
TUTORIAL ON MACHINE LEARNING 1

This is a post-peer-review, pre-copyedit version of an article published in Perspectives on

Behavior Science. The final authenticated version is available online at:

https://doi.org/10.1007/s40614-020-00270-y

Tutorial: Applying Machine Learning in Behavioral Research

Stéphanie Turgeon1 and Marc J. Lanovaz1,2

1École de psychoéducation, Université de Montréal

2Centre de recherche de l’Institut universitaire en santé mentale de Montréal

Author Note

This paper was written in partial fulfillment of the requirements for the PhD degree in

Psychoeducation at the Université de Montréal by the first author. This study was supported in

part by a Graduate Scholarship from the Social Sciences and Humanities Research Council of

Canada (SSHRC) to the first author and a salary award from the Fonds de recherche du Québec -

Santé (#269462) to the second author

Correspondence concerning this article should be addressed to Marc J. Lanovaz, École de

psychoéducation, Université de Montréal, C.P. 6128, succursale Centre-Ville, Montreal, QC,

Canada, H3C 3J7. Email: marc.lanovaz@umontreal.ca, Phone: 1 514-343-6111 #81774

https://doi.org/10.1007/s40614-020-00270-y

TUTORIAL ON MACHINE LEARNING 2

Abstract

Machine learning algorithms hold promise in revolutionizing how educators and clinicians make

decisions. However, researchers in behavior analysis have been slow to adopt this methodology

to further develop their understanding of human behavior and improve the application of the

science to problems of applied significance. One potential explanation for the scarcity of

research is that machine learning is not typically taught as part of training programs in behavior

analysis. This tutorial aims to address this barrier by promoting increased research using machine

learning in behavior analysis. We present how to apply the random forest, support vector

machine, stochastic gradient descent, and k-nearest neighbors algorithms on a small dataset to

better identify parents who would benefit from a behavior analytic interactive web training.

These step-by-step applications should allow researchers to implement machine learning

algorithms with novel research questions and datasets.

 Keywords: artificial intelligence, behavior analysis, machine learning, tutorial

TUTORIAL ON MACHINE LEARNING 3

Tutorial: Applying Machine Learning in Behavioral Research

Machine learning is a subfield of artificial intelligence that specializes in using data to

make predictions or support decision-making (Raschka & Mirjalili, 2019). One specific use of

machine learning is solving classification problems. A classification problem occurs when trying

to predict a categorical outcome (Bishop, 2006). Examples in behavior analysis includes what is

the function of a behavior (attention, escape, non-social, or tangible), whether a behavior is

occurring at a given moment, whether an independent variable is changing a behavior or whether

a treatment is likely to be effective for a given individual. Supervised machine learning is well

suited to provide solutions to these types of classification problems and support decision-making.

In supervised machine learning, an algorithm (i.e., computerized instructions) trains a

model using past observations to predict outcomes on new samples. In recent years, supervised

machine learning algorithms have been studied as useful aids to support decision-making in

multiple fields such as medicine, pharmacology, education, and health care (Coelho & Silveira,

2017; Miotto et al., 2018). Some examples include identifying breast cancer (Rajaguru &

Chakravarthy, 2019), diagnosing autism (Sadiq et al., 2019), predicting school dropout (Chung et

al., 2019), and detecting unsafe workplace behavior (Ding et al., 2018).

In behavior analysis, both researchers and practitioners rely on data to make decisions on

a regular basis. These decisions may involve determining whether an independent variable

produced an effect on a behavior, selecting an assessment, identifying the function of behavior,

or predicting whether an intervention will produce meaningful behavior changes in a specific

individual. However, researchers and practitioners may make unreliable decisions, especially

when using their professional judgment (Ninci et al., 2015; Slocum et al., 2014). Consequently,

relying on subjectivity for decision-making may result in differences from one behavior analyst

TUTORIAL ON MACHINE LEARNING 4

to another. One potential solution to this issue is to increase the use of machine learning in

behavior analysis (Lanovaz et al., 2020).

Machine learning also has direct applications for the experimental analysis of behavior

and translational research. For example, researchers could use machine learning to develop new

models that aim to predict engagement in multiple competing responses (akin to the matching

law) under varying experimental conditions. Furthermore, some algorithms may facilitate the

identification of variables associated with certain behaviors that may be difficult to isolate

experimentally (e.g., suicidal behavior, risky sexual behavior). Machine learning may even

simulate responding to test hypotheses that may be difficult to assess with living organisms (see

Burgos, 2003, 2007 for examples).

Despite the growing number of studies on the topic in the fields of healthcare and

education, applications of machine learning in behavior analysis remain limited (Burgos, 2003,

2007; Lanovaz et al., 2020; Linstead et al., 2015, 2017). In experimental work, Burgos (2003,

2007) used machine learning to simulate latent inhibition, automaintenance and autoshaping. The

results indicated that it may be possible to simulate behavioral phenomena using artificial neural

networks (i.e., a type of machine learning algorithm). In an applied example, Linstead et al.

(2015, 2017) developed a machine learning model to identify predictors of learning progress in

children with autism spectrum disorder receiving behavior analytic services. Their results

indicated that treatment intensity positively predicted children’s progress, but most interestingly

that machine learning explained almost twice as much variance of this relationship than linear

regression. Recently, Lanovaz et al. (2020) showed that machine learning algorithms

outperformed a structured visual aid to analyze simulated data from single-case AB graphs. Their

TUTORIAL ON MACHINE LEARNING 5

study indicated that machine learning produced smaller Type I error rates and larger power than

the dual-criteria method.

One potential explanation for the scarcity of research is that machine learning is not

taught as part of training programs in behavior analysis. This lack of knowledge on machine

learning and the absence of training for its application may result in researchers overlooking this

tool to contribute to the development of the science. This tutorial aims to address this barrier by

applying machine learning to a problem involving decision-making in behavior analysis.

Machine Learning Procedures and Algorithms

One of the hallmarks of behavior analysis is the pervasive use of single-case designs,

which require a small sample size. Given that machine learning is typically applied to large

datasets (Raschka & Mirjalili, 2019), some researchers may believe that behavior analytic data

are unsuitable for this type of analysis. As will be shown in the current tutorial, datasets with as

few as 25 participants or 25 sessions may produce meaningful results using machine learning.

With the growing use of consecutive case series designs in behavior analysis (e.g., Hagopian,

2020; Jessel, et al. 2019; Lomas Mevers et al., 2018; Rooker et al., 2013), several researchers

and practitioners may already have sufficiently large datasets to apply such algorithms.

Moreover, experimental researchers studying human and nonhuman organisms often use

automated apparatus to monitor behavior, which provides sufficiently large datasets to

potentially uncover novel relationships between variables. In the following sections, we present a

step-by-step application of machine learning using data from a behavioral study published by

Turgeon et al. (2020). As relevant, our paper also includes instructions on how to apply the

algorithms to other datasets. A repository containing our datasets and code is freely available on

the Open Science Framework at: https://osf.io/yhk2p/.

TUTORIAL ON MACHINE LEARNING 6

On Terms

Table 1 draws a parallel between behavioral terms and supervised machine learning. In

supervised machine learning, an algorithm trains a model using samples, which is similar to

using a specific teaching method when training a learner using exemplars. Thus, the algorithm,

the model and the samples represent the teaching method, the learner and the exemplars,

respectively. Each algorithm has its own specific hyperparameters, which are functions or values

provided to the algorithm that can be modified by the experimenter prior to training. These

hyperparameters are equivalent to the teaching parameters for a teaching method (e.g., number of

trials in discrete trial instruction, prompting procedure in direct instruction).

In the application of machine learning in behavior analysis, a sample would typically

involve the data from one participant or from one session. Supervised machine learning further

divides samples into two components: features and class labels. The features involve the input

data that are used by the algorithms. Features in machine learning are akin to discriminative

stimuli in behavior analysis. The class labels represent the responses provided and predicted by

the algorithm (i.e., the output variables). In sum, machine learning algorithms use features from

samples to train models to predict class labels in a similar manner that teaching methods focus on

using discriminative stimuli from exemplars to train learners to provide correct responses.

Our Dataset

 To illustrate the application of machine learning, we used a previously published dataset

involving behavior analytic procedures (Turgeon et al., 2020). Turgeon et al. (2020) assessed the

effects of an interactive web training to teach parents behavior analytic procedures to reduce

challenging behaviors in children with autism spectrum disorders. The results of the study

showed that, on average, parents who completed the training reported larger reductions in child

TUTORIAL ON MACHINE LEARNING 7

challenging behaviors than those who did not. However, eight children showed no improvement

in challenging behaviors even though their parent had completed the training. As the behavior of

individuals is central to research and practice in behavior analysis, one important question is

“How can we predict which parent-child dyad are unlikely to benefit from the interactive web

training?”. Hence, a behavior analyst could recommend alternatives (e.g., in-person training) to

families unlikely to benefit from web training.

Preparing the Data

Our dataset includes 26 samples, four features and one class label. Table 2 presents the

characteristics of our dataset. The samples involved 26 parents of children with autism spectrum

disorders who completed the interactive web training. We provided four features to our machine

learning algorithms: household income, most advanced degree of the parent, the child’s social

functioning, and the baseline scores on parental use of behavioral interventions at home (prior to

training). Parents initially rated their household income and most advanced degree on an ordinal

scale. Because data were highly skewed and our sample was small, data for these features were

dichotomized to create more balanced categories (i.e., categories with similar sample sizes)1. It

should be noted that dichotomizing data entails many limitations when analyzing large datasets

(e.g., loss of power, decreased effect size, and limited generalisation of findings). You should

avoid using this procedure with continuous and ordinal variables containing a large number of

samples (see Dawson & Weiss, 2012; MacCallum et al., 2002; Irwin & McClelland, 2003;

Sankey & Weissfeld, 1998). We chose the four features because three of them (i.e., most

advanced degree, social functioning, and parental use of behavioral interventions) had the

highest correlation with our class label values and the fourth feature (i.e., household income) had

1 These data are available at https://osf.io/yhk2p/

TUTORIAL ON MACHINE LEARNING 8

been previously shown to predict challenging behaviors (Leijenet et al., 2013; Shelleby & Shaw,

2014). Furthermore, our variables did not show multicollinearity2. Our class label was whether

the frequency of the child’s challenging behavior decreased from baseline to the four-week post-

test (i.e., 0 = no improvement and 1 = improvement) based on the Behavior Problem Inventory-

01 (Rojahn et al., 2001). Table 3 contains our complete dataset, which is also available as a

comma-separated values (.csv) file in the repository (see TurgeonetalData.csv).

We arranged the data of our dataset into five columns in our .csv file (i.e., four features

and one class label). The first row of each column contains the name of the variable while

subsequent rows contain the data from one sample. As such, the number of lines for each column

should equal the number of samples plus one. In our tutorial, we used 26 samples to train our

machine learning models, which produced a total of 27 rows (including the header). You should

save this file in your working directory (see below). If you want to organize your own data for

analysis with machine learning, you may enter them in a spreadsheet in a .csv compatible

program (e.g., Microsoft Excel, Google Sheets, Apple Numbers) and save your file as a .csv.

Each row should include a single sample and each column a feature or class label (keep the class

label in the rightmost column). To use the code in the current tutorial, your class label should

remain a binary variable (see Alternatives to Single Binary Classification for other options).

The Basics

Installing Software and Packages

To train our models, we used Python as it is free, offers many open access algorithms,

functions the same across operating systems, and has a large network of community support (see

Python tutorials in Appendix). The first step to training a machine learning model is

2 No significant linear association between the features

TUTORIAL ON MACHINE LEARNING 9

downloading a Python distribution. We strongly recommend that you download and install the

Anaconda distribution of Python. This distribution facilitates package management and

installation, and ensures that you have the same environment as ours to replicate the procedures

presented in this tutorial. You may download and install Anaconda from

https://www.anaconda.com. Once Anaconda has been installed, you should create a new virtual

environment by opening Anaconda Prompt (in Windows) or Terminal (in macOS or Linux) and

running the following commands in a sequential order:

conda create -n myenv python=3.7

conda activate myenv

From now on, make sure you run “conda activate myenv” whenever you close and open

Anaconda Prompt or Terminal3. If not, your code may be unable to locate the packages to run the

algorithms. Next, we must download and install three packages in this virtual environment:

spyder, pandas and scikit-learn. Spyder is an easy to use integrated development environment,

pandas facilitates the loading of data in Python, and scikit-learn contains the machine learning

algorithms. To install the packages, run the following commands sequentially (one at a time) in

myenv of Anaconda prompt (in Windows) or Terminal (in macOS or Linux):

conda install spyder

conda install pandas

conda install scikit-learn

Whenever you receive a prompt, choose “y” to install the packages and their dependencies.

Initializing the Integrated Development Environment

3 The last line of your Anaconda Prompt or Terminal screen should begin with (myenv). If it begins with (base), you

have not activated your environment correctly.

TUTORIAL ON MACHINE LEARNING 10

Once you have downloaded and installed the necessary programs and packages, open the

spyder integrated development environment that you will use to write and run your code. To

open spyder, run the following command in Anaconda Prompt or Terminal:

spyder

Figure 1 presents a screenshot of the integrated development environment. The integrated

development environment is separated in three main work areas: the editor, the iPython console,

and the variable explorer. You should write all your code in the editor (box on the left of your

screen). To run a block of code from the editor, select the code by highlighting it with your

cursor and press F9 (or click on “run selection” in the menu bar). When you run your code, any

warnings, errors, or results that you print will appear in the iPython console (box on the lower

right of your screen). If you assign a variable or load data, you can view it by clicking on the

variable explorer tab of the upper right box.

The first lines of code involve setting the working directory. That is, you need to instruct

your environment where to find the path to access the folder in which you saved the

TurgeonetalData.csv data file. To do so, write the following lines in your editor and run the

selection4:

1 import os

2 os.chdir("PATH")

In the above command, you should replace PATH by your working directory5 where the .csv file

is located. You should select these lines of code and press F9 to run the selection (or click on run

selection in the menu bar above the editor).

4 Do not copy the line numbers (on the left). These numbers are meant to guide the reader through each code block.

A line with no number indicates that the line is a continuation of the line above. It should also be noted that Python

code is case sensitive.
5 For example: C:/Users/Bob/Documents/ . If you copy the file location from the property menu of Windows

Explorer, you need to replace the backslashes with forward slashes.

TUTORIAL ON MACHINE LEARNING 11

Loading and Preparing the Data

Next, the lines of code below import the packages that include the functions that we need

to load and organize the data:

1 import numpy as np

2 import pandas as pd

Once both packages have been imported, load the .csv data file into the environment with the

following code:

1 data = pd.read_csv("TurgeonetalData.csv")

2 data_matrix = data.values

The first line loads our dataset and names it “data” whereas the second line transforms this data

to a matrix, thus facilitating the manipulation of the data. When loading your own data, you

should replace TurgeonetalData.csv by the filename of your own .csv file.

Prior to conducting machine learning, you must standardize the data of all non-normally

distributed continuous features. Non-standardized data may render the machine learning model

unable to correctly use the features to predict the class labels (Raschka & Mirjalili, 2019).

Therefore, we transformed the social functioning scores and the parental use of behavioral

interventions scores to z scores. A z score is a standardized score that is obtained by subtracting

the mean score from the raw score then dividing this value by the standard deviation. To

transform the raw scores to z scores, we need to write and run the following instructions in the

editor:

1 from sklearn import preprocessing

2 standard_scaler = preprocessing.StandardScaler()

3 data_matrix[:,2:4] =

 standard_scaler.fit_transform(data_matrix[:,2:4])

The first and second lines of code import a function to rapidly transform the raw scores to a z

score. The third line instructs the program to apply this standardization only to columns that

TUTORIAL ON MACHINE LEARNING 12

include the social functioning and parental use of behavioral interventions scores6. If you are

using your own data, you should apply the standardization to all continuous variables. The final

step to preparing the data is separating the features from the class labels:

1 x = data_matrix[:,0:4]

2 y = data_matrix[:,4]

Matrix “x” now contains the four features whereas vector “y” contains the true class labels.

When using your own data, you should replace number 4 in the code block by the number of

features in your dataset.

Outcome Measures

The most common outcome measure for binary classifications is accuracy. Accuracy

involves dividing the number of agreements between the true class label values and the

predictions of the models by the total number of predictions (Lee, 2019). One drawback of

accuracy is that it does not consider that some values may be correct as a result of chance, which

may skew the results in favor of correct predictions. Kappa is a more stringent measure of

performance than accuracy as it takes into consideration correct classifications due to chance (we

refer the reader to McHugh [2012] for a demonstration on how to compute the Kappa statistic).

The following lines import the functions to calculate these values for you:

1 from sklearn.metrics import accuracy_score, cohen_kappa_score

For kappa, any value above .20 indicates that the model reliably predicts some of the class label

values in the dataset, regardless of chance (McHugh, 2012). In contrast, benchmarks for

accuracy do not exist as the measure is dependent on the distribution of the data.

6 For those unfamiliar with matrices, we can call and manipulate specific locations in the matrix using a bracket [i,

j], where i is the row number and j the column number. Python begins indexing (numbering of rows and columns) at

0 and the last value is excluded from ranges. Therefore, data_matrix[0, 1] refers to the first row (index = 0) and

second column (i.e., index = 1). In the current example, data_matrix[:, 2:4] refers to all rows for the third and fourth

columns of the .csv file (indices = 2 and 3).

TUTORIAL ON MACHINE LEARNING 13

Comparison Measures

 Given that there is no fixed criterion to determine whether an accuracy value is adequate,

we must compute comparison measures for accuracy. One potential measure represents the

accuracy if predictions were randomly selected. The following lines of code use a Monte Carlo

method to determine this accuracy value:

1 np.random.seed(48151)

2 y_random = []

3 for i in range(100000):

4 y_random_values = np.random.choice(data_matrix[:,4], 26,

 replace = False)

5 y_random.append(accuracy_score(y, y_random_values))

The first line sets the random seed for numpy at 48151. Although not necessary in practice, we

recommend that you implement this line of code so that your environment produces the same

results as the ones reported in the tutorial. The next line (i.e., 2) creates an empty list in which

the accuracy values are stored for each iteration. The third line is a loop instructing Python to

repeat the procedures 100,000 times7 (Monte Carlo simulations). During each loop, the program

first randomly permutates the values for the 26 samples, which produces a vector named

random_values (line 4). The fifth line of code computes the accuracy score for these

random_values and appends it to the list. Finally, to compute the accuracy of a random selection

measure, we take the mean of these 100,000 iterations by running the following code:

1 print(np.mean(y_random))

The print function displays the value in the iPython console. In our example, the iPython console

should show that random selection produced an accuracy of .574 (i.e., it correctly guessed the

class labels 57.4% of the time).

7 Lines that are part of a loop (i.e., indented lines of code) must be preceded by a tab.

TUTORIAL ON MACHINE LEARNING 14

A second more stringent comparison measure involves reporting the class value with the

highest probability response. That is, what is the best accuracy we could produce if we always

guessed the same value? In our case, the most frequently observed class label value is

improvement (n = 18), which would lead to an accuracy of .692 (18 divided by 26) if we simply

predicted that all class label values were the same.

A third candidate for comparison is the logistic regression. Although sometimes

categorized as a machine learning algorithm, logistic regression is a traditional statistical

approach (i.e., a generalized linear model) that uses a linear boundary to separate data into

classes (Stefanski et al., 1986). In a systematic review, Christodoulou et al. (2019) reported that

machine learning does not systematically outperform logistic regression, which makes it a good

comparison measure. It should be noted that the purpose of the tutorial is not to show that

machine learning is always superior to the logistic regression, but how to apply machine learning

in order to determine which provides the best predictions based on your data’s distribution.

Presenting how to perform logistic regression using Python goes beyond the scope of this article.

We have made the code accessible as a supplement document and invite the reader to consult

Lee (2019) for more information on logistic regression and on how to apply this algorithm. The

logistic regression yielded an accuracy of .731 and a kappa value of .428 when applied to our

dataset.

Leave-One Out Cross-Validation

 Prior to training our machine learning models, we need to specify how to test them. One

issue with machine learning is that using the same data to train and test a model may lead to

overfitting. Overfitting carries the risk of fitting “the noise in the data by memorizing various

peculiarities of the training data rather than finding a general predictive rule” (Dietterich, 1995,

TUTORIAL ON MACHINE LEARNING 15

p. 327). In behavior analytic terms, the model would fail to generalize responding to novel,

untrained exemplars. To address this issue, researchers use cross-validation methodology to

assess their models. In cross-validation, the researcher removes part of the data during training.

This removed data is then used to test for the generalization of the model. Therefore, researchers

do not report the outcome for the training data, but rather for the test data, which were removed

and not used during the development of the model.

For small datasets, researchers recommend the leave-one out cross-validation

methodology (Wong, 2015). The leave-one out cross-validation methodology separates the

dataset into two sets of data. The first set, the training set, contains the data of all samples except

for one (hence the name leave-one out). The machine learning model uses the features and true

class labels of the training set to learn how to predict the class label values. The second dataset,

the test set, contains the remaining sample (i.e., a single sample). The latter tests the model’s

generalization to a novel, untrained sample. As such, the sample of the test set is not used during

training. The leave-one out cross-validation methodology is repeated N times (i.e., number of

samples in the dataset) so that each sample is used as the test set once. In our tutorial, the leave-

one out cross-validation methodology was repeated 26 times as our dataset contained 26

samples. To import the leave-one out cross-validation methodology, you should run the

following code from the scikit-learn package:

1 from sklearn.model_selection import LeaveOneOut

2 loo = LeaveOneOut()

The first line imports the function whereas the second line defines the parameters of the function.

In the example above, we kept the default parameters.

Some Algorithms

TUTORIAL ON MACHINE LEARNING 16

Many machine learning algorithms exist. In this tutorial, we selected four algorithms

useful for classification problems with small datasets: random forest, support vector, stochastic

gradient descent, and k-nearest neighbors classifiers. We targeted these four algorithms because

they have been widely used and apply different underlying mathematical approaches (i.e., use the

features differently to create a machine learning model; Lee, 2019; Raschka & Mirjalili, 2019)8.

The purpose of the subsequent section is not to compare the machine learning algorithms

together, which would require a large number of datasets from other studies, but to show how to

apply them.

Random Forests

 Random forests are machine learning algorithms that use an ensemble of decision trees

(called a forest) to predict an outcome (Breiman, 2001). These decision trees are a collection of

nodes that describe conditions that can be true or false for a given dataset (see Figure 2). The

algorithm follows different paths in the tree depending on whether the value of each condition in

the tree is true or false. In brief, the algorithm creates individual decision trees by (a) randomly

selecting a subset of the training set, (b) randomly selecting a subset of features at each split (i.e.,

node), and (c) keeping the feature that decreases entropy (or uncertainty of the decision) the most

to create each decision node. The algorithm then repeats this process several times (100 by

default with scikit-learn) to create a forest with many different trees. For classification problems,

the predictions of all independent trees are aggregated and the most popular prediction is selected

as the predicted class label. As an example, Figure 2 presents the first of the 100 trees in the

random forest that we produced as part of the current tutorial. The algorithm used 16 samples to

produce a tree with three features and four decision nodes. The model has 100 trees similar to the

8 We did not include artificial neural networks because they require larger datasets than our current sample size.

TUTORIAL ON MACHINE LEARNING 17

one depicted in Figure 2 that vote on the outcome. The most likely outcome becomes the

prediction of the algorithm.

 To apply the random forest algorithm, we must first import the random forest classifier

function:

1 from sklearn.ensemble import RandomForestClassifier

2 rf = RandomForestClassifier(class_weight = 'balanced', random_state

= 48151)

The second line of the code above provides the hyperparameters for the algorithm. The

random_state variable is optional in practice, but it guarantees the production of a consistent

output. Because there is a random component to the algorithm, setting the random_state will

ensure that you obtain the same results as the ones presented in this tutorial every time you run

the code in Python. Setting the class_weight as balanced ensures that both values of our class

label carry the same weight, which is necessary because the number of samples with the class

label value improvement (n = 18) was much larger than that of the no improvement (n = 8) class

label value. Hence, balancing the weights of the class label values prevents the model from

overclassifying predictions in the class label value with the largest number of samples.

 Now, we need to run the code to train and test our models:

1 rf_pred = []
2 for train_index, test_index in loo.split(data_matrix):

3 x_train, y_train, x_test, y_test = x[train_index, :],

 y[train_index], x[test_index, :], y[test_index]

4 rf.fit(x_train, y_train)

5 prediction = rf.predict(x_test)

6 rf_pred.append(prediction)

The first line of code creates an empty list to store the prediction made by the random forest

model after each iteration. The second line instructs Python to use the leave-one out cross-

validation methodology to train and test the random forest algorithm. The loop runs 26 iterations

during which it trains and tests 26 models, which are each computed using a different sample as

TUTORIAL ON MACHINE LEARNING 18

the test set. The code of the third line creates the training and test sets for the features (x) and the

class labels (y) for each iteration. The next step (line 4) involves using the fit function to train the

random forest machine learning model to solve your classification problem using the features

(x_train) and class labels (y_train) of your training set. Finally, the fifth line predicts the class

label of the test set using the test features (x_test) and the last line appends the results to the list.

Once Spyder has run the 26 iterations, we can write the following code to compute the

accuracy and kappa scores:

1 print(accuracy_score(rf_pred, y))

2 print(cohen_kappa_score(rf_pred, y))

The rf_pred list contains the predictions whereas the y vector includes the true values. At this

point, we remind the reader that these predictions were made on data not included in the set used

to train the models (out-of-sample prediction) to prevent overfitting. In our example, the model

trained using the random forest classifier produced an accuracy of .769. Put differently, using the

models developed by the algorithms led to correctly predicting whether a child would benefit

from their parent following the web training in 77% of the sample. The random forest algorithm

outperforms all three comparison measures for this classification task (see left side of Table 4 for

comparisons). In addition, the model produced a kappa value of .458, which represents a

moderate agreement of the models with the actual observations (McHugh, 2012). The main

advantage of random forests over the other proposed algorithms is that we can visualize the

individual trees (see Figure 2), which may lead to the development of novel hypotheses on the

contribution of each feature. For example, a researcher could print all the trees and examine how

each feature influences categorization to develop hypotheses about the underlying decision-

making process.

Support Vector Classifier

TUTORIAL ON MACHINE LEARNING 19

 Support vector classifiers separate opposing class labels (i.e., in our example

improvement and no improvement) using decision boundaries (called hyperplanes). In support

vector classifiers, only extreme data points (i.e., those that are closest to the opposing class label)

contribute to the development of the prediction model. Maximizing the margin (i.e., the space

between the decision boundary and the nearest samples for each class) increases the model’s

ability to correctly predict the class label of untrained data (Bishop, 2006). Support vector

classifier relies on linearity (i.e., a directly proportional relationship between the feature and the

class label) to classify data into class labels. When the relation between the features and the class

labels are non-linear or use multiple features (i.e., more than two), a function is applied (called a

kernel) to transform the data into a higher dimension (e.g., two-dimensions into three

dimensions) so that data can be linearly separated with a hyperplane (Qian et al., 2015). Figure 3

presents an example of data that could not be separated linearly in a two-dimensional space, but

that could be separated by a plane when a third dimension was added. The space (i.e., the area in

the graph in relation to the plane or hyperplane) where a sample is located predicts the class label

value.

To apply the support vector classified algorithm, we start by importing the function from

the scikit-learn package:

1 from sklearn import svm

2 svc = svm.SVC(class_weight = 'balanced')

We only specified one hyperparameter for this machine learning algorithm: the class weight. As

per random forest, we balanced the class weights. The remaining code is identical to the one we

have developed for the random forest algorithm, except that we replaced rf by svc:

1 svc_pred = []

2 for train_index, test_index in loo.split(data_matrix):

3 x_train, y_train, x_test, y_test = x[train_index, :],

 y[train_index],x[test_index, :], y[test_index]

TUTORIAL ON MACHINE LEARNING 20

4 svc.fit(x_train, y_train)

5 prediction = svc.predict(x_test)

6 svc_pred.append(prediction)

7 print(accuracy_score(svc_pred, y))

8 print(cohen_kappa_score(svc_pred, y))

The output should show an accuracy of .654 and a kappa of .264, which is marginally better than

the random selection but not as accurate as the highest probability response and logistic

regression comparison measures. When compared to other algorithms, the support vector

classifier has the benefit of being deterministic, which makes the results easier to replicate. In

other words, the algorithm does not contain a random component: it will thus always produce the

same results given the same features. The kernel function also makes is suitable for non-linear

data.

Stochastic Gradient Descent

Stochastic gradient descent is an optimization algorithm designed to reduce the error

produced by a function (Raschka and Mirjalili, 2019). As part of the tutorial, we focus on the

logistic function as it is a common method to separate data into classes (Peng et al., 2002). The

main difference with traditional logistic regression is that the response is optimized within an

iterative process that produces a nonlinear transformation. During stochastic gradient descent,

the features are multiplied by a matrix of weights and the algorithm calculates the prediction

error using the logistic function. Based on this error, the algorithm applies a correction to adjust

the weights decreasing the prediction error for each successive iteration, which are referred to as

epochs. In other words, the process is akin to shaping in behavior analysis where the algorithm

selects (reinforces) successively closer approximations (i.e., less error). That said, researchers

must remain wary of running too many epochs as it may overfit the training data and fail to

generalize to novel samples (faulty discriminative control). Compared to random forests that use

TUTORIAL ON MACHINE LEARNING 21

multiple independent trees to make a prediction, stochastic gradient descent keeps a single

model.

The first step to applying stochastic gradient descent is to import the function from scikit-

learn and define the hyperparameters:

1 from sklearn.linear_model import SGDClassifier

2 sgd = SGDClassifier(class_weight = 'balanced', loss = "log",

 penalty="elasticnet", random_state = 48151)

In our example, we specified four hyperparameters: class weight, loss, penalty, and random state

(see line 2). Given that the weight matrix is initialized using a random function, the random_state

variable ensures that the results remain consistent. We balanced the class weights to prevent the

model from always predicting the most probable response. The loss implements the logistic

function. Finally, we added a penalty term to minimize overfitting. Elasticnet adds some

variability when the algorithm updates the weights, which improves generalization to untrained

samples. Once again, the code is the same as for the rf function except that we replace rf by sgd:

1 sgd_pred = []

2 for train_index, test_index in loo.split(data_matrix):

3 x_train, y_train, x_test, y_test = x[train_index, :],

 y[train_index],x[test_index, :], y[test_index]

4 sgd.fit(x_train, y_train)

5 prediction = sgd.predict(x_test)

6 sgd_pred.append(prediction)

7 print(accuracy_score(sgd_pred, y))

8 print(cohen_kappa_score(sgd_pred, y))

The iPython console shows that our stochastic gradient descent model produced an accuracy of

.692 and a kappa of .325, outperforming the random selection comparison measure but not the

highest probability response and the logistic regression. In the current study, we limited the

application of the stochastic gradient descent to a logistic function. One of the advantages of the

stochastic gradient descent is that its flexibility allows its application to other functions.

K-Nearest Neighbors

TUTORIAL ON MACHINE LEARNING 22

The k-nearest neighbors algorithm uses feature similarity between samples to predict a

class label (Raschka and Mirjalili, 2019). In brief, the algorithm identifies samples that are most

similar to a new sample (i.e., nearest neighbors). Using a predetermined number of nearest

neighbors (i.e., k), the model makes a prediction based on the most popular class label. In the k-

nearest neighbors algorithm, nearest neighbors are often identified by calculating the linear

distance between two points. Selecting an appropriate k is essential because different numbers of

nearest neighbors can result in different predictions (i.e., class labels).

 As for the other algorithms, we must first import the k-nearest neighbors function and set

its hyperparameters:

1 from sklearn.neighbors import KNeighborsClassifier

2 knn = KNeighborsClassifier()

In this example, the function uses the default hyperparameters, which involve the five closest

neighbors (i.e., k = 5). Again, we then run the same code as for the random forest algorithm,

replacing rf by knn:

1 knn_pred = []

2 for train_index, test_index in loo.split(data_matrix):

3 x_train, y_train, x_test, y_test = x[train_index, :],

 y[train_index],x[test_index, :], y[test_index]

4 knn.fit(x_train, y_train)

5 prediction = knn.predict(x_test)

6 knn_pred.append(prediction)

7 print(accuracy_score(knn_pred, y))

8 print(cohen_kappa_score(knn_pred, y))

The k-nearest neighbors algorithm produced the worst accuracy (i.e., .615) and kappa (i.e., -

.048). This algorithm performed slightly better than the random selection comparison

measure,but produced measures lower than those of the highest probability response and the

logistic regression. Nonetheless, the k-nearest neighbors algorithm has the following advantages:

it is deterministic, easy and fast to implement, and it can readily detect non-linear patterns.

Hyperparameter Tuning

TUTORIAL ON MACHINE LEARNING 23

 Three of the four machine learning algorithms did not perform any better than the logistic

regression. In all our applications, we generally used the default hyperparameters of the

algorithms to train our models, which explains why the performance was not optimal. To

improve accuracy, researchers should use a procedure referred to as hyperparameter tuning to set

optimal values (Raschka and Mirjalili, 2019). In hyperparameter tuning, the experimenter (a)

tests the accuracy (or error) of different combinations and values of hyperparameters, and (b)

selects the one that produces the best outcome measure. This selection of the best outcome

cannot rely on the test set as it may lead to overfitting and failures of the results to generalize to

novel datasets. Therefore, we must create a new set, the validation set, on which to assess the

outcome of hyperparameter tuning. The upper panel of Figure 4 shows how our code generated a

validation set for the current dataset.

In most cases, researchers are unaware of the best hyperparameter settings for each of

their algorithms as these values vary across datasets. Therefore, we strongly recommend the use

of hyperparameter tuning if no prior values are available for similar datasets in the research

literature. These hyperparameters to tune vary across algorithms. Examples of hyperparameters

are the number of trees in the random forest, the number of epochs (loops) in stochastic gradient

descent, and the number of neighbors in the k-nearest neighbors algorithm. Given that the

hyperparameters vary considerably across algorithms, we cannot provide a comprehensive list

here. When unsure which hyperparameters to manipulate, we strongly recommend that

researchers examine prior studies using the same algorithm. Alternatively, researchers may use

grid search or random search procedures to conduct comprehensive tuning (see Appendix for a

link on instructions on how to proceed).

TUTORIAL ON MACHINE LEARNING 24

Because the k-nearest neighbors algorithm performed worst in our prior analyses, we use

it as an example to explain how to implement hyperparameter tuning. To facilitate

hyperparameter tuning using leave-one out cross-validation, we must program a function to

conduct the tuning at each iteration. The first step is importing the joblib package, which allows

us to save the best model:

1 import joblib

Then, we must write a function that keeps the best model (i.e., the highest accuracy on the

validation set) following each iteration of the leave-one out cross-validation loop:

1 def knn_train(x_train, y_train, x_valid, y_valid):

2 k_values = np.arange(1, 11, 1)

3 best_acc = 0

4 for k in k_values:

5 knn = KNeighborsClassifier(k)

6 knn.fit(x_train, y_train)

7 prediction = knn.predict(x_valid)

8 current_acc = accuracy_score(prediction, y_valid)

9 if current_acc > best_acc:

10 best_acc = current_acc

11 filename = 'best_knn.sav'

12 joblib.dump(knn, filename)

13 best_knn = joblib.load('best_knn.sav')

14 return best_knn

The first line informs Python that the subsequent indented lines define a function that takes our

training data (x_train, y_train) and our validation data (x_valid, y_valid) as input. The second

line provides the range of k values to test (1 to 10 neighbors) whereas the third line initializes the

best accuracy value at 0. The code runs in a loop wherein each loop tests a different value of k

(see line 4). Lines 5 and 6 train the model using the training set with k neighbors. The seventh

and eight lines assess accuracy on the validation data. Line 9 contains a conditional formula that

runs lines 10 to 12 only if the accuracy computed for this value of k on the validation set is

higher than for any previous k value. The instructions involve three steps: replacing the best

accuracy value by the current accuracy value (line 10), providing a name of the file where to

TUTORIAL ON MACHINE LEARNING 25

save the model (line 11), and saving this model. The last two lines return the model (i.e., the

model with the number of k neighbors) that produced the best accuracy on the validation set.

 The next step is to run this function with each loop of the leave-one out cross-validation

to examine the effects of the model on the test set:

1 from sklearn.model_selection import train_test_split

2 best_knn_pred = []

3 for train_index, test_index in loo.split(data_matrix):

4 x_train, y_train, x_test, y_test = x[train_index, :],

 y[train_index],x[test_index, :], y[test_index]

5 x_train, x_valid,y_train, y_valid = train_test_split(x_train,

 y_train, test_size = 0.20, random_state = 48151)

6 best_knn = knn_train(x_train, y_train, x_valid, y_valid)

7 prediction = best_knn.predict(x_test)

8 best_knn_pred.append(prediction)

9 print(accuracy_score(best_knn_pred, y))

10print(cohen_kappa_score(best_knn_pred, y))

The reader should already be familiar with some of the code in the previous block because it is

very similar to the code used during training with the default hyperparameters. We will focus on

the lines that differ. The first line imports a function that splits the training set into two subsets:

the training set and the validation set (see line 5). The test_size parameter indicates that 20% of

the data should be moved to the validation set and 80% should remain in the training set. Thus,

the validation set contains 5 samples and the training set 20 samples. In line 6, we replace the

knn.fit formula by our new function, which returns the tuned model that produces the best

accuracy on the validation set. The output clearly shows that the tuned model outperforms the

model with the default hyperparameters. The accuracy on the test set increased from .615 to .808

whereas the kappa score increased from -.048 to .591.

 In a similar manner, we could conduct hyperparameter tuning for the other machine

learning algorithms, but we leave it up to the reader to try it out on their own. The code is

available in the ML_step-by-step.py file of the repository starting on line 162. Table 4 compares

the results obtained by each algorithm without and with hyperparameter tuning so that the

TUTORIAL ON MACHINE LEARNING 26

readers can compare their results. Clearly, conducting hyperparameter tuning leads to more

accurate models. Except for the stochastic gradient descent which produced similar results, all

hypertuned models outperformed the simple logistic regression as well as the other comparison

measures.

Practical Considerations

Selecting Features

The selection of features merits further discussion as careful selection may lead to better

models and minimize overfitting (and the opposite is true for inadequate selection). First,

researchers should avoid cherry-picking their features by selecting those that produce the most

accurate model on the test set. This cherry-picking may lead to models that produce overfitting

on novel, untrained exemplars. Instead, feature selection should involve a rigorous approach.

Researchers generally categorize feature selection methods in three broad categories: filter,

wrapper, and embedded (Cai et al., 2018; Visalakshi & Radha, 2014). Filter methods typically

involve keeping features with specific statistical properties (e.g., significant relationship with the

outcome variable, correlation threshold). Wrapper methods consist of systematically searching

different combinations of features to identify the one that produces the best outcome. Finally,

embedded methods integrate feature selection within the machine learning algorithm by

identifying or emphasizing features that produce the best predictions. Describing the advantages

and disadvantages of these methods goes beyond the scope of this tutorial. We suggest that the

reader consult Cai et al. (2018) and Visalakshi and Radha (2014) for a review of different feature

selection methods.

 In the tutorial, we selected three of our features because they had been shown to be

correlated with the class label and displayed no multicollinearity, which is similar to a filter-

TUTORIAL ON MACHINE LEARNING 27

based approach. Alternatively, our procedures could have involved hyperparameter tuning for

feature selection (i.e., a wrapper method). In this alternative, the features included in the model

would represent the hyperparameter. As indicated earlier, this approach is only viable if the

selection of features relies on a validation set. We feel that it is important to repeat here that the

selection of features should never rely on the results of the test set. Another consideration when

selecting features is the measurement scale (e.g., nominal, ordinal, continuous). For the tutorial,

we dichotomized two features. The dichotomization of the features was done to better balance

the samples as the data were highly skewed. While this procedure may lower chances of

overfitting, the reader should bear in mind that decreasing the number of degrees of freedom may

result in a loss of power.

Selecting an Algorithm

 We reviewed four different types of algorithms as part of the current tutorial. One

important question remains: When to select one algorithm over another? Unfortunately, the

research literature does not provide a straightforward answer to this question and the results from

this tutorial should not be used as performance indicators as we examined a single specific

dataset. One solution is to compare the results across algorithms (as we have done with

hyperparameter tuning) and to select the algorithm that produces the best outcome. The

advantages of each algorithm may also guide the selection. The random forest and the k-nearest

neighbors algorithms are easy to explain, intuitive, and allow an analysis of why the samples are

categorized the way they are. In contrast, stochastic gradient descent are like black boxes; even

when very accurate, we cannot identify the underlying mechanisms that produced the outcomes.

The k-nearest neighbors and support vector classifiers produce deterministic results, which

TUTORIAL ON MACHINE LEARNING 28

renders them more stable than those that have a random component. Finally, the random forest

may require little to no tuning to produce accurate predictions with small sets.

About Samples

 Earlier in the tutorial, we suggested that the models could be trained with datasets with as

few as 25 samples: a series of features and class labels for 25 exemplars on which you can make

predictions. This rule-of-thumb is a lower limit. When everything else is kept equal, algorithms

with more data will train more accurate models and reduce overfitting. The only dataset that we

had at hand for the tutorial contained 26 samples, but we strongly recommend that you aim for

more. Samples may take on many forms. For example, a sample may represent a participant and

their responding to a treatment (as in our tutorial). In experimental research, a sample could

involve the rate of lever presses by a rat within 1 min; each minute of the session would thus be a

different sample. Alternatively, a sample could be a complete session if the models were

designed to predict the percentage of behavior over longer periods of time. In this case, each

session could count as a sample. Nevertheless, you would still want many different subjects (e.g.,

10 subjects with 10 sessions) in order to measure and to validate the generalizability of the

models within and across subjects.

Alternatives to Single Binary Classification

 Our tutorial focused on one type of problem: binary classification. We can readily apply

the same algorithms to multilabel classification problems. Assume that we want to predict the

function of a challenging behavior. The output would involve four class labels (columns), one

per challenging behavior function. Each class label would remain binary: 1 = positive, 0 =

negative. Another type of problem that can be solved using machine learning is predicting

specific values. For example, a researcher may aim to predict the percentage of behavior during a

TUTORIAL ON MACHINE LEARNING 29

session based on some other variables. In this case, we recommend using a regressor rather than

a classifier. Fortunately, the packages that we have used for classification all have regressor

equivalents: RandomForestClassifier becomes RandomForestRegressor, svm.SVC becomes

svm.SVR, SGDClassifier become SGDRegressor, and KNeighborsClassifier becomes

KNeighborsRegressor. The kappa and accuracy measures are not appropriate for regressors.

Alternatives include the mean_square_error and mean_absolute_error functions from the scikit-

learn package.

Cross-Validation

In the tutorial, we reviewed only one type of cross-validation: the leave-one out method.

A second type of cross-validation is the holdout method, which divides datasets into a single

training set and a single test set. The test set remains consistent across all analyses and is never

used during training. Thus, we do not need to program a loop. To split the dataset, we run the

following code:

1 from sklearn.model_selection import train_test_split

2 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size

 = 0.20, random_state = 48151)

The random_state parameter ensures that the results remain constistent across replications

whereas the test_size parameter indicates the proportion of samples in the dataset that should be

placed in the test set. Figure 4 (bottom panel) shows an example of holdout cross-validation with

a hypothetical dataset containing 100 samples. In this case, a value of .20 produces a test set with

20 samples and a training set with 80 samples. Although generally applied when datasets are

larger, Vabalas et al. (2019) found that a such approach to building and testing a machine

learning model produced the least biased outcomes.

 A third method relevant to behavioral researchers is the k-fold cross-validation method

(Wong, 2015). The k-fold method is a hybrid between the leave-one out and holdout methods. In

TUTORIAL ON MACHINE LEARNING 30

the k-fold method, the k represents the number of times the cross-validation is repeated. For

example, a k of 5 involves running the cross-validation five times. Each iteration, the algorithm

uses four fifths (80%) of the data for training and one fifth (20%) of the data for testing. The data

in testing differs across each iteration so that all samples are included in the test set exactly once.

To implement k-fold cross-validation, we need to import the algorithm using:

1 from sklearn.model_selection import KFold

2 kf = KFold(k)

In the example above, k represents the number of folds, which should be an integer. Then, we

replace the loo.split(data_matrix) loop by the following code:

1 for train_index, test_index in kf.split(data_matrix):

The k-fold method is a strong alternative to the holdout method when the number of samples is

limited as it rotates all the samples in the test set (see Cross Validation in Appendix).

Conclusion

 As part of the current tutorial, we demonstrated how to apply four different machine

learning algorithms to train models to predict whether specific parents would benefit from an

interactive web training. We developed this tutorial to raise awareness of the potential use of

machine learning to support decision-making in the field of behavior analysis. The purpose of

our tutorial was to demonstrate how machine learning can aid researchers in analyzing small

datasets and not to prove that machine learning always performs better than traditional statistics

(which is not the case). Machine learning has the advantage of conducting nonlinear

discrimination beyond the logistic regression and of analyzing small datasets that do not respect

assumptions typically found in parametric tests. Thus, this paper presents an approach, which

behavioral researchers may add to their toolbox to address questions important to our

understanding of human behavior.

TUTORIAL ON MACHINE LEARNING 31

 In our tutorial, we showed that models developed with machine learning may predict

which parents could benefit from an interactive web training. Until independent researchers

replicate our procedures with more data and carefully examine its social validity, we do not

recommend the adoption of these models in practice. If these models are further validated, they

could lead to better decision-making. Currently, behavior analysts rely on their professional

judgment to decide whether a parent could benefit from a specific type of training. The machine

learning models may support behavior analysts in making more consistent and more accurate

decisions. The litmus test for such an approach will be comparing the decisions of the models

with the decisions taken by trained behavior analysts, which goes beyond the scope of a tutorial

on how to apply these machine learning algorithms.

The application of machine learning in behavior analysis is still in its infancy. If the rapid

adoption of machine learning by other fields is any indication, we expect that behavior analysts

will increasingly use this approach in their experimental work, applied research, and practice.

Examples of uses wherein machine learning could support behavior analysts include the

identification of novel variables that play a role in the development and maintenance of behavior,

the prediction of intervention effects or rates of behavior within experimental settings, the

measurement of behavior, the analysis of functional assessment data, and the inspection of

single-case designs. The benefits may range from a better understanding of the causes behavior

to practitioners making more reliable and accurate clinical and educational decisions. This

tutorial may thus serve as a starting point for behavioral researchers looking for an introduction

to machine learning and its applications.

TUTORIAL ON MACHINE LEARNING 32

References

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.

https://doi.org/10.1023/A:1010933404324.

Burgos, J. E. (2003). Theoretical note: Simulating latent inhibition with selection

ANNs. Behavioural Processes, 62(1-3), 183-192. https://doi.org/10.1016/s0376-

6357(03)00025-1

Burgos, J. E. (2007). Autoshaping and automaintenance: A neural-network approach. Journal of

the Experimental Analysis of Behavior, 88(1), 115-130.

https://doi.org/10.1901/jeab.2007.75-04

Cai, J., Luo, J., Wang, S., & Yang, S. (2018). Feature selection in machine learning: A new

perspective. Neurocomputing, 300, 70-79. https://doi.org/10.1016/j.neucom.2017.11.077

Christodoulou, E., Ma, J., Collins, G. S., Steyerberg, E. W., Verbakel, J. Y., & Van Calster, B.

(2019). A systematic review shows no performance benefit of machine learning over

logistic regression for clinical prediction models. Journal of Clinical Epidemiology, 110,

12-22. https://doi.org/10.1016/j.jclinepi.2019.02.004

Chung, J. Y., & Lee, S. (2019). Dropout early warning systems for high school students using

machine learning. Children and Youth Services Review, 96, 346-353.

https://doi.org/10.1016/j.childyouth.2018.11.030

Coelho, O. B., & Silveira, I. (2017, October). Deep learning applied to learning analytics and

educational data mining: A systematic literature review. In Brazilian Symposium on

Computers in Education, 28(1), 143-152. https://doi.org/10.5753/cbie.sbie.2017.143

https://doi.org/10.1016/j.childyouth.2018.11.030

TUTORIAL ON MACHINE LEARNING 33

Dawson, N. V., & Weiss, R. (2012). Dichotomizing continuous variables in statistical analysis:

A practice to avoid. Medical Decision Making, 32(2), 225-226.

http://doi.org/10.1177/0272989X12437605

Dietterich, T. (1995). Overfitting and undercomputing in machine learning. ACM Computing

Surveys, 27(3), 326-327. https://doi.org/10.1145/212094.212114

Ding, L., Fang, W., Luo, H., Love, P. E. D., Zhong, B., & Ouyang, X. (2018). A deep hybrid

learning model to detect unsafe behavior: Integrating convolution neural networks and

long short-term memory. Automation in Construction, 86, 118-124.

https://doi.org/10.1016/j.autcon.2017.11.002

Hagopian, L. P. (2020). The consecutive controlled case series: Design, data-analytics, and

reporting methods supporting the study of generality. Journal of Applied Behavior

Analysis, 53(2), 596-619. https://doi.org/10.1002/jaba.691

Harrison, P. L., & Oakland, T. (2011). Adaptive Behavior Assessment System-II: Clinical use

and interpretation. Academic Press.

Irwin, J. R., & McClelland, G. H. (2003). Negative consequences of dichotomizing continuous

predictor variables. Journal of Marketing Research, 40(3), 366-371.

http://doi.org/10.1509/jmkr.40.3.366.19237

Jessel, J., Metras, R., Hanley, G. P., Jessel, C., & Ingvarsson, E. T. (2020). Evaluating the

boundaries of analytic efficiency and control: A consecutive controlled case series of 26

functional analyses. Journal of Applied Behavior Analysis, 53(1), 25-43.

https://doi.org/10.1002/jaba.544

https://doi.org/10.1016/j.autcon.2017.11.002

TUTORIAL ON MACHINE LEARNING 34

Lanovaz, M. J., Giannakakos, A. R., & Destras, O. (2020). Machine learning to analyze single-

case data: A proof of concept. Perspectives on Behavior Science, 43(1), 21-38.

https://doi.org/10.1007/s40614-020-00244-0

Lee, W.-M. (2019). Python machine learning. Wiley.

Leijten, P., Raaijmakers, M. A., de Castro, B. O., & Matthys, W. (2013). Does socioeconomic

status matter? A meta-analysis on parent training effectiveness for disruptive child

behavior. Journal of Clinical Child & Adolescent Psychology, 42(3), 384-392.

https://doi.org/10.1080/15374416.2013.769169

Linstead, E., Dixon, D. R., French, R., Granpeesheh, D., Adams, H., German, R., ... & Kornack,

J. (2017). Intensity and learning outcomes in the treatment of children with autism

spectrum disorder. Behavior Modification, 41(2), 229-252.

https://doi.org/10.1177/0145445516667059

Linstead, E., German, R., Dixon, D., Granpeesheh, D., Novack, M., & Powell, A. (2015,

December). An application of neural networks to predicting mastery of learning

outcomes in the treatment of autism spectrum disorder. In 2015 IEEE 14th International

Conference on Machine Learning and Applications (pp. 414-418). IEEE.

https://doi.org/10.1109/ICMLA.2015.214

Lomas Mevers, J., Muething, C., Call, N. A., Scheithauer, M., & Hewett, S. (2018). A

consecutive case series analysis of a behavioral intervention for enuresis in children with

developmental disabilities. Developmental Neurorehabilitation, 21(5), 336-344.

https://doi.org/10.1080/17518423.2018.1462269

TUTORIAL ON MACHINE LEARNING 35

Maccallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of

dichotomization of quantitative variables. Psychological Methods, 7(1), 19-40.

http://doi.org/10.1037/1082-989x.7.1.19

McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica, 22(3), 276-

282.

Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2017). Deep learning for healthcare:

Review, opportunities and challenges. Briefings in Bioinformatics, 19(6), 1236-1246.

https://doi.org/10.1093/bib/bbx044

Ninci, J., Vannest, K. J., Willson, V., & Zhang, N. (2015). Interrater agreement between visual

analysts of single-case data: A meta-analysis. Behavior Modification, 39(4), 510-541.

https://doi.org/10.1177/0145445515581327

Peng, C. Y. J., Lee, K. L., & Ingersoll, G. M. (2002). An introduction to logistic regression

analysis and reporting. The Journal of Educational Research, 96(1), 3-14.

https://doi.org/10.1080/00220670209598786

Qian, Y., Zhou, W., Yan, J., Li, W., & Han, L. (2015). Comparing machine learning classifiers

for object-based land cover classification using very high resolution imagery. Remote

Sensing, 7(1), 153-168. https://doi.org/10.3390/rs70100153

Rajaguru, H., & Chakravarthy, S. R. S. (2019). Analysis of decision tree and k-nearest neighbor

algorithm in the classification of breast cancer. Asian Pacific Journal of Cancer

Prevention, 20(12), 3777-3781. https://doi.org/10.31557/APJCP.2019.20.12.3777

Raschka, S., & Mirjalili, V. (2019). Python machine learning: Machine learning and deep

learning with Python, scikit-learn, and TensorFlow 2 (3rd ed.). Packt Publishing Ltd.

Rich, E., & Knight, K. (1991). Artificial intelligence. McGraw-Hill Education.

TUTORIAL ON MACHINE LEARNING 36

Rojahn, J., Matson, J. L., Lott, D., Esbensen, A. J., & Smalls, Y. (2001). The Behavior Problems

Inventory: An instrument for the assessment of self-injury, stereotyped behavior, and

aggression/destruction in individuals with developmental disabilities. Journal of Autism

and Developmental Disorders, 31(6), 577-588. https://doi.org/10.1023/a:1013299028321

Rooker, G. W., Jessel, J., Kurtz, P. F., & Hagopian, L. P. (2013). Functional communication

training with and without alternative reinforcement and punishment: An analysis of 58

applications. Journal of Applied Behavior Analysis, 46(4), 708-722.

https://doi.org/10.1002/jaba.76

Sadiq, S., Castellanos, M., Moffitt, J., Shyu, M., Perry, L., & Messinger, D. (2019). Deep

learning based multimedia data mining for autism spectrum disorder (ASD) Diagnosis.

2019 International Conference on Data Mining Workshops (ICDMW), 847-854.

Sankey, S. S., & Weissfeld, L. A. (1998). A study of the effect of dichotomizing ordinal data

upon modeling. Communications in Statistics - Simulation and Computation, 27(4), 871-

887. http://doi.org/10.1080/03610919808813515

Shelleby, E. C., & Shaw, D. S. (2014). Outcomes of parenting interventions for child conduct

problems: A review of differential effectiveness. Child Psychiatry and Human

Development, 45(5), 628-645. https://doi.org/10.1007/s10578-013-0431-5

Slocum, T. A., Detrich, R., Wilczynski, S. M., Spencer, T. D., Lewis, T., & Wolfe, K. (2014).

The evidence-based practice of applied behavior analysis. The Behavior Analyst, 37(1),

41-56. https://doi.org/10.1007/s40614-014-0005-2

Stefanski, L. A., Carroll, R. J., & Ruppert, D. (1986). Optimally hounded score functions for

generalized linear models with applications to logistic regression. Biometrika, 73(2), 413-

424. https://doi.org/10.1093/biomet/73.2.413

TUTORIAL ON MACHINE LEARNING 37

Turgeon, S., Lanovaz, M. J., & Dufour, M.-M. (2020). Effects of an interactive web training to

support parents in reducing challenging behaviors in children with autism. Behavior

Modification. Advance online publication. https://doi.org/10.1177/0145445520915671

Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019). Machine learning algorithm

validation with a limited sample size. PloS one, 14(11), e0224365-e0224365.

https:/doi.org/10.1371/journal.pone.0224365

Visalakshi, S., & Radha, V. (2014). A literature review of feature selection techniques and

applications: Review of feature selection in data mining. 2014 IEEE International

Conference on Computational Intelligence and Computing Research, 1-6. .

https://doi.org/10.1109/ICCIC.2014.7238499

Wong, T.-T. (2015). Performance evaluation of classification algorithms by k-fold and leave-

one-out cross validation. Pattern Recognition, 48(9), 2839‑2846.

https://doi.org/10.1016/j.patcog.2015.03.009

TUTORIAL ON MACHINE LEARNING 38

Table 1

Parallels Between Machine Learning and Behavior Analytic Terms

Machine Learning Behavior Analysis

Algorithm Teaching method

Model Learner

Sample Exemplar

Features Discriminative stimuli

Class label Correct response

Prediction Learner’s response

Hyperparameter Teaching parameter

TUTORIAL ON MACHINE LEARNING 39

Table 2

Description of the Variables in the Dataset

Variable Questionnaire Type Values

Feature 1

Household income

Binary 0 = Less than $90 000

1 = $90 000 or higher

Feature 2

Highest diploma

Binary 0 = College or lower

1 = University and

higher

Feature 3

Social functioning ABAS-II - Social

domain

Continuous z score

Feature 4

Parental use of behavioral

interventions at baseline

Ad hoc questionnaire

(see Turgeon et al.

2020)

Continuous z score

Class Label

Improvement in the

frequency of child

challenging behaviors

BPI Binary 0 = No improvement

1 = Improvement

Note. BPI: Behavior Problem Inventory (Rojahn et al., 2001); ABAS-II: Adaptive Behavior

Assessment System - Second Edition (Harrison & Oakland, 2011).

TUTORIAL ON MACHINE LEARNING 40

Table 3

Complete Dataset with Feature and Class Label Values

Household Income

Most Advanced

Degree

Social

Functioning

Parental Use of

Behavioral

Interventions

Improvement in the

Frequency of Child

Challenging Behaviors

0.5* 0 70 17 1

0 0 75 14 1

1 1 70 18 1

0 1 68 15 0

0 0 55 18 1

0 0 68 15 0

0 0 58 12 0

1 1 77 18 1

0 1 87 16 0

0 0 90 17 1

0 0 55 15 1

0 0 68 18 1

1 1 70 18 1

1 0 87 18 1

1 1 71 19 1

1 1 75 14 1

0 0 58 17 1

0 1 95 16 0

0 1 89 18 1

1 0 70 14 1

1 1 93 15 0

1 1 66 15 1

1 1 61 15 0

0 1 80 17 1

1 1 114 13 0

0 1 87 17 1

* Missing value

TUTORIAL ON MACHINE LEARNING 41

Table 4

Comparison of Accuracy and Kappa Scores Without and With Hyperparameter Tuning for Each

Algorithm

 No Tuning Hyperparameter Tuning

Algorithm Accuracy Kappa Accuracy Kappa

Random Selection .574 .000

Highest Probability Response .692 .000

Logistic Regression .731 .428

Random Forest .769 .458 .846 .639

Support Vector Classifier .654 .264 .808 .532

Stochastic Gradient Descent .692 .325 .731 .492

K-nearest Neighbors .615 -.048 .808 .591

TUTORIAL ON MACHINE LEARNING 42

Figure 1

Screenshot for the Spyder Integrated Development Environment

TUTORIAL ON MACHINE LEARNING 43

Figure 2

Visual Representation of the First Tree in the Random Forest

TUTORIAL ON MACHINE LEARNING 44

Figure 3

Example of a Dataset Separated by a Support Vector Classifier

Note. The upper panel shows a two-dimensional graph representing two features: x1 and x2.

Closed points represent one category and opened points a different category. The lower panel

depicts the addition of a higher dimension (z) and a linear plane that separates the two categories.

Reprinted with permission from “Machine Learning to Analyze Single-Case Data: A Proof of

Concept” by M. J. Lanovaz, A. R. Giannakakos, and O. Destras, 2020, Perspectives on Behavior

Science (https://doi.org/1.1007/s40614-020-00244-0). CC BY 4.0.

TUTORIAL ON MACHINE LEARNING 45

Figure 4

Visual Representations of Different Sets in the Leave-One Out Cross-Validation and the Holdout

Cross-Validation

TUTORIAL ON MACHINE LEARNING 46

Appendix

Free Online Resources

Learn More About Python

Learn Python - https://www.learnpython.org/

Google's Python Class - https://developers.google.com/edu/python

Python for Beginners - https://www.python.org/about/gettingstarted/

Learn More About Machine Learning

An Introduction to Machine Learning - https://www.digitalocean.com/community/tutorials/an-

introduction-to-machine-learning

Google’s Introduction to Machine Learning - https://developers.google.com/machine-

learning/crash-course/ml-intro

Introduction to Machine Learning for Beginners - https://towardsdatascience.com/introduction-

to-machine-learning-for-beginners-eed6024fdb08

Learn More About Machine Learning in Python

Cross Validation in Python: Everything You Need to Know About -

https://www.upgrad.com/blog/cross-validation-in-python/

An Implementation and Explanation of the Random Forest in Python -

https://towardsdatascience.com/an-implementation-and-explanation-of-the-random-forest-in-

python-77bf308a9b76

Implementing SVM and Kernel SVM with Python's Scikit-Learn -

https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-scikit-learn/

How To Implement Logistic Regression From Scratch in Python -

https://machinelearningmastery.com/implement-logistic-regression-stochastic-gradient-descent-

scratch-python/

Develop k-Nearest Neighbors in Python From Scratch -

https://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-

scratch/

Hyperparameter Tuning - https://towardsdatascience.com/hyperparameter-tuning-c5619e7e6624

Sci-Kit Learn: 3.2. Tuning the Hyper-Parameters of an Estimator - https://scikit-

learn.org/stable/modules/grid_search.html

https://www.learnpython.org/
https://developers.google.com/edu/python
https://www.python.org/about/gettingstarted/
https://www.digitalocean.com/community/tutorials/an-introduction-to-machine-learning
https://www.digitalocean.com/community/tutorials/an-introduction-to-machine-learning
https://developers.google.com/machine-learning/crash-course/ml-intro
https://developers.google.com/machine-learning/crash-course/ml-intro
https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08
https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08
https://www.upgrad.com/blog/cross-validation-in-python/
https://towardsdatascience.com/an-implementation-and-explanation-of-the-random-forest-in-python-77bf308a9b76
https://towardsdatascience.com/an-implementation-and-explanation-of-the-random-forest-in-python-77bf308a9b76
https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-scikit-learn/
https://machinelearningmastery.com/implement-logistic-regression-stochastic-gradient-descent-scratch-python/
https://machinelearningmastery.com/implement-logistic-regression-stochastic-gradient-descent-scratch-python/
https://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/
https://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/
https://towardsdatascience.com/hyperparameter-tuning-c5619e7e6624
https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/modules/grid_search.html

