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Résumé 

L'état circulaire du chromosome bactérien pose un problème particulier lors de la réplication. Un 

nombre impair d'événements de recombinaison homologue donne des chromosomes dimères 

concaténés qui ne peuvent pas être divisés en cellules filles. Pour résoudre ce problème, les 

bactéries ont mis au point un mécanisme de résolution des dimères basé sur un système de 

recombinaison spécifique au site. 

Ceci est effectué par le système Xer/dif. Dans ce système, les protéines Xer effectuent une 

réaction de recombinaison dans le site dif au niveau du septum cellulaire immédiatement avant 

la division cellulaire. Dans la plupart des bactéries, cette réaction est effectuée par deux 

recombinases, XerC et XerD. Cependant, Streptococcus suis, un agent pathogène zoonotique 

important utilise un système de recombinaison différent, constitué d'une seule enzyme 

recombinase appelée XerS, qui catalyse la réaction de recombinaison dans un site dif non 

conventionnel. Pour caractériser le mode de clivage de XerS, des expériences EMSA ont été 

réalisées en utilisant des fragments de PCR marqués par HEX et des "suicide substrates". Nos 

données suggèrent que 1.) XerS est capable de lier la séquence entière de difSL; 2.) XerS lie plus 

efficacement le côté gauche des mutants difSL incomplets que le côté droit; 3.) XerS coupe les 

brins supérieur et inférieur du site difSL, avec une réaction plus efficace au bas. 4.) Modifications 

des nucléotides de la région la plus externe ou de la région centrale changent les préférences de 

clivage. 5.) XerS n'a montré aucune activité spécifique sur un autre site dif non conventionnel des 

Firmicutes, 6.) XerS interagit avec la sous-unité FtsK-.  

L'ensemble des résultats présentés permet de mieux comprendre le fonctionnement de la 

recombinaison XerS dans le système de recombinase unique de Streptococcus et comment cette 

recombinaison est régulée par des facteurs de l'hôte. 

 

Mots-clés: Recombinaison specifique du site, XerS, Tyrosine recombinases, XerC/XerD, S. suis, site 

dif, dimérisation. 





 

Abstract 

The circular state of the bacterial chromosome presents a specific problem during replication. An 

odd number of homologous recombination events results in concatenated dimer chromosomes 

that cannot be partitioned into daughter cells. To solve this problem, bacteria have developed a 

mechanism of dimer resolution based on site-specific recombination system.  

This is performed by the Xer/dif system. In this system, the Xer proteins perform a recombination 

reaction in the dif site at the cell septum immediately prior to cell division. In most bacteria this 

reaction is performed by two recombinases, XerC and XerD. However, an important zoonotic 

pathogen; Streptococcus suis harbors a different recombination system, composed by a single 

recombinase enzyme called XerS, that catalyzes the recombination reaction in an unconventional 

dif site; difSL. A region characterized by two imperfect inverted repeat regions that flank a central 

region of 11 bp.To characterize the mode of cleavage of XerS, EMSA experiments were performed 

by using HEX-labelled PCR fragments and “nicked suicide substrates”. Our data suggests that; 1.) 

XerS is able to bind the entire difSL sequence; 2.) XerS binds more efficiently the left half side on 

incomplete difSL mutants than the right half side; 3.) XerS cleaves both the top and bottom 

strands of the difSL site, with a more efficient reaction at the bottom strand; 4.) Nucleotides at 

the outermost region of a T rich region seem to be determinant for binding selectivity and 

modifications of the extra spacing between the inverted repeat arms as well as length 

modifications of the central region change cleavage preference. 5.) XerS did not show any specific 

activity on another unconventional dif site in Firmicutes, as tested on difH. 6.) XerS interacts with 

FtsK- subunit. 

This research aims to understand how XerS recombination works in the single recombinase 

system of Streptococcus and how this recombination is regulated by host factors. Exploration of 

these recombinases will provide a better understanding of the mechanisms of DNA exchange and 

genome stability in bacteria. It can also increase our knowledge of the evolution and speciation 

of recombinogenic bacteria. 

Keywords: Site-specific recombination, XerS, Tyrosine recombinases, XerC/XerD, S. suis, dif sites, 

dimerization. 
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Chapter I 

Review paper 

 

This published review paper focuses on the action of different site-specific recombinases to solve 

dimerization problems during DNA replication and cellular division in bacteria. It initially 

addresses causes and effects of such events, two important aspects vaguely connected by most 

papers. With this review, we intended to offer a broader idea of the cause of such events, the 

reasoning for a certain outcome and the complexity to solve them. After reviewing all the 

mechanisms involved in crossing over events and dimer formation, we proceeded to explain the 

mechanisms involved in their repair and in the acquisition of new genomic material from viruses 

by presenting a detailed overview of all current known site-specific recombinase systems in 

bacteria. 
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Abstract 

 

The separation and segregation of newly replicated bacterial chromosomes can be constrained 

by the formation of circular chromosome dimers caused by crossing over during homologous 

recombination events. In E. coli and most bacteria, dimers are resolved to monomers by site-

specific recombination, a process performed by two Chromosomally Encoded tyrosine 

Recombinases (XerC and XerD). XerCD recombinases act at a 28 bp recombination site dif, which 

is located at the replication terminus region of the chromosome. The septal protein FtsK controls 

the initiation of the dimer resolution reaction, so that recombination occurs at the right time 

(immediately prior to cell division) and at the right place (cell division septum). XerCD and FtsK 

have been detected in nearly all sequenced eubacterial genomes including Proteobacteria, 

Archaea, and Firmicutes. However, in Streptococci and Lactococci, an alternative system has been 

found, composed of a single recombinase (XerS) genetically linked to an atypical 31 bp 

recombination site (difSL). A similar recombination system has also been found in ε-

proteobacteria such as Campylobacter and Helicobacter, where a single recombinase (XerH) acts 

at a resolution site called difH. Most Archaea contain a recombinase called XerA that acts on a 

highly conserved 28 bp sequence dif, which appears to act independently of FtsK. Additionally, 

several mobile elements have been found to exploit the dif/Xer system to integrate their genomes 

into the host chromosome in Vibrio cholerae, Neisseria gonorrhoeae and Enterobacter cloacae. 

This review highlights the versatility of dif/Xer recombinase systems in prokaryotes and 

summarizes our current understanding of homologs of dif/Xer machineries. 
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1. Introduction 

Bacteria and archaea have developed a variety of well-regulated and coordinated mechanisms of 

replication and segregation of their genomes that ensure the genetic material is transmitted 

faithfully to the daughter cells,  despite the absence of temporal separation between DNA 

synthesis, chromosome separation and cell division 1. However, the circular state of their 

chromosomes and plasmids constitutes a constant threat to genome stability and proper 

segregation because of dimer formation during recombinational exchanges between sister 

chromatids. These rearrangements can combine their genomes into larger molecules, 

compromising an equal distribution of the genetic material to the daughter cells 2–5. This 

topological problem was fully addressed in 1981, when Austin et al. (1981) demonstrated that 

the stable inheritance of the prophage P1 was due to site-specific recombination (SSR), a 

specialized system that catalyzes DNA exchange between two defined DNA sequences, and which 

plays a major role in dimer resolution by converting multimeric forms to the monomeric forms. 

Later studies performed with the plasmid ColE1 connected SSR with plasmid monomerization and 

stability 7. In 1990, the site-specific recombinase (XerC) was identified as the first protein 

responsible for SSR on cer 8, followed by the identification of a second recombinase, XerD 

required for this reaction 9. 

2. The disadvantage of having circular DNA 

In most bacteria and some archaea, replication begins at a single origin of replication oriC  at 

which DnaA binds and stimulates the assembly of the replisome 10. Replication forks then proceed 

bi-directionally until the two replication forks meet in an antipodal terminus region flanked by ter 

sequences. These sequences in conjunction with the replication terminator protein (Tus) stop the 

replication forks to synchronize their arrival at the same time and place 11–13. However, 

chromosome replication is not a continuous process and is continuously halted by different types 

of DNA lesions such as UV irradiation, free radicals, genotoxic agents, DNA replication errors, 

transcription-replication conflicts, tightly bound protein-DNA complexes, or RNA secondary 

structures 12,14–17. To maintain their genomic integrity, bacteria have developed several and 
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sophisticated mechanisms to minimize the frequency of these DNA lesions before the occurrence 

of replication. The initial barrier against deleterious DNA modifications is carried out by 

specialized mechanisms, each one required for a given type of lesion, such as proofreading, direct 

reversal of DNA damage, base excision repair, nucleotide excision repair and mismatch repair 18–

21. Additional groups of mechanisms are responsible for avoiding transcription-replication 

encounters, equally lethal for bacteria, such as the coordination of temporal and spatial gene 

activation and co-orientation, modulators of RNA polymerases (RNAPs) and replicative accessory 

helicases 16,22–24. Nonetheless, it is unavoidable that some of this DNA damage or conflicts will 

escape the initial barrier and interfere with replication fork migration, leading to the eventual 

inactivation of the replication machinery and formation of double-strand breaks (DSBs), 

interstrand cross-links and single-stranded gaps (SSG). These represent critical forms of DNA 

damage that must be removed for chromosome replication and transcription to proceed 25,26. 

Therefore, a second barrier of repair is called into play to cope with these “evasive” damages. 

This second barrier is preferentially carried out by the homologous recombination repair system 

(HR). Estimates indicate that HR repair is required in almost every cycle of replication 27–29. In fact, 

the HR system is now not only considered as a functional mechanism for generating genetic 

diversity but also as a decisive factor in DNA repair, the latter being the primary role of this system 

in the maintenance of the genome and the main source of dimer events 30.  Thus, HR plays a 

central role in removal and/or repair of DNA damage and rescue and/or re-assembling of 

replication forks that have been broken or stalled 26,31. In the traditional HR system in E. coli, its 

mode of action consists of a multistep process of breakage and rejoining of homologous 

sequences (one old and one newly synthesized DNA strand). It initially involves 1) recognition of 

the DNA lesion by the complexes RecBCD or RecFOR, depending on the type of DNA lesion; 2) 

formation of 3’-ssDNA overhangs processed by the exo and endonuclease activity of the Rec 

proteins, and subsequent coating by RecA; 3) strand invasion of the 3-terminal ssDNA into the 

homologous duplex DNA molecule and search of the complementary strand; 4)  formation of a D-

loop intermediate, transformation into a branched intermediate and Holliday junction (HJ) 

formation and 5) completion of the recombination process by resolution of the HJ, catalyzed by 

the systems RuvABC or RecG 32–34. HJ resolution can result in two alternative products;  
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1. ‘crossover’ or spliced products; where reassortment of the flanking genes of the cleavage 

site has occurred, obtaining one different genotype at one side compared to the former DNA 

duplex, and therefore, long range of genetic exchange. 

2. ‘non-crossover’ or patch products where the flanking regions were not exchanged, 

and instead, the resulting DNA duplex contain a ‘patch’ of hybrid DNA with a shorter 

range of genetic exchange  35,36.  

Because circular chromosomes do not have “ends”, they are vulnerable to concatenation during 

formation of an odd number of crossover events. Thus, swapping DNA flanking regions tangles 

the sister chromatids and forms larger ring chromosomes that compromise cellular division 

(Figure 1) 2,4,37. To ensure proper chromosomal segregation, bacteria and archaea have overcome 

these major threats by two broad mechanisms. One is to minimize the formation of crossing-over 

events, and the other is to solve dimer formation by performing an additional DNA exchange, 

immediately prior to cell division, at a specific region called dif (Deletion-Induced Filamentation). 
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Figure 1. The two primary and most generalized pathways to solve chromosomal dimers 
generated by RecA-dependent repair or stalled replication forks.  
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If the fork encounters a non-coding lesion (oxidative damage, pyrimidine dimer or an abasic site) depicted with 

a yellow star, it usually generates SSG (left path), although it can also lead to DSBs ends during repair by the 

RecFOR system. The pathways can also diverge on the location of the DNA lesion. If the lesion is located on the 

lagging strand template, the replisome will be able to bypass the lesion by blocking ‘Discontinuous DNA 

synthesis’ and then resume it downstream of the lesion, leaving a gap that would be repaired by the RecFOR 

system. On the other hand, a lesion on the leading strand template might transiently stop the replisome, cause 

its dissociation and then, bind further downstream to a new leading-strand primer, although these mechanisms 

are still under debate 25,31.  Alternatively, when the fork encounters a nick in the template strand (unrepaired 

SSG) or some cases of replication fork collapse, a DSB is generated (Right path). The DSBs are processed by the 

RecBCD complex that catalyzes the reattachment of the damaged DNA to the sister DNA duplex, forming a D-

loop structure and eventual recognition by the replication-restart PriA protein that directs replisome assembly 

and resumption of the replication process in an origin-independent manner. However, odd numbers of 

crossover events generate dimer products 38–40. Thus, if the resolution of the HJ occurs in the same sites, it will 

generate monomeric chromosome (Non-crossover products). In contrast, if the resolution takes place in 

different sites, it will generate chromosome dimers (Crossover products) 15,41. 

 

3. Avoiding dimer formation 

One way to avoid dimer formation, as simple as it sounds, is to decrease the likelihood of dimer 

formation. This, however, is an intricate process of coordination and selection of the right 

enzymes at the right moment. Therefore, if the resolution of HJ intermediates by endonucleolytic 

cleavage can only result in crossover or non-crossover products, the likelihood of obtaining one 

or another is 50%. However, minimizing crossover events during homologous recombination 

repair seems to be the rule rather than the exception in organisms with circular chromosomes 42. 

In E. coli, homologous recombination repair is processed by two predominant recombinational 

pathways; The RecBCD pathway associated with DSB repair, replication fork collapse, replication 

fork reversal and replication fork arrest, and the RecF pathway, which is mostly involved in the 

repair of SSG, and under certain conditions, can also repair DSBs 43,44. Both mechanisms lead to 

the formation of HJs that are mostly resolved by the RuvABC complex in E. coli or RecU in 

Firmicutes and Mollicutes 41. Deletion of the genes of the RuvABC complex eliminates non-

crossover formation bias, supporting the idea that bias formation mostly depends on the action 

of Ruv proteins more than Rec proteins 35. This idea was initially discussed by Van Gool et al. 

(1999) who demonstrated that crossover and non-crossover products are not random and, 

conversely, they are influenced by the positioning and orientation of the resolvasome on the HJ 
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intermediate, which in turn directs RuvC strand cleavage direction. Additionally, topological 

conditions such as DNA supercoiling, DNA catenation, adjacent HJ intermediates or the presence 

of double HJ intermediates can also influence assembly of the RuvABC complex on the HJ and 

indirectly affect resolution 45. Subsequently, Cromie and Leach (2000) showed that RuvABC 

positioning may depend on the nature of the substrate caused by the type of DNA lesion, thus 

DSBs are more likely to result in crossover products (Frequently processed by RecBCD) whereas 

SSG are more likely to result in non-crossover products (frequently processed by RecF). Although, 

some fractions of SSG can cause DSBs 46. However, the specific causes of crossover or non-

crossover formation are still under debate, and different reactions cannot be completely 

dismissed. A clear example of this is the fact that RecBCD as well as RecF are not restricted to 

DSBs and SSG respectively and, on the contrary, the both may have interchangeable functions 47. 

That would explain why  some replication fork arrests generate non-crossover products even if 

they are mostly processed by the RecBCD pathway 48, or why RecF contributes almost equally to 

dimeric chromosome formation in E. coli despite the fact that it is responsible for SSG resolution 

4. 

Interestingly, the fact that DNA lesions and transcription-replication conflicts are more abundant 

in the leading strand than in the lagging strand in E. coli, and that these lesions usually generate 

non-crossover products, reinforces the idea that organisms with circular chromosomes favored a 

system that minimizes dimer formation during HR repair completion 16,35,49. These biased 

reactions have also been detected in other microorganisms such as B. subtilis where the resolvase 

RecU biases homologous recombination towards non-crossover products 41. Despite this non-

crossover preference by HR system in recA+ cells, dimer formation still occurs reaching 10 to 15% 

of the growing cells 50. 

4. Coping with dimers 

It is clear that dimer formation is regarded as a negative outcome that must be solved. Despite 

this, Mazin et al. (1996) proposed that under certain conditions of selective stress, plasmid 

dimerization could confer an advantage for the selection of adaptive mutations due to rapid 

accumulation and selection of plasmids carrying a specific mutation and subsequent segregation 
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to the daughter cells. Berza et al. (2013) also reported that plasmid dimerization greatly increased 

synthesis of a foreign protein and that plasmid content is unaffected by dimer formation showing 

some advantages for transcriptional events. However, these benefits were only considered for 

plasmids. Regarding circular chromosomes, dimerization must be resolved by the action of site-

specific recombinases (SSRs), which are enzymes that are responsible for breaking and rejoining 

specific sites without requiring DNA synthesis or high energy cofactors 53. The relevance of this 

system for proper chromosome segregation is supported by the high degree of conservation in 

Bacteria and Archaea. The Xer complex is considered one of the most conserved structural 

features in cells containing circular chromosomes, as well as RecA and FtsK enzymes 50,54,55.   The 

SSRs act on specific short DNA sequences, called recombination sites, where DNA exchange 

occurs in three different types of DNA rearrangements; deletion (divided into excision or 

resolution), insertion, or inversion. All these processes depend on the orientation and direction 

of the two recombination sites  56 (Figure 1). All known site-specific recombinases are classified 

into two unrelated families, tyrosine–type or serine-type recombinases (Tyr or Ser) based on the 

amino acid residue that forms a covalent linkage between the protein and a phosphate at the 

DNA cleavage site 57. Serine recombinases, often referred to as the resolvase/invertase family, act 

on a recombination site with just 2 bp separating the cleavage sites on top and bottom strands 

and the cleavages occur simultaneously to create a double strand break, while tyrosine 

recombinases, often referred to as the λ integrase family enzymes perform a two-step cleavage 

and rejoining process where the cleavage sites are separated by 6-11 bp.  Each recombinase 

family possesses a distinct mechanism. Tyrosine recombinases are divided according to the 

recombination directionality; unidirectional or bidirectional recombinases. Whereas serine 

recombinases are divided according to their size; small or large recombinases 56,58. 

The chromosome dimer resolution (CDR) process and heritable stability were originally elucidated 

in E. coli 8,9,59–61, where two paralogous site-specific tyrosine recombinases, XerC (298 aa) and 

XerD (298 aa) (Chromosomally Encoded Recombinases) were shown to act on a 28 bp DNA 

sequence (dif site), located in the ter region. The synaptic XerCD/dif complex consists of two XerC 

and two XerD subunits respectively bound to two dif sites (Figure 2b). Limited structural 

information of some tyrosine recombinases have revealed a conserved catalytic domain fold 62, 



33 

facilitating the analysis of experimental data and allowing the development of a general model 

for Xer recombinases 63 consisting of; XerD 64, XerA 65, XerH 66 and other related tyrosine 

recombinases like Cre 67,68, HP1 integrase 69, FLP 70 and λ integrase 71,72. The E. coli dif site is divided 

into two 11 bp half-sites that share partial dyad symmetry linked by a 6 bp central region that 

defines the positions of strand cleavage and exchange 73. The initial step of site-specific 

recombination during dimer resolution requires the formation of a synaptic complex consisting 

of a tetrameric protein/DNA complex (four protomers of tyrosine recombinases and two 

recombination site duplexes). Once the synaptic complex is formed, two opposing and activated 

protomers cleave the DNA strand of each recombination site duplex. This occurs when the 

hydroxyl group of the nucleophilic tyrosine attacks the scissile phosphate in the central region to 

form a 3′ phosphotyrosyl intermediate and a 5’-hydroxyl end. This intermediate conserves the 

energy from the phosphodiester bond cleavage to perform the first strand exchange. The recently 

formed 5′- hydroxyl attacks the 3′ phosphotyrosyl linkage on the partner site to reseal the strand 

breaks creating a HJ intermediate 53. HJ formation and isomerization activates the second pair of 

subunits bound to the other half of the recombination sites and inactivates the first pair of 

subunits. The second pair of subunits then cleaves, exchanges and rejoins the second  pair of 

strands by the same mechanism just described; this second cleavage allows the resolution of HJ-

intermediate and results in the recombinant DNA (Figure 2B) 63,74. This process implies that the 

specific pairs of recombinases and/or active sites are continuously switched on and off to 

synchronize when and how recombination occurs, this coordination depends on allosteric 

interactions between the recombinases and external factors imposed on the synaptic complex 75–

77.  In the XerCD/dif system, XerC normally initiates catalysis of one pair of DNA strands to form 

the HJ-intermediate without a subsequent resolution by XerD. Therefore, the HJs are rapidly 

converted back to the original DNA rearrangement. This XerC-first interaction is functionally 

active during the integration of certain bacteriophages that utilize Xer recombination to integrate 

their genomes into their host dif sites or in the resolution of plasmid multimers. In contrast, during 

chromosomal dimer resolution, pre-synapsed XerCD/dif complexes favor XerD activation by the 

FtsK protein to mediate the first strand exchange, generating a transient (XerD-HJ) intermediate, 
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subsequent isomerization forms a XerC-HJ intermediate that is rapidly resolved to recombinant 

DNA by XerC, see below and Figure 2A, 3A 54,78.  

 

 
Figure 2.  Segregation of the sister chromatids during chromosome dimer resolution in E. 
coli.  

The illustration depicts the central part of a dividing cell in the final steps of chromosome segregation. The 

closing division septum, the motor domain αβ of FtsKC (yellow hexameric ring), the unstructured linker domain 

FtsKL (Blue ribbon), the KOPS sequences and the XerCD/dif synaptic complex are indicated. Concatenation 

prevents proper migration of the nascent chain of DNA; the origin regions move toward their respective cell 

poles, but the rest of the knotted DNA is stretched across and behind the septum. (B) FtsKC loads onto the KOPS 

sequences in an oriented manner and translocates towards XerCD/dif complexes. FtsK translocation allows it 
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to reach the XerCD/dif complexes and bring them into proximity; as a consequence, the γ-subdomain of the 

FtsKC region activates XerD (Orange sphere) to perform the first strand cleavage. Then, XerC (Green sphere) 

mediates the second strand cleavage, allowing separation of the sister chromatids from each other. (C)  

Illustration of the SSR mechanism used by tyrosine recombinases: The OH group of the active residue tyrosine 

attacks the scissile phosphate forming a 3′-covalent phosphotyrosyl enzyme–DNA covalent intermediate and a 

free 5′-hydroxyl end. The covalent intermediate is attacked in turn by the other 5’- end to reverse the cleavage 

reaction and obtain a recombinant product. 

 

5. Establishing rules for dimer resolution 

One of the fundamental questions about site-specific recombination at dif concerns how the 

system is controlled to ensure a proper chromosome dimer resolution (CDR) into monomers in 

the right place and at the right time without promoting the reverse reaction, which would 

generate dimers from monomers. It is understood that Xer-mediated recombination mostly 

depends on an active HR system because it is the major process that provides concatenated 

chromosomes. However, catenation problems caused by replication may require Xer-

recombination system as well 3,79,80. This reaction occurs at two polarized and specific regions of 

~10kb at either side of dif called DAZ (dif Activation Zone), where oppositely oriented KOPS (FtsK 

Orienting Polar Sequences) converge and guide FtsK DNA translocation towards the dif locus 81. 

This directional control is achieved by the interaction between the Xer recombinase system and 

the C-terminal domain of FtsK (Filamentous Temperature-Sensitive cell division protein K), a large 

division septum-associated DNA translocase, which coordinates chromosome segregation and 

cell division when chromosome organization has been affected (e.g. chromosome dimer 

formation, decatenation or delayed replication) 54,82–87. FtsK was initially documented in 1995 due 

to observations in E. coli TOE44 (AB2497 ftsK44) mutant cells and their ability to form long chains 

of cells due to a single substitution of one amino acid in the N-terminal domain (FtsKN), by then, 

FtsK was thought to participate in septum formation as a peptidoglycan-modifying enzyme. Then, 

Yu et al. (1998) demonstrated that inactivation of the C-terminal region of FtsK affected normal 

chromosome segregation due to the formation of long chains of cells and detected abnormal DNA 

distribution in some ftsK1::cat minB double mutants of E. coli minicells. Finally, in 1999 Steiner et 

al. (1999) discovered that site-specific recombination at dif requires FtsKC and thus, chromosome 
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dimer resolution only occurs in its presence. The   ~1329aa FtsK protein can be divided into three 

domains; The  ~279aa N-terminal domain (FtsKN)  is responsible for attachment of the protein to 

the membrane by four transmembrane segments and interaction with other proteins of the 

division septum such as FtsZ 90. The linker domain FtsKL, not commonly conserved in FtsK 

homologs, is primarily composed of proline-glutamine residues 91. Its length and composition 

varies between species, being ~650 amino acids long in E. coli and most of Proteobacteria,  ~200aa 

long in Vibrios 92 or  ~125aa in Pseudomonas 93. Experiments performed by Bigot et al. (2004) 

demonstrated that ftsKL mutations increased filamentation phenotypes even higher than xer 

mutants and that this filamentous formation did not correspond to problems in chromosome 

dimer resolution. On the contrary, it was thought to be due to a deficient positioning of the 

protein, reducing the possibility of contact between FtsKC and the DAZ region of the chromosome. 

Subsequently, Dubarry et al. (2010) revealed that different parts of the linker domain interact 

with other proteins of the divisome such as FtsQ, L, I and Z and these interactions help to stabilize 

the whole divisome at the site of septation. Interestingly, they also suggested that FtsKL domain 

may stop or slow down cell division during dimer resolution because of the destabilization of the 

divisome components when FtsKC has been pulled by the DNA during translocation, this force can 

separate FtsZ and delay septum constriction. There is also a proportional relation between the 

glutamine-proline concentration and its length, where the longest linkers are usually richer in 

these residues 95. Following the linker, the highly conserved ~500aa C-terminal domain (FtsKC), 

usually referred as the motor of the FtsK, is comprised of three separated subdomains called α, β 

and γ. Structural studies of the translocation module FtsKαβ of P. aeruginosa demonstrated that 

it assembles as a hexameric ring around double-stranded DNA forming a central channel of 30Å 

in diameter, where double stranded DNA (dsDNA) passes through 93,96. Later structural studies of 

the orientation module FtsKγ of P. aeruginosa and E. coli demonstrated that six γ subdomains are 

loosely attached by a short linker of 10 aa to the hexameric ring FtsKαβ 84,97. The FtsKαβ subdomains 

are responsible for the ATP hydrolysis-dependent DNA translocation of the protein. The 68aa 

FtsKγ subdomain is a helix-wing-helix domain that performs two main functions. The first role of 

this subdomain is to recognize the 8 bp KOPS sites and then directs FtsK translocation toward the 

dif site located within the ter region, at which, if concatenation occurs, two dif sites will be 
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brought together to form the synaptic complex XerCD/dif (Figure 2A). KOPS are over-represented 

on the leading strand of replication where their concentration gradually increases as dif is 

reached; indeed, more than 90% of  KOPS sequences nearby dif are located on the leading strand 

82; giving a possible estimate of 34 KOPS motifs located in the DAZ region 98 with a frequency of 1 

motif every 13Kb 83. The second main function of the FtsKγ subdomain is to activate the XerD 

catalytic function to generate the first HJ and subsequent dimer resolution 85,98,99. How FtsK 

locates and assembles to initiate translocation in the correct KOPS sequence is still arguable, for 

this reason two models have been proposed; the loading model and the target search model, 

recently reviewed by Besprozvannaya & Burton (2014). New evidence strongly suggests that FtsK 

acts in a 350-kb region around dif that covers 7% of the genome where monomers of FtsKC 

assemble exclusively at KOPS motifs as described by the loading model. An initial interaction of a 

single monomer of FtsKγ will trigger a rapid and stepwise formation of the hexameric ring under 

high concentration of FtsK 100,101. It is likely that FtsKγ assembles quickly and binds to KOPS as a 

trimer initially, with three FtsKγ modules interacting with consecutive GGG, NA, and GGG bases 

and then it hexamerizes gradually 84 Once a KOPS motif is detected, allosteric modifications occur 

leading to hexamerization of FtsKαβ, which alters the angular conformation of FtsKγ on the DNA 

affecting KOPS recognition, and activates FtsKαβ ATP hydrolysis. As a consequence, FtsK is no 

longer able to recognize subsequent KOPS motifs during translocation, unless FtsK migration is 

impaired, and KOPS recognition is obligated to restart 84,97,98,102. FtsK has been demonstrated to 

be the fastest known DNA translocase, reaching levels of 17.5 ± 3.5 kb/s at 37 °C or even faster  

with a striking stall force and a slight supercoiling induction, 1 positive supercoil per every 150 bp 

translocated 86,103,104. It has also demonstrated a striking capacity to displace, evict or bypass 

different obstacles, especially proteins bound to the DNA such as RNA polymerases 98. However, 

FtsK acts differently upon collision with RecBCD and XerD-XerCD/dif complex proteins. When FtsK 

collides with XerCD/dif, in a synapsed form, it activates XerD to create the XerD-HJ transient 

intermediate (structural rearrangements increase the distance between dif sites from about 53 

to 67 A˚) 66,78 followed by a rapid dissociation from the DNA (dissociation takes to 0.5 to 1 

seconds). Cleverly, May et al. (2015) demonstrated that recombination of the synaptic complex 

XerCD/dif takes 1 second longer than the FtsK dissociation time. Therefore, they suggested that 
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this time span can provide a regulatory control for dimer resolution because concatenated 

chromosomes will reform XerCD/dif synaptic complexes every time that resolution failed. Thus, 

multiple sets of FtsK hexamers colliding multiple times against XerCD/dif synaptic complexes will 

increase the likelihood of generating recombinant products. This regulatory mechanism ensures 

monomeric products are formed during translocation of impaired DNA. 

6. Alternative dif/Xer resolution in prokaryotes 

6.1 Plasmid resolution: Multicopy plasmid ColE1 and accessory proteins 

Plasmid dimerization and eventual multimerization has been termed as the “Dimer catastrophe” 

due to its deleterious effect in cell populations  105,106. Dimer catastrophe represents two major 

problems in bacteria; 1) unequal plasmid distribution among populations, in particular, multicopy 

plasmids that are more vulnerable to plasmid loss and 2) metabolic burden caused by the rapid 

accumulation of dimers into the host 106,107. As mentioned previously, dimer resolution was 

originally elucidated in ColE1, resulting in the first functional characterization of XerC and 

subsequent identification of XerD by sequence homology to XerC 9. These discoveries constituted 

a new approach for site-specific recombinases and their role in dimer resolution. Subsequent 

investigations led to the identification of SSR enzymes involved in dimer resolution in other 

plasmids of E. coli, and other bacteria. Current estimates have identified more than 1300 tyrosine 

recombinases where many of them are associated with other host proteins to regulate their 

activity, directionality, or processivity 63. Large plasmids usually carry their own recombinase 

machineries adjacent to the recombination site. Whereas, small plasmids, like those in the ColE1 

family, use the chromosomally encoded dimer resolution system of their host 108,109.  For ColE1 

resolution, XerC/D proteins act on a specific site called cer (Figure 3B), a non-codifying region of 

280 bp where two additional proteins act with XerCD to catalyze SSR reactions: the arginine 

repressor (ArgR) (an arginine-dependent DNA binding protein originally called XerA) 59,110, and 

aminopeptidase A (PepA) (a bifunctional transcriptional regulatory protein that reacts to 

environmental signals, which was originally called XerB) 111. SSR in cer is catalyzed by XerC within 

a sequence of 30 bp composed of two 11 bp half sides and a central region of 8 bp. XerC and XerD 

bind to the left and right halves cooperatively and respectively. Strand exchanges are catalyzed 
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by XerC to form a HJ intermediate that is eventually resolved by an uncharacterized cellular HJ 

resolvase to generate a recombinant product 112,113. The cer site is comprised of a 30 bp core 

recombination site and two accessory DNA sequences of ~180 bp in length, in which one or two 

hexamers of PepA and one hexamer of ArgR control the reaction 114. The two accessory proteins 

are necessary for recombination, since in their absence, plasmid dimer resolution cannot be 

completed. However, at abnormal high concentrations of PepA, recombination in vitro can 

proceed without the help of ArgR  115,116. This is also seen at the recombination site psi of plasmid 

pSC101 which requires XerC, XerD and PepA but not ArgR (psi dimer resolution requires another 

accessory protein called ArcA instead of ArgR, and the cleavage reaction is performed by XerC 

and XerD) 113,117. In cer, PepA and ArgR control recombination directionality so that dimers can 

only be converted into monomers and not the opposite reaction. Dimer resolution directionality 

caused by these two proteins involves the formation of two directly repeated cer sequences 

positioned in an antiparallel direction; this conformation is favored by negative supercoiling 

where the cer sequences are interwrapped three times around the proteins resulting in the 

formation of a right-handed synapse structure that brings the XerCD binding sites together. Sites 

in an inverted repeat position prevent right-handed formation; this ensures only dimer resolution 

occurs. Thus, XerC and XerD bind to the 30 bp cer synapse region and may interact with the N-

terminal domains of the PepA hexamers. Whereas the ArgR protein, which is flanked by one or 

two PepA hexamers, might be involved in bending the DNA, tightening it and activating cer SSR 

by possible interaction with the C-terminal region of the Xer recombinases. Another possible 

function is to bring the two cer sites together and to allow PepA loading to form a nucleoprotein 

complex that promotes XerCD binding and recombination 114–116. Additionally, cer also encodes 

for a 70 nt RNA fragment called Rcd that is only transcribed during dimer formation by the Pcer 

promoter and regulated in a sequence-specific manner by the FIS protein 118. Rcd binds to the 

enzyme tryptophanase and induces a quiescent state by increasing indole production within the 

cell.  The quiescent state permits the cell to arrest cell division and chromosomal replication but 

still be active metabolically. This process is thought to be part of a dimer formation checkpoint 

that allows the XerCD/cer system to resolve dimer formation during this pause 106. 
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Figure 3. Sequence alignment of (A) dif, (B) cer, (C) psi, (D) Bsdif, (E) dif1, (F) attPCTX, (G) attPVGJ, 
(H)attPTLC, (I) difSL and (J) difH.  

Dyad bases in each arm are underlined in dif. XerC and XerD cleavage points are indicated by arrows, the central 

region is depicted in the middle of the sequence as a white box with the number of base pair corresponding to 
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each dif site above. Left and right arms are depicted as blue boxes with their corresponding sequences for each 

dif site. The catalytic unit is depicted as a green box, whereas the inactivated unit is depicted as a red box. For 

(E), (F), (G) and (H), bases that differ from dif1 in V. cholerae are underlined and colored in red. Next to each dif 

alignment is the corresponding accessory protein that coordinates/activates dimer resolution. 

 

6.2 The Bacillus subtilis model and the effect of two translocases 

The capacity to perform site-specific recombination to resolve chromosome dimers is highly 

distributed among bacteria and archaea. Thus, homologs of XerC and XerD have been sequenced 

in a variety of species 108,119. In B. subtilis, two homologs of XerC and XerD called CodV and RipX 

perform dimer resolution at a 28 bp dif site (Bsdif) close to the terminus region (Figure 3D). The 

Bsdif region is comprised of two 11 bp half-sites with imperfect dyad symmetry where CodV and 

RipX bind simultaneously and a 6 bp central region where DNA exchange occurs. Both CodV and 

RipX share a 37 and 44% identity with the XerC and XerD respectively, and 39% between them 

120. CodV binds preferentially to the left half-site and preferentially cleaves the top strand whereas 

RipX is able to bind to both sides with preferential binding to the right-half-site and preferential 

cleavage of the bottom strand. Cleavage by CodV is more efficient than cleavage by RipX, which 

suggests that CodV performs the first strand cleavage followed by RipX in in vitro experiments 121. 

Sciochetti et al. (1999) also demonstrated that RipX could interact effectively with the E. coli dif 

site, unlike CodV which showed a weaker interaction with this substrate. However, addition of 

XerC to RipX/difE. coli or XerD to CodV/difE.coli generated larger complex formation in gel retardation 

analysis, demonstrating protein-protein interactions between these four proteins, which 

confirms some conserved features of tyrosine recombinases among bacteria. This is supported 

by the fact that the right half-site presents highly conserved features with respect to other dif 

sites among some bacteria, whereas the left-half site is less conserved, which could explain why 

RipX can bind difE.coli 
121.  In contrast to E. coli, the synaptic complex can be brought together by 

the action of two DNA translocases: the membrane-associated SpoIIIE protein (Stage III 

Sporulation Protein E) and the soluble SftA protein (Septum-associated FtsK-like Translocase of 

DNA). Both translocases harbor AAA+ATPase and C-terminal domains with 56% of sequence 

similarity between them. SftA exhibits 50% identity with respect to the E. coli FtsKγ domain 

whereas SpoIIIE exhibits a 50% of similarity to the FtsKαβ subdomain and 42% of similarity to the 
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FtsKγ subdomain of E. coli 122. The N-terminal domains of these proteins are more divergent; 

SpoIIIE and FtsK share 36% of identity to respect to the four transmembrane helix whereas SftA 

lacks the transmembrane spanning domain 123,124. N-terminal domain variations coincide with 

their different location and activation in the genome. FtsK and SpoIIIE share a similar mechanism 

to anchor to the inner membrane of the dividing cell by their N-terminal regions; this 

transmembrane interaction is possibly reinforced by interactions with FtsZ or other cell division 

components such as FtsA or ZapA 91. During vegetative growth, SpoIIIE shows two predominant 

states: a static phase, where SpoIIIE is assembled close to future sites of cellular septation, and a 

mobile phase, where SpoIIIE does not occupy a specific position. Once cellular division begins, the 

static phase takes place when SpoIIIE is recruited by FtsZ and other division machinery proteins 

and is escorted to the center of the division septum 125. SpoIIIE remains in the invaginating septum 

and hexamerizes independently of the cell division stages (Vegetative, division and sporulation 

stages) and independently of DNA interaction 126, suggesting that SpoIIIE assembly may not be 

restricted to the presence of impaired DNA and on the contrary, may be involved in normal DNA 

segregation as demonstrated by the following paper, 125. Experiments using high-resolution 

microscopy revealed that under formation of asymmetric (sporulation) or symmetric (vegetative 

growth) septa, the SpoIIIE concentration increased 2.5-fold around the constricting septa, even 

without evident formation of the septa, indicating close interaction with other components of the 

division machinery, that in turn regulates its activity under specific conditions 125. SftA can be 

localized either to the cell center or more frequently, to the forming division septum. Although 

SftA lacks an integral membrane domain, the FtsZ ring recruits the enzyme and attaches it to the 

division septum during the initiation of cellular division, which explains its localization through 

the cell cycle 123,127,128. These patterns of localization suggest that both translocases (SftA and 

SpoIIIE) are present at the septum at various times of segregation and that they perform DNA 

migration independently of each other, although SftA is only involved in DNA cytokinesis in 

contrast to SpoIIIE that may be involved in cytokinesis and cell division processes 127. DNA 

translocation is initially carried out by SftA during septation, probably by recognition of the 8-

nucleotide SRS motifs (SpoIIIE Recognition Sequences) which are similar to the E. coli KOPS 

sequences. The SRS motifs are mostly located on the leading strand (up to 85%), and direct 
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translocation towards the Bsdif site 83. Therefore, the primary function of SftA consists of moving 

chromosomal DNA until the ter regions are positioned at midcell and the origin regions migrate 

to each pole of the cells. The SftA may also be required for other proteins involved in cytokinesis 

and FtsZ positioning 129. SpoIIIE, the second translocase in B. subtilis, may take over DNA 

translocation working synergistically but not interchangeably with SftA, it can also function as a 

DNA segregation checkpoint preventing membrane fusion until chromosome segregation is 

completed  123,125. Cattoni et al. (2014) suggested that SpoIIIE binds non-specifically to the DNA in 

a pre-formed hexameric open ring conformation and then searches for SRS motifs without 

hydrolysis of ATP. Similarly to FtsK proteins, SRS recognition by the SpoIIIEy domain triggers 

allosteric modifications that activate the ATPase activity of SpoIIIEαβ and therefore, DNA 

translocation 130.  Once it encounters SRS motifs, the hexameric ring changes to the closed and 

active form pumping the chromosome in an oriented manner by recognizing further SRS motifs 

and translocating it towards Bsdif 126.  As mentioned before, SpoIIIE is actively expressed in all 

growing cells and is essential during sporulation to translocate the remaining DNA from the 

mother cell into the forespore compartment, and during vegetative growth to guarantee that 

concatenate formation or disrupted genomes will not affect normal cellular division. Moreover, 

SpoIIIE is also required for septal membrane fusion after completion of chromosome 

translocation.  During sporulation, asymmetric septation encloses the DNA and traps 25–30% of 

one chromosome into the forespore. SpoIIIE pumps the remaining 70-75% by an analogous 

mechanism used by FtsK; the reaction only takes 20 minutes demonstrating its incredible speed 

96,131. The mechanism of SpoIIIE DNA translocation through the membrane is still unclear, since 

recent single molecule-imaging experiments still provide valid information for two main models; 

the paired DNA conducting channel model  132,133 and the aqueous channel model 125. This system 

of both translocases has been also detected in Staphylococcus aureus termed FtsK and SpoIIIE 

because of their amino acid homology to SpoIIIE and FtsK from B. subtilis and E. coli respectively. 

However, in contrast to B. subtilis system, in S. aureus both enzymes seem to present a 

redundant, although independent role in DNA segregation. Individual deletions of either FtsK or 

SpoIIIE did not exhibit major changes in chromosome segregation for S. aureus, however when 

combined together they represented a major threat for  S. aureus genome stability 134.  
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Consistent with their different roles, SftA and SpoIIIE do not colocalize during vegetative-

replicative stages or sporulation. Thus, SftA in concert with FtsZ and division proteins moves 

chromosomal DNA away from the closing division septum. Then, upon septum closure, entrapped 

DNA is translocated through the SpoIIIE pore or channels into the correct compartment (either a 

forespore or a daughter cell). However, unlike FtsK that activates XerCD recombination reactions, 

neither SftA nor SpoIIIE directly activate CodV or RipX recombinases. In this case, SftA and SpoIIIE 

affect the CodV/RipX reaction by proper positioning of the ter region, but there is no evidence of 

direct interaction between these enzymes to date 123,129.  

6.3 Multichromosome bacteria and IMEX  

Vibrio cholerae, as well as 10% of sequenced bacteria to date, possess a very distinct property 

among bacteria; it harbors more than one chromosome 135. One ancestral chromosome I (chrI) of 

2.96 Mbp and one plasmid-derived chromosome II (chrII) or ‘chromid’ of 1.072 Mbp, encode 

2,775 and 1,115 ORFs, respectively. ChrI contains most of the housekeeping genes whereas chrII 

contains essential genes specialized in adaptation to new environments or pathogenicity  136–139. 

Harboring two or more chromosomes have shown to be highly heritable among these bacteria, 

which suggests that multiple chromosomes offer a positive selective pressure to maintain them. 

One possible explanation is that multiple chromosomes might offer an advantageous feature 

against dimer formation. Val et al. (2008)  showed that dimer formation increases exponentially 

in relation to the size of the replicons, thus, dividing a single replicon into two or more replicons 

may reduce this topological problem. However, genome size might not be relevant for the 

presence or absence of Xer/dif recombination machinery. Some large chromosomes do not 

require Xer/dif recombination machinery as in some Legionellales (genome size ranging from 2 

Mb to 5 Mb) whereas some small-sized chromosomes still require Xer/dif recombination 

machinery as demonstrated by some Rickettsiales (genome ranging from 0.85 to 1.52 Mb in size) 

50.  

Homologs of XerC/XerD and FtsK have been characterized on chrI, referred as XerCVC and XerDVC 

with 53% and 68% of amino acid similarity to E. coli XerC and XerD, respectively 140,141. Whereas 

chrII does not encode any Xer recombinase involved in dimer resolution. dif-like sequences are 

present in both chromosomes (dif1 & dif2) located near GC skew shift-points 55,92. Interestingly, 
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both dif sites differ from each other in their sequences, dif2 harbors five different nucleotides 

compared to dif1 and most α-proteobacterial dif sites, four of them in the central region, 

resembling dif-like plasmid composition 55. Dimer resolution in V. cholerae requires FtsKVC 

translocation by recognition of KOPS-like motifs (GGGNAGGG) in a similar way to that found in E. 

coli. Once the dif sites are brought together nearby, FtsKVC activates XerDVC, which is positioned 

to cleave the bottom strand, and perform the first strand cleavage. Then XerCVC cleaves the top 

strand and performs the second strand cleavage; these reactions are carried out on both 

chromosomes at their respective dif sites (Figure 3E) 92. Additional studies demonstrated that E. 

coli FtsK was able to activate 50% of the XerCDVC synaptic complexes at dif1 whereas only 20% of 

XerCDVC were activated at dif2, suggesting that the dif2 recombination process requires more 

accurate interactions between the FtsK proteins and the XerCD complex 92. An additional feature 

of multiple chromosomes is their capacity to synchronize replication termination at the same time 

despite their different sizes 136. This capacity may confer an additional regulatory control against 

dimer formation due to the time-lapse between the replicated chromosomes and cellular 

division. Demarre et al. (2014)  showed that terII sites (chrII) separate earlier  than terI and that 

this early separation keeps terII sites at midcell by the macro domain MatP/matS organization 

system. This restriction during concatenation induces several collisions at midcell between terII 

sites, increasing the number of recombinational events and the likelihood of dimer resolution. It 

also ensures that ter sites of bacterial chromosomes remain exclusively in mid-cell to be 

processed by FtsK.  

Although XerC and XerD recombinases normally perform dimer resolution, they are also exploited 

by other replicons such as plasmids, bacteriophages, and other integrative elements. Indeed, 

initial studies on plasmid stability in ColE1 and phage integration of bacteriophage λ led to the 

discovery of XerC and the mechanistic insights of the tyrosine family 63.    In V. cholerae, the 

causative agent of the potentially fatal human disease cholera, XerCVC and XerDVC are hijacked by 

some vibriophages to integrate their genomes into the chromosome. They are usually referred to 

as IMEX (Integrative Mobile Elements Exploiting Xer), and the best-known ones are VGJϕ (Vibrio 

Guillermo Javier filamentous phage), TLCϕ (Toxic Linked Cryptic), and CTXϕ (Cholera Toxin 

Phage). CTXϕ is a lysogenic [(+)ssDNA] filamentous bacteriophage that encodes the A-B type 
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enterotoxin CT in V. cholerae 143. These three vibriophages harbor a particular attachment site 

(attP), a dif-like site that serves to classify the three different groups of IMEX,  (CTXϕ-type, VGJϕ-

type & TLCϕ-type) 144. Although the components to integrate their genomes are very similar, their 

mechanisms of integration differ from one to the other and from their host strains. Direct ssDNA 

integration by CTXϕ-type phages is characterized by the formation of a ~150bp folded structure 

created by the intra-strand base pairing interaction between two palindromic attP sites (attP1 & 

attP2) separated by 90 nt on the ssDNA sequence (Figure 3F) 143. The two overlap regions attP1 

and attP2 reassemble the XerCVC side of dif1 and dif2 regions but differ from the XerD-side. This 

lack of homology between XerDVC recognition site and attPCTXϕ limits the catalytic reaction to 

XerCVC that catalyzes the complete reaction. An additional host factor called EndoIII participates 

in the directionality of the reaction, which blocks further rounds of strand cleavage by XerCVC 

causing its dissociation and therefore preventing CTXϕ excision 145. Although XerDVC is not 

involved in the catalytic reaction, it is still necessary for a successful integration, probably by its 

role in synaptic complex formation 146. Once the integration is completed, host DNA replication 

proteins resolve the formed HJ intermediate and convert it to dsDNA. Prophage CTXϕ cannot be 

excised from its host since it loses the capacity to fold itself, which in turn prevents further base-

pairing interactions between the attP sites, which ultimately abolishes the XerCVC catalytic 

reaction 143. Interestingly, CTXϕ integration in El Tor strains is only found in chrI, and it is generally 

associated with two other vibriophages, TLCϕ and RS1 that enable CTXϕ integration in V. cholerae 

genome by reconstituting a functional dif site, and by promoting CTXϕ replication and 

transmission  147. In the classical biotype strains, CTXϕ usually targets both chromosomes 148. 

Similarly, to CTXϕ, VGJϕ integration uses the XerCVC catalytic reaction at the dif1 site, but unlike 

CTXϕ, it only harbors one dif-like attachment site (attPVGJϕ) of 29 bp that allows its integration 

into the chromosome as a dsDNA. The attP central region contains four different nucleotides 

close to the XerD binding side with respect to the central region of the dif1 site (Figure 3G). The 

lack of homology at the XerDVC central region side prevents XerDVC participation in the catalytic 

reaction. Once integrated, prophage VGJϕ acquires two attP sites (attPL and attPR), equally 

functional for the XerCVC excision reaction, in contrast to CTXϕ, where Xer recombinases can 

process VGJϕ excision from the host genome 144. TLCϕ also depends on host encoded Xer 
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recombinases for its integration. Its attPTLCϕ site possesses high homology with the XerCVC binding 

side and central region of dif1 whereas it is highly divergent from the XerDVC binding site (Figure 

3H). The prophage form of TLCϕ is almost always linked to CTXϕ integration confirming the 

regular synergistic interactions found in most IMEX. Paradoxically, despite the lack of homology 

between the XerD binding sites of dif1 and attPTLCϕ, TLCϕ integration/excision is mediated by 

XerDVC and then completed by XerCVC resembling dimer resolution in bacteria, but independently 

of FtsK participation 79. 

IMEX are recombination platforms that permit bacteria to evolve and adapt through the 

acquisition and reordering of relevant genes. They have strengthened bacterial evolution, playing 

an important role in the rise of multidrug resistance, gene transfer mechanisms and virulence 

factors among clinically relevant bacteria 149,150. Besides the vibriophages just described above, 

some other relevant IMEX have been found; the gonococcal genomic island (GGI) related to 

pathogenic Neisseria species 151 and the EludIMEX-1 found in Enterobacter ludwigii 152. GGI is an 

unusually long IMEX (57 kb long) found in almost 80% of N. gonorrheae strains and is involved in 

the expression of type IV secretion system (T4SS) genes 153. GGI carries a degenerate dif site called 

difGGI  of 28 bp with a XerC-binding site and a central region homologous to the conserved 

Neisseria dif site (difNg) and a divergent XerD-binding site. GGI insertion into the Neisseria genome 

follows a chromosome dimer resolution-like process where FtsK activates XerD to perform the 

first strand cleavage between difNg and difGGI followed by isomerisation of the synaptic complex 

and activation of XerC to perform the second strand cleavage, creating a GGI integrated form with 

two active Xer sites. Interestingly, the GGI synapse has given important clues about how IMEX 

might remain integrated in the host genome despite the presence of dif sites. Fournes et al. (2016) 

revealed by experiments in vitro that a trimeric form of the E. coli FtsK protein (t-FtsKαβγEc) was 

unable to activate XerCD recombination at one of the two dif sites (the difGGI site), in fact, the 

XerCD/difGGI complex was unable to stop t-FtsKαβγEC translocation. As a consequence, the XerCD 

complex is dissociated from difGGI and the excision process is inhibited.  

EludIMEX-1 is a 29.1-kb IMEX found in E. ludwigii (ECAA-01) that carries the blaNMC-A gene that 

encodes for a serine carbapenemase. It was first characterized by Antonelli et al. (2015) when 

they sequenced the whole genome of a NMC-A-positive isolate of E. ludwigii. The results indicated 



48 

the presence of a new 29-kb region with lower GC content when compared to the bacterial 

genome, indicating a possible gene transfer acquisition 154. Further analysis revealed that this 

region is flanked by putative XerC/XerD recombination sites with high homology at the XerC-

binding site. They also determined that EludIMEX-1 insertion site in the genome was the same for 

two distinct species of the E. cloacae complex suggesting a possible acquisition via a XerC/XerD 

dependent recombination event at a specific dif-like site 152. Understanding of IMEX control and 

excision processes will provide us a better idea of how counteract the acquisition of antibiotic 

resistance genes in pathogenic microorganisms. 

  6.4 The difSL/XerS model 

The E. coli pathway of dimer resolution has been found to be highly conserved among bacteria 

with circular chromosomes. It was initially demonstrated by Recchia and Sherratt in 1999 when 

they analyzed 16 eubacterial and five archaeal genomes for XerCD-CodV/RipX homologs. They 

showed that most eubacterial genomes possess two putative Xer recombinases whereas Archaea 

presented a single recombinase in three of the five genomes analyzed 155. Subsequently, Carnoy 

and Roten in 2009 demonstrated by doing an exhaustive computational analysis of 234 

chromosomes from 156 proteobacterial species, that 87.8% of the genomes analyzed presented 

XerCD-like and dif-related sequences 50. Moreover, Kono et al. (2011) predicted by a recursive 

hidden Markov model method (including XerCD orthologues) that 578 out of 592 bacterial 

genomes with a single chromosome and 63 out of 66 genomes with multiple chromosomes 

presented a dif-like sequence. Additionally, they remarked how XerC and XerD are conserved in 

almost 60-70% of bacterial species, and 85% in proteobacterial species 156. These results among 

many others led to the general view that the E. coli pathway is predominant for dimer resolution. 

However, dimer resolution machinery or regulation of strand exchange may differ: some 

processes may require or disregard accessory proteins, others may or may not require activation 

by translocases, some will be mediated by a XerC-first strand exchange whereas others by XerD-

first strand exchange and others may need two recombinases or only one. Among these 

divergences and unique characteristics for each bacteria to solve dimer formation, the less 

studied ones are the unconventional single recombinases.  
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Recchia and Sherratt first mentioned the presence of single recombinases in (1999)  from the 

identification of two eubacterial genomes harboring only one Xer homologue. It was later 

confirmed when Le Bourgeois et al. (2007) demonstrated that some species of Lactococcus and 

Streptococcus use an alternative Xer recombination machinery. This new Xer complex is based on 

a single tyrosine recombinase called XerS (356 aa) that acts on an atypical 31 bp recombination 

site called difSL in the presence of dimers. Unlike E. coli, the XerS gene is found immediately 

adjacent to the recombination site difSL acting as a single module. The difSL site differs from most 

dif sites because of its large central region of 11 bp as opposed to the normally found 6-8 bp in all 

other dif regions (Figure 3I) 158. Thus, difSL consists of two imperfect inverted repeat sites of 

different sizes separated by the central region where DNA exchange occurs. The inverted repeat 

region is one nucleotide longer in difSL and contains an extra nucleotide in the middle of the right 

inverted repeat (TTTTCTTGAAA) versus the left part of the sequence (TTTCCGAAAA). This 

additional spacing suggests XerS/difSL may be biased to favor binding in one-half site over the 

other. It was later confirmed by Leroux et al (2011), where they also showed that XerS presented 

stronger interaction with the left-half site of difSL than the right-half site, and a preference for 

initiating the recombination reaction on the bottom strand of the difSL site. These results indicate 

that, although the difSL site is relatively symmetric and XerS is a single tyrosine recombinase, 

there is a bias for where the proteins initially bind to difSL and where they initiate the strand 

cleavage reaction. Thus, the left-bound monomer could activate the right-bound monomer by 

bending the DNA or changing the conformation of the second monomer which could explain the 

preferential cleavage and exchange of the bottom strand. This behavior resembles what XerC 

displays with weak binding but stronger strand exchange when compared to XerD 158,159. This 

intrinsic bias alone cannot control the preference of the directionality of the strand cleavage 

reaction. The achievement of proper control requires the action of a SpoIIIE-like homolog 

translocase called FtsKSL, a protein of 758 aa in length in Streptococcus mutans or 816aa in S. 

agalactiae with low similarity at the N-terminal region between them. This low similarity does 

not affect its binding preference to the division septum commonly found in most proteins of the 

FtsK-HerA superfamily 157. The C-terminal domain of FtsKSL shows 41% similarity at the amino acid 

level in relation to FtsKE. coli with four of the five amino acids similar (QR-GN motif) involved in 
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XerD interaction 99. On the other hand, FtsKSL is unable to read E. coli KOPS motifs as 

demonstrated by Nolivos et al. (2012), probably due to the lack of common skewed octamers 

sequences called Architecture Imparting Sequences (AIMS) in Firmicutes, which means that KOPS 

sequences in Firmicutes are not as conserved as in proteobacteria 160. This would also explain the 

divergence between FtsKγ domains even among Firmicutes. Additionally, AIMS found in L. lactis 

differ in both in length and in sequence from traditional KOPS/SRS motifs, being A-rich heptamer 

motifs instead of the GC-rich octamer motifs 82. XerS also lacks critical residues found in XerD to 

interact with FtsK (residues RQ-QQ). Interestingly, XerS/difSL recombination occurs almost in a 

similar fashion to that of E. coli. Both Xer systems require FtsKN localization at the division septum 

and FtsKC translocation to achieved Xer dimer resolution. Additionally, XerS/difSL proved to be 

functional in E. coli, despite the lack of homology in their FtsK proteins. Further analyses on FtsK-

Xer interactions are required since the exact mode of action is still speculative 159.  

  6.5 The Helicobacter and Campylobacter (difH/XerH) model 

Studies in Helicobacter sp and Campylobacter sp led to the discovery of another type of single 

recombinase called XerH that acts on a recombination site called difH in a FtsK-dependent 

manner. It was shown to be involved in chromosome segregation and possibly dimer resolution 

in Helicobacter pylori 156.  XerH (354 aa to 362 aa) differs from the traditional XerCD (298 aa) 

recombinases by its size and protein homology (26% of identity with respect to XerCD). It also 

shows more similarity to XerS (356 aa) in both the size of the protein and the high degree of 

homology of their recombination sites 50,161. Another characteristic of XerH and a possible 

hallmark of single recombinases (XerS and XerH) is that the difH sequence is also located near the 

recombinase-encoding gene, indicating a possible individual genetic module for Xer expression 

50,157. Interestingly, most of the epsilon species of ε-proteobacteria harbor a XerH/difH system 

whereas some other ε-proteobacteria (Sulfurimonas denitrificans and Sulfurovum) possess a 

system analogous to the classical XerCD system.  Additionally, unlike other tyrosine Xer 

recombinases, XerH activity appears to be affected by a second Xer recombinase called XerT in H. 

pylori (the TnPZ transposon associated recombinase) since under XerT deletion, difH 

recombination levels increased 156. Recent structural studies showed that the Helicobacter difH 

comprises two highly conserved imperfect inverted binding sites of 11 and 10 bp (AGTTATGAAAA 
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and AAAAGTTTGA) in the left and right sides respectively, separated by a 6-10? bp central region 

(Figure 3J) 66 (Unpublished data suggest a 10 bp central region, 161). Two subunits of XerH bind 

cooperatively to each side with a stronger binding affinity as well as cleavage reaction efficiency 

in the left half site than the right half site (the outer region in dif appears to be determinant in 

the order of binding and cleavage reactions). The left half site preference is due to stronger 

interaction between XerH and difH left site ΔG = -21.3 kcal/mol compared to the right half site ΔG 

= -15.4 kcal/mol). The extra nucleotide thymine (T4) in the outer region of the left half site confers 

a specific hydrogen bond between the left arm and the lysine (K290) of XerH that favors stronger 

protein-DNA interaction with the other three outermost nucleotides, DNA bending and specific 

positioning of the nucleophilic tyrosine. Surprisingly, XerH assembly on difH does not induce 

strong DNA bending alone and it seems to require FtsK to generate the required conformational 

rearrangements to favor XerH DNA exchange 66. Results obtained by Leroux et al. (2013) in difH 

of C. jenuni (difHcamp) demonstrated that XerH binding to either the left or right site of difHcamp 

resulted in similar affinities compared to the full difHcamp site possibly due to the similarity 

between the outer sequences of both arms. Additionally, XerH binding to difHcamp appears to be 

less efficient than XerS which suggests that it is less cooperative than XerS/difSL system. 

Additionally, these results contradict XerH binding affinities observed in H. pylori by Bebel et al. 

(2016) and in most tyrosine recombinases involved in chromosome resolution since it did not 

show any binding preference. On the other hand, unlike binding activity, asymmetrical cleavage 

reactions by XerH were found with a higher efficiency for bottom-strand substrates than top 

strand, in agreement with the results of Bebel et al. XerH recombination was also observed in vivo 

between two difHcamp sites located on the same plasmid; it is also suggested that XerH might be 

involved in decatenation processes because of the apparent absence of Topo IV proteins in H. 

pylori 156,161.Interestingly, despite difHcamp and difSL similarities in the recombination sites, the 

recombinases do not cross-react (XerH does not bind difSL and XerS does not bind difHcamp sites) 

(M Leroux, unpublished). 

  6.6 The Archaea dif/XerA model 

In archaea, chromosome resolution appears to be catalyzed by a single recombinase (XerA) in a 

FtsK-independent manner that acts on a dif-like site located in the replication terminus region 
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162,163. XerA shares a conserved C-terminal domain where the active tyrosine and the conserved 

catalytic residues (R-K-H-R-[H/ W]-Y) reside. XerA proteins are well conserved between the 

archaeal species analyzed with 85% of sequence similarity. The xerA gene location is highly 

variable in archaea; some species exhibit separated xerA/dif sequences whereas some others 

harbor an individual xerA/dif module. Unlike most bacteria, the dif-like site is not normally located 

at 180° from oriC and conversely, it is located between 122° to 144° from oriC in the analyzed 

genomes, although the Methanosphaera stadtmanae genome showed a dif-like site at 180° from 

oriC.  dif-like sequences consist of the traditional structure; two inverted repeat sequences of 11 

bp separated by a central region of 6 bp. XerA catalyzes cleavage reactions without any detectable 

strand preference 162,163.  

Although archaea do not require a FtsK homolog to perform chromosome resolution, KOPS-like 

motifs have been found in Archaea. These KOPS-like motifs consist of four nucleotides (GTTG OR 

GTTC) called  ASPS (Archaea Short Polarized Sequences) that are skewed towards dif sites, 

showing a similar triangle-shaped diagram observed in Bacteria of skew inversion at dif sites 162. 

Serre et al. (2013) have revealed the crystal structure of XerA proteins from Pyrococcus abyssi, 

and Chang et al. (2016) from Thermoplasma acidophilum. Both groups reinforced the idea of cis- 

cleavage reaction by XerA.  

7. Future directions 

Much information has been gained on site specific recombinases and dimer resolution. This 

review has highlighted the complexity of dif/Xer recombinase systems in prokaryotes and its 

importance for genome stability and pathogenicity factors. However, many fundamental 

questions remain unanswered: how do SpoIIIE and SftA from Bacillus activate site-specific 

recombination? Moreover, what is the selective advantage of having two chromosome DNA 

translocases? Additionally, 12% of the studied proteobacterial species do not possess the 

traditional Xer recombination machinery. Thus, it is still unknown whether these microorganisms 

lost the Xer recombination system, never acquired it or developed an alternative system to 

decatenate the chromosomes. It raises the question of how do bacterial cells handle chromosome 

decatenation without Xer recombinases and dif? Is there an alternative recombination system 
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that functions as the dif/Xer system? Regarding single recombinases, have they evolved from 

XerC/XerD recombinases or vice versa, or did they arise from an ancestral recombinase?  These 

and other issues already considered in this review are being gradually addressed by the use of the 

latest techniques in real-time imaging with super-resolution microscopy. Such as; photo-activated 

localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), plus 

the use of other techniques as Förster Fluorecence Resonance Energy Transfer (FRET), tethered 

fluorophore motion (TFM), single-molecule Flourescence resonance energy transfer (smFRET), 

among others. They are providing a powerful blueprint for investigators studying short- and long-

range changes in DNA, DNA/protein, and protein/protein interactions. Researchers in site-specific 

recombination systems and protein-protein interactions might be the most direct beneficiaries of 

these techniques, especially when it is becoming urgent to further understand IMEX insertion and 

its subsequent influence in antibiotic resistance and bacterial virulence. 
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Chapter II 

 
This article focuses on EMSA experiments and pull-down analysis in order to identify the 

determinants within the difSL sequence for XerS binding and cleavage and its interaction with 

translocase FtsK. Although the work done by Le Bourgeois and Nolivos discovered and 

characterized to some extent the XerS/difSL system, no data are available regarding dif sequence 

and its relationship with the unique characteristics of XerS. Therefore, to better understand XerS 

interactions with difSL, we have used several mutated difSL sequences. These pin-pointed 

mutations were selected to see the effect of three important modifications; First, modifications 

on highly conserved nucleotides among Firmicutes, second, modifications on size of the targeted 

DNA fragment, and third, evaluation and comparison with previous reported modifications in 

order to assess if our results offer similar outcomes. The differences in recombinase interaction 

with these mutants provides a framework for understanding the conditions for single 

recombinases to perform dimer resolution. 
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Abstract 

 
Chromosome dimer resolution in most bacteria is solved by a double recombinase system of two 

paralogous highly conserved proteins called XerC and XerD that act on a site of 28 bp called dif 

located at the terminus region. In some Lactococci and Streptococci this process is mediated by 

an atypical single site-specific recombinase called XerS, which acts on a larger site called difSL of 

at least 31 bp equally located at the terminus region.  Previous characterization of the XerS/difSL 

system reported that XerS has a stronger binding affinity for the left site than the right site of 

difSL and cleavage reactions reported stronger activity with the bottom strand than the top 

strand. Similarly, it possesses an unusually large central region of 11 bp, longer than any other 

central region known currently. To understand what kind of determinants drive binding and 

cleavage selectivity of a single recombinase, a series of difSL variants were designed. Our results 

showed that nucleotides at the outermost region of a T rich region seem to be determinant for 

binding selectivity and modifications of the extra spacing between the inverted repeat arms as 

well as reduction of the central region change cleavage preference. The XerS system selectivity 

mainly depends on difSL sequence composition even though most mutations did not abolish 

binding or cleavage reactions. Our results also showed an XerS-FtsK interaction by pull-down 

assays.  
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1. Introduction 

Xer site specific-specific recombination is known for solving dimer formation in microorganisms 

with circular chromosomes. It is an essential process that guarantees faithful segregation of 

chromosomes during cell division. During replication, a variety of obstacles can stall or collapse a 

replication fork, from DNA damage caused by exogenous or intracellular genotoxic stress to 

collisions between replication forks and DNA binding proteins such as transcribing RNA 

polymerases 25. Back in 1968, Rupp and Howard-Flanders suggested that the replication fork can 

bypass such barriers and reload downstream from the DNA lesion, this would create a gap that 

would be eventually sealed by the homologous directed gap repair (HDGR), a model extensively 

supported by other groups 164–166, and reviewed by the following papers  15,31. However, rescuing 

of the impaired replication forks often leads to chromosome rearrangements between the newly 

synthesized strand and the homologous strand. McClintock first proposed this topological 

problem in 1932. She recognized that in linear DNA, crossover events do not modify the 

separation between sister chromatids, however, crossing over between circular chromosomes 

will form concatenated chromosomes if an odd number of these rearrangements occurred3,4. It 

is particularly interesting for circular chromosomes that this topological conformation saves the 

problem of instability at the DNA ends but renders initiation and termination process potentially 

lethal when impaired 167. The single origin on many circular genomes makes fork progression–

blocking events dangerous in the absence of replication restart proteins (RRP)164,168,169 and the 

catenation bias at the end of replication plus post-replication repair mechanisms make crossing 

over events dangerous in the absence of Chromosomally Encoded tyrosine Recombinases (Xer) 

73,170–172. The necessity to solve this problem would explain why Xer recombinases and their sites, 

called dif sites, are highly conserved among bacteria 54,155,157,173, even more conserved than other 

proteins for replication termination as Tus proteins 174.  Initial characterization of site-specific 

recombination for plasmid stabilization begun in 1981 by two groups; Austin’s group and 

Hamilton’s group and their work with bacteriophage P1 6,175 by reporting the importance of 

enzyme Cre (Causes Recombination) in plasmid intramolecular recombination. Later, Summers 

and Sherratt corroborated the importance of these site-specific sites in other plasmids such as 



59 

ColE1 7.  Stirling and collaborators designated the acronym xer (Chromosomal ColE1 

Recombination function/s) to two genes required for recombination of ColE1 called xerA and xerB 

59. Interestingly, it was later known that XerA and XerB are important accessory factors for 

plasmid intramolecular recombination called ArgR and PepA and not tyrosine recombinases as 

Sherratt’s group would established later in 1990, with the identification of the tyrosine 

recombinase XerC 8 and the first characterization of a site-specific recombinase system involved 

in chromosome dimer resolution that acts on the site-specific recombination site named dif 

(Deletion-Induced Filamentation) 73,176. A second tyrosine recombinase called XerD was rapidly 

identified three years later by Sherratt’s group 9. Since then, the XerC/XerD system has been 

found in several other families of bacteria such as Proteobacteria and Firmicutes 

50,108,121,155,162,173,177–179. It is highly conserved among bacteria as different experiments showed a 

positive interaction between XerCD recombinases from other bacteria and the Escherichia coli dif 

site180,181. The bases of the system have been extensively studied in XerCD/dif from E. coli and the 

homologs RipX-CodV/bsdif from Bacillus subtilis 121. Where two tyrosine recombinases work 

synergistically to recombine two opposed but closed dif sites located in the DAZ region (dif 

Activity Zone) to be activated by translocase protein FtsK in E. coli 77,81 , or brought together by 

two translocase proteins SpoIIIE and SftA in B. subtilis or homologs FtsK and SpoIIIE proteins in 

Staphylococcus aureus 123,125–127,134. However, the XerCD-dif dimer resolution system is not 

unique, single Xer recombinases have been found in some Streptococci and the Lactococci, 

denominated XerS 157, some ε-proteobacteria (XerH) 50,66 and Archaea (XerA) 155,162,163, 

summarized by the following papers 50,177,182. In double recombinase systems, the presence of 

two recombinases confers an additional level of asymmetry that places the two-step DNA 

exchange under separate control facilitating coordination and directionality of the process, 

whereas in single recombinases is still unknown, and coordination or directionality might be 

exclusively regulated by the recombination site 76.  
To understand more about how single recombinases interact with their dif sites, we have used 

several dif variants that examine the importance of nucleotides in the central region and outlying 

dif regions. These nucleotides were chosen based on their conservation among bacteria and their 

effect on other Xer systems, thus facilitating analysis of single recombinase binding and cleavage. 
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The differences in recombinase interactions with these variants offer a framework for 

understanding the mechanisms of single recombinases dimer resolution and how these 

modifications lead to selectivity for a particular recombination outcome. 

 

 

2. Material and methods 

2.1 Bacterial strains and plasmids 

E. coli turbo and DH5α (NEB) were used for cloning and purification of plasmids containing difSL 

and difSL variants. The difSL gene was amplified by PCR from genomic DNA of S. suis S735 serotype 

2 and cloned into the SmaI site of vector pUC19 by standard cloning techniques as described by 

Leroux and collaborators 158 using primers listed in Table 1. E. coli strain NEB T7 lysY/ Iq and BL21 

(DE3) was used for overexpression of N-terminal MBP-fused genes and His-fused genes 

respectively. Full-length xerS from S. suis (NCBI: YYK_03895) and xerH from Campylobacter jenuni 

(accession number YP_178952) were amplified and cloned into plasmid pMalC2 in the XmnI 

restriction site and pEQ30 between BamHI/PstI restriction sites (NEB) respectively. This resulted 

in vectors pmal-XerS that express XerS with an N-terminal MBP tag and pQXerH that express XerH 

with an N-terminal His tag. Extraction and purification procedures were as described by Leroux et 

al. 158. XerH overexpressed proteins were used as controls to corroborate retained bands on the 

EMSA experiments are generated by specific binding and not by protein aggregation. XerSY341F 

mutant and difSL variants constructs were prepared using the Q5 site-directed mutagenesis kit 

(NEB) with primers listed in Table 1 and used according to the supplier’s conditions. These 

mutations created the vector (pmal XerSY341F) that expresses XerSY341F with an N-terminal MBP 

tag designated MBP-XerSY341F and pUC19difSL variants designated as (pUC19-M1 to M11). All DNA 

substrates were recovered and purified by conventional mini-prep procedures using GeneJet 

plasmid miniprep or GeneJet PCR purification Kit from ThermoFisher. DNA concentration was 

determined by Nanodrop analysis (Thermo Scientific) and by QuBit fluorometry (Invitrogen). 

DNA-binding substrates for mobility shift assays were amplified using 5′ HEX-labelled M13 

universal sequencing primers (AlphaDNA, Montreal, QC). All cloned PCR products were verified 
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by sequencing at the IRIC genomic facility of the Université de Montréal. Restriction enzymes, 

Vent DNA polymerase, Phusion DNA polymerase, Q5 hot start polymerase, and T4 DNA ligase, 

were obtained from New England Biolabs (NEB) and used according to the supplier’s conditions. 

 

2.2 Protein Production and purification 

E. coli T7 cells harboring pMal-XerS, pMal-XerSY341F, pET28-FtsKγ and pET28-XerS were grown at 

37°C up to an OD600 nm of  ̴0.4 in LB broth containing Ampicillin (100 μg mL-1) and Kanamycin (30 

μg mL-1) respectively. Protein expression was induced by the addition of 0.5 and 1mM isopropyl-

D- thiogalactopyranoside (IPTG)  respectively  and incubated for four additional hours at 37°C, 

after which the cells were harvested, washed and frozen in its respective buffer; either 25mL of 

MBP lysis buffer (20mM Tris-HCl, 200mM NaCl, 1mM EDTA, 1mM azide, 10mM β-

mercaptoethanol, pH 7.4, supplemented with Pierce protease inhibitors) or His lysis buffer (50 

mM NaH2PO4 pH 8.0, 300 mM NaCl, 10mM imidazole supplemented with Pierce protease 

inhibitors). This was followed by six bursts of sonication and centrifugation at 20.000 x g for 20 

min. MBP-XerS and MBP-XerSY341F expressed proteins were purified on individual MBP-trap HP 

column (GE Healthcare) according to manufacturer’s directions. Similarly, FtsKγ-His6 and XerS-His6 

expressed proteins were purified using Ni-NTA affinity chromatography (Qiagen) according to the 

manufacturer’s instructions. Protein concentration was determined using Bradford assays and 

QuBit fluorimetry. 

  2.3 DNA-binding and cleavage assays 

For electrophoretic mobility shift assays (EMSAs), MBP-XerS was incubated with the respective 

PCR product of difSL site and its variants for 2 h at 37°C. They were amplified using the universal 

M13 primers 5’ HEX labeled, giving, as a result, a PCR product of 339-bp with the corresponding 

dif site. Binding reactions were performed in 15μL containing TENg buffer (20 mM Tris-HCl, pH 

7.5, 1 mM EDTA, 25 mM NaCl and 5% glycerol), 10 μg of sonicated salmon sperm DNA (average 

molecular weight of 500 bp). Suicide substrates were created by annealing three oligonucleotides, 

corresponding to one full-length site (34 bp), either top or bottom strand and the two halves (left 

and right), either top or bottom strands (17 bp) for the full-length oligonucleotides. For the half-
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sites substrates, only two oligonucleotides were used, corresponding to the left or right side. 

Annealing reactions were carried out in annealing buffer (10 mM Tris, pH 8.0, 50 mM NaCl, 1 Mm 

EDTA) at 95°C for 2 minutes. Then they were gradually cooled down to 25°C throughout 45 

minutes. The final product was a double-stranded DNA containing a nick either in the top or 

bottom strand at the central region. Unlabeled oligonucleotides were three times more 

concentrated that labeled ones (Figure 5). Cleavage reactions were performed in TENg buffer 

containing 8μM of nicked or half substrates with 350 nM of MBP-XerS for 60 min. Reactions were 

stopped by adding SDS to a final concentration of 0.1% (w/v) and heated to 95 °C for 5 min; 

samples were then electrophoresed in 6% TBE gels in the presence of 0.1% of SDS. Gels were 

imaged in a Typhoon 9410 imager, and images were analyzed by IMAGEQUANT software (GE 

Healthcare).  

 

2.4 Pull-down assay 

Pull-down assay was performed by immobilizing MBP-tagged XerS (83 kDa) proteins on amylose 

magnetic beads (NEB) in MBP column binding buffer 200mM NaCl, 20 mM Tris-HCl pH 7.4, 1 mM 

EDTA and 1 mM DTT for 2 hours at 4°C under constant agitation. After series of washes to remove 

any unbound MBP-tagged protein, the His-tagged protein (FtsK, 17 KDa) was loaded under the 

same conditions previously described. Proteins that were not immobilized due to physical 

interaction with MBP-XerS were removed in the subsequent washing steps. The experiment was 

carried out by using directly cell lysates samples of both proteins, since it seems to add non-

specific controls, increases competition and it approaches to in vivo conditions. The Interaction 

was assessed on 0.1% SDS-15% PAGE gels following a selective co-elution of the interacting 

proteins by adding 10mM maltose to the MBP column binding buffer. Samples were determined 

by staining the gel with Coomassie blue, followed by scanning in an Amersham Imager 600 and 

subsequent quantification. 
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3. Results and discussion 

3.1 Characterization of essential nucleotides in difSL involved in binding and 

recombination reactions.  

To determine the interaction between XerS and difSL, the S. suis xerS gene and its difSL site were 

identified by sequence analysis, amplified by PCR, and cloned into plasmid vectors (pMal-c2x, 

pET28 and pUC19 respectively). As described by Le Bourgeois 157, the defined minimal site of the 

Streptococcal difSL was determined as 31 bp in length with the characteristic structure of other 

dif sites (i.e., two imperfect inverted repeats separated by a central region). This was measured 

by calculating the integration efficiency of vector pGh9 containing different variants of the difSL 

region 157. Subsequently, DnaseI footprinting analysis and EMSA experiments of the lactococcal 

XerS/difSL complex showed a longer protected region, presumably longer than the 31 bp159. 

Further experiments showed, by the use of suicide substrates of the Streptococcal difSL site, that 

the length of the central region is 11 bp158, considerably longer than most site-specific 

recombination sites 177. Presently, the minimal difSL site is defined by two imperfect inverted 

repeat sequences of an uncharacterized length separated by a central region of 11 bp. To 

determine the exact minimal site and which nucleotide(s) within this minimal site are important 

for XerS recombination, we performed several gel retardation assays using MBP-XerS protein with 

eleven different difSL variants. These mutations were separated into four groups (Table 2), 

mutations at the cleavage site (M1 and M2), mutations at the central region (M3, M4, M5, and 

M6), mutations at the binding site (M7, M8 and M9) and mutations at the outer regions (M10 

and M11). Additionally, substrates with one of the two binding sites deleted were also 

constructed by site-directed mutagenesis and tested. The eleven EMSA experiments were 

performed using the same range of protein concentration that ensured at its maximal 

concentration (Lane 7, 700 nM) >99% MBP-XerS binding to difSL-WT, with equal concentrations 

of DNA (2ng/μL) and salmon sperm (100ng/μL).  

 

All titrations followed a similar pattern of MBP-XerS/difSL interaction, with almost equal 

formation of complexes I and II at low MBP-XerS concentration, corresponding to the occupancy 
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of just one arm by a single monomer of XerS (Complex I) or both arms (Complex II) by the 

occupancy of two monomers of XerS on difSL 159. At higher MBP-XerS concentration, subsequent 

and gradual disappearance of complex I and stronger formation of complex II takes place. difSL 

WT and most of the difSL variants showed formation of additional bands under 115 nM or higher 

concentrations of MBP-XerS (herein referred as complex III, as they might correspond to protein-

protein interactions between two or more complexes II 183) with exception of M1 and M7, (Figure 

1). None of the mutations tested in the full-length difSL site abolished XerS binding completely. 

However, all mutations decreased to some extent binding activity, as equally reported by Jo and 

colleagues183 in the XerA/dif2 system. Mutations in the central region (M4, M5 and M6), under 

XerS saturation (700 nM) showed non-free DNA, similarly to difSL-WT with the exemption of M3. 

Whereas mutations at the binding sites (M1, M2 and M7) showed persistent free-DNA complexes, 

as expected, especially the M7 mutant, which showed poor formation of complex II and 

undetectable formation of complex I and III, resulting in a higher amount of free DNA. 

Modifications of the central region have demonstrated to reduce the affinity of XerC for the dif 

site, in fact, altering the size of the central region seems to determine the selectivity for 

intramolecular or intermolecular recombination processes184. Similarly, Lee and Saito (1998) 

demonstrated how substitutions of nucleotides 2 to 7 of the loxP central region affected 

recombination processes, particularly, substitutions of nucleotides 6 and 7 block first strand 

exchange and substitutions of nucleotides 2 to 5 avoid resolution of Holliday junction 

intermediates. Lee and Jayaram equally proved that mutations at the central region of the frt site 

decreased recombination processes, pointing out the importance of the central region for 

resolution185. For phage lambda Int, the att central region plays an important role for Holliday 

junction resolution186.  Therefore, it is not surprising that mutations M4, M5 AND M6 might have 

affected to a very low level binding reactions as shown in Figure 1. Most of free-DNA is not 

detected using 352 nM or 532 nM of MBP-XerS, although it is still not as proficient as wild-type 

difSL 74 with a unique exemption of M4, in which the 2 nucleotide substitution in the inner part 

of the central region produced a similar pattern as wild-type difSL. Interestingly, the M3 and M5 

mutations involved modifications of the length of the central region. In M3, one nucleotide 

deletion in the central region proved to be more detrimental than any other modification at the 
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central region whereas the M5 mutation (addition) gave a similar pattern to that of wild-type 

difSL. These findings suggest the flexibility of the protein-DNA complex is considerable and that 

the response for space modifications is asymmetric, since adding one nucleotide had a small 

effect while removing one nucleotide affects cooperativity, as previously noticed by Mao et al187 

with other DNA binding proteins. Our results are corroborated by Bebel’s results in which the 

crystal structure of the synaptic complex XerH/difH showed low interaction between XerH and 

the central region66 and that the M3 binding deficiency might be spatial-related. On the other 

hand, free DNA was still detectable on the EMSA gels with difSL mutants (M1*, M2*, M3* and 

M7, cleavage site mutants*) under high concentration of protein (700 nM). This agrees with 

previous investigations where modifications at the binding site of dif in E. coli decreased XerCD 

proficiency in recombination. Their EMSA experiments also showed an overall reduced binding 

affinity, obtaining up to 50% more of free DNA compared to wild-type dif 188,189. Similarly, Jo and 

colleagues showed that 11 point mutations in dif2 at the binding site equally decreased binding 

efficiency by XerA for each nucleotide at different degrees 183. Bebel’s crystal structure showed a 

direct interaction between XerH and difH at the cleavage section, up to 5 nucleotides are 

contacted by XerH while the outer part is mostly contacted at the phosphate backbone with the 

exception of one conserved thymine base and the three outermost nucleotides (AGT)66. 

Interestingly, these papers coincided in that adjacent nucleotides of the cleavage point are 

relevant for binding as shown here with M1 and M2 mutants. However, our experiments showed 

that M7 modifications resulted in the lowest complex formation with the highest amount of free 

DNA. The M7 mutation switches the corresponding extra space TT/26-27 from the right arm the 

nucleotide C/8 in the left arm to see if it drives XerS binding to the correct site at the early stages 

of synapsis (Table 2). Our result showed that this mutation decreased XerS binding to the full-

length M7 site. Then, we tested if half-sites of the same mutation would drive binding preference 

for the right half-site (RHS) rather than the left half-site (LHS) (Figure 2).  

Half-site M7 mutants showed stronger XerS binding interaction with M7-LHS than M7-RHS, a 

similar pattern previously demonstrated by Leroux and colleagues158. M7-LHS binding is still 

weaker compared to difSL WT, whereas M7-RHS binding was undetectable under these 

conditions (Figure 2). Unexpectedly, M7 half-sites showed the same migrating pattern as complex 
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II (Figure 2, center), despite the absence of the second half. The presence of the extra nucleotide 

seems to not be determinant for binding preference and on the contrary, its deletion exacerbated 

XerS binding to the right half-site when compared to difSL wild-type. In the XerH/difH system, it 

is the left arm that possesses preferential binding and cleavage, it also contains a single base-pair 

insertion. However, this single base pair insertion is not directly involved with XerH binding, which 

our results seem to corroborate. 

Furthermore, Bebel’s group noticed that a conserved thymine (T/4) and three adjacent 

nucleotides of the outer region are highly determinant for cleavage and binding reactions, similar 

results were initially noticed by Hayes and Sherratt where specificity determinants are confined 

to the outer ends of the E. coli dif site synaptic complex189.  Therefore, we decided to create M8 

and M9 mutants in which nucleotides T/5→A (M8) and nucleotides TT/2-3→AG (M9) were 

changed respectively. T/5 is highly conserved among 49 available streptococcal genomes as well 

as in E. coli, Bacillus and several proteobacteria species dif sites 50,157, whereas TT/2-3 is part of 

the outermost nucleotides of the difSL site.  

 

M8 and M9 modifications reduce complex II formation and seem to inhibit complex I and complex 

III, (Figure 3A). Interestingly, when we decided to study these mutations with their respective half 

sites alone, either left or right, both mutations completely inhibited binding, this was expected at 

the right half-site due to previous analysis of known weak interaction, however, it was the first 

time that XerS binding was entirely inhibited by point mutations in a half-site (Figure 3B). For the 

M9 modification, this result can be supported by the fact that the left site is more divergent than 

the highly conserved right site, as the consensus region 5’-ATCTTTC-3’ in the left arm of most 

Streptococcal genomes and some Lactococcal species has a cytosine at the third nucleotide, 

whereas S. suis dif site has a thymine at that position 5’-ATTTTTC-3’. Therefore, it is reasonable 

to expect that this nucleotide might have mutated to increase XerS specificity for the left half-site 

and therefore its modification affects binding significantly. For the M8 modification, we 

rationalized that modification of the fifth thymine can have a deleterious effect as reported by 

Bebel’s group (T5’), which we can now corroborate as an essential base for binding. This system 

obeys a similar pattern found in the XerC/XerD-dif system and the CodV/RipX-bsdif system which 
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consists of a highly conserved right arm (XerD/RipX binding arm) and a more divergent left arm 

(XerC/CodV binding arm). 

Additionally, XerS seems to behave like XerC/CodV which exhibit less efficient binding but more 

efficient cleavage 121 as shown here (Figure 2,4). Subsequently, a rich TTT region was placed at 

the outer end of the right half-site with the goal of resembling the outer end of the left site to 

prove if they are determinants for binding specificity. Therefore mutants M10 and M11 were 

created. M11 mutant includes removal of the extra space TT/26-27 for a C (Table 2). However, 

these mutations did not alter binding preference towards the right half-site but kept the same 

pattern of weak or undetectable XerS binding to this site (Data not shown). The precise 

determinants of XerS binding to difSL remain unclear, however, it is important to discard two 

important facts, the outer rich TTT region at the left site neither the extra nucleotide at the right 

site are determinants for XerS binding preference in in vitro experiments. 

The results of cleavage preference were performed through the use of suicide substrates, initially 

proposed by Pargellis and collaborators190. The catalytic Tyr-341 of XerS attacks the scissile 

phosphate bond of the DNA backbone at the cleavage site, which is located upstream of a pre-

existing nick. Once XerS binds and cleaves the DNA, the fragment between the cleavage site and 

the nick is released under denaturing conditions, taking with it the energy from the 

phosphodiester bond cleavage and consequently trapping the phosphotyrosine-linked 

intermediate with the labeled DNA. Full-length suicide substrates were constructed and designed 

as M1 to M7 with the respective nick position, either in the top (TN) or in the bottom (BN) strand. 

Our experiments agreed with previous experiments in which XerS showed higher intermediate 

accumulation with the bottom strand nicked over the top strand nicked oligonucleotides 158,159 

(Figure 4). 

Further experiments with difSL mutants showed that M2, M4, M5 and M6 maintained a similar 

cleavage pattern as difSL wild type (Bottom strand preference). M6-TN exhibited strong inhibition 

of intermediate formation whereas M5-BN exhibited stronger intermediate accumulation than 

difSL wild-type, M4, M5 and M6 oligonucleotide mutants involved central region modifications 

and/or spatial modifications. Our results agree with other central region modifications such as; 

the XerA/dif2 system that exposed the low correlation between binding and cleavage efficiency, 
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as some mutants exhibited low cleavage reactions but active binding activity. Furthermore, all 

dif2 mutations decreased cleavage intermediate formation to some extent which corroborates 

why even our M1 and M2 mutations did not completely abolish cleavage. For the XerH/difH 

system, it was demonstrated that one nucleotide of the central region nearby the cleavage site 

has not any effect on cleavage reactions. Unexpectedly, M1, M3 and M7 mutants revert cleavage 

preference, they all exhibited stronger TN intermediate accumulation than BN intermediates. M1 

represents a cleavage site modification, M3 one base deletion from the central region and M7 

exchange of the extra space between arms. This variety of modifications with a similar outcome 

corroborates the idea that various factors and not only one-to-one direct contact between 

protein residues and DNA bases directs binding or cleavage specificity 191. As Baldwin’s group 

described: “The protein-DNA interface is a extend hydrogen-bonded red connected by water 

molecules, and the interaction of this red can change in different ways in response to mutation, 

affecting either, the catalytic step or the binding step of the reaction” 56. However, we noticed 

that M3 and M7 are involved in spatial modifications as well as M5 and M6, while M3 and M7 

increased TN intermediate formation and almost abolished BN intermediates, M5 and M6 

decreased TN intermediates and increased BN intermediate formation. Therefore, it is reasonable 

to assume that spatial modifications might play an essential role in cleavage preference. As 

previously described by Mao and collaborators 187; the addition of one nucleotide will rotate the 

regular positions of the two recombinase binding sites by -34 ° and separate them by 3.4Å. Such 

rotation and spatial separation may dictate the ability to disrupt recombinase interaction across 

the intervening DNA, especially for site-specific recombinase sites that are characterized for its 

bending capacity, flexibility and the fact that just a few protein residues directly contact the dif 

bases as previously reviewed by the following papers, 56,63. For instance, In the XerH/difH system, 

spatial modifications abolished cleavage reactions. Half-site suicide substrates revealed a similar 

pattern of cleavage as full-length suicide substrates (Figure 5). One characteristic of these results 

is that intermediate formation was abolished or highly reduced, which can be caused by the 

absence of the other XerS monomer and its synergetic effect on cleavage reactions.  
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3.2 The  subdomain of FtsKc interacts with XerS 

In order to determine if FtsK interacts with XerS, a truncated FtsK derivative was constructed 

containing only the final 125 amino-acids of the FtsK c-terminal protein attached to a His6 tag, 

here denominated His-FtsKγ. The 125 amino acids comprise the entire FtsKγ-subdomain and 64 

final nucleotides of the FtsKβ-subdomain. The FtsKγ-subdomain, is responsible for tyrosine 

recombinases recognition and KOPS (FtsK Orienting Polar Sequences)  sequences in most bacteria 

99,192, among the 125 amino acids, the final 62 nucleotides are sufficient for the ATP-independent 

XerD recognition and interaction with the double recombinase system (XerC/XerD) 2.  

The determinants for XerD recognition were initially thought to rely mostly on the specific 

sequence TEKRKA of FtsKγ for the double recombinase system XerCD in -proteobacteria, 

however, Keller and collaborators discovered that only the 9 adjacent amino acids (underlined) 

(Q-RQFRIGYNR) can clearly support XerD recognition and recombination with 5 of these amino 

acids in direct contact with XerD protein (bold letters), the exact same residues responsible for 

KOPS binding 99.  Amino acid sequence alignment between the corresponding  -subdomain of S. 

suis and E. coli shows 39% of level of identity and 69% when compared with L. lactis FtsK -

subdomain. Both, the RQFRIGYNR and the TEKRKA sequences are weakly conserved in either L. 

lactis and S. suis, however, four of the 5 amino acids involved in contacting XerD in the crystal 

structure from E. coli are the same. Therefore it has been hypothesised that the  subdomain 

must have co-evolved with the respective Xer recombinases of each bacterial species 2. This 

hypothesis is corroborated by the corresponding interacting residues in the XerDs enzymes, in 

the L. lactis XerS, only 1 of the 5 amino acids is identical to E. coli XerD whereas in the S. suis XerS 

enzyme only 2 are identical of the 5 amino acids. Alignment of E. coli XerD and S. suis XerS also 

shows high divergence with only 24% of percentage of identity (Figure 6).  

Our pull down assay between immobilized MBP-XerS and His-FtsKγ showed both proteins co-

eluting with maltose (10mM), lanes with sample (MBP tag and His-FtsKγ) did not show any 

retained protein corresponding to the bait His-FtsKγ, which proved that the bands observed in 

the lanes  (MBP-XerS) and/or (MBP-XerS+DNA) corresponding to His-FtsKγ protein are not 

unbound residues from incomplete washing steps. Both proteins were also tagged differently to 

support our initial results, by tagging XerS with a His6 tag and FtsK with a MBP tag, however, 
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solubility of His-XerS protein proved to be challenging and the ratio of protein purification was 

much lower when compared to MBP-XerS (Data not shown).  

Interestingly, PCR fragments of the difSL region plus 120 bp adjacent nucleotides improved His-

FtsKγ retention.  This might be due to an aggregation effect caused by difSL since bound XerS 

subunits are brought to close proximity, making it more accessible for His-FtsKγ to interact with 

a higher amount of XerS subunits otherwise randomly spread in a liquid interphase. It is also 

important to mention that FtsK interaction with tyrosine recombinases is very rapid, May and 

collaborators defined the time of FtsK interaction with XerD in 0.5s, an extremely short time to 

assess FtsK and XerS interaction by in vitro experiments such as pull-down, however, it is still 

worth noting that these interactions could be detected in this paper. Another important feature 

of FtsK is its bi-functional capacity to make protein-protein and protein-DNA interactions, using 

the same surface to carry out both functions. This means that mechanistically FtsKγ cannot 

interact with KOPS DNA and XerD simultaneously 99. Regarding protein-protein interaction 

between FtsK and Xer proteins, few papers have assessed this interaction directly, most papers 

measure this interaction by assessing and comparing percentage efficiency on DNA 

recombination and/or resolution by FtsK and XerD/XerC mutants versus wild type 77,85,97. It was 

only in 2006 that Yates and collaborators performed pull down assays by measuring immobilized 

FtsKγ versus XerC and XerD proteins, and vice versa, immobilized XerC/XerD proteins versus FtsKγ 

protein, showing strong interactions between both FtsK and XerD c-terminal regions, later on, 

Keller and collaborator in 2016 showed a visual representation of what could be FtsKγ and XerD 

interaction, by the use of a chimera protein (Fused C-terminal domain of XerD plus FtsKγ 

subdomain) denominated XerDC–γ, providing biochemical evidence of this interaction. The lack 

of information regarding direct interaction between Xer proteins and FtsK motivated us to 

investigate if it would be plausible to detect and measure FtsK interaction with XerS, and as shown 

in Figure 6, immobilized MBP-XerS proteins are capable to retain FtsK proteins after a series of 

washing steps, our results prove that S. suis FtsK subdomain is capable to recognize and bind to 

XerS, this interactions are ATP-independent.  
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4. Perspectives 

Further experiments are needed if we want to fully understand single recombinase systems; in 

vivo plasmid integration efficiency should be used to test resolution efficiency which was not 

evaluated by the techniques used in this paper. An increasing number of papers have addressed 

protein expression and protein activity by single-molecule imaging techniques. However, just a 

few have used these techniques to study single recombinases. These techniques will allow a 

better understanding of the dynamics of single recombinases during replication and segregation. 

Footprinting analysis and Surface plasmon resonance (SPR) techniques should corroborate and 

offer more details about binding reactions and their kinetics respectively, and, SPR analysis would 

allow to compare the rates of the binding efficiency of each difSL variant. It would be interesting 

to test if FtsK interaction with XerS is also as rapid as demonstrated with the XerCD/dif system by 

SPR analysis, and if possible, colocalization of these two proteins using in vivo experiments in S. 

suis. 
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Table 1. Strains, plasmids, and primers used in this study. 

Purpose Strain, 
plasmid and 
primer name 

Genotype, properties and 
sequence 

Source or reference 

Strain 

Cloning strain E. coli DH5α supE44 ΔlacU169 (ϕ80 
lacZΔM15) hsdR17 recA1 endA1 
gyrA96 thi-1 relA1 

NEB 

Expression 
strain 

E. coli T7 
lysY/Iq   

MiniF lysY lacIq(CamR) / fhuA2 
lacZ::T7 gene1 [lon] ompT gal 
sulA11 R(mcr-73::miniTn10--
TetS)2 [dcm] R(zgb-210::Tn10--
TetS) endA1 Δ(mcrC-
mrr) 114::IS10 

NEB 

Plasmid 
Cloning vector; 
Apr 

pUC19  NEB 

Cloning vector; 
Apr 

pUC19-difSL pUC19 with difSL sequence of S. 
suis 

This study 

Cloning vector; 
Apr 

pUC19-M1 pUC19 with difSL variant M1  This study 

Cloning vector; 
Apr 

pUC19-M2 pUC19 with difSL variant M2  This study 

Cloning vector; 
Apr 

pUC19-M3 pUC19 with difSL variant M3  This study 
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Cloning vector; 
Apr 

pUC19-M4 pUC19 with difSL variant M4 This study 

Cloning vector; 
Apr 

pUC19-M5 pUC19 with difSL variant M5 This study 

Cloning vector; 
Apr 

pUC19-M6 pUC19 with difSL variant M6 This study 

Cloning vector; 
Apr 

pUC19-M7 pUC19 with difSL variant M7 This study 

Cloning vector; 
Apr 

pUC19-M8 pUC19 with difSL variant M8 This study 

Cloning vector; 
Apr 

pUC19-M9 pUC19 with difSL variant M9 This study 

Cloning vector; 
Apr 

pUC19-M10 pUC19 with difSL variant M10 This study 

Cloning vector; 
Apr 

pUC19-M11 pUC19 with difSL variant M11 This study 

Overexpression 
vector; Apr 

pMalC2  NEB 

Overexpression 
vector; Apr 

pMalC2-XerS pMalC2 with xerS gene of S. suis This study 

Overexpression 
vector; Apr 

pMalC2-
XerSY341F 

pMalC2 with a mutated xerS 
gene of S. suis, in which Tyr-341 
is replaced by phenylalanine. 

This study 

Overexpression 
vector; Apr 

pQE30  QIAGEN 

Overexpression 
vector; Apr 

pQE30-XerH pQE30 with xerH gene of 
Campylobacter jenuni 

This study 

Primers 

Oligonucleotides for amplification processes (5’-3’) 

Primers for 
difSL 
amplification 
from S. suis 
genome. 

Dif-SL-F  TTCCAGTTTTGTCGTTATTAAAGTAC 

Dif-SL-R TTTCTTTTAGTTGATCAATTTTTTCC 

Primers for xerS 
amplification 

SsuisXerCFwd GATGAGACGCGAGTTATTATTGG 
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from S. suis 
genome. 

SsuisXerCRev  TCACAACTGATCCAGAGCAT 

Site directed mutagenesis of xerS (5’-3’) 

Primers for xerS 
site directed 
mutagenesis to 
obtain the 
xerSY341F allele. 

SsuisXerC-
SDM-Fwd 

CACCGATCTCTTTACCCATATCGTC 

SsuisXerC-
SDM-Rev 

ACCTGGGTATTGGCATGG 

Site directed mutagenesis of pUC19-difSL wild type to obtain pUC19-difSL variants (5’-3’) 

difSLM1 difSL-M1-F TATAATTTTGTTGAAACTTATATAAGGTTATGCTATACTAC 

difSL-M1-R GTTTTTGGGAAAAATGTTTGTGGGGATATTAGAAAG 

difSLM2 difSL-M2-F TATAATTGGCTTGAAACTTATATAAGGTTATGCTATACTAC 

difSL-M2-R GTTTGGCGGAAAAATGTTTGTGGGGATATTAGAAAG 

difSLM3 difSL-M3-F AACTATAATTTTCTTGAAACTTATATAAGG 

difSL-M3-R TTCGGAAAAATGTTTGTGG 
difSLM4 difSL-M4-F TAGTATTTTCTTGAAACTTATATAAGGTTATGCTATACTAC 

difSL-M4-R GTTTTTCGGAAAAATGTTTGTGGGGATATTAGAAAG 

difSLM5 difSL-M5-F GATAATTTTCTTGAAACTTATATAAGG 

difSL-M5-R AGTTTTTCGGAAAAATGTTTG 

difSLM6 difSL-M6-F TAGTTTTTCTTGAAACTTATATAAGG 

difSL-M6-R TAATTTTCGGAAAAATGTTTG 

difSLM7 difSL-M7-F TATAATTTTCCGAAATTATATAAGGTTATGCTATACTAC 

difSL-M7-R GTTTTTCAAGAAAAATTGTGGGGATATTAGAAAG  

difSLM7-LHS difSL-M7-LHS-F TAAGGTTATGCTATACTACTC 

difSL-M7-LHS-
R 

AATTATAGTTTTTCAAGAAAAATTGTG 

difSLM7-RHS difSL-M7-RHS-
F 

AAACTATAATTTTCCGAAATTATATAAG 

difSL-M7-RHS-
R 

TTGTGGGGATATTAGAAAG 

difSLM8 difSL-M8-F TAATTTTCTTGACACTTATATAAGGTTATGCTATACTACTC
  

difSL-M8-R TAGTTTTTCGGATAAATGTTTGTGGGGATATTAGAAAG 
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difSLM8-LHS difSL-M8-LHS-F ATAAGGTTATGCTATACTACTC 

difSL-M8-LHS-
R 

AATTATAGTTTTTCGGATAAATGTTTG 

difSLM8-RHS difSL-M8-RHS-
F 

AAACTATAATTTTCTTGACACTTATATAAG  

difSL-M8-RHS-
R 

TTGTGGGGATATTAGAAAG 

difSLM9 difSL-M9-F TAATTTTCTTGAAAAATATATAAGGTTATGCTATACTACTC
  

difSL-M9-R TAGTTTTTCGGAAACTTGTTTGTGGGGATATTAGAAAG 

difSLM9-LHS difSL-M9-LHS-F ATAAGGTTATGCTATACTACTC  

difSL-M9-LHS-
R 

AATTAGTAGTTTTTCGGAAAC  

difSLM9-RHS difSL-M9-RHS-
F 

AAACTACTAATTTTCTTGAAAATATATAAG 

difSL-M9-RHS-
R 

TTGTGGGGATATTAGAAAG 

difSLM10 difSL-M10-F AATATATAAGGTTATGCTATACTAC 

difSL-M10-R TTTCAAGAAAATTATAGTTTTTTGTG 

difSLM11 difSL-M11-F TTTTCCGAAAAATGTTAAGGTTATGCTATACTAC 

difSL-M11-R TTATAGTTGTGGGGATATTAG 

Oligonucleotides for suicide substrates (5’-3’) 
difSLWT-BN difSLWT-TS AAACATTTTTCCGAAAAACTATAATTTTCTTGAAACTT 

 difSLWT-BS-L AGTTTTTCGGAAAAATGTTT 
difSLWT-BS-R-
HEX 

AAGTTTCAAGAAAATTAT 

difSLWT-TN difSLWT-BS AAGTTTCAAGAAAATTATAGTTTTTCGGAAAAATGTT 

difSLWT-TS-L-
HEX 

AACATTTTTCCGAAAAACT 

difSLWT-TS-R ATAATTTTCTTGAAACTT 

difSLM1-BN difSLM1-TS AAACATTTTTCCCAAAAACTATAATTTTGTTGAAACTT 
difSLM1-BS-L GTTTTTGGGAAAAATGTTT 

difSLM1-BS-R-
HEX 

AAGTTTCAACAAAATTATA 

difSLM1-TN difSLM1-BS AAGTTTCAACAAAATTATAGTTTTTGGGAAAAATGTTT 

difSLM1-TS-L-
HEX 

AAACATTTTTCCCAAAAAC 

difSLM1-TS-R TATAATTTTGTTGAAACTT 

difSLM2-BN difSLM2-TS AAACATTTTTCCGCCAAACTATAATTGGCTTGAAACTT 

difSLM2-BS-L GTTTGGCGGAAAAATGTTT 

difSLM2-BS-R-
HEX 

AAGTTTCAAGCCAATTATA 
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difSLM2-TN difSLM2-BS AAGTTTCAAGCCAATTATAGTTTGGCGGAAAAATGTTT 

difSLM2-TS-L-
HEX 

AAACATTTTTCCGCCAAAC 

difSLM2-TS-R TATAATTGGCTTGAAACTT 

difSLM3-BN difSLM3-TS AAACATTTTTCCGAAAACTATAATTTTCTTGAAACTT 
difSLM3-BS-L AGTTTTCGGAAAAATGTTT 

difSLM3-BS-R-
HEX 

AAGTTTCAAGAAAATTAT 

difSLM3-TN difSLM3-BS AAGTTTCAAGAAAATTATAGTTTTCGGAAAAATGTTT 

difSLM3-TS-L-
HEX 

AAACATTTTTCCGAAAACT 

difSLM3-TS-R ATAATTTTCTTGAAACTT 
difSLM4-BN difSLM4-TS AAACATTTTTCCGAAAAACTAGTATTTTCTTGAAACTT 

difSLM4-BS-L GTTTTTCGGAAAAATATTT 

difSLM4-BS-R-
HEX 

AAGTTTCAAGAAAATACTA 

difSLM4-TN difSLM4-BS AAGTTTCAAGAAAATACTAGTTTTTCGGAAAAATATTT 
difSLM4-TS-L-
HEX 

AAACATTTTTCCGAAAAAC 

difSLM4-TS-R TAGTATTTTCTTGAAACTT 

difSLM5-BN difSLM5-TS AAACATTTTTCCGAAAAACTGATAATTTTCTTGAAACTT 

difSLM5-BS-L AGTTTTTCGGAAAAATGTTT 
difSLM5-BS-R-
HEX 

AAGTTTCAAGAAAATTATC 

difSLM5-TN difSLM5-BS AAGTTTCAAGAAAATTATCAGTTTTTCGGAAAAATGTTT 

difSLM5-TS-L-
HEX 

AAACATTTTTCCGAAAAACT 

difSLM5-TS-R GATAATTTTCTTGAAACTT 

difSLM6-BN difSLM6-TS AAACATTTTTCCGAAAATTATAGTTTTTCTTGAAACTT 

difSLM6-BS-L AATTTTCGGAAAAATGTTT 

difSLM6-BS-R-
HEX 

AAGTTTCAAGAAAAACTAT 

difSLM6-TN difSLM6-BS AAGTTTCAAGAAAAACTATAATTTTCGGAAAAATGTTT 

difSLM6-TS-L-
HEX 

AAACATTTTTCCGAAAATT 

difSLM6-TS-R ATAGTTTTTCTTGAAACTT 

difSLM7-BN difSLM7-TS AAACATTTTTCTTGAAAAACTATAATTTTCCGAAACTT 
difSLM7-BS-L TTTTTCAAGAAAAATGTTT 

difSLM7-BS-R-
HEX 

AAGTTTCGGAAAATTATAG 

difSLM7-TN difSLM7-BS AAGTTTCGGAAAATTATAGTTTTTCAAGAAAAATGTTT 

difSLM7-TS-L-
HEX 

AAACATTTTTCTTGAAAAA 



78 

difSLM7-TS-R CTATAATTTTCCGAAACTT 

Oligonucleotides for suicide half-site substrates (5’-3’) 
difSLwt left site difSLwt-TS-L AACATTTTTCCGAAAAAC 

difSLwt-BS-L GTTTTTGGGAAAAATGTT 

difSLwt right 
site 

difSLwt-TS-R ATAATTTTCTTGAAACTT 
difSLwt-BS-R AAGTTTCAAGAAAATTAT 

difSLm1 left site difSLm1-TS-L AAACATTTTTCCCAAAAAC 
difSLm1-BS-L GTTTTTGGGAAAAATGTTT 

difSLm1 right 
site 

difSLm1-TS-R TATAATTTTGTTGAAACTT 

difSLm1-BS-R AAGTTTCAACAAAATTATA 
difSLm2 left site difSLm2-TS-L AAACATTTTTCCGCCAAAC 

difSLm2-BS-L GTTTGGCGGAAAAATGTTT 
difSLm2 right 
site 

difSLm3-TS-R TATAATTGGCTTGAAACTT 

difSLm3-BS-R AAGTTTCAAGCCAATTATA 

difSLm3 left site difSLm3-TS-L AAACATTTTTCCGAAAACT 
difSLm3-BS-L AGTTTTCGGAAAAATGTTT 

difSLm3 right 
site 

difSLm3-TS-R ATAATTTTCTTGAAACTT 
difSLm3-BS-R AAGTTTCAAGAAAATTAT 

difSLm4 left site difSLm4-TS-L AAACATTTTTCCGAAAAAC 

difSLm4-BS-L GTTTTTCGGAAAAATATTT 

difSLm4 right 
site 

difSLm4-TS-R TAGTATTTTCTTGAAACTT 

difSLm4-BS-R AAGTTTCAAGAAAATACTA 
difSLm5 left site difSLm5-TS-L AAACATTTTTCCGAAAAACT 

difSLm5-BS-L AGTTTTTCGGAAAAATGTTT 

difSLm5 right 
site 

difSLm5-TS-R GATAATTTTCTTGAAACTT 

difSLm5-BS-R AAGTTTCAAGAAAATTATC 

 

Table 2. Schematic of difSL sequence and a series of mutations in the difSL sequence. The upper-

case bases indicate the defined minimal site (31 bp), the consensus bases of the difSL sequences 

are shown in boldface and the underlined bases indicate the inverted repeat sequences that 

match between the left and right sites. The red bases indicate the inserted mutation.  The empty 

squares (-) correspond to deletion of these bases. 
 

Left site Central region Right site 

Positions 1* 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

2

5 

2

6 

2

7 

2

8 

2

9 

3

0 

31

* 

3

2 

3

3 

3

4 

difSL 

WT 

A T T T T T C C G A A A A A C T A T A A T T T T C T T G A A A c t t 

difSL 

M1 

A T T T T T C C C A A A A A C T A T A A T T T T G T T G A A A c t t 
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difSL 

M2 

A T T T T T C C G C C A A A C T A T A A T T G G C T T G A A A c t t 

difSL 

M3 

A T T T T T C C G A A A A C T A T A A T T T T C T T G A A A c t t a 

difSL 

M4 

A T T T T T C C G A A A A A C T A G T A T T T T C T T G A A A c t t 

difSL 

M5 

A T T T T T C C G A A A A A C T G

+ 

A T A A T T T T C T T G A A A c t 

difSL 

M6 

A T T T T T C C G A A A A T T A T A G T T T T T C T T G A A A c t t 

difSL 

M7 

A T T T T T C T T G A A A A A C T A T A A T T T T C C G A A A c t t 

difSL 

M8 

A T T T A T C C G A A A A A C T A T A A T T T T C T T G A C A c t T 

difSL 

M9 

A A G T T T C C G A A A A A C T A T A A T T T T C T T G A A A c t t 

difSL 

M10 

A - - - - - - - - - - A A A C T A T A A T T T T C T T G A A A A A t 

difSL 

M11 

A - - - - - - - - - - A A A C T A T A A T T T T C C G A A A A A t a 
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Figure Legends. 

 

Figure 1. Titration of a 339 bp DNA fragment containing difSL wild type and difSL mutants (M1 

to M7) by increasing concentrations of MBP-XerS ranging from 30 nM (lane 1) to 700 nM (Lane 

7) in an EMSA experiment (4% polyacrylamide/0.5x TBE gels). The difSL sites were amplified by 

PCR using a 5′ 6-Hex-labelled primer obtaining a final concentration of 2ng/μL of purified PCR 

product. Binding reactions were performed in 20μL containing TENg buffer (20 mM Tris-HCl, pH 

7.5, 1 mM EDTA, 25 mM NaCl and 5% glycerol) for 2 hours at 37°C. The positions of the free DNA 

and the XerS/DNA complexes are indicated.  

 

Figure 2. Titration of a 315 bp DNA fragment containing difSL-M7 half left site, M7-LHS (A) and 

half right site, M7-RHS (C) by increasing concentrations of MBP-XerS ranging from 30 nM (lane 2) 

to 530 nM (Lane 7) in an EMSA experiment (4% polyacrylamide/0.5x TBE gels). B. Comparison of 

equal amounts of difSL-m7 half site mutants versus wild-type difSL (2ng/μL) under the same 

concentration of protein (352 nM), with (+) or without (-) protein.  

 

Figure 3. A. Duplicate of titration of a 339 bp DNA fragment containing difSL, difSL mutants M8 

and M9 with two concentrations of MBP-XerS (200 nM) and (530 nM) in an EMSA experiment 

(4% polyacrylamide/0.5x TBE gels). B.  Left. Comparison of equal amounts of difSL-M9 half site 

mutants, left and right (M9-LHS and M9-RHS respectively) versus wild-type difSL (2ng/μL) under 

two different concentration of protein 200 nM and 530 nM, symbols (+) and (-) represent addition 

or not of protein. Right. Comparison of equal amounts of difSL-M8 half site mutants, left and right 

(M8-LHS and M8-RHS respectively) versus wild-type difSL (2ng/μL) under two different 

concentration of protein 200 nM and 530 nM, symbols (+) and (-) represent addition or not of 

protein. 

 

Figure 4. XerS activity on suicide substrates. A. Schematic representation of the suicide 

substrates and cleavage reactions. Substrates consisted of three annealed oligonucleotides that 
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mimic the difSL sequence, either containing a top nick (TN) (Left) or a bottom nick (BN) (Right). 

The top-nicked (TN) substrate was 5′ 6-HEX-labelled at the first nucleotide (Table 1) of the 

consensus bases on the top strand; the bottom-nicked substrate was 5′-6-HEX-labelled at the 

residue 31 (Table 1) on the bottom strand (Indicated by the *). To assure a complete yield of 

fluorescently labeled suicide substrates, a three-fold excess of unlabeled fragments was used in 

the annealing reaction. 25μL of the reaction mixtures containing 8μM of TN or BN substrates was 

incubated with 350 nM of MBP-XerS for 60 min and heated to 95 °C for 5 min before loading on 

a 6% polyacrylamide gel run in 1% SDS in Tris-borate buffer. Center. Cleavage activity results in 

the formation of a stable covalent SDS-resistant complex only detectable by the interaction 

between MBP-XerS and the 5’HEX-labelled DNA under denaturing (1% SDS - 100°C for 5 minutes) 

conditions, as indicated by the dotted arrows (Left). Undetected covalent complexes are also 

indicated by these arrows (Right) under the presence of a catalytically defective XerS mutant 

(XerSY-F) and absence of the protein. B. Comparison of cleavage products between difSL WT and 

seven difSL mutants corresponding to modifications at the cleavage site, central region and 

binding site respectively, complete images with the free DNA and the controls have been omitted 

for clarity. 

 

Figure 5. XerS activity on half suicide substrates. A. Half suicide substrates consisted of two 

annealed oligonucleotides, either corresponding to the left site or the right site. The left half site 

was 5′ 6-HEX-labelled at the first nucleotide (A) (number 1, Table 1) of the consensus bases on 

the top strand; the right half site was 5′-6-HEX-labelled at the residue 31 (A) on the bottom strand. 

To assure a complete yield of fluorescently labeled suicide substrates, a threefold excess of 

unlabeled fragment was used in the annealing reaction. 25μL of the reaction mixtures containing 

8μM of TN or BN substrates was incubated with 350 nM of MBP-XerS for 60 min and heated to 

95 °C for 5 min before loading on a 6% polyacrylamide gel run in 1% SDS in Tris-borate buffer. Half 

site mutant oligonucleotides are labeled by a lowercase ‘m’ to distinguish them from the 

complete difSL mutant oligonucleotide. 

Figure 6. Pull-down assay between immobilized MBP-XerS and His-FtsK. A. Alignments showing 

the level of conservation of interacting residues in FtsK and XerD/XerS of E. coli (Ec), L. lactis (Ll) 
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and S. suis (Ss). Top: Alignment of the amino acid sequences of the FtsK domain of the indicated 

organisms in the region where interaction with XerD and XerS occurs. Structural features of the 

Ec FtsK is depicted: the helices (H1 to 3) and the wing of the w-helix DNA-binding domain. 

Identical residues across the 3 species are shown in bold, identical residues between Ss and Ec 

are show in red and important residues for KOPS binding are indicated by stars. The regions 

thought to interact with XerD and the KOPS motif are indicated, being the 9 most important ones 

underlined. Bottom: Alignments of the C-terminal portions of XerD from E. coli and XerSs from L. 

lactis and S. suis. White boxes denote amino acids seen to interact with FtsK in the crystal 

structure from E. coli, whereas grey boxes represent the conserved catalytic residues distinctive 

of the tyrosine recombinase family. Alignments are from NCBI. B. Analysis by SDS-PAGE of 

recombinase interactions (Duplicate). First gel (left): Lanes 1 and 2. FtsK input contains lysed 

extract of the over-expressed His-FtsK strain (Unknown concentration), Lane 3: MBP-XerS+FtsK 

contains the eluted fraction of sample carrying both enzymes (Bait and prey) , Lane 4: MBP-XerS 

contains the eluted fraction of sample carrying only the bait. Lane 5: FtsK control contains eluted 

fraction of sample with only the prey (FtsK binding control). Lane 6: MBP-FtsK contains the eluted 

fraction of sample with both proteins MBP tag and His-FtsK (MBP control). Lane 7 and 8: MBP-

XerS+FtsK+DNA contains the eluted fraction of sample carrying both enzymes and a PCR fragment 

containing the difSL sequence (320 bp). Second gel (Right) is a replica with only three more lanes: 

Lane 4: Washing step #5 that shows the flow-through of sample containing both enzymes and 

DNA after the fifth washing step. Lane 8 and 9 contains the respective tagged protein purified by 

affinity chromatography.  
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Figure 1. Titration of a 339 bp DNA fragment containing difSL wild type and difSL mutants (M1 
to M7) by increasing concentrations of MBP-XerS. 
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Figure 2. Titration of a 315 bp DNA fragment containing difSL-M7 half left site, M7-LHS (A) 
and half right site, M7-RHS (C). 
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Figure 3. Titration of a 339 bp DNA fragment containing difSL, complete difSL mutants M8 

and M9  and half sites. 
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Figure 4. XerS activity on suicide substrates. 
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Figure 5. XerS activity on half suicide substrates. 
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Figure 6. Pull-down assay between MBP-XerS and His-FtsK 
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Chapter III  

General discussion 

1. Results 

 
Briefly, the experiments performed in this thesis have demonstrated that XerS binds specifically 

to difSL and that this binding is cooperative. Binding and cleavage reactions are asymmetric since 

XerS binds preferentially to the left half site and cleaves preferentially the bottom DNA strand.  It 

has been previously demonstrated that the cleavage reaction is performed by the tyrosine 

residue (XerS position 341) directly involved in transesterification. Our experiments have also 

demonstrated that nucleotides at the outermost region of difSL seem to be determinant for 

binding selectivity rather than the inner ones, which show a high degree of binding impairment 

when mutated. Additionally, modifications of the extra spacing between the inverted repeat arms 

as well as reduction of the central region surprisingly change cleavage preference, which denotes 

the importance of the extra nucleotide on the right arm and the reason behind a larger central 

region within difSL when compared to other dif sites. 

 

2. XerS/difSL system  

The XerS/difSL system is a challenging system of study due to its uniqueness and similarities to 

most Xer/dif systems known so far. It is larger than most Xer recombinases with the exemption 

of XerH, it involves the largest dif site characterized so far and possibly, an asymmetric one with 

the right arm (12 bp) being larger than the left arm (11 bp) 50,177. It also involves only one 

recombinase as do the Cre/loxP and Flp/FRT systems, it possesses a stronger binding preference 

for the left site over the right site as do XerC or CodV, and it preferentially exchanges the BSs of 

difSL as do XerD or RipX. Despite that few papers have been published on XerS and other single 

recombinases such as XerH or XerA, it is encouraging to see the recent discoveries done on 

molecular characterization of XerA and XerH by crystallography and other advanced molecular 

biology techniques 65,66. This draws a promising parallel to analyze our data and formulate some 
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hypotheses. Do all single recombinases behave similarly despite structural differences in size and 

composition?  

Our first results indicated that XerS binding is cooperative and it is produced in two stages, one 

subunit of XerS likely binds initially to the left half site of difSL and only then a second subunit of 

XerS binds to the right half site. Our EMSA experiments showed rapid formation of complex I 

under low concentrations of protein, and if it behaves like the XerH system, it is likely that binding 

to the right half site can only occur under the occupation of the left half site in which the 

dissociation constant is much lower than the right side 66. These results led us to question how 

one subunit of XerS distinguishes between these two arms, considering that both arms are two 

palindromic sequences with relative symmetry (positions 4-7, 9-13 in the left arm and 21-25,28-

31 in the right arm), apart from an extra nucleotide (position 26) in the middle of the right inverted 

repeat (TTTCTTGAAAA) versus the left part of the sequence (TTTCCGAAAA). The M7 mutation 

addressed this divergence by positioning the extra spacing from the right arm to the left arm (M7: 

TTTCTTGAAAA-CR-TTCCGAAAA). This mutation did decrease to some degree binding efficiency 

but did not alter binding preference, indicating that the extra nucleotide does not determine XerS 

stronger binding affinity for the left arm, however this mutation switched cleavage preference, 

favoring DNA exchange of the top strand over bottom strand, this proved that the extra spacing 

is indeed an additional control for the XerS/difSL system synchronization, once all arms are 

occupied by the corresponding XerS subunits. However, if the extra spacing does not directly 

influence XerS binding preference, it is still unclear what determines it. 

In the XerH/difH system in H. pylori, XerH showed extensive direct contact with difH forming a 

tight complex in a C-shaped clamp form around each arm of the difH site. The majority of XerH 

interactions occur between helix K and the outer part of difH, this result shed light on how XerS 

might interact with difSL. A similar characteristic found in the XerCD/dif system in E. coli and 

FLP/FRT system in S. cerevisiae with the critical nucleotides for binding being located at the 

outermost region of dif and FRT respectively 189,193. Therefore, our reasoning was that the outer 

region of difSL might be determinant for XerS binding or even binding preference. Mutations M8 

and M9 address this issue by modifying a conserved TTT rich region in the left arm of the difSL 

sequence (positions 2-5). Both mutations decreased XerS binding with the entire difSL region as 
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expected, but surprisingly, when we performed the same EMSA gels with their half parts, XerS 

binding was completely abolished. This proved that XerS requires this rich TTT(2-5) region at the 

outer part of difSL to bind more efficiently and agrees with previous results about the importance 

of the outer nucleotides for binding specificity 66,189. Subsequently, we did place this rich TTT 

region on the right side to see if binding preference would shift to that arm (M10 & M11), 

unfortunately the experiments did not show any retarded band aside the free DNA (results not 

showed due to lack of repetitions). Further experiments must be done, however, if this is the 

case, other factors besides the TTT region must coordinate binding preference, either a 

combination of factors such as a specific spatial conformation or direct protein-DNA contacts. It 

is known that up to 6 amino acid residues of XerH alone interact with the equivalent outer region 

of difH, 6 residues of XerD with the outer region of the right side of dif and 8 residues of XerC with 

the outer region of the left side of dif 66,187 and that, up to one insertion or one point mutation 

greatly decrease Xer binding or cleavage on this region. Bebel and collaborators emphasized the 

importance of residue K290 of XerH which forms a specific hydrogen bond with thymine T4’ 

whereas in the other arm this interaction is not possible due to a farther distance of the respective 

thymine T5’.  Interestingly, the XerS/difSL system also possess a similar T4’ nucleotide at the left 

side at the beginning of a highly conserved region TTTC(4-7) and a similar shifted thymine in the 

right arm, but in this case located at position T3’, also in a highly conserved region AAA(29-31, top 

strand). Further experiments are necessary to determine if modifications of residue T3’ to T4’ do 

alter binding preference. It is necessary to highlight the importance of this result, since it is the 

first time it has been reported complete inhibition of XerS binding by a specific mutation. 

Suggesting that the main determinants for XerS binding are located at this region. 

Another important characteristic of the difSL binding site is its high A/T concentration, especially 

more concentrated near the scissile phosphate, which facilitates bending of double-stranded DNA 

due to a narrow minor groove produced by these rich A/T regions 194. However, modifications 

performed on these regions like M2 and M4, did not alter cleavage preference from the bottom 

strand to the top strand. On the contrary, adding one purine to the central region (M5 mutation) 

increased the intrinsic cleavage preference of XerS for the bottom strand, (Figure 4). Our 

experiments to determine cleavage activity were performed by the use of suicide substrates as 
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described before, however, they must be interpreted with caution since they might not reflect 

real conditions nor the real structure within the bacterial genome under replication. This is 

because suicide substrates, due to their small length and level of freedom, may acquire different 

conformations which might facilitate XerS cleavage that is otherwise elusive 195. In spite of this, 

the technique has proven to be reproducible (all experiments were performed by triplicate) and 

has been used  and published in different papers 158,163,192,196. Regarding our results, the exact 

reasons behind cleavage preference for the bottom strand are still unclear, mutations M1, M3 

and M7 altered cleavage preference to the top strand, three mutations only related in structural 

modifications. Literature indicates that the correlation between DNA bending and cleavage 

activity, a critical factor for tyrosine recombinases and especially important for  single 

recombinases is due to the fact that it  is the level of asymmetry of the DNA that dictates cleavage 

preference rather than the protein structure itself 66.  Bebel’s paper elucidated how difH 

asymmetry influences protein conformation on the synaptic complex, which leads to a different 

positioning of the segments (N-O) responsible for the nucleophilic attack. Therefore, it might 

be that our mutations reform protein conformation on the right arm making its subunit otherwise 

“inactive” more prone for DNA cleavage than the left arm, either by changing protein-DNA 

interactions or by facilitating bending of the DNA, consistent with the correlation between DNA 

bending and cleavage activity 56,197. However, difSL asymmetry might not be the only regulatory 

factor for cleavage preference, especially considering the similitudes between the XerS/difSL 

system and XerH/difH and/or XerCD/dif systems, two other systems highly dependent on FtsK 

interaction for the obtention of productive recombinant products. Our pull-down results allowed 

us to infer that protein-protein interaction between XerS and FtsK indeed exists, as similarly 

reported by Nolivos and collaborators (2010), and that this interaction might coordinate a 

productive synapse between difSL sites as it occurs with XerD in the XerCD/dif system. Although 

further studies must be performed, it is possible to hypothesize that FtsK might prepare the top 

strand subunit to cleave the DNA once it comes into contact with the synaptic complex within the 

genome, considering the intrinsic preference of XerS for the bottom strand. If FtsK facilitates 

either bending of the DNA or further protein-protein interactions and/or modifications to an 

active conformation, holliday junction resolution will be favorized with subsequent obtention of 
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recombinant products 99. Nolivos’ and Yates’ papers showed low homology between the residues 

involved in FtsK and XerD interaction and XerS and FtsKsl counterparts. Four of the five amino 

acids involved in XerD recognition of FtsK are conserved in these three systems, even though, Xer 

proteins are more divergent, only one of the five amino acids involved in FtsK recognition is 

conserved among these systems 2,159.  They proposed that FtsK/Xer protein interactions might 

have some degree of species specificity. It would be interesting to identify the determinants on 

XerS interaction with FtsK as well as using surface plasmon resonance studies to measure binding 

affinities between these two proteins. It is also important to understand how FtsK would play a 

regulatory role in single recombinase systems. In the XerCD/dif system, the presence of two 

different proteins plays an additional role on the stringency of the reaction, and it is the 

directionality/structure differences between XerC and XerD that determine proper recombinant 

outcome. For single recombinases, the reaction might follow a partial similar principle. Bebel and 

collaborators hypothesized that FtsK promotes rearrangement of the XerH/difH synaptic complex 

by performing two specific actions: bending of the DNA and promoting structure modification of 

XerH, in which the catalytic tyrosine is brought into the active position close to the cleavage site 

54,66. Therefore, it is possible that XerS subunits bound to the left arm, which present stronger 

binding affinity, are poised into an active cleavage state once FtsK interacts with these subunits. 

Bending of DNA (without the presence of FtsK) might be corroborated by previous experiments 

of footprinting analysis performed by Nolivos and collaborators which demonstrated both 

situations: protein-protein interactions between XerS subunits due to a zone of protection over 

the central region, and a slightly increase in DNAase I cleavage activity at each side of difSL, which 

denotes possible distortion caused by XerS binding onto difSL.  These hypotheses with respect to 

cleavage activity and FtsK interaction are discussed here assuming a cis cleavage mode, but this 

has not yet been experimentally verified, although it is most likely. Additional experiments should 

be performed to validate this hypothesis. SPR analysis, and creation of chimera proteins of XerS 

plus -subunit of FtsK along holliday junction resolution experiments with either difSL wild type 

or half-site difSL mutants (mimicking both, the complete tetrameric complex or half of it) might 

answer important questions about the affinity between these two proteins and the regulatory 
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effect of FtsK over individual bound XerS subunits  either to the left or right half sites, or the entire 

tetrameric complex.   

 

 

3. Conclusions and perspectives 

Our results allowed us to have a deeper understanding about XerS/difSL system, despite the 

requirement for more robust and extensive studies regarding not only our system but other single 

recombinase system for dimer resolution in bacteria. It is encouraging to study such proteins with 

its characteristic levels of specificity for DNA exchange, the commercial and investigative 

prospects are countless once the mechanistic insights will be completely understood, from 

genomic engineering, with wide range of applications in genome manipulation 198 to their use and 

fabrication by several biotechnological companies such as (NEB) with their product; CRE 

recombinase or System Biosciences, BIO (CA, USA) with their integrase; phiC31. Further studies 

involving plasmid integration efficiency as well as resolution of synthetic holliday junctions 

experiments must be performed to quantify binding and cleavage efficiencies. During our project 

we managed to create thermosensitive plasmids (pGhost9) capable of replication in E. coli but 

not in S. suis under non permissive conditions, harboring difSL wild type and difSL mutants. 

However, we couldn’t obtain S. suis recA- mutants in order to perform integration efficiency 

experiments as described by Le Bourgeois’ paper. Therefore, we encourage following groups to 

use our plasmids (pGhots line with mutations M1 to M6) if required, their modifications proved 

to be extremely difficult and we would be glad to know our work could save time and costs to 

other groups.  

 

A second critical part to understand the dynamics of XerS dimer resolution is to elucidate the 

determinants for protein-protein interactions between either XerS-XerS or XerS-FtsK. A series of 

mutations, specially at the C-terminal region of XerS will tell us which residues are directly 

involved in protein-protein interactions, and it will help us to understand what determines such 
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species specificity for this system in some bacteria. To further provide more information pull-

down assays and SPR experiments can be performed on the purified proteins as well as 

phenotypic characterization of S. suis xerS strains harboring those mutants within broad host 

range plasmids. Initial experiments of SPR analysis were performed with the help of professor 

Jean-François Masson of the department of Biochemistry from the University of Montreal. 

However, the experiment required highly concentrated His-XerS samples with no traces of 

imidazole nor glycerol in them, and due to our insolubility problem with this fusion protein, we 

were not able to obtain the required concentration.  

FRET experiments (Fluorescence resonance energy transfer) can also provide further information 

about the translocase activity of FtsK and its interaction with bound XerS proteins, within this 

technique, fluorophores will be attached to each protein, and the energy transfer will be 

measured as the variation of the emitted light by these fluorophores  once interaction occurs 

(normally, manifested by quenching/reduction of the donor fluorophore and augmentation of the 

acceptor fluorescence emission) 100. Our laboratory also intended to use different fluorescent tags 

(mcherry, yellow fluorescence protein (YFP) and green fluorescence protein (GFP)), plasmids 

kindly donated by Professor Reyes-Lamothe from the Department of Biology of McGill University, 

for studies of single molecule imaging. The idea would be to visualize both XerS and FtsK in real 

time and be capable to detect and measure times and levels of expression respectively, it would 

be also possible to pinpoint the exact localization of these proteins within S. suis in in vivo 

conditions. However, two important conditions must fit for this experiment. First, the level of 

autofluorescence caused by biological structures or molecules within S. suis must be low and 

secondly, the fluorescent tag must not interfere with normal cellular processes nor protein 

interactions.  In parallel we performed some experiments to detect and isolate the genes that 

encode XerC, XerD and XerS from Lactobacillus lactis with the help of the student Sarah 

Tremblay. Further studies on these 3 recombinase systems will give us more information on how 

these systems may have evolved in bacteria, and reveal which, if any of these recombination 

systems is dispensable. In addition, this work could eventually lead to the discovery of new 

methods to integrate genes into the Lactobacilli, which can lead to the development of new 

strains for the dairy and probiotics industries. Initial experiments could involve the cloning and in 
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vitro characterization of all 3 recombinases and their sites, as well as knockouts of all three 

proteins to see if deleting them singly or in combination can have any effect on growth, division, 

and chromosome segregation. 
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