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Résumé

Un nombre naturel n est dit congruent si il est l’aire d’un triangle rectangle dont
tous les cotés sont de longueur rationnelle. Le problème des nombres congruents
consiste à déterminer quels nombres sont congruents. Cette question, connue depuis
plus de 1000 ans, est toujours ouverte. Elle est liée à la théorie des courbes elliptiques,
car le naturel n est congruent si et seulement si la courbe elliptique y2 = x3 − n2x

possède un point rationnel d’ordre infini.
Ce lien entre les nombres congruents et les courbes elliptiques permet d’accéder à

des techniques venant de la géométrie algébrique. Une de ces méthodes est le concept
des matrices de Monsky qui peuvent être utilisées pour calculer la taille du groupe
de 2-Selmer de la courbe elliptique y2 = x3 − n2x. On peut utiliser ces matrices afin
de trouver de nouvelles familles infinies de nombres non-congruents.

Cette relation introduit aussi des généralisations possibles au problème des nom-
bres congruents. Par exemple, nous pouvons considérer le problème des nombres
θ-congruents qui étudie des triangles avec un angle fixé de taille θ au lieu de seule-
ment des triangles rectangles. Ce problème est aussi lié aux courbes elliptiques et le
concept des matrices de Monsky peut être étendu à ce cas.

En fait, les matrices de Monsky peuvent être généralisées à n’importe quelle
courbe elliptique qui possède une forme de Legendre sur les rationnels. Le but de ce
mémoire est de construire une telle généralisation puis de l’appliquer à des problèmes
de géométrie arithmétique afin de reprouver efficacement de vieux résultats ainsi que
d’en trouver de nouveaux.
Mots clés. Courbes elliptiques, matrices de Monsky, nombres congruents, nombres
θ-congruents, 2-descente, groupe de 2-Selmer, théorie des nombres.

5





Abstract

A positive integer n is said to be congruent if it is the area of a right triangle whose
sides are all of rational length. The task of finding which integers are congruent is an
old and famous yet still open question in arithmetic geometry called the congruent
number problem. It is linked to the theory of elliptic curves as the integer n is
congruent if and only if the elliptic curve y2 = x3 − n2x has a rational point of
infinite order.

The link between congruent numbers and elliptic curves enables the application
of techniques from algebraic geometry to study the problem. One of these methods is
the concept of Monsky matrices that can be used to calculate the size of the 2-Selmer
group of the elliptic curve y2 = x3−n2x. One can use these matrices in order to find
new infinite families of non-congruent numbers.

The connection to elliptic curves also introduces generalizations to the congruent
number problem. For example, one may consider the θ-congruent number problem
which studies triangles with a fixed angle of θ instead of only right triangles. This
problem is also related to elliptic curves and the concept of Monsky matrices can be
generalized to it.

In fact, Monsky matrices can be generalized to any elliptic curve that has a
Legendre form over the rationals. The goal of this thesis is to construct such a
generalization and then to apply it to relevant problems in arithmetic geometry to
efficiently reprove old results and find new ones.
Keywords. Elliptic curves, Monsky matrices, congruent numbers, θ-congruent num-
bers, 2-descent, 2-Selmer group, number theory.
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Introduction

0.1. The main ideas
Let n be a positive integer. We say that n is a congruent number if there exists

a right triangle of area n whose sides are all of rational length.
The simplest case of a congruent number is 6, since it is the area of the

classic Pythagorean triangle with sides 3, 4 and 5. However, showing that a
number is congruent is not always straightforward. For example, 157 is a con-
gruent number, but the simplest triangle that shows this has a hypotenuse of
224403517704336969924557513090674863160948472041
8912332268928859588025535178967163570016480830 [Zag90]. Showing that an integer is not
congruent is a bit more complicated but can be efficiently done with the use of
elliptic curve theory.

A natural question that follows from this definition is to ask which natural num-
bers are congruent. This question is called the congruent number problem.

The congruent number problem is older than a millennium. Indeed, it was already
described in an anonymous Arab manuscript written before 972 (a French translation
can be found in [BWP61]). However, to this day, the problem remains one of the
oldest mathematical questions yet unanswered.

A key property of the congruent number problem that increases its importance
is its relation to the theory of elliptic curves. It can be shown that n is congruent if
and only if the elliptic curve y2 = x3 − n2x possesses a rational solution with y 6= 0
(we will prove this later in Theorem 0.2.2).

Many partial results were found towards the problem, some of which will be
presented later in this chapter. The most important of these results is Tunnel’s full



characterization of the set of congruent numbers [Tun83]. It depends on the Birch
and Swinnerton-Dyer conjecture which is one of the yet unsolved Millennium Prize
Problems.

The congruent number problem can then be seen as a subcase of the Birch and
Swinnerton-Dyer conjecture. Because of this, results on the congruent number prob-
lem can be used to test the conjecture. Also, potential techniques used to solve the
congruent number problem might then be generalized to solve the conjecture.

Several new families of non-congruent numbers were discovered around the end of
the 20th century and the start of the 21st. The history of these results is presented in
Section 0.2. A method of particular interest for this thesis is the concept of Monsky
matrices first presented in [HB94]. These matrices were used to find various new
families of non-congruent numbers in a very efficient manner.

The relation between the congruent number problem and elliptic curves also leads
to generalizations of the problem. One such example is the θ-congruent number
problem formulated by Fujiwara [Fuj02].

Let cos(θ) = s
r
such that r > |s| and GCD(s,r) = 1. Let n be a positive integer.

We say that n is a θ-congruent number if there exists a triangle with an angle of θ
whose area is n

√
r2 − s2 and whose sides are all of rational length.

Similarly to the case of the congruent number problem, it can be shown that,
except for a finite number of small integers, n is θ-congruent if and only if the
y2 = x(x−n(r−s))(x+n(r+s)) possesses a rational solution with y 6= 0. This relation
brings a collection of similar results to those on the congruent number problem. The
main result is a full characterization of the set of θ-congruent numbers [Yos01,
Yos02] when θ is equal to π

3 or 2π
3 . As in the case of the original problem, this result

supposes that the Birch and Swinnerton-Dyer conjecture is true.
In [Mok20], we showed that the concept of Monsky matrices can also be gener-

alized to the θ-congruent number problem to find new families of non-θ-congruent
numbers.

Some of the techniques used in both the congruent number problem and its
generalization can be extended to a larger set of elliptic curves. In this thesis, we
will be interested in elliptic curves in Legendre form, that have a Weierstrass model
of the form y2 = (x − e1)(x − e2)(x − e3) with e1,e2,e3 ∈ Q. We will generalize the
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concept of Monsky matrices to those curves and use the matrices to find new results
both on the generalized curves as well as on the congruent number problem. These
results are summarized in Chapter 1.

The idea of generalized Monsky matrices can be summarized as follows. Let E
be an elliptic curve in Legendre form. Its associated generalized Monsky matrix M
is a matrix with elements in Z/2Z whose columns and rows depend on the prime
factors of the discriminant of E. Generalized Monsky matrices have the property
that their kernel has the same size as the 2-Selmer group of their associated elliptic
curve. These matrices can then be used to find an upper bound on the rank of
elliptic curves in Legendre form. Also, whenever dim kerM = 2, one can show that
the corresponding elliptic curve E is of rank 0.

0.2. The congruent number problem
Since the congruent number problem was already introduced in the preceding

section, let us start with a very simple observation on the problem:
Lemma 0.2.1. Let n and α be positive integers, then n is congruent if and only if
nα2 is congruent.

Proof. If n is congruent then there is a right triangle of rational sides (a,b,c) with
area n. We then have that there is a right triangle of sides (αa, αb, αc) of area nα2.
This implies that nα2 is also congruent.

We prove the other direction of the statement by dividing the sides by α instead
of multiplying. �

Because of the above lemma, we will only be interested in square-free positive
integers.

The first major result on the congruent number problem is its relation to an
elliptic curve problem. We introduce the concept of elliptic curves in Section 2.3.
Here is the result:
Theorem 0.2.2. A positive integer n is congruent if and only if the elliptic curve

En : y2 = x3 − n2x

has a rational point of infinite order, namely, a solution (x,y) with y 6= 0.
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Proof. An integer n is congruent if and only if the equation system
a

2 + b2 = c2,

ab = 2n,
has a non-trivial rational solution (a,b,c ∈ Q and a,b,c > 0).

We start by proving the "if" part of the statement. Let there be a right triangle
of area n and sides of rational lengths a, b and c. We apply the transformations
X = n(a+c)

b
, Y = 2n2(a+c)

b2 . We then have that

Y 2 =
(

2n2(a+ c)
b2

)2

=
(2nX

b

)2

= 4n2X2

b2

= (ab)2X2

b2

= a2X2.

We also have that

X − n2

X
= n(a+ c)

b
− nb

(a+ c)

= n(a+ c)2 − nb2

b(a+ c)

= n(a2 + c2 − c2 + a2 + 2ac)
b(a+ c)

= 2n(a2 + ac)
b(a+ c)

= 2na
b

= a2.

Combining the two equations gives us that:

24



Y 2 = X3 − n2X

and this is just En.
This means that if n is congruent, then En has a rational point with Y 6= 0. We

can then apply the following proposition:
Proposition 0.2.3 ([Kob93] Proven later as Proposition 2.3.9.). The torsion sub-
group of En(Q) is of order 4. The subgroup is isomorphic to Z/2Z × Z/2Z and its
elements are O (the point at infinity), (0,0), (n,0) and (−n,0).

Since none of the torsion points have Y 6= 0, this implies that if n is congruent,
then Y 2 = X3 − n2X has a rational solution of infinite order.

We now prove the "only if" part of the statement. If Y 2 = X3−n2X has a rational
solution of infinite order (X,Y ), then (X ′,Y ′) = 2(X,Y ) is also a rational solution
of infinite order (2(X,Y ) being (X,Y ) + (X,Y ) with + being the group operation of
En(Q)). The proof of Proposition 2.3.9 then implies that X ′ > 0.

Since (X ′,Y ′) is a solution, then (X ′,− Y ′) is also a solution. We can then chose
the solution (X,Y ) with X,Y > 0. Because Y 2 = X3 − n2X and Y,X > 0, we also
have that X2 > n2.

We can then conclude that a = X2−n2

Y
,b = 2nX

Y
, c = (X2+n2)

Y
is a solution for the

equation system with a,b,c ∈ Q and a,b,c > 0 showing that n is congruent.
�

Because of these results, when we ask if a number n is congruent or not, we will
be interested in the associated elliptic curve.

Serf [Ser91] applied what is called the method of the 2-descent to the elliptic
curve to show that n is congruent if and only if the number of pairs (b1,b2) ∈ Q(S,2)×
Q(S,2) for which the equation system

b1z
2
1 − b2z

2
2 = n,

b1z
2
1 − b1b2z

2
3 = −n,

has a non-trivial rational solution is more than four. Q(S,2) can be seen as the set of
square-free integers dividing the discriminant of En (see Section 2.1 for more details).
We show a proof of a generalized version of this result in Section 2.5.
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With this knowledge, Serf found sufficient conditions on (b1,b2) that guarantee
that the above equation system has no solution. Using this, he found infinitely many
new non-congruent numbers such as the following family:
Theorem 0.2.4 ([Ser91]). Let p, q and r be distinct primes numbers such that

p ≡ 1(mod 8),

q ≡ 3(mod 8),

r ≡ 3(mod 8),(
p

q

)
= −

(
p

r

)
,

then n = pqr is a non-congruent number.
Remark 0.2.5.

(
p
q

)
is the Legendre Symbol of p by q. See Section 2.7 for more

details.
In 1996, Iskra [Isk96] took Serf’s methods further and found an infinite family

of non-congruent numbers with arbitrarily many prime divisors:
Theorem 0.2.6 ([Isk96]). Let p1, . . . , p` be distinct primes such that pi ≡ 3 (mod 8)
and

(
pj

pi

)
= −1 for j < i. Then the product n = p1 · · · p` is a non-congruent number.

The proof is a long case by case elimination process that cannot be efficiently
replicated to find new families of non-congruent numbers.

Monsky [HB94] then developed a matrix whose kernel represents the set of (b1,b2)
respecting at least one of Serf’s conditions of unsolvabilty. We will show how to
produce such a matrix in Chapter 4.

It is then possible to show that a number is non-congruent by proving that the
corresponding Monsky matrix has a small enough kernel. This is exactly what Rein-
holz, Spearman and Yang [RSY13, RSY15, RSY18] do to find several new families
of non-congruent numbers.

0.3. The θ-congruent number problem
Following the preceding section, let us start with a definition from Fujiwara

[Fuj02]:
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Definition 0.3.1. Let cos(θ) = s
r
such that r > |s| and GCD(s,r) = 1. Let n be a

positive integer. We say that n is a θ-congruent number if there exists a triangle with
an angle of θ whose area is n

√
r2 − s2 and whose sides are all of rational length.

This concept is a natural generalization of congruent numbers. We can see that
an integer is congruent if and only if it is π

2 -congruent. We can also see the same
reduction to square-free integers as before:
Lemma 0.3.2. Let n and α be positive integers, then n is θ-congruent if and only
if nα2 is θ-congruent.

Proof. If n is θ-congruent the there is a triangle with an angle of θ and sides (a,b,c)
with area n

√
r2 − s2. We then have that there is a triangle of sides (αa, αb, αc) of

area nα2 and the same angles. This implies that nα2 is also θ-congruent.
We prove the other direction of the statement by dividing the sides by α instead

of multiplying. �

There are two reasons for which we ask for an area of n
√
r2 − s2 instead of simply

n.
First, because of the law of cosines, we have to ask that cos(θ) is rational in order

for all sides to possibly be of rational length. However, if sin(θ) is not rational, then
the triangle area will trivially be irrational. This is because the area of the triangle
is equal to ab sin(θ)

2 where a and b are the lengths of the sides adjacent to the angle
of size θ. In order to avoid this type of trivial contradiction, we multiply the desired
area by r sin(θ) =

√
r2 − s2.

The other reason is that choosing this definition gives us a similar link with
elliptic curves:
Theorem 0.3.3. [Fuj02] Let n be an integer not dividing 6 and let θ be an angle
with the same properties as above. Then, n is θ-congruent if and only if the elliptic
curve

y2 = x(x− n(r − s))(x+ n(r + s))
has a rational point of infinite order.

The most studied cases of the θ-congruent problem (other than the congruent
number problem) are when θ = π

3 or θ = 2π
3 . This is because these values of θ are

the only rational multiples of π (other than π
2 ) for which cos(θ) is rational.
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From here, we can follow the same steps as in the congruent number problem.
We will briefly discuss them here and we will provide more details in Section 2.5.

Indeed, for a fixed angle θ, we can start by applying a 2-descent to have that n
is θ-congruent if and only if the number of pairs (b1,b2) ∈ Q(S,2)×Q(S,2) for which
the equation system

b1z
2
1 − b2z

2
2 = n(r − s),

b1z
2
1 − b1b2z

2
3 = −n(r + s),

has a rational solution is more than four.
Using this fact Girard, Lalín and Nair [GLN18] were able to find sufficient

conditions on (b1,b2) for the above equation system to not have a solution when
θ = π

3 or θ = 2π
3 . Using such conditions they found the following infinite families of

non-θ-congruent numbers:
Theorem 0.3.4 ([GLN18]). Let p1, . . . ,p2`+1 be distinct primes such that pi ≡
5 (mod 24) and

(
pj

pi

)
= −1 for j < i. Then the product n = p1 · · · p2`+1 is a non-π3

congruent number.
Theorem 0.3.5 ([GLN18]). Let p1, . . . ,p2` be distinct primes such that pi ≡
13 (mod 24) and

(
pj

pi

)
= −1 for j < i. Then the product n = p1 · · · p2` is a non-

2π
3 congruent number.

However, similarly to Iskra’s proof of Theorem 0.2.6, the original proofs of the
above theorems are long case by case analyses that are not effectively generalized.

In a previous paper [Mok20], we adapted Monsky’s matrices to the θ-congruent
number problem for θ = π

3 and θ = 2π
3 . This made it possible for us to reprove

Theorems 0.3.4 and 0.3.5 in an effective manner and it also allowed us to find new
families of non-θ-congruent numbers.

0.4. Elliptic curves in Legendre Form
We remark that all the problems we have seen until now are linked to an elliptic

curve of the same general form. To be more precise, they are all elliptic curves in
Legendre Form.
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Definition 0.4.1. An elliptic curve in Legendre form over the rationals is an elliptic
curve written as:

y2 = (x− e1)(x− e2)(x− e3)
with e1,e2,e3 ∈ Q.

In Chapter 2, we will show that these curves can be reduced to the case e1 = 0
without changing the structure of the associated group.

For any given fixed e1,e2,e3, we have a way to do a 2-descent and then create the
associated Monsky matrix necessary for our results. However, every time the roots
of the elliptic curve change, we have to restart all the work. This is very inefficient.

This takes us to the main goal of this thesis: Develop a general method to
construct a matrix whose kernel is in bijection with the 2-Selmer group of any given
elliptic curve in Legendre form.

The work to develop such a method is long and arduous. However, once it is
done, we will never ever have to do it again as we can then use the same matrices to
find new results. Some of these results on the θ-congruent number problem will be
also presented in this thesis.
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Chapter 1

Main ideas and results

Let us start by explaining the general flow of this thesis.
We will start by introducing some required background for the results of this

thesis in Chapter 2. This will be mainly an introduction to elliptic curves with a
particular focus on the concept of 2-decent and the 2-Selmer group as well as some
other important theorems of number theory such as Hensel’s Lemma and Dirichlet’s
theorem on arithmetic progressions.

Since every elliptic curve with a Legendre form can be reduced to the form y2 =
x(x − e2)(x − e3), the method of 2-decent will lead us to the equivalent problem of
finding non-trivial rational solutions to the following equation system:

b1z
2
1 − b2z

2
2 = e2,

b1z
2
1 − b1b2z

2
3 = e3.

More precisely, we will see that the problem of finding the rank of an elliptic
curve is equivalent to finding the number of pairs (b1,b2) for which the above system
has a solution. In Chapter 3, we will find sufficient conditions on those pairs to
guarantee that the equation system has no solution. We will also define a group
structure on the (b1,b2) respecting all those conditions and show that it is isomorphic
to the 2-Selmer group.

Once we have the necessary and sufficient conditions for the above system to
have local solutions, we can finally show the main result of this thesis in Chapter
4. This result is the construction of a matrix whose kernel (seen as a group under



addition) is isomorphic to the 2-Selmer group of a given elliptic curve in Legendre
Form. This construction is done by creating matrix rows representing each of the
conditions found in Chapter 3. Since the generation of said matrix takes considerable
effort, we will first start by motivating the work by showing some of the interesting
results that can be proven using the matrix. The proofs of the results of this section
will be presented in Chapter 5.

Since we work often with sizes of 2-Selmer groups, the following definition will
be very useful to us:
Definition 1.0.1. Let e2 and e3 be distinct integers. We define K(e2,e3) :=
log2(|Sel2(E(Q))|), where Sel2(E(Q)) is the 2-Selmer group of the elliptic curve
E : y2 = x(x− e2)(x− e3).

Most of the time, we will be interested in the cases where K(e2,e3) = 2 because
this implies that there is no rational non-torsion point in the elliptic curve y2 =
x(x− e2)(x− e3).

The goal of developing generalized Monsky matrices is to find these cases. For
an elliptic curve E in Legendre form, its generalized Monsky matrix ME is a matrix
with terms in Z/2Z whose rows and columns depend on the prime factorization of
the discriminant of E. This matrix has the important property that the size of its
kernel is equal to the size of Sel2(E(Q)).

A simple application of the Monsky matrices is finding new families of non-θ-
congruent numbers by selecting the prime factors of the discriminant to be in some
chosen congruence classes. For example:
Lemma 1.0.2 (Proven later as Lemma 5.3.2). Let n be a square-free integer that
can be factorized as:

n = 6p1 · · · ptq1 · · · qt,

where p1, . . . , pt, q1, . . . ,qt are distinct primes such that
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

2 - t,

∀i, pi ≡ 7 (mod 8),

∀i, qi ≡ 1 (mod 8),

∀i,
(
pi
qi

)
= −1,

∀i 6= j,

(
pi
qj

)
=
(
qi
qj

)
= 1,

∀i,
(

3
qi

)
= −1.

Then we have that K(−2n,− n) = 2. This implies that n is non-congruent.
The preceding result is new but very similar to some results of Reinholz, Spear-

man and Yang [RSY13, RSY15, RSY18]. We are interested in this particular
family of non-congruent numbers because it will be the basis of the proof of Theo-
rem 1.0.5 seen later in this Chapter.

Here is a theorem with more general applications:
Theorem 1.0.3 (Proven later as Theorem 5.1.9). Let P be the set of prime numbers.
Let e2, e3 be two integers such that GCD(e2,e3) is square-free and v2(e2) > v2(e3)
where v2(x) indicates the highest exponent of 2 dividing x (this notation will be ex-
plained in Section 2.1 and these conditions will be discussed in Section 3.1). Let p,q
be distinct prime numbers with the following conditions:



p,q - e2e3(e2 − e3),

p ≡8 q,

∀s | e2e3(e2 − e3) ∈ P\{2},
(
p

s

)
=
(
q

s

)
.

If, additionally, one of the following conditions is respected:

(1) p ≡4 1 and at least two of
{(

e2
p

)
,
(
e3
p

)
,
(
e3−e2
p

)}
are negative.

(2) p ≡4 3,
(
e3
p

)
= −

(
e2
p

)
and

(
e3
p

)
= −

(
e3−e2
p

)
.

Then we have that K(pqe2,pqe3) = K(e2,e3).
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This result is extremely general. It will allow us to find new families of non-θ-
congruent number very efficiently. As an example, consider the following corollary:
Corollary 1.0.4. Let n be an integer that can be factorized in primes as:

n = 2 · 13
13∏
i=1

`i∏
j=1

pi,1,jpi,2,j

with the following conditions:
— p1,k,i ≡8 3,
— p2,k,i, p3,k,i, p4,k,i, p5,k,i, p6,k,i and p7,k,i are congruent to 41, 57, 97, 33, 73 and

89 mod 104 respectively,
— p8,k,i, p9,k,i, p10,k,i, p11,k,i, p12,k,i and p13,k,i are congruent to 53, 29, 69, 61, 101

and 77 mod 104 respectively,
— (i1,j1) 6= (i2,j2) =⇒

(
pi1,1,j1
pi2,k,j2

)
=
(
pi1,2,j1
pi2,k,j2

)
.

Then n is a non-congruent number.
Also, combining Theorem 1.0.3 and Lemma 1.0.2 gives us the following result:

Theorem 1.0.5 (Proven later as Theorem 5.3.1). Let n be a square-free integer.
There exists a square-free integer m such that GCD(n,m) = 1 and nm is non-
congruent.

This result also implies that every integer has an infinite number of non-trivial
non-congruent multiples.
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Chapter 2

Prerequisites

2.1. Notation
In this section, we define some key notation that will be frequently used in this

thesis.
Definition 2.1.1. We write a ≡n b to mean a ≡ b (mod n).
Definition 2.1.2. We define P to be the set of all prime numbers.
Definition 2.1.3. Let n ∈ Z, n 6= 0 and p ∈ P. We define the valuation vp(n) to be
the largest integer k such that pk | n. We also set that vp(0) =∞.

Let x ∈ Q that can be written as a
b
with a,b ∈ Z and b 6= 0. We define vp(x) :=

vp(a)− vp(b). Remark that we do not need to take a and b relatively prime for vp to
be well defined.

The next notation will be very useful in simplifying the text while searching for
conditions in prime power moduli.
Definition 2.1.4. Let a be an integer, k be a positive integer and p be a prime
number. When working in Z/pkZ, we define a as a

pvp(a) . This can be seen as removing
the power of p dividing a.

Valuations will be very important while discussing p-adic numbers.
Definition 2.1.5. Let S be a finite set of primes. We define:

Q(S,2) = {b ∈ Q∗/(Q∗)2 : ∀p ∈ P\S, vp(b) ≡2 0}



where (Q∗)2 is the group of non-zero rational numbers with a rational square root
under multiplication.

One can easily see that Q(S,2) is a finite abelian group under multiplication.

2.2. p-adic Numbers
The idea of p-adic numbers provides useful context to this thesis. We will not

explicitly need p-adic numbers, but they make some parts of this thesis simpler to
explain. They will also bring us to the concept of the local-global principle which we
will also discuss in this chapter. For these reasons, we will do a short introduction
to p-adic numbers.

Let p be a prime number.
Definition 2.2.1. We define the set of p-adic integers Zp as the set of infinite series
{ai}i∈N (with N being the set of positive integers) such that:

ai ∈ Z/piZ,

ai ≡pi ai+1.

This is a ring with the operations given by component-wise addition and multi-
plication.

In the literature it is common to summarize the above conditions by saying that
Zp is the inverse limit of Z/piZ. In other words, Zp := lim

←i∈N
Z/piZ.

An important fact about p-adic integers is that we can view any integer n as an
element of Zp by taking the sequence {n,n,n, . . .}. We can therefore think of Z ⊂ Zp.
This property is the reason we are introducing the concept of p-adic integers and we
will return to it later.

Since Zp is a domain, we can define the field of fractions of Zp.
Definition 2.2.2. The field of p-adic numbers Qp is the field of fractions of Zp.

We also consider the limiting case of p =∞ and define Q∞ = R.
Since we have Z ⊂ Zp, we also have the following simple lemma:

Proposition 2.2.3. Q ⊂ Qp

Proof. For Q∞ = R this is trivial by definition.
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For the other primes, Q is the field of fractions of Z and Qp is the field of fractions
of Zp. By the definition of fields of fraction, we have that Q ⊂ Qp since Z ⊂ Zp. �

The reason this is important to us is the following simple corollary of Proposition
2.2.3:
Corollary 2.2.4. If an equation system has a solution in Q, then it has a solution
in Qp for all p ∈ P ∪ {∞}.

We will return to this corollary when we discuss the local-global principle by the
end of this chapter.

2.3. Elliptic Curves
We start by introducing elliptic curves:

Definition 2.3.1. An elliptic curve over a field K of characteristic 0 is a non-
singular curve that can be written as:

y2 = x3 + Ax2 +Bx+ C

where A,B,C ∈ K.
This definition is not the one typically used. Indeed, it can be shown that all

elliptic curves over a field K of characteristic 0 can be written as y2 = x3 +Bx+ C

using a basic variable transformation. However, in this thesis, we will be interested
in elliptic curves that have three rational points with y = 0. Because of this we will
write them as y2 = x(x − e2)(x − e3) to simplify our calculations. For the sake of
clarity, we will write elliptic curves as y2 = x3 +Ax2 +Bx+ C to avoid the need of
transformations further in the thesis.

Since we require a non-singular curve, we add the following result:
Lemma 2.3.2. A curve y2 = x3 + Ax2 + Bx + C is singular if and only if ∆ =
16(−4A3C +A2B2 + 18ABC − 4B3− 27C2) = 0. We call ∆ the discriminant of the
curve.

A crucial property of elliptic curves is that the points over the field K form a
group denoted by E(K). In this thesis, the two fields that interest us are R, in order
to consider graphical representations, and Q. We proceed to describe the group
operation.
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Definition 2.3.3. Let P = (x1,y1) and Q = (x2,y2) be two points on the elliptic
curve y2 = x3 + Ax2 + Bx + C with x1,x2,y1,y2 ∈ K where K is the given field (Q
or R in our case). Consider the line passing through P and Q (if P = Q, consider
the tangent). Let the third point of crossing between the line and the elliptic curve
be R = (x3,y3). We define P +Q to be (x3,− y3).

Figure 2.1. An example of the group operation in E(R).

It can be shown that this operation is associative (see [Sil09] for a proof). In
order for this operation to generate a group, there needs to be a group identity. This
can be understood by working in the projective plane P2(K) and by representing
the affine point (x,y) by the projective point [x,y,1]. Every point of E(K) can be
represented as a point in P2(K). We then define the group identity to be the point
at infinity O = [0,1,0]. In the affine space, any line passing by O and another point
P is represented by the vertical line going by P . One can verify that O defined as
such is indeed the group identity (see [Sil09] for a proof).

This operation is well defined because, when considering intersection multiplicity,
Bézout’s theorem (see [Har77] for a proof) guarantees the existence of three points
of intersection in the projective space between an elliptic curve and a line.
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Finally, one can also check that the inverse of the point P = (x,y) is the point
−P = (x,− y).

We then have the following result:
Theorem 2.3.4. Let E(Q) be the set of rational points on the elliptic curve y2 =
x3 + Ax2 + Bx + C to which we add O. We then have that (E(Q),+) is an abelian
group.

Now we consider some transformations that do not change the structure of the
group.
Lemma 2.3.5. Let E1 : y2 = x3 + Ax2 + Bx + C an elliptic curve and E2 : Y 2 =
X3 + AX2 + BX + C where Y = u2y and X = u3x + v with u,v ∈ Q and a,c 6= 0.
Then E1(Q) ∼= E2(Q).

We will be interested in the elements of order 2 and 3 in E(Q). The following
lemma contains a way to find them.
Lemma 2.3.6. The points P of order 2 on an elliptic curve are those with y = 0.

The points of order 3 are those with x(2P ) = x(P ).
Depending on the elliptic curve E, E(Q) does not always have points of order 2

or 3.
We know that E(Q) is always finitely generated. More precisely:

Theorem 2.3.7 (Mordell–Weil [Wei29]). We have that:

E(Q) ∼= T × Zr,

where r is a non-negative integer called the rank of the elliptic curve and T is a finite
group known as the torsion group.

We also have a good understanding of the torsion group:
Theorem 2.3.8 (Mazur [Maz77, Maz78]). The torsion subgroup of an elliptic
curve defined over Q is isomorphic to one of the following groups:

Z/nZ with 1 ≤ n ≤ 10,

Z/12Z,

Z/2Z× Z/2nZ with 1 ≤ n ≤ 4.
With this result, we can prove Proposition 0.2.3:
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Proposition 2.3.9 (Originally Proposition 0.2.3). Recall that En is the elliptic curve
y2 = x3 − n2x. The torsion subgroup of En(Q) is of order 4. The subgroup is
isomorphic to Z/2Z × Z/2Z and ts elements are O (the point at infinity), (0,0),
(n,0) and (−n,0).

Proof. From Corollary 2.3.6, we know that (0,0), (n,0) and (−n,0) are three distinct
points of order 2. Mazur’s Theorem then implies that the torsion subgroup must be
isomorphic to Z/2Z×Z/2nZ with 1 ≤ n ≤ 4. We then only need to show that there
is no point of order 3 or 4. We will do this by contradiction.

We start by recalling the formula to calculate x(2P ). For the elliptic curve
y2 = x3 + Ax2 +Bx+ C, the duplication formula is:

x(2P ) = x4 − 2Bx2 − 8Cx+B2 − 4AC
4x3 + 4Ax2 + 4Bx+ 4C .

For the particular family of elliptic curves En, the duplication formula is given
by

x(2P ) = x4 + 2n2x2 + n4

4x3 − 4n2x
=
(
x2 + n2

2y

)2

.

If P were of order 3, we would have that:

x(P ) = x(2P )

x = x4 + 2n2x2 + n4

4x3 − 4n2x

4x4 − 4n2x2 = x4 + 2n2x2 + n4

3x4 − 6n2x2 − n4 = 0

We can solve this equation for x2 to obtain that x2 = 6n2±4n2√3
6 and, since n is a

nonzero integer, we get that there is no rational solution for x and this implies that
there is no such rational point P .

If P were of order 4, we would have that 2P ∈ {(0,0),(n,0),(−n,0)}. This means
that x(2P ) ∈ {0,n,− n}.

We recall that n is a positive integer. Since x(2P ) is a strictly positive rational
number, 2P /∈ {(0,0),(−n,0)}. We then only need the check the equation:
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x(2P ) = n

x4 + 2n2x2 + n4

4x3 − 4n2x
= n

x4 + 2n2x2 + n4 = 4nx3 − 4n3x(
n2 + 2nx− x2

)2
= 0

n2 + 2nx− x2 = 0

x = n±
√

2n
Since n ∈ Z and n 6= 0, there is no rational solution. This implies that 2P 6= (n,0).

2P then cannot be of order 2 and this implies that there is no point of order 4.
Since En(Q) has no elements of order 3 or 4, we can conclude that its torsion

subgroup is {O,(0,0),(n,0),(−n,0)}. �

2.4. Divisors and Pairings
Section 2.5 contains some statements that are very central for this thesis. We

provide here some definitions necessary to understand those results.
The definitions given in this section are only needed for Section 2.5 and will not

be used anywhere else, so they will not be given in much detail. One can find more
details about them in [Sil09] from where they are taken.

We start with the concept of divisors.
Definition 2.4.1. The divisor group of an elliptic curve E/Q is the free abelian
group generated by the points of E. We denote it by div(E). An element D ∈ div(E)
can be written as:

∑
P∈E(Q)

nP (P ),

with nP ∈ Z and nP = 0 for all but finitely many points.
We need the following set of definitions before proceeding to the concept of order.

Definition 2.4.2. We denote by Q the algebraic closure of Q.
Definition 2.4.3. Let E : y2 = x3 + Ax2 + Bx + C be an elliptic curve with
coefficients in Q and let Q[x,y] be the ring of polynomials with coefficients in Q
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and two variables. We define the affine coordinate ring of E/Q to be Q[E] :=
Q[x,y]/ (y2 − x3 − Ax2 −Bx− C).

The function field Q(E) is the field of fractions of Q[E].
Definition 2.4.4. For E an elliptic curve, we define the local ring at P to be

Q[E]P :=
{
F ∈ Q(E) : ∃f,g ∈ Q [E] : F = f

g
and g(P ) 6= 0

}
.

Definition 2.4.5. MP is an ideal of Q[E] defined by

MP := {f ∈ Q[E] : f(P ) = 0}.
Let d be a positive integer. Md

P is the subring of Q[E] defined by

Md
P := {f ∈ Q[E] : ∃g ∈MP , f = gd}.

Definition 2.4.6. Let E be an elliptic curve and P ∈ E(Q). For f ∈ Q[E]P , we
define ordP (f) = sup{d ∈ Z : f ∈Md

P}.
For F ∈ Q(E), we write F = f

g
with f,g ∈ Q[E]P and we define ordP (F ) =

ordP (f)− ordP (g).
Definition 2.4.7. Let E be an elliptic curve and let f ∈ Q(E). We define the divisor
of f as:

div(f) :=
∑

P∈E(Q)
ordP (f)(P ).

Lemma 2.4.8. Let E be the elliptic curve y2 = (x− e1)(x− e2)(x− e3) over Q and
let f = x− ei with i ∈ {1,2,3}, then div(f) = 2((e1,0))− 2(O).

The other concept that we need to define is pairings.
Definition 2.4.9. Let G, H and K be groups. A pairing p is a function

p : G×H → K,

that satisfies bilinearity:

∀g1,g2 ∈ G,∀h ∈ H, p(g1g2,h) = p(g1,h)p(g2,h)
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and
∀g ∈ G,∀h1,h2 ∈ H, p(g,h1h2) = p(g,h1)p(g,h2).

We say that p is nondegenerate on the left if

∀h ∈ H, p(g,h) = 1K =⇒ g = 1G.

2.5. 2-Descent
From now on, we will only be interested in elliptic curves that can be written in

Legendre Form (recall Definition 0.4.1).
Throughout this thesis, we will apply the transformation x→ x+ e1 in order to

have

y2 = x(x− e2)(x− e3).
When we use this form, the discriminant is given by ∆ = 16e2

2e
2
3(e3 − e2)2.

Since we have three points of order 2 ((0,0), (e2,0) and (e3,0)), the torsion sub-
group must be of the form Z/2Z × Z/2mZ. This means that E(Q) ∼= Z/2Z ×
Z/2mZ× Zr. Our goal is to find r.

We will eliminate the m in the torsion point by considering the quotient by the
subgroup 2E(Q) = {2P : P ∈ E(Q)}.
Theorem 2.5.1. Let E(Q) be an elliptic curve in Legendre form. We have that:

E(Q)/2E(Q) ∼= (Z/2Z)r+2.

Proof. We know that E(Q) ∼= Z/2Z× Z/2mZ× Zr. We then have that:

E(Q)/2E(Q) ∼= (Z/2Z× Z/2mZ× Zr)/(2Z/2Z× 2Z/2mZ× (2Z)r)
∼= ((Z/2Z)/(2Z/2Z))× ((Z/2mZ)/(2Z/2mZ))× (Z/2Z)r

∼= (Z/2Z)× (Z/2Z)× (Z/2Z)r

= (Z/2Z)r+2.

�
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This means that in order to find the rank of the elliptic curve, it is sufficient to
study E(Q)/2E(Q). In order to do this, we need the following theorem adapted from
[Sil09]:
Theorem 2.5.2 (Special case of Theorem 1.1 of Section X.1 in [Sil09]). Let E(Q)
be an elliptic curve in Legendre form and let E[2] be the 2-torsion of the group E(Q).

There is a bilinear pairing

b : E(Q)/2E(Q)× E[2]→ Q∗/(Q∗)2

with the following properties:

(1) The pairing b is nondegenerate on the left.

(2) Let S be the set of primes dividing the discriminant of E. The image of b lies
in Q(S,2) (described in Definition 2.1.5).

(3) The pairing b can be computed as follows. For each T ∈ E[2], choose a
function fT ∈ Q(E) such that div(fT ) = 2(T ) − 2(O) and such that there is
function gT ∈ Q(E) satisfying fT ◦ [2] = g2

T ([2] is the function mapping a
point on the elliptic curve to its double under the group operation). Such a
function fT exists.
Then for any point P 6= T :

b(P,T ) ≡ fT (P ) mod (Q∗)2.

Silverman’s version is more general than what we stated above. First, the theorem
works for any number field K and not just Q. Also, the 2 is replaced by an integer
m > 1 such that E[m] ⊆ E(K). We only need the simpler case above. The original
theorem also gives additional properties for b that we do not need and ignoring this
additional information spares us from having to discuss the concept of Weil’s pairing.

We need the theorem above in order to prove the following result.
Theorem 2.5.3 ([Sil09]). Let E : y2 = x(x−e2)(x−e3) defined over Q be an elliptic
curve with e2,e3 ∈ Q. Let S be the set of all primes dividing the discriminant.

We then have an injective homomorphism B : E(Q)/2E(Q) → Q(S,2) × Q(S,2)
defined by:
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B(P ) = B((x,y)) =



(x,x− e2) if x 6= 0,e2,(
e3

e2
,−e2

)
if x = 0,(

e2,
e2 − e3

e2

)
if x = e2,

(1,1) if P = O.

Also, if (b1,b2) /∈
{

(1,1) ,
(
e3
e2
,−e2

)
,
(
e2,

e2−e3
e2

)}
, then (b1,b2) is in the image of B

if and only if the equation system
b1z

2
1 − b2z

2
2 = e2,

b1z
2
1 − b1b2z

2
3 = e3,

(2.5.1)

has a solution with z1,z2,z3 ∈ Q and z1,z2 6= 0. Given such a solution, its preimage
is given by P = (x,y) = (b1z

2
1 ,b1b2z1z2z3) ∈ E(Q).

Proof. We recall that

E[2] = {O,T1 = (e1 = 0,0),T2 = (e2,0),T3 = (e3,0)}.

The last part of Theorem 2.5.2 gives us a way to determinate the pairing b once
we find fT and gT with the given conditions. Once we do that, we can simply pose:

B(P ) = (b(P,T1),b(P,T2)).

We know from Theorem 2.5.2 that b is bilinear and this implies that B is a
morphism. Also, since b is nondegenerate on the left, we have that B is injective.
Indeed the kernel of B are the points P such that (b(P,T1),b(P,T2)) = (1,1). Since
b is bilinear, we have that b(P,T1) = b(P,T2) = b(P,T3) = b(P,O) = 1 and since b is
nondegenerate on the left, the only point with this property is P = O.

We now return to work on fT and gT . For i ∈ {1,2,3}, we define fTi
= x − ei.

We remark that div(fTi
) = 2(Ti)− 2(O).

One can then calculate that
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fT1 ◦ [2](x,y) = x4 − 2e2e3x
2 + e2

2e
2
3

4x3 − 4(e2 + e3)x2 + 4e2e3x

= x4 − 2e2e3x
2 + e2

2e
2
3

4x(x− e2)(x− e3)

= (x2 − e2e3)2

4y2

=
(
x2 − e2e3

2y

)2

and

fT2 ◦ [2](x,y) = x4 − 2e2e3x
2 + e2

2e
2
3

4x3 − 4(e2 + e3)x2 + 4e2e3x
− e2

= x4 − 2e2e3x
2 + e2

2e
2
3 − 4x3e2 + 4(e2 + e3)x2e2 − 4e2

2e3x

4x(x− e2)(x− e3)

= x4 − 4e2x
3 + (4e2

2 + 2e2e3)x2 +−4e2
2e3x+ e2

2e
2
3

4x(x− e2)(x− e3)

= (x2 − 2e2x− 2e2
2 + 2(e2 + e3)e2 − (e2e3))2

4y2

=
(
x2 − 2e2x− 2e2

2 + 2(e2 + e3)e2 − e2e3

2y

)2

.

We get f(T3) by symmetry:

fT3 ◦ [2](x,y) =
(
x2 − 2e3x− 2e2

3 + 2(e2 + e3)e3 − e2e3

2y

)2

.

For i ∈ {1,2,3}, we can then choose gTi
= x2−2eix−2e2

i +2(e2+e3)ei−e2e3
2y and have that

the fTi
respect all the required conditions.

Let P ∈ E(Q)\E[2]. We choose b1 = b(P,T1) and b2 = b(P,T2). Theorem 2.5.2
then implies that

b1 ≡ x mod (Q∗)2,

b2 ≡ x− e2 mod (Q∗)2.
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This implies that there are z1,z2 ∈ Q∗ such that
y2 = x(x− e2)(x− e3),

b1z
2
1 = x,

b2z
2
2 = x− e2.

Since z1,z2 6= 0, we can define z3 = y
b1b2z1z2

to get
b1b2z

2
3 = x− e3,

b1z
2
1 = x,

b2z
2
2 = x− e2.

We can manipulate these equations in order to eliminate x and get
b1z

2
1 − b2z

2
2 = e2,

b1z
2
1 − b1b2z

2
3 = e3.

If this equation system has a rational solution with z1,z2 6= 0, we have that
(b1,b2) = B((x,y)) = B((b1z

2
1 ,b1b2z1z2z3)).

We can then conclude that (b1,b2) has a preimage in E(Q)\E[2] if and only if
Equation System 2.5.1 has a rational solution with z1,z2,z3 ∈ Q and z1,z2 6= 0.

We now need to check what happens when P ∈ E[2]. For this, we only need to
use the fact that both the given morphism and the pairing are linear.

We have that

B(O) = (1,1),

B(T1) = (b(T1,T1),b(T1,T2))

= (b(T1,T1 + T2)b(T1,− T2),b(T1,T2))

=
(
b(T1,T3)
b(T1,T2) ,b(T1,T2)

)

=
(−e3

−e2
,− e2

)
=
(
e3

e2
,− e2

)
,
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B(T2) = (b(T2,T1),b(T2,T2))

=
(
b(T2,T1),b(T2,T3)

b(T2,T1)

)

=
(
e2,
e2 − e3

e2

)
,

and

B(T3) = B(T1 + T2)

= B(T1)B(T2)

= (e3,e3 − e2).
�

We remark that if z1 = 0, the only way to have a solution to Equation System
(2.5.1) is when (b1,b2) =

(
e3
e2
,−e2

)
which is the image of (0,0). Similarly, if z2 = 0,

the only way to have a solution is when (b1,b2) =
(
e2,

e2−e3
e2

)
which is the image of

(e2,0). Also, if both z1 and z2 are equal to 0, there is no solution. This means that
it is redundant to ask that z1,z2 6= 0 in Theorem 2.5.3.

Since B is an injection, we have that there is a bijection between the image of B
and E(Q)/2E(Q). This implies the following lemma.
Lemma 2.5.4. Let E(Q) : y2 = x(x− e2)(x− e3) be an elliptic curve with e2,e3 ∈ Q
and let r be its rank. We have that:

r = log2 (|{(b1,b2) ∈ Q(S,2)×Q(S,2) : Equation System (2.5.1) has a solution.}|)− 2.

This technique to reduce the problem to an equation system is called the complete
2-descent. From now on, we will be interested in the Equation System (2.5.1) since
the techniques of this thesis depend on it.

2.6. Working with the equation system
We recall that the equation system that interests us is given by
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b1z
2
1 − b2z

2
2 = e2,

b1z
2
1 − b1b2z

2
3 = e3.

For any rational solution z1 = a1
d
,z2 = a2

d
,z3 = a3

d
, with d the common denomina-

tor, we can multiply every equation by d2 to get an equivalent equation system that
demands an integer solution with d 6= 0:

b1a
2
1 − b2a

2
2 = e2d

2,

b1a
2
1 − b1b2a

2
3 = e3d

2.

Also, for the sake of simplifying the notation later, we write a third equation
which is the difference of the first two:

b1a
2
1 − b2a

2
2 = e2d

2,

b1a
2
1 − b1b2a

2
3 = e3d

2,

b2a
2
2 − b1b2a

2
3 = (e3 − e2)d2.

Finding all the pairs (b1,b2) whose corresponding system has a non-trivial solution
is a difficult problem that does not have a general formula or a quick algorithm that
does not depend on the Birch and Swinnerton-Dyer conjecture. However, we have
the following lemma:
Lemma 2.6.1. A necessary condition for an equation system defined over Z to have
a non trivial integral solution is that it has a non trivial solution in R as well as in
Z/nZ for all n ∈ N.

Proof. If an equation system has an integer solution, then it has a real solution
since Z ⊂ R.

If an equation has an integer solution (a1,a2,a3,d), a solution in Z/nZ is obtained
by reducing a1, a2, a3 and d modulo n. �

Lemma 2.6.1 can be used to prove that the equation system of a pair (b1,b2) has
no solution. This will imply that the pair has no preimage. We already know the
four pairs (b1,b2) whose preimage is in the torsion subgroup. If one can show that
these four pairs are the only ones with a preimage, one will show that the rank of the
elliptic curve is 0. This is the main strategy in this thesis since the matrix that we
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construct will have the role of counting the number of pairs (b1,b2) with non trivial
solutions in all local fields. This will be explained in further detail in Chapter 4.

Remark that this is very similar to Corollary 2.2.4 that claims that an equation
system having a solution in Q has a solution in Qp for all p ∈ P ∪ {∞}. In fact it
would have been possible to directly work with Equation System (2.5.1) and show
that there is no solution in Qp for some p ∈ P ∪ {∞}. We work with the same idea
but we prefer to work with integers in this thesis since it makes finding the conditions
on the matrix simpler.

This strategy calls for the following definition:
Definition 2.6.2. We define the 2-Selmer group of an elliptic curve E(Q) as the
group of the pairs (b1,b2) for which Equation System (3.1.1) has a solution in all Qp.
We will denote it by Sel2(E(Q)).

Since the set of pairs (b1,b2) whose equation system has a rational solution is a
subgroup of Sel2(E(Q)), we know that we have a monomorphism yielding the exact
sequence

0→ E(Q)/2E(Q) ψ−→ Sel2(E(Q)).
If we call this morphism ψ, we can define the 2-torsion of the Tate-Shafarevich

group of E, denoted X(E(Q))[2], to be the cokernel of ψ. That is, a group such
that the following sequence is exact:

0→ E(Q)/2E(Q) ψ−→ Sel2(E(Q))→X(E(Q))[2]→ 0.
This is not the classical definition of X(E(Q)) but it is equivalent and consid-

erably simpler to explain. We only use it to give some context and we will not go
deeper into it.

Before concluding this section, we want to discuss a natural question that derives
from Lemma 2.6.1. Is the reciprocity true? If an equation system has a solution for
all Qp, does it have a rational solution? This is what is known as the local-global
principle.

For some equation systems, this principle is true. For example the equation
ax2 + by2 = cz2 with a,b,c ∈ Q has a non-trivial solution in Q if and only if it has
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a non-trivial solution for every Qp including Q∞ = R. This proof is attributed to
Legendre [Leg08].

However, when it comes to elliptic curves, the principle is false, even if we restrict
ourselves to elliptic curves in Legendre form. For example, it is proven in [LT00]
that the elliptic curve y2 = x(x−n)(x+n) has rank 0 but a Tate-Shafarevich group
with a non-trivial 2-torsion when n = 17 × 73 × 97 = 120377. Since the 2-torsion
of the Tate-Shafarevich group is non-trivial, the above exact sequence implies that
there are strictly more elements in Sel2(E(Q)) than in E(Q)/2E(Q). This means
that there are non-trivial solutions in all Qp even if there is no non-trivial solution
in Q.

This means that the methods developed in this thesis can guarantee that some
elliptic curves have no infinite order rational points, but they can never guarantee
that an elliptic curve has infinite order rational points.

2.7. Quadratic residues
A question that will be asked often in this thesis is whether a number is a square

in Z/pZ with p a given prime. To simplify the text, consider the following definition:
Definition 2.7.1. We say that an integer a is a quadratic residue in Z/pZ if there
exists an integer k such that k2 ≡p a.

The Legendre symbol helps us determining whether a is a quadratic residue.
Definition 2.7.2. Let a be an integer and p be an odd prime. The Legendre symbol
of a modulo p denoted by

(
a
p

)
is defined as:

(
a

p

)
:=


1 if p - a and a is a quadratic residue in Z/pZ,

−1 if p - a and a is not a quadratic residue in Z/pZ,

0 if p | a.
The reason we ask for an odd prime is that every integer is a quadratic residue

in Z/2Z. Because of that, we will be more interested in the congruence of a given
integer in Z/8Z where the only odd square is 1.

We recall some results on quadratic residues.
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Theorem 2.7.3. Let a and b be integers and let p be an odd prime number. We have
that:

(
ab

p

)
=
(
a

p

) (
b

p

)
.

Theorem 2.7.4 (Quadratic Reciprocity). Let p and q be distinct odd prime numbers.
We have that:

(
p

q

) (
q

p

)
=

−1 if p ≡4 q ≡4 3,

1 otherwise.
We add the following basic results to complement applications of Quadratic Reci-

procity.
Lemma 2.7.5. Let p be an odd prime, then:

(
−1
p

)
=

1 if p ≡4 1,

−1 otherwise.(
2
p

)
=

1 if p ≡8 1 or 7,

−1 otherwise.

2.8. Other useful results from Number Theory
In this section, we gather some theorems that are not directly linked to the results

of this thesis. However, they will play an important role in the background.
Theorem 2.8.1 (Chinese Remainder Theorem). Let n1,n2, . . . ,nk be integers rela-
tively prime two by two. Let a1,a2, . . . ,ak be integers. Then there exists a unique
integer 0 ≤ x <

∏k
i=1 ni such that x ≡ni

ai for 1 ≤ i ≤ k.
Theorem 2.8.2 (Dirichlet’s Theorem on arithmetic progressions). Let a and n

be relatively prime integers. Then there exist infinitely many primes congruent to
a(mod n).

The two preceding results are important to guarantee that we never work with
empty sets of primes when we ask for primes with certain congruences.
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More precisely, for any prime p, we can guarantee the existence of infinitely many
primes q such that

(
p
q

)
= 1 and infinitely many primes r such that

(
r
q

)
= −1. Also,

with the Chinese Remainder Theorem, we can generalize this property to:
Lemma 2.8.3. For any finite set of distinct primes {p1, . . . , pt} and given arbitrary
εi ∈ {−1,1}, there exists infinitely many primes q such that:



(
−1
q

)
= ε0,(

p1

q

)
= ε1,

...(
pt
q

)
= εt.

We will also need the following theorem:
Theorem 2.8.4 (Hensel’s Lemma). Let f be a polynomial with integer coefficients,
let x be an integer, let k and i be positive integers and let p be a prime number. If
f(x) ≡pk 0 and f ′(x) 6≡p 0, then there exists an integer y such that y ≡pk x and
f(y) ≡pk+i 0.

Hensel’s Lemma will be very important for the proof of the necessary conditions
for the construction of the matrix.
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Chapter 3

Search for matrix conditions

3.1. Reduction on the number of cases
In this chapter, we will be looking for the necessary and sufficient conditions on

(b1,b2) in order for the equation system


b1z

2
1 − b2z

2
2 = e2d

2,

b1z
2
1 − b1b2z

2
3 = e3d

2,

b2z
2
2 − b1b2z

2
3 = (e3 − e2)d2,

(3.1.1a)

(3.1.1b)

(3.1.1c)

to have a solution in Qp for p ∈ P ∪ {∞}. We recall that b1,b2 ∈ Q∗/(Q∗)2 and can
as such be seen as non-zero square-free integers.

The major problem in doing this is the massive number of possible cases. Indeed,
for a given prime p, the conditions on (b1,b2) can change wildly depending on the
values of vp(e2), vp(e3) and vp(e3 − e2).

In order to simplify this process, we will first reduce this problem as much as
possible. There are three simple reduction steps that we can do on (e2,e3). These
reduction steps are based on the fact that we are working on the elliptic curve
y2 = x(x−e2)(x−e3) and that any change on the elliptic curve that does not change
the nature of the group can also be done on the equation system.



We start by remarking that we can apply the transformations x 7→ α2x and
y 7→ α3y with α ∈ Q. Using this, we can take α to be the common denominator of
e2 and e3 in order to get that e2 and e3 are both integers.

Then, if a square β2 divides both e2 and e3, we can take α = 1
β

in order to
guarantee that the GCD(e2,e3) is square-free.

Finally, we can apply the transformation x 7→ x + γ with γ ∈ Q. Applying this
transformation using the right constant γ allows us to choose which point of order 2
will be our e2. Using this, we can reduce the number of cases in one p-adic field. As
we will see later, the condition in Q2 are by far the most complicated. Because of
this we will reduce the number of cases in Q2 by guaranteeing that v2(e2) > v2(e3)
and v2(e2) > v2(e3 − e2). This is always possible:
Lemma 3.1.1. An elliptic curve in Legendre form E : y2 = x(x − e2)(x − e3) can
always be reduced to an equation with v2(e2) > v2(e3) and v2(e2) > v2(e3 − e2).

Proof. From the second reduction, we have that 4 - GCD(e2,e3).
It is not possible for all the three integers e2, e3 and e3 − e2 to all have different

valuations. We remark that each of these integers can be obtained by adding or
subtracting the other two. Indeed, if we name our three integers such that v2(a) <
v2(b) < v2(c), we would have that a = ±(b ± c). This would then imply that
v2(a) ≥ v2(b) and this is a contradiction.

Since we now know that two of our three integers e2, e3 and e3−e2 have the same
valuation, we can guarantee that one of these integers has a strictly higher valuation
than the other two. Indeed, if we let a and b respectively be the two integers with
v2(a) = v2(b), we would have that v2(c) > v2(a) where c is the third integer since
c = ±(a± b).

If e2 has the highest valuation, we are done. If e3 has the highest valuation,
we can simply switch e2 and e3 in the elliptic curve. If e3 − e2 has the highest
valuation, we simply use the transformation x 7→ x + e3 to get the elliptic curve
y2 = x(x− (e2 − e3))(x− (−e3)) where −(e3 − e2) is our new e2. �

From now on, we will call the above three reductions the conditions of Section
3.1. To summarize, they are as follows:

(1) e2, e3 ∈ Z,
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(2) GCD(e2,e3) is square-free,

(3) v2(e2) > v2(e3).

3.2. Conditions in R
The necessary and sufficient conditions for a solution in R are by far the easiest

to determine. In fact, there are only three cases with only one condition each:
Theorem 3.2.1. Equation System (3.1.1) has a non-trivial real solution if and only
if the following conditions are satisfied:

e2 > 0 and e3 > 0 =⇒ b1 > 0,

e2 < 0 and e3 − e2 > 0 =⇒ b2 > 0,

e3 < 0 and e3 − e2 < 0 =⇒ b1b2 > 0.

Proof. We start by remarking that, since the third equation in System (3.1.1) is
the difference of the first two, showing that two of the equations have a simultaneous
solution implies that the entire system has a solution. We then simply work case by
case.

If e2 > 0, e3 > 0, b1 < 0 and b2 > 0, Equation (3.1.1a) has no real solution.
If e2 > 0, e3 > 0, b1 < 0 and b2 < 0, Equation (3.1.1b) has no real solution.
If e2 < 0, e3 − e2 > 0, b1 > 0 and b2 < 0, Equation (3.1.1a) has no real solution.
If e2 < 0, e3 − e2 > 0, b1 < 0 and b2 < 0, Equation (3.1.1c) has no real solution.
If e3 < 0, e3 − e2 < 0, b1 > 0 and b2 < 0, Equation (3.1.1b) has no real solution.
If e3 < 0, e3 − e2 < 0, b1 < 0 and b2 > 0, Equation (3.1.1c) has no real solution.
In all other cases, there are no sign problems so there are real solutions. For

example, take z3 either small or big enough in order for e3d2+b1b2z2
3

b1
and (e3−e2)d2+b1b2z2

3
b2

to be positive. We can then take z1 and z2 to be their square roots to get a solution.
�
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3.3. Conditions in Q2

Since every term of Equation System (3.1.1) is of the same degree in the variables
z1, z2, z3 and d, looking for solutions to the system in Q2 is equivalent to looking for
solutions in Z/2kZ for all k.

For any other prime, it is possible to work in Z/pZ or Z/p2Z and then simply
apply Hensel’s lemma to get sufficient conditions in Qp. We will do this later when
we work with odd primes. However, this strategy does not work with 2 because the
derivative of a homogeneous equation of degree two is always 0 in Z/2Z. Because
of this, the conditions in Q2 are considerably more complicated that those for Qp.
This is why we reduced the number of cases in Q2 as much as possible by posing
v2(e2) > v2(e3).

Since the classical version of Hensel’s lemma can not be applied for Q2, we will
show that the conditions are necessary and sufficient in Z/2kZ for a k big enough by
brute force and then do induction to show the sufficiency for all of Q2. One could use
a more generalized version of Hensel’s lemma to prove the necessity of the conditions.
However, doing so would be more complex than the method used in this thesis.

Before starting, we remark that we can divide the equation system by common
divisors. Because of this, we can assume that GCD(z1,z2,z3,d) = 1. When working
in Q2, it simply means that we can assume that not all our variables are even.

For the sake of simplicity, we will first give the conditions and then spend the
rest of this section to prove them case by case.

3.3.1. The conditions for solvability in Q2

Before stating the conditions, we make some remarks.
Because of the generality of our elliptic curves, there are many cases to study

and it might seem overwhelming. However, in most instances, only a few of the
cases apply to a particular problem after the application of the reductions of Section
3.1. For example, in the congruent number problem, the only cases that apply are
those with v2(e2) = 1 and v2(e3) = 0 or those with v2(e2) = 2 and v2(e3) = 1
since the related elliptic curve can be written in Legendre form with e2 = −2n and
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e3 = n where n is square-free. We aim to study all the cases so that we can provide
conditions for any possible problem of this type.

Also, when working in Q2, the classical version Hensel’s lemma does not apply
since the derivative of a homogeneous second degree equation is always 0. This
makes the cases in Q2 very irregular and that produces a vast number of conditions.
However, once v2(e2) becomes large enough, we will be able to reduce the cases to a
smaller valuation of e2 so there is a finite number of cases.

We gather all the conditions in four tables that will be presented in the following
pages. We remark that for given e2 and e3, we have three conditions in each cell of
the tables. Sometimes it seems that there are only two conditions, but this is caused
by an implicit condition. Indeed, when there seems to be only two conditions, it is
because either we have the added condition that 2 - b1 that gives us the “No solution”
case or one of the conditions is x ≡8 1 that can be seen as x ≡8 1 or 7 and x ≡4 1
simultaneously. We will come back to this when we transform the conditions into
matrix lines.
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Theorem 3.3.1. If 8 - e2 and 2 - e3, the following conditions are necessary and sufficient for Equation System (3.1.1) to
have a non-trivial solution in Q2:

If v2(e2) = 1: If v2(e2) = 2:
If 2 - b1: If 2 | b1: If 2 - b1: If 2 | b1:

If e2 ≡4 1:

If e3 ≡8 1:
2 - b2,
b1 ≡4 1,

b1b2 ≡8 1 or 7.

2 | b2,
b1 ≡4 1,

b1b2 ≡8 1 or 7.

2 - b2,
b1 ≡4 1. No solution.

If e3 ≡8 5:
2 - b2,
b1 ≡4 1,

b1b2 ≡8 1 or 7.

2 | b2,
b1 ≡4 1,

3b1b2 ≡8 1 or 7.

2 - b2,
b1 ≡4 1. No solution.

If e3 ≡8 3:
2 - b2,
b2 ≡4 1,

b1b2 ≡8 1 or 3.

2 | b2,
−b2 ≡4 1,

−b1b2 ≡8 1 or 3.

2 - b2,
b1 ≡8 1 or 7 ⇐⇒ b2 ≡8 1 or 3,

b1b2 ≡4 1.

2 | b2,
b1 ≡8 1 or 7 ⇐⇒ −b2 ≡8 1 or 3,

−b1b2 ≡4 1.

If e3 ≡8 7:
2 - b2,
b2 ≡4 1,

b1b2 ≡8 1 or 3.

2 | b2,
−b2 ≡4 1,

b1b2 ≡8 1 or 3.

2 - b2,
b1b2 ≡4 1. No solution.

If e2 ≡4 3:

If e3 ≡8 1:
2 - b2,
b1 ≡4 1,

b1b2 ≡8 1 or 3.

2 | b2,
−b1 ≡4 1,

−b1b2 ≡8 1 or 3.

2 - b2,
b2 ≡4 1. No solution.

If e3 ≡8 5:
2 - b2,
b1 ≡4 1,

b1b2 ≡8 1 or 3.

2 | b2,
−b1 ≡4 1,

b1b2 ≡8 1 or 3.

2 - b2,
b2 ≡4 1. No solution.

If e3 ≡8 3:
2 - b2,
b2 ≡4 1,

b1b2 ≡8 1 or 7.

2 | b2,
b2 ≡4 1,

3b1b2 ≡8 1 or 7.

2 - b2,
b1b2 ≡4 1. No solution.

If e3 ≡8 7:
2 - b2,
b2 ≡4 1,

b1b2 ≡8 1 or 7.

2 | b2,
b2 ≡4 1,

b1b2 ≡8 1 or 7.

2 - b2,
b1 ≡8 1 or 7 ⇐⇒ b2 ≡8 1 or 3,

b1b2 ≡4 1.

2 | b2,
b1 ≡8 1 or 7 ⇐⇒ b2 ≡8 1 or 3,

−b1b2 ≡4 1.
Table 3.1. Conditions for a solution in Q2 when 8 - e2 and 2 - e3.
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Theorem 3.3.2. If 3 ≤ v2(e2) ≤ 4 and 2 - e3, the following conditions are necessary and sufficient
for Equation System (3.1.1) to have a non-trivial solution in Q2:

If v2(e2) = 3: If v2(e2) = 4:
If 2 - b1: If 2 | b1: If 2 - b1: If 2 | b1:

If e2 ≡4 1:

If e3 ≡8 1:
2 - b2,
b2 ≡4 1,

b1b2 ≡8 1 or 3.

2 | b2,
−b2 ≡4 1,

−b1b2 ≡8 1 or 3.

2 - b2,
b1 ≡4 1,

b1b2 ≡8 1 or 7.

2 | b2,
b1 ≡4 1,

b1b2 ≡8 1 or 7.

If e3 ≡8 5:
2 - b2,
b1 ≡4 1,

b1b2 ≡8 1 or 7.

2 | b2,
b1 ≡4 1,

3b1b2 ≡8 1 or 7.

2 - b2,
b1 ≡4 1,

b1b2 ≡8 1 or 3.

2 | b2,
−b1 ≡4 1,

b1b2 ≡8 1 or 3.

If e3 ≡8 3: 2 - b2,
b1b2 ≡8 1.

2 | b2,
5b1b2 ≡8 1.

2 - b2,
b1b2 ≡4 1. No solution.

If e3 ≡8 7: 2 - b2,
b1b2 ≡8 1.

2 | b2,
b1b2 ≡8 1.

2 - b2,
b1b2 ≡4 1. No solution.

If e2 ≡4 3:

If e3 ≡8 1:
2 - b2,
b1 ≡4 1,

b1b2 ≡8 1 or 3.

2 | b2,
−b1 ≡4 1,

−b1b2 ≡8 1 or 3.

2 - b2,
b2 ≡4 1,

b1b2 ≡8 1 or 7.

2 | b2,
b2 ≡4 1,

b1b2 ≡8 1 or 7.

If e3 ≡8 5:
2 - b2,
b2 ≡4 1,

b1b2 ≡8 1 or 7.

2 | b2,
b2 ≡4 1,

3b1b2 ≡8 1 or 7.

2 - b2,
b2 ≡4 1,

b1b2 ≡8 1 or 3.

2 | b2,
−b2 ≡4 1,

b1b2 ≡8 1 or 3.

If e3 ≡8 3: 2 - b2,
b1b2 ≡8 1.

2 | b2,
5b1b2 ≡8 1.

2 - b2,
b1b2 ≡4 1. No solution.

If e3 ≡8 7: 2 - b2,
b1b2 ≡8 1.

2 | b2,
b1b2 ≡8 1.

2 - b2,
b1b2 ≡4 1. No solution.

Table 3.2. Conditions for a solution in Q2 when 3 ≤ v2(e2) ≤ 4 and 2 - e3.
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Theorem 3.3.3. If 32 | e2 and 2 - e3, the following conditions are necessary and sufficient for
Equation System (3.1.1) to have a non-trivial solution in Q2:

If v2(e2) ≡2 1: If v2(e2) ≡2 0:
If 2 - b1: If 2 | b1: If 2 - b1: If 2 | b1:

If e2 ≡4 1:

If e3 ≡8 1:
2 - b2,
b1 ≡4 1,

b1b2 ≡8 1 or 7.

2 | b2,
b1 ≡4 1,

b1b2 ≡8 1 or 7.

2 - b2,
b1 ≡4 1,

b1b2 ≡8 1 or 7.

2 | b2,
b1 ≡4 1,

b1b2 ≡8 1 or 7.

If e3 ≡8 5:
2 - b2,
b2 ≡4 1,

b1b2 ≡8 1 or 3.

2 | b2,
−b2 ≡4 1,

b1b2 ≡8 1 or 3.

2 - b2,
b1 ≡4 1,

b1b2 ≡8 1 or 3.

2 | b2,
−b1 ≡4 1,

b1b2 ≡8 1 or 3.

If e3 ≡8 3: 2 - b2,
b1b2 ≡8 1.

2 | b2,
5b1b2 ≡8 1.

2 - b2,
b1b2 ≡4 1. No solution.

If e3 ≡8 7: 2 - b2,
b1b2 ≡8 1.

2 | b2,
b1b2 ≡8 1.

2 - b2,
b1b2 ≡8 1.

2 | b2,
b1b2 ≡8 1.

If e2 ≡4 3:

If e3 ≡8 1:
2 - b2,
b2 ≡4 1,

b1b2 ≡8 1 or 7.

2 | b2,
b2 ≡4 1,

b1b2 ≡8 1 or 7.

2 - b2,
b2 ≡4 1,

b1b2 ≡8 1 or 7.

2 | b2,
b2 ≡4 1,

b1b2 ≡8 1 or 7.

If e3 ≡8 5:
2 - b2,
b1 ≡4 1,

b1b2 ≡8 1 or 3.

2 | b2,
−b1 ≡4 1,

b1b2 ≡8 1 or 3.

2 - b2,
b2 ≡4 1,

b1b2 ≡8 1 or 3.

2 | b2,
−b2 ≡4 1,

b1b2 ≡8 1 or 3.

If e3 ≡8 3: 2 - b2,
b1b2 ≡8 1.

2 | b2,
5b1b2 ≡8 1.

2 - b2,
b1b2 ≡4 1. No solution.

If e3 ≡8 7: 2 - b2,
b1b2 ≡8 1.

2 | b2,
b1b2 ≡8 1.

2 - b2,
b1b2 ≡8 1.

2 | b2,
b1b2 ≡8 1.

Table 3.3. Conditions for a solution in Q2 when 32 | e2 and 2 - e3.
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Theorem 3.3.4. If 2 | e3, the following conditions are necessary and sufficient for Equation System
(3.1.1) to have a non-trivial solution in Q2:

If v2(e2) = 2: If v2(e2) = 3 If 16 | e2
and v2(e2) ≡2 0:

If 16 | e2
and v2(e2) ≡2 1:

If e3 ≡4 1:
If 2 - b1:

If 2 - b2:
b1 ≡8 1 or 7,
b2 ≡8 1 or 3,
b1b2 ≡4 1.

b1 ≡8 1 or 3,
b2 ≡8 1 or 3,
b1b2 ≡4 1.

b1 ≡8 1 or 3,
b2 ≡8 1 or 3,
b1b2 ≡4 1.

b1 ≡8 1 or 3,
b2 ≡8 1 or 3,
b1b2 ≡4 1.

If 2 | b2:
b1e2 ≡8 1 or 7,

−b2e2(e3 − e2) ≡8 1 or 3,
b1b2 ≡4 1.

b1e2e3 ≡8 1 or 3,
−b2e2 ≡8 1 or 3,
−b1b2 ≡4 1.

b1e2 ≡8 1 or 3,
−b2e2e3 ≡8 1 or 3,
−b1b2 ≡4 1.

b1e2e3 ≡8 1 or 3,
−b2e2 ≡8 1 or 3,
−b1b2 ≡4 1.

If 2 | b1: If 2 - b2:
b1e2e3 ≡8 1 or 7,
−b2e2 ≡8 1 or 3,
−b1b2 ≡4 1.

b1e2 ≡8 1 or 3,
b2e2e3 ≡8 1 or 3,
−b1b2 ≡4 1.

b1e2e3 ≡8 1 or 3,
−b2e2 ≡8 1 or 3,
−b1b2 ≡4 1.

b1e2 ≡8 1 or 3,
−b2e2e3 ≡8 1 or 3,
−b1b2 ≡4 1.

If 2 | b2:
b1e3 ≡8 1 or 7,

b2(e3 − e2) ≡8 1 or 3,
−b1b2 ≡4 1.

b1e3 ≡8 1 or 3,
−b2e3 ≡8 1 or 3,

b1b2 ≡4 1.

b1e3 ≡8 1 or 3,
b2e3 ≡8 1 or 3,
b1b2 ≡4 1.

b1e3 ≡8 1 or 3,
b2e3 ≡8 1 or 3,
b1b2 ≡4 1.

If e3 ≡4 3:
If 2 - b1:

If 2 - b2:
b1 ≡8 1 or 3,
b2 ≡8 1 or 7,
b1b2 ≡4 1.

b1 ≡8 1 or 7,
b2 ≡8 1 or 7,
b1b2 ≡4 1.

b1 ≡8 1 or 7,
b2 ≡8 1 or 7,
b1b2 ≡4 1.

b1 ≡8 1 or 7,
b2 ≡8 1 or 7,
b1b2 ≡4 1.

If 2 | b2:
b1e2 ≡8 1 or 3,

b2e2(e3 − e2) ≡8 1 or 7,
−b1b2 ≡4 1.

b1e2e3 ≡8 1 or 7,
b2e2 ≡8 1 or 7,
b1b2 ≡4 1.

b1e2 ≡8 1 or 7,
b2e2e3 ≡8 1 or 7,

b1b2 ≡4 1.

b1e2e3 ≡8 1 or 7,
b2e2 ≡8 1 or 7,
b1b2 ≡4 1.

If 2 | b1: If 2 - b2:
b1e2e3 ≡8 1 or 3,
b2e2 ≡8 1 or 7,
b1b2 ≡4 1.

b1e2 ≡8 1 or 7,
3b2e2e3 ≡8 1 or 7,

b1b2 ≡4 1.

b1e2e3 ≡8 1 or 7,
b2e2 ≡8 1 or 7,
b1b2 ≡4 1.

b1e2 ≡8 1 or 7,
b2e2e3 ≡8 1 or 7,

b1b2 ≡4 1.

If 2 | b2:
b1e3 ≡8 1 or 3,

b2(e3 − e2) ≡8 1 or 7,
−b1b2 ≡4 1.

b1e3 ≡8 1 or 7,
3b2e3 ≡8 1 or 7,

b1b2 ≡4 1.

b1e3 ≡8 1 or 7,
b2e3 ≡8 1 or 7,
b1b2 ≡4 1.

b1e3 ≡8 1 or 7,
b2e3 ≡8 1 or 7,
b1b2 ≡4 1.

Table 3.4. Conditions for a solution in Q2 when 2 | e3.
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3.3.2. The proofs of necessity

We separate the proofs that our conditions are necessary from the proofs that
they are sufficient. There are two main reasons for that. The first reason is that both
types of proofs are very different. However the proofs of necessity are very similar to
each other and the same is true for the proofs of sufficiency. It is therefore natural,
in a classification mindset, to separate the two types of proofs. The second reason
is that we only really need for the conditions to be necessary for most of the results
that we obtain in this thesis. The proofs of sufficiency are here to show that there are
no other local conditions that we could have added to get new results. The proofs
of sufficiency could also be used to find the exact elliptic curve rank if one were able
to calculate the size of the Tate-Shafarevich group.

With that in mind, we will write the proofs of necessity in this section. For small
valuations, we remark that the conditions under consideration are necessary for a
solution in Z/2nZ with a small enough n. In these cases, we simply apply brute
force and check all possibilities using a Python program. An algorithm that does it
in an acceptable time (it is still somewhat long for some of the valuations) is given
in Appendix A.
Proposition 3.3.5. If 2 - e3, v2(e2) ≤ 4 and Equation System (3.1.1) has a non
trivial solution in Q2, then b1 and b2 respect the conditions of Theorems 3.3.1 and
3.3.2.

If 2 | e3, v2(e2) ≤ 3 and Equation System (3.1.1) has a non trivial solution in
Q2, then b1 and b2 respect the conditions of Theorem 3.3.4.

Proof. When 2 - e3 and v2(e2) = 1, it can be verified, using the algorithm given
in Appendix A, that the conditions of Theorem 3.3.1 are necessary for a solution in
Z/32Z.

When 2 - e3 and v2(e2) = 2, it can be verified, using the algorithm given in
Appendix A, that the conditions of Theorem 3.3.1 are necessary for a solution in
Z/64Z.

When 2 - e3 and v2(e2) = 3, it can be verified, using the algorithm given in
Appendix A, that the conditions of Theorem 3.3.2 are necessary for a solution in
Z/128Z.
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When 2 - e3 and v2(e2) = 4, it can be verified, using the algorithm given in
Appendix A, that the conditions of Theorem 3.3.2 are necessary for a solution in
Z/256Z.

When 2 | e3 and v2(e2) = 2, it can be verified, using the algorithm given in
Appendix A, that the conditions of Theorem 3.3.4 are necessary for a solution in
Z/32Z.

When 2 | e3 and v2(e2) = 3, it can be verified, using the algorithm given in
Appendix A, that the conditions of Theorem 3.3.4 are necessary for a solution in
Z/64Z. �

The rest of the cases have an indeterminate valuation and this implies that a
simple brute force proof would not work.

The conditions can be separated in multiple cases. We will organize the cases in
lemmas.

3.3.2.1. Proofs when 32 | e2, v2(e2) ≡2 1 and 2 - e3:
Lemma 3.3.6. If Equation System (3.1.1) has a non trivial solution in Q2, then:

2 | b1 ⇐⇒ 2 | b2.

Proof. Recall that b1,b2 ∈ Q(S,2). Because of this b1 and b2 are represented by
square-free integers. This fact will be important for almost all proofs of this chapter.
For this particular proof, it implies that 4 - b1,b2.

We proceed by contradiction. If 2 | b1 and 2 - b2, Equation (3.1.1b) implies that
2 | d, then Equation (3.1.1a) implies that 2 | z2, then Equation (3.1.1c) implies that
2 | z3 (since 4 - b1) and Equation (3.1.1a) implies that 2 | z1 (since 4 - b1) and this is
a contradiction since GCD(z1,z2,z3,d) = 1.

If 2 - b1 and 2 | b2, Equation (3.1.1c) implies that 2 | d, then Equation (3.1.1a)
implies that 2 | z1, then Equation (3.1.1b) implies that 2 | z3 (since 4 - b2) and
Equation (3.1.1a) implies that 2 | z2 (since 4 - b2) and this is another contradiction.

�

Lemma 3.3.7. If e3 ≡4 3 and Equation System (3.1.1) has a non trivial solution in
Q2, then:
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2 - b1 =⇒ b1b2 ≡8 1,

2 | b1 =⇒ −b1b2e3 ≡8 1.

Proof. We separate the proof in two cases depending on the parity of b1. Recall
that Lemma 3.3.6 implies that b1 and b2 have the same parity.

If 2 - b1, we consider several subcases depending on the 2-valuations of z1 and z2.
Remark that evaluating Equation (3.1.1a) modulo 8 implies that 2 | z1 ⇐⇒ 2 | z2

since the equation becomes b1z
2
1 − b2z

2
2 ≡8 0. We can repeat this argument and

evaluate Equation (3.1.1a) modulo 21+2i in order to show that 2i | z1 ⇐⇒ 2i | z2

for i ≤ v2(e2)−1
2 .

If 2 - z1z2, Equation (3.1.1a) modulo 8 becomes b1− b2 ≡8 0 and this implies that
b1b2 ≡8 1.

If 2 | z1,z2, Equation (3.1.1b) implies that 2 | z3 ⇐⇒ 2 | d since 2 - b1b2e3.
In order for z1, z2, z3, and d to have no common factor, 2 - z3d. We will use this
property for the next subcases.

If 2 | z1,z2 but 2(v2(e2)−1)/2 - z1,z2, evaluating Equation (3.1.1a) modulo 2v2(e2)

implies that b1 − b2 ≡8 0 and then that b1b2 ≡8 1.
If 2(v2(e2)−1)/2 || z1,z2, evaluating Equation (3.1.1b) modulo 4 implies that

−b1b2 ≡4 e3 ≡4 3. This means that b1 ≡4 b2. However, evaluating Equation (3.1.1a)
modulo 2v2(e2)+1 implies that b1 − b2 ≡4 2. This is impossible since b1 ≡4 b2 implies
that b1 − b2 ≡4 0.

If 2(v2(e2)+1)/2 | z1,z2, Equation (3.1.1a) has no solution since it would imply that
v2(b1z

2
1 − b2z

2
2) > v2(e2d

2).
This concludes the case when 2 - b1.

If 2 | b1, we again consider several subcases depending on the 2-valuations of z1

and z2. This time, we check the 2-valuations of the terms in Equation (3.1.1b) to
remark that 2 | d and then that 2 | z1. Doing the same with Equation (3.1.1c) implies
that 2 | z2. This then means that 2 - z3 since GCD(z1,z2,z3,d) = 1. Knowing this,
the 2-valuations of the terms of Equation (3.1.1c) imply that 4 - d because 8 - b1b2z

2
3 .
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If 4 - z1,z2, Equation (3.1.1a) implies that b1b2 ≡8 1. However, evaluating Equa-
tion (3.1.1b) modulo 16 implies that b1 − b1b2 ≡4 e3 and this then implies that
2− 1 ≡4 3 which is false. This means that 4 | z1 or 4 | z2.

If 4 | z1 or 4 | z2, Equation(3.1.1a) implies that 4 must also divide the other using
the same reasoning used when 2 - b1. Equation (3.1.1b) then implies that −b1b2 ≡8 e3

when evaluated modulo 32. This is equivalent to −b1b2e3 ≡8 1.
This concludes the case when 2 | b1.

�

Lemma 3.3.8. If e3 ≡8 1 and Equation System (3.1.1) has a non trivial solution in
Q2, then:

b1b2 ≡8 1 or 7.

Proof. We separate the proof in two cases depending on the parity of b1. Recall
that Lemma 3.3.6 implies that b1 and b2 have the same parity.

If 2 - b1, we consider several subcases depending on the 2-valuations of z1 and z2.
Recall that evaluating Equation (3.1.1a) modulo 8 implies that 2 | z1 ⇐⇒ 2 | z2.
For the same reason, 4 | z1 ⇐⇒ 4 | z2.

If 2 - z1z2, then z2
1 ≡8 z

2
2 ≡8 1. This implies that b1 ≡8 b2 and then that b1b2 ≡8 1.

If 2 | z1,z2, Equation (3.1.1b) implies that 2 | z3 ⇐⇒ 2 | d since 2 - b1b2e3.
In order for z1, z2, z3, and d to have no common factor, 2 - z3d. We will use this
property for the next subcases.

If 2 || z1,z2, Equation (3.1.1b) modulo 8 becomes 4 − b1b2 ≡8 1 and this implies
that b1b2 ≡8 3. However, Equation (3.1.1a) modulo 16 becomes b1 − b2 ≡4 0 after
we divide every term by 4. This would imply that b1b2 ≡4 1 and it would be a
contradiction. This case is then impossible.

If 4 | z1,z2, Equation (3.1.1b) modulo 8 is −b1b2 ≡8 1 and this implies that
b1b2 ≡8 7.

This concludes the case when 2 - b1.

If 2 | b1, Equation (3.1.1b) modulo 2 implies that 2 | d. We then reevaluate it
modulo 4 to remark that 2 | z1. We can also evaluate Equation (3.1.1c) modulo 4

67



to remark that 2 | z2. Since GCD(z1,z2,z3,d) = 1, this implies that 2 - z3. Equa-
tion (3.1.1b) modulo 8 becomes b1b2 ≡8 d

2 and implies that 4 - d. With all this
information, we consider two subcases depending on the 2-valuations of z1 and z2.

If 4 | z1 or 4 | z2, Equation (3.1.1b) or Equation (3.1.1c) respectively implies
that b1b2 ≡32 d

2. Dividing the equation by 4 the implies that −b1b2 ≡8 1 and this is
equivalent to b1b2 ≡8 7.

If 4 - z1,z2, Equation (3.1.1a) evaluated modulo 32 becomes b1 − b2 ≡8 0 when
divided by 4. This implies that b1b2 ≡8 1.

This concludes the case when 2 | b1.
�

Lemma 3.3.9. If e3 ≡8 5 and Equation System (3.1.1) has a non trivial solution in
Q2, then:

b1b2 ≡8 1 or 3.

Proof. The proof of this lemma is practically identical to the proof of Lemma 3.3.8,
the only difference being the right side of Equations (3.1.1b) and (3.1.1c). �

Lemma 3.3.10. If e2 ≡4 1, e3 ≡8 1 and Equation System (3.1.1) has a non trivial
solution in Q2, then:

b1 ≡4 1.

Proof. We separate the problem in two cases depending on the parity of b1. Recall
that Lemma 3.3.6 implies that b1 and b2 have the same parity. Each case will then
be separated into subcases depending on the 2-valuations of z1 and z2.

If 2 - b1:
If 2 - z1z2, Equation (3.1.1a) evaluated modulo 4 implies that b1 ≡4 b2. Applying

this to Equation (3.1.1b) implies that b1 − z2
3 ≡4 d2. The only solution to this

equation is b1 ≡4 1, 2 - z3 and d ≡4 0. This means that b1 ≡4 1.
Using the same reasoning as in the proof of Lemma 3.3.7, we can prove that

2 | z1 ⇐⇒ 2 | z2, 4 | z1 ⇐⇒ 4 | z2 and 2 | z1,z2 =⇒ 2 - z3d.
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If 2 || z1,z2 Equation (3.1.1a) modulo 16 implies that b1b2 ≡4 1 while Equation
(3.1.1b) modulo 4 implies that b1b2 ≡4 3. This case is impossible.

If 4 | z1,z2, Equation (3.1.1b) modulo 8 implies that b1b2 ≡8 7. This then implies
that Equation (3.1.1a) can only have a solution modulo 2v2(e2) if 2(v2(e2)−1)/2 | z1,z2

because it would otherwise imply that b1 − b2 ≡8 0 which would contradict the fact
that b1b2 ≡8 7. We can also study the 2-valuations of the terms in Equation (3.1.1a)
and remark that 2(v2(e2)+1)/2 - z1,z2. Checking Equation (3.1.1a) modulo 2v2(e2)+2

with this new information implies that b1−b2 ≡8 2. The only pairs (b1,b2) respecting
both b1b2 ≡8 7 and b1 − b2 ≡8 2 are (b1,b2) ≡8 (1,7) and ≡8 (5,3). In both cases,
b1 ≡4 1.

This concludes the case when 2 - b1.

If 2 | b1, using the same reasoning as in the proof of Lemma 3.3.7, 2 | z1,z2, 2 || d
and 2 - z3.

If 4 - z1,z2, Equation (3.1.1a) modulo 32 implies that b1b2 ≡8 1. Equation (3.1.1b)
modulo 32 then implies that b1 − 1 ≡8 1. Since 2 | b1, the previous equation implies
that b1 ≡4 1.

If 4 | z1 or 4 | z2, the 2-valuations of the terms of Equation (3.1.1a) imply that 4
divides the other one. As in the proof of Lemma 3.3.8, Equation (3.1.1b) modulo 32
then implies that b1b2 ≡8 7. This then implies that Equation (3.1.1a) can only have
a solution modulo 2v2(e2)+2 if 2(v2(e2)+1)/2 | z1,z2. Studying Equation (3.1.1a) modulo
2v2(e2)+4 then implies that b1z

′2
1 − b2z

′2
2 ≡4 e2 ≡4 1 with z′i = zi

2(v2(e2)+1)/2 . The only
solutions are (2 | z′1 and b2 ≡4 3) and (2 | z′2 and b1 ≡4 1). In both cases b1b2 ≡8 7
implies that b1 ≡4 1.

This concludes the case when 2 | b1. �

Lemma 3.3.11. If e2 ≡4 1, e3 ≡8 5 and Equation System (3.1.1) has a non trivial
solution in Q2, then: 2 - b1 =⇒ b2 ≡4 1,

2 | b1 =⇒ b2 ≡4 3.

Proof. The proof of this lemma is practically identical to the proof of Lemma 3.3.10
with two differences.
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We study Equation (3.1.1c) instead of Equation (3.1.1b). This gives a condition
on b2 instead of b1.

Because e3 ≡8 5 instead of e3 ≡8 1, this changes the value of b2 when 2 | b1 for
Equation (3.1.1c) to have a solution. �

Lemma 3.3.12. If e2 ≡4 3, e3 ≡8 1 and Equation System (3.1.1) has a non trivial
solution in Q2, then:

b2 ≡4 1.

Proof. The proof of this lemma is practically identical to the proof of Lemma 3.3.10
with one difference.

We study Equation (3.1.1c) instead of Equation (3.1.1b). This gives a condition
on b2 instead of b1. �

Lemma 3.3.13. If e2 ≡4 3, e3 ≡8 5 and Equation System (3.1.1) has a non trivial
solution in Q2, then: 2 - b1 =⇒ b1 ≡4 1,

2 | b1 =⇒ b1 ≡4 3.

Proof. The proof of this lemma is practically identical to the proof of Lemma 3.3.10
with one difference.

Because e3 ≡8 5 instead of e3 ≡8 1, this changes the value of b1 when 2 | b1 for
Equation (3.1.1b) to have a solution. �

The combination of the above lemmas forms our conditions in the case where
32 | e2, v2(e2) ≡2 1 and 2 - e3.

3.3.2.2. Proofs when 32 | e2, v2(e2) ≡2 0 and 2 - e3:
Lemma 3.3.14. If Equation System (3.1.1) has a non trivial solution in Q2, then:

2 | b1 ⇐⇒ 2 | b2.

Proof. Since this condition only depends on the fact that 2 | e2 and 2 - e3, the
proof of this lemma is exactly the same as the proof of Lemma 3.3.6. �
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Lemma 3.3.15. If e3 ≡8 3 and Equation System (3.1.1) has a non trivial solution
in Q2, then:

2 - b1.

Proof. This proof will be done by contradiction. If 2 | b1, Lemma 3.3.14 implies
that 2 | b2. The 2-valuations of the terms of Equation (3.1.1b) imply that 2 | z1

and that 2 | d. In the same way, Equation (3.1.1c) implies that 2 | z2. Since
GCD(z1,z2,z3,d) = 1, 2 - z3. The 2-valuations of the terms of Equation (3.1.1b) then
imply that 4 - d.

Equation (3.1.1b) modulo 32 becomes b1z
′2
1 − b1b2 ≡8 3 when divided by 4 (with

z′1 = z1
2 ). In order for Equation (3.1.1b) to have a solution modulo 32, either (4 | z1

and b1 ≡8 5b2) or (4 - z1 and b1 − b1b2 ≡8 3).
If 4 | z1 and b1 ≡8 5b2, the fact that b1 6≡8 b2 implies that 2(v2(e2))/2 || z1,z2 in

order for Equation (3.1.1a) to have a solution modulo 2v2(e2)+2. Equation (3.1.1a)
modulo 2v2(e2)+3 then becomes b1z2

1 − b2z2
2 ≡16 6 and has no solution with b1 ≡8 5b2.

This case is then impossible.
If 4 - z1 and b1 − b1b2 ≡8 3, the 2-valuations of the terms of Equation (3.1.1a)

imply that 4 - z2 because 4 - z1. Equation (3.1.1a) then implies that b1b2 ≡8 1. This
then means that b1 − 1 ≡8 3 and that b1 ≡8 4. This is impossible since 4 - b1.

Since none of the cases are possible, we conclude that 2 - b1. �

Lemma 3.3.16. If e3 ≡8 3 and Equation System (3.1.1) has a non trivial solution
in Q2, then:

b1b2 ≡4 1.

Proof. Lemmas 3.3.14 and 3.3.15 imply that 2 - b1b2.
If 2 divides z1 or z2, Equation (3.1.1a) implies that 2 divides the other one.

Equation (3.1.1b) then implies that 2 - z3d because GCD(z1,z2,z3,d) = 1. Equation
(3.1.1b) modulo 4 then implies that b1b2 ≡4 1.

If 2 - z1z2, Equation (3.1.1a) modulo 4 implies that b1b2 ≡4 1. �
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Lemma 3.3.17. If e3 ≡8 7 and Equation System (3.1.1) has a non trivial solution
in Q2, then:

b1b2 ≡8 1.

Proof. The proof of this lemma is very similar to the proof of Lemma 3.3.7. How-
ever, there are some small differences caused by the new 2-valuation of e2. This proof
is easier than the original since there is more information about e3.

As in Lemma 3.3.7, we separate the proof in two cases depending on the parity
of b1 and separate these cases into subcases depending on the 2-valuations of z1 and
z2.

If 2 - b1, using the same reasoning as in the proof of Lemma 3.3.7, we can show
that 2 | z1 ⇐⇒ 2 | z2 and 4 | z1 ⇐⇒ 4 | z2.

If 2 - z1,z2, Equation (3.1.1a) modulo 8 implies that b1b2 ≡8 1.
If 2 || z1,z2, Equation (3.1.1a) modulo 32 implies that b1b2 ≡8 1.
If 4 | z1,z2, Equation (3.1.1b) implies that 2 - z3d. Equation (3.1.1b) modulo 8

then implies that b1b2 ≡8 1.
This concludes the case when 2 - b1.

If 2 | b1, Equation (3.1.1b) implies that 2 | d and then that 2 | z1. Equation
(3.1.1c) then implies that 2 | z2 and then that 2 - z3. Reevaluating the 2-valuations
in Equation (3.1.1b) shows that 4 - d.

If 4 - z1,z2, Equation (3.1.1a) modulo 32 implies that b1b2 ≡8 1.
If 4 | z1 or 4 | z2, Equation (3.1.1b) or (3.1.1c) respectively implies that b1b2 ≡8 1.
This concludes the case when 2 | b1. �

Lemma 3.3.18. If e3 ≡8 1 and Equation System (3.1.1) has a non trivial solution
in Q2, then:

b1b2 ≡8 1 or 7.

Proof. The proof of this lemma is exactly the same as as the proof of Lemma
3.3.8. �
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Lemma 3.3.19. If e3 ≡8 5 and Equation System (3.1.1) has a non trivial solution
in Q2, then:

b1b2 ≡8 1 or 3.

Proof. The proof of this lemma is exactly the same as as the proof of Lemma
3.3.9. �

Lemma 3.3.20. If e2 ≡4 1, e3 ≡8 1 and Equation System (3.1.1) has a non trivial
solution in Q2, then:

b1 ≡4 1.

Proof. This lemma is very similar to Lemma 3.3.10. The proofs of the two lemmas
are also almost the same.

As in Lemma 3.3.10, we separate the proof in two cases depending on the parity
of b1 and separate these cases in subcases depending on the 2-valuations of z1 and
z2.

If 2 - b1, Equation (3.1.1a) implies that 2i | z1 ⇐⇒ 2i | z2 for i ≤ v2(e2)
2 .

Equation (3.1.1b) then implies that 2 | z1 =⇒ 2 - z3d.
If 2 - z1z2, Equation (3.1.1a) implies that b1 ≡8 b2. Equation (3.1.1b) then

becomes b1 − z2
3 ≡8 d

2 and this implies that b1 ≡4 1.
If 2 | z1,z2 but 2v2(e2)/2 - z1,z2, Equation (3.1.1b) implies that b1b2 ≡4 3 while

Equation (3.1.1a) implies that b1b2 ≡4 1. This case is impossible.
If 2v2(e2)/2 | z1,z2, Equation (3.1.1a) modulo 2v2(e2)+2 is b1z

′2
1 − b2z

2
2 ≡4 e2 ≡4 1

with z′i = zi

2v2(e2)/2 . In order for Equation (3.1.1a) to have a solution, either (b1 ≡4 1
and 2 | z′2) or (b2 ≡4 3 and 2 | z′1). Since Equation (3.1.1b) implies that b1b2 ≡8 7.
We have that b1 ≡4 1 in both cases.

This concludes the case when 2 - b1.

If 2 | b1, Equation (3.1.1b) implies that 2 | d and 2 | z1. Equation (3.1.1c) implies
that 2 | z2 and 2 - z3. Equation (3.1.1b) then implies that 4 - d. Equation (3.1.1a)
also implies that 4 | z1 ⇐⇒ 4 | z2.
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If 2 || z1,z2, Equation (3.1.1a) implies that b1b2 ≡8 1. Equation (3.1.1b) modulo
32 implies that b1 − 1 ≡8 1 which in turn implies that b1 ≡4 1.

If 4 | z1,z2 and 2v2(e2)/2−1 - z1,z2, Equation (3.1.1a) implies that b1b2 ≡8 1.
However, Equation (3.1.1b) modulo 32 then implies that 0 − 1 ≡8 e3 ≡8 1 which is
a contradiction. This case is impossible.

If 2v2(e2)/2−1 | z1 or 2v2(e2)/2−1 | z2, Equation (3.1.1a) implies that 2v2(e2)/2−1

divides the other one. Equation (3.1.1b) implies that b1b2 ≡8 7. The 2-valuations
of the terms of Equation (3.1.1a) then imply that 2v2(e2)/2−1 || z1, z2. We can divide
Equation (3.1.1a) by 2v2(e2)+1 to get that b1− b2 ≡8 2. When combined with the fact
that b1b2 ≡8 7, this implies that b1 ≡4 1.

This concludes the case when 2 | b1. �

Lemma 3.3.21. If e2 ≡4 1, e3 ≡8 5 and Equation System (3.1.1) has a non trivial
solution in Q2, then: 2 - b1 =⇒ b1 ≡4 1,

2 | b1 =⇒ b1 ≡4 3.

Proof. The proof of this lemma is practically identical to the proof of Lemma 3.3.20
with one difference.

Because e3 ≡8 5 instead of e3 ≡8 1, this changes the value of b1 when 2 | b1 for
Equation (3.1.1b) to have a solution. �

Lemma 3.3.22. If e2 ≡4 3, e3 ≡8 1 and Equation System (3.1.1) has a non trivial
solution in Q2, then:

b2 ≡4 1.

Proof. The proof of this lemma is practically identical to the proof of Lemma 3.3.20
with one difference.

We study Equation (3.1.1c) instead of Equation (3.1.1b). This gives a condition
on b2 instead of b1. �

Lemma 3.3.23. If e2 ≡4 3, e3 ≡8 5 and Equation System (3.1.1) has a non trivial
solution in Q2, then:
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2 - b1 =⇒ b2 ≡4 1,

2 | b1 =⇒ b2 ≡4 3.

Proof. The proof of this lemma is practically identical to the proof of Lemma 3.3.20
with two differences.

We study Equation (3.1.1c) instead of Equation (3.1.1b). This gives a condition
on b2 instead of b1.

Because e3 ≡8 5 instead of e3 ≡8 1, this changes the value of b2 when 2 | b1 for
Equation (3.1.1c) to have a solution. �

The combination of the above lemmas forms our conditions in the case where
32 | e2, v2(e2) ≡2 0 and 2 - e3.

3.3.2.3. Proofs when 16 | e2, v2(e2) ≡2 0 and 2 | e3: When 2 | e3, the conditions
can be separated in three. One condition on b1, one on b2 and one on b1b2. These
conditions depend on the parity of b1 and b2.
Lemma 3.3.24. The necessary conditions on b1b2 for Equation System (3.1.1) to
have a non-trivial solution in Q2 are:



2 - b1, 2 - b2 =⇒ b1b2 ≡4 1,

2 - b1, 2 | b2 =⇒ −b1b2e3 ≡4 1,

2 | b1, 2 - b2 =⇒ −b1b2e3 ≡4 1,

2 | b1, 2 | b2 =⇒ b1b2 ≡4 1.

Proof. If 2 - b1 and 2 - b2:
If 2 - z1,z2, Equation (3.1.1a) implies that b1b2 ≡4 1.
If 2 | z1,z2, the 2-valuations of the terms in Equation (3.1.1b) imply that 2 | z3,d.

This case is impossible since GCD(z1,z2,z3,d) = 1.
If 2 - b1 and 2 | b2:
The 2-valuations of the terms in Equation (3.1.1a) imply that 2 | z2 and 4 | z1.

Equation (3.1.1b) then implies that 2 - z3d and then that −b1b2e3 ≡4 1.
If 2 | b1 and 2 - b2:
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Equation (3.1.1a) implies that 2 | z1 and 4 | z2. Equation (3.1.1c) then implies
that 2 - z3d and then that −b1b2e3 ≡4 1.

If 2 | b1 and 2 | b2:
If 2 - z1,z2, Equation (3.1.1a) implies that b1b2 ≡4 1.
If 2 | z1,z2, Equation (3.1.1b) implies that 2 | z3,d. This case is impossible. �

Lemma 3.3.25. If e3 ≡4 1, the necessary conditions on b1 for Equation System
(3.1.1) to have a non-trivial solution in Q2 are:



2 - b1, 2 - b2 =⇒ b1 ≡8 1 or 3,

2 - b1, 2 | b2 =⇒ b1e2 ≡8 1 or 3,

2 | b1, 2 - b2 =⇒ b1e2e3 ≡8 1 or 3,

2 | b1, 2 | b2 =⇒ b1e3 ≡8 1 or 3.

Proof. If 2 - b1 and 2 - b2:
If 2 - z1,z2, Equation (3.1.1a) implies that b1b2 ≡8 1. Equation (3.1.1b) then

implies that 2 - z3. Equation (3.1.1b) then implies that b1 − 1 ≡8 2d2. This implies
that b1 ≡8 1 or 3.

If 2 | z1,z2, Equation (3.1.1b) implies that 2 | z3,d. This case is impossible.
If 2 - b1 and 2 | b2:
Equation (3.1.1a) implies that 2 | z1 and 2 | z2. Equation (3.1.1b) then implies

that 2 - z3d. Equation (3.1.1a) then implies that 2v2(e2)/2 || z1 and 2v2(e2)/2 | z2.
Equation (3.1.1a) then implies that b1 − b2z

′2
2 ≡8 e2 with z′2 = z2

2v2(e2)/2 .
If 2 - z′2, we can multiply Equation (3.1.1a) by b1e3 to get that e3 − b1b2e3 ≡8

b1e2e3. We know from Lemma 3.3.24 that −b1b2e3 ≡4 1. This implies that e3 + 2 ≡8

b1e2e3. Since e3 ≡4 1, b1e2 ≡8 3 for both possible values of e3 modulo 8.
If 2 | z′2, Equation (3.1.1a) implies that b1e2 ≡8 1.
If 2 | b1 and 2 - b2:
Equation (3.1.1a) implies that 2 | z1 and 2 | z2. Equation (3.1.1b) then implies

that 2 - z3d. Equation (3.1.1a) then implies that 2v2(e2)/2 | z1 and 2v2(e2)/2 || z2.
Equation (3.1.1a) then implies that b1z

′2
1 − b2 ≡8 e2 with z′1 = z1

2v2(e2)/2 .
If 2 - z′1, we can multiply Equation (3.1.1a) by b2e3 to get that b1b2e3 − e3 ≡8

b2e2e3. We know from Lemma 3.3.24 that −b1b2e3 ≡4 1. This implies that 6− e3 ≡8
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b2e2e3. Since e3 ≡4 1, we have that b2e2 ≡8 5 for both possible values of e3 modulo
8. Equation (3.1.1b) also implies that −b1b2e3 ≡8 1. Combining the two preceding
results implies that b1e2e3 ≡8 3

If 2 | z′1, Equation (3.1.1a) implies that b2 ≡8 −e2. Since Equation (3.1.1b)
implies that −b1b2 ≡8 e3, this means that b1e2 ≡8 e3 and then that b1e2e3 ≡8 1.

If 2 | b1 and 2 | b2:
If 2 - z1,z2, Equation (3.1.1a) implies that b1b2 ≡8 1. Equation (3.1.1b) then

implies that 2 - d. It then implies that b1−2z2
3 ≡8 e3. This implies that b1e3 ≡8 1 or 3

depending on the parity of z3.
If 2 | z1,z2, the 2-valuations of the terms in Equation (3.1.1b) imply that 2 | z3,d.

This case is impossible.
�

Lemma 3.3.26. If e3 ≡4 3, the necessary conditions on b1 for Equation System
(3.1.1) to have a non-trivial solution in Q2 are:



2 - b1, 2 - b2 =⇒ b1 ≡8 1 or 7,

2 - b1, 2 | b2 =⇒ b1e2 ≡8 1 or 7,

2 | b1, 2 - b2 =⇒ b1e2e3 ≡8 1 or 7,

2 | b1, 2 | b2 =⇒ b1e3 ≡8 1 or 7.

Proof. The proof of this lemma is almost identical to the proof of Lemma 3.3.25.
The only difference is that the change of value of e3 modulo 4 causes the right-hand
side of each condition to be congruent to 7 instead of 3 modulo 8. �

Lemma 3.3.27. If e3 ≡4 1, the necessary conditions on b2 for Equation System
(3.1.1) to have a non-trivial solution in Q2 are:



2 - b1, 2 - b2 =⇒ b2 ≡8 1 or 3,

2 - b1, 2 | b2 =⇒ −b2e2e3 ≡8 1 or 3,

2 | b1, 2 - b2 =⇒ −b2e2 ≡8 1 or 3,

2 | b1, 2 | b2 =⇒ b2e3 ≡8 1 or 3.
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Proof. The proof of this lemma is almost the same than the proof of Lemma 3.3.25.
The differences being that we study b2 instead of b1 and that we check Equation
(3.1.1c) instead of Equation (3.1.1b). �

Lemma 3.3.28. If e3 ≡4 3, the necessary conditions on b2 for Equation System
(3.1.1) to have a non-trivial solution in Q2 are:



2 - b1, 2 - b2 =⇒ b2 ≡8 1 or 7,

2 - b1, 2 | b2 =⇒ b2e2e3 ≡8 1 or 7,

2 | b1, 2 - b2 =⇒ b2e2 ≡8 1 or 7,

2 | b1, 2 | b2 =⇒ b2e3 ≡8 1 or 7.

Proof. The proof of this lemma is almost the same than the proof of Lemma 3.3.25.
The differences being that we study b2 instead of b1 and that we check Equation
(3.1.1c) instead of Equation (3.1.1b). �

The combination of the above lemmas forms our conditions in the case where
16 | e2, v2(e2) ≡2 0 and 2 | e3.

3.3.2.4. Proofs when 16 | e2, v2(e2) ≡2 1 and 2 | e3:
Lemma 3.3.29. The necessary conditions on b1b2 for Equation System (3.1.1) to
have a non-trivial solution in Q2 are:



2 - b1, 2 - b2 =⇒ b1b2 ≡4 1,

2 - b1, 2 | b2 =⇒ −b1b2e3 ≡4 1,

2 | b1, 2 - b2 =⇒ −b1b2e3 ≡4 1,

2 | b1, 2 | b2 =⇒ b1b2 ≡4 1.

Proof. The proof of this lemma is exactly the same as the proof to Lemma 3.3.24.
�

Lemma 3.3.30. If e3 ≡4 1, the necessary conditions on b1 for Equation System
(3.1.1) to have a non-trivial solution in Q2 are:
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

2 - b1, 2 - b2 =⇒ b1 ≡8 1 or 3,

2 - b1, 2 | b2 =⇒ b1e2e3 ≡8 1 or 3,

2 | b1, 2 - b2 =⇒ b1e2 ≡8 1 or 3,

2 | b1, 2 | b2 =⇒ b1e3 ≡8 1 or 3.

Proof. The proof of this lemma is very similar to the proof of Lemma 3.3.25.
The difference is the change of parity of the 2-valuation of e2. This causes the

case when 2 | b1 and 2 - b2 in this lemma to be solved in the same way than the case
when 2 - b1 and 2 | b2 in Lemma 3.3.25 and vice versa. �

Lemma 3.3.31. If e3 ≡4 3, the necessary conditions on b1 for Equation System
(3.1.1) to have a non-trivial solution in Q2 are:



2 - b1, 2 - b2 =⇒ b1 ≡8 1 or 7,

2 - b1, 2 | b2 =⇒ b1e2e3 ≡8 1 or 7,

2 | b1, 2 - b2 =⇒ b1e2 ≡8 1 or 7,

2 | b1, 2 | b2 =⇒ b1e3 ≡8 1 or 7.

Proof. The proof of this lemma is almost identical to the proof of Lemma 3.3.30.
The only difference being that the change of value of e3 modulo 4 causes the right-
hand side of each condition to be congruent to 7 instead of 3 modulo 8. �

Lemma 3.3.32. If e3 ≡4 1, the necessary conditions on b2 for Equation System
(3.1.1) to have a non-trivial solution in Q2 are:



2 - b1, 2 - b2 =⇒ b2 ≡8 1 or 3,

2 - b1, 2 | b2 =⇒ −b2e2 ≡8 1 or 3,

2 | b1, 2 - b2 =⇒ −b2e2e3 ≡8 1 or 3,

2 | b1, 2 | b2 =⇒ b2e3 ≡8 1 or 3.

Proof. The proof of this lemma is almost the same as the proof of Lemma 3.3.30.
The differences being that we study b2 instead of b1 and that we check Equation
(3.1.1c) instead of Equation (3.1.1b). �
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Lemma 3.3.33. If e3 ≡4 3, the necessary conditions on b2 for Equation System
(3.1.1) to have a non-trivial solution in Q2 are:



2 - b1, 2 - b2 =⇒ b2 ≡8 1 or 7,

2 - b1, 2 | b2 =⇒ b2e2 ≡8 1 or 7,

2 | b1, 2 - b2 =⇒ b2e2e3 ≡8 1 or 7,

2 | b1, 2 | b2 =⇒ b2e3 ≡8 1 or 7.

Proof. The proof of this lemma is almost the same as the proof of Lemma 3.3.30.
The differences being that we study b2 instead of b1 and that we check Equation
(3.1.1c) instead of Equation (3.1.1b). �

The combination of the above lemmas forms our conditions in the case where
16 | e2, v2(e2) ≡2 1 and 2 | e3.

3.3.3. The proofs of sufficiency

As previously stated in Subsection 3.3.2, the proofs for the sufficient conditions
are not as relevant for this thesis. The proofs of sufficiency for each case of valuations
of (e2,e3) are very similar to each other and also rather long. For the sake of brevity,
we will start by describing the general idea of the proofs and then explicitly show
the proof for one of the cases.

The idea behind the proofs of sufficiency is then to follow a similar method to
the proof of Hensel’s Lemma for each case.

In order to apply such a method, we start by showing that the conditions under
consideration are sufficient in Z/2nZ for an n big enough. For small valuations, this
can be done by simply checking by brute force. For big valuations, this is done by
reducing the problem to a smaller valuation.

Once the fact that the conditions are sufficient for a solution in Z/2nZ is estab-
lished, we prove the existence of a solution in Q2 using induction. We suppose that
there is a solution in Z/2mZ for m ≥ n (sometimes we will have to take multiple
solutions based on the properties of (b1,b2) and the rest of the proof becomes a case
by case proof) and we then show how to construct a solution in Z/2m+1Z from the
solution in Z/2mZ.
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Given our solution in Z/2mZ, we look at the triplet (b1z
2
1 ,b2z

2
2 ,b1b2z

2
3) and we

choose two of the three terms. It is convenient to choose them with the smallest
valuation as it will make the needed m for the induction base smaller. Let us call the
two chosen terms aw2

1 and bw2
2 while we call the other term cw2

3. We then choose two
of the three equations of Equation System (3.1.1) such that the first chosen contains
aw2

1 and cw2
3 (but not bw2

2) while the second contains bw2
2 (and maybe aw2

1).
Since we have a solution in Z/2mZ, when putting every term on the left side, we

have that every equation of Equation System (3.1.1) will be congruent to 0 or 2m in
Z/2m+1Z.

For the first equation, if it is congruent to 0, there is nothing to do and we proceed
to the second equation. However, if it is congruent to 2m, we apply the transformation
w1 7→ w1 + 2k with k such that 2k+1aw1 is congruent to 2m modulo 2m+1 while a22k

is congruent to 0 modulo 2m+1. The first equation becomes congruent to 0 while the
second equation is still congruent to either 0 or 2m. The chosen m at the start must
be big enough for such a k to exist.

We then apply the same method to bw2
2 in the second equation, but with a new

value for k. Since bw2
2 does not appear in the first equation, we have that, after

applying the above transformations, both equations are congruent to 0 in Z/2m+1Z.
We have now a solution in Z/2m+1Z and that completes our proof of sufficiency.

To make this clearer, here is the explicit version of one of the proofs:

Proof when v2(e2) = 1 and 2 - e3: We can verify by brute force that the condi-
tions of Theorem 3.3.1 are sufficient for a solution in Z/64Z. Since we cannot apply
Hensel’s lemma, we proceed by induction.

Let the pair (b1,b2) respect the given conditions. Suppose that those conditions
are sufficient for a solution in Z/2mZ with m ≥ 6, we will show that there is a
solution in Z/2m+1Z.

Before starting the induction, we need to state some facts. We shall separate the
problem in two cases based on the 2-valuations of b1 and b2.

Case 1. If 2 - b1,b2, Equation (3.1.1a) implies that 2 | z1 ⇐⇒ 2 | z2. However, if
2 | z1,z2, Equation (3.1.1a) implies that 2 | d and then Equation 3.1.1b implies that
2 | z3. Since 2 cannot divide all the variables z1,z2,z3,d, we have that 2 - z1,z2. We
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can now look at the equation system in Z/2m+1Z when the variables give a solution
in Z/2mZ. Since it suffices to satisfy two of the three equations, we will look at the
second and third equations:

b1z
2
1 − b1b2z

2
3 − e3d

2 ≡2m+1 x1,

b2z
2
2 − b1b2z

2
3 − (e3 − e2)d2 ≡2m+1 x2,

with x1,x2 ∈ {0, 2m}. Our goal is to have 0 on the right side of both equations. Let
us define a1 = e3 and a2 = e3 − e2. For i ∈ {1,2}, if xi = 0 the zi yield a solution
modulo 2m+1. However, if xi = 2m, we apply the transformation zi 7→ zi + 2m−1. We
then get the equation:

bi(zi + 2m−1)2 − b1b2z
2
3 − aid2 ≡2m+1 xi + bizi2m + 22m−2.

Since, 2 - bizi and m ≥ 6, we have that bizi2m ≡2m+1 2m and that 22m−2 ≡2m+1 0.
Then this gives a solution modulo 2m+1.

Case 2. If 2 | b1,b2, Equation (3.1.1b) implies that 2 | d. Equations (3.1.1b) and
(3.1.1c) then imply that 2 | z1 and 2 | z2 respectively. Since we asked for 2 not to
divide all the variables, we have that 2 - z3. Equation (3.1.1b) then implies that
4 - d. This then implies that 4 - z1 or 4 - z2 in order for Equation (3.1.1a) to have a
solution. We can now look at our equation system in Z/2m+1Z when our variables
give a solution in Z/2mZ. Since we only need to verify two of the three equations,
we will look at the second and third equations:

b1z
2
1 − b1b2z

2
3 − e3d

2 ≡2m+1 x1,

b2z
2
2 − b1b2z

2
3 − (e3 − e2)d2 ≡2m+1 x2,

with x1,x2 ∈ {0, 2m}. Our goal is to have 0 on the right side of both equations. Since
we know that 4 does not divide z1 or z2, we will suppose that 4 - z2. If this is not the
case, we simply flip the order of the equations and change the names of the variables
in order to obtain the same proof.

If x1 = 0, there is nothing to do for the first equation. If x1 = 2m, we apply the
transformation z3 7→ z3 + 2m−3. This gives us:
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b1z
2
1 − b1b2(z3 + 2m−3)2 − e3d

2 ≡2m+1 x1 − b1b2z32m−2 + b1b222m−6,

b2z
2
2 − b1b2(z3 + 2m−3)2 − (e3 − e2)d2 ≡2m+1 x2 − b1b2z32m−2 + b1b222m−6.

We remark that 4 || b1b2 and that m ≥ 6. This implies that b1b2z32m−2 ≡2m+1 2m,
b1b222m−6 ≡2m+1 0 and we have:

b1z
2
1 − b1b2(z3 + 2m−3)2 − e3d

2 ≡2m+1 x1 + 2m ≡2m+1 0,

b2z
2
2 − b1b2(z3 + 2m−3)2 − (e3 − e2)d2 ≡2m+1 x2 + 2m.

The rest of the work is similar to the preceding step. Let us denote by y2 either
x2 or x2 + 2m depending on whether we did the transformation or not. Analogously,
we denote by w3 either z3 or z3 + 2m−3. We have that y2 ∈ {0,2m} as before. If
y2 = 0, there is nothing to do for the second equation. If y2 = 2m, we apply the
transformation z2 7→ z2 + 2m−3. This gives us:

b1z
2
1 − b1b2w

2
3 − e3d

2 ≡2m+1 0,

b2(z2 + 2m−3)2 − b1b2w
2
3 − (e3 − e2)d2 ≡2m+1 y2 + b2z22m−2 + b222m−6.

We remark that 2 || b2, 2 || z2 and m ≥ 6. This implies that b2z22m−2 ≡2m+1 2m,
b222m−6 ≡2m+1 0 and we have:

b1z
2
1 − b1b2w

2
3 − e3d

2 ≡2m+1 0,

b2(z2 + 2m−3)2 − b1b2w
2
3 − (e3 − e2)d2 ≡2m+1 0.

Therefore, we have obtained a solution.

�

3.4. Conditions in Qp

Let p be a fixed odd prime. We are only interested in p if it divides 16e2
2e

2
3(e3−e2)2.

With the reductions discussed in Section 3.1, we can separate our primes in two major
cases. Either p only divides one element of {e2,e3,e3 − e2} or p divides all of them.

When p divides only one element, we can consider three sub-cases depending on
whether the element is e2, e3 or e3 − e2.
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When p divides all three, we can consider four sub-cases, depending on the ele-
ment with the highest valuation in Qp. The fourth case is when p divides all three
elements exactly.

Since all equations in System (3.1.1) are quadratic forms, looking for solutions in
Qp is equivalent to looking for solutions in Z/pkZ for all k.

Also, for p an odd prime, we will see that the proofs of sufficiency will be consid-
erably simpler than with Q2 since we can apply Hensel’s Lemma this time.

Before starting, we remark that if GCD(z1,z2,z3,d) > 1, we can divide the
equation system by its common divisor. Because of this, we can assume that
GCD(z1,z2,z3,d) = 1. When working in Qp, this condition simply means that not all
variables are multiples of p.

For the sake of clarity, we will first give the conditions and then spend the rest
of this section to prove them case by case.

3.4.1. The conditions

For an odd prime p, the conditions for a solution in Qp are considerably simpler
than in the case of Q2. As explained in Section 3.1, the third reduction shortened
the number of cases in Q2. Because this reduction does not apply for p 6= 2, there
are more cases in Qp even if each case is simpler.

We also remark that, for e2 and e3 fixed, there are always two conditions on the
pair (b1,b2).
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Theorem 3.4.1. Let δ = e2e3(e3 − e2). If p | δ but p - GCD(e2,e3,e3 − e2), the following conditions
are necessary and sufficient for Equation System (3.1.1) to have a non-trivial solution in Qp:

If p | e2: If p | e3: If p | e3 − e2:

If
(
−e3
p

)
= 1: If

(
−e3
p

)
= −1: If

(
−e2
p

)
= 1: If

(
−e2
p

)
= −1: If

(
e3
p

)
= 1: If

(
e3
p

)
= −1:

If vp(δ) ≡2 1:
If p - b1:

If p - b2:
(
b1b2
p

)
= 1

(
b1b2
p

)
= 1

(
b2
p

)
= 1

(
b2
p

)
= 1

(
b1
p

)
= 1

(
b1
p

)
= 1

If p | b2: No solution. No solution. No solution. No solution.
(
b1
p

)
= 1

(
b1
p

)
= −1

If p | b1: If p - b2: No solution. No solution.
(
b2
p

)
= 1

(
b2
p

)
= −1 No solution. No solution.

If p | b2:
(
b1b2
p

)
= 1

(
b1b2
p

)
= −1 No solution. No solution. No solution. No solution.

If vp(δ) ≡2 0:
If p - b1:

If p - b2:
(
b1b2
p

)
= 1 No additional

condition.
(
b2
p

)
= 1 No additional

condition.
(
b1
p

)
= 1 No additional

condition.

If p | b2: No solution. No solution. No solution. No solution.
(
b1
p

)
= 1 No solution.

If p | b1: If p - b2: No solution. No solution.
(
b2
p

)
= 1 No solution. No solution. No solution.

If p | b2:
(
b1b2
p

)
= 1 No solution. No solution. No solution. No solution. No solution.

Table 3.5. Conditions for a solution in Qp when p | δ but p - GCD(e2,e3,e3 − e2).
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Theorem 3.4.2. Let δ = e2e3(e3 − e2). If p | GCD(e2,e3,e3 − e2), the following conditions are
necessary and sufficient for Equation System (3.1.1) to have a non-trivial solution in Qp:

If p2 - e2,e3,(e3 − e2): If p2 | e2: If p2 | e3: If p2 | (e3 − e2):

If vp(δ) ≡2 0:
If p - b1:

If p - b2: N/A

(
b1
p

)
= 1(

b2
p

)
= 1

(
b1
p

)
= 1(

b2
p

)
= 1

(
b1
p

)
= 1(

b2
p

)
= 1

If p | b2: N/A

(
b1e2
p

)
= 1(

−b2e2e3
p

)
= 1

(
b1e3
p

)
= 1(

−b2e2
p

)
= 1

(
b1
p

)
= 1(

−b2e2
p

)
= 1

If p | b1: If p - b2: N/A

(
b1e2e3
p

)
= 1(

−b2e2
p

)
= 1

(
b1e2
p

)
= 1(

b2
p

)
= 1

(
b1e2
p

)
= 1(

b2(e3−e2)
p

)
= 1

If p | b2: N/A

(
b1e3
p

)
= 1(

b2e3
p

)
= 1

(
b1e2e3
p

)
= 1(

−b2e2
p

)
= 1

(
b1e2
p

)
= 1(

−b2e2(e3−e2)
p

)
= 1

If vp(δ) ≡2 1:
If p - b1:

If p - b2:

(
b1
p

)
= 1(

b2
p

)
= 1

(
b1
p

)
= 1(

b2
p

)
= 1

(
b1
p

)
= 1(

b2
p

)
= 1

(
b1
p

)
= 1(

b2
p

)
= 1

If p | b2:

(
b1e2e3
p

)
= 1(

−b2e2
p

)
= 1

(
b1e2e3
p

)
= 1(

−b2e2
p

)
= 1

(
b1e2e3
p

)
= 1(

−b2e2
p

)
= 1

(
b1
p

)
= 1(

−b2e2
p

)
= 1

If p | b1: If p - b2:

(
b1e2
p

)
= 1(

−b2e2(e3−e2)
p

)
= 1

(
b1e2
p

)
= 1(

−b2e2e3
p

)
= 1

(
b1e2
p

)
= 1(

b2
p

)
= 1

(
b1e2
p

)
= 1(

−b2e2(e3−e2)
p

)
= 1

If p | b2:

(
b1e3
p

)
= 1(

b2(e3−e2)
p

)
= 1

(
b1e3
p

)
= 1(

b2e3
p

)
= 1

(
b1e3
p

)
= 1(

−b2e2
p

)
= 1

(
b1e2
p

)
= 1(

b2(e3−e2)
p

)
= 1

Table 3.6. Conditions for a solution in Qp when p | GCD(e2,e3,e3 − e2).
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3.4.2. The proofs of necessity

As in the case of the conditions in Q2, we will separate the proofs of necessity
from the proofs of sufficiency. However, since the prime p is undetermined, we cannot
use brute force proofs.

We remark that every equation in System (3.1.1) has three terms. We will show
in each case that the given conditions are necessary for a non-trivial solution in Z/pZ.
By non trivial, we mean that, if p divides all three terms of an equation, we divide
all three terms by p until there is at least one term that is not a multiple of p.

The necessary conditions can be separated in multiple cases organized in four
different lemmas.

3.4.2.1. Proofs when p | e2 and p - e3:
Lemma 3.4.3. If Equation System (3.1.1) has a non trivial solution in Qp, then:

p | b1 ⇐⇒ p | b2.

Proof. This lemma is very similar to Lemma 3.3.6 but we study p-valuations instead
of 2-valuations.

This can be done by contradiction. If p | b1 and p - b2, Equation (3.1.1b) implies
that p | d, then Equation (3.1.1a) implies that p | z2, then Equation (3.1.1c) implies
that p | z3, then Equation (3.1.1a) implies that p | z1 and that is a contradiction.

If p - b1 and p | b2, Equation (3.1.1c) implies that p | d, then Equation (3.1.1a)
implies that p | z1, then Equation (3.1.1b) implies that p | z3, then Equation (3.1.1a)
implies that p | z2 and that is another contradiction. �

Lemma 3.4.4. If vp(e2) ≡2 0,
(
−e3
p

)
= −1 and Equation System (3.1.1) has a non

trivial solution in Qp, then:

p - b1.

Proof. If p | b1,b2:
Equation (3.1.1b) implies that p | d. Equation (3.1.1b) then implies that p | z1

and Equation (3.1.1c) then implies that p | z2. We then need that p - z3. Equation
(3.1.1b) then implies that p || d and that

(
−e3b1b2

p

)
= −

(
b1b2
p

)
= 1.
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However, Equation (3.1.1a) implies that
(
b1b2
p

)
= 1. Contradiction. �

Lemma 3.4.5. If vp(e2) ≡2 1 or
(
−e3
p

)
= 1. If Equation System (3.1.1) has a non

trivial solution in Qp, then:
p - b1 =⇒

(
b1b2

p

)
= 1,

p | b1 =⇒
(
−e3b1b2

p

)
= 1.

Proof. If p - b1,b2:
If p - z1,z2, Equation (3.1.1a) implies that

(
b1b2
p

)
= 1.

If p | z1 or p | z2, Equation (3.1.1a) implies that p divides both.
If
(
−e3
p

)
= 1, Equation (3.1.1b) implies that

(
b1b2
p

)
= 1.

If vp(e2) ≡2 1, the p-valuations of the terms in Equation (3.1.1a) imply that
vp(z1) = vp(z2) and vp(e2d

2) > vp(b1z
2
1) = vp(b2z

2
2). Equation (3.1.1a) then implies

that
(
b1b2
p

)
= 1.

If p | b1,b2:
Equation (3.1.1b) implies that p | d,z1. Equation (3.1.1c) then implies that p | z2

and p - z3. Equation (3.1.1b) then implies that p || d and that
(
−e3b1b2

p

)
. �

The combination of the above lemmas forms our conditions in the case where
p | e2 and p - e3.

3.4.2.2. Proofs when p - e2 and p | e3:
Lemma 3.4.6. If Equation System (3.1.1) has a non trivial solution in Qp, then:

p - b2.

Proof. If p | b1 and p | b2, Equation (3.1.1a) implies that p | d. Then, Equation
(3.1.1b) and Equation (3.1.1c) imply that p | z1 and p | z2 respectively. Equation
(3.1.1b) then implies p | z3. Contradiction.

If p - b1 and p | b2, Equation (3.1.1c) implies that p | d. Equation (3.1.1b) then
implies that p | z1. Equation (3.1.1a) then implies that p | z2. Equation (3.1.1b)
then implies that p | z3. Contradiction. �
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Lemma 3.4.7. If vp(e3) ≡2 0,
(
−e2
p

)
= −1 and Equation System (3.1.1) has a non

trivial solution in Qp, then:

p - b1.

Proof. If p | b1:
If p | z2 or p | d, Equation (3.1.1a) implies that p divides the other one. It then

follows that p | z1 and Equation (3.1.1b) implies that p | z3. Contradiction.
If p - z2,d, Equation (3.1.1a) implies that

(
b2
p

)
=
(
−e2
p

)
= −1. However, Equation

(3.1.1b) implies that
(
b2
p

)
= 1. Contradiction. �

Lemma 3.4.8. If vp(e3) ≡2 1 or
(
−e2
p

)
= 1. If Equation System (3.1.1) has a non

trivial solution in Qp, then: 
p - b1 =⇒

(
b2

p

)
= 1,

p | b1 =⇒
(
−e2b2

p

)
= 1.

Proof. If p - b1:
If p - z1,z3, Equation (3.1.1b) implies that

(
b2
p

)
= 1.

If p | z1 or p | z3, Equation (3.1.1b) implies that p divides the other one. Equation
(3.1.1a) then implies that p - z2,d. If vp(e3) ≡2 1, Equation (3.1.1b) implies that(
b2
p

)
= 1. If

(
−e2
p

)
= 1, Equation (3.1.1a) implies that

(
b2
p

)
= 1.

If p | b1:
If p - z2,d, Equation (3.1.1a) implies that

(
−e2b2
p

)
= 1.

If p | z2 or p | d, Equation (3.1.1a) implies that p divides both. Equation
(3.1.1c) then implies that p - z3 and then Equation (3.1.1b) implies that p | z1.
Contradiction. �

The combination of the above lemmas forms our conditions in the case where
p - e2 and p | e3.

3.4.2.3. Proofs when p | (e3 − e2) and p - e2: If we exchange Equation (3.1.1b)
with Equation (3.1.1c), we remark that we can write the equation system as:
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
b2z

2
2 − b1z

2
1 = (−e2)d2,

b2z
2
2 − b1b2z

2
3 = (e3 − e2)d2,

b1z
2
1 − b1b2z

2
3 = ((e3 − e2)− (−e2))d2,

which is simply a system that respects the conditions of our original system but with
e2 7→ −e2, e3 7→ (e3 − e2), b1 � b2 and z1 � z2.

We can then simply use the proofs of the case where p - e2 and p | e3.

3.4.2.4. Proofs when p || e2, p || e3 and p || (e3 − e2):
Lemma 3.4.9. If p - b1, p - b2 and Equation System (3.1.1) has a non trivial solution
in Qp, then: 

(
b1

p

)
= 1,(

b2

p

)
= 1.

Proof. First, we remark that as soon as p | zi for some i, p | zj for all j. So we
need p - z1z2z3.

The first condition then comes from Equation (3.1.1c).
The second condition then comes from Equation (3.1.1b). �

Lemma 3.4.10. If p | b1, p - b2 and Equation System (3.1.1) has a non trivial
solution in Qp, then: 

(
b1e2

p

)
= 1,

(
−b1b2(e3 − e2)

p

)
= 1.

Proof. In order for Equation (3.1.1a) to have a solution, we need that p | z2. If we
had that p | d or p | z1, Equation (3.1.1a) would give us the other one. If we had
that p | d or p | z3, Equation (3.1.1b) would give us the other one. We then get that
p - z1z3d.
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We can then divide Equation (3.1.1a) by p to get the first condition and divide
Equation (3.1.1c) by p to get the second condition. �

Lemma 3.4.11. If p - b1, p | b2 and Equation System (3.1.1) has a non trivial
solution in Qp, then: 

(
−b2e2

p

)
= 1,

(
−b1b2e3

p

)
= 1.

Proof. The proof of this lemma is practically identical to the proof of Lemma 3.4.10
with two differences caused by the change of p-valuation of b1 and b2.

When p - b1 and p | b2, Equation (3.1.1a) implies a condition on b2 instead of b1.
Also, we study Equation (3.1.1b) instead of (3.1.1c) for the second condition. �

Lemma 3.4.12. If p | b1, p | b2 and Equation System (3.1.1) has a non trivial
solution in Qp, then: 

(
b1e3

p

)
= 1,

(
b2(e3 − e2)

p

)
= 1.

Proof. If p | z1 or p | d, Equation (3.1.1b) implies that p divides both. Equation
(3.1.1c) then implies that p | z3 and then that p | z2. Since GCD(z1,z2,z3,d) = 1,
this means that p - z1d.

If p | z2, Equation (3.1.1c) implies that p | d and this is not possible from the
preceding argument. This means that p - z1z2d.

We can then divide Equation (3.1.1b) by p to get the first condition and divide
Equation (3.1.1c) by p to get the second condition. �

The combination of the above lemmas forms our conditions in the case where
p || e2, p || e3 and p || (e3 − e2).
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3.4.2.5. Proofs when p2 | e2, p || e3 and p || (e3 − e2):
Lemma 3.4.13. If vp(e2) ≡2 0, p - b1, p - b2 and Equation System (3.1.1) has a non
trivial solution in Qp, then: 

(
b1

p

)
= 1,(

b2

p

)
= 1.

Proof. First, we remark that as soon as p | zi for some i, p | zj for all j. So we
need p - z1z2z3.

The first condition then comes from Equation (3.1.1c) while the second condition
then comes from Equation (3.1.1b). �

Lemma 3.4.14. If vp(e2) ≡2 0, p | b1, p - b2 and Equation System (3.1.1) has a non
trivial solution in Qp, then: 

(
−b2e2

p

)
= 1,

(
−b1b2e3

p

)
= 1.

Proof. In order for Equation (3.1.1a) to have a solution, we need that p | z2. We
then get that p | z1 for the same reason. If p | z3 or p | d, the p-valuations of the
terms in Equation (3.1.1b) imply that p divides both. Since GCD(z1,z2,z3,d) = 1,
p - z3d.

The p-valuations of the terms in Equation (3.1.1a) imply that pvp(e2)/2 | z1 and
pvp(e2)/2 || z2. We can then divide Equation (3.1.1a) by pvp(e2) to get the first condi-
tion.

We can then divide Equation (3.1.1b) by p to get the second condition. �

Lemma 3.4.15. If vp(e2) ≡2 0, p - b1, p | b2 and Equation System (3.1.1) has a non
trivial solution in Qp, then:
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

(
b1e2

p

)
= 1,

(
−b1b2e3

p

)
= 1.

Proof. In order for Equation (3.1.1a) to have a solution, we need that p | z1. We
then get that p | z2 for the same reason. If p | z3 or p | d, the p-valuations of the
terms in Equation (3.1.1b) imply that p divides both. Since GCD(z1,z2,z3,d) = 1,
p - z3d.

The p-valuations of the terms in Equation (3.1.1a) imply that pvp(e2)/2 || z1 and
pvp(e2)/2 | z2. We then divide Equation (3.1.1a) by pvp(e2) to get the first condition

We can then divide Equation (3.1.1b) by p to get the second condition. �

Lemma 3.4.16. If vp(e2) ≡2 0, p | b1, p | b2 and Equation System (3.1.1) has a non
trivial solution in Qp, then: 

(
b1b2

p

)
= 1,

(
b1e3

p

)
= 1.

Proof. First, we start by dividing all equations by p and working in Z/pZ.
The first condition then comes from Equation (3.1.1a).
The second condition then comes from Equation (3.1.1b). �

Lemma 3.4.17. If vp(e2) ≡2 1, p - b1, p - b2 and Equation System (3.1.1) has a non
trivial solution in Qp, then: 

(
b1

p

)
= 1,(

b2

p

)
= 1.

Proof. First, we remark that as soon as p | zi for some i, p | zj for all j. So we
need p - z1z2z3.
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The first condition then comes from Equation (3.1.1c).
The second condition then comes from Equation (3.1.1b). �

Lemma 3.4.18. If vp(e2) ≡2 1, p | b1, p - b2 and Equation System (3.1.1) has a non
trivial solution in Qp, then: 

(
b1e2

p

)
= 1,

(
−b1b2e3

p

)
= 1.

Proof. This proof is very similar to the proof of Lemma 3.4.11.
In order for Equation (3.1.1a) to have a solution, we need that p | z2. We then

get that p | z1 for the same reason. If p | z3 or p | d, the p-valuations of the terms in
Equation (3.1.1b) imply that p divides both. Since GCD(z1,z2,z3,d) = 1, p - z3d.

The p-valuations of the terms in Equation (3.1.1a) imply that p(vp(e2)−1)/2 || z1

and p(vp(e2)+1)/2 | z2. We then divide Equation (3.1.1a) by pvp(e2) to get the first
condition.

We can then divide Equation (3.1.1b) by p to get the second condition. �

Lemma 3.4.19. If vp(e2) ≡2 1, p - b1, p | b2 and Equation System (3.1.1) has a non
trivial solution in Qp, then: 

(
−b2e2

p

)
= 1,

(
−b1b2e3

p

)
= 1.

Proof. The proof of this lemma is practically identical to the proof of Lemma 3.4.18
with the new of p-valuation of b1 and b2 changing the first condition. �

Lemma 3.4.20. If vp(e2) ≡2 1, p | b1, p | b2 and Equation System (3.1.1) has a non
trivial solution in Qp, then:
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

(
b1b2

p

)
= 1,

(
b1e3

p

)
= 1.

Proof. First, we start by dividing all equations by p and working in Z/pZ.
The first condition then comes from Equation (3.1.1a).
The second condition then comes from Equation (3.1.1b). �

The combination of the above lemmas forms our conditions in the case where
p2 | e2, p || e3 and p || (e3 − e2).

3.4.2.6. Proofs when p || e2, p2 | e3 and p || (e3 − e2):
Lemma 3.4.21. If vp(e3) ≡2 0, p - b1, p - b2 and Equation System (3.1.1) has a non
trivial solution in Qp, then: 

(
b1

p

)
= 1,(

b2

p

)
= 1.

Proof. First, we remark that as soon as p | zi for some i, p | zj for all j. So we
need p - z1z2z3.

The first condition then comes from Equation (3.1.1c).
The second condition then comes from Equation (3.1.1b). �

Lemma 3.4.22. If vp(e3) ≡2 0, p | b1, p - b2 and Equation System (3.1.1) has a non
trivial solution in Qp, then: 

(
b1e2

p

)
= 1,(

b2

p

)
= 1.

Proof. In order for Equation (3.1.1a) to have a solution, we need that p | z2.
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If p | z1 or p | d, Equation (3.1.1a) implies that p divides both. Equation (3.1.1b)
then implies that p | z3 but this is impossible since GCD(z1,z2,z3,d) = 1. This means
that p - z1,d.

If p | z3, Equation (3.1.1c) implies that p | d but we have already shown that this
is impossible. It follows that p - z3.

We can then divide Equation (3.1.1a) by p to get the first condition and divide
Equation (3.1.1b) by p to get the second condition. �

Lemma 3.4.23. If vp(e3) ≡2 0, p - b1, p | b2 and Equation System (3.1.1) has a non
trivial solution in Qp, then: 

(
−b2e2

p

)
= 1,(

b1e3

p

)
= 1.

Proof. In order for Equation (3.1.1a) to have a solution, we need that p | z1.
If p | z2 or p | d, Equation (3.1.1a) implies that p divides both. Equation (3.1.1b)

would then imply that p | z3 but this is impossible since GCD(z1,z2,z3,d) = 1. This
means that p - z2,d.

We can then divide Equation (3.1.1a) by p to get the first condition.
The p-valuations of the terms in Equation (3.1.1b) imply that pvp(e3)/2 || z1 and

pvp(e3)/2 | z3. We can then divide Equation (3.1.1b) by pvp(e3) to get the second
condition. �

Lemma 3.4.24. If vp(e3) ≡2 0, p | b1, p | b2 and Equation System (3.1.1) has a non
trivial solution in Qp, then: 

(
b2(e3 − e2)

p

)
= 1,

(
−b1b2e3

p

)
= 1.
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Proof. If p | z2 or p | d, Equation (3.1.1c) implies that p divides both and then
that p | z3. Equation (3.1.1a) then implies that p | z1. Since GCD(z1,z2,z3,d) = 1,
this means that p - z2d.

We can then divide Equation (3.1.1c) by p to get the first condition.
The p-valuations of the terms in Equation (3.1.1b) imply that pvp(e3)/2 | z1 and

pvp(e3)/2−1 || z3. We can then divide Equation (3.1.1b) by pvp(e3) to get the second
condition. �

Lemma 3.4.25. If vp(e3) ≡2 1, p - b1, p - b2 and Equation System (3.1.1) has a non
trivial solution in Qp, then: 

(
b1

p

)
= 1,(

b2

p

)
= 1.

Proof. First, we remark that as soon as p | zi for some i, p | zj for all j. So we
need p - z1z2z3.

The first condition then comes from Equation (3.1.1c).
The second condition then comes from Equation (3.1.1b). �

Lemma 3.4.26. If vp(e3) ≡2 1, p | b1, p - b2 and Equation System (3.1.1) has a non
trivial solution in Qp, then: 

(
b1e2

p

)
= 1,(

b2

p

)
= 1.

Proof. In order for Equation (3.1.1a) to have a solution, we need that p | z2.
If p | z1 or p | d, Equation (3.1.1a) implies that p divides both. Equation (3.1.1b)

then implies that p | z3 but this is impossible since GCD(z1,z2,z3,d) = 1. This means
that p - z1,d.

If p | z3, Equation (3.1.1c) implies that p | d but we have already shown that this
is impossible. It follows that p - z3.
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We can then divide Equation (3.1.1a) by p to get the first condition and divide
Equation (3.1.1b) by p to get the second condition. �

Lemma 3.4.27. If vp(e3) ≡2 1, p - b1, p | b2 and Equation System (3.1.1) has a non
trivial solution in Qp, then: 

(
−b2e2

p

)
= 1,

(
−b1b2e3

p

)
= 1.

Proof. In order for Equation (3.1.1a) to have a solution, we need that p | z1.
If p | z2 or p | d, Equation (3.1.1a) implies that p divides both. Equation (3.1.1b)

would then imply that p | z3 but this is impossible since GCD(z1,z2,z3,d) = 1. This
means that p - z2,d.

We can then divide Equation (3.1.1a) by p to get the first condition.
The p-valuations of the terms in Equation (3.1.1b) imply that pvp(e3)/2+1 | z1 and

p(vp(e3)−1)/2 || z3. We can then divide Equation (3.1.1b) by pvp(e3) to get the second
condition. �

Lemma 3.4.28. If vp(e3) ≡2 1, p | b1, p | b2 and Equation System (3.1.1) has a non
trivial solution in Qp, then: 

(
b2(e3 − e2)

p

)
= 1,

(
b1e3

p

)
= 1.

Proof. If p | z2 or p | d, Equation (3.1.1c) implies that p divides both and then
that p | z3. Equation (3.1.1a) then implies that p | z1. Since GCD(z1,z2,z3,d) = 1,
this means that p - z2d.

We can then divide Equation (3.1.1c) by p to get the first condition.
The p-valuations of the terms in Equation (3.1.1b) imply that p(vp(e3)−1)/2 || z1

and p(vp(e3)−1)/2 | z3. We can then divide Equation (3.1.1b) by pvp(e3) to get the
second condition. �
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The combination of the above lemmas forms our conditions in the case where
p || e2, p2 | e3 and p || (e3 − e2).

3.4.2.7. Proofs when p || e2, p || e3 and p2 | (e3 − e2): If we exchange Equation
(3.1.1b) with Equation (3.1.1c), we remark that we can write the equation system
as: 

b2z
2
2 − b1z

2
1 = (−e2)d2,

b2z
2
2 − b1b2z

2
3 = (e3 − e2)d2,

b1z
2
1 − b1b2z

2
3 = ((e3 − e2)− (−e2))d2,

which is simply a system that respects the conditions of our original system but with
e2 7→ −e2, e3 7→ (e3 − e2), b1 � b2 and z1 � z2.

We can then simply use the proofs of the case where p || e2, p2 | e3 and p || (e3−e2).

3.4.3. The proofs of sufficiency

As in the case for Q2, sufficient conditions are not relevant for the results of this
thesis. In addition, our proofs of sufficiency are very similar to each other. Because of
this, we will explain the general idea of the proofs but do only one of them explicitly.

The idea is to show that the conditions are sufficient in Z/pmZ for a big enough
m. This can be done by simply finding a solution. We can then apply Hensel’s
Lemma on two of the variables to prove that there is a solution in Qp.

As an example, here is one of the proofs:
Proposition 3.4.29. If p || e2,e3,(e3 − e2), then the conditions given by Theorem
3.4.2 are sufficient to guarantee a non-trivial solution for Equation System (3.1.1)
in Qp.

Proof. Let b1 and b2 be two square-free integers respecting the conditions given by
Theorem 3.4.2. We separate this proof in four cases depending on the valuation of
b1,b2:

Case 1. If p - b1 and p - b2, we will show that there is a solution in Z/pZ. Since
the conditions in Theorem 3.4.2 imply that

(
b1
p

)
=
(
b2
p

)
= 1, there are k1, k2 such
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that k2
1 ≡p b1 and k2

2 ≡p b2. We can then take d = p, z3 = 1, z1 = k2 and z2 = k1

and this yields a solution with b1z
2
1 6≡p 0 6≡p b2z

2
2 .

Once we have a solution in Z/pZ we can apply Hensel’s Lemma to z1 in Equation
(3.1.1b) and then reapply Hensel’s Lemma to z2 in Equation 3.1.1c. Since each
variable does not appear in the other equation, we have a solution in Qp.

Case 2. If p - b1 and p | b2, we will show that there is a solution in Z/p2Z. Since
the conditions in Theorem 3.4.2 imply that

(
−b1b2e3

p

)
=
(
−b2e2
p

)
= 1, there are k1, k2

such that k2
1 ≡p −e3b1b2

−1 and k2
2 ≡p −e2b2

−1. We can then take z1 = p, d = 1,
z2 = k2 and z3 = k1. We can then divide every equation by p to see that it is a
solution in Z/pZ with b2z2

2
p
6≡p 0 6≡p b1b2z2

3
p

.
Once we have a solution in Z/p2Z we can apply Hensel’s Lemma to z2 in Equation

(3.1.1a) and then reapply Hensel’s Lemma to z3 in Equation 3.1.1b. Since each
variable does not appear in the other equation, we have a solution in Qp.

Case 3. If p | b1 and p - b2, we will show that there is a solution in Z/p2Z. Since
the conditions in Theorem 3.4.2 imply that

(
−b1b2(e3−e2)

p

)
=
(
b1e2
p

)
= 1, there are

k1, k2 such that k2
1 ≡p −(e3 − e2)b1b2

−1 and k2
2 ≡p e2b1

−1. We can then take z2 = p,
d = 1, z1 = k2 and z3 = k1. We can then divide every equation by p to see that it is
a solution in Z/pZ with b1z2

1
p
6≡p 0 6≡p b1b2z2

3
p

.
Once we have a solution in Z/p2Z we can apply Hensel’s Lemma to z1 in Equation

(3.1.1a) and then reapply Hensel’s Lemma to z3 in Equation 3.1.1c. Since each
variable does not appear in the other equation, we have a solution in Qp.

Case 4. If p | b1 and p | b2, we will show that there is a solution in Z/p2Z. Since
the conditions in Theorem 3.4.2 imply that

(
b1e3
p

)
=
(
b2(e3−e2)

p

)
= 1, there are k1, k2

such that k2
1 ≡p e3b1

−1 and k2
2 ≡p (e3 − e2)b2

−1. We can then take z1 = k1, d = 1,
z2 = k2 and z3 = p. We can then divide every equation by p to see that it is a
solution in Z/pZ with b1z2

1
p
6≡p 0 6≡p b2z2

2
p
.

Once we have a solution in Z/p2Z we can apply Hensel’s Lemma to z1 in Equation
(3.1.1b) and then reapply Hensel’s Lemma to z2 in Equation 3.1.1c. Since each
variable does not appear in the other equation, we have a solution in Qp. �
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Chapter 4

Construction of the Generalized Monsky
Matrix

4.1. Reparametrization of (b1,b2)
Now that we have all the conditions for a local solution, we will construct a matrix

whose kernel is in correspondence with the pairs (b1,b2) respecting our conditions from
Theorems 3.2.1, 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.4.1 and 3.4.2. To achieve this, we first
need to write the pairs in a way that they can be transformed by a matrix. More
precisely, we will write them as vectors with parameters in Z/2Z.

In order to do this, we start by factorizing the roots of the elliptic curve:



e2 = ±2v2(e2)
(
n1∏
i=1

p1i

)(
n2∏
i=1

p
vp2i

(e2)
2i

)(
n3∏
i=1

p3i

)(
n4∏
i=1

p4i

)(
n5∏
i=1

p
vp5i

(e2)
5i

)
,

e3 = ±2v2(e3)
(
n1∏
i=1

p1i

)(
n2∏
i=1

p2i

)(
n3∏
i=1

p
vp3i

(e3)
3i

)(
n4∏
i=1

p4i

)(
n6∏
i=1

p
vp6i

(e3)
6i

)
,

e3 − e2 = ±2v2(e3−e2)
(
n1∏
i=1

p1i

)(
n2∏
i=1

p2i

)(
n3∏
i=1

p3i

)(
n4∏
i=1

p
vp4i

(e3−e2)
4i

)(
n7∏
i=1

p
vp7i

(e3−e2)
7i

)
,

with our odd primes separated into seven categories:

(1) The primes p1i
that exactly divide e2, e3 and (e3 − e2).



(2) The primes p2i
that exactly divide e3 and (e3− e2) and whose squares divide

e2.

(3) The primes p3i
that exactly divide e2 and (e3− e2) and whose squares divide

e3.

(4) The primes p4i
that exactly divide e2 and e3 and whose squares divide (e3−e2).

(5) The primes p5i
that only divide e2.

(6) The primes p6i
that only divide e3.

(7) The primes p7i
that only divide (e3 − e2).

Using this notation, we can write the pair (b1,b2) as:


b1 = (−1)δ12ε1
 4∏
j=1

nj∏
i=1

p
αji
ji

( n5∏
i=1

pγi
5i

)(
n6∏
i=1

p
α6i
6i

)
,

b2 = (−1)δ22ε2
 4∏
j=1

nj∏
i=1

p
βji
ji

( n5∏
i=1

pγi
5i

)(
n7∏
i=1

p
β7i
7i

)
,

(4.1.1)

with all the exponents either 0 or 1 since b1,b2 ∈ Q×/Q×2 .
We remark here that primes of Category 5 have to divide either none or both of

the bi’s because of the conditions of Theorem 3.4.1. Likewise, primes of Category 6
cannot divide b2 and primes of Category 7 cannot divide b1.

Consider the group Q(S,2) × Q(S,2) as defined in Theorem 2.5.3 and define its
subgroup H by only taking the pairs (b1,b2) respecting the properties that we have
just explained for primes of Categories 1, 2 and 3.

We have the following group isomorphism f :

f : H → (Z/2Z)2n1+2n2+2n3+2n4+n5+n6+n7+4

(b1,b2) 7→
(
δ1 ε1 α11 . . . α6n6

γ1 . . . γn5 δ2 ε2 β11 . . . β7n7

)
We remark here that there is no α5i

or β5i
since we decided to call these exponents

γi to avoid confusion as they appear in both b1 and b2. We also note that we separate
the parameters in 3 parts: the first part represents the exponents appearing only for
b1 (noted above by the α’s), the second part represents the exponents appearing for
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both b1 and b2 (noted above by the γ’s), the third part represents the exponents
appearing only for b2 (noted above by the β’s).

To simplify the notation, we write m1 = 2 + n1 + n2 + n3 + n4 + n6, m2 =
2 + n1 + n2 + n3 + n4 + n7 and m3 = n5. We also rename our factors as follows:

q1j
=



−1 if j = 1,

2 if j = 2,

p1j−2 if 3 ≤ j ≤ 2 + n1,

p2j−2−n1
if 3 + n1 ≤ j ≤ 2 + n1 + n2,

p3j−2−n1−n2
if 3 + n1 + n2 ≤ j ≤ 2 + n1 + n2 + n3,

p4j−2−n1−n2−n3
if 3 + n1 + n2 + n3 ≤ j ≤ 2 + n1 + n2 + n3 + n4,

p6j−2−n1−n2−n3−n4
if 3 + n1 + n2 + n3 + n4 ≤ j ≤ m1.

q2j
=



−1 if j = 1,

2 if j = 2,

p1j−2 if 3 ≤ j ≤ 2 + n1,

p2j−2−n1
if 3 + n1 ≤ j ≤ 2 + n1 + n2,

p3j−2−n1−n2
if 3 + n1 + n2 ≤ j ≤ 2 + n1 + n2 + n3,

p4j−2−n1−n2−n3
if 3 + n1 + n2 + n3 ≤ j ≤ 2 + n1 + n2 + n3 + n4,

p7j−2−n1−n2−n3−n4
if 3 + n1 + n2 + n3 + n4 ≤ j ≤ m2.

q3j
=
{
p5j

for all j.

With this new notation, we can rewrite b1 and b2 as:


b1 =
m1∏
j=1

q
ω1j

1j

m3∏
j=1

q
ω3j

3j

 ,
b2 =

m2∏
j=1

q
ω2j

2j

m3∏
j=1

q
ω3j

3j

 ,
(4.1.2)

with all the exponents either 0 or 1 since b1,b2 ∈ Q×/Q×2 .
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We can also rewrite f as:

f : H → (Z/2Z)m1+m2+m3

(b1,b2) 7→
(
ω11 ω12 ω13 . . . ω1m1

ω31 . . . ω3m3
ω21 ω22 ω23 . . . ω2m2

)
With this new parameterization, we interpret our pairs (b1,b2) as vectors. The

goal of this chapter is to create a matrix whose kernel is the set of pairs (b1,b2) (seen
as vectors) that respect all local conditions from Chapter 3.

More precisely, we want to find a matrix M with parameters in Z/2Z such that:

f((b1,b2))t ∈ ker(M) ⇐⇒ (b1,b2) respects all local conditions.
In order to make this more readable, we will separate the matrix in three parts:

the row representing the condition on R, the rows representing the conditions on Q2

and the rows representing the conditions on Qp.

4.2. Matrix row for R
When e2 and e3 are fixed, there is only one condition for a solution in R. Let us

call this one row matrix MR.
Before giving the matrix, we start by defining some basic submatrices that we

will use as the building blocks of MR.
Definition 4.2.1. For i ∈ {1,2}, we define Si as:

Si = (s1,j) for 1 ≤ j ≤ mi,

s1,j =

1 if j = 1,

0 otherwise.
The role of Si is to check the sign of bi.

Definition 4.2.2. The matrix Oi,j is the zero matrix with i lines and j columns.
This last submatrix will be used for several parts in the final matrix.
We now get to MR. We will separate the cases on e2 and e3 as in Theorem 3.2.1.

Lemma 4.2.3. If e2 > 0 and e3 > 0, the local conditions on R can be represented
by:
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MR =
(
S1 O1,n5 O1,m2

)
.

Proof. We remark here that MR has exactly one non-zero component and it is
in the position representing the variable ω11 of Equation (4.1.2). Because of this,
MRf((b1,b2))t = (ω11). This means that f((b1,b2))t ∈ ker(MR) if and only if ω11 = 0
and this is true if and only if b1 > 0 which is the required condition from Theorem
3.2.1. �

Lemma 4.2.4. If e2 < 0 and e3−e2 > 0, the local conditions on R can be represented
by:

MR =
(
O1,m1 O1,n5 S2

)
.

Proof. We remark here that MR has exactly one non-zero component and it is in
the position representing the variable ω21 . Because of this, MRf((b1,b2))t = (ω21).
This means that f((b1,b2))t ∈ ker(MR) if and only if ω21 = 0 and this is true if and
only if b2 > 0 which is the required condition from Theorem 3.2.1. �

Lemma 4.2.5. If e3 < 0 and e3−e2 < 0, the local conditions on R can be represented
by:

MR =
(
S1 O1,n5 S2

)
.

Proof. We remark here thatMR has exactly two non-zero components and they are
in the positions representing ω11 and ω21 . Because of this,MRf((b1,b2))t = (ω11+ω21).
This means that f((b1,b2))t ∈ ker(MR) if and only if ω11 + ω21 ≡2 0 and this is true
if and only if b1b2 > 0 which is the required condition from Theorem 3.2.1. �

Lemmas 4.2.3, 4.2.4 and 4.2.5 codify the statement of Theorem 3.2.1.

4.3. Matrix rows for Q2

When e2 and e3 are fixed, there are three conditions for a solution in Q2. Let us
call this submatrix MQ2 .
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As in the preceding case, we start by defining the building blocks needed to
construct the submatrix.
Definition 4.3.1. For i ∈ {1,2}, we define Ri as:

Ri = (r1,j) for 1 ≤ j ≤ mi,

r1,j =

1 if j = 2,

0 otherwise.
The role of Ri is to check if 2 | bi.

Definition 4.3.2. For i ∈ {1,2} and k ∈ {3,5,7}, we define Ti,k as:

Ti,k = (t1,j) for 1 ≤ j ≤ mi,

t1,j =


0 if j = 2,

0 if qij ≡8 1 or k,

1 otherwise.
Definition 4.3.3. For k ∈ {3,5,7}, we define T3,k as:

T3,k = (t1,j) for 1 ≤ j ≤ m3,

t1,j =

0 if q3j
≡8 1 or k,

1 otherwise.
When combined, the roles of Ti,k and T3,k are to check if bi ≡8 1 or k.
Also, in order to avoid considering 80 cases, we will introduce the following func-

tion:
Definition 4.3.4. Let S ⊂ (Z/8Z)×, and let a be an integer. If a = a

2v2(a) is seen as
an element of (Z/8Z)×, we define:

χS(a) =

1 if a ∈ S,

0 otherwise.
We now define MQ2 . In order to make the submatrices readable, we will separate

the cases by the valuations of e2 and e3. Also, since we explained MR in detail and
the arguments for each of the MQ2 are all similar, we will do one of the Q2 cases in
detail but then simply state the others.
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Lemma 4.3.5. If 2 - e3 and v2(e2) = 1, we have that

MQ2 =



R1 O1,m3 R2

χ{1,5}(e3)T1,5 + χ{3,7}(e2e3)R1 T3,5 χ{3,7}(e3)T2,5

χ{1,5}(e2e3)T1,7

+χ{3,7}(e2e3)T1,3

+χ{1,5}(e2)χ{3,5}(e3)R1 + χ{3,7}(e2)χ{1,3}(e3)R1

O1,m3

χ{1,5}(e2e3)T2,7

+χ{3,7}(e2e3)T2,3


.

Proof. As discussed in Section 3.3, when e3 and e2 are fixed, there are tree condi-
tions each represented by one of the three rows.

For the first row, we remark that, as in the case of MR, when we multiply the
row by f((b1,b2))t, it gives ω12 +ω22 and that gives 0 if and only if 2 | b1 ⇐⇒ 2 | b2.
The first row then represents the first condition appearing in each cell of the table
of Theorem 3.3.1.

The content of the second row depends on the values of e2 and e3 modulo 4.
In the above matrix, the difference between the cases is represented by using the
function χ.

If e2 ≡4 1 and e3 ≡4 1, then the only contributing terms in the second row are
T1,5 and T3,5. The product of the second row by f((b1,b2))t gives

∑
1≤j≤m1
j 6=2

χ{3,7}(q1j
)ω1j

+
∑

1≤j≤m3

χ{3,7}(q3j
)ω3j

.

This number collects the sum of exponents corresponding to the prime factors
of b1 that are congruent to 3 or 7 modulo 8. This sum is equal to 0 if and only if
b1 ≡4 1.

If e2 ≡4 1 and e3 ≡4 3, then the only contributing terms in the second row are
those involving R1, T2,5 and T3,5. The product of the second row by f((b1,b2))t gives

ω12 +
∑

1≤j≤m2
j 6=2

χ{3,7}(q2j
)ω2j

+
∑

1≤j≤m3

χ{3,7}(q3j
)ω3j

.

This number collects the sum of the exponents corresponding to the prime factors
of b2 that are congruent to 3 or 7 modulo 8 and the 2-valuation of b1. This sum is
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equal to 0 if and only if (−1)v2(b1)b2 ≡4 1. When 2 - b1, the row represents the
condition b2 ≡4 1. When 2 | b1, the row represents the condition −b2 ≡4 1.

If e2 ≡4 3 and e3 ≡4 1, then the only contributing terms in the second row are
those involving R1, T1,5 and T3,5. The product of the second row by f((b1,b2))t gives

ω12 +
∑

1≤j≤m1
j 6=2

χ{3,7}(q1j
)ω1j

+
∑

1≤j≤m3

χ{3,7}(q3j
)ω3j

which is equal to 0 if and only if (−1)v2(b1)b1 ≡4 1.
If e2 ≡4 3 and e3 ≡4 3, then the only contributing terms in the second row are

those involving T2,5 and T3,5. The product of the second row by f((b1,b2))t gives
∑

1≤j≤m2
j 6=2

χ{3,7}(q2j
)ω2j

+
∑

1≤j≤m3

χ{3,7}(q3j
)ω3j

which is equal to 0 if and only if b2 ≡4 1.
In sum, the second row represents the second condition appearing in each cell of

the v2(e2) = 1 column of the table of Theorem 3.3.1.

The content of the third row depends on the values of e2 modulo 4 and e3 modulo
8. As in the second row, the difference between the cases is represented using the
function χ. In the following subcases, we remark that since the primes q3j

either
divide both b1 and b2 or neither, the primes q3j

always appear an even number of
times when studying b1b2. Because the exponent of the primes divisors of b1b2 are in
Z/2Z, the primes q3j

can be ignored.
If e2 ≡4 1 and e3 ≡8 1, then the only contributing terms in the third row are

those involving T1,7 and T2,7. The product of the third row by f((b1,b2))t gives
∑

1≤j≤m1
j 6=2

χ{3,5}(q1j
)ω1j

+
∑

1≤j≤m2
j 6=2

χ{3,5}(q2j
)ω2j

.

This number collects the sum of exponents corresponding to the prime factors of
b1b2 that are congruent to 3 or 5 modulo 8. This sum is equal to 0 if and only if
b1b2 ≡8 1 or 7.

If e2 ≡4 1 and e3 ≡8 5, then the only contributing terms in the third row are
those involving R1, T1,7 and T2,7. The product of the third row by f((b1,b2))t gives

108



ω12 +
∑

1≤j≤m1
j 6=2

χ{3,5}(q1j
)ω1j

+
∑

1≤j≤m2
j 6=2

χ{3,5}(q2j
)ω2j

.

This number collects the sum of the exponents corresponding to the prime factors
of b1b2 that are congruent to 3 or 5 modulo 8 and the 2-valuation of b1. This sum
is equal to 0 if and only if 3v2(b1)b1b2 ≡8 1 or 7. When 2 - b1, the row represents the
condition b1b2 ≡8 1 or 7. When 2 | b1, the row represents the condition 3b1b2 ≡8

1 or 7.
If e2 ≡4 1 and e3 ≡8 3, then the only contributing terms in the third row are

those involving R1, T1,3 and T2,3. The product of the third row by f((b1,b2))t gives

ω12 +
∑

1≤j≤m1
j 6=2

χ{5,7}(q1j
)ω1j

+
∑

1≤j≤m2
j 6=2

χ{5,7}(q2j
)ω2j

.

This number collects the sum of the exponents corresponding to the prime factors
of b1b2 that are congruent to 5 or 7 modulo 8 and the 2-valuation of b1. This
sum is equal to 0 if and only if (−1)v2(b1)b1b2 ≡8 1 or 3. When 2 - b1, the row
represents the condition b1b2 ≡8 1 or 3. When 2 | b1, the row represents the condition
−b1b2 ≡8 1 or 3.

If e2 ≡4 1 and e3 ≡8 7, then the only contributing terms in the third row are
those involving T1,3 and T2,3. The product of the third row by f((b1,b2))t gives

∑
1≤j≤m1
j 6=2

χ{5,7}(q1j
)ω1j

+
∑

1≤j≤m2
j 6=2

χ{5,7}(q2j
)ω2j

This number collects the sum of exponents corresponding to the prime factors of
b1b2 that are congruent to 5 or 7 modulo 8. This sum is equal to 0 if and only if
b1b2 ≡8 1 or 3.

If e2 ≡4 3 and e3 ≡8 1, then the only contributing terms in the third row are
those involving R1, T1,3 and T2,3. The product of the third row by f((b1,b2))t gives

ω12 +
∑

1≤j≤m1
j 6=2

χ{5,7}(q1j
)ω1j

+
∑

1≤j≤m2
j 6=2

χ{5,7}(q2j
)ω2j

which is equal to 0 if and only if (−1)v2(b1)b1b2 ≡8 1 or 3.
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If e2 ≡4 3 and e3 ≡8 5, then the only contributing terms in the third row are
those involving T1,3 and T2,3. The product of the third row by f((b1,b2))t gives

∑
1≤j≤m1
j 6=2

χ{5,7}(q1j
)ω1j

+
∑

1≤j≤m2
j 6=2

χ{5,7}(q2j
)ω2j

which is equal to 0 if and only if b1b2 ≡8 1 or 3.
If e2 ≡4 3 and e3 ≡8 3, then the only contributing terms in the third row are

those involving R1, T1,7 and T2,7. The product of the third row by f((b1,b2))t gives

ω12 +
∑

1≤j≤m1
j 6=2

χ{3,5}(q1j
)ω1j

+
∑

1≤j≤m2
j 6=2

χ{3,5}(q2j
)ω2j

which is equal to 0 if and only if 3v2(b1)b1b2 ≡8 1 or 7.
If e2 ≡4 3 and e3 ≡8 7, then the only contributing terms in the third row are

those involving T1,7 and T2,7. The product of the third row by f((b1,b2))t gives
∑

1≤j≤m1
j 6=2

χ{3,5}(q1j
)ω1j

+
∑

1≤j≤m2
j 6=2

χ{3,5}(q2j
)ω2j

which is equal to 0 if and only if b1b2 ≡8 1 or 7.
In sum, the third row represents the third condition appearing in each cell of the

v2(e2) = 1 column of the table of Theorem 3.3.1.
�

Here we record the matrices corresponding to the remaining columns in the tables
from Theorems 3.3.1, 3.3.2, 3.3.3 and 3.3.4.
Lemma 4.3.6. If 2 - e3 and v2(e2) = 2, we have that

MQ2 =



R1 O1,m3 R2

(1 + χ{3,7}(e2)χ{1,5}(e3))T1,5

+R1
χ{1,5}(e3)T3,5 (1 + χ{1,5}(e2)χ{1,5}(e3))T1,5

χ{1,5}(e2)χ{3}(e3)T1,7

+χ{3,7}(e2)χ{7}(e3)T1,7

+R1

χ{1,5}(e2)χ{3}(e3)T3,5

+χ{3,7}(e2)χ{7}(e3)T3,5

χ{1,5}(e2)χ{3}(e3)T2,3

+χ{3,7}(e2)χ{7}(e3)T2,3


.

Lemmas 4.3.5 and 4.3.6 codify the statement of Theorem 3.3.1.
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Lemma 4.3.7. If 2 - e3 and v2(e2) = 3, we have that

MQ2 =



R1 O1,m3 R2

χ{1,5}(e2)χ{3,5,7}(e3)T1,5

+χ{3,7}(e2)χ{1,5,7}(e3)T1,5

+χ{1}(e3)R1

χ{1,5}(e2)T3,5
χ{1,5}(e2)χ{1,3,7}(e3)T2,5

+χ{3,7}(e2)χ{3,5,7}(e3)T2,5

χ{1,3}(e3)T1,3

+χ{5,7}(e3)T1,7

+χ{1,3,5}(e3)R1

O1,m3

χ{1,3}(e3)T2,3

+χ{5,7}(e3)T2,7


.

Lemma 4.3.8. If 2 - e3 and v2(e2) = 4, we have that

MQ2 =



R1 O1,m3 R2

(1 + χ{3,7}(e2)χ{1,5}(e3))T1,5

+χ{5}(e3)R1
χ{1,5}(e3)T3,5 (1 + χ{1,5}(e2)χ{1,5}(e3))T2,5

χ{1}(e3)T1,7

+χ{5}(e3)T1,3

+χ{3,7}(e3)R1

O1,m3

χ{1}(e3)T2,7

+χ{5}(e3)T2,3


.

Lemmas 4.3.7 and 4.3.8 codify the statement of Theorem 3.3.2.
Lemma 4.3.9. If 2 - e3, 32 | e2 and v2(e2) ≡2 1, we have that

MQ2 =



R1 O1,m3 R2

χ{1,5}(e2)χ{1,3,7}(e3)T1,5

+χ{3,7}(e2)χ{3,5,7}(e3)T1,5

+χ{5}(e3)R1

χ{1,5}(e3)T3,5
χ{1,5}(e2)χ{3,5,7}(e3)T2,5

+χ{3,7}(e2)χ{1,3,7}(e3)T1,5

χ{1,3}(e3)T1,7

+χ{5,7}(e3)T1,3

+χ{5}R1

O1,m3

χ{1,3}(e3)T2,7

+χ{5,7}(e3)T2,3


.

Lemma 4.3.10. If 2 - e3, 32 | e2 and v2(e2) ≡2 0, we have that
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MQ2 =



R1 O1,m3 R2

(1 + χ{3,7}(e2)χ{1,5}(e3))T1,5

+χ{5}(e3)R1
χ{1,5}(e3)T3,5 (1 + χ{1,5}(e2)χ{1,5}(e3))T2,5

χ{1}(e3)T1,7

+χ{5,7}(e3)T1,3

+χ{3}(e3)R1

O1,m3

χ{1}(e3)T2,7

+χ{5,7}(e3)T2,3


.

Lemmas 4.3.9 and 4.3.10 codify the statement of Theorem 3.3.3.
Lemma 4.3.11. If 2 | e3, v2(e2) = 2 and e3 ≡4 1, we have that

MQ2 =


T1,7 + χ{3,5}(e2e3)R1 T3,7 χ{3,5}(e2)R2

χ{5,7}(−e2)R1 T3,3 T2,3 + χ{5,7}(−e2(e3 − e2))R2

T1,5 +R1 O1,m3 T2,5

 .
Lemma 4.3.12. If 2 | e3, v2(e2) = 2 and e3 ≡4 3, we have that

MQ2 =


T1,3 + χ{5,7}(e2e3)R1 T3,3 χ{5,7}(e2)R2

χ{3,5}(e2)R1 T3,7 T2,7 + χ{3,5}(e2(e3 − e2))R2

T1,5 O1,m3 T2,5 +R2

 .
Lemma 4.3.13. If 2 | e3, v2(e2) = 3 and e3 ≡4 1, we have that

MQ2 =


T1,3 + χ{5,7}(e2)R1 T3,3 χ{5,7}(e2e3)R2

χ{5,7}(e2e3)R1 T3,3 T2,3 + χ{5,7}(−e2)R2

T1,5 +R1 O1,m3 T2,5 +R2

 .
Lemma 4.3.14. If 2 | e3, v2(e2) = 3 and e3 ≡4 3, we have that

MQ2 =


T1,7 + χ{3,5}(e2)R1 T3,7 χ{3,5}(e2e3)R2

χ{3,5}(3e2e3)R1 T3,7 T2,7 + χ{3,5}(e2)R2

T1,5 O1,m3 T2,5

 .
Lemma 4.3.15. If 2 | e3, 16 | e2, v2(e2) ≡2 0 and e3 ≡4 1, we have that
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MQ2 =


T1,3 + χ{5,7}(e2e3)R1 T3,3 χ{5,7}(e2)R2

χ{5,7}(−e2)R1 T3,3 T2,3 + χ{5,7}(−e2e3)R2

T1,5 +R1 O1,m3 T2,5 +R2

 .
Lemma 4.3.16. If 2 | e3, 16 | e2, v2(e2) ≡2 0 and e3 ≡4 3, we have that

MQ2 =


T1,7 + χ{3,5}(e2e3)R1 T3,7 χ{3,5}(e2)R2

χ{3,5}(e2)R1 T3,7 T2,7 + χ{3,5}(e2e3)R2

T1,5 O1,m3 T2,5

 .
Lemma 4.3.17. If 2 | e3, 16 | e2, v2(e2) ≡2 1 and e3 ≡4 1, we have that

MQ2 =


T1,3 + χ{5,7}(e2)R1 T3,3 χ{5,7}(e2e3)R2

χ{5,7}(−e2e3)R1 T3,3 T2,3 + χ{5,7}(−e2)R2

T1,5 +R1 O1,m3 T2,5 +R2

 .
Lemma 4.3.18. If 2 | e3, 16 | e2, v2(e2) ≡2 1 and e3 ≡4 3, we have that

MQ2 =


T1,7 + χ{3,5}(e2)R1 T3,7 χ{3,5}(e2e3)R2

χ{3,5}(e2e3)R1 T3,7 T2,7 + χ{3,5}(e2)R2

T1,5 O1,m3 T2,5

 .
Lemmas 4.3.11 to 4.3.18 codify the statement of Theorem 3.3.4.

4.4. Matrix rows for Qp

When e2 and e3 are fixed and p is an odd prime number dividing δ, there are two
conditions for a solution in Qp.

When p | GCD(e2,e3), we will need two matrix rows.
When p - GCD(e2,e3), one of the conditions is already represented in the sub-

group H of Q(S,2)×Q(S,2). We will then only need one matrix row.
We will call MQp,1 the sub-matrix representing all the conditions for the primes

not dividing GCD(e2,e3) and MQp,2 the sub-matrix representing all the conditions
for the primes dividing GCD(e2,e3).

As in the preceding case, we start by defining the building blocks that will be
needed to construct the submatrices.
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Definition 4.4.1. For p an odd prime and i ∈ {1,2,3}, we define Wi,p as:

Wi,p = (w1,k) for 1 ≤ k ≤ mi,

w1,k =

1 if qik = p,

0 otherwise.
The role of W1,p is to check if p | b1, the role of W2,p is to check if p | b2 and the

role of W3,p is to check if p | b1 and p | b2 simultaneously.
Definition 4.4.2. For p an odd prime and i ∈ {1,2,3}, we define Vi,p as:

Vi,p = (v1,k) for 1 ≤ k ≤ mi,

v1,k =


1 if

(
qik
p

)
= −1,

0 otherwise.
When combined, the roles of Vi,p ( for i ∈ {1,2}) and V3,p are to check the value

of
(
bi

p

)
.

Remark here that we require that
(
qik

p

)
= −1, this means that w1,k = 0 if qik = p.

As in the case of Q2 we will also need a function that will act as an indicator
function:
Definition 4.4.3. Let p be a prime number and a be an integer with a = a

pvp(a) , we
define the function hp as:

hp(a) =


1 if

(
a

p

)
= −1,

0 otherwise.

4.4.1. Matrix rows when p - GCD(e2,e3)

We shall denote by Np the matrix row representing the conditions in Qp.
Lemma 4.4.4. Let p | e2 and p - e3.

If vp(e2) ≡2 1, we have that

Np =
(
V1,p W3,p V2,p

)
.
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If vp(e2) ≡2 0, we have that

Np =
(

(1 + hp(−e3))V1,p hp(−e3)W3,p (1 + hp(−e3))V2,p

)
.

Lemma 4.4.5. Let p - e2 and p | e3.
If vp(e3) ≡2 1, we have that

Np =
(
W1,p V3,p V2,p

)
.

If vp(e3) ≡2 0, we have that

Np =
(
hp(−e2)W1,p (1 + hp(−e2))V3,p (1 + hp(−e2))V2,p

)
.

Lemma 4.4.6. Let p - e2 and p | e3 − e2.
If vp(e3 − e2) ≡2 1, we have that

Np =
(
V1,p V3,p W2,p

)
.

If vp(e3 − e2) ≡2 0, we have that

Np =
(

(1 + hp(e3))V1,p (1 + hp(e3))V3,p hp(e3)W2,p

)
.

Lemmas 4.4.4, 4.4.5 and 4.4.6 codify the statement of Theorem 3.4.1.
We can now have the following corollary:

Lemma 4.4.7. With the above matrix rows, we can define MQp,1 as:

MQp,1 =



Np51...
Np5n5

Np61...
Np6n6

Np71...
Np7n7



.
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4.4.2. Matrix rows when p | GCD(e2,e3)

When p | GCD(e2,e3), we have two matrix rows. The first one, that we will call
Np,1, represents a condition on b1. The other row, that we will call Np,2, represents
a condition on b2.

We will use the same building blocks as in the preceding subsection.
Lemma 4.4.8. If p3 || e2e3(e3 − e2), we have that:

Np,1 =
(
V1,p + hp(e2)W1,p V3,p hp(e2e3)W2,p

)
,

Np,2 =
(
hp(−e2(e3 − e2))W1,p V3,p V2,p + hp(−e2)W2,p

)
.

Lemma 4.4.9. Let p2 | e2.
If vp(e2) ≡2 0, we have that:

Np,1 =
(
V1,p + hp(e2e3)W1,p V3,p hp(e2)W2,p

)
,

Np,2 =
(
hp(−e2)W1,p V3,p V2,p + hp(−e2e3)W2,p

)
.

If vp(e2) ≡2 1, we have that:

Np,1 =
(
V1,p + hp(e2)W1,p V3,p hp(e2e3)W2,p

)
,

Np,2 =
(
hp(−e2e3)W1,p V3,p V2,p + hp(−e2)W2,p

)
.

Lemma 4.4.10. Let p2 | e3.
If vp(e3) ≡2 0, we have that:

Np,1 =
(
V1,p + hp(e2)W1,p V3,p hp(e3)W2,p

)
,

Np,2 =
(
O1,m1 V3,p V2,p + hp(−e2)W2,p

)
.

If vp(e3) ≡2 1, we have that:

Np,1 =
(
V1,p + hp(e2)W1,p V3,p hp(e2e3)W2,p

)
,

Np,2 =
(
O1,m1 V3,p V2,p + hp(−e2)W2,p

)
.

Lemma 4.4.11. Let p | e3 − e2.
If vp(e3 − e2) ≡2 0, we have that:
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Np,1 =
(
V1,p + hp(e2)W1,p V3,p O1,m2

)
,

Np,2 =
(
hp(e3 − e2)W1,p V3,p V2,p + hp(−e2)W2,p

)
.

If vp(e3 − e2) ≡2 1, we have that:

Np,1 =
(
V1,p + hp(e2)W1,p V3,p O1,m2

)
,

Np,2 =
(
hp(−e2(e3 − e2))W1,p V3,p V2,p + hp(−e2)W2,p

)
.

Lemmas 4.4.8 to 4.4.11 codify the statement of Theorem 3.4.2.
We now have the following corollary:

Lemma 4.4.12. With the above matrix rows, if we write m = 2 +n1 +n2 +n3 +n4,
we can define MQp,2 as:

MQp,2 =



Nq13,1
...

Nq1m,1

Nq13,2
...

Nq1m,2


.

The rows are organized so that the upper half contains the conditions for b1 and
the second half contains the conditions for b2. We do this so that it is easier to work
with the matrix later.

4.5. Construction of the matrix
Now that we have determined the rows for a local solution for each p-adic set, we

can put them together to get:
Theorem 4.5.1. Let E(Q) : y2 = x(x − e2)(x − e3) be an elliptic curve with e2,e3

respecting the conditions of Section 3.1. Also, let:

117



Me2,e3 =


MR

MQ2

MQp,1

MQp,2

 .
We then have that:

dim(ker(Me2,e3)) = rank(Sel2(E(Q)))− 2.

Proof. Since Me3,e2 is the superposition of the matrices verifying each of the local
conditions, its kernel is bijective to the set of (b1,b2) respecting every local condition.

�

This gives us the central corollary of this work:
Corollary 4.5.2. Let E(Q) : y2 = x(x − e2)(x − e3) be an elliptic curve with e2,e3

respecting the conditions of Section 3.1. If dim(ker(Me2,e3)) = 2, then the rank of
E(Q) is 0.
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Chapter 5

Applications of the Generalized Monsky
Matrix

5.1. Generalized induction theorem
Now that we have constructed the Generalized Monsky Matrix, we proceed to

extract results from it.
In [Mok20], we showed what we called induction theorems in elliptic curves of

the π
3 and 2π

3 -congruent number problems. The idea is that if n is non θ-congruent,
then, when respecting certain conditions, we can find two distinct primes p and q

such that pqn is also non-θ-congruent.
In this section, we give a similar theorem that will apply to most elliptic curves

in Legendre form.
Before doing anything else, we start with two definitions that will simplify the

notation.
Definition 5.1.1. We define K(e2,e3) := dim kerMe2,e3.
Definition 5.1.2. Let AmA×nA

and BmB×nB
be two matrices, we define the equiva-

lence relation:

A ∼ B ⇐⇒ mA − rank(A) = mB − rank(B).

In other words, A and B are equivalent if an only if their echelon form have the
same number of null rows.



We will use the following lemma to work with the equivalence relation.
Lemma 5.1.3. There are some basic operations from linear algebra that keep the
equivalent relation of Definition 5.1.2:

(1) Adding a row to another.

(2) Removing a row that is linearly independent from the others.

(3) Removing a column that only contains zeros.

We are interested in this relation because of the following result whose proof is
immediate:
Proposition 5.1.4. Let A and B be two square matrices. We have that

A ∼ B ⇐⇒ dim kerA = dim kerB.
Since the Generalized Monsky Matrix is always square, we have that K(e2,e3) =

K(e′2,e′3) if and only if Me2,e3 ∼Me′2,e
′
3
.

The goal here is, for a given pair (e2,e3), to find two primes p,q - e2e3(e3 − e2)
such that K(pqe2,pqe3) = K(e2,e3) by showing that Mpqe2,pqe3 ∼Me2,e3 .

In order to do this, we construct what call the induction submatrix:
Definition 5.1.5. Let e2 and e3 be two integers respecting the conditions of Section
3.1 and let p,q be two distinct prime numbers such that p,q - e2e3(e3− e2). We define
the induction submatrix He2,e3,p,q as:

He2,e3,p,q :=


hp(qe2) hp(q) hp(e2e3) 0
hq(p) hq(pe2) 0 hq(e2e3)

hp(−e2(e3 − e2)) 0 hp(−qe2) hp(q)
0 hq(−e2(e3 − e2)) hq(p) hq(−pe2)

 ,

where the coefficients are given by Definition 4.4.3.
The reason it is called induction submatrix will become clear in Theorem 5.1.8.

We need to introduce some new notation before stating the theorem.
We first want to separate He2,e3,p,q in four parts:
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Definition 5.1.6.

H1 :=
hp(qe2) hp(q)
hq(p) hq(pe2)

 ,
H2 :=

hp(e2e3) 0
0 hq(e2e3)

 ,
H3 :=

hp(−e2(e3 − e2)) 0
0 hq(−e2(e3 − e2))

 ,
H4 :=

hp(−qe2) hp(q)
hq(p) hq(−pe2)

 .
Thus we can write

He2,e3,p,q :=
 H1 H2

H3 H4

 .
We also introduce the following notation:

Definition 5.1.7. We call Ji the ith row of He2,e3,p,q.
This notation will be useful for the proof of Theorem 5.1.8 when we combine it

with the notation that comes next. We introduce the least intuitive notation. We
separate Me2,e3 in nine submatrices. This will be clearer when we apply the notation
later in Theorem 5.1.8. More precisely, we write:

Me2,e3 =


M1 M2 M3

M4 M5 M6

M7 M8 M9

 ,
withM1 being of dimension (4+∑7

i=5 ni)×(2),M2 being of dimension (4+∑7
i=5 ni)×

(m1 +m3), M3 being of dimension (4 +∑7
i=5 ni)× (m2 − 2), M4 being of dimension

(∑4
i=1 ni)× (2), M5 being of dimension (∑4

i=1 ni)× (m1 +m3), M6 being of dimension
(∑4

i=1 ni)× (m2 − 2), M7 being of dimension (∑4
i=1 ni)× (2), M8 being of dimension

(∑4
i=1 ni)× (m1 +m3) and M9 being of dimension (∑4

i=1 ni)× (m2 − 2).
Here is an intuitive way to see the new decomposition. Multiplication of e2 and e3

by pq corresponds to adding 4 new columns and lines. By looking at the positions of
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these new columns and lines, one can remark that they are grouped in pairs. Using
each of these pairs as a border separates the rest of the matrix in 9 parts. Those 9
parts are our 9 submatrices.

Finally, we write Cs to represent any n × 2 sub-matrix (the size of n is defined
by the context) such that ci,1 = ci,2. Similarly, we write Ls to represent any 2 × n
sub-matrix (the size of n is not necessarily the same as the ones before) such that
l1,j = l2,j. They can be seen as two equal vectors, but next to each other.

With all the previous notation introduced, we can state the following theorem.
Theorem 5.1.8. Let e2 and e3 be two integers respecting the conditions of Section
3.1. Let p and q be two distinct prime numbers such that:



p,q - e2e3(e2 − e3),

p ≡8 q,

∀s | e2e3(e2 − e3) ∈ P\{2},
(
p

s

)
=
(
q

s

)
,

det (He2,e3,p,q) = 1,

〈J1 + J2,J3 + J4〉 =
〈(

1 1 0 0
)
,
(
0 0 1 1

)〉
.

We then have that K(e2,e3) = K(pqe2,pqe3).

Proof. We will prove this by showing thatMe2,e3 ∼Mpqe2,pqe3 . We start by remark-
ing that

Mpqe2,pqe3 =



M1 C1 M2 C2 M3

L1 H1 L2 H2 L3

M4 C3 M5 C4 M6

L4 H3 L5 H4 L6

M7 C5 M8 C6 M9


.

From the last condition in the hypothesis, we remark that we can use the rows
not containing any Ci to generate the following two rows:

(
O (1,1) O (0,0) O

)
,(

O (0,0) O (1,1) O
)
.
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By adding these rows to the appropriate matrix rows, we get that

Mpqe2,pqe3 ∼



M1 O M2 O M3

L1 H1 L2 H2 L3

M4 O M5 O M6

L4 H3 L5 H4 L6

M7 O M8 O M9


.

Since He2,e3,p,q is invertible, we have that the rows of:
 L1 H1 L2 H2 L3

L4 H3 L5 H4 L6


are linearly independent to each other and to the other rows of Mpqe2,pqe3 . This
implies that

Mpqe2,pqe3 ∼


M1 O M2 O M3

M4 O M5 O M6

M7 O M8 O M9

 .
We can now simply erase the columns containing only zeros to get that

Mpqe2,pqe3 ∼


M1 M2 M3

M4 M5 M6

M7 M8 M9

 = Me2,e3 .

�

As a consequence, we obtain Theorem 1.0.3.
Theorem 5.1.9 (Originally Theorem 1.0.3). Let e2, e3 be two integers respecting
the conditions of Section 3.1 and p,q be distinct prime numbers with the following
conditions:



p,q - e2e3(e2 − e3),

p ≡8 q,

∀s | e2e3(e2 − e3) ∈ P\{2},
(
p

s

)
=
(
q

s

)
.
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If, additionally, one of the following conditions is satisfied:

(1) p ≡4 1 and at least two of
{(

e2
p

)
,
(
e3
p

)
,
(
e3−e2
p

)}
are negative.

(2) p ≡4 3,
(
e3
p

)
= −

(
e2
p

)
and

(
e3
p

)
= −

(
e3−e2
p

)
.

We then have that K(pqe2,pqe3) = K(e2,e3).

Proof. One can check, using Python, for example, that these are the conditions for
which the induction matrix respects the hypothesis of Theorem 5.1.8. �

One can ask if there is a similar result to Theorem 5.1.8 when det (He2,e3,p,q) = 1
but 〈J1 + J2,J3 + J4〉 6=

〈(
1 1 0 0

)
,
(
0 0 1 1

)〉
. After trying all cases, we

concluded that this situation never happens.

5.2. A simple result on the θ-congruent number
problem for θ = cos−1

(
1
4

)
In this Section, we show an example of how to apply generalized Monsky matrices

on problems other that the congruent number problem in order to find new results.
We chose to work with θ = cos−1

(
1
4

)
because it is one of the angles with the

simplest cosine other that π
2 ,

π
3 and 2π

3 .
We prove a result similar to Iskra’s theorem on congruent numbers presented in

Theorem 0.2.6:
Theorem 5.2.1. Let θ = cos−1

(
1
4

)
and ` be a positive integer. If p1,p2, . . . p2` are

distinct primes congruent to 17 modulo 120 such that
(
pi

pj

)
= 1 for i < j, then

n = 2p1p2 · · · p2` is a non-θ = cos−1
(

1
4

)
-congruent number.

We know that, when n - 6, n is cos−1
(

1
4

)
-congruent if and only if the elliptic

curve

y2 = x(x− 3n)(x+ 5n)
has a positive rank.

With the conditions of Section 3.1, e2 = −8n and e3 = −3n. Showing that
K(−8n,− 3n) = 2 will prove that n is non-cos−1

(
1
4

)
-congruent.
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We can generate a family of non-cos−1
(

1
4

)
-congruent numbers by induction using

Theorem 5.1.8. All we require is a base of induction:
Lemma 5.2.2. When n = 2, K(−8n,− 3n) = 2.

Proof. When e2 = −16, e3 = −6 and e3 − e2 = 10, the generalized Monsky matrix
is

M−16,−6 =



0 0 0 1 0 0
1 0 0 0 1 0
0 0 0 1 1 1
1 1 1 1 1 0
0 0 1 1 1 1
0 1 1 0 0 1


.

Since this is the first generalised Monsky matrix presented in this thesis, we
explain its construction in detail.

The odd primes dividing e2e3(e3 − e2) are 3 and 5. 3 only divides e3 and 5 only
divides e3− e2. Using the notation from Section 4.1, we have that q11 = −1, q12 = 2,
q13 = 3, q21 = −1, q22 = 2 and q23 = 5. There is no prime in the form q3j

because no
odd prime only divides e2.

In the matrix, Columns 1 and 4 then represent the signs of b1 and b2 respectively.
Columns 2 and 5 represent the parities of b1 and b2 respectively. Column 3 represents
the 3-valuation of b1 and Column 6 represents the 5-valuation of b2.

Row 1 represents the condition in R and is given by MR of Lemma 4.2.4.
Row 2 represents the first condition in Q2 and is given by the first row of MQ2

of Lemma 4.3.15. The left side is explained by the fact that q11 ≡8 7 /∈ {1,3},
e2e3 ≡8 3 /∈ {5,7} and q13 ≡8 3 ∈ {1,3}. The right side is explained by the fact that
e2 ≡8 7 ∈ {5,7}.

Row 3 represents the second condition in Q2 and is given by the second row of
MQ2 of Lemma 4.3.15. The left side is explained by the fact that −e2 ≡8 1 /∈ {5,7}.
The right side is explained by the fact that q21 ≡8 7 /∈ {1,3}, −e2e3 ≡8 5 ∈ {5,7}
and q23 ≡8 5 /∈ {1,3}.

Row 4 represents the third condition in Q2 and is given by the third row of MQ2

of Lemma 4.3.15. The left side is explained by the fact that q11 ≡8 7 /∈ {1,5} and

125



q13 ≡8 3 /∈ {1,5}. The right side is explained by the fact that q21 ≡8 7 /∈ {1,5} and
q23 ≡8 5 ∈ {1,5}.

Row 5 represents the condition in Q3 and is given by Np of Lemma 4.4.5. The
left side is explained by the fact that q13 = 3. The right side is explained by the fact
that

(
q21
3

)
= −1,

(
q22
3

)
= −1 and

(
q23
3

)
= −1.

Row 6 represents the condition in Q5 and is given by Np of Lemma 4.4.6. The
left side is explained by the fact that

(
q11
5

)
= 1,

(
q12
5

)
= −1 and

(
q13
5

)
= −1. The

left side is explained by the fact that q23 = 5.

One can reduce the matrix to see that its kernel is of dimension 2. This implies
that K(−16,− 6) = 2.

�

Once the basis is found, we can apply Theorem 5.1.8.

Proof of Theorem 5.2.1. This proof is done by showing that

K

(
−16

∏̀
i=1

p2i−1p2i,− 6
∏̀
i=1

p2i−1p2i

)
= 2

for any non-negative integer `. This is done by induction.
When ` = 0, this is proven by Lemma 5.2.2. We proceed with the rest of the

induction. Assume that the statement is true for `− 1, namely,

K

(
−16

`−1∏
i=1

p2i−1p2i,− 6
`−1∏
i=1

p2i−1p2i

)
= 2.

Since p2`−1 and p2` are congruent to 17 modulo 120, we have the following prop-
erties:
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

(
−1
p2`−1

)
=
(
−1
p2`

)
= 1,(

2
p2`−1

)
=
(

2
p2`

)
= 1,(

3
p2`−1

)
=
(

3
p2`

)
= −1,(

5
p2`−1

)
=
(

5
p2`

)
= −1

We also have that, for 1 ≤ i ≤ 2`− 2,
(

pi

p2`−1

)
=
(
pi

p2`

)
= 1. This implies that:

(
e3

p2`−1

)
=
(
−3n
p2`−1

)
= −1,(

e3 − e2

p2`−1

)
=
(

5n
p2`−1

)
= −1.

We then have all the properties necessary to apply Theorem 5.1.8 and get that:

K

(
−16

∏̀
i=1

p2i−1p2i,− 6
∏̀
i=1

p2i−1p2i

)
= K

(
−16

`−1∏
i=1

p2i−1p2i,− 6
`−1∏
i=1

p2i−1p2i

)
= 2

which completes the proof by induction. �

5.3. A result on the congruent number problem
We know that, for an integer n, K(−2n,−n) = 2 implies that n is not a congruent

number. For simplicity of notation, let us write K ′(n) := K(−2n,− n).
We are going to show Theorem 1.0.5, namely:

Theorem 5.3.1 (Originally Theorem 1.0.5). Let n be a square-free integer. There
exists a square-free integer m such that GCD(n,m) = 1 and nm is non-congruent.

Remark that we are not interested in non-square-free integers since we can always
reduce to problem to the study of square-free integers.

Theorem 1.0.5 is a consequence of Theorem 5.1.9. Indeed, if our given number
can be written as n = n′p with p a prime congruent to 1, 3 or 5 modulo 8, then
we can find a prime q such that we are able to apply Theorem 5.1.9 to show that
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K ′(n′) = K ′(n′pq). Using this, we are able to reduce the problem to the study of a
family of numbers whose associated generalized Monsky matrices are simple enough
to be worked on explicitly.

There are two complications that will make the proof a bit longer that we would
wish. Firstly, this idea cannot be applied to primes congruent to 7 modulo 8 because,
for such primes p, we have that

(
2
p

)
= 1 and, since e2 = −2n and e3 = −n, this

guarantees that
(
e3
p

)
=
(
e2
p

)
which prevents us from applying Theorem 5.1.9. The

other complication is that, when p ≡8 1 or 5, we need that
(
n
p

)
= −1, which is

not always the case. This complication can be resolved by multiplying n by a prime
congruent to 7 modulo 8 that will cause the desired Legendre symbols to be negative.

Because of the complications described above, there are several cases in the proof
of this theorem. We have found that it is more efficient to give an algorithm finding
the right multiple instead of doing the proof case by case. At the end of the algorithm,
the constructed multiple will always have the same general form.

Proof of Theorem 5.3.1. If n is already non-congruent, multiply n by any rela-
tively prime number. If this new number is still non-congruent, we are done. If not,
we work with that new number using the following proof.

We start by factorizing n as:

n = 2ε13ε2
∏

i∈{1,3,5,7}

`i∏
j=1

pi,j

with ε1,ε2 ∈ {0,1} and pi,j ≡8 i.
The following algorithm generates m:
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Algorithm 1 Generation of m
1: procedure Generation of m(n)
2: m← 1
3: if 2 - n then
4: m← 2×m
5: if 3 - n then
6: m← 3×m
7: n′ ← n×m
8: for j from 1 to `3 do
9: Find a prime q not dividing nm congruent to 3 mod 8 such that

(
p
q

)
=(

p
p3,j

)
for all primes p dividing nm (other than p3,j).

10: m← q ×m
11: q3,j ← q

12: for i ∈ {1,5} do
13: for j from 1 to `i do
14: Find a prime q not dividing nm congruent to i mod 8 such that, for

all odd primes p dividing nm other than pi,j,
(
p
q

)
=
(

p
pi,j

)
.

15: m← q ×m
16: qi,j ← q

17: Find a prime q not dividing nm congruent to 7 mod 8 such that, for all odd
primes pi,j and qi,j dividing nm with i ∈ {1,3,5},

(
qi,j

q

)
=
(
pi,j

q

)
and

(
q
pi,j

)
=

−
(

n
pi,j

)
.

18: m← q ×m
19: p7,`7+1 ← q
20: `7 ← `7 + 1
21: if 2 | `7 then
22: Find a prime q not dividing nm congruent to 7 mod 8 such that, for all

odd primes p dividing nm not congruent to 7 mod 8,
(
q
p

)
= 1.

23: m← q ×m
24: p7,`7+1 ← q
25: `7 ← `7 + 1
26: for j from 1 to `7 do
27: Find a prime q not dividing nm congruent to 17 mod 24 such that, for

all primes p dividing nm but not 6p7,j,
(
q
p

)
= 1 and

(
q
p7,j

)
= −1.

28: m← q ×m
29: q′1,j ← q

return m
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We first remark that the algorithm always returns a number. We now justify the
part where we ask to find new primes with certain congruence conditions. Because of
Dirichlet’s theorem on arithmetic progressions and the Chinese Reminder Theorem,
we are guaranteed that such primes always exist. It remains to show that nm is
non-congruent.

We have that nm can be factorized as:

nm = 6
 `1∏
j=1

p1,jq1,j

 `3∏
j=1

p3,jq3,j

 `5∏
j=1

p5,jq5,j

 `7∏
j=1

p7,jq
′
1,j

 .
We will now apply Theorem 5.1.9 multiple times. We first remark that the

theorem implies that:

K ′

6
 `1∏
j=1

p1,jq1,j

 `3∏
j=1

p3,jq3,j

 `5∏
j=1

p5,jq5,j

 `7∏
j=1

p7,jq
′
1,j


= K ′

6
`1−1∏
j=1

p1,jq1,j

 `3∏
j=1

p3,jq3,j

 `5∏
j=1

p5,jq5,j

 `7∏
j=1

p7,jq
′
1,j

 .
Since we remove two primes each time and these primes have the same Legendre

symbols with other primes, the Legendre symbol of the product over each prime
does not change. Using this, we can remove the entire first subproduct by simply
reapplying Corollary 5.1.9 enough times and get

K ′ (nm) = K ′

6
 `3∏
j=1

p3,jq3,j

 `5∏
j=1

p5,jq5,j

 `7∏
j=1

p7,jq
′
1,j

 .
We can do the same thing to the primes congruent to 5 mod 8 and then to those

congruent to 3 mod 8 to get that

K ′ (nm) = K ′

6
 `7∏
j=1

p7,jq
′
1,j

 .
The algorithm guarantees that `7 is odd. All that is left to do is to show that

K ′
(
6
(∏`7

j=1 p7,jq
′
1,j

))
= 2. This will be done in Lemma 5.3.2 that follows this proof.

Lemma 5.3.2 implies that the integer nm created by Algorithm 1 has
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K ′ (nm) = K ′

6
 `7∏
j=1

p7,jq
′
1,j

 = 2.

This concludes the proof of Theorem 5.3.1.
�

Lemma 5.3.2 (Originally Lemma 1.0.2). Let n be a square-free integer that can be
factorized as

n = 6p1 · · · ptq1 · · · qt,

with 

2 - t,

∀i, pi ≡8 7,

∀i, qi ≡8 1,

∀i,
(
pi
qi

)
= −1,

∀i 6= j,

(
pi
qj

)
=
(
qi
qj

)
= 1,

∀i,
(

3
qi

)
= −1.

Then we have that K(−2n,− n) = 2.
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Proof. Observe that:
M−2n,−n =

0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 0 0 0 0 . . . 0 0 0 0 . . . 0
1 0 0 1 1 1 . . . 1 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 1 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 0 0 . . . 0 0 0 0 . . . 0
1 0 1 1 1 1 . . . 1 0 0 0 . . . 0 1 1 1 1 1 1 . . . 1 0 0 0 . . . 0
1 1 ∗ ∗ ∗ ∗ . . . ∗ 1 1 1 . . . 1 0 0 1 0 0 0 . . . 0 0 0 0 . . . 0
1 0 ∗ ∗ ∗ ∗ . . . ∗ 1 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 1 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 0 1 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 0 0 . . . 1 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 1 0 0 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 0 1 0 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 0 0 1 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
0 0 1 0 0 0 . . . 1 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 0 0 0 . . . 0 0 0 0 . . . 0 1 1 ∗ ∗ ∗ ∗ . . . ∗ 1 1 1 . . . 1
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 ∗ ∗ ∗ ∗ . . . ∗ 1 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 1 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 0 1 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 0 0 . . . 1
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 1 0 0 . . . 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 1 0 . . . 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 0 1 . . . 0 0 0 0 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 0 0 . . . 1 0 0 0 . . . 0


We number the matrix rows and columns using the above matrix representation.
Columns 1 and 14 represent the signs of b1 and b2 respectively. Columns 2 and

15 represent the parities of b1 and b2 respectively. Columns 3 and 16 represent the
3-valuations of b1 and b2 respectively. Columns 4 to 8 represent the pi-valuations of
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b1. Columns 9 to 13 represent the qi-valuations of b1. Columns 17 to 21 represent
the pi-valuations of b2. Columns 22 to 26 represent the qi-valuations of b2.

The first row represents the condition for a solution in R and is obtained by using
MR of Lemma 4.2.4. Rows 2 to 4 represent the conditions for a solution in Q2 and
are obtained by using MQ2 of Lemma 4.3.12. Row 5 represents the condition on b1

for a solution in Q3 are is obtained by using Np,1 of Lemma 4.4.8. Rows 6 to 10
represent the conditions on b1 for a solution in Qpi

and are obtained by using Np,1

of Lemma 4.4.8. Rows 11 to 15 represent the conditions on b1 for a solution in Qqi

and are obtained by using Np,1 of Lemma 4.4.8. Row 16 represents the condition on
b2 for a solution in Q3 are is obtained by using Np,2 of Lemma 4.4.8. Rows 17 to 21
represent the conditions on b2 for a solution in Qpi

and are obtained by using Np,2

of Lemma 4.4.8. Rows 22 to 26 represent the conditions on b2 for a solution in Qqi

and are obtained by using Np,2 of Lemma 4.4.8.
In the following pages we will show that if we remove Rows 3 and 4 from the

matrix, the rest of the rows are linearly independent. Indeed, when we remove Rows
3 and 4 from the matrix, we get the following submatrix:
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

0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 0 0 0 0 . . . 0 0 0 0 . . . 0
1 0 0 1 1 1 . . . 1 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
1 1 ∗ ∗ ∗ ∗ . . . ∗ 1 1 1 . . . 1 0 0 1 0 0 0 . . . 0 0 0 0 . . . 0
1 0 ∗ ∗ ∗ ∗ . . . ∗ 1 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 1 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 0 1 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 0 0 . . . 1 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 1 0 0 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 0 1 0 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 0 0 1 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
0 0 1 0 0 0 . . . 1 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 0 0 0 . . . 0 0 0 0 . . . 0 1 1 ∗ ∗ ∗ ∗ . . . ∗ 1 1 1 . . . 1
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 ∗ ∗ ∗ ∗ . . . ∗ 1 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 1 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 0 1 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 0 0 . . . 1
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 1 0 0 . . . 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 1 0 . . . 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 0 1 . . . 0 0 0 0 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 0 0 . . . 1 0 0 0 . . . 0


Using the above matrix representation, we remark that Row 3 is LI since it is

the only row with a 1 on the second column in the above matrix representation.
Similarly, Row 14 is LI because it is the only row with a 1 on Column 15. We can
then remove both and check the remaining rows:
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

0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 0 0 0 0 . . . 0 0 0 0 . . . 0
1 0 0 1 1 1 . . . 1 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
1 0 ∗ ∗ ∗ ∗ . . . ∗ 1 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 1 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 0 1 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 0 0 . . . 1 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 1 0 0 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 0 1 0 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 0 0 1 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
0 0 1 0 0 0 . . . 1 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 ∗ ∗ ∗ ∗ . . . ∗ 1 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 1 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 0 1 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 0 0 . . . 1
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 1 0 0 . . . 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 1 0 . . . 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 0 1 . . . 0 0 0 0 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 0 0 . . . 1 0 0 0 . . . 0


Using the above matrix representation, we remark that the Rows 3 to 7 are LI

from the rest and themselves because they are the only rows with a 1 in Columns 9
to 13 respectively. We can then remove them and check the remaining rows:
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

0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 0 0 0 0 . . . 0 0 0 0 . . . 0
1 0 0 1 1 1 . . . 1 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 1 0 0 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 0 1 0 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 0 0 1 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
0 0 1 0 0 0 . . . 1 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 ∗ ∗ ∗ ∗ . . . ∗ 1 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 1 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 0 1 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 ∗ ∗ ∗ ∗ . . . ∗ 0 0 0 . . . 1
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 1 0 0 . . . 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 1 0 . . . 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 0 1 . . . 0 0 0 0 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 0 0 . . . 1 0 0 0 . . . 0


Using the above matrix representation, we remark that the Rows 8 to 12 are LI

from the rest and themselves because they are the only rows with a 1 in Columns 22
to 26 respectively. We can then remove them and check the remaining rows:
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

0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 0 0 0 0 . . . 0 0 0 0 . . . 0
1 0 0 1 1 1 . . . 1 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 1 0 0 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 0 1 0 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 0 0 1 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
0 0 1 0 0 0 . . . 1 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 1 0 0 . . . 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 1 0 . . . 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 0 1 . . . 0 0 0 0 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 0 0 . . . 1 0 0 0 . . . 0


We then remark that the second row is LI since it is the only row with a 1 on the

first column in the above matrix representation. We then remove it and check the
other rows:



0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 1 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 1 0 0 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 0 1 0 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 0 0 1 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
0 0 1 0 0 0 . . . 1 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 1 0 0 . . . 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 1 0 . . . 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 0 1 . . . 0 0 0 0 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 0 0 . . . 1 0 0 0 . . . 0


We then remark that the first row is LI since it is the only row with a 1 on the

14th column in the above matrix representation. We then remove it and check the
other rows:
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

0 0 1 1 0 0 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 0 1 0 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 1 0 0 1 . . . 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
0 0 1 0 0 0 . . . 1 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 1 0 0 . . . 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 1 0 . . . 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 0 1 . . . 0 0 0 0 . . . 0
... ... ... ... ... ... . . . ... ... ... ... . . . ... ... ... ... ... ... ... . . . ... ... ... ... . . . ...
0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1 0 0 0 . . . 1 0 0 0 . . . 0


All the remaining rows are linearly independent. Indeed, using the above matrix

representation, Rows 1 to 5 are linearly independent since they are the only ones
with a 1 in Columns 4 to 8. Rows 6 to 10 are also LI because they are the only rows
with a 1 in Columns 17 to 21 respectively.

With this, we have shown that every row but two of M−2n,−n are linearly inde-
pendent. This implies that K(−2n, − n) = 2 and concludes the proof of Lemma
5.3.2.

�
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Conclusion

As shown in this thesis, generalized Monsky matrices can be used to find new
results around the congruent number problem and its generalisations.

An important consequence of Monsky matrices is Theorem 5.1.9. This result can
be used to find a non-trivial infinite family of zero rank elliptic curves for any given
zero rank elliptic curve. As seen in Section 5.2, Theorem 5.1.9 makes it easy to prove
new statements similar to Iskra’s result on congruent numbers presented in Theorem
0.2.6.

Another important result coming from generalized Monsky matrices is Theorem
5.3.1. This statement can probably be adapted on non-θ-congruent numbers for any
given θ with rational cosine.

We end this thesis by presenting one of the conjectures deriving from Theorem
5.3.1 and some possible ways to prove it.
Conjecture 5.3.3. Let n be a square-free integer. There exists a square-free integer
m such that GCD(n,m) = 1 and nm is π

3 -non-congruent.
In order to prove this conjecture, one could start by developing an algorithm

similar to Algorithm 1 and then apply Theorem 5.1.9 to reduce nm to a product of
primes congruent to 2 or 3 modulo 4.

There are two major complications that appear here. The first complication is
that 3 divides e3. Because of this, we would need to consider primes congruent to
1 modulo 3 separately from primes congruent to 2 modulo 3. Instead of separating
the primes in four sets depending on their congruence modulo 8 as in the proof of
Theorem 5.3.1, we would have to separate them in eight sets depending on their



congruent modulo 24. This more than doubles the work to be done as well as the
size of the generalized Monsky matrix.

The other complication comes from the fact that the π
3 -congruent number problem

has e2 = 4n, e3 = 3n and e3− e2 = −n. One can verify that Theorem 5.1.9 does not
apply in this case for primes congruent to 3 modulo 4.

There are two possible ways to solve these complications. The first way would
be to generalise Theorem 5.1.9 for new sets of primes and find a set that applies
to primes congruent to 3 modulo 4 in the π

3 -congruent number problem. The other
way would be to find a non-congruent family of non-π3 -congruent numbers containing
prime factors congruent to 3, 7, 1 and 23 modulo 24 and use this family as the basis
of induction.
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Appendix A

Algorithms to verify the conditions of
Section 3.3

We present here two algorithms to check that the conditions given in Theorems
3.3.1, 3.3.2, 3.3.3 and 3.3.4 are necessary and sufficient respectively for the equation
system

b1z
2
1 − b2z

2
2 = e2d

2,

b1z
2
1 − b1b2z

2
3 = e3d

2,

to have a solution in Z/2qZ with 2 - GCD(z1,z2,z3,d). These algorithms can be used
to verify any given condition and were used to show that the conditions of Section
3.3 are both necessary and sufficient.

For the given algorithms, we will suppose that the conditions are represented
as a propositional function C(e2,e3,b1,b2) that returns True if (b1,b2) respects our
conditions and False if not.

We need three simple functions. The first is the function GCD(a1, . . . ,an) that
calculates the greatest common divisor of the integers given as parameters. The
second is SQUARES(n) that gives the subset of squares in Z/nZ. The third is
FOURPOWERS(n) that gives the powers of 4 in Z/nZ. These three functions are
simple to code so they will not be given. Also, since the functions SQUARES and
FOURPOWERS are only used once each, there is not much need to program them
efficiently.



The two algorithms that we give both need the same subalgorithm that we will
call SOLCHECK(e2,e3,b1,b2,2q,S,R). SOLCHECK checks if the equation system has
a solution in Z/2qZ for the given quadruple (e2,e3,b1,b2). S being the subset generated
by SQUARES(2q) and R the one generated by FOURPOWERS(2q).

Algorithm 2 Checks the existence of a non trivial solution for Equation System
(3.1.1) in Z/2qZ for the given e2,e3,b1,b2.
1: procedure SOLCHECK(e2,e3,b1,b2,2q,S,R)
2: for Z1 ∈ S do
3: for Z2 ∈ S do
4: for D ∈ R do
5: if b1Z1 − b2Z2 ≡2q e2D then
6: for Z3 ∈ S do
7: if GCD(Z1,Z2,Z3,D) ≡2 1 then
8: if b1Z1 − b1b2Z3 ≡2q e3D then
9: return True
10: return False

This algorithm is pretty much looking at every possible solution by brute force
with two small tricks that save a considerable amount of time. The first one is the
change of variables Zi = z2

i and D = d2. By taking these new variables and limiting
their domain to the subset of squares S, we do not need to calculate the square of
our variables every time. The second trick is to divide the equation system by d to
always guarantee that d is a power of 4 and not have to do most of the cases.

With this subalgorithm, we can do the sufficiency algorithm.
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Algorithm 3 Verification that the set of conditions C are sufficient for a solution
in Z/2qZ when v2(e2) = w2 and v2(e3) = w3.
1: procedure Sufficient(C, 2q, w2, w3)
2: S ← SQUARES(2q)
3: R← FOURPOWERS(2q)
4: for e2 from 2q−1 + 1 to 2q−1 do
5: if v2(e2) = w2 then
6: for e3 from 2q−1 + 1 to 2q−1 do
7: if v2(e3) = w3 then
8: for b1 from 2q−1 + 1 to 2q−1 do
9: if b1 6≡4 0 then
10: for b2 from 2q−1 + 1 to 2q−1 do
11: if b2 6≡4 0 then
12: if C(e2,e3,b1,b2) = True then
13: if SOLCHECK(e2,e3,b1,b2,2q,S,R) = False

then
14: return False
15: return True

This algorithm is also by brute force. It simply checks if every quadruple
(e2,e3,b1,b2) respecting our conditions also has solution.

The necessity algorithm is very similar:
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Algorithm 4 Verification that the set of conditions C are necessary for a solution
in Z/2qZ when v2(e2) = w2 and v2(e3) = w3.
1: procedure Necessary(C, 2q, w2, w3)
2: S ← SQUARES(2q)
3: R← FOURPOWERS(2q)
4: for e2 from 2q−1 + 1 to 2q−1 do
5: if v2(e2) = w2 then
6: for e3 from 2q−1 + 1 to 2q−1 do
7: if v2(e3) = w3 then
8: for b1 from 2q−1 + 1 to 2q−1 do
9: if b1 6≡4 0 then

10: for b2 from 2q−1 + 1 to 2q−1 do
11: if b2 6≡4 0 then
12: if C(e2,e3,b1,b2) = False then
13: m← 4
14: GoOn ← True
15: while m ≤ 2q and GoOn do
16: if SOLCHECK(e2,e3,b1,b2,2q,S,R) = True

then
17: m← 2m
18: else
19: GoOn ← False
20: if GoOn then
21: return False
22: return True

The main difference here is that the algorithm studies the quadruples (e2,e3,b1,b2)
not respecting the conditions instead of those who do. We also have added a simple
trick. Instead of directly verifying that there is no solution in Z/2qZ, we verify that
there is no solution in Z/2rZ for r = 2 and then increase r by one at a time until
we reach Z/2qZ. It saves time in most cases since the majority of quadruples not
having a solution in Z/2qZ also do not have solutions in Z/2rZ for some r < q. Since
verifying the non-existence of a solution in Z/2rZ is a lot faster that in Z/2qZ, this
saves us a considerable amount of time when we add up all cases.
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