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Abstract 

Single-case experimental designs often require extended baselines or the withdrawal 

of treatment, which may not be feasible or ethical in some practical settings. The quasi-

experimental AB design is a potential alternative, but more research is needed on its validity. 

The purpose of our study was to examine the validity of using nonoverlap measures of effect 

size to detect changes in AB designs using simulated data. In our analyses, we determined 

thresholds for three effect size measures beyond which the type I error rate would remain 

below .05, and then examined if using these thresholds would provide sufficient power. 

Overall, our analyses show that some effect size measures may provide adequate control over 

type I error rate and sufficient power when analyzing data from AB designs. In sum, our 

results suggest that practitioners may use quasi-experimental AB designs in combination with 

effect size to rigorously assess progress in practice. 

Keywords: AB design, effect size, power, single-case design, type I error rate, 

validity. 
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Using AB Designs with Nonoverlap Effect Size Measures to Support Clinical Decision 

Making: A Monte Carlo Validation 

Researchers from diverse fields of psychology have recommended that practitioners 

adopt single-case experimental designs to assess and monitor individual progress (Foster, 

Watson, Meeks, & Young, 2002; Lundervold & Belwood, 2011; Machalicek & Horner, 

2018; Odom et al., 2005). While single-case experimental designs are suitable for use in 

research, such arrangements are not always feasible or ethical in practical settings (Engel & 

Schutt, 2017; Janosky, Leininger, Hoerger, & Libkuman, 2009). For example, the 

demonstration of experimental control in reversal and alternating-treatment designs is done 

through the repeated application and removal of treatment. In the case of aggressive 

behaviors or self-injury, this reversal may neither be desired or ethical (Hayes, 1981). The 

multiple baseline design, on the other hand, typically involves collecting a high number of 

baseline (i.e., no treatment) sessions prior to implementing treatment, which may be 

inadvisable for high-risk behavior. Moreover, agencies may not have the time or the funding 

to continue data collection for an extended period of time (Lanovaz, Turgeon, Cardinal, & 

Wheatley, 2018). 

From a research standpoint, AB designs are limited by their inability to demonstrate a 

functional relationship and experimental control. From a practice standpoint, however, 

identifying the precise mechanisms responsible for a behavior change is secondary to 

demonstrating if a significant change in behavior has occurred from phase A to phase B. 

Therefore, when conducting clinical evaluations one option is for practitioners to use the 

quasi-experimental AB design to guide their clinical decision making (Lanovaz et al., 2018). 

Contrary to its experimental counterparts, the AB design never requires the withdrawal of 

treatment, nor the completion of additional baseline sessions beyond achieving data stability. 

That said, not conducting a replication may increase the probability of reaching incorrect 
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conclusions regarding the data. Some methods of analysis have been developed to control for 

error rates when analyzing reversal or multiple baseline designs, which can also be readily 

applied to AB designs (e.g., Bloom, Fischer, & Orme, 1999; Fisher et al., 2003; Manolov, 

Sierra, Solanas, & Botella, 2014; Nugent, 2001). Although a step in the right direction, these 

methods do not allow researchers to determine whether within-subject replications would be 

warranted in practice.  

In a recent study addressing these issues, Lanovaz et al. (2018) extracted data from 

501 reversal ABAB graphs from theses and dissertations and examined to what extent the 

results observed following the first phase change matched the results observed following the 

subsequent phase changes. In approximately 5 of 6 cases, the results of the first phase change 

was consistent with those of the subsequent phase changes, suggesting that AB designs would 

lead to erroneous clinical decisions approximately 15% of the time if a replication had not 

been conducted. To further reduce this error rate, Lanovaz et al. (2018) conducted an 

analysis, which showed that nonoverlap effect size measures may function as predictors of 

replication and be used as thresholds to bring type I error rates down to around 5%. 

 An effect size provides information on the size, magnitude, or meaningfulness of a 

change associated with an intervention. Although there are several accepted and tested 

statistics commonly used in group designs (e.g., standardized mean difference indices; 

Cohen, 1992), these effect size measures are not appropriate for use with single-case designs. 

Single-case design data typically contain a small number of data points, data are often 

autocorrelated, and normal distribution of the data cannot be assumed (Hersen & Barlow, 

1976; Parker, Vannest, & Brown, 2009). For these reasons, researchers and practitioners 

typically rely on a group of indices called nonoverlap measures. These indices do not require 

data to have a specific distribution or scale type (Vannest & Ninci, 2015). Instead, 
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nonoverlap indices yield an effect size based on the presence or absence of overlap in the data 

points from contrasted phases.  

Despite the findings of Lanovaz et al. (2018), additional research is needed to provide 

guidance for using effect size as a predictor of the need for replication. First, Lanovaz et al. 

(2018) based their analyses on nonsimulated data so that the patterns would mimic those of 

behavior typically observed in practice. Using nonsimulated data limited the number of 

datasets (i.e., 501) on which the analysis could be based, which precluded an in-depth 

analysis of the effects of trend, autocorrelation, and, number of points. Second, the dual-

criteria method of analysis (see Fisher et al., 2003) applied to each graph had limited power, 

that may have biased some of the results. Third, the use of nonsimulated data prevented the 

analysis of power of such an approach without leading to a logical fallacy. As such, the extent 

to which using AB designs with effect size would lead to false negatives remains unknown.  

While several studies have evaluated the performance of nonoverlap measures for 

calculating effect size in published datasets (e.g., Ma, 2006; Parker et al. 2009; Tarlow, 

2007), additional research is needed to examine how effect size may be used to analyze AB 

designs. The purpose of our study was to extend the study conducted by Lanovaz et al. (2018) 

by completing a more in-depth analysis of using effect size to detect changes in AB designs 

using simulated data. Specifically, we (a) established thresholds of effect size beyond which a 

replication would be deemed unnecessary for different values of autocorrelation and trend, 

and for varying phase lengths, and (b) assessed if using these thresholds produced sufficient 

power to detect a true effect. 

Method 

Data Generation 
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 We used the arima.sim function of R code to generate raw datasets representative of 

AB designs for our Monte Carlo simulation of a first-order autoregressive model1. 

Autoregressive integrated moving average (ARIMA) models are statistical models typically 

used to analyze time series data. ARIMA models can generate datasets that contain a variety 

of characteristics including trend and autocorrelation, both of which are often present in 

single-case design data. The malleability of this model makes it ideal for producing simulated 

datasets. More specifically, we generated the times series using the equation 

 1t t tx ax −= +  (1) 

where x is equal to a univariate time series, t is an integer index of time, a is the 

autoregressive coefficient (i.e., autocorrelation), and ε is the error term. The error term had a 

mean of zero and a standard deviation of 1. We systematically manipulated four parameters; 

a) number of data points in each phase, b) autocorrelation, c) trend, and d) standardized mean 

difference between Phase A and Phase B.  

Equation 1 only allows the manipulation of number of data points and 

autocorrelations. Thus, we transformed our initial values using the following formula to add 

trend, a constant, and a simulated effect. 

 ( 1)A A

t ty x t c= − − +  (2) 

𝑦𝑡
𝐵 = 𝑥𝑡

𝐵 + 𝛽(𝑡 − 𝑚 − 1) − 𝛽(𝑚 − 1) + 𝑐 + 𝑆𝑀𝐷 (3) 

where SMD =  
𝜇𝐵−𝜇𝐴

𝜎
  

In Equations 2 and 3, the yt  represents each data point at time t, xt the values obtained using 

Equation 1, and the superscripts A and B the phases to which each point belongs. β adds a 

reversing trend to the dataset, which decreases during baseline (Phase A) and increases 

 
1 To facilitate replication, we provide the R code used to generate the data, to measure effect sizes, and to 

conduct the analyses at: https://osf.io/9br7g/?view_only=8ecddb1554b64e2388c62d792153995b 

 

https://osf.io/9br7g/?view_only=8ecddb1554b64e2388c62d792153995b
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following treatment (Phase B). We used this reversing pattern because (a) the implementation 

of treatment may produce changes in trend that should be considered in single-case designs 

(Kratochwill et al., 2010), (b) researchers and practitioners are unlikely to start a treatment 

when the trend is already increasing (if the purpose is to increase the target), and (c) it mimics 

cyclical baseline patterns of behavior that may be observed in clinical practice. The c 

represents a constant of 10 that we added to each value in our time series to avoid negative 

values. To simulate an effect of treatment in phase B only (i.e., treatment), we added the 

standardized mean difference (SMD), which is computed by subtracting the mean of all 

points in phase A (μA) by the mean of all points in phase B (μB) and by dividing the result by 

the standard deviation (σ) of the error term (i.e., 1).   

Effect Size Measures 

 While at least nine nonoverlap measures exist, we focused on three nonoverlap 

measures: Tau-U for nonoverlap with baseline trend control (Tau-U; Parker, Vannest, & 

Davis, 2011), the percentage of data points exceeding the median (PEM; Ma 2006), and the 

robust improvement rate difference (R-IRD; Parker et al., 2009). We selected these measures 

as each is an improvement on other commonly used nonoverlap measures (i.e., percentage of 

nonoverlapping data, nonoverlap of all pairs, and improvement rate difference; see Ma, 2006; 

Parker et al. 2009; Parker & Vannest, 2009 for details), and each measure has been widely 

adopted by researchers. In addition, the calculation of each of these measures differs 

considerably from each other so as to make them representative of the available methods. We 

refer readers seeking more information on other measures to reviews by Parker et al. (2011) 

and Vannest and Ninci (2015).  

Tau-U. In the current paper, Tau-U refers to the revised version described by Parker 

et al. (2011) that corrects for baseline trend. Tau-U compares baseline and treatment and 

adjusts for trend present in baseline (i.e., Tau-UA vs. B- Trend A). To correct for baseline trend, a 
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Kendall’s rank correlation is calculated between the A phase data and the session numbers 

and used to adjust Tau. The formula for calculating Tau-U is 

 
1

1 1 1 1

Tau-U

where ( ) ( )  and ( ) ( )

p A

m n B A B A m m A A A A

p i j j i j i A i j i j i j i

S S

mn

S I y y I y y S I y y I y y−

= = = = +

−
=

   =    −  =    −    

(4) 

In previous and subsequent equations, the variables m and n represent the number of points in 

the baseline and treatment phases, respectively. The I represents the indicator function, which 

equates to 1 when the function is true and 0 when the function is false. The range of Tau-U 

index varies as a function of the values of m and n and can be expressed as

(2 1) / (2 )n m n− + −  to (2 1) / (2 )n m n+ − . Although often grouped with nonoverlap measures, 

Tau-U technically belongs to a class of non-parametric rank correlation coefficients. That is, 

it measures the strength of the association between contrasted phases, rather than the amount 

of overlapping data points (Tarlow, 2017).  

Percentage Exceeding the Median. If the anticipated direction of treatment is an 

increase, the PEM (Ma, 2006) is the percentage of data points in the B phase that exceed the 

median of the A phase. In the event phase B data points are equal to the median of the A 

phase they are counted as half a data point. To compute PEM, we used the original 

calculation method described by Ma (2006) 

 
1

1
( )

n
B

i A

i

PEM I y y
n =

 =     (5) 

where Ay  is equal to the median of the A phase Percentage exceeding the median can range 

from 0 to 100, however to make the measure comparable to the scales of the other measures 

we converted it to a proportion, resulting in a range of 0 to 1. A value of .5 or less indicates 

that no treatment effect is present.  

 Robust Improvement Rate Difference. The R-IRD (Parker et al., 2009) is the 

improvement rate of the treatment phase minus the improvement rate of the baseline phase. 
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The improvement rate for each phase is calculated by determining the minimal number of 

overlapping data points that must be removed from either baseline or treatment to eliminate 

all overlap between the phases. For datasets where the anticipated outcome is an increase in 

treatment, the baseline improvement rate is the number of data points removed from the A 

phase divided by the length of the A phase. The treatment improvement rate is the number of 

data points left in the B phase after all overlap is removed divided by the length of the B 

phase. Pustejovsky (2017, 2018) provided a method for computing R-IRD from the 

percentage of all nonoverlapping data (PAND; Parker, Hagan-Burke, &Vannest, 2007). The 

exact algebraic relation of R-IRD to PAND is 

 

( 1 )

2 2 2

( )

1
R-IRD ( )

2 100%

where 100%( ) and max{( ) ( )}
( ) m i

A B

j

PAND
m n m n

mn

x
PAND x i j I y y

m n + −

 
= + − − 

 

= = + 
+

  (6) 

The R-IRD can range from 0 to 1 with a score of 1 indicating that there is no overlap between 

the phases. Parker et al. (2009) suggest that values less than .5 indicate “small” effect, values 

of .5 to .7 indicate a “medium” effect, and .7 to 1 indicate a “large” effect.  

Analysis 1: Establishing Threshold Values for Effect Size 

Our first analysis was conducted to determine if we could identify thresholds above 

which it would be unlikely for a practitioner to erroneously identify a behavior change. 

We manipulated the number of data points in the baseline and treatment phases to produce 

six variations of phase length combinations (i.e., 5:5, 5:10, 5:15, 10:5 10:10, 10:15). For 

example, 5:10 represented a dataset with 5 baseline points and 10 treatment points and 15:10 

a dataset with 15 baseline points and 10 treatment points. For each of six phase length 

variations, we generated a frequency distribution of each effect size measure (i.e., Tau-U, 

PEM, and R-IRD) in the absence of a true effect (i.e., SMD = 0), with or without 

autocorrelation (i.e., a = 0 or 0.2), and in the presence or absence of trend (i.e., β = 0 or 0.1). 
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We set the autocorrelation parameter at 0.2 because Shadish and Sullivan (2011) reported this 

value as the meta-analytic mean in their review of single-case research, whereas, we set the 

trend at 0.1, which was the median trend that we found when we reanalyzed 295 

nonsimulated baseline datasets from a previous study (see Lanovaz et al., 2018). For each 

combination of parameters (72 in total), we generated a distribution of 100,000 datasets. We 

programmed our R script to select the effect size value below which at least 95% of all scores 

fell, which would generate threshold effect size values that produce a type I error rate of .05 

or less.  

Analysis 2: Determining Power 

 We repeated our first analysis with Tau-U and R-IRD, but we added the effect size 

parameter, SMD, to the points from phase B to simulate the effect of a treatment. We did not 

include PEM in our second analysis because we were unable to identify thresholds that 

adequately controlled for type I error rate for multiple sets of parameters (see results for the 

first analysis). The SMD value varied from 0.5 to 3.0 in 0.5 increments, which produced 288 

combinations of parameters. Then, we examined the proportion of datasets in the distribution 

that produced effect size values equal to or higher than the threshold values for the same set 

of parameters as identified in the first analysis. Autocorrelation and trend vary widely in 

single-case designs, and the true value may remain unknown because datasets contain few 

data points. To remain conservative, practitioners may choose to use the highest threshold 

values (typically those established for datasets containing autocorrelation and trend) for all 

their datasets. We therefore also repeated our analyses using the most conservative threshold 

value (i.e., the highest value) for each of the six phase length variations.  

Results  

 Table 1 shows the threshold values obtained for Tau-U, PEM, and R-IRD in our first 

analysis. The results of our analysis indicate that it is possible to set thresholds for effect size 
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above which it is unlikely that the observed change is due to chance. Across all phase length 

variations, the established threshold values were the lowest when no autocorrelation or trend 

was present in the data. The highest threshold values were nearly always associated with 

datasets containing both autocorrelation and trend. For example, when datasets contained 5 

data points in baseline and 10 in treatment with no autocorrelation or trend (i.e., a =  β = 0), 

the obtained threshold values for Tau-U and R-IRD were 0.60 and 0.70, respectively. With 

the addition of autocorrelation and trend (i.e., a =  β = 0.1), those threshold values 

increased to 0.80 for Tau-U and 0.85 for R-IRD. For PEM, threshold values that produced a 

type I error rate of.05 or less did not exist for multiple sets of parameters.  

Table 2 presents the power of Tau-U and R-IRD to detect a SMD of 2.5 for the exact 

and most conservative threshold values, which we obtained as part of our second analysis. 

We chose to present the data for a SMD of 2.5 as researchers have shown that SMDs for 

single-case data are typically 3.0 or higher (e.g., Gierut, Morrisette, & Dickinson, 2015; 

Lanovaz et al., 2018; Rogers & Graham, 2008). However, the power at a SMD of 3.0 often 

reached the ceiling of 1, which masked the contribution of the individual parameters; we thus 

present the values at 2.5 to facilitate comparisons. For effect sizes of 2.5, power was typically 

near or above 0.8 except when both phases contained only five points. Whether Tau-U or R-

IRD was more powerful mainly depended on the number of points in each phase, and 

expectedly, the conservative values were less powerful than the exact values. Both effect size 

measures performed best when the number of points increased in either phase. For example, 

applying the most conservative threshold values to datasets containing 5 baseline and 10 

treatment data points the power of Tau-U to detect a SMD of 2.5 was .87 (autocorrelation and 

trend absent). However, when the number of data points in each phase was increased to 20, 

there was a corresponding increase in the power (i.e., .99) to detect an effect.  
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Figure 1 summarizes the power of Tau-U and R-IRD across SMDs for 5 points in 

phase A and 10 points in phase B. We selected these phase lengths for presentation because 

practitioners typically want to minimize the number of baseline sessions while conducting 

sufficient treatment sessions to ensure repeated exposure to treatment. At these phase lengths, 

Tau-U was more powerful than R-IRD and typically had sufficient power to detect SMDs of 

2.0 or more. To allow the reader to consider the effects of different sets of parameters, we 

provided the tables for the other values of SMD and the figures for the other phase length 

variations as supplementary material2. 

Discussion 

Overall, our analyses show that Tau-U and R-IRD may provide adequate control over 

type I error rate and sufficient power when detecting changes in quasi-experimental AB 

designs. In addition to independently validating the properties of these measures with 

simulated data, our results show that the Tau-U and R-IRD can support clinical decision 

making. In contrast, PEM seems inadequate as the measure is prone to ceiling effects, which 

inflates the type I error when the threshold is at 1.0. Taken together with the results obtained 

by Lanovaz et al. (2018), our study suggests that practitioners may adopt AB quasi-

experimental design with Tau-U or R-IRD to assess individual progress while minimizing 

interpretation errors.  

For example, a practitioner who decides to collect at least five data points during 

baseline and at least ten data points during treatment may use 0.80 and 0.85 as thresholds for 

Tau-U and R-IRD, respectively (see Table 1). Observing an effect size equal to or higher than 

these values should produce a false positive interpretation in less than 1 in 20 cases, which is 

on par with the type I error rate threshold used in experimental designs. If the effect size is 

below the threshold, the practitioner may rely on visual analysis to provide further support. If 

 
2 See https://osf.io/9br7g/?view_only=8ecddb1554b64e2388c62d792153995b 

https://osf.io/9br7g/?view_only=8ecddb1554b64e2388c62d792153995b
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the visual analysis shows differentiation between phase A and phase B, the practitioner may 

conduct a within-subject replication using an experimental design to confirm the results (if 

possible to withdraw the treatment). Otherwise (i.e., visual analysis does not show 

differentiation), the practitioner may conclude that there was no behavior change and assess 

the effects of an alternative treatment. Thus, only a small subset of individuals would require 

an experimental design, considerably reducing the costs and resources necessary to assess 

and monitor progress.  

Practitioners should take into consideration the limitations of our effect size measures. 

First, nonoverlap measures may produce ceiling effects. When no overlap is present, the 

measure will indicate a large effect size (i.e., 1.0). However, this effect size only indicates the 

absence of overlap and does not provide information on the magnitude of the change between 

baseline and treatment (Ma, 2006). Second, the version of Tau-U used in this study is 

affected by the ratio of baseline to treatment data points. As such, the effect size may be 

artificially inflated by collecting additional treatment data points until Tau-U is statistically 

significant (Brossart, Laird, & Armstrong, 2018; Tarlow, 2017). If a practitioner finds a 

baseline trend is reducing their effect size, a within-subject replication may be warranted to 

confirm the effect. 

Although our results are consistent with those obtained with nonsimulated datasets 

(Lanovaz et al., 2018) and we relied on prior research to set the values of our parameters, our 

simulations may not have perfectly mimicked patterns observed in practice, which is a 

limitation. Future research should apply the current thresholds to nonsimulated data to 

examine to what extent the results match those of other types of analyses (e.g., visual 

analyses, randomization tests). An additional limitation is that we only used nonoverlap effect 

size measures as part of our analyses. We could not evaluate mean-based magnitude 

measures such as the log response ratio (Pustejovsky, 2018) because SMD directly 
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manipulated the mean. Therefore, inclusion of mean-based effect size measures would have 

produced circular outcomes.  

Finally, the primary concern against the use of quasi-experimental AB designs is their 

inability to demonstrate functional relations (or experimental control). An experimenter has 

demonstrated a functional relation when an observed change was shown to be the product of 

an independent variable (e.g., treatment) while ruling out extraneous variables. The AB 

design does not rule out the effects of maturation or history (Christ, 2007), which prevents 

the identification of the variable responsible for an observed change. However, the AB design 

can determine whether the behavior (or target) has changed significantly from phase A to 

phase B, which is arguably more important for practitioners than identifying the exact 

mechanism responsible for this change. In sum, our results suggest that practitioners may use 

quasi-experimental AB designs in combination with Tau-U or R-IRD to assess and monitor 

progress in practice.  
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Table 1 

Summary of Threshold Values for Tau-U, PEM, and R-IRD for Each Phase Length Variation 

  5:5  5:10  5:15 

Data Characteristics Tau-U PEM R-IRD 
 

Tau-U PEM R-IRD 
 

Tau-U PEM R-IRD 

a = 0,  = 0  0.76 NA 0.80  0.60 1.00 0.70  0.55 0.93 0.73 

a = 0,  = 0.1  0.76 NA 0.80  0.72 1.00 0.85  0.76 NA 0.87 

a = 0.2,  = 0 0.84 NA 1.00  0.68 1.00 0.85  0.63 0.93 0.73 

a = 0.2,  = 0.1 0.84 NA 1.00  0.80 NA 0.85  0.81 NA 0.87 

  10:5  10:10  10:15 

Data Characteristics Tau-U PEM R-IRD  Tau-U PEM R-IRD  Tau-U PEM R-IRD 

a = 0,  = 0  0.78 NA 0.85  0.49 0.90 0.60  0.43 0.87 0.58 

a = 0,  = 0.1  0.70 1.00 0.70  0.57 0.90 0.60  0.58 0.93 0.58 

a = 0.2,  = 0 0.78 NA 0.85  0.57 1.00 0.60  0.50 0.93 0.58 

a = 0.2,  = 0.1 0.78 1.00 0.70  0.63 1.00 0.60  0.65 0.93 0.67 

Note. PEM: percentage of data points exceeding the median, R-IRD: robust improvement rate 

difference, a: autocorrelation, β: trend parameter. NA indicates it was not possible to identify 

a threshold value that produced a type I error rate of .05 or less. 
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Table 2 

Summary of Power for Tau-U and R-IRD for Each Phase Length Variation for a 

Standardized Mean Difference (SMD) of 2.5 

Power of Exact Threshold Values 

 5:5  5:10  5:15 

Data Characteristics Tau-U R-IRD 
 

Tau-U R-IRD 
 

Tau-U R-IRD 

a = 0,  = 0  0.85 0.93  0.98 0.97  0.99 0.94 

a = 0,  = 0.1  0.89 0.92  0.98 0.88  0.99 0.87 

a = 0.2,  = 0 0.73 0.61  0.94 0.81  0.97 0.92 

a = 0.2,  = 0.1 0.79 0.60  0.92 0.86  0.95 0.85 

  10:5  10:10  10:15 

Data Characteristics Tau-U R-IRD  Tau-U R-IRD  Tau-U R-IRD 

a = 0,  = 0  0.84 0.97  1.00 1.00  1.00 1.00 

a = 0,  = 0.1  0.93 0.93  1.00 0.99  1.00 1.00 

a = 0.2,  = 0 0.72 0.81  0.98 0.99  1.00 0.99 

a = 0.2,  = 0.1 0.90 0.90  0.99 0.99  1.00 0.98 

Power of Most Conservative Threshold Values 

  5:5  5:10  5:15 

Data Characteristics Tau-U R-IRD  Tau-U R-IRD  Tau-U R-IRD 

a = 0,  = 0  0.74 0.59  0.87 0.82  0.88 0.33 

a = 0,  = 0.1  0.81 0.57  0.94 0.88  0.97 0.49 

a = 0.2,  = 0 0.72 0.61  0.85 0.81  0.85 0.36 

a = 0.2,  = 0.1 0.79 0.60  0.92 0.86  0.95 0.50 

  10:5  10:10  10:15 

Data Characteristics Tau-U R-IRD  Tau-U R-IRD  Tau-U R-IRD 

a = 0,  = 0  0.75 0.83  0.85 0.98  0.99 0.94 

a = 0,  = 0.1  0.89 0.70  0.94 0.97  1.00 0.95 

a = 0.2,  = 0 0.72 0.81  0.82 0.96  0.97 0.91 

a = 0.2,  = 0.1 0.86 0.68  0.92 0.95  1.00 0.93 

Note. R-IRD: robust improvement rate difference, a: autocorrelation, β: trend parameter. 
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Figure 1. Power for the exact and most conservative threshold values for Tau-U and robust 

improvement rate difference (R-IRD) for 5 points in phase A and 10 points in phase B. a 

represents the autocorrelation and β the trend parameter. 


