. Figure 10 shows the accuracy achieved by the different mod-
els as well as by measurements made from V4 and IT. The IT measurements achieves high
generalization accuracy and is only matched in performance by the Zeiler and Fergus repre-
sentation. The authors also compared the models on their representational geometry—the
structure of pairwise distances between each stimulus—presented as a dissimilarity matrix
in Figure 11. This type of analysis is called a representational similarity analysis (RSA)
(Kriegeskorte et al., 2008). While the simpler models produced representations whose simi-
larity structure was not at all correlated with the neural measurements, the CNNs produced
representations whose similarity structure was significantly correlated with that of IT neu-
rons. They also found that the intermediate layers of the hierarchical modular optimization
(HMO) model were highly predictive of neural responses in V4 (Yamins et al., 2014). Their
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Figure 11. Object-level representational similarity analysis comparing model
representations and neural data. Copied from Cadieu et al. (2014). A) The dissimilar-
ity structure of the representations produced by the two state-of-the-art CNNs was highly
correlated to the dissimilarity structure of recordings in IT. B) Dissimilarity matrices are
shown for several models and neural recordings from IT and V4.

results show that performance-optimized hierarchical neural network models can learn repre-
sentations that are similar to those found in higher level visual cortex (Cadieu et al., 2014).
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Figure 12. Fitting Gabor functions to 1st layer features. (A) The receptive field of
a particular unit in Layer 1. (B) A Gabor function, summarized by a black line, was fit to
the receptive field in A. (C) The receptive fields of a population of first layer units can be
summarized by plotting the individual lines corresponding to their best-fitting Gabor filters.
Copied from Stansbury (2014).

Figure 13. Comparing the properties of 1st layer features to other theoretical
and physiological results. The distributions of frequency and phase of V1 receptive fields
are better mimicked by the first layer of a deep belief network than by other models that
learn similar features. Copied from Stansbury (2014).

Related work by Stansbury (2014) described a similar analysis with unsupervised DL.
Stansbury presents a new visualization technique based on fitting Gabor filters to first layer
features. Each first layer unit is fit to a Gabor function which is then summarized by a line.
In this way, many first layer features can be plotted in the same image, as shown in Figure 12.
Stansbury fit Gabor filters to the first layer units of a deep belief network (DBN) trained
on natural scenes as well as a sparse coding model (Olshausen and Field, 1996), another
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hierarchical generative model (Karklin and Lewicki, 2005) and the receptive fields of V1
neurons. He compared the statistical properties of these Gabor filters, namely their spatial
frequency, orientation, and phase. He found that the first layer features exhibited frequency
and phase distributions that more closely resembled those of V1 neurons than sparse coding
or the Karklin and Lewicki model (Figure 13). After extensive analysis and visualization of
the representations learned at the three levels of the DBN, Stansbury built neural encoding
models using the representations learned at each layer of the network. He found that features
learned in the lowest layer of the DBN accurately characterize the responses of V1 cells, but
not V2 cells. He also found that the representations learned in the higher levels of the DBN
provide a better characterization of V2 neural responses.

The work by Cadieu et al. (2014) and Stansbury (2014) can be seen as an extension of the
work on the statistics of natural sound and NE approach to neural signal analysis. Instead of
characterizing the statistical properties of natural stimuli, Stansbury characterizes statistical
features learned from such signals with DNNs. Both works demonstrate that DNNs learn
representations that are more similar to patterns of activity in visual cortex than other
models. However, these experiments differ from the classic NE in the way that hypotheses
about neural coding are tested. For example, in the NE experiments reported in Santoro et al.
(2014), for each computational model tested, one knows exactly what stimulus information
is being encoded (e.g. joint spectro-temporal modulations). In the case of Stansbury (2014)
and (Yamins et al., 2014), where they use features extracted at the 2nd or 3rd layer of a deep
network, it is less clear exactly what information is being used in the linearized encoding
model (although we can continue to work toward such an understanding with the types of
analyses and visualizations presented in Stansbury (2014)). Instead, what is known is what
computational architecture was used to extract these features and how such architectures
were trained. In these experiments, hypotheses about neural information processing are
embedded in the design of the computational architecture and training algorithms used to
learn the features, rather than in the design of the features themselves. In the subsequent
chapters of this dissertation, similar approaches are adapted to the auditory domain to
understand how acoustic representations are influenced by architecture, task and training
and to evaluate the correspondence of such learned representations to the human auditory
system.

0.5. Organization of the Thesis

This thesis has a number of scientific and meta-scientific goals. The scientific goals are
(1) to characterize intermediate representations in the human auditory system, (2) to char-
acterize intermediate representations in DNNs, and (3) to compare representations in DNNs
and the human auditory system. The interpretation of DNN-to-brain comparison is thus
supplemented by the accompanying characterization of the network representations. The
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meta-scientific goals are to unify computational neuroscience and deep learning science and
to address the methodological and philosophical issues that interfere with this unification.

The first scientific goal is addressed in the second and fifth articles of this thesis. Article
2 asks how well can cortical responses to sound be modeled as a linear function of spec-
trotemporal modulations. The fifth article provides a characterization of which DNN layers
are most similar to ROIs throughout the human auditory pathway. The second scientific
goal is addressed by the third and fourth articles. The third article characterizes the lan-
guage specificity of DNN layers and both the third and fourth articles investigate how DNN
representations change when modifying various aspects of networks training. The third sci-
entific goal is addressed by the fifth article, which investigates whether representations in
deep acoustic models learn a similar hierarchical structure as in the human auditory system.

The meta-scientific goals are primarily addressed in the first article which asks how
would a unified science of intelligence (combining computational neuroscience and artificial
intelligence) progress? What would be the form of scientific explanations of phenomena at
this intersection? Article 1 and 5 both consider the merit of using DNNs as models of sensory
processing. The meta-scientific question of how best to compare neural representations, be
they in DNNs or in animal brains, is considered in the forth and fifth articles. Together, these
works contribute to the nascent enterprise of modeling the auditory system with DNNs and
constitute a small step towards a unified science of intelligence that studies the phenomena
that are common to biological and artificial intelligence.
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Résumé. De nombreux débats entourant l’utilisation des réseaux de neurones profonds
(DNN) en tant que modèles de réseaux de neurones biologiques reviennent à débattre de ce
qui constitue un progrès scientifique en neurosciences computationnelles. Afin de discuter de
ce qui constitue le progrès scientifique, il faut avoir un objectif en tête (progrès vers quoi?).
Un de ces objectifs à long terme est de produire des explications scientifiques sur les capa-
cités intelligentes (par exemple, la reconnaissance faciale, le raisonnement relationnel). Je
soutiens que les questions philosophiques les plus pressantes à l’intersection de l’intelligence
artificielle et biologique concernent finalement la définition des phénomènes à expliquer et
ce qui constitue des explications valables de tels phénomènes. À ce titre, je propose qu’une
fondation dans la philosophie de l’explication scientifique puisse étayer les discussions fu-
tures sur les mérites des DNN en tant que modèles. Vers cette vision, je passe en revue
plusieurs des théories de l’explication scientifique les plus pertinentes et commençons à dé-
crire les formes d’explication possibles pour les phénomènes à l’intersection de l’intelligence
artificielle et des neurosciences.
Mots clés : philosophie des sciences, explication scientifique, explication en neuroscience,
explication causale

Abstract. any of the debates surrounding the use of deep neural networks (DNNs) as mod-
els of biological neural networks amount to debates over what constitutes scientific progress
in computational neuroscience. In order to discuss what constitutes scientific progress, one
must have a goal in mind (progress towards what?). One such long term goal is to produce
scientific explanations of intelligent capacities (e.g. face recognition, relational reasoning).
I argue that the most pressing philosophical questions at the intersection of artificial and
biological intelligence are ultimately concerned with defining the phenomena to be explained
and with what constitute valid explanations of such phenomena. As such, I propose that a
foundation in the philosophy of scientific explanation can scaffold future discussions about
the merits of DNNs as models. Towards this vision, I review several of the most relevant
theories of scientific explanation and begin to outline candidate forms of explanation for
phenomena at the intersection of artificial intelligence and neuroscience.
Keywords: M

1. Introduction

Neuroscience is constantly evolving as new methods to collect, analyze and model neural
measurements are being developed. One such development has been the use of deep neural
networks (DNNs) as models of biological neural networks, in particular the ventral stream of
the primate visual system. This approach has gained popularity during a data-driven era of
neuroscience where emphasis has been placed on collecting and integrating more (more cells,
more regions, more trials) and better (higher resolution, higher signal-to-noise ratio) data
than ever before. However, it has also become clear that data alone can’t push neuroscience
forward. The data is important but what is the data for?

One approach has been to build models that are able to predict neural activity while
an animal is experiencing some task or stimuli. Traditionally, a model would be designed
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given what is already known about the system of interest and the researchers hypotheses
about neural function. Modern DNNs, on the other hand, though originally inspired by
biological neural networks, were designed to solve computer vision problems independent of
any knowledge or specific hypotheses about neural function. That such networks trained to
recognize objects in images learned representations that were similar to those found in the
primate ventral stream caused much debate in the neuroscience community. Jim DiCarlo,
one of the leading researchers in this area, has described his approach as turning the scientific
problem of neuroscience into an engineering one where the primary goal is to optimize the
accuracy of predictive models (DiCarlo, 2018). Competitions such as the Algonauts project
(Cichy et al., 2019) and BrainScore (Schrimpf et al., 2018) seek to identify the models that
achieve the best score on standardized tasks, akin to engineering competitions such as Kaggle.
The approach of ‘Predict, then Simplify’ prescribes first building a predictive model and then
trying to explain why it successful (Kubilius, 2017).

Critics of this approach have essentially claimed that these DNN similarity results don’t
count as scientific progress, at least not in the same way that the results of traditional
modeling studies do, because the models themselves are “uninterpretable” (Kay, 2018). The
approach has been also criticised as replacing one black box with another, i.e., modeling one
thing we don’t understand with another that we also don’t understand (Middlebrooks, 2019).
This criticism implies that no scientific progress has been made. How can representations
learned in DNNs tell us anything about the brain when they don’t encode specific hypotheses
about neural function?

Many of the conversations alluded to above start by asking what would it mean to under-
stand the brain?: e.g., the paper, “What does it mean to understand a neural network?” by
Lillicrap and Kording (2019) or the Challenges and Controversies session, “What it would
mean to succeed at understanding how cognition is implemented in the brain” at the 2018
conference on Computational Cognitive Neuroscience. These questions are framed as if their
answers would help us to reason about the merits of using DNNs as models. Here I propose
a reformulation of these questions to better serve that purpose. Instead of asking ‘How to
understand the brain’ or ‘How to understand a neural network?’, let us focus our efforts
on 1) defining the specific phenomena to be explained and 2) how the relevant classes of
phenomena ought to be explained.

The second part of the reformulation seeks to emphasize the importance of scientific
explanation, not just scientific understanding. Providing understanding might be one goal of
scientific explanation (De Regt, 2017), but philosophers have identified several other desirable
attributes, e.g. truthfulness, predictive power, or usefulness for future scientific efforts.
At the individual level, understanding has been discussed as a type of personal, cognitive
achievement state (Grimm, 2010). For example, when an individual comes to understand a
language, another person, a proof, or a scientific theory, that individual has transitioned from
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a cognitive state of not understanding to understanding. One may distinguish here between
understanding, a cognitive achievement state, and the sense of understanding, the subjective
experience of understanding. One may also speak of understanding as an accomplishment
of a group, where a scientific field, for example, might be said to understand a phenomena
of study. In all cases, understanding is subjective and may change over time. An individual
or a group may come to understand something and later update their understanding to
take into account new information. On many accounts, scientific explanation, on the other
hand, is typically thought to be more objective and unchanging. Explanations can be good
or bad (sometimes equated with true or false) and their goodness is primarily a function
of their relationship to the phenomena they are supposed to explain, rather than to the
subjective perspective of scientists. For example, Europeans in the 19th century understood
the superiority of the white race, based on explanations provided by colonialist scientists of
the time (Saini, 2019). Hopefully, respected scientists today no longer find such explanations
to provide the same understanding. While our understanding has evolved, the explanations
have always been faulty. The explanations of colonialist race scientists are as poor now as
they were two centuries ago. In retrospect, we can look back and analyze the signatures
of these faulty explanations—what were they missing? where did they go astray?—and the
social factors that influenced the understanding they provided.

One may disagree with my particular framing of the distinction between understanding
and explanation. What matters here is to have a distinction between the human, subjective,
cognitive state provided by an explanation and the somewhat more objective goodness or
badness of an explanation. I find it useful to assign the subjective, cognitive achievement
state to the word understanding, and let the objective component live in the word explanation.
Both are clearly important for scientific progress. My goals here are to argue against equating
understanding and explanation and to warn against neglecting scientific explanation in favor
of understanding. Certainly we want to gain understanding, but we don’t only want to
understand—we want that understanding to be robust. If we want to effectively debate how
our science will progress, we must consider the explanations we will produce not just the
understanding they will provide.

The first part of my proposed reformulation focuses on defining the specific phenomena
to be explained. I will argue that classes of similar phenomena, which may span distinct
scientific domains, should be explained similarly. Here I will focus on phenomena that lie
at the intersection of neuroscience and artificial intelligence, which I will define as phenom-
ena that occur to some degree in both artificial and natural intelligence, e.g. learning in
distributed networks, visual object recognition, language translation, navigation. According
to this definition, the project of comparing representations in convolutional neural networks
to firing rates in the primate ventral visual pathway constitutes research at the intersection
of AI and neuroscience where the common phenomenon is the capacity to recognize objects
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in images. Here, as in most experimental psychology, a demonstration of a psychological
capacity is operationalized by task performance. We may also consider phenomena at lower
levels, e.g. patterns of neural dynamics or selectivity, that can be observed during learning,
decision making, or action in both biological and artificial systems.

In the next section, I continue to justify this reformulation of the relevant philosophical
questions when reasoning about scientific progress at the intersection of neuroscience and AI.
I assume no background in philosophy of science, so this section also includes a gentle but
woefully incomplete and superficial introduction to different ways of doing philosophy. Then,
I review a subset of relevant theories of scientific explanation. I hope that this summary
will help readers to identify what notions of scientific explanation are reflected in their own
work and the work of their peers 1. Lastly, I outline some desiderata for a theory of scientific
explanation tailored to the phenomena at the intersection of AI and neuroscience. I hope
that this paper provides a base from which to launch productive discussions about the nature
of a unified science of intelligence.

2. Asking the Right Questions

To begin, let us assume that science eventually makes progress towards its goals. This
doesn’t imply that science proceeds directly to its goals or that all its goals are achievable,
but it does imply that the activity of doing science is more than just going in circles—that
science moves towards something. Some applied sciences will have very clearly defined goals,
such as improving patient outcomes for medical research or enabling the development of
new technology. In the absence of clear applied research goals, one of the primary goals of
fundamental science, of science for science’s sake, is to explain, i.e., to provide explanations
of the phenomena that are the focus of scientific study.

So then, if we want to understand how fundamental science progresses, we need to know
what constitutes a scientific explanation. This has been a central question for philosophers
of science over the past century. To develop a theory or model of scientific explanation is
to characterize the structure of scientific explanations and to define the criteria that must
be met in order for a phenomenon to be successfully explained. Around the mid twentieth
century, philosophers who tackled this question sought to identify a universal and objective
logic of scientific explanation. Much of this work can be characterized as armchair philosophy
because it reflects the belief that philosophy of science can pass judgment on and discern
the rules of science from a non-scientific view point. Philosophers looked to physics as the

1. To those who might protest that their work does not reflect a philosophical stance, I agree with ?
when they write, “there is no escape from philosophy. Every scientist takes a philosophical position, either
tacitly or explicitly, whenever they state that a result is “important,” “fundamental,” or “interesting.” This
is because such assertions are always a judgment from outside of science. There is no “interesting” variable
inherent to the data that can be objectively plotted on a graph—abstract reasoning and normative claims
cannot be substituted by, or obtained from, data.” (?, pg. 485)
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model science and tried to develop general theories of explanation that would account for all
scientific explanations. Proposals included that explanations are deductive arguments based
on laws of nature (deductive-nomological model) and that explanations are collections of
statistical relevance relationships (statistical relevance model). These works viewed science
as providing an objective window onto truth and assumed that it must have a clear and
universal set of rules. This enterprise is largely considered to have failed to achieve its goal
since each theory has a number of counter examples for which it is unable to account 2.

In contrast, the field of science studies centers the fact that science is performed by bias-
laden humans in a particular social and historical context which will effect what questions
get asked, how science is performed, and how its results are presented and received. An
extreme view on explanation within this tradition is that scientific explanation is simply
whatever scientists find to be explanatory at a given time and place—that there is no objec-
tive component of explanation independent from its social and historical context. This view
is unsettling to many scientists and philosophers who want to believe that there is something
special about science compared to other ways of knowing. Wesley C. Salmon writes,

First, we must surely require that there be some sort of objective relationship
between the explanatory facts and the fact-to-be-explained. . . Second, not only
is there the danger that people will feel satisfied with scientifically defective
explanations; there is also the risk that they will be unsatisfied with legit-
imate scientific explanations . . . The psychological interpretation of scientific
explanation is patently inadequate (Salmon, 1984, pg. 13).

Similarly, Carl Craver writes, “All scientists are motivated in part by the pleasure of under-
standing. Unfortunately, the pleasure of understanding is often indistinguishable from the
pleasure of misunderstanding. The sense of understanding is at best an unreliable indicator
of the quality and depth of an explanation”(Craver, 2007, pg. 21).

The extreme psychological interpretation says that scientific explanation is nothing more
than a consensus of scientific understanding—whatever the field agrees is explanatory at a
particular moment. On the other extreme, some accounts would say that what constitutes
an explanation is exclusively determined by the physical mechanism producing the phenom-
enon to be explained and has nothing to do the psychology of scientists. Many contemporary
perspectives will fall somewhere in between, acknowledging that there must be an objective
component but also recognizing the human element of scientific explanation, e.g. that the ex-
planation must be expressed in human-readable language or mathematics. For the purposes
of this article, we need only commit to there being a non-negligible objective component of
scientific explanation and it is this objective component on which I wish to focus. There is

2. However, that doesn’t mean that these older theories are now irrelevant. Some explanations may still
fit nicely into one of these theories and some of the component ideas have been revised and incorporated
into more contemporary theories.
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an objective goodness or badness (which may or not correspond to proximity to truth 3) ac-
corded to an explanation that is independent of the understanding that it yields. A scientist
may momentarily consider a good explanation of some phenomenon and discard it, thinking
it implausible for whatever reason, but its goodness remains even after the scientist rejects
it. Different theories of scientific explanation may identify this goodness or badness with
different attributes, e.g. predictive adequacy, unification, usefulness.

In the later part of the twentieth century, after several failed attempts at a universal
theory of scientific explanation, philosophers began to adopt a more context-specific ap-
proach. Many found that theories originally developed to account for explanation in physics
did not transfer well to the biological sciences and began to develop new theories specific
to particular scientific disciplines. This coincided with an increase in empirical philosophy,
which borrows qualitative methods from fields like history, anthropology, and psychology,
such as interviews and field observations, to build theories based on observations rather than
based solely on reason and introspective conceptual analysis (as in the armchair philosophy
mentioned above). This empirical approach may include the analysis of historical explana-
tions that have either passed or failed the test of time. If an explanation is robust, makes
accurate predictions, enables the development of new technology, and/or leads to new pro-
ductive research, then we may take it to be good. Empirical philosophers develop theories
to account for their observations of good and bad explanations and of how scientists went
about developing or discovering these explanations.

There are empirical philosophers of science today dedicated specifically to neuroscience
who develop theories of explanation in neuroscience. But, given the highly interdisciplinary
nature of neuroscience, I am skeptical about the feasibility of a single theory of explanation
to account for all explanation in neuroscience. Neuroscience is not clearly separated from
its sister sciences: biology, physics, psychology, AI, etc. Thus, the search for a universal
theory of explanation in neuroscience may be as ill-fated as the original quest for a theory of
explanation for all science. I think the spirit of the idea of field-specific theories of explanation
is that similar phenomena ought to be explained similarly, assuming that phenomena within
a branch of science will be more similar than phenomena from different disciplines. This
assumption does not seem to hold for neuroscience where, for example, one phenomenon
might be closer to biophysics and another closer to psychology than the two are to each other.
Rather than organizing our theories of explanation around objects of study (in this case, the
brain) or the departmental silos of our academic institutions, I propose we organize our
theories around classes of similar phenomena, regardless of which specific scientific discipline
the phenomena belong to.

3. Pragmatic anti-realist accounts of scientific explanation may reject the notion that explanations can be
true or false, but maintain that they can be good and bad, identifying their goodness with their usefulness.
(c.f. Bas van Frassen)
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This organization can be especially unifying at the intersection of neuroscience and AI
where the behaviour of artificial systems are designed to mimic human and animal behaviour.
This mimicry brings into alignment the scientific goals of AI and much of cognitive computa-
tional neuroscience, which both seek to identify the computational components (algorithms,
procedures, mechanisms, cost functions) that underlie cognitive abilities. Take for instance
the growing sub-discipline sometimes referred to as ‘science of deep learning’ or ‘under-
standing deep learning’. The ICML 2019 Workshop on Identifying and Understanding Deep
Learning Phenomena solicited ‘contributions that view the behavior of deep nets as natural
phenomena, to be investigated with methods inspired from the natural sciences like physics,
astronomy, and biology’. Similar research has also been referred to as ‘artificial neuroscience’
(Metz, 2018) or ‘synthetic neurophysiology’ (Kriegeskorte, 2015), to highlight the similarity
of both methodologies and goals (e.g. ablations/lesioning, comparisons of task performance,
characterization of neural selectivity patterns). Therefore I propose we consider theories
of explanation that are specific to the classes of phenomena we associate with animal in-
telligence, such as learning and cognitive abilities, irrespective of whether they manifest in
biological or artificial systems.

Within this phenomenon-specific framework, it becomes very important to clearly identify
and delineate the phenomena to be explained. How a scientist conceptualizes the phenom-
enon to be explained may bias them towards one form of explanation or another. This is
especially apparent in the cognitive sciences where there are many different perspectives on
the nature of mind and cognition. Is cognition computation? Are cognitive agents embodied
dynamical systems? If explanations are phenomena-specific, we cannot completely separate
the ontological question (What is cognition?) from the epistemological question (How do
we explain cognition?). Thus, a commitment to a particular theory of explanation in neuro-
science may also suggest a related commitment to a theory of cognition. For example, the
information processing view of vision, as exemplified by pioneers like David Marr (1982),
may bias vision researchers towards functional explanations, which proceed by decomposing
a phenomenon into its component operations and showing how those operations are orga-
nized to exhibit the phenomena to be explained (Cummins, 1975). Alternatively, a radical
embodied perspective, like that espoused by Chemero (2009), might bias vision researchers
towards dynamical explanations and away from explanations that rely on representations.

Returning to the original reformulation goal, the relevant philosophical questions are often
phrased as being about how to ‘understand the brain’ or a ‘understand a neural network’.
Firstly, I encourage shifting the focus from understanding to explanation. Lillicrap and
Kording (2019) use ‘understanding’ similar to how I use it here, associating it with a cognitive
achievement. They emphasize compactness and compressibility in their proposal for what
it means to understand a neural network because humans are only able to argue about
compact systems. According to their view, any meaningful understanding of a neural network
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must be compressible into an amount of information that a human can consume, e.g. a
textbook. The limits of human cognitive abilities constrain the understanding that can
reasonably be sought. For example, humans cannot conceptualize the interactions of 100
trillion synapses simultaneously and so our scientific goals should not require such a feat.
What, if anything, might this say about explanation? By some accounts of explanation,
the limits of human cognition have no bearing on explanation because the goodness of an
explanation is purely a function of its relationship to the phenomenon to be explained. For
those who think that good explanations ought to be true, there is no reason to believe that a
bias towards human understandability would lead scientists closer to truth; the truth is not
necessarily easy to understand. By other accounts, one might consider understandability as a
constraint; we don’t just want good explanations, we want explanations that produce human
understanding 4. For my own part, I don’t want to insist that good scientific explanations
must yield immediate understanding because I recognize that our understanding is constantly
changing as we develop new concepts and new mental instruments to help us manipulate
them. I prefer to assume that good explanations exist, regardless of whether a human
scientist can ever grasp them, and to treat the process of developing human understanding
as a separate but related process. Consequently, there may be some phenomena whose
explanations humans will never be able discover. I think it is important that our conception
of explanation leaves this option open.

Secondly, I caution us against seeking a single answer for how to explain the brain.
Science isn’t in the business of explaining objects. Science may produce descriptions or
characterizations of objects, but explains phenomena. This phrase, ‘explain the brain’, could
be interpreted as short hand for ‘explain all the phenomena that the brain is involved in’. This
phrasing subtly reflects a commitment to the idea that all phenomena involving the brain
can be explained in a similar fashion, i.e. a unitary theory of explanation in neuroscience.
Alternatively, if one organizes theories of explanation around phenomena rather than objects
of study, then we cannot discuss how to ‘explain the brain’; we need to be more specific. The
brain participates in a plethora of distinct phenomena at many different spatial and temporal
scales. What specific phenomenon one seeks to explain will determine how it ought to be
explained.

3. Scientific Explanation

Scientific explanation consists of the explanandum, which is the target of the explanation
(the phenomenon to be explained), and an explanans, which does the explaining. An account
of scientific explanation must distinguish between explanations and non-explanations. For
example, a set of claims about the appearance of a particular species may be true, accurate

4. or equivalently that one of the attributes that makes a scientific explanation good is that it produces
understanding
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and supported by evidence without being explanatory in any way. They are merely descrip-
tive Woodward (2017). Explanations may still be descriptions, but they are descriptions
that also explain. Explanations are thought to answer why-questions while non-explanatory
descriptions might answer how- or what-questions.

3.1. Deductive-Nomological (DN) Model

According to the Deductive-Nomological (DN) model 5, An explanation is the deductive
argument that shows that the explanandum is expected given the premises of the explanans,
where the explanans successfully explains the explanandum only if:

(1) the explanandum is a logical consequence of the explanans, and

(2) the explanans relies on at least one law of nature in its explanatory logic.

The term law here is used to differentiate deterministic laws from other true generaliza-
tions that are only accidentally true (Hempel, 1965). Unfortunately, little agreement about
how to define this notion of lawhood has emerged in the decades since the DN model was
proposed. Additionally, many generalizations that are central to explanation in the special
sciences (biology, psychology, economics, etc.) fail to satisfy any of the standard criteria for
lawfulness. Are fundamental laws of nature only present in physics? If so, then how would
the DN model apply to explanations in the special sciences?

Similarly, deductive-statistical (DS) explanation relies on statistical laws instead of de-
terministic ones, and inductive-statistical (IS) explanation will be “successful to the extent
that its explanans confers high probability on its explanandum outcome” (Woodward, 2017).
According to all DN variants, “the essence of scientific explanation can be described as nomic
expectability–that is, expectability on the basis of lawful connection”(Salmon, 1989, pg. 57)

There are a number of well-known counter examples to the DN model where either a
good explanation is not captured by the DN model or where a faulty explanation satisfies
the DN model. Two main issues emerge from these counter examples:

— Explanatory asymmetries: derivation of an explanandum from a law and initial con-
ditions can meet the critiera for a DN explantaion, while the reverse derivation of
initial conditions from the explanandum and law is not explanatory, yet still satisfies
the DN model. The DN model doesn’t account for the fact that some explanations
are directional. The classic example is that of a flagpole’s shadow. The position of the
sun relative to the flagpole will explain the length of its shadow and not vice versa.

— Explanatory Irrelevancies: A derivation may satisfy the DN model, while relying on
a true generalization that is irrelevant to the explanandum. Consider this counter
example from Salmon (1971): “John Jones avoided becoming pregnant during the

5. also known as Hempel’s model, the Hempel–Oppenheim model, the Popper–Hempel model, or the
covering law (CL) model
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past year, for he has taken his wife’s birth control pills regularly, and every man who
regularly takes birth control pills avoids pregnancy.” Assuming that John Jones is
a cis-man without female reproductive organs, no generalizations concerning birth
control will ever play a role in explaining why he does not get pregnant. Yet, this
example satisfies the DN-model.

In both of the above examples, there is a causal story that seems to determine what can
and cannot be explanatory. The DN model failed to capture the true causal factors of the
explanandum. 6

3.2. Statistical Relevance Model

The Statistical Relevance (SR) model (Salmon, 1971) is an attempt to capture the fea-
tures of causal or explanatory relevance that elude the DN model variants. Statistical rel-
evance here refers to conditional dependence. It is assumed that causal relationships are
captured by statistical relevance relationships. The main claim is that explanatory prop-
erties are statistically relevant: “Given some class or population A, an attribute C will be
statistically relevant to another attribute B if and only if P (B|A.C) 6= P (B|A)—that is, if
and only if the probability of B conditional on A and C is different from the probability of B
conditional on A alone” (Woodward, 2017). This tackles head on the problem of explanatory
irrelevancies in the DN model. Notice though, that an explanation is no longer an argument,
as in the DN model. Here, an explanation is a collection of information that is statistically
relevant to the explanandum. A consequence of this model is that an explanation need not
make an explanandum expected, as in the IS model:

— I-S model: an explanation is an argument that renders the explanandum highly prob-
able.

— S-R model: an explanation is an assembly of facts statistically relevant to the ex-
planandum, regardless of the degree of probability that results. (Salmon, 1971, pg.
11)

A high probability event (e.g. a biased coin toss landing on heads) and its alternative low
probability outcome (landing on tails) are both explained by the same explanans (the bias
of the coin and the action of tossing).

A limitation of the SR model is that it relies on the condition of objective homogeneity,
which requires that there are no omitted variables that would affect the relevant probabilities.
This condition is rarely met in most sciences. It may hold when studying quantum mechanics
in controlled experiments, but likely will not when trying to explain phenomena like recovery
from illness or juvenile delinquency. This is the same problem that makes it difficult to
estimate causal effects from observational data.

6. Further counterexamples and objections to the DN and IS models can be read in Salmon (1989)
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Another problem with the SR model is the assumption that causal relationships are
captured by statistical relevance relationships. Explicitly, the assumption is that if a cause
is present, some conditional probability will increase. This statement is incorrect for two
reasons:

— An increase in conditional probability may be spurious, which may or may not be
due to omitted causal variables. For example, individuals who purchase life insurance
may live longer, however, purchasing life insurance would not be an effective strategy
to extend one’s life (Cartwright, 1979).

— Causal relationships are underdetermined by statistical relevance relationships. Sev-
eral causal structures may yield the same structure of conditional dependence between
variables.

“. . . statistical relevance relations, in and of themselves, have no explanatory force. They
have significance for scientific explanations only insofar as they provide evidence for causal
relations” (Salmon, 1989, pg. 166). 7

3.3. Causal Mechanical Model

The criticisms against the DN and SR family of theories for not capturing the causal
aspects of explanation led some philosophers to focus explicitly on the causal nature of
scientific explanation. The Causal Mechanical (CM) model was presented as an alternative.
According to this model, scientific explanation is a matter of tracing the causal processes
that lead to the explanandum. The CM model posits the following constraints on scientific
explanation (as described in Craver (2007)):

— mere temporal sequences are not explanatory;
— causes explain effects and not vice versa;
— causally independent effects of common causes to not explain one another;
— causally irrelevant phenomena are not explanatory; and
— causes need not make effects probable to explain them.
Different types of causal explanations, corresponding to different types of mechanisms,

can be organized in a hierarchical taxonomy. At the top level, one can distinguish between
etiological and constitutive mechanisms.

(1) Etiological explanation: To explain in terms of antecedent causes, i.e., to “trace the
causal processes and interactions leading up to [the explanandum]” (Woodward, 2002,
pg. 44), e.g., the virus causes the flu, dehydration causes thirst. The explanandum is
produced by the mechanism.

7. This is the last I’ll mention of the SR model, but I wanted to mention it because I have heard people
in our community make claims about the explanatory power of statistical relevance relations. For example,
I’ve heard that we don’t need philosophy because we have Bayesian statistics (Nemenman, 2018) and I’ve
observed researchers confounding scientific explanation with statistical explanation of variance.
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Figure 14. Taxonomy of Mechanisms

(2) Constitutive (or componential) explanation: To explain via description of causal re-
lationships among component parts and their activities. The explanandum is realized
by the mechanism.

We can further distinguish between structural and triggering etiological mechanisms. Struc-
tural mechanisms set up the necessary conditions such that a trigger will cause the ex-
planandum. Structural mechanisms can be selective (like natural selection) or instructive
(like pedagogy)(Craver, 2002). Within constitutive explanation, we can distinguish between
the systems tradition and the reductive tradition. The systems tradition explains by decom-
posing a system into its parts and demonstrating how those parts are organized such that
they exhibit the explanandum. Reduction is a loaded word with many different meanings
in philosophy of science. By some accounts, the aforementioned systems approach is also
reductive. All constitutive explanations might be said to be reductive in a sense since they
explain via description of component parts. However, Craver (2007, pg. 108) identifies the
reductive tradition with the specific view that ‘explanation proceeds by constructing identity
statements (or partial identity statements) between the kind-terms of the higher-level theory
and those of the lower-level theory and then deriving the laws of the higher-level theory
from the laws of the lower-level theory.’ The systems approach, as described by Craver, re-
quires no such derivation or one-to-one mapping and also allows for explanations to describe
multi-level mechanisms.
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One challenge to the CM model is that one needs a way of identifying only those causal
relationships that are relevant to the explanandum (Hitchcock, 1995). Consider a billiard
ball, which, after being struck by a cue stick, moves in a particular direction to make impact
with another ball on the table. Let’s imagine that the cue stick has also left a mark of blue
chalk on the ball. The relevant causal factors to explain the motion of the balls on the table
will not include the blue chalk mark, even though the transmission of the blue chalk mark is
part of the sequence of causal processes and interactions that led to the explanandum. This
example demonstrates the importance of counterfactuals in explanation. The presence of
the chalk mark is not explanatorily relevant because the explanandum would be unaffected
by it absence (Woodward, 2002).

Another potential critique has to do with the constraint that explanations trace con-
tinuous causal processes where causal processes are exclusively physical processes. The
components of mechanisms must be physical objects, not abstract concepts. This presents
challenges to formal sciences, like theoretical computer science, that are concerned with ab-
stract quantities, or the social sciences where the causally relevant factors may not map
easily to physical objects and their interactions. For example, is a social norm a physical
object? Such criticisms of the CM model are often rebutted by claiming either that the
relevant components of the mechanism are abstractions of physical objects (e.g. hunger is
an abstraction of a bodily state), or, if no such abstraction is clearly defined, that only a
how-possibly, not a how-actually model of the mechanism has been provided. Some (causal
mechanist and otherwise) would argue that formal sciences that do not rely on empirical
observation are not in fact true sciences to begin with, and so are irrelevant to discussions
about scientific explanation.

4. Explanation in the Cognitive Sciences

Now, equipped with some background knowledge about scientific explanation in general,
let us discuss explanation specifically in psychology and neuroscience.

4.1. The Deductive Nomological Model

Consider the field of psychophysics, which seeks to identify relationships between physical
properties of sensory stimuli and human experience of those stimuli. For example, Fechner’s
law (Ψ = c log(I/I0)) states that the “intensity of a sensation (Ψ) is proportional to the
logarithm of the intensity of the stimulus (I) relative to the threshold intensity (I0)” (Bechtel
and Wright, 2009, pg. 2). According to the DN model, such laws could be considered to
explain individual percepts because they show that the percept is to be expected based on a
more general regularity. However, these general regularities themselves are left unexplained.
The DN model interpretation states that Fechner’s law helps to answer why-questions like,
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Why do humans experience item A as twice as heavy as item B? The causal mechanical
interpretation is that Fechner’s law answers a how question (How is the perception of weight
related to mass?) and the corresponding why-question (Why does Fechner’s law hold?) is
unanswered.

In general, the view that to explain is to make a phenomenon expected based on uni-
versal or statistical laws is referred to as predictivism. “On a very liberal interpretation of
predictivism, any mathematical or computational model that predicts all the relevant fea-
tures of the phenomenon in a wide range of conditions counts as an explanation” (Craver
and Kaplan, 2011, pg. 269). The predictivist holds that phenomenological models, models
that characterize or store a phenomenon, are explanatory by virtue of their ability to make
accurate predictions about the phenomenon. Phenomenological models in neuroscience are
called descriptive models because they “summarize data compactly” without addressing “the
question of how nervous systems operate on the basis of known anatomy, physiology, and
circuitry” (Dayan and Abbott, 2005).

In “ ‘How does it Work?’ vs. ‘What are the Laws?’ ”, Robert Cummins (2000) argues
against the application of the DN model in psychology, i.e. that psychological phenomena
cannot be explained by subsumption under law. He suggests that the laws of psychology are
actually the phenomena to be explained, rather than features of an explanation. Laws in
psychology are what are commonly referred to as effects, e.g. the McGurk effect, the spacing
effect. Most efforts in psychology are dedicated to identifying and describing effects. This
activity in and of itself can only be considered to explain to the extent that one believes
that explanation consists of subsumption under law. He writes that the focus on effects
in psychology is “fostered by a confusion between explanation and prediction” (Cummins,
2000, pg. 4). He argues instead that explanation and prediction are orthogonal: that one
can predict without being able to explain (as in the ocean’s tides) and that one can explain
without being able to predict (as in stochastic or chaotic systems whose relevant initial
states are unknown). Knowledge of the McGurk effect may enable the prediction of human
perception, but according to Cummins, it does not explain that perception. Instead, the
McGurk effect is a phenomenon to be explained, for example by reference to multi-modal
interaction.

4.2. Functional Explanation

According to Cummins, the main explananda in psychology are capacities: “the capacity
to see depth, to learn and speak a language, to plan, to predict the future, to empathize, to
fathom the mental states of others, to deceive oneself, to be self-aware, and so on” (Cum-
mins, 2000, pg. 8–9). He proposes that capacities are explained via functional analysis and
realization. Functional analysis refers to the process of decomposing a capacity into a num-
ber of simpler subcapacities and their functional organization. Realization in this context
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refers to the requirement that the analysis must show how the behaviour of the parts of
the system come together to enable the system to demonstrate the capacity to be explained
(Cummins, 1975). However, according to a mechanist perspective, such descriptions only
provide a how-possibly model, and provide no evidence that it corresponds to a how-actually
model (Piccinini and Craver, 2011).

4.3. Causal Mechanical Explanation

Several contemporary philosophers claim that a version of the CM model accounts for ex-
planation across several areas of neuroscience and the cognitive sciences. Carl Craver (2007)
says neuroscience produces constitutive (or componential) causal mechanical explanations:
“to explain a phenomenon, one has to know the mechanism that produces it, one has to
know what its components are, what they do and how they are organized together (spatially,
temporally and hierarchically) such that they give rise to the phenomenon to be explained”
(Craver and Kaplan, 2011, pg. 269). Craver also deals with the issue of causal relevance,
adopting a view based on manipulation: X is causally related to Y if that relationship is
potentially exploitable to manipulate or control Y .

He enumerates six aspects of mechanistic explanation in neuroscience:

(1) The nature of the phenomenon to be explained: delineation, description, characteri-
zation

(2) The constitutive relationship between a phenomenon and its components: decompo-
sition

(3) The difference between real components and useful fictions: distinguishing as is from
as if

(4) The nature of capacities or activities: what are the actions undertaken by the parts
of the system

(5) The nature of mechanistic organization: what matters is not just the sum of the parts
but how they are organized to interact

(6) The nature of constitutive explanatory relevance: not all parts of a system are com-
ponents of a mechanism. The explanatory relevance of each component must be
established.

According to Craver, explanations in neuroscience describe mechanisms, span multiple levels
and integrate multiple fields.

Applied to computational neuroscience, the mechanist would say that a model is con-
sidered to be explanatory only when it satisfies strict model-to-mechanism mapping (3M)
requirements:
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(1) the variables in the model correspond to identifiable components and organizational
features of the target mechanism that produces, maintains, or underlies the phenom-
enon

(2) the causal relations posited among these variables in the model correspond to the
activities or operations among the components of the target mechanism. (Craver and
Kaplan, 2011, pg. 272)

According to this view, a computational model is explanatory to the extent that it faithfully
describes the physical mechanisms that realize a given phenomenon (Kaplan, 2011).

Causal mechanisms have also been posited to account for explanation in cognitive neu-
roscience (Bechtel, 2008). According to William Bechtel (2004), a mechanism producing a
specific behaviour must first be decomposed structurally and functionally into component
parts and component operations respectively. The localization goal of much of cognitive
neuroscience amounts to mapping the component operations to the component parts. How-
ever, according to the mechanist perspective, functional analyses only provide ‘sketches’
of explanations. These sketches can potentially eventually be developed into full-fledged
mechanical explanations, but are not yet explanatory in their own right. In this sense, func-
tional analyses, such as those performed in cognitive psychology to decompose a cognitive
capacity into subcapacities, constitute a first step towards ultimate mechanical explanations
(Craver and Kaplan, 2011; Piccinini and Craver, 2011). This is contrary to the functionalist
perspective on explanation in cognitive psychology which states that explanations of cogni-
tive phenomena need not necessarily make reference to physical components—identification
of the component operations and demonstrating an organization of those operations that
yields the phenomenon to be explained is sufficient for the phenomenon to be explained.
Both perspectives agree that functional analysis is useful, but they disagree on long term
explanatory goals.

4.4. Dynamical Explanation

There exist several views on dynamical explanation and how it might fit into the landscape
of theories of explanation. Dynamic models invoke the mathematical framework of dynamical
systems theory to model complex systems with differential equations. It has been argued
that dynamic explanation adheres to the DN model of explanation (Bechtel, 1998; Stepp
et al., 2011). Similar to the psychophysics example in section 3.1, dynamical models can be
said to identify the mathematical regularities that govern how a phenomenon unfolds over
time. Others have proposed that dynamical explanations resemble mechanistic explanations:
dynamical accounts are explanatory to the extent that they characterize underlying dynamic
mechanisms (Zednik, 2011; Kaplan and Bechtel, 2011). It might be best, then, not to think of
dynamical explanation as a distinct theory of explanation. One might argue that a dynamical
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model is explanatory or not by reference to one or more theories of explanation depending
on the specifics of the model itself and the phenomenon to be explained.

4.5. Minimal Model Explanations

Lauren Ross (2015) has proposed that not all dynamical explanations appeal to mech-
anisms. She analyzes an example of explanation in dynamical systems neuroscience that is
well characterized instead by Robert Batterman’s theory of minimal model explanation.

Explanations are considered to answer why-questions in science. Batterman distinguishes
between why-questions that ask why a phenomenon manifests in a particular situation and
why-questions that ask why a phenomenon manifests generally or in a number of different
circumstances. Minimal model explanations are concerned with the latter type while mecha-
nistic explanations are concerned with the former. Ross discusses the example why-question:
Why do neurons that differ drastically in the microstructural details all exhibit the same
type of excitability? The canonical model approach to this question attempts to reduce the
complexity of molecularly diverse neural systems to a single, abstracted model (the canon-
ical model) that explains excitability. Ross argues that the canonical model approach is an
example of a dynamical model in neuroscience that provides a minimal model explanation.

Minimal model explanation employs mathematical abstraction techniques to delineate a
set of physically distinct systems that demonstrate some shared behaviour (Batterman and
Rice, 2014). Batterman writes,

explanation of universal behavior involves the elucidation of principled reasons
for bracketing or setting aside as ‘explanatory noise’ many of the microscopic
details that genuinely distinguish one system from another. In other words, it is
a method for extracting just those features of systems, viewed macroscopically,
that are stable under perturbation of their microscopic details (Batterman,
2001, pg. 43)

This theory of explanation differs from the causal mechanical account in that the explana-
tion need not share relevant features with the phenomenon to be explained. Instead, the
explanation must abstract away from specific features of the phenomenon to enable wider
generalization.

5. Explaining Intelligence

What are the why-questions at the intersection of neuroscience and AI (neuro-AI)? When
asked about the common goals of neuroscience, cognitive science and AI, some researchers
have answered that the common goal is to “explain intelligence" or to uncover “the laws of
physics for intelligence" (c.f. the discussion panels at the 2017 and 2018 Cognitive Compu-
tational Neuroscience (CCN) conference). Leading AI researcher Yoshua Bengio has often
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described his goals as being focused on discovering general principles of learning and intelli-
gence, presumably that would govern both artificial and biological learning systems. These
comments suggest two philosophical stances: (1) a commitment to scientific why-questions
that are invariant to (or abstract over) the differences between artificial and biological intelli-
gence, and (2) an appeal to the explanatory power of laws. The potential for DN model-style
thinking to proliferate in AI research can also be evidenced by machine learning’s relation-
ship to physics. For example, ‘Statistical Physics of Learning’ was a subject area at the
2020 Neural Information Processing Systems conference. In general in machine learning the-
ory, exact solutions, where phenomena can be precisely derived from idealized or abstracted
models, are celebrated. In the previous sections, I reviewed a number of criticisms of the DN
family of theories of scientific explanation, especially when applied to phenomena outside of
physics, and a number of alternate views of scientific explanation that make no appeal to
the explanatory power of laws. Therefore, I would like to consider how to maintain stance
(1), while abandoning stance (2).

I propose that many why-questions at the intersection of neuroscience and AI are similar
to the why-questions that the minimal models theory of explanation are said to address.
The canonical model approach as discussed by Ross (2015), “explains why physically dis-
tinct neural systems all share the same behavior by showing that principled mathematical
abstraction techniques—which preserve qualitative behavior—can be used to reduce all mod-
els of these distinct systems to the same canonical model” (pg. 15). For example, consider
an AI system with human-level ability to recognize faces. A canonical model may explain
why the AI system and a human demonstrate (or do not demonstrate) the same behaviour.
We can also ask why-questions about learning in distributed networks, the answers to which
would hold for some class of networks, regardless of whether they were implemented in cells
or silicon.

On the other hand, some why-questions will be about a specific manifestation of a phe-
nomenon (e.g. in human brains or DNNs or brains of a particular clinical population). In
these cases, the why-question and its answer, appropriately stated, will not abstract over the
relevant features that define the particular manifestation in question. Cartwright’s distinc-
tion between theoretical and causal explanation in physics may be a useful parallel here. She
suggests that theoretical explanations organize and unify diverse phenomena, without neces-
sarily corresponding to physical reality (in fact, she suggests that the explanatory power of
theoretical laws is at odds with their truthfulness). Causal explanations, on the other hand,
“describe the concrete causal process by which a phenomenon is brought about” (Cartwright,
1983, pg.4), of which there can be only one correct account which corresponds to the true
causal process. Batterman makes a similar distinction between why-questions that ask why
a phenomenon manifests in a particular situation vs why-questions that ask why a phenom-
enon manifests generally (Batterman and Rice, 2014). Rather than two distinct categories,
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it seems to me that all why-questions require a clause of scope, where that scope can be
more or less specific. Thus, perhaps the minimal models theory can be applied to seemingly
more specific questions as well. For example, why-questions about why certain behaviours
are exhibited by a particular architecture have a scope that includes all instantiations of that
architecture, but not other architectures and not human brains.

To be precise, I propose that explanations answer why-questions that include both a de-
scription of the phenomena to be explained and the scope in which the answer should apply.
An alternative view might say that the relevant scope is part of the definition of the phenom-
enon itself. I prefer to keep them separate because it allows us to discuss why-questions that
are concerned with phenomena that are exhibited in both biological and artificial systems,
while allowing the scope to be an additional, separate variable. For example, Leavitt and
Morcos (2020) recently posed the question, Why does class selectivity emerge in deep neural
networks trained on classification tasks? The phenomenon, the emergence of class selectivity,
also occurs in animal brains, therefore we can additionally ask, Why does class selectivity
emerge in rodent brains? or Why does class selectivity emerge in human brains? or Why
does class selectivity emerge in both rodent and human brains? or Why does class selectivity
emerge in both DNNs and human brains? In all cases, the why-question is asking, What
is the common reason that this phenomenon (emergence of class selectivity) occurs in some
set of observations, where the scope of that set is larger (e.g. all animals) or smaller (e.g.
DNNs of a particular architecture). I propose that the why-questions at the intersection of
neuro-AI are those about phenomena that occur in both artificial and biological intelligence,
where the scope may or may not include both. This is a relatively broad definition as it
includes both AI research that doesn’t appear to care about the brain and brain research
that doesn’t appear to care about AI, depending only on their phenomenon of study, not
the particular object in which it occurs.

As discussed in section 2, if what constitutes a valid scientific explanation is dependent
on the phenomenon to be explained rather than on the field or object of study, then, to
the extent that an artificial and biological system demonstrate the same phenomenon, what
constitutes a valid explanation of that phenomenon will be the same in both, even if the
content of the explanations differ. For example, analyzing which visual features an agent
uses to make decisions about an image reflects a functionalist approach where detection
of individual features are the component operations that combine to yield the decision—
the phenomenon to be explained. Geirhos et al. (2019) showed that convolutional neural
networks trained the ImageNet dataset are biased to recognize texture rather than shape,
whereas humans privilege shape over texture when making decisions about object category.
Although the content of the explanations differ (one prefers texture, the other shape), the
same approach to explanation (decomposition into component operations) is applied to both
artificial and biological intelligence.
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Thus, when evaluating theories of scientific explanation for why-questions about phe-
nomena that occur in both artificial and biological systems, we can insist that the theory of
explanation be appropriate for both manifestations . This may lead us to eliminate some
candidate theories that appear appropriate in one context but not the other. For example,
causal mechanical theories of explanation are currently dominant in philosophy of neuro-
science. However, such theories do not seem particularly well-suited to explain the behaviour
of AI systems. For AI systems implemented on digital computers, the explanatorily relevant
factors are often abstract, theoretical entities. An explanation of a particular capacity ex-
hibited by an artificial system should be invariant to whether the system was trained on one
graphical processing unit or another. Thus, I conclude that causal mechanical theories of
explanation as currently conceived will not account for explanations of phenomena at the in-
tersection of neuroscience and AI. Relaxing the strictness of the model-mechanism-mapping
requirement may provide a version of the CM model that is appropriate for neuro-AI phe-
nomena, as has been recently proposed by Cao and Yamins (2020); Ritchie (2020).

It appears that causality is important, but that the relevant causal factors are not nec-
essarily components of physical mechanisms. In machine learning, it is easy to imagine
counterfactuals involving theoretical entities or mathematical abstractions. In some cases,
as in mathematical analysis of neural networks, it is not even necessary to physically instan-
tiate the network in order to reason about what would occur under some intervention. For
example, the analysis of the training dynamics of deep linear networks enables one to exactly
describe the entire learning trajectory (Saxe et al., 2015). One can then ask questions about
how this trajectory might be affected by using different learning rates without ever actually
instantiating a network on a computer.

While I reject the CM model, I still find the taxonomy of mechanisms discussed in
Section 3.3 useful for contextualizing various scientific questions in neuroscience and AI. I
agree with Craver that most contemporary references to mechanisms in neuroscience reflect
a commitment to the systems approach to constitutive explanation. I think that part of
the resistance to or confusion about what has been called a deep learning framework for
neuroscience (Richards et al., 2019), which focuses on how architectures, cost functions, and
learning algorithms produce intelligent behaviour, is because this framework is concerned
with etiological mechanisms rather than constitutive ones. Learning and model selection
procedures are structural, etiological mechanisms that establish the conditions such that a
trigger, such as an image, yields the phenomenon to be explained, for example, the recog-
nition of an object in the image. For comparison, a constitutive story about that same
recognition would amount to describing the component parts of the network (the units and
weights) and how they interact (likely after training) to realize the act of recognition. In the
constitutive story, the recognition and learning to recognize might be two separate phenom-
ena to be explained with their own constitutive mechanisms. In the etiological story, the

73



learning is one of potentially many structural mechanisms that together set up the conditions
such that the recognition, a triggering mechanism, can occur. While neuroscience has mostly
focused on constitutive stories, machine learning research has largely focused on etiological
stories. The proposal for a deep learning approach to neuroscience invites neuroscientists to
consider etiological stories as well, inspired by how useful they have been in deep learning
research.

My rejection of the mechanist perspective does not lead me to embrace the functional
account either. I agree with Cummins that prediction and explanation can be orthogonal
goals: one can predict without being able to explain and vice versa. However, I don’t believe
that functional analysis will be sufficient to explain neuro-AI phenomena. It is insufficient to
demonstrate that an organization of decomposed subcapacities could be arranged to demon-
strate the phenomenon to be explained. I tend to agree with the mechanist criticism that
this provides only a how-possibly model, not a how-actually model. In deep learning, it is
very easy to write down the exact compositions of functions that are computed by a network.
This by itself doesn’t seem to translate into much explanatory power. Some of the simplified
stories about how deep networks work resemble functional explanations based on the compo-
nent operations of layers. Features learned in each layer compose hierarchically: lower-level
features (edges, colour patches) combine into intermediate features (shapes, textures) which
in turn combine into features that discriminate between higher-level object categories at the
last layer. Compositionality is surely an important concept in the theoretical motivations
for deep learning, but these over-simplified stories have not up to now been sufficient to ex-
plain how neural networks work, and works like Geirhos et al. (2019, 2020) have challenged
intuitions about how networks actually use such features. Individual layers and units are
not in general clearly selective to human understandable features, and even when they are,
the role of this selectivity is unclear (Leavitt and Morcos, 2020). Therefore, I am uncertain
about the role that functional characterization of component operations, for example the
system identification approach described in Wu et al. (2006), will play in a unified theory of
explanation for biological and artificial intelligence.

6. Conclusion

As scientists, we ultimately want our scientific enterprises to proceed towards explana-
tions of our phenomena of interest. To understand how our science progresses, we must
consider what constitutes a scientific explanation for the specific phenomena of interest. I
reviewed several theories of scientific explanation and discussed how such theories may be
applied at the intersection of neuroscience and AI. I clarified the distinction between under-
standing (a cognitive achievement) and scientific explanation (an answer to a why-question
that may be good or bad, e.g. true or false, depending at least in part on its relationship
to the phenomenon to be explained). It is the character of this relationship between an
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explanation and the phenomenon to be explained that the theories of scientific explanation
I reviewed are concerned with. I showed how different theories draw different boundaries
between what is truly explanatory and what is merely descriptive. There are several themes
that recur: causality, physicality, predictability, mechanism, representation, and function.
Different theories of scientific explanation reflect different valuations of these themes.

What constitutes an explanation, and hence how a science progresses, may be
phenomenon-specific. Therefore, when defining a new science of intelligence at the inter-
section of neuroscience and AI, the first step is to clearly delineate the phenomena to be
explained. Articles like Lillicrap and Kording (2019) and Richards et al. (2019) do not
directly address the matter of scientific explanation. However, they do propose and justify
why-questions. When defining a science at the intersection of neuroscience and AI, we
can literally think of an intersection on sets of observations—phenomena that exist in
both biological and artificial intelligence. As such, we need a theory of explanation that
holds regardless of whether the scope of the why-question includes only AI, only brains, or
both. This provides useful constraints on our conceptions of scientific explanation. These
constraints can help focus and direct future efforts to theorize about how a science of
intelligence might progress.
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Résumé. Il a été démontré que les fonctions de transfert de modulation calculées à partir
de sons synthétiques (ondulations dynamiques) diffèrent de celles calculées à partir de sons
naturels. Ici, nous avons collecté des réponses IRMf à huit ondulations simples et les 28
mélanges par paires de ces ondulations pour étudier le codage neuronal des modulations
spectro-temporelles. Une analyse de codage a été réalisée pour identifier les voxels dont
la réponse pourrait être modélisée en fonction linéaire des paramètres d’ondulation: fré-
quence fondamentale, taux de modulation temporelle et échelle spectrale. En quantifiant
la performance globale du modèle de codage, une analyse d’identification de son a révélé
que le modèle de codage entraîné uniquement sur de simples ondulations était capable de se
généraliser à des mélanges d’ondulations. Cependant, l’activité voxel n’a pu être prédite de
manière significative que chez un sujet. Ces résultats supportent le modèle de modulation
spectro-temporelle spécifique à la fréquence du cortex auditif, mais le rapport signal sur
bruit était insuffisant pour localiser des voxels spécifiques où ce modèle tient.
Mots clés : IRMf, codage, ondulations dynamiques, neurosciences auditives

Abstract. Modulation transfer functions calculated from synthetic sounds (dynamic rip-
ples) have been shown to differ from those calculated from natural sounds. Here, we collected
fMRI responses to eight simple ripples and the 28 pairwise mixtures of those ripples to in-
vestigate the neural encoding of spectro-temporal modulations. An encoding analysis was
performed to identify voxels whose response could be modelled as a linear function of the
ripple parameters: fundamental frequency, temporal modulation rate, and spectral scale.
Quantifying the global performance of the encoding model, a sound identification analysis
revealed that the encoding model trained only on simple ripples was able to generalize to
mixtures of ripples. However, voxel activity could only be significantly predicted in one
participant. These results provide evidence in support of the frequency-specific spectrotem-
poral modulation model of auditory cortex, but the signal-to-noise ratio was insufficient to
localize specific voxels where this model holds.
Keywords: fMRI, encoding, dynamic ripples, auditory neuroscience

1. Introduction

The information processing paradigm in auditory neuroscience views the auditory path-
way as a sequences of processing stages that successively transform sound stimuli to support
auditory perception and cognition. A popular approach is to characterize the response pro-
files of neurons or populations of neurons along the auditory pathway, i.e. to characterize the
neural representation of sound. This approach, combined with physiological studies, have
elucidated the hierarchical structure of the auditory pathway, including auditory cortex, in
non-human animals. In the monkey, the AC is organized hierarchically into several primary
or core areas (A1) that receive inputs from the thalamus and are surrounded by non-primary
or belt and parabelt regions (Kaas and Hackett, 2000; Rauschecker et al., 1995). While it is
generally agreed upon that the human auditory cortex is also arranged hierarchically with
information passing from primary to secondary areas, the details of this model break down
in the human because of considerable anatomical differences.
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Auditory neurons respond preferentially to specific patterns of frequencies over time, i.e.
neurons have spectro-temporal receptive fields (STRFs) (DeCharms et al., 1998).

Physiological and psychoacoustic studies suggest that the cortical representation of sound
involves the explicit encoding of spectral and temporal modulations through dedicated
modulation-detectors (Viemeister, 1979; Depireux et al., 2001; Miller et al., 2002). Conse-
quently, STRFs in auditory cortex are often parameterized by modulations in both frequency
(temporal modulation rate) and time (spectral scale). One can define a modulation transfer
function (MTF) which describes a neuron’s (or a voxel’s) response as a function of temporal
modulation rate and spectral scale. The two-dimension Fourier transform of an STRF gives
the corresponding MTF. MTFs have been measured using the dynamic ripples as stimuli.
A dynamic ripple is a complex broadband sound with a sinusoidal spectral envelope that
drifts along the logarithmic frequency axis over time. The dynamic ripple is defined by the
expression S(t,x) = 1 + A sin(2π(ωt + Ωx) + φ) where t indexes time, x indexes spectral
frequency, A is the modulation depth, φ is the phase, ω is the temporal modulation rate
(in Hz), and Ω is the spectral scale (in cycles/octave). Thus, neural responses to dynamic
ripples correspond to specific regions in an f0-specific MTF. Dynamic ripples have been
used to calculate reliable MTFs in human (Schönwiesner and Zatorre, 2009) and mammalian
(Kowalksi et al., 1996) auditory cortex. The working hypothesis is that auditory cortex
decomposes sound into acoustic features akin to these dynamic ripples, which can support
the multiresolution spectrotemporal analysis required for most complex auditory tasks (Chi
et al., 2005; Massoudi et al., 2015; Leaver and Rauschecker, 2016)

Ultimately, auditory neuroscience seeks to understand how the brain represents natu-
ral, meaningful sounds like communication sounds and complex auditory scenes, not only
simplified synthetic sounds. MTFs and STRFs can also be calculated using natural sounds
as stimuli via reverse correlation, sometimes leading to different results than when using
dynamic ripples. In the guinea pig, Laudanski et al. (2012) compared STRFs obtained from
the same A1 neurons using dynamic ripples and conspecific vocalizations. They found that
the best frequency, bandwidth (frequency range), latency (time to peak) and global shape of
the STRFs depended on the stimulus type. Additionally, they found that neural responses
to vocalizations were better predicted by STRFs calculated from vocalizations than neural
responses to ripples were predicted by STRFs calculated from ripples. Stimulus-dependent
tuning was also observed in the songbird, where 91% of midbrain neurons showed differences
in STRFs calculated from song and acoustically matched noise (Woolley et al., 2006). Other
studies have similarly shown that natural sounds elicit stronger and more reliable responses
than synthetic stimuli (Theunissen and Elie, 2014; Singh and Theunissen, 2003; Hsu et al.,
2004). Context-dependent auditory tuning has also been observed with synthetic sounds.
David et al. (2012) showed that the task reward structure, whether to approach or avoid a
target, influenced STRFs even though the sensory discrimination required was identical in
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both conditions. One interpretation of these results is that there are important nonlinear-
ities in auditory cortical responses that are not captured by the simple linear model based
on spectrotemporal modulation.

On the other hand, additional studies on the neural representation of natural sounds
in the human brain have found spectrotemporal modulation-based acoustic features to be
highly predictive of fMRI activity in auditory cortex. Leaver and Rauschecker (2010) found
that voxels close to A1 responded selectively to spectral and temporal modulations, rather
than to the stimulus category. Santoro et al. (2014) found that a joint frequency-specific
MTF-based model predicted voxel activity better than alternative models. They proposed
that posterior/dorsal auditory regions encode coarse spectral information with high temporal
precision while anterior/ventral regions prefer find-grained spectral information with low
temporal precision. Thus, MTFs calculated from natural sounds appear to generalize to
responses to other natural sounds.

The response of any auditory neuron or voxel can be thought of consisting of a feed-
forward, bottom-up component and a feedback, top-down component. Here we consider the
hypothesis that there exist some voxels in auditory cortex for which the joint frequency-
specific MTF model (as described in Santoro et al. (2014)) accurately captures the feed-
forward component of the response. The aforementioned context and stimulus dependent
responses are hypothesized to belong to the feedback component and to be a product of
attentional effects related to the semantic or practical significance of the sounds. To in-
vestigate this hypothesis, we measured responses to two classes of stimuli: simple dynamic
moving ripples, as previously defined, and mixtures of pairs of dynamic ripples, where two
dynamic ripples are combined in a single stimulus. Our experiment is designed such that
we don’t expect any differences in the feedback component of responses to these sounds;
there are no task-related differences between the stimuli and they have no inherent meaning.
We predict that voxels nearest to A1 should show no stimulus-dependent effects; responses
to simple ripples ought to generalize to responses to mixtures of ripples. Where there are
nonlinearities in the voxel responses that are not captured by the simple linear model, for
example, multi-peak tuning where voxels respond only to the presence of two fundamental
frequencies, not to each presented separately, we expect to see stimulus-dependent responses
where the responses to mixtures of ripples cannot be modelled as linear combination of the
responses to simple ripples.
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2. Methods and Materials

2.1. Participants

Six healthy participants (aged 26–33, 3 women) with normal hearing and no known neu-
rological disorders were recruited to participate. All participants provided written informed
consent prior to the experiment.

2.2. Stimuli

Stimuli consisted of simple dynamic ripples and simultaneous combinations (sums) of
pairs of dynamic ripples. Stimuli were generated using the NSL MATLAB toolbox (available
at http://www.isr.umd.edu/Labs/NSL/Software.htm) and customized MATLAB code (The
MathWorks Inc.). All stimuli were one second long. Ripples were generated according to a
2 fundamental frequencies x 2 spectral scales x 2 temporal rates design, resulting in eight
simple ripples and 28 unique pairwise combinations of these 8 ripples for a total of 36 distinct
one-second stimuli. The parameter values of the simple ripples were selected based on several
criteria. We chose fundamental frequencies f01 = 132.5 Hz and f02 = 210 Hz based on the
average f0 of the male and female speech. Spectral scales Ω1 = 0.7 cyc/oct and Ω2 = 1.7
cyc/oct and temporal rates ω1 = 2 Hz and ω2 = 6 Hz were chosen to be within the peaks
of the marginal spectral and temporal MTFs described in Santoro et al. (2014) while still
being distinct enough to activate spatially distinct regions. Pair-wise ripple combinations
with ratios 1:1, 1:2, and 2:1 were constructed as the weighted sum of the audio waveforms,
resulting in 84 distinct mixtures. All stimuli were normalized to have equal intensity. For the
subsequent analyses, the stimuli were represented by real-valued, three-dimensional feature
vectors: one element for each stimulus attribute f0, Ω, and ω. Using f0 as an example,
a value of 0 indicated that only f01 was present, a value of 1 indicated that only f02 was
present, a value of 0.5 indicated that both f01 and f02 were present to equal degrees, a value
of 1

3 indicated that f02 was twice as intense as f01 in the mixture, and a value of 2
3 indicated

that f01 was twice as intense as f02 in the mixture. The stimulus attributes Ω and ω were
similarly represented.

2.3. Magnetic Resonance Imaging Parameters

MRI data were acquired on the 7T magnetic resonance system at scannexus
(www.scannexus.nl, Maastricht, The Netherlands). A Nova Medical RF head coil
(single transmit, 32 receive channels) was used to acquire anatomical (T1-weighted) and
functional (T2*-weighted BOLD) images. Anatomical T1-weighted images were acquired
using a Magnetization Prepared Rapid Acquisition Gradient Echo (MPRAGE) sequence
(TR = 3100 ms; TI = 1500 ms; flip angle = 5 degrees; voxel size = 0.6 x 0.6 x 0.6 mm3).
Proton density weighted (PD-weighted) images were also acquired (TR = 1440 ms; voxel
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size = 0.6 x 0.6 x 0.6 mm3). Acquisition time for anatomy was approximately 10 minutes.
T2*-weighted functional data were acquired using a clustered echo planar imaging (EPI)
sequence in which time gaps were placed after the acquisition of each volume (TR = 2600
ms; TA = 1200 ms; TE = 19 ms; GRAPPA acceleration X2; partial Fourier = 6/8; voxel size
= 1.2 x 1.2 x 1.2 mm3; silent gap = 1400 ms). Slices covered the brain transversally from the
inferior portion of the anterior temporal pole to the superior portion of the STG bilaterally.
After the anatomical acquisitions and before the beginning of the first experimental run,
several reference scans with reverse phase encoding directions (posterior-anterior (PA) and
anterior-posterior (AP)) were acquired to be used for distortion correction.

2.4. Protocol

The experimental procedures were approved by the ethics committee of the Faculty for
Psychology and Neuroscience at Maastricht University. The experiment followed a fast
event-related design where stimuli were presented during the silent gap between volume
acquisitions. The experiment consisted of twelve runs: six simple runs including all eight
simple ripples and six mixed runs including only the mixtures of pairs of ripples. Each simple
run consisted of 48 trials and lasted 6.5 minutes. Each mixed run consisted of 52 trials and
lasted 7.3 minutes. To maintain vigilance, every run included six catch trials. On catch
trials, a short (0.5 s) dummy ripple was presented. The participants were asked to press a
button when they heard a sound whose duration was shorter than the others. Catch trials
were excluded from the analysis. Each run also included six silent trials where no sound
was presented. The full set of 84 ripples mixtures was presented over two consecutive mixed
runs. Thus, each mixed ripple was repeated exactly three times while each simple ripple
was repeated 27 times. We chose the number of repetitions to be a multiple of three to
allow us to evenly distribute repetitions across our three jitter values of two, three, and four
TRs. The order of presentation in simple runs was designed to ensure that the distribution
of simple ripples was equal across runs. In all runs, no two catch trials or silent trials were
ever presented consecutively and no run ever began with a catch or silent trial.

2.5. MRI data pre-processing

Functional and anatomical images were preprocessed and analyzed in BrainVoyager QX
2.8.2 (Brain Innovation) and MATLAB 8.3 (R2014a) using the NeuroElf toolbox. Functional
runs were 3D motion corrected and coregistered with the first AP reference volume through
rigid-body transformation (3 translation and 3 rotation parameters). Preprocessing also
included slice time correction with sinc interpolation and high pass temporal filtering with a
cutoff of 6 cycles per run. The ‘topup’ method as implemented in FSL (Smith et al., 2004)
was used to correct image distortions using the two reverse polarity reference scans (AP and
PA) which were collected before the first run. Both anatomical and functional images were
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normalized to Talairach space (Talairach and Tournoux, 1988). The border between gray
and white matter was segmented from anatomical volumes and used to generate cortical
surface meshes of the individual participants. A broad mask of auditory cortex was drawn
to include the superior temporal plane (HG, PP, PT) and the STG. Only voxels within this
mask of auditory cortex were analyzed.

2.6. Response Estimation and Voxel Selection

The process for estimating voxel responses to the stimuli and selecting voxels for the
subsequent analyses was the same as has been reported previously in Moerel et al. (2012).
First, voxel-specific hemodynamic response function (HRF) were estimated via deconvolution
with all stimuli treated as a single condition. Then, we performed a General Linear Model
(GLM) analysis with one predictor per unique stimulus to compute one β per sound. This β
serves as the response of an individual voxel to an individual sound. Only those voxels that
showed a significant response to sound (F > 4) were included in the subsequent analyses.

Figure 15. Response to Sound in Participant 3 Voxels within a broad anatomical
mask and which showed a significant response to sound were included in the subsequent
analyses. The color indicates the F -statistic of a sound vs rest contrast.

2.7. Predictive Analyses

All analyses were performed with MATLAB 8.3 (R2014a) and an in-house toolbox for
fMRI encoding/decoding.

2.7.1. Decoding Analysis

As an omnibus tests of the stimulus-related information that could be linearly decoded
from the activity of sound-responsive voxels, a multivariate decoding analysis was performed
in each participant separately. Ridge regression was used to learn a linear relationship
between voxel responses and stimulus attributes. Ridge regression minimizes the following
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cost function
C =

∑
i

(yi −wT xi)2 + λ‖w‖2 (2.1)

where, i indexes the stimulus and w are the learned weights. The target yi and the fea-
tures xi correspond to a particular stimulus attribute and the vector of all voxel responses
respectively. As the number of voxels may be large, the regularization term λ‖w‖2 helps to
reduce overfitting. The hyperparmeter λ was selected with generalized cross validation. The
weights w, learned from the training set, were used to predict the stimulus attributes for
each stimulus in the test set.

Only simple ripple runs were used for training and only mixed ripple runs were used for
testing. The target variables were the stimulus attributes as described in section 2.2. De-
coding performance was calculated as the Pearson correlation between the predicted feature
values and the true feature values of all test sounds. Statistical significance was calculated
using permutation tests. Participant-specific null distributions were calculated by permuting
the labels of the training data 1000 times and recording the resulting decoding accuracy when
training on permuted labels. A group null distribution was constructed as the average of the
single participant null distributions. Permutation-based p-values were estimated according
to the following equation

p̂ = 1 + ∑M
i=1 I(ri ≥ r∗)
M + 1 (2.2)

where M is the number of permutations, ri is the Pearson correlation achieved on the ith

permutation and r∗ is the observed Pearson correlation (Ernst, 2004). Since we tested
the decoding performance of every participant and the group average on every feature (21
tests), we used Bonferoni correction to correct for multiple comparisons. This omnibus test
verifies the suitability of our experimental design to elicit distinctive patterns of activation
in response to our stimuli.

2.7.2. Encoding Analysis

An encoding analysis was performed to identify voxels whose response could be modelled
as a linear function of the ripple parameters: f0, Ω, and ω. As this encoding model involved
only three orthogonal features, we used ordinary least squares (OLS) regression. The weights
w, learned from the training set, were used to predict the neural responses for each stimulus
in the test set.

The 12 runs were partitioned into five different training and test sets to assess various
types of generalization:

— Train Simple: Train on all simple runs, test on all mixed runs
— Train Mixed: Train on all mixed runs, test on all simple runs
— Even: Train and test on even distribution of simple and mixed runs
— Simple Only: Train on 5 simple runs, test on 1 held out simple run
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— Mixed Only: Train on 3 mixed runs, test on 3 held out mixed runs
The Train Simple and Train Mixed configurations allowed us to test the hypothesis that
responses to ripple mixtures are a product of the same data generating process as responses
to simple ripples. If auditory cortex uses a simple linear decomposition of spectrotemporal
modulation to represent both types of stimuli, then a model trained on responses to only
one type of stimuli should be able to predict responses to the other type. The Even, Simple
Only, and Mixed Only configurations provided control conditions to quantify the predictive
performance when the training and test sets did not differ in their distribution of simple
and mixed runs. In other words, the control conditions are constructed to enforce that the
regression problem is one of within-distribution generalization whereas the Train Simple and
Train Mixed configurations could require out-of-distribution generalization if auditory cortex
doesn’t represent simple and mixed ripples in the same way. Therefore, superior predictive
performance for the control configurations relative to the Train Simple and Train Mixed
configurations would help falsify the hypothesis that auditory cortex responds similarly to
simple ripples and ripple mixtures.

Model performance per voxel was calculated as the Pearson correlation between the
true and the predicted voxel to the test sounds. Permutation tests were used to assess
statistical significance and correct for multiple comparisons. The analysis was repeated
with 1000 permutations of the training labels to construct an empirical null distribution
per voxel. Voxel-wise p-values were estimated according to the same equation as used for
the decoding analysis. To correct for multiple comparisons, we calculated a cluster size
threshold from the spatial maps that resulted when using permuted labels. Unlike correction
for multiple comparison based on maximum statistics, this method takes into account the
spatial correlation of fMRI activity. Nearby locations in cortex tend to respond similarly,
therefore a large cluster (relative to what would be expected by chance) of significant voxels
is less likely to be spurious.

2.7.3. Sound Identification Analysis

A stimulus identification analysis was used to quantify the global prediction accuracy
of the Train Simple encoding model. For each test stimulus si, the true response patterns
to all N test stimuli y1, y2, . . . , yN were ranked based on their Euclidean distance to the
predicted response pattern ŷi. The rank of the true response pattern yi was normalized
to assign a score between 0 and 1 to each test sound. The average score over test stimuli
was taken as the sound identification score for that participant. This analysis was repeated
1000 times with randomly permuted labels to calculate an empirical null distribution to
assess statistical significance at the single participant level. Permutation-based p-values were
estimated according to the same equation as used for the decoding and encoding analyses.
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We additionally investigated whether sound identification performance (quantified as the
normalized sound identification score) was better than chance at the group level.

3. Results

3.1. Decoding Analysis

The decoding results are summarized in Table 1 and Figure 16. At the single participant
level, four out of six participants achieved significant decoding of f0 and temporal modu-
lation rate, while spectral scale was only significantly decoded in one participant. At the
group level, Only f0 and temporal modulation rate were significantly decoded. The highest
correlation coefficient was achieved for f0 while spectral scale was the least well decoded.
This result could reflect that our experimental design and/or stimulus design was insufficient
to elicit distinctive responses to the two spectral scales. The decoding performance mirrors
the perceptual salience of the stimulus attributes: differences in f0 are more salient than
differences in temporal modulation rate and spectral scale. Larger, more salient differences
in spectral scale might have elicited more decodable responses. Alternatively, these results
could also reflect that the cortical representation of f0 is less stimulus-dependent compared
to the other stimulus attributes. The cortical representation of spectral scale may depend
on whether the stimulus is a simple or mixed ripple, and hence the model trained on simple
ripples is unable to decode the spectral scale of mixed ripples.

Table 1. Decoding Results. Bold values indicate p-values less than α = 0.002 which is
equal to 0.05 divided by the number of tests. The smallest possible p-value that can be
obtained with our procedure is 1/(M + 1) = 0.001.

Participant f0 Temporal Rate Spectral Scale
r p r p r p

1 0.135 0.001 0.002 0.813 0.006 0.843
2 0.405 0.001 0.254 0.001 0.098 0.009
3 0.605 0.001 0.244 0.001 0.077 0.059
4 0.006 0.723 0.138 0.001 0.205 0.001
5 0.375 0.001 0.051 0.219 0.097 0.009
6 0.348 0.001 0.396 0.001 0.106 0.004

group mean 0.312 0.001 0.180 0.001 0.096 0.010

3.2. Encoding Analysis

Encoding performance was only better than chance in participant 3. Given the decoding
results for participant 3, namely the superior decoding performance for f0, we can presume
that these encoding results are largely driven by the response to f0. Significant voxels for all
train-test configurations concentrated in the first transverse sulcus of the right hemisphere
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Figure 16. Average Decoding Results At the group level, significant decoding was
achieved for f0 and temporal modulation rate but not for spectral scale. f0 was decoded best
while spectral scale was least well decoded. Violin plots show a kernel density estimation of
the average null distributions calculated by permuting the labels and retraining the decoding
model 1000 times for each subject. The the white dot in the miniature boxplot indicate the
median and the box shows the interquartile range. Red X’s show the observed Pearson
correlation for each decoding model.

(Figure 17). No voxels were significantly predicted in the Mixed Only configuration, perhaps
due to the small amount of training data available (3 runs only, compared to 5 or 6 runs
in the other configurations). Clusters of significant voxels across the different train-test
configurations were highly overlapping, aside from a cluster of voxels in the same region of
the left hemisphere that was only significantly predicted in the Train Simple configuration.
Therefore, we find no evidence that simple ripples are represented differently than mixtures
of ripples in auditory cortex. Since we presume that these results are largely driven by the
response to f0, these results are consistent with the hypothesis that the response to f0 is
not dependent on whether one or two frequencies are present in the stimulus.

3.3. Sound Identification Analysis

At the single participant level, the sound identification scores were significantly better
than chance in four out of six participants (Figure 18). The magnitude of this difference
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Figure 17. Encoding Results for Participant 3. Significant voxels concentrate in the
first transverse sulcus of the right hemisphere. Colors indicate the partition of simple and
mixed runs in to training and test sets. Train simple means the model was trained on all
simple runs and tested on all mixed runs. Train mixed means all mixed runs were used for
training and all simple runs were used for testing. Even means that the train and test sets
both contained equal numbers of mixed and simple runs. Simple only means the model was
trained and tested on only simple runs. Approximately the same cluster is found for all
train-test configurations.

is small with all sound identification scores less than 0.52 and the null distributions cen-
tered around 0.5. However, this difference is significant at the group level (mean r=0.508,
p=0.001). These results show that, on average, the representation of simple ripples in audi-
tory cortex is sufficiently similar to that of mixtures of ripples that an encoding model trained
only on responses to simple ripples can identify mixtures of ripples better than chance.
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Figure 18. Permutation Tests for Sound Identification Analysis Permutation tests
were conducted for each participant. Four out of six participants achieved a sound identifi-
cation score significantly greater than the empirical null model, indicated by the asterisks.
Red X’s indicate the true sound identification score. The gray distribution shows the mean
sound identification score and null distribution over participants. The violin plots features a
kernel density estimation of the underlying distribution. The the white dot in the miniature
box plot indicate the median and the box shows the interquartile range.

4. Discussion

Our group-level analyses show that, on average, a linear model trained only on responses
to simple ripples can generalize to (make predictions about) responses to mixtures of ripples,
suggesting that the neural response to simple ripples is not completely different from the
response to ripple mixtures. The relationship between cortical activity and our three ripple
parameters (f0, ω, and Ω) did not appear to be completely stimulus-dependent. However,
the poor encoding performance at the single participant level and poor decoding of spectral
scale complicates the interpretation. Focusing on the group level sound identification results,
one may conclude that we’ve provided evidence in support of our hypothesis that the joint
frequency-specific MTF model is a good model of the feed-forward component of the A1
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response because any stimulus-dependency did not impede significant sound identification.
In the encoding analysis, voxel activity was only significantly predicted in one participant.
Since the significant voxels were largely overlapping for the different train-test configurations,
we failed to identify separate regions of AC where responses to ripple mixtures could be
modelled as a linear combination of the response to other ripple mixtures but not to simple
ripples. Therefore, we found no evidence of voxels whose response contained non-linearities
not captured by the joint frequency-specific MTF model.

On the other hand, we did not find strong evidence in support of the joint frequency spe-
cific MTF model either. Our sound identification scores are relatively low compared to those
reported in Santoro et al. (2014) and the decoding results suggest that our predictions may
be primarily driven by responses to f0. The lower sound identification scores likely reflect
that our stimuli were significantly less distinct and elicited smaller magnitude responses than
the natural sound clips used in Santoro et al. (2014). Although Santoro et al. (2014) do com-
pare to a frequency-only model (tonotopy), they do not assess temporal modulation rate and
spectral scale separately. Therefore, we cannot know how much spectral scale contributed
to their sound identification performance.

The poor encoding performance, even in the Even train-test configuration, suggests that
the SNR was too low to localize the voxels that facilitated the generalization we observed. To
accomplish our localization goals, ideally we would have found significant encoding perfor-
mance in all participants (except for participant 1 for whom only two thirds of the data was
collected). Since the number of brain volumes that can be acquired in a single fMRI session
is low, in predictive analyses, usually the average performance over cross validation folds is
reported so that all of the data can be used during training. In the train-test configurations
used here, the amount of training data varies and is typically only half of the recorded data.
This severely limits the ability to train a good predictive model. Additionally, varying the
amount of training data confounds the results as we expect models trained on more data to
perform better than models trained on less data. Participant 1, for whom we collected only 8
runs instead of 12, achieves the poorest predictive performance. Comparison of participant
1 to the other participants can help us to understand how much data is needed for such
analyses.

That synthetic stimuli like dynamic ripples elicit smaller magnitude responses make such
analyses more difficult. Especially to a naive listener, our stimuli were not very perceptually
distinguishable. More perceptually distinct stimuli may elicit more distinguishable patterns
of activity. While our ripple parameters were well-motivated by the marginal transfer func-
tions reported in Santoro (2014), these marginal MTFs may differ when using synthetic
sounds.

Recent work has shown that fMRI responses to natural sounds are better predicted from
features extracted from a task-optimized neural network than by an MTF-based model (Kell
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et al., 2018). In fact, they found that features extracted from a randomly initialized network
predicted activity nearly as well as their MTF model. This line of work provides additional
evidence that the response in AC cannot be easily captured as a linear function of the
spectrogram. However, it remains unclear where to attribute these non-linearities. Are they
a product of the feedforward, bottom-up computation, or are they a product of the top-down,
feedback activity which contains information about the meaning of the stimulus?

The goal of the present study, to focus on the feed-forward processing stream, absent any
stimulus-dependent top down influences, is one that may require synthetic stimuli, composed
to be as meaningless as possible. However, escaping top-down influences may be impossible
without some method to interrupt the feedback component. For example, it may be possible
with TMS to disrupt the top-down activity, allowing researchers to focus on the bottom-up
pathway. An alternative approach would be to build and analyze recurrent, non-linear models
to better understand the possible interplay between bottom-up and top-town components.

5. Conclusion

This study provided an opportunity to falsify the popular MTF model of auditory cortex
at particular voxels in auditory cortex. We had hoped to localize where this model is predic-
tive and where it is not, but the SNR appears to have been insufficient for this analysis. At
a global (AC-wide) scale, had we found that models trained on simple ripples cannot gen-
eralize to mixtures of ripples, this would have provided general evidence against the MTF
model. Instead, we found that the relationship between cortical activity and each of our
ripple parameters is not completely stimulus dependent, which provides general evidence in
support of the MTF model. It seems clear from the literature that AC responses contain
non-linearities that are not captured by the joint frequency-specific MTF model. However it
remains unclear how much of this non-linearity stems from bottom-up or top-down influences.
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Résumé. La caractérisation des représentations apprises dans les couches intermédiaires
des réseaux profonds peut fournir des informations précieuses sur la nature d’une tâche et
peut guider le développement de stratégies d’apprentissage bien adaptées. Nous étudions
ici des modèles acoustiques basés sur un réseau neuronal convolutif (CNN) dans le contexte
de la reconnaissance automatique de la parole. En adaptant une méthode proposée par
Yosinski et al. (2014), nous mesurons la transférabilité de chaque couche entre l’anglais,
le néerlandais et l’allemand pour évaluer leur spécificité linguistique. Nous avons observé
trois régions distinctes de transférabilité: (1) les deux premières couches étaient entière-
ment transférables entre les langues, (2) les couches 2 à 8 étaient également hautement
transférables mais nous avons trouvé des preuves de spécificité linguistique, (3) les couches
suivantes entièrement connectées étaient plus spécifiques à la langue mais pouvaient être
adaptées avec succès sur la langue cible. Pour étudier l’effet de l’immobilisation du poids,
nous avons effectué des expériences de suivi en utilisant l’entraînement figé (Raghu et al.,
2017). Nos résultats sont cohérents avec l’observation selon laquelle les CNN convergent «de
bas en haut» pendant l’entraînement et démontrent les avantages de l’entraînement figé, en
particulier pour l’apprentissage par transfert.
Mots clés : CNNs, modélisation acoustique, interprétabilité, transférer l’apprentissage,
spécificité linguistique, entraînement figé

Abstract. Characterization of the representations learned in intermediate layers of deep
networks can provide valuable insight into the nature of a task and can guide the devel-
opment of well-tailored learning strategies. Here we study convolutional neural network
(CNN)-based acoustic models in the context of automatic speech recognition. Adapting
a method proposed by Yosinski et al. (2014), we measure the transferability of each layer
between English, Dutch and German to assess their language-specificity. We observed three
distinct regions of transferability: (1) the first two layers were entirely transferable between
languages, (2) layers 2–8 were also highly transferable but we found some evidence of lan-
guage specificity, (3) the subsequent fully connected layers were more language specific but
could be successfully finetuned to the target language. To further probe the effect of weight
freezing, we performed follow-up experiments using freeze-training (Raghu et al., 2017). Our
results are consistent with the observation that CNNs converge ‘bottom up’ during training
and demonstrate the benefit of freeze training, especially for transfer learning.
Keywords: CNNs, acoustic modeling, interpretability, transfer learning, language-
specificity, freeze training

1. Introduction

The acoustic properties of speech vary across languages. This is evidenced by the fact
that monolingual acoustic models (AMs) are the de facto standard in automatic speech
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recognition (ASR), while multi-lingual AMs are an active area of development (Heigold
et al., 2013; Tuske et al., 2013; Sercu et al., 2016; Watanabe et al., 2017). Requiring large
amounts of training data to build separate AMs for every language is a barrier to successful
ASR systems for low-resource languages. Ideally, AMs would be designed to strategically
leverage off-task data as much as possible. AMs often take the form of a deep network
which learns to map from acoustic features to context-dependent phones in a language-
specific phone set. It is not clear how exactly this transformation is performed or what
is represented in the intermediate layers of such networks. Better characterization of the
intermediate representations of AMs may help to guide data-efficient training procedures.

Similar characterizations of networks trained on visual tasks have inspired new transfer
learning procedures. For example, Yosinski et al. (2014) characterized the task specificity
at each layer of a network trained on ImageNet using transferability as a proxy for task-
specificity. This characterization motivated Adaptive Transfer Networks (Long et al., 2015)
where parts of a network are trained on the source domain while other parts of the network
are finetuned or adapted to the target domain, preserving the limited target data for learning
highly task-specific parameters. Similar adaptive transfer learning procedures may also prove
to be useful for building AMs for low-resource (data-poor) languages. A necessary first step is
to characterize the shape of the transition from task-general to task-specific representations
through the layers of deep network-based AMs.

Much of the previous work on characterizing intermediate layers of deep networks has
focused on relatively solvable tasks in the visual domain (e.g. hand written digit recognition,
visual object recognition) (Zeiler and Fergus, 2014). Few studies have characterized the
intermediate representations of networks trained on acoustic tasks (Lee et al., 2009; Golik
et al., 2015; Nagamine et al., 2015), which, in practice, are not always trained long enough
to converge completely (test error still slowly decreasing at the end of training) due to the
long training time required. It is not clear to what extent existing methods developed to
probe networks trained on visual tasks will be applicable and useful to study networks that
may be underfitting on difficult acoustic tasks.

Here we studied convolutional neural networks (CNNs) used for ASR systems. We char-
acterized the language-specificity of each layer across languages using an approach inspired
by Yosinski et al. (2014). Subsets of a network previously trained on one language were ‘im-
planted’ into another network which was subsequently trained on a second language. The
effect of the implant on performance indicated the language-specificity of the features in the
implant. Our main contribution is the characterization of the language-specificity of inter-
mediate layers of CNN-based acoustic models. We also demonstrate the adaptation of an
analysis method originally designed to probe visual networks to study networks in an un-
derfitting regime on a phone classification task. Additionally, follow up experiments explore
the role of weight freezing in transfer learning.
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Table 2. Speech Data English, German and Dutch speech datasets consisted of utterances
read by several speakers in a quiet room.

English German Dutch
Hours 82h:44m 67h:42m 63h:46m
Utterances 87906 62294 95350
Phoneset size 54 49 48

2. Experiments

The datasets for this experiment consisted of German, Dutch and American English
speech, recorded in similar environments, with corresponding text transcriptions. We chose
these languages because we expected a large degree of transferability based on their phonetic
similarity. Logarithmic Mel filter bank features were calculated, creating a 45-dimensional
feature vector for every 10ms of audio (spectrograms). Each observation was associated with
one of 9000 context-dependent phone classes (language-specific). A summary of the speech
data can be found in Table 2.

2.1. Baseline models

For each language, a CNN consisting of nine convolutional layers followed by three fully
connected layers was trained to recognize context-dependent phones. The architecture was as
follows, where triplets specify the filter size and number of feature maps in each convolutional
layer and the singletons specify how many units in each fully connected layer: (7, 7, 1024),
(3, 3, 256), (3, 3, 256), (3, 3, 128), (3, 3, 128), (3, 3, 128), (3, 3, 64), (3, 3, 64), (3, 3, 64),
(600), (190), (9000). This resulted in a total of approximately 7.2 million parameters. All
networks were trained using the ADAM optimizer (Kingma and Ba, 2015) as implemented
in Tensorflow (Abadi et al., 2016) with a minibatch size of 256, a starting learning rate of
10e−5 and rectified linear units. Approximately 98% of the data was used for training and
the remaining 2% for testing. All model parameters were replicated on four GPUs. Different
minibatches were given to each GPU and their gradients were averaged to calculate updates.
As a balance between training time and accuracy, each network was trained for a fixed period
of 100 epochs (which took approximately two weeks).

2.2. Experimental setup

The subsequent experimental setup was similar to that described in Yosinski et al. (2014).
Several ‘network surgeries‘ were performed. The first n layers of a network trained on
Language A were implanted into a new network of identical architecture where the layers
after layer n were randomly initialized. This ‘chimera’ network was further trained in four
different ways. It was either trained on Language A (self-transfer or ‘selfer‘ network) or
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Language B (transfer network) and the implanted parameters were either fixed or allowed
to be finetuned during training. This process was repeated ∀ 1 ≤ n ≤ 11 and for all pairs
of languages resulting in a total of 198 networks (see Figure 1 in Yosinski et al. (2014) for a
graphical depiction of a similar experimental setup). The selfer networks served as a control
to capture any changes in performance associated with the surgery but unrelated to the
transfer. As in Yosinski et al. (2014), we also measured the effect of leaving the first n layers
untrained, i.e. fixed at their random initialization, while training subsequent layers normally.
All networks were trained for 100 epochs. Training parameters were identical to those of the
baseline models.

3. Results

We found representations throughout the networks to be highly transferable between all
three languages. Top-1 test phone classification accuracy for each network is plotted as a
function of the layer at which the surgery was performed in Figure 19. Phone classifica-
tion accuracy is measured with respect to per frame phone-labels established in a forced
alignment.

3.1. Transfer networks

The only models that performed considerably worse than the monolingual baseline mod-
els were the transfer networks without finetuning whose surgery occurred at one of the fully
connected layers (the penultimate two layers). Transfer networks cut at any of the convolu-
tional layers performed as well as the monolingual baseline model, regardless of whether the
implanted layers were finetuned or not. We observed a slight improvement over the mono-
lingual baseline (1.3 percentage points (pp)) for transfer networks with finetuning chopped
at one of the fully connected layers.

3.2. Selfer networks

All selfer networks with finetuning performed at the same level as the mono-lingual
baseline. Somewhat unexpectedly, the selfer networks without finetuning performed best
overall among the chimera networks. Selfer networks chopped at late layers whose implants
were not finetuned showed an improvement of 2.7 pp.

3.3. Random features

Previous work has shown that random, untrained weights can often perform remarkably
well in certain scenarios (Jarrett et al., 2009; Rahimi and Recht, 2007). Figure 19 shows
accuracy as a function of the layer at which training began, meaning that layers below layer
n were randomly initialized and never updated. We observed a gradual drop in performance
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(a) Test on English (b) Test on German

(c) Test on Dutch

Figure 19. Test accuracy as a function of depth after 100 epochs. The plus sign
indicates that the implanted pretrained layers were finetuned. Th dashed black line indicates
the performance of the monolingual baseline models. Up to the ninth layer, layers trained on
one language could be copied directly (without finetuning) in a network whose subsequent
layers were trained on another language with little to no loss in performance compared to
baseline. Selfer networks without finetuning show an improvement compared to baseline.
Freeze trained transfer networks yielded the best overall performance. The pattern is similar
for all three languages.
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Figure 20. Test accuracy with random weights up to layer n. The leftmost points
represent the baseline models. Performance decays gradually as more layers are left un-
trained, only reaching near-chance performance when nearly all layers are random.

as a function of the depth at which training began. Random weights in early layers did not
have a large impact on performance. Using random weights for all but the last layer resulted
in near-chance performance. This verifies the non-triviality of the success of our transfer
networks without finetuning.

3.4. Freeze Training

The training of our selfer networks without finetuning somewhat resembles the freeze
training procedure proposed by Raghu et al. (2017). According to this procedure, layers are
successively frozen over the course of training, gradually reducing the number of parameters
to be updated until, by the end of training, only the last layer is being updated. We
hypothesized that weight freezing partly explained the success of our selfer networks without
finetuning, so we created freeze trained versions of both our selfer and transfer networks.
Starting with a pre-trained network, layers 1–11 (excluding layer 0) were trained for 5 epochs.
Then, for the next 5 epochs, only layers 2–11 were trained. From then on, another layer
was removed from the trainable parameters every 10 epochs for a total of 100 training
epochs. The freeze trained models are represented by the coloured dashed lines in Figure 19.
All freeze trained networks outperformed all other networks. The freeze trained transfer
networks performed best overall, achieving 4.5 pp above baseline on average.
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4. Discussion

Our results suggest that, despite a large degree of transferability of intermediate acoustic
features between languages, naive approaches to transfer (e.g. initializing with parameters
from another language) are not the most effective nor the most efficient. In particular, early
layers need not be finetuned on the target language at all. Subsequent layers benefit greatly
from freeze training on the target language. These freeze trained transfer networks outper-
form all networks trained solely on the target language, which demonstrates the improved
generalization that can be achieved when incorporating data from multiple sources.

There are many differences between the current experiments and those presented in
Yosinski et al. (2014) (task, domain, architecture). While comparison between these studies
is not straightforward, it may still aid interpretation of our results. To what extent do these
characterizations apply to all convolutional architectures and tasks, in which case we expect
alignment of our results, and to what extent can the deviations that we observe be explained
by the particulars of our task or setup?

The performance of the networks with finetuning is largely consistent with Yosinski et al.
(2014). However, the performance of networks without finetuning deviates considerably.
The transfer networks without finetuning in Yosinski et al. (2014) show a gradual drop in
performance, starting at the 4th convolutional layer and eventually dropping nearly 8 pp
by the penultimate layer (see Figure 2 from Yosinski et al. (2014)). Our transfer networks
without finetuning, on the other hand, show a sharp drop in performance that starts only at
the first fully connected layer (layer 9). For the selfer networks without finetuning, we did not
observe a performance drop when networks were chopped at middle layers, as was reported
in Yosinski et al. (2014). Instead, our selfer networks without finetuning outperformed all
other ‘chimera’ networks, with accuracy increasing nearly monotonically with the depth at
which the surgery was performed. Finally, Yosinski et al. (2014)’s experiments with random
weights quickly drop to near-chance performance by layer 3, whereas our networks with
random weights decline gradually with depth, only approaching near-chance performance
when all but the last layer are random.

The success of our selfer networks without finetuning is at least partly explained by the
fact that we are in an underfitting regime. Unlike in Yosinski et al. (2014), our baseline model
has not converged completely and we would expect continued training to improve perfor-
mance. However, if that were the only factor at play, we would also expect our selfer networks
with finetuning to show improvement over baseline, but they do not. This difference between
selfer networks with and without finetuning may be explained by weight freezing and the
fact that smaller networks train faster (Saxe et al., 2015). However, we don’t see a benefit
of weight freezing in the transfer networks without finetuning. Something about freezing
all but the last layer(s) facilitates a 2.7 pp improvement over baseline in the selfer but not
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the transfer networks. This suggests that there is some important language-specific infor-
mation in the layers that show a difference between the selfer and transfer networks without
finetuning (layer 3 and above). Layers 10 and 11 show worse than baseline performance for
the transfer network without finetuning, indicating a larger degree of language-specificity in
these representations.

Our freeze training results corroborate the interpretation that weight freezing is responsi-
ble for the success of our selfer networks without finetuning. Furthermore, our freeze-trained
transfer networks performed best overall, demonstrating that freeze training can actually
recover the language-specific information lacking in our transfer networks without finetun-
ing, yielding improved generalization. This likely reflects the observation from Raghu et al.
(2017) that CNNs converge ‘bottom-up’ during training, with early layers stabilizing earlier
in training. Relatedly, Alain and Bengio (2016) state the proposition that no intermediate
layer of a multi-layer neural network will contain more target-related information than the
raw input, which requires a ‘bottom-up’ flow of information; intermediate layers cannot pass
on target-related information that they do not receive. Thus, we conclude that freezing
the weights of a given layer can only improve performance if that layer already passes on
the target-related information in a representation that can be disentangled by subsequent
layers. This was not generally the case in our transfer chimera networks because impor-
tant language-specific information was not being conveyed. The progressive freeze training
regime, proposed by Raghu et al. (2017), allowed this important language-specific informa-
tion to be learned, whereas generic fine-tuning did not. In this way, making fewer parameter
updates actually led to significant performance gains.
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Résumé. L’alignement centré du kernel (CKA) a récemment été proposé comme métrique
de similarité pour comparer les modèles d’activation dans les réseaux profonds. Ici, nous
expérimentons avec le coefficient RV modifié (RV2), qui a des propriétés similaires à CKA
tout en étant moins sensible à la taille de l’ensemble de données. Nous comparons les re-
présentations de réseaux qui ont reçu des quantités variables d’entraînement sur différentes
couches: un réseau entraîné de manière standard (tous les paramètres sont mis à jour à
chaque étape), un réseau «freeze trained» (couches figé progressivement pendant l’entraî-
nement), des réseaux aléatoires (seulement quelques couches entraînées) et un réseau com-
plètement non entraîné. Nous avons constaté que RV2 était capable de récupérer les motifs
de similarité attendus et de fournir des matrices de similarité interprétables qui suggéraient
des hypothèses sur la façon dont les représentations sont affectées par différentes recettes
de formation. Nous proposons que la performance supérieure obtenue par l’entraînement
figé peut être attribuée aux différences de représentation dans l’avant-dernière couche. Les
comparaisons avec des réseaux aléatoires suggèrent que les entrées de données et les cibles
servent d’ancrage aux représentations dans les couches les plus basses et les plus hautes.
Mots clés : analyse de similarité, caractéristiques aléatoires, CNNs, entraînement figé,
coefficient RV

Abstract. Centered Kernel Alignment (CKA) was recently proposed as a similarity metric
for comparing activation patterns in deep networks. Here we experiment with the modified
RV-coefficient (RV2), which has similar properties to CKA while being less sensitive to
dataset size. We compare the representations of networks that received varying amounts of
training on different layers: a standard trained network (all parameters updated at every
step), a freeze-trained network (layers gradually frozen during training), random networks
(only some layers trained), and a completely untrained network. We found that RV2 was able
to recover expected similarity patterns and provide interpretable similarity matrices that
suggested hypotheses about how representations are affected by different training recipes.
We propose that the superior performance achieved by freeze training can be attributed
to representational differences in the penultimate layer. Comparisons to random networks
suggest that the inputs and targets serve as anchors on the representations in the lowest
and highest layers.
Keywords: similarity analysis, random features, CNNs, freeze training, RV coefficient

1. Introduction

The study of artificial and biological neural networks often requires quantification of the
similarity of activation patterns between two networks. Common approaches to this problem
are variants of canonical correlation analysis (CCA) (Hotelling, 1936). For example, Singular
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Vector CCA and Projection-Weighted CCA have recently been used to uncover insights about
training dynamics and generalization in deep networks Raghu et al. (2017); Morcos et al.
(2018). Regularized CCA is often used in neuroscience to find relationships between neural
and behavioural or clinical variables (Bilenko and Gallant, 2016). However, these variants
of CCA can require large amounts of data and so are often impractical for analyzing neural
activations where the number of observations may be small and the dimensionality may be
large.

When comparing two sets of variables X and Y, CCA will find the linear combinations
of X and Y which maximizes their correlation. This means that CCA is invariant to any
invertible linear transformation. There are several reasons why one might want a similarity
metric with different invariance properties. For example, in a deep network, it is not just
the linear information content of a representation that is meaningful but also the specific
configuration of that information. For example, the insertion of an invertible linear trans-
formation between two layers of a deep network can alter the network’s behaviour (e.g. in
batch normalization). Therefore, when comparing representations in deep neural networks,
one may wish to use a similarity metric that is not invariant to invertible linear transforma-
tion so as to be sensitive to meaningful differences between representations Kornblith et al.
(2019); Thompson et al. (2016).

Kornblith et al. (2019) propose the use of Centered Kernel Alignment (CKA) based on
the fact that CKA is only invariant to orthogonal transformations and isomorphic scaling
(not arbitrary linear invertible transformations) and that it demonstrates intuitive notions
of similarity, namely that corresponding layers are most similar to themselves in networks
of identical architecture trained from different random initializations. They state that CKA
with a linear kernel is equivalent to the RV coefficient. The RV coefficient is a matrix
correlation method for comparing paired observations X and Y with different numbers of
columns (Robert and Escoufier, 1976).

RV (X,Y) = tr(XX′YY′)√
tr[(XX′)2]tr[(YY′)2]

(1.1)

The RV coefficient is still sensitive to dataset size. When the number of observations is
too small relative to the number of dimensions, the RV coefficient will tend to 1, even for
random, unrelated matrices. The modified RV coefficient (RV2) addresses this problem by
ignoring the diagonal elements of XX′ and YY′, which pushes the numerator to zero when
X and Y are random matrices, even for small sample sizes (Smilde et al., 2009).

RV2(X,Y) = V ec(X̃X′)′V ec(ỸY′)√
V ec(X̃X′)′V ec(X̃X′)× V ec(ỸY′)′V ec(ỸY′)

(1.2)
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Where X̃X′ = XX′ − diag(XX′) and similarly for ỸY′. Thus RV2 provides a similarity
metric with the same invariance properties as CKA while being less sensitive to dataset size,
making it a good candidate for comparing neural activities of large artificial and biological
neural networks.

Here we explore the use of RV2 to characterize intermediate representations of simple
convolutional neural networks. Our main contributions are (a) extending Kornblith et al.’s
validation of CKA-flavored similarity metrics by using RV2 to recover expected similarity
patterns in simple networks, and (b) showing that RV2 can generate interpretable patterns
that can suggest hypotheses about the nature of intermediate representations in deep neural
networks.

2. Experiments

Trained networks in the following analyses were previously reported in Thompson et al..
All networks were of identical architecture consisting of nine convolutional layers and three
fully connected layers. Networks were trained to recognize context-dependent English or
Dutch phones for 100 epochs (except for the untrained network). Networks differed in the
training that they received. The standard networks were randomly initialized and all param-
eters were updated on every mini-batch. The untrained network was randomly initialized
and never trained. The procedures for the freeze-trained and random networks are described
below. Please refer to the original text for details about the datasets, architecture and
training.

Activations to one hour of English speech from 60 speakers (1-minute each) were measured
from all networks. We used the hoggorm python package to calculate RV2 for all pairs of
layers. To make the experiments feasible, we performed average-pooling on all feature maps
and downsampled the resulting activation vectors by a factor of 40, leading to activation
vectors of length 23,582 per ‘unit’.

2.1. Untrained vs Trained

We replicated Figure F.4 from Kornblith et al. to verify that a slightly different metric,
RV2, applied to activations from a different model trained on a different task generates similar
patterns of similarity between trained and untrained networks. Figure 21 (bottom row)
shows the self-similarity of an untrained network and the similarity between the untrained
network and two different trained networks: standard training and transfer freeze-training
(described in the next section). We observe approximately the same patterns as are reported
in Kornblith et al..
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Figure 21. Representational Comparison of Training Recipes. (Top row) Similarity
between English and Dutch standard networks and the Dutch-to-English transfer freeze-
trained network. The largest differences are in fc2. Lower layers in the transfer freeze-trained
network are most similar to their corresponding layer in the Dutch standard model. (Bottom
row) Network self-similarity at initialization (left) and the similarity between untrained and
trained networks, either standard net (middle) or the transfer freeze-trained net (right). The
parenthetical percentages indicates the top-1 accuracy.

2.2. Freeze Training

It has been suggested that convolutional neural networks converge ‘bottom-up’, with
early layers converging to their final form earlier in training (Raghu et al., 2017; Alain and
Bengio, 2016). Based on this observation, Raghu et al. proposed freeze training. During
freeze training, at regular intervals, the parameters of an additional layer are frozen (i.e.
removed from the set of trainable variables). Layers are frozen in order by depth such that,
by the end of training, only the final layer is being updated. The freeze-trained transfer
networks from Thompson et al., which were initialized with parameters from a network
previously trained on one language and then freeze-trained on another, outperformed all
other freeze-trained networks (no transfer) and other transfer networks (no freeze training).
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Here, we compare the activations of the English standard, Dutch standard and Dutch-to-
English freeze-trained networks from Thompson et al.. We predict with high confidence that
the early layers of the Dutch-to-English freeze-trained network will be more similar to the
Dutch than the English standard model since they were initialized with the parameters from
the Dutch standard network and received relatively little training afterwards. This provides
a good test of whether RV2 is able to recover this expected pattern. Additionally, we were
interested to see if the superior performance of the transfer freeze-trained network could be
attributed to any representational differences between the compared networks.

For all comparisons between the standard and transfer freeze-trained networks (Figure 21,
top row), the highest similarity values were near the diagonal. This pattern provides further
validation that, like CKA, RV2 finds the most similar layer in one network to be near
the corresponding layer in another network of identical architecture. As predicted, early
layers in the Dutch-to-English freeze-trained network were most similar to the corresponding
layer in the Dutch standard model and less similar to the English standard model. Near
corresponding layers in the English and Dutch standard models were considerably similar
to one another, despite being trained on different languages. The largest differences in all
comparisons occured in layer fc2. Thus, the superior performance of the transfer freeze-
trained network may be primarily attributable to differences in representation at fc2.

2.3. Random Features

Yosinski et al. investigated the effect on performance of leaving progressively more layers
untrained in convolutional neural networks trained to recognize objects in images. Perfor-
mance dropped sharply to zero when the first three layers were left at their random initial-
ization and only subsequent layers were trained. Thompson et al. replicated this experiment
with networks trained on speech and found a different pattern (see Figure 22). Performance
gradually declined as more layers were left untrained, only reaching near-zero performance
when all but the last layer were left untrained (Thompson et al., 2019a).

Random features have a long history of success in kernel machines (Rahimi and Recht,
2007). However, the effect of several consecutive random layers is less well understood. In
particular, how do intermediate representations reconfigure as more layers are left untrained?

We presume that the effect of several consecutive random layers is the same as the effect
of one random layer: a random projection of the input. None of the work of disentangling the
relevant factors of variation has been performed by these random layers and so the remaining
trainable layers have the same job to do as was done by the full set of layers in the stan-
dard network. According to this hypothesis, the representational transformations originally
performed by all 12 layers in the standard network must be somehow compressed into the
remaining trained layers of the random networks. The hypothesis that these representational
transformations will be evenly distributed across the remaining trainable layers is depicted
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in Figure 23. The performance of the random network would only be dependent on whether
the structure and capacity of the remaining layers is sufficient to learn and represent the
necessary transformations. Under this interpretation, a gradual degradation in performance
as more layers are left untrained seems more likely and the sharp drop in performance ob-
served in Yosinski et al. is unexplained. To test this hypothesis, we calculated RV2 similarity
matrices comparing each random network to the standard English network.

The comparisons between the standard model and the random networks are shown in
Figure 24. In the following, ‘random net n’ refers to the network with random layers up to
layer n; only layers above layer n were trained. Layers are named c1, c2, ..., c9, fc1, fc2 to
distinguish the convolutional and fully connected layers. In contrast with our hypothesis,
late layers remain most similar to their corresponding layer in the standard network, even as
more early layers are left untrained. This pattern is especially clear in the similarity matrix
for random net 4. The first trained layer of random net 4, layer c5, is diffusely similar to
layers c2–c6 in the standard network, while the remaining layers show maximum similarity
near the diagonal. When a network is mostly composed of random layers and only the fully
connected layers are trained (e.g. random nets 9-10), the trained layers are not similar to
any layer in the standard network. While these networks are still able to perform the task
to some extent, they clearly do so in a way that does not mimic the standard network.

3. Discussion

Kornblith et al. validated the CKA method by showing that it can identify corresponding
layers in two networks trained from different random initializations. Our comparisons of
freeze-trained networks, standard networks and untrained networks extend this validation
by showing that a related similarity metric, RV2, applied to networks trained on speech, can
recover expected and interpretable patterns of similarity.

Figure 22. Performance of Random Networks. Test accuracy as a function of layer
at which training began as reported in Thompson et al. (left) and Yosinski et al. (right).
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Figure 23. Hypothesized Similarity Matrix of Random Network 4.(Left) Self-
similarity of the English standard network. (Right) Idealized diagram of the hypothesis
that the representational transformations of the standard network will be evenly distributed
across the trained layers of a random net.

Our random networks do not show an even distribution of the needed representational
transformations across all trained layers. Instead, early trained layers compensate more for
the reduced number of trained layers, such that the representations in late trained layers
are less affected. This may reflect architectural constraints on representation. For example,
fully connected layers may tend to be more similar to other fully connected layers than to
convolutional layers and the fully connected layers may require a particular representation
in the preceding convolutional layers. This top-down influence on representations in late
layers may also be attributable to the targets serving as an anchor in the same way that the
inputs anchor the representations in early layers. While there may be many computational
solutions to the classification problem at hand, the form of the inputs and targets themselves
are fixed, which may constrain the form of representations near the input and targets.
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Figure 24. Random Network Similarity. The similarity matrices indicate the RV2 sim-
ilarity between the baseline model (all layers trained) and networks of identical architecture
with only layers above layer n trained, ∀n ∈ [c1, fc1]. From left to right, progressively more
layers are left untrained.
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Résumé. La correspondance entre l’activité des neurones artificiels dans les réseaux de
neurones convolutionnels (CNN) entraînés pour reconnaître les objets dans les images et
l’activité neuronale collectée à travers le système visuel des primates a été bien documentée.
Les couches inférieures de CNN sont plus similaires aux zones corticales visuelles de bas
niveau et les couches plus profondes ont tendance à être plus similaires aux zones visuelles
de haut niveau, fournissant l’évidence d’une hiérarchie représentationnelle partagée. Ce
phénomène n’a pas été rigoureusement étudié dans le domaine auditif. Nous avons comparé
les représentations des CNN entraînés pour reconnaître la parole à l’activité IRMf 7-Tesla
collectée tout au long de la voie auditive humaine (y compris les régions sous-corticales et
corticales) pendant que les participants écoutaient la parole. Nous n’avons trouvé aucune
preuve d’une hiérarchie représentationnelle partagée. Au lieu de cela, toutes nos régions
auditives d’intérêt étaient les plus similaires à une seule couche des CNN: la première couche
entièrement connectée. Cela suggère que des conceptions architecturales ou des objectifs
d’entraînement alternatifs peuvent être nécessaires pour obtenir une correspondance par
couche avec la voie auditive humaine.
Mots clés : apprentissage profond, cortex auditif, IRMf 7T

Abstract. The correspondence between the activity of artificial neurons in convolutional
neural networks (CNNs) trained to recognize objects in images and neural activity collected
throughout the primate visual system has been well documented. Shallower layers of CNNs
are typically more similar to early visual areas and deeper layers tend to be more simi-
lar to later visual areas, providing evidence for a shared representational hierarchy. This
phenomenon has not been thoroughly studied in the auditory domain. Here, we compared
the representations of CNNs trained to recognize speech (triphone recognition) to 7-Tesla
fMRI activity collected throughout the human auditory pathway (including subcortical and
cortical regions) while participants listened to speech. We found no evidence for a shared
representational hierarchy. Instead, nearly all of our auditory regions of interest were most
similar to a single layer of the CNNs: the first fully-connected layer, which has previously
been shown to be located at the boundary between the relatively task-general intermediate
layers and the highly task-specific final layers. This suggests that alternative architectural
designs and/or training objectives may be needed to achieve layer-wise correspondence with
the human auditory pathway.
Keywords: deep learning, auditory cortex, 7T fMRI
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1. Introduction

The use of deep neural networks (DNNs) as models of biological neural networks has
been discussed as an opportunity for synergy between neuroscience and artificial intelligence
(Barrett et al., 2019; Marblestone et al., 2016; Richards et al., 2019). Modeling animal
cognition and neural function with artificial neural networks, which were themselves inspired
by biological neural networks, is not new. The merits of connectionist models of cognition and
the implications of neural networks for how we think about brain function were hotly debated
in the 1980s and 1990s (Smolensky, 1988; Robinson, 1992). However, recent developments
in this area are novel in that state-of-the-art (SOTA) machine learning systems, trained
only to maximize their performance on a specific task, without any explicit goal to mimic
neural activity, appear to learn representations that are similar to those found in the brains
of animals engaged in a similar task (Kriegeskorte, 2015). Critics of this approach claim
that DNNs are not interpretable, and hence their comparison to biological neural networks
contributes little to the project of explaining neural function and behaviour (Kay, 2018).
Proponents have offered multiple alternative perspectives. One view is that this approach
shifts the focus from the nature of neural representations themselves to the processes that
generate them (what cost functions, architectures and learning algorithms produce brain-
like representations?). Additionally, the fact that DNNs are entirely scrutable—their inner
workings can be probed much more easily that those of biological systems—defends against
the criticism of uninterpretability (see Thompson et al., 2016; Yamins and DiCarlo, 2016;
Kubilius, 2017; Kietzmann et al., 2019; Kell and McDermott, 2019; Hasson et al., 2020;
Lindsay, 2020).

The paradigm of comparing DNN activity to neural activity has been most thoroughly
explored in the study of the primate visual system. The seminal work by DiCarlo and
Cox (2007) proposed that visual object recognition is accomplished via successive layers of
nonlinear transformations that effectively untangle visual inputs, linearizing the boundaries
between object categories. Similar language is used to describe how DNNs work (Bengio
et al., 2013). Di Carlo’s group went on to pioneer the earliest comparisons of representations
learned in SOTA convolutional neural networks (convnets) trained to recognize objects in
images to multi-unit electrophysiology recordings from visual cortex in the macaque mon-
key (Cadieu et al., 2014; Yamins et al., 2014). They found the output layer of Alexnet
(Krizhevsky and Hinton, 2012) to be highly predictive of IT spiking responses to natural
images and intermediate layers to be highly predictive of V4 responses. Similar compar-
isons have been made between modern convnets and the human visual system as recorded
with functional magnetic resonance imaging (fMRI) (Khaligh-Razavi and Kriegeskorte, 2014;
Agrawal et al., 2014; Eickenberg et al., 2017; Güçlü and van Gerven, 2016). The most con-
vincing demonstration that modern convnets learn representations that are meaningful to
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neurons in the primate visual system is work from Bashivan et. al. showing that DNNs can
be used to control the activity of macaque V4 neurons. They found that stimuli synthesized
to maximally activate specific units in the DNN also drove activity of matched sites in V4
well beyond their maximum firing rate in response to natural images (2019).

Comparisons of DNNs to biological sensory pathways often come with claims of shared
hierarchy. Regions of interest (ROIs) along some pathway are mapped to layers of a DNN
based on their similarity. Early layers in the network tend to be more similar to early ROIs
in the pathway and late layers to late ROIs (Cichy et al., 2016; Güçlü and van Gerven, 2015).
These results suggest that DNNs are not just learning representations that are similar to
specific regions, but rather that they constitute models of an entire hierarchy of sensory
processing. However, not all results have shown evidence of shared hierarchy. Cadena et al.
(2019) compared representations at several layers of a convnet trained on ImageNet to neural
activation in the mouse visual cortex. While they found their network outperformed classical
predictive models, they found no evidence for a shared hierarchy and no benefit over a random
network whose weights had never been trained. The authors suggest that networks trained
on more ethologically valid tasks may be required to capture the functional organization of
the rodent visual cortex.

Relatively few experiments have compared DNNs trained on acoustic tasks to biological
auditory systems. The human auditory cortex is generally less well understood than its visual
counterpart. In particular, the hierarchical structure of auditory cortex, to the extent that it
exists, has not been clearly identified. Classical approaches have modeled early auditory pro-
cessing as decomposition into spectrotemporal modulation-based basis functions (Chi et al.,
2005; Schönwiesner and Zatorre, 2009). Regions that respond selectively to specific auditory
stimuli like vocal sounds (Belin et al., 2000) and music (Norman-Haignere et al., 2015) have
been identified, but the functional organization of secondary auditory cortex remains under-
specified. Kell et al. (2018) trained convnets on speech and music and compared their learned
representations to fMRI responses in human auditory cortex. They found that intermediate
representations learned in their DNN explained more variance in auditory cortex responses
than the spectrotemporal modulation-based baseline model. To assess the existence of a
shared hierarchy, they looked only at voxels that showed a reliable response to sound and
layers of their network which were predictive of voxel activity across auditory cortex. They
found that the most predictive layers of primary “core” auditory cortex were intermediate
layers, while the most predictive layers of secondary auditory cortex were later layers. From
this, they conclude that the hierarchical distinction between primary and secondary auditory
cortex is mirrored in their convnet. Güçlü et al. (2016) also reported evidence for a shared
hierarchy in auditory cortex, but they only looked at the superior temporal gyrus (STG).
They used representational similarity analysis (RSA) to compare representations learned in
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a DNN trained to predict tags from excerpts of musical audio. 8 They found a gradient of
complexity across STG where anterior voxel clusters were more similar to early layers while
posterior voxel clusters were more similar to late layers. While both of the above studies
report evidence for a shared hierarchy between human auditory cortex and DNNs trained
on sound, they report largely orthogonal spatial patterns of similarity gradients.

Several different analysis tools are used in the comparison of representations. The ulti-
mate goal of these analyses is to quantify the similarity of two representations. Similarity
is an ambiguous term that must be defined by the experimenter. In many of the afore-
mentioned studies, some sort of encoding analysis is performed where firing rates or voxel
activity are/is predicted by a regularized linear model of the neural network representations.
The definition of similarity in this case is the predictive accuracy on a held out set (or the
average over cross validation folds), i.e. a representation is similar to another to the extent
that one can be linearly predicted from the other. There are other notions of representa-
tional similarity that have been explored to study deep neural networks. Singular value
canonical correlation analysis (SVCCA) and projection-weighted canonical correlation anal-
ysis (pwCCA) have both been used to characterize how network representations change over
training, to compare representations in different architectures, and to understand the dif-
ference between networks that memorize and networks that generalize (Raghu et al., 2017;
Morcos et al., 2018). Kornblith et al. (2019) recently proposed that a meaningful notion
of similarity should find corresponding layers in two networks of identical architecture and
training, differing only in their random initialization, to be most similar to each other. Of
the tested metrics, which included SVCCA, pwCCA and linear regression, Centered Kernel
Alignment (CKA) was the only method which found that corresponding layers were most
similar to each other, achieving an accuracy of 99.3% on the layer identification task. The
next best metric, linear regression, achieved only 45.4%. This result may be related to the
fact that CKA is only invariant to orthogonal transformations and isomorphic scaling, unlike
canonical correlation analysis (CCA), which is invariant to any linear invertible transforma-
tion and linear regression, which is invariant to any invertible transformation of the predicted
variables 9. Representational similarity analysis (RSA) (Kriegeskorte et al., 2008), commonly
employed in fMRI analysis, is similar to CKA in that it takes all the pairwise distances be-
tween all examples in two domains. However, CKA provides a more general framework with
interpretable units, proven convergence rates, and the option to explore different kernels.

8. Tags are descriptive text annotations like genre or instrumentation labels.
9. To further justify why linear regression may not be an ideal tool to assess similarity, consider the success

of random features in machine learning. Let X̂ be a random projection of X into a higher dimensional space.
X̂ is likely to be more predictive than X of some non-linearly related target y by virtue of its higher
dimensionality. However, it seems counter intuitive to say that X̂ is more similar to y.
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Here, we use CKA to quantify the similarity between representations learned in convnets
trained on speech and activity throughout the human auditory pathway during speech lis-
tening as measured with 7-Tesla (7T) fMRI. The increased spatial resolution of 7T fMRI
allows us simultaneously measure activity from auditory cortex as well as subcortical audi-
tory regions, which are normally left out of auditory fMRI analyses due to their small size.
Since significant auditory processing occurs in brainstem and midbrain regions, this provides
us with several distinct regions with a relatively known connectivity structure with which to
compare to the convnet representations. If there exists a shared hierarchy between the con-
vnets and the human auditory pathway, the pattern of similarity should at least distinguish
between cortical and subcortical regions. We visualize the results of the similarity analysis
as similarity matrices with network layers as the rows and auditory ROIs as the columns.
Evidence of a shared hierarchy would manifest as a diagonal pattern in one such similarity
matrix, where early layers are more similar to early regions and later layers more similar to
later regions. While we do observe similarity values that exceed the similarity of a random
network, we find no such diagonal pattern. Instead we find that, on average, nearly all ROIs
are most similar to the first fully-connected layer.

2. Methods and Materials

2.1. Participants

Six healthy subjects (aged 28–31, three women) with normal hearing and no known
neurological disorders were recruited to participate. All subjects provided written informed
consent prior to the first session. All subjects also consented to their data being made
publicly available. The native languages of the subjects were English (one subject), German
(three subjects) and Dutch (two subjects).

2.2. Stimuli

To facilitate comparison with the convnets, the experimental stimuli should be similar
to the sounds that the networks were trained on. Thus, we selected utterances from the
same corpus that the networks were trained on. The comparison is complicated by the fact
that, although the networks were only trained on phonetic labels, the human participants
also understand the meaning and high-level structure of the speech. Therefore, as described
below, we transformed the natural speech to remove higher-level structure while preserving
phonemes.

The audio datasets from which the stimuli were generated were the same datasets that
were used in Thompson et al. (2019a) and Thompson et al. (2019b) which were provided by
Nuance Communications. Each of the three datasets, one for English, Dutch and German,
contained 64–83 hours of spoken text read by several native speakers in a quiet room. The
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datasets also included phonetic transcriptions established in a forced alignment with the text
transcriptions.

The quilting procedure, adapted from (Overath et al., 2015) and depicted in Figure 25,
chops a sound file into small segments and reorders the segments according to a heuristic
designed to hide the seams of the quilt (the segment boundaries) 10. A random segment is
chosen as the first segment in the quilt. Subsequent segments are chosen to best match the
segment-to-segment boundaries in the chochleogram of the original audio. In this way, tem-
poral patterns longer than the segment length are destroyed while minimizing the artefacts
introduced by reordering the segments.

Instead of using fixed segment lengths, as in Overath et al. (2015), we used the provided
phonetic boundaries to divide the speech into variable length segments containing single
phonemes. The resulting quilts are out-of-order sequences of phonemes, preserving phonetic
information while destroying the words and semantic content of the speech. Since the quilting
procedure will be more effective the larger the input corpus relative to the desired quilt length,
we selected the 60 speakers (30 women and 30 men) with the longest set of utterances in each
language. Given all the utterances from a single speaker as input, the quilting procedure
generated a one-minute quilt. The experimental stimuli consisted of 180 one-minute speech
quilts (60 per English, Dutch and German). The final stimuli were filtered to account for the
frequency response profile of the foam-tip earphones over which the stimuli were presented
in the scanner.

2.3. Experimental Protocol

The experimental procedures were approved by the ethics committee of the Faculty for
Psychology and Neuroscience at Maastricht University. MR images were collected over two
sessions, each consisting of 10 functional runs. Nine quilts were presented in each run,
grouped into blocks of three quilts from the same language. Within a block, the quilts were
presented one after another with no interruption. Blocks were separated by short periods
of rest which were sometimes followed by a question about the preceding block. To ensure
that participants were awake and paying attention to the stimuli, we asked them to identify
the language of the speech presented in the last block. Participants used a button box to
indicate their response. To save time, we didn’t ask this question after every block. However,
the design was such that the participants could not easily predict whether or not they would
be questioned and so had to pay attention during every block. Each run contained one block
for each language. Each quilt was presented only once. The stimuli order was randomized
for each subject separately.

10. Original sound quilting code can be found here: http://mcdermottlab.mit.edu/downloads.html
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Figure 25. Sound Quilting Algorithm Segment 3 is randomly chosen as the first segment
in the quilt. ∆3 is a vector summarizing the change in spectral power that occurs at the
transition from segment 3 to segment 4. The next segment in the quilt is selected as the
segment that leads to the segment-to-segment change nearest to ∆3 (excluding segment 4).
This process repeats, selecting segments without replacement, until the desired quilt length
has been achieved or all segments have been selected. Figure copied from Overath et al.
(2015).

2.4. fMRI Acquisition Parameters

Images were acquired at Maastricht University, Maastricht, Netherlands on a 7T Siemens
MAGNETOM scanner (Siemens Medical Solutions, Erlangen, Germany), with 70 mT/m
gradients and a head RF coil (Nova Medical, Wilmington, MA, USA; single transmit, 32
receive channels). Foam pads were used to minimize head motion.

2.4.1. Anatomical

At the start of each session, a T1-weighted (T1w) image and a proton density weighted
(PDw) image were acquired using a 3D MPRAGE sequence [voxel size=1.0mm isotropic;
repetition time (TR)=2370 ms; echo time (TE)=2.31 ms; flip angle=5°; generalized auto-
calibrating partially parallel acquisitions (GRAPPA)=3 (Griswold et al., 2002); field of view
(FOV)=256 mm; 256 slices, phase encoding direction: anterior to posterior, inversion time
(TI) for T1w only=1500 ms].

2.4.2. Functional

Functional MRI data were acquired with a 2-D Multi-Band Echo Planar Imaging (2D-
MBEPI) sequence (Steen Moeller et al., 2010; Setsompop et al., 2012). In order to include
the entire brainstem and thalamus as well as primary and secondary auditory cortex, slices
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Figure 26. Experimental Protocol. The experiment consisted of two sessions over which
the stimuli were presented only once. Each session consisted of 10 runs and each run consisted
of three blocks. The blocks consisted of three speech quilts generated from three separate
speakers of the same language. The order of language blocks and speech quilts within blocks
was randomly assigned in a unique way for each subject. In total, the experimental stimuli
amount to one hour of speech quilts in each of the three languages.

were arranged in a coronal oblique orientation (TR=1700 ms; TE=20 ms; flip angle=70°;
GRAPPA=3; Multi-Band factor=2; FOV=206 mm; 1.7 mm isotropic voxels; phase encode
direction inferior to superior).

2.5. Preprocessing

The MRI preprocessing was performed using fMRIPrep 1.4.1 (Esteban et al. (2018b);
Esteban et al. (2018a); RRID:SCR_016216), which is based on Nipype 1.2.0 (Gorgolewski
et al. (2011); Gorgolewski et al. (2018); RRID:SCR_002502). The following description was
prepared by fMRIPrep.

2.5.1. Anatomical data preprocessing

A total of 2 T1-weighted (T1w) images were found within the input BIDS
dataset. All of them were corrected for intensity non-uniformity (INU) with
N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.2.0 (Avants
et al., 2008, RRID:SCR_004757). The T1w-reference was then skull-stripped with a
Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using
OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid
(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted
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T1w using fast (FSL 5.0.9, RRID:SCR_002823, Zhang et al., 2001). A T1w-reference
map was computed after registration of 2 T1w images (after INU-correction) using
mri_robust_template (FreeSurfer 6.0.1, Reuter et al., 2010). Brain surfaces were re-
constructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, Dale et al., 1999),
and the brain mask estimated previously was refined with a custom variation of the
method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical
gray-matter of Mindboggle (RRID:SCR_002438, Klein et al., 2017). Volume-based spatial
normalization to one standard space (MNI152NLin2009cAsym) was performed through
nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-extracted versions
of both T1w reference and the T1w template. The following template was selected for
spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c [Fonov
et al. (2009), RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym].

2.5.2. Functional data preprocessing

For each of the 20 BOLD runs found per subject (across all tasks and sessions), the
following preprocessing was performed. First, a reference volume and its skull-stripped ver-
sion were generated using a custom methodology of fMRIPrep. The BOLD reference was
then co-registered to the T1w reference using bbregister (FreeSurfer) which implements
boundary-based registration (Greve and Fischl, 2009). Co-registration was configured with
nine degrees of freedom to account for distortions remaining in the BOLD reference. Head-
motion parameters with respect to the BOLD reference (transformation matrices, and six
corresponding rotation and translation parameters) are estimated before any spatiotempo-
ral filtering using mcflirt (FSL 5.0.9, Jenkinson et al., 2002). BOLD runs were slice-time
corrected using 3dTshift from AFNI 20160207 (Cox and Hyde, 1997, RRID:SCR_005927).
The BOLD time-series, were resampled to surfaces on the following spaces: fsaverage5.
The BOLD time-series (including slice-timing correction when applied) were resampled
onto their original, native space by applying a single, composite transform to correct for
head-motion and susceptibility distortions. These resampled BOLD time-series will be re-
ferred to as preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD
time-series were resampled into standard space, generating a preprocessed BOLD run in
[‘MNI152NLin2009cAsym’] space. First, a reference volume and its skull-stripped version
were generated using a custom methodology of fMRIPrep. Several confounding time-series
were calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS
and three region-wise global signals. FD and DVARS are calculated for each functional run,
both using their implementations in Nipype (following the definitions by Power et al., 2014).
The three global signals are extracted within the CSF, the WM, and the whole-brain masks.
Additionally, a set of physiological regressors were extracted to allow for component-based
noise correction (CompCor, Behzadi et al., 2007). Principal components are estimated after
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high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s
cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor).
tCompCor components are then calculated from the top 5% variable voxels within a mask
covering the subcortical regions. This subcortical mask is obtained by heavily eroding the
brain mask, which ensures it does not include cortical GM regions. For aCompCor, com-
ponents are calculated within the intersection of the aforementioned mask and the union
of CSF and WM masks calculated in T1w space, after their projection to the native space
of each functional run (using the inverse BOLD-to-T1w transformation). Components are
also calculated separately within the WM and CSF masks. For each CompCor decomposi-
tion, the k components with the largest singular values are retained, such that the retained
components’ time series are sufficient to explain 50 percent of variance across the nuisance
mask (CSF, WM, combined, or temporal). The remaining components are dropped from
consideration. The head-motion estimates calculated in the correction step were also placed
within the corresponding confounds file. The confound time series derived from head motion
estimates and global signals were expanded with the inclusion of temporal derivatives and
quadratic terms for each (Satterthwaite et al., 2013). Frames that exceeded a threshold of 0.5
mm FD or 1.5 standardised DVARS were annotated as motion outliers. All resamplings can
be performed with a single interpolation step by composing all the pertinent transformations
(i.e. head-motion transform matrices, susceptibility distortion correction when available, and
co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were
performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to
minimize the smoothing effects of other kernels (Lanczos, 1964). Non-gridded (surface) re-
samplings were performed using mri_vol2surf (FreeSurfer).

2.6. Regions of Interest

We extracted BOLD responses at specific regions of interest (ROIs) along the auditory
pathway: cochlear nucleus (CN), superior olivary complex (SOC), inferior colliculus (IC),
medial geniculate nucleus (MGN), Heschl’s gyrus (HG), planum temporale (PT), planum
polare (PP), superior temporal gyrus anterior portion (STGa), superior temporal gyrus pos-
terior portion (STGp). We used the subcortical region definitions from the atlas recently
published by Sitek et al. (2019) 11 Cortical regions were defined using the Harvard-Oxford
parcellation included in FSL 5.0 and accessed through nilearn 0.5.2 (Abraham et al., 2014).
ROI definitions included both left and right hemispheres. Nilearn’s NiftiMasker was used
to extract activity from each of the ROIs. The masks for the cortical regions took the

11. Due to the small size of CN and SOC and the difficulty of inter-subject alignment of the brainstem,
we cannot be completely certain that the activity we extract truly corresponds to activity in these small
brainstem regions. However, the participants in the present study were also participants in the auditory
fMRI sessions reported in (Sitek et al., 2019), providing some assurance that these region definitions are
reasonable.
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Table 3. Regions of Interest Subcortical definitions came from (Sitek et al., 2019) while
cortical region definitions came from the Harvard-Oxford atlas as access via nilearn. The
number of voxels refer to the functional data collected in this experiment.

Anatomical Region Number of Voxels Source
Cochlear Nucleus (CN) 14 Sitek & Gulban
Superior Olivary Complex (SOC) 41 Sitek & Gulban
Inferior Colliculus (IC) 271 Sitek & Gulban
Medial Geniculate Nucleus 240 Sitek & Gulban
Heschl’s Gyrus (HG) 1040 Harvard-Oxford
Planum Polare (PP) 1684 Harvard-Oxford
Planum Temporale (PT) 1213 Harvard-Oxford
Superior Temporal Gyrus anterior portion (STGa) 794 Harvard-Oxford
Superior Temporal Gyrus posterior portion (STGp) 3180 Harvard-Oxford

intersection with the subject’s brain mask, as prepared by fMRIPrep. To improve the signal-
to-noise-ratio (SNR), the NiftiMasker detrended, standardized and removed confounding
variables from the masked fMRI signals. The confounds were those calculated by fMRIPrep
described in the previous section, including global signal, CSF, white matter, motion cor-
rection parameters and their derivatives as well as physiological component regressors. This
resulted in preprocessed and denoised bold data for each ROI, subject and run.

2.7. Convolutional Neural Network Activations

The trained neural networks analyzed here are a subset of those analyzed in Thompson
et al. (2019a). All networks were trained to perform context-dependent phone (triphone)
classification. Here we look only at the 9 freeze trained networks, which outperformed all
other models. These 9 networks consist of 3 monolingual networks for each of the three
languages (English, Dutch and German) and 6 transfer networks which were first trained on
one language and then freeze trained on another. In all cases, the networks were first trained
normally for 100 epochs and then freeze trained for an additional 100 epochs. Freeze training
(Raghu et al., 2017) refers to the procedure by which layers are gradually removed from the
set of trainable variables over the course of training and in order of depth. All networks are
of identical architecture and consist of 9 convolutional layers followed by 3 fully connected
layers. The layers were as follows, where triplets specify the filter size and number of feature
maps in each convolutional layer and the singletons specify how many units in each fully
connected layer: (7, 7, 1024), (3, 3, 256), (3, 3, 256), (3, 3, 128), (3, 3, 128), (3, 3, 128),
(3, 3, 64), (3, 3, 64), (3, 3, 64), (600), (190), (9000). The input data were 45-dimensional
filterbank features calculated at a rate of one frame every 10 ms.
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For every network, the activation when the original (unquilted) speech stimuli was pre-
sented as input was recorded. For convolutional layers, the average activation within each fea-
ture map was recorded. For fully connected layers, the activation at each unit was recorded.
Only the activation to every second frame of the audio features was saved. Subsequently,
the network activations were segmented according to the same phonetic boundaries and were
quilted according to the same segment order used when generating the experimental stimuli.
This produced a sequence of network activations corresponding to each of the 180 speech
quilts presented in the scanner.

2.8. CKA Similarity Analysis

CKA takes two matrices as input: in this case one for the BOLD responses and one for the
neural network responses to the same stimuli. These matrices must have the same number of
rows, corresponding to time points or observations, but can differ in the number of columns,
corresponding to voxels or units. Since the temporal rate of fMRI is much slower than that of
our acoustic features, temporal rescaling and alignment is required. The preprocessed BOLD
timeseries from each ROI and each run were put into pandas DataFrames (McKinney, 2010,
2011) with TimeDelta indices, which enables indexing into the time series at specific time
values. These DataFrames were then upsampled to match the rate of the network activations
(one frame every 20 ms) using the pandas resample function with the padding strategy—
values were simply repeated to achieve the desired frame rate. This strategy allows us to
preserve the temporal precision of the network activations without need for summary or
binning.

To store the network activations, new DataFrames were initialized for each run using
the corresponding index from the upsampled BOLD DataFrame. The quilted activations
were then inserted at the timepoints at which they were presented. Timepoints when no
stimulus was presented were set to zero. Since the timing of the experimental runs and
the stimuli presentation order was different for each subject, this resulted in one DataFrame
per subject per run for each layer of each convnet. The Glover model of the hemodynamic
response function (HRF) (kernel length=32 seconds), as implemented in nistats 0.0.1b0, was
convolved with the network activations.

Finally, we extracted and concatenated only the time segments corresponding to the
blocks of continuous auditory stimulation from both the fMRI and network activity. The
first six seconds of each block was excluded from the analysis to allow for the HRF to ramp
up. Thus, the to-be-analyzed fMRI activity does not include the on/off response at the onset
of the blocks. Responses to each block were trimmed to exactly 8599 frames, which, when
concatenated, resulted in matrices with 515940 rows for both the fMRI and neural network
activity. CKA similarity was then calculated for all ROI-layer pairs using code from the
Google colab that was released with Kornblith et al. (2019). We used CKA with a linear
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kernel, in feature space and with a unbiased estimator of the dot product similarity. The
CKA similarity value in this case is equivalent to the modified RV-coefficient (RV2) (Robert
and Escoufier, 1976; Smilde et al., 2009). The resulting similarity value is still biased, but
less so than standard CKA. Calculating CKA in feature space is equivalent but faster than
calculating in the space of examples when the number of examples is greater than the number
of features.

2.8.1. Neural similarity score

We define the neural similarity score as the difference of standardized CKA scores between
the trained network of interest and the untrained network. This untrained network has the
same architecture as the trained models, but its parameters have been randomly initialized
and never updated. If the optimization procedure has increased the correspondence to the
brain, the CKA scores for a trained network should be greater than that of the untrained
network. Within each subject, the CKA scores are standardized using the mean µs and
standard deviation σ2

s calculated over all models and ROI-layer pairs. The CKA scores of
the untrained network are standardized using the same mean and standard deviation. The
neural similarity score φs

m is a difference of z-scores which reflects the similarity achieved by
model m in subject s relative to the untrained model.

φs
m = ckam − µs

σ2
s

− ckauntrained − µs

σ2
s

(2.1)

Thus a neural similarity score of 1 indicates that the similarity achieved by the trained model
is 1 standard deviation greater than that achieved by the untrained network.

3. Results

We calculated the CKA similarity for each of the nine trained networks, for each subject,
and for each ROI-layer pair. The results of these analyses can be summarized in similarity
matrices whose rows correspond to layers of a network and whose columns correspond to
the auditory ROIs. Figure 27 shows the grand average similarity matrices, averaged over
subjects and models. Training the networks increased their correspondence with the auditory
ROIs, as evidenced by the fact the the neural similarity score matrix is largely red, indicating
positive values (Figure 27c). However, we find little evidence of a shared hierarchy, which
would manifest itself as a diagonal pattern of high neural similarity scores. This hypothesized
diagonal pattern also does not occur in the raw CKA similarity scores, neither for the trained
or untrained networks (Figure 27a–b). For all ROIs, the first fully connected layer (fc1)
achieves the highest CKA similarity. This pattern does not occur in the similarity matrix
for the untrained network, suggesting that it was introduced by optimization procedure and
not by the architecture.
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(a) Trained (b) Untrained (c) Neural Similarity Score

Figure 27. Grand Average Similarity. No shared hierarchy is observed. (Left) Raw CKA
similarity averaged over subjects and models. (Middle) Raw CKA similarity for the untrained
network, averaged over subjects. (Right) Neural similarity score averaged over subjects and mod-
els. The similarity matrix is largely red indicating that training increased correspondence but there
is no diagonal pattern to indicate a shared hierarchy. The first fully connected layer (fc1) achieves
the highest mean neural similarity score for nearly all ROIs.

We calculated the average neural similarity score matrix for each model to investigate how
the different training data would affect the correspondence. Figure 35 displays nine similarity
matrices arranged in a grid. The monolingual models, which were only ever trained on one
language, are along the diagonal of the grid. The off-diagonal matrices correspond to the
transfer networks which were first trained on one language and subsequently freeze trained
on another. The patterns observed in the grand average, are largely replicated in the model-
specific similarity matrices. Layer fc1 generally achieves high neural similarity scores and
none of the models show any clear evidence for a shared hierarchy. In some models, most
strikingly in the English and Dutch monolingual models, the neural similarity scores for
layer fc2 are negative, indicating that training actually decreased their correspondence to
the brain.

We hypothesized that the differences between models observed in Figure 35 may be re-
lated to the models’ accuracy on the phone classification task on which they were trained.
In Figure 29 we plot the peak neural similarity score as a function of triphone classifica-
tion accuracy. For Dutch and English models, all slopes are positive, indicating a positive
relationship between model accuracy on the speech recognition task and the similarity to
the human brain. However, this pattern is largely driven by the low neural similarity scores
achieved by layer fc2 in the English and Dutch monolingual networks. The pattern does not
persist if layer fc2 is removed from the analysis. For the German models, we found a strong
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Figure 28. Average Neural Similarity Score. Each similarity matrix shows the effect of
training on CKA similarity averaged over the six subjects. The subtitles of the form “Language 1
to Language 2” indicate that the model was first trained on Language 1 and then freeze trained on
Language 2. Training generally increased the correspondence between brain and networks. Layer
fc1 shows the highest neural similarity score and there is little evidence for shared hierarchy (no
diagonal pattern). In some models, training actually reduced the similarity between layer fc2 and
the ROIs (shown in blue).

positive relationship only for German native speakers. The regression statistics are reported
in Table 4.
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Figure 29. Mean Neural Similarity Score vs Model Accuracy. There are nine points
per subject for the nine different network models. Lines show the linear regression fit to the
three models (one monolingual and two transfer) for each language and subject. Triphone
classification accuracy indicates the top-1 test accuracy achieved by each model. For Dutch
and English models, there is a positive relationship between model accuracy and the corre-
spondence to the human brain. Paretheticals in the legend indicate the native language of
each subject.

Table 4. Network Accuracy vs. Neural Similarity Score Summary of the relationship
between network accuracy on the triphone recognition task and peak neural similarity score,
as depicted in Figure 29, averaged over subjects. All mean slopes are positive, but the
pattern is less consistent for networks tested on German.

Language model was tested on Mean slope Standard deviation of slope
English 0.10 0.02
German 0.09 0.14
Dutch 0.06 0.02

4. Discussion

Our primary aim was to characterize the degree to which convnets trained on speech
tasks learn hierarchical representations that parallel the hierarchical structure of the human
auditory pathway. To the best of our knowledge, this is the first study to compare DNN
representations to activity throughout the human subcortical and cortical auditory pathway
as measured with 7T fMRI. Unlike the previous results of Kell et al. (2018) and Güçlü et al.
(2016), we find no evidence of a shared hierarchy. Instead, the first fully-connected layer, fc1,
achieved the highest similarity score across nearly all ROIs. This suggests that the sequence
of representational transformations learned in our convnets does not mirror that performed
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by the human brain. However, the two solutions found in the convnets and the human brain
appear to intersect most at layer fc1.

Kell et al. (2018) similarly found that the median variance explained across auditory
cortex was maximal at layers near but not at the end of the network. This common obser-
vation may be related to the notion of dimensionality expansion and compression in DNNs.
Recanatesi et al. (2019) and Ansuini et al. (2019) describe a two-stage process by which
trained DNNs perform a task. The first stage, which we might call ‘feature extraction’, is
characterized by increasing intrinsic dimensionality (dimensionality expansion) in the early
layers of the network. The second, dimensionality compression, is characterized by decreas-
ing intrinsic dimensionality in the last layers of the network, as the network projects the
data to a low-dimensional manifold from which the target can be linearly decoded. Our
layer fc1 may be the last ‘expansion’ layer before the ‘compression’ of the final layers. From
Thompson et al. (2019a), we know that layer fc1 is at the barrier between the intermediate
layers which are largely transferable between languages, and the final layers which are highly
task specific. In Thompson et al. (2019b), layer fc1 was the deepest layer to show a high
degree a similarity in networks trained on different languages (Figure 21, top row). The last
layers of networks trained on narrowly defined tasks such as triphone recognition may sim-
ply learn representations that are more task-specific than any representations employed by
the human brain, whose ultimate goal during speech listening is typically natural language
understanding, not phoneme recognition.

There are a number of methodological inconsistencies in the previous work on comparing
activations in artificial and biological neural networks. Most analyses have employed some
type of regularized linear regression or RSA, rather than the CKA used here, to quantify
similarity. Uden (2019) compared CKA score and ridge regression accuracy as similarity
metrics for the comparison of fMRI activity in human visual cortex and convnet activations
of networks trained to recognize objects in images. Like us, Uden also found no diagonal
pattern in her similarity matrices, neither with CKA nor with ridge regression. Based on the
analysis presented in Kornblith et al. (2019), we think that the use of CKA is well justified
and may not yield appreciably different results than linear regression in many cases.

It is common in fMRI encoding analyses to first select a subset of to-be-analyzed voxels
based on their response profiles, for example, based on their selective response to sound or
specific sound categories (as in Kell et al. (2018)). Such selection procedures are typically
employed to increase the signal-to-noise-ratio, and assume that the voxels of interest—the
voxels that contain cells involved in the task-of-interest—are those that show a selective re-
sponse to the stimulus or condition. However, research is accumulating in both neuroscience
and machine learning that casts doubt on that assumption (c.f. Leavitt et al. (2017); Morcos
et al. (2018)). In all presented results, we selected voxels based only on anatomical ROIs
and included all voxels within a given ROI. We explored the effect of further voxel selection
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within cortical ROIs based on selective response to sound, but found that the pattern of
similarity was unaffected by this additional selection.

Unlike much of the previous work in this area, our neural similarity score quantifies the
similarity between layers and ROIs relative to the similarity value achieved by a random,
untrained network. This is an important contrast to understand the effect of training above
and beyond architecture design. In Kell et al. (2018), the median variance explained in
auditory cortex by the layers of a random network follows a similar pattern to that of the
trained models: variance explained increases until the last pooling layer, after which it
declines. At the last pooling layer, the variance explained by the random network is nearly
equal to that explained by the spectrotemporal baseline model. Thus random networks do
not capture the similarity expected ‘by chance’, but rather include several important aspects
of the model and experiment, minus the effect of network training.

The networks analyzed here were trained to recognize triphones and we specifically de-
signed our fMRI experiment to focus on the acoustics of speech, omitting any syntactic or
semantic information. This differs from previous work that used various natural sounds as
stimuli and networks that were trained to classify words or music. In particular, Kell et al.
(2018) trained the speech branch of their dual head network to classify words embedded in
noisy backgrounds. Perhaps triphone classification is too low-level to reveal a shared hi-
erarchy. Similarly, differences in experimental design and analysis may impact the results.
Kell et al. (2018) presented 165 unique two-second sounds (5.5 minutes) from a variety of
natural sound categories, repeated several times in a block design to measure reliable re-
sponses. We, on the other hand, presented 3 hours of unique speech in a continuous design
with no repetitions, to maximize the number of unique samples rather than the reliability
of measurements. Further work is needed to understand how these elements of experimental
design influence the similarity between artificial and biological neural network activations.

Future work may want to explore non-convolutional architectures as there are a number
of reasons why convnets may not be ideal architectures to use with audio spectrogram or
chochleogram features. Auditory objects display differently in spectrograms than visual ob-
jects in images. In particular, auditory objects tend to be less local than visual objects. The
part of the spectogram corresponding to a particular sound object may be distributed across
several frequencies and time points. Additionally, auditory objects do not occlude each other
as visual objects in images do. Instead, overlapping auditory objects in a spectrogram will
combine additively. In this way, the inductive bias of convolutional filters is less appropriate
for traditional spectrogram-like features (Wyse, 2017) and thus perhaps less likely to be em-
ployed by the brain. Alternative recurrent or autoregressive architectures, which have been
very successful in audio synthesis (Oord et al., 2016), may be ideal candidates to investigate
in future work.
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5. Conclusion

In general, we conclude that DNNs can be good models of animal sensory systems, not
because they learn representations that perfectly match our observations of biological neural
networks, but because they provide a framework to investigate how architectures, tasks, and
learning procedures influence the correspondence between patterns of activity in artificial
networks and animal brains. Many more studies will be needed to explore the space of
model hyperparameters, tasks and experimental designs.
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5.1. Similarity matrices for each subject
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Figure 30. Subject-1 Neural Similarity Matrices. Dutch speaker.
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Figure 31. Subject-2 Neural Similarity Matrices. German speaker.
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Figure 32. Subject-3 Neural Similarity Matrices. German speaker.
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Figure 33. Subject-4 Neural Similarity Matrices. English speaker.
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Figure 34. Subject-5 Neural Similarity Matrices. German speaker.
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Figure 35. Subject-6 Neural Similarity Matrices. Dutch speaker.
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Discussion

6.1. Summary of main findings

The scientific goals of this thesis were to characterize and compare auditory representa-
tions in DNNs and in the human auditory pathway. The related meta-scientific goals were to
unify computational neuroscience and deep learning science approaches to studying neural
computation and to address the various methodological and philosophical issues that chal-
lenge this unification. Towards these goals, this thesis has explored several approaches to
modeling auditory neural processing and considered the philosophical underpinnings of these
various approaches. Article 2 reflects a functional modeling approach and a functional few
of explanation in neuroscience. Articles 3 and 4 analyse representations in DNNs, which can
be viewed as ’model organisms’ in the same way that scientists study non-human animals as
models of specific phenomena of interest. Article 5 reflects a normative approach, whereby
instead of attempting to characterize the specific mathematical function computed by some
neural population (as in Article 2), the goal is to characterize the necessary and sufficient
conditions under which such a function can be learned. This approach can be (but is not
necessarily) ambivalent to the nature of the specific function being computed, and rather
focuses on the optimization procedures and network architectures that yield brain-like rep-
resentations. Article 1 provides the necessary philosophical vocabulary to reason about the
merits of theses various approaches and to begin to envision a unified science of intelligence
concerned with phenomena at the intersection of neuroscience and artificial intelligence.

The functional approach employed in Article 2 sought to characterize how well cortical
responses to sound can be modeled as a linear function of spectrotemporal modulations.
Our stimuli were highly similar, such that the encoding and decoding analyses were not only
testing our hypothesis but also the limits of the acuity and sensitivity of 7T fMRI. Despite
the small differences between our stimuli, we found that, on average, linear predictive models
trained only on simple ripples can generalize to mixtures of ripples, supporting the hypothesis
that cortical responses to sound can be modeled as a linear function of spectrotemporal
modulations. This result is consistent with the well established model of cortical auditory
responses being selective to patterns of spectrotemporal modulation. However, this model



is a simplification that we know to be false (like all models). The primary aim of this
project was to localize where (for which voxels) this model was least wrong. We were unable
to achieve such maps due to low SNR. The demands of our experimental design exceeded
the sensitivity limits of 7T fMRI. Thus, the primary implications of our findings concern
experimental design for 7T auditory fMRI experiments.

If using synthetic stimuli instead of natural stimuli, one must ensure that they elicit
sufficiently distinct patterns of neural activity. When possible, it is likely preferable to
use natural sounds. In some cases it may be possible to construct modified versions of
natural sounds that possess the desired attributes, while still eliciting large magnitude neural
responses. However, recent results have shown that synthetic stimuli do not necessarily elicit
smaller magnitude responses. Ponce et al. (2019); Bashivan et al. (2019) synthesized images
with neural networks specifically to maximize the response of individual neurons. In both
cases, the authors found synthetic images that did not resemble natural images but that
none the less drove visual neurons exceptionally well, often far exceeding the neuron’s firing
in response to a set of natural stimuli. Thus, there may not be anything intrinsic about
synthetic stimuli that elicit smaller responses. One could attempt to use similar approaches
to maximize the response of individual voxels, but the efforts would likely only be successful
to the extent that neurons within a voxel share the same selectivity.

Much of basic neuroscience research focuses on documenting the selective responses of
individual neurons or populations of neurons. Such approaches have also been employed to
characterize representations in deep neural networks. For example, visualization techniques
can be used to characterize what types of input maximally activate a unit and attribution
techniques can trace how the activation of a given neuron affects the output of the network
(Olah et al., 2018). However, some have questioned the usefulness and limits of such char-
acterizations (Richards et al., 2019; Lillicrap and Kording, 2019; Jonas and Kording, 2017).
In machine learning, the problem of interpretable and explainable AI is typically viewed as
problem of human computer interaction rather than an integral part of a science of machine
learning. Characterization of the selectivity of individual units in a network or how they con-
tribute to a decision of classification, may indeed be critical for certain applications or may
aid in debugging why a network is making mistakes. However, it does not generally appear
to provide actionable insight that could be leveraged to design new algorithms or architec-
tures. Especially for intermediate representations that reflect neither physical properties of
the world nor semantic categories of objects, it is entirely possible that whatever individual
units or neurons respond to is not easily describable in human language and may not map
on to existing human concepts. Humans may eventually develop language and concepts for
these in between representations, but until then, it may be worth exploring what other types
of characterizations are possible.
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Articles 3 and 4 explore alternative characterizations at the level of single layers that
are not based on selectivity. In Article 3 we quantified the language specificity of layers of
acoustic models trained on different languages and explored the role of weight freezing in
transfer learning. Article 4 focused on neural similarity analysis as a tool to characterize
representations. We evaluated the influence of several modifications to the training proce-
dure on the learned representations by comparing the resulting activations to those of the
standard-trained monolingual networks from Article 3 as a reference. Overall, we found that
the largest representational changes occurred in the last two layers, which we also found to
be most language-specific. The representations of models trained on different languages were
largely similar up until the last two layers, which was consistent with the results of Article
3 which found the final two layers to be most language-specific. Our analysis of the rep-
resentational similarity of networks with random networks led us to hypothesize that both
the input and target serve as anchors on the representational form, such that the intermedi-
ate layers have the most flexibility in what form they can take without negatively affecting
performance.

These results are consistent with the observation made by Raghu et al. (2017) that neu-
ral networks converge bottom-up with shallow layers converging to their final representation
earlier in training. The plots from that paper seem to suggest a top-down component as
well, with intermediate layers converging after the deepest layers. However, this story is
inconsistent with recent results from Mehrer et al. (2020) which showed that the variability
in representation due to different random initializations increases as a function of depth.
Our hypothesis would have predicted an inverted U-shaped relationship where intermediate
representations are most variable. Some of this discrepancy can be attributed to the choice
of similarity metric. Raghu et al. (2017) use SVCCA which they show to be invariant to dif-
ferent random initializations as a demonstration of its appropriateness for neural similarity
analysis. Similarly, CKA-based similarity has been validated by showing that it can recover
corresponding layers of networks trained from different random initializations. Mehrer et al.
(2020) use RSA with correlation distance-based DSMs and Kandall’s Tau to compare DSMs.
Since correlation distance is not invariant to orthogonal linear transforms (as SVCCA and
CKA is), it may be more sensitive to the types of representational variation that occur at
deeper layers of a network. For example, RSA with correlation distance would not be invari-
ant to a permutation of the output units, whereas SVCCA and CKA would be. Whether
such rotations are relevant likely depends on the research question.

It is a limitation of this thesis that variance across several random initializations is not
reported. This is primarily due to the computational costs of training. We analyzed 198
networks which each took approximately two-weeks to train. While we were able to train
several networks in parallel, it would not have been feasible to train all 198 models several
times from different random initializations. In Article 3, we repeat the analysis for all 3
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language pairs and find a similar pattern for each pair. Thus, it is improbable that our
results are attributable to different random initializations. However, smaller networks that
train faster could have been used. Such networks would have performed less well on the
phoneme recognition task. We prioritized performance because we wanted to make sure
the networks learned as much as possible about each language. However, since most of our
analyses are based on relative differences in accuracy rather than on absolute performance,
we may have found similar results with smaller, quicker training networks.

The approaches explored in Article 3 and Article 4 cannot easily be directly applied to
characterize biological neural representations because one does not have the same control
over biological brains. However, one can compare DNN activity to neural activity. This is
the analysis we employ in Article 5 where the subset of the networks that were the object of
study in Articles 3 and 4 are compared to activity in ROIs throughout the human auditory
pathway. In particular, we sought to assess whether the human auditory pathway possess
a similar representational hierarchy as our DNNs, as has been previously reported in the
auditory and visual systems. While we did observe considerable similarity between our
networks and our ROIs, we did not find any evidence for a shared representational hierarchy.
This work is the first to compare DNNs trained on auditory tasks to subcortical and cortical
regions of the auditory pathway, and as such, represents a powerful test of the hypothesis of
shared hierarchy. That we did not observe different patterns of similarity for our subcortical
and cortical ROIs is a clear indicator that the human auditory pathway is employing a
different representational trajectory than our DNNs.

Article 5 demonstrates that it is non-trivial to train DNNs that possess a similar represen-
tational hierarchy as the human auditory pathway. Similar results in the visual domain have
been reported (Cadena et al., 2019). However, we do not conclude, as Xu (2020) do, that
DNNs thus may not serve as sound working models of sensory systems. DNNs are promising
models of sensory processing not because they always perfectly mimic neural measurements,
but because they provide a framework to investigate the necessary and sufficient conditions
to learn brain-like representations and to bridge knowledge about intelligence in artificial
and biological systems. In fact, if all DNNs learned representations that mimicked the hier-
archical structure of sensory systems, they would be less useful for studying the conditions
that yield such hierarchies. To paraphrase Eve Marder giving a keynote lecture at the 2019
Bernstein Conference on computational neuroscience, a good model is not one that ends up
being perfectly correct, but one that makes you realize that you should be doing a different
experiment that you would not have thought of otherwise (Marder, 2015). In our case, we
observed that all ROIs were most similar to the same layer: the first fully connected layer.
This motivates followup experiments to understand why that layer in particular appears to
be the most brain like. Characterizing the nature of that layer in particular may inspire al-
ternative objective functions that yield representational hierarchies that are a better match
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to the human auditory system. In other words, the ultimate goal of this line of research
is not simply to find a model that achieves high similarity or that explains as much vari-
ance as possible, but to identify the specific attributes of network design—what specifically
about what architectures and what learning procedures—yield the types of representations
we observe in biological sensory systems.

6.2. On using deep neural networks as models of sensory systems

The use of DNNs as models of animal sensory systems is largely in the context of a model
comparison approach to scientific discovery. Through evaluation, comparison, and iterative
refinement, models hopefully get closer to some truth about the phenomena under study. 12

Within this view, models that are more constrained are likely to be closer to the truth since
they occupy smaller region of the search space known to include the true model (Fig 36). In
practice, however, we don’t usually know which constraints are necessary to answer a specific
scientific question.

Figure 36. Models lie at the intersection of one or more constraints The rectangle
indicates the space of all possible models where each point in the space represents a different
model of some phenomenon. Regions within the colored ovals correspond to models that
satisfy specific specific model constraints (where satisfaction could be defined as meeting
some threshold on a continuous value). If a constraint is well justified, it implies that the
true model is contained within the set of models that satisfy that constraint. Models that
meet more constraints, then, are more likely to live within a smaller region of the hypothesis
space and hence will be closer to the truth, indicated by the star in this diagram.

The use of DNNs as models of sensory systems emphasizes a different subset of constraints
than alternative modeling approaches. For example, Kell and McDermott (2019) discuss the
importance of task constraints and of models that exhibit the phenomenon to be explained,
12. Or at least the models become more useful, if one prefers a more pragmatic, less realist account
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e.g. if one wants to study face recognition, a reasonable possible model constraint is that
the model be capable of recognizing faces. Emphasizing task-performance and accounting
for animal behaviour may come at the expense of other possible model constraints since it
is usually impossible to satisfy all model constraints at once.

The various differences between DNNs and biological brains are often repeated to refute
their usefulness as models. In particular, the biological (im)plausibility of DNN models and
their limited ability to replicate high-level cognition are often cited. Marcus (2018) describes
the limitations of current DNNs. They are not capable of relational reasoning, cannot ac-
commodate non-stationarity, do not extrapolate well, and cannot separate correlation from
causation, among other limitations that human brains have managed to overcome. Zador
(2019) questions the relevance of models that required large datasets to learn when most
animal behaviour is the result of eons of evolution and encoded in the genome rather than
learned over the course of a lifetime. DNNs and animals fail in different ways. DNNs are
susceptible to adversarial examples—examples that have been only slightly modified such
that the differences are not noticeable by humans, but can severely affect the performance
of a network (Goodfellow et al., 2015). 13 Since DNNs are only loosely inspired by biological
neural networks, there are enumerable physiological details that are missing. Biological plau-
sibility has been presented as a requirement for models to be useful for studying biological
neural computation (Gerven and Bohte, 2017) and the biological plausibility of learning in
DNNs has been questioned. There are many differences between DNNs and biological brains,
but what implication they have on how we think about DNNs as models? Why are these
differences meaningful?

Criticisms of the use of DNNs as models of sensory systems often amount to claims
that a different subset of constraints should be privileged. The proposed requirement that
models must be biologically plausible in order to have bearing on neuroscience prioritizes
the purple region of Figure 36 which contains only models that are deemed biologically
plausible. According to the view put forth by Love (2019), positions of this type reflect
value judgements about which datasets are most important. On what basis are such value
judgements made? Within the model comparison framework, constraints (or datasets) are
selected to narrow the search space. Constraints could be privileged based on how much
they narrow the search space. However, when comparing two constraints like biological
plausibility and task performance, it is not obvious that one will narrow the search space
more than the other. It is entirely possible that exploring the space of possible models that
can perform some task of interest will lead to truth faster than exploring the set of models
that are biologically plausible. These known unknowns can inform how we think about
optimizing scientific progress in a model comparison framework.

13. Although there has been some suggestion that there exist adversarial examples that fool both DNNs
and humans c.f. Elsayed et al. (2018)
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We can try to reason about which constraints are more limiting and it may be more
or less possible for different research questions. In Article 1, I emphasized the importance
of specifying the phenomenon to be explained. Similarly, Love (2019) emphases a similar
need to identify the datasets to be accounted for. Different researchers, even researchers
who are concerned with the same natural phenomenon, may still choose to privilege different
model constraints and this is a feature, not a bug. Due to our uncertainty about the nature
of the hypothesis space to be explored, we need different researchers to come at the same
problem from as many different angles as possible. This has been studied using simulations of
scientific discovery in a model-centric framework to identify the relationship between several
attributes of scientific communities and the success of their research program. Devezer
et al. (2019) found that innovative research speeds up the discovery of scientific truth by
facilitating the exploration of model space and that epistemic diversity, the use of several
research strategies, optimizes scientific discovery by protecting against ineffective research
strategies. The authors compare epistemic diversity to diversifying an investment portfolio
to reduce risk while trying to optimize returns. If one knew how the market was going
to change, one wouldn’t need a diverse investment portfolio. Similarly, uncertainty about
scientific truth and how to search for it should lead us to embrace epistemic diversity.

The long list of differences between DNNs and brains has no general implication for the
suitability of DNNs as models of biological intelligence and learning. Specific differences may
be relevant to specific research questions. Nevertheless, researchers are currently working on
addressing several of these differences to further narrow the model search space. Machine
learning researchers are currently working on biologically plausible learning algorithms (Ben-
gio et al., 2014; Lillicrap et al., 2014; Guerguiev et al., 2017), relational reasoning (Bahdanau
et al., 2018; Santoro et al., 2017), and causal inference (Schölkopf, 2019; Goyal et al., 2019).
Neuro-AI researchers have been exploring the effects of adding elements of biological realism
to DNNs to see how they affect representational correspondence (Lindsay and Miller, 2018;
Lindsay et al., 2019). Storrs and Kriegeskorte (2020) hypothesize that, as the field of deep
learning continues to progress, neural network models will only become more relevant and
useful for cognitive neuroscience. They discuss how the study of relational reasoning in ar-
tificial systems helps to identify the necessary and sufficient conditions for such abilities to
develop and how artificial systems trained in simulated environments can be used as a tool
for studying embodied cognition. The use of DNNs as models of biological neural system
is one of several well-justified modeling approaches. DNN models focus on different regions
of model space than alternative approaches, and thus constitute an innovative strategy that
increases the epistemic diversity of computational neuroscience.
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6.3. Unifying Neuroscience and AI: Disambiguating prediction,
representation and explanation

Many terms are used in different ways at the intersection of neuroscience, AI and philos-
ophy of science. An integration of neuro and AI will require a consistent language. Here, I
try to map between related concepts in cognitive science, statistics and machine learning.

6.3.1. Representation and encoding

Much effort has been directed at representations and their role in cognition and expla-
nation. Marr and Nishihara (1978) defines a representation as “a formal system for making
explicit certain entities or types of information, together with a specification of how the sys-
tem does this.” He denotes a specific instance of an entity in a given representational system
as a description. For example, the Arabic numeral 37 is a description of the number 37 that
makes explicit its decomposition into powers of ten. A binary representation of the same
number would make explicit its decomposition into powers of two. A representation will
often be a useful abstraction. For example, we can represent strands of DNA as sequences of
nucleotides, represented by the letters A, T, C and G. Similarly, the information processing
approach to cognitive neuroscience presumes that the brain is likely to use various represen-
tations of sensory information at different stages along some pathway to facilitate certain
computations. The terms encoding and decoding refer to representational transformations
from the sensory input (encoding) and to perception or behaviour (decoding). According
to Diedrichsen and Kriegeskorte (2017), information-based analyses of neural measurements
(encoding analysis, decoding analysis, representational similarity analysis, etc.) test repre-
sentational models, which describe how patterns of activity relate to sensory stimuli, motor
actions, or cognitive processes. Their definition of representation within this framework is
that a represented variable can be linearly decoded from a down-stream area. This para-
digm, sometimes referred to as neural coding, has led researchers to make statements about
what is ’encoded’ in neural signals based on the results of encoding and decoding analyses.

This paradigm has received criticisms on several fronts. Brette (2019) points out that the
language of the neural coding framework implies causal relationships for which the analysis
typically does not provide evidence. That the activity of a population of neurons can be well
predicted by a particular representational model does not in itself imply that the hypothe-
sized representation is in fact used by the neural system to accomplish the task of interest.
Many candidate representational models may predict the relevant neural activity equally
well. Using predictive performance as the only arbiter of model fit does not establish the
causal relevance of the hypothesized representation. This debate reflects tensions between
functional and causal mechanical theories of explanation. The neural coding paradigm en-
tails the functional analysis of a neural system: decomposition of the component operations
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of a phenomenon. According to the functional theory of explanation, the causal mechanical
implementation of those component operations are not needed. Although not stated explic-
itly, in essence, Brette’s warning regarding the interpretation of results in the neural coding
paradigm reflect a warning against a functionalist view of explanation in neuroscience.

The neural coding paradigm has also received criticism from the dynamical camp. The
dynamical hypothesis, is that ‘cognitive agents are dynamical systems’ (Gelder, 1998). The
antirepresentational stance adopted by some dynamicists and radical embodied cognitive
scientists claims that cognition is not inherently representational (Chemero, 2009): “Unlike
digital computers, dynamical systems are not inherently representational. A small but influ-
ential contingent of dynamicists have found the notion of representation to be dispensable
or even a hindrance for their particular purposes. Dynamics forms a powerful framework for
developing models of cognition that sidestep representation altogether” (Gelder, 1998, 622).
A dynamical explanation may make no reference to representation and instead describe the
details of a particular neural circuit, for example.

The definition of representation in cognitive science and neuroscience is distinct from
the notion of representation in machine learning. The field of representation learning is
concerned with procedures for automatically learning useful transformations of data. The
input data, say a set of images, are originally represented by a set of three-dimensional (RBG)
pixel values. This pixel space is one representational space. Learned representations will
consist of one or more transformations of this original form. In this sense, machine learning
representations are representations of some signal whereas in cognitive science literature, a
representation is a representation of some variable. In a DNN classifer, the target could be
seen as a variable of interest. From the data processing inequality, we know that the mutual
information with the target will be maximal at the input layer. All the information related
to the target class is present at the input. The subsequent representational transformations
change the form of that information, gradually linearizing the decision boundaries, such that
the target class can be linearly read out at the output layer. One can add linear classifier
probes at each layer of a deep network to see how well the target class can be decoded from
each layer. For a trained network, one should see that the performance of these linear probes
will increase with depth, but the decoding performance could be above chance at all depths
(Alain and Bengio, 2016). In this case, where would the cognitive neuroscientist say the
target is represented? At every layer? Or maybe at the input since that is where the mutual
information is greatest? Or at the final layer since the decoding accuracy is highest there?
From a machine learning perspective, what can be linearly decoded from a layer’s activity
only provides a snapshot of its representational form.
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6.3.2. Prediction, explanation, and generalization

In machine learning, the output of a model is a prediction. In classification, the prediction
takes the form of a categorical label which represents the model’s best guess of the category
of the input example. Traditionally, the goal of supervised machine learning is to discover
statistical regularities and invariances in the training data that enable accurate predictions for
a given task. The data are typically assumed to be independently and identically distributed
(i.i.d); all observations are sampled independently from the same data generating process.
The goal is a model with good generalization performance, which means that the predictions
are accurate for any other sample from that data generating process. A model that overfits
to the training data will not generalize well. For some models, there are analytic bounds
on the generalization gap. In practice, this is typically verified empirically by separating
datasets into training and testing sets. The performance on the test set estimates how well
the model would predict any random sample from the same data generating process; this is
refered to as within-distribution generalization. Some efforts in machine learning are focused
instead on out-of-distribution generalization, which refers to the setting where the training
and test sets are not i.i.d.

One example of out-of-distribution generalization is systematic generalization in lan-
guage, which refers to the ability to rationalize about logical rather than purely statistical
relationships between tokens. For example, (Bahdanau et al., 2018) investigated the ability
‘to reason about all possible object combinations despite being trained on a very small subset
of them’:

Clearly, given known objects X, Y and a known relation R, a human can easily
verify whether or not the objects X and Y are in relation R. Some instances
of such queries are common in daily life (is there a cup on the table), some
are extremely rare (is there a violin under the car), and some are unlikely but
have similar, more likely counter-parts (is there grass on the frisbee vs is there
a frisbee on the grass). Still, a person can easily answer these questions by un-
derstanding them as just the composition of the three separate concepts. Such
compositional reasoning skills are clearly required for language understanding
models.

Systematic generalization is something that is relatively easy for humans but difficult for ar-
tificial natural language understanding systems. Out-of-distribtion generalization also shows
up in other applications. For example, one may wish to train a robotic arm first in a simu-
lated environment controlled by a physics engine and want it to generalize to the real-world.
Out-of-distribution generalization is one of the frontiers of AI research at the moment and
will be required for AI systems to mimic human cognitive abilities. In this way, not all
predictions are equal. Different predictions will test different generalizations.
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In statistical hypothesis testing, commonly employed in the analysis of neural data, the
word predict is employed in a different way. One variable is said to predict another if a sig-
nificant statistical relationship has been found between the two. This use of the term is more
akin to what philosophers call accommodation: how well a scientific theory accommodate
the data that was already known at the time the scientific theory was constructed. When
regression is used for statistical hypothesis testing, one variable (or set of variables or inter-
section of variables) is said to predict another based on an assessment of the experimental
data. When using regression in machine learning, the model as a whole is predicting the
target. The model is evaluated by how well the model predicts held out data (data that was
not used during the training of the model). However, neither of these uses seems to parallel
the use of predict in philosophy of science where the emphasis is on the prediction being
novel, i.e., something that hasn’t been observed yet.

Confusingly, the word explain is also used in the context of statistical hypothesis testing.
The statistical measure R-squared (R2) is the proportion of variance in one variable that
is explained by another in a linear regression. This use of the word explain in statistical
hypothesis testing is distinct from scientific explanation, but the two are sometimes not
clearly distinguished in scientific writing. For example, consider this motivating statement
for the Algonauts project, whose 2019 edition is dedicated to “Explaining the Human Visual
Brain”:

Currently, particular deep neural networks trained with the engineering goal
to recognize objects in images do best in accounting for brain activity during
visual object recognition (Schrimpf et al., 2018; Bashivan, Kar, & DiCarlo,
2019). However, a large portion of the signal measured in the brain remains
unexplained. This is so because we do not have models that capture the mech-
anisms of the human brain well enough. Thus, what is needed are advances in
computational modelling to better explain brain activity (Cichy et al., 2019).

The authors allude to statistical explanation when discussing unexplained signals, while talk
of capturing neural mechanisms hints to scientific explanation. When in reality, this project
is about evaluating models based on their ability to predict (in the machine learning sense)
neural activity. When they lament that a “large portion of the signal measured in the brain
remains unexplained”, they invoke the notion of explained variance. Rather than trying
to develop a scientific explanation for a phenomenon of interest, they are concerned with
statistically explaining, or in this case, being able to predict, the variance in the collected
data—variance which may or may not be causally related to any number of different neural
or cognitive phenomena.

Many of the issues described above can be subsumed under the notion of generaliza-
tion. The philosopher’s term accommodation does not imply any generalization beyond the
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observations used during the construction of the theory (or training of the model). The
typical notion of generalization in psychology is akin to within-distribution generalization in
machine learning. One assumes (or tries to ensure) that their sample of subjects represents
a random sample from a population. The goal of statistical inference is to make general
statements about the population from the measurements made on a sample. The notion of
novel prediction in philosophy of science could be seen as an example of out-of-distribution
generalization in machine learning.

The goal to explain as much variance as possible or to predict as accurately as possible
expresses a desire for completeness. Philosophers of scientific explanation warn against over-
completeness.

It is important to note, in this connection, that particular [explananda] do not
necessarily embody all of the features of the phenomena which are involved.
For example, archaeologists are attempting to explain the presence of a partic-
ular worked bone at a site in Alaska. The relevant feature of the explanandum
are the fact that the bone is thirty thousand years old, the fact that it was
worked by a human artisan, and the fact that it has been deposited in an
Alaskan site. Many other features are irrelevant to this sought-after explana-
tion. The orientation of the bone with respect to the cardinal points of the
compass at the time it was discovered, its precise size and shape (beyond the
fact that it was worked), and the distance of the site from the nearest stream
are all irrelevant. It is important to realize that we cannot aspire to explain
particular phenomena in their full particularity. . . . In explanations of particu-
lar phenomena, the explanation-seeking why-question—suitably clarified and
reformulated if necessary—should indicate those aspects of the phenomena for
which an explanation is sought. (Salmon, 1984, pg.273-4)

The project of collecting large-scale neural datasets and building models that explain as
much variance as possible in that data is one of mere description rather than explanation.
Descriptive science is unambiguously crucially important to scientific progress. Recall the
first aspect of Craver’s notion of mechanical explanations is characterization of the phenom-
enon to be explained. However, the distinction between explanation and mere description
is still important. Specific why-questions may eventually be motivated by such descriptive
characterizations, but only if we don’t mistake them for explanations prematurely.

6.4. General Conclusions

Comparing activations in biological and artificial neural networks is a promising approach
to study the architectures and learning procedures that support brain-like representations
and the nature of representations in intelligent systems. However, this scientific project is not
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just about chasing high accuracy. As much as one might like to, the scientific problems posed
in neuroscience cannot be reformulated as engineering problems. The (long term) goal of
science is to generate scientific explanations, which is not the same as statistically explaining
the variance in our data. At this particular moment in computational neuroscience, there is a
high degree of uncertainty about what such explanations might look like for many phenomena
of interest. Therefore, the field may benefit from a closer relationship with philosophers of
neuroscience concerned with scientific explanation. Philosophy of science offers conceptual
scaffolds that can help refine a vision of an integrated science of intelligence.

Part of the value of deep learning from a neuroscience perspective could come from the
fact that deep learning is theory-poor compared to other areas of machine learning. That
there are a lot of open questions in deep learning theory may reflect generic challenges of
studying learning in distributed networks. This positions deep learning science as a model
science for neuroscience. The methods and concepts that prove useful for explaining phe-
nomena in deep learning may inspire new methods and ways of thinking in neuroscience, due
to the similar scientific problems posed in these two fields and the relatively ease with which
artificial systems can be analyzed compared to their biological counterparts. In this way,
the opportunities for transfer between deep learning and neuroscience span several scientific
and meta-scientific levels.

The arguments presented here are not intended to advocate for a deep learning approach
to neuroscience over other approaches. The purpose of the arguments presented is to justify
and clarify the merits of a deep learning approach to neuroscience as one among many. The
addition of a deep learning approach increasing the epistemic diversity of the set approaches
employed. Innovative and diverse approaches in an epistemically humble research community
will better lead us towards truth.
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