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Sommaire

Le contrôle de version est la pierre angulaire des processus de développement de logiciels

modernes. Tout en construisant des logiciels de plus en plus complexes, les développeurs

doivent comprendre des sous-systèmes de code source qui leur sont peu familier. Alors que

la compréhension de la logique d’un code étranger est relativement simple, la compréhension

de sa conception et de sa genèse est plus compliquée. Elle n’est souvent possible que par les

descriptions des révisions et de la documentation du projet qui sont dispersées et peu fiables

– quand elles existent.

Ainsi, les développeurs ont besoin d’une base de référence fiable et pertinente pour com-

prendre l’historique des projets logiciels. Dans cette thèse, nous faisons les premiers pas vers

la compréhension des motifs de changement dans les historiques de révision. Nous étudions

les changements prenant place dans les métriques logicielles durant l’évolution d’un projet.

Au travers de multiples études exploratoires, nous réalisons des expériences quantita-

tives et qualitatives sur plusieurs jeux de données extraits à partir d’un ensemble de 13

projets. Nous extrayons les changements dans les métriques logicielles de chaque commit et

construisons un jeu de donnée annoté manuellement comme vérité de base.

Nous avons identifié plusieurs catégories en analysant ces changements. Un motif en par-

ticulier nommé "compromis", dans lequel certaines métriques peuvent s’améliorer au détri-

ment d’autres, s’est avéré être un indicateur prometteur de changements liés à la conception

– dans certains cas, il laisse également entrevoir une intention de conception consciente de la

part des auteurs des changements. Pour démontrer les observations de nos études explora-

toires, nous construisons un modèle général pour identifier l’application d’un ensemble bien

connu de principes de conception dans de nouveaux projets.

v



Nos résultats suggèrent que les fluctuations de métriques ont le potentiel d’être des indi-

cateurs pertinents pour gagner des aperçus macroscopiques sur l’évolution de la conception

dans l’historique de développement d’un projet.

Mots-Clés: Maintenance du logiciel, Conception du logiciel, Historique des versions,

Mesure du logiciel, Réusinage
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Summary

Version control is the backbone of the modern software development workflow. While build-

ing more and more complex systems, developers have to understand unfamiliar subsystems

of source code. Understanding the logic of unfamiliar code is relatively straightforward.

However, understanding its design and its genesis is often only possible through scattered

and unreliable commit messages and project documentation – when they exist.

Thus, developers need a reliable and relevant baseline to understand the history of soft-

ware projects. In this thesis, we take the first steps towards understanding change patterns

in commit histories. We study the changes in software metrics through the evolution of

projects.

Through multiple exploratory studies, we conduct quantitative and qualitative experi-

ments on several datasets extracted from a pool of 13 projects. We mine the changes in

software metrics for each commit of the respective projects and manually build oracles to

represent ground truth.

We identified several categories by analyzing these changes. One pattern, in particular,

dubbed "tradeoffs", where some metrics may improve at the expense of others, proved to be

a promising indicator of design-related changes – in some cases, also hinting at a conscious

design intent from the authors of the changes. Demonstrating the findings of our exploratory

studies, we build a general model to identify the application of a well-known set of design

principles in new projects.

Our overall results suggest that metric fluctuations have the potential to be relevant indi-

cators for valuable macroscopic insights about the design evolution in a project’s development

history.

Keywords: Software maintenance, Software design, Version history, Software measure-

ment, Refactoring
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Chapter 1

Introduction

Software development is a complex activity. It requires developers to take into account dif-

ferent perspectives and often switch contexts that are costly to interrupt [57]. Since the

inception of the field, concerted efforts from research, industry, and hobbyists have been

made to improve the development experience by seeking to ease out pains and enable de-

velopers to make less mistakes, be more productive, be automatically warned about bugs,

improve organization, communicate more efficiently, and ensure that existing features do not

deteriorate. Innovations such as automated testing and linting have significantly contributed

to not only improve program quality, but also decrease some of the load borne by develop-

ers by automating these menial tasks. This arrangement can reap benefits throughout the

entire lifecycle of applications: developing is facilitated, enabling developers to create better

products for the user and for themselves when they do maintenance down the line. Auto-

mated testing ensures that the features of an application do not deteriorate when changes

are made to the source code and notify developers when they introduce breaking changes. It

is typically implemented with a systematic approach, where developers specify the expected

behaviors for each component or subsystem. Automated linting enforce coding conventions

and by reformatting the source code accordingly, guaranteeing a common code base between

developers that is easier to read.

1.1. Modern software development

Nowadays, the software development workflow has evolved to be more agile where a strong

emphasis on the creation of working implementation increments is placed in opposition to

earlier software development workflows, such as the waterfall model, favoring a detailed



up-front design. These models are seldom used nowadays for a reason: their monolithic

structures were not able to scale in terms of turnaround and complexity.

On the one hand, this allows flexibility and rapid development cycles, leaving patches,

corrections, and enhancements to be applied post-release. On the other hand, this practice

tends to accumulate technical debt [42] and requires a lot of maintenance effort to continue

development, leading to a deterioration in non-functional requirements such as design quality

(e.g., maintainability, extendibility, understandability).

Although still an integral part of software development with recognized value, careful

and detailed design is often neglected in these iterative workflows and is usually postponed

for a later time, often after the system has been released. Given the rapidity of development

cycles, this inevitably leads to design erosion [82], where assumptions held originally by

designers are no longer valid, and design evaporation [66], where knowledge about design is

lost.

These methodologies have recognized this shortcoming, and they recommend the exten-

sive use of refactoring [63] – typically small, local changes that improve design quality with-

out affecting the system’s observable behavior – which can be characterized as post-release

changes (i.e., maintenance) to the system’s structure. They aim to prepare the source code

for future extensions and functional enhancements, a process known as "preventive mainte-

nance" [12]. However, even if the design can be corrected, refactoring activities may not be

explicitly recorded, and changes in design are not always reflected in the available documen-

tation at hand. This can significantly reduce the developers’ awareness and knowledge of

the system, which in turn can hinder several tasks, including onboarding of new developers

and communication between stakeholders.

These contemporary software development practices are enabled by the adoption of Ver-

sion Control Systems (VCSs). These systems archive code artifacts and integrate themselves

into a vast range of development workflows. Their position as a core element of contempo-

rary software development processes is not only due to their low barrier of entry and ease

of use. Indeed, their main advantage lies somewhere else. They enable developers to look

at and interact with the development history of a project. On top of gaining insights about
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Thus, we aim to find a solution that enables developers to quickly get informed about

the design history of the source code that is relevant to their current task. We want to focus

on acquiring design information disseminated through the evolution of the code. Current

alternatives are lackluster because they are either based on reading documentation, which

is often not up to date and thus not a reliable source of information, or they are requiring

developers to sift through heaps of code changes for multiple files, which is error-prone and

very time-consuming. We sketch the concept in Fig. 1.1 where specific commits relevant to

design are highlighted from the other changes registered in the version history.

1.3. Research Questions

We define the goal, purpose, quality focus, perspective, and context of our study according

to the guidelines defined by Wohlin et al. [85]. The goal of our study is to analyze metric

fluctuations brought by commits for the purpose of evaluating the relationship between

refactoring, fluctuation of internal quality metrics, and design intent. The quality focus is on

the effectiveness of employing refactoring and metric fluctuation data for the identification of

commits that involve SOLID design principles which are crucial for shaping system design.

Study results are interpreted from the perspective of researchers with interest in the area

of software design and development processes as well as programming practitioners. The

results are of interest to developers that need to understand the design of a project through

studying important milestones in its evolution and by software architects seeking to review

design decisions in committed code in order to confirm their architectural conformance. The

context of this study comprises change and issue management repositories of a set of open

source projects.

We articulate a series of empirical studies with the following Research Questions (RQs):

(1) How does refactoring impact internal quality metrics and design?

(2) Can we classify the changes in internal quality metrics?

(3) What is the effect of environmental conditions to metric fluctuations?

(4) Can fluctuations in metrics be an indicator of the application of SOLID principles?
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1.4. Approach

"Design" is a notion intuitively understood by humans and developers alike. However,

the concept englobes several layers and components in the context of software development.

While our end goal is to provide information about design changes in general, we have

to scope out a reasonable target for this exploratory research. Thus, we choose to use

design principles as the embodiment of design changes. Design principles are sets of well-

established guidelines used by developers to guide them in the practice of agile design [55].

They help identifying and removing design smells that impact the flexibility, reusability and

maintainability of software systems.

To achieve this, we first need an intuition about what can characterize these changes in

design. We know that refactoring is used to change non-functional aspects of software to

facilitate future extensions and reverse design erosion and that we can measure source code

to approximate internal qualities of a software [41].

Thus, we begin by exploring commits containing refactorings, which we call RCs. Refac-

toring has been extensively studied for its impact on design quality [1, 74], and influence

on developer habits with respect to its application on software systems [80, 70]. Such stud-

ies have focused primarily on the identification of refactorings and refactoring opportunities

and on analyzing their impact on design, in terms of the presence of code smells [29, 79]

or the fluctuation of code metrics [53]. The resulting consensus is that refactoring impacts

the design of a system in a significant way. This relationship is not incidental: developers

purposefully use refactoring to express specific design intentions [70] and use recommender

systems to identify the most suitable refactorings to best suit their intents [7]. Refactoring

activity can carry various kinds of design intent, including but not limited to: removal of

code smells, resolution of technical debt, the introduction of design patterns, and application

of design principles.

We propose to use fluctuations in metrics brought by the code changes from one commit

to another to classify different kinds of refactoring activity. We assume that when a RC

affects multiple metrics, improving some while deteriorating others, we have evidence of a

developer intentionally changing the design (design intent) by making specific tradeoffs.

If this assumption holds, we have a good prior to use fluctuations in metrics and their

tradeoffs as indicators of design related changes. From there, we have a sound rationale
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to make an experiment where we try to predict the presence of the application of design

principles in commits using metric fluctuations.

To test the assumption, we conduct an initial study on JFreeChart, a library for displaying

graphical charts in applications [26], using a qualitative analysis. We look at the correlation

between a selection of internal quality metrics and the design changes introduced in RCs.

Furthermore, we dive deeper into the effect of internal quality metrics changes on different

development contexts in a quantitative analysis and we also refine our comprehension of the

relation between refactoring and design changes, specifically changes susceptible to embody

a design decision, in a third preliminary study. Once the hypothesis is tested, we train a

general model on a dataset of annotated commits using supervised learning and evaluate the

capacity of the model to recognize the application of the SOLID design principles, a set of

design principles commonly used in Oriented Object Programming (OOP), in commits from

new projects (projects that were never seen during training).

Our approach is based on existing theories such as internal quality metric measure-

ment [20] and quality characteristic appreciation [6], and we follow the open source principle

of considering the code as the most authoritative source of design information [24]. We use a

mixed-method approach, consisting of several exploratory case-driven archive analysis, and

comparative explorations. We envision our work as complementary to other approaches for

extracting tacit and contextual design knowledge such as from discussions [83], and commit

messages [18].

1.5. Potential future benefits

In this section, we present the multiple hypothetical benefits of our proposal.

Our proposal could provide developers with an approach that enables them to filter out

code changes that are not relevant to design. They would be able to quickly see the relevant

last commits affecting the design and understand why it was changed, e.g., a response to the

introduction of a new feature or a bug fix. This comprehension allows them to contribute

relevant code changes that make use of the existing design efficiently. Moreover, when applied

to an Integrated Development Environment (IDE), we could imagine a dedicated pane that

would provide developers an overview of the moments in time when the design changed for

the software artifact (e.g., a file, a class, a model) they are currently editing, helping the
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developer in his exploration and comprehension of the artifact, and allowing him to quickly

go back in time or get more information if he interacts with one of the moments in time

displayed.

This approach could also be applied to the code reviewing process where developers are

assigned changes made by other developers to review [52]. This practice is a staple in major

software companies [52]. It allows to catch bugs early and fosters a shared knowledge of

the system among its developers. By integrating our approach into the review process, we

could detect when a set of changes is susceptible to contain design changes and warn the

developers that an increased attention should be given for these code changes. Reviewers

would be able to see the modifications to the design and conduct sanity checks to make sure

that changing the design is the best solution. Moreover, this application provides a good

opportunity to include a feedback mechanism that would help our system to improve its

predictions as reviewers use it.

Another benefit would take place during the onboarding process where new developers get

acquainted with the software systems. Our approach would help them identify key moments

in the construction of the software, informing them about the motivations behind the present

architecture and state of software which they wouldn’t have otherwise with their minimal

experience.

Ultimately, we want to generate a descriptive, history-based meta data for each code

artifact that could be used by developer and other stakeholders to synthesize documentation,

and to empirically assess software and software projects and make informed decision. With

this research, we take the first steps towards this direction.

1.6. Contributions

We make the following contributions:

(1) A systematic methodology to mine internal quality metric fluctuations from VCS.

(2) An open source toolchain that implements it, called MetricHistory [78].

(3) A deep qualitative analysis of the revisions containing refactorings in one open source

project, JFreeChart.

(4) A quantitative study of the metric fluctuations in 13 open source projects.

(5) A scheme for classifying metric fluctuations.
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(6) A public data repository of historical internal quality metric fluctuations.

(7) A manually annotated dataset composed of 928 commits identifying the presence of

SOLID principles.

(8) A procedure to build and train a classifier to detect SOLID principles in version

histories and its empirical validation.

(9) A general model that can identify the application of the SOLID principles in commits.

(10) The outline of an approach for filtering a project’s revision history to a set of revisions

that have a high likelihood to carry design intent.

1.7. Structure of the thesis

The thesis is organized as follows. Chapter 2 explains the core background concepts.

In Chapter 3 we illustrate the overall design of the studies as well as the processes used to

gather the various data used throughout our research. Then, in Chapter 4 and Chapter 5 we

describe the studies performed to test our assumption and answer the RQs. We present the

related work in Chapter 6 and summarize our findings and discuss future work in Chapter 7.

1.8. Work attribution

The research presented in this thesis is an international study project with Prof. Michalis

Famelis, Prof. Marios Fokaefs and Dr. Vassilis Zafeiris. Particularly, Dr. Zafeiris collabo-

rated with me in building the annotated datasets (Section 4.1, 4.3, 5.1), distributing mining

workload across different computers (Chapter 3), analyzing the effect of releases on metric

tradeoffs (Section 4.2.2.3).
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Chapter 2

Background

2.1. Software Design

Software design is the process following the requirements collection and preceding the

implementation of a system or its components [33]. The purpose of this activity is to create

a structure of the program, similarly to an architect drawing the plans for a new building, that

satisfies the requirements established previously. However, the designer also has to balance

other considerations such as extensibility, modularity, and maintainability that will affect

the software’s quality in the long term. Balancing the expectations of multiples stakeholders

is difficult and it is impossible to satisfy everybody. To mitigate the risks and focus on the

right design areas, developers use design principles such as SOLID principles in OOP and

design patterns as heuristics to guide them [9, 55].

2.2. SOLID Principles

The SOLID principles are a set of well known design principles in the oriented object

community. It is composed of five principles: Single Responsability Principle (SRP), Open

Closed Principle (OCP), Liskov substitution Principle (LSP), Interface Segregation Principle

(ISP), DIP [54]. The SOLID principles are meant to guide the practice of agile design

by helping to identify and remove design smells that impact the flexibility, reusability and

maintainability of system design. In theory, the implementation of decisions based on SOLID

principles is performed with manual or automated refactorings.

SRP specifies that a software artifact such as a class, method or package should only have

one responsibility, or in other words, only one reason to change. This principle encourages



the separation of concerns which contributes to increasing the cohesion of artifacts and

decreasing their coupling with other elements. For example, if a class handles the creation

and logging in of users, an application of SRP could lead to split the class in two. One

class would now have the responsibility of creating users and the other one would have the

responsibility of logging them into the system. This way, if the creation procedure changes,

the class handling logins will be left untouched, reducing the chance to induce bugs and

facilitating the work of developer.

OCP, credited to Bertrand Meyer [58], specifies that software artifacts should be open for

extension but closed for modification. The idea is to reuse existing components by extending

them to new needs rather than modifying them directly. The advantage of this concept is

to avoid problems stemming from modifying artifacts that are used by multiple components

inside a system. If you modify the original artifact it will change the behaviors of the

dependents in unforeseeable ways which often lead to regression problems and backward

incompatibilities which are hard to solve. By extending the artifact’s features, you do not

touch the original behavior. A very popular example is the use of polymorphism in object

oriented languages such as Java. The developers can change the behavior of a base class by

implementing a subclass. For example, you can extend a class representing a collection of

heterogeneous elements through a subclass to implement the concept of a mathematical set.

The newly created subclass is still representing a collection but it is now enforcing particular

semantics.

LSP is a concept introduced by Barbara Liskov [50]. In the context of type theory in

OOP, it specifies, that for a type T and a subtype S, the objects of type T can be replaced by

objects of type S without changing the behavior of the systems where T was expected. This

principle can be applied to several situations in practice such as mixed instances cohesion

problems [64]. This problem arises when a class’s feature is provided in at least a couple

of implementations in its instances. The consequence is that the instances will have some

attributes or methods that are undefined or have unexpected secondary effects. By applying

LSP, the class will be transformed into a base class T and each implementation is sent to a

subtype S, ensuring a consistent behaviour for the feature provided by the class.

ISP specifies that is it better to have multiple interfaces, each dedicated to one aspect

of a feature or concept, rather than one big interface between two clients. This principle
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also promotes a separation of concerns and aims to improve cohesion. As an example, we

will model a modern printer. Modern printers have multiple capabilities such as scanning,

printing, and sometimes faxing. It can be tempting to create one interface regrouping all

these functionalities as an "All in one Printer" and implementing our "Modern Printer"

after it. Now, you reuse the interface to implement a simple machine that only prints. It

leaves you with two features from the interface your "Simple Printer" can’t provide and you

have to code work-arounds to handle these impossible cases. By using ISP, you can handle

this situation elegantly by separating the All in one Printer interface in three: "Printer",

"Scanner", "Fax" and adapting Modern Printer and Simple Printer in consequence. The

former will implement all three interfaces while the latter will only need to implement printer.

DIP encourages developers to build components in such a way that they depend on

abstractions rather than implementations. More specifically, high level components should

not depend on lower level components. The consequence entails that abstractions will not

depend on details, guaranteeing the generalizability, but details depend on abstractions,

therefore inverting the traditional dependency relationship where the main component of a

system would depend on detailed components. Developers usually implement this principle

by adding a layer of abstraction between dependencies. For example, in a system where the

class Printer depends on a class "Paper Tray" as shown in Fig. 2.1 a), we would abstract

Paper Tray behind an interface such as "Paper Supplier". This way, the higher level com-

ponent, Printer, would only about Paper Supplier and not the lower level component Paper

Tray as illustrated in Fig 2.1 b). When the components are grouped in different modules, it

is possible to push the principle even further by reorganizing the location of the abstraction.

In our example, Printer is in a module "machine" and Paper Tray, as well as Paper Supplier

are in a module "supplies". This is quite a natural way to group elements as they belong

the same concept. However, this layout introduces a dependency between the machine and

supplies because Printer depends on Paper Supplier, which contradict DIP as we can con-

sider that the former still represents a higher level than the former. We solve this problem

by moving the Paper Supplier interface to the module machine as shown in Fig. 2.1 c). Now

dependencies are fully inversed as the lower level component, Paper Tray, depends on a the

higher level concept, Paper Supplier as it is now close to the class Printer and also its only

dependency.
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Fig. 2.1. Illustration of the application of DIP on a toy example. The colored arrow repre-

sents the dependency between a high component (left) and a lower level component (right).

Note how the arrow changes direction from layout b) to c).

2.3. Version Control Systems

VCS are software systems that record changes to a set of files over time in an automated

fashion. Originally, most developers would copy and date the files they wanted to "save"

into another folder on their computer. However, this technique doesn’t scale well and is not

practical when collaborating with other developers. VCS solves these issues by providing

developers an easy way to store changes and share their code with other colleagues that

can also propose changes into a ledger, commonly referred to as the "changelog", where all

changes are recorded. Developers also gain the capacity to go back to any change they made

and branch out from there, building an alternate version of the software.
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Moreover, a software project under version control is referred to as a "repository". A

new entry to the changelog, in the form of a set of changes in the source files, is called a

"commit" or a "revision" depending on the terminology used by each VCS. A "tangled"

commit denotes instances where multiple unrelated sets of changes are cohabiting in the

same commit, although the changes could be partitioned in different commits [32, 72]. On

the opposite, clean or tangle-free commits, have only one set of auto-contained, cohesive

changes.

Some VCSs provide distributed versioning, enabling developers to commit changes locally

on their system and then share their changes to a remote repository accessible by others.

Examples of known and popular VCSs include Git [16], Subversion [21], and Mercurial [51].

2.4. Mining Software Repositories

Mining of Software Repositories is a method of archival research where researchers look at

the evolution of the artifacts in the project through time [15]. The adoption of Open Source

and VCS enables researchers in software engineering to study the evolution of a software

project in terms of specifications, source code, social interactions between developers, and

bugs from its inception to present days. To study these, they use the process of mining,

which is the systematic extraction of information relevant to the subject of study in the

version history of a project [39]. For example, it is common to examine the changes in files

or the VCS meta-data. Recently, the community has done substantial work on software

defects and studying the dynamics of Open Source collaboration [19].

Historically, this technique is based on early ideas of Ball et al. [5], where they make

the argument that VCSs contains a lot of useful contextual information by exploring the

evolution of class relationships through time. Shortly after, an approach was implemented

by leveraging the changes in between versions characterized by software releases with ad-hoc

toolchains to detect logical coupling [25]. Then, later studies introduced experiments using

a smaller granularity of versions such as commit to commit. The early work of Zimmerman

et al. is an example where they leveraged VCS information to detect files commonly changed

together and propose recommendations [87]. More recently, initiatives such as GitHubTor-

rent [28] democratized this practice by offering convenient facilities for researchers to select

and retrieve massive amounts of VCS meta-data from version control systems.
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Compared to them, we focus our efforts on extracting software metrics and their fluctu-

ations instead of analyzing the VCS meta-data or file-based changes. Another difference is

that our approach works at scale with the combination of our versatile tool and its integra-

tion to a distributed computing system with Akka, a framework to build powerful reactive,

concurrent and distributed applications more easily [47].

However, software repository mining is not an approach suitable for every type of study.

Especially when working with public repositories, which are known to be often personal

projects, or sometimes are not even related to software development but used as a data stor-

age service. Moreover, even legitimate software projects can be problematic since their devel-

opment workflows are sometimes coupled with private tools such as bug trackers or project

management systems. These tools contain valuable information about the development and

history of a project, but they are often inaccessible to repository miners. Thus, when mining

software repositories, researchers have to be careful about the provenance and the relevance

of the repositories, and their data with respect to the objective of their research[40, 17].

2.5. Metrics

We compute the metrics to measure the changes in the projects using SourceMeter, a

static analyzer that supports a wide variety of metrics and granularities (e.g., method, class,

package) [20]. For this study, we focus on class metrics. SourceMeter offers 52 metrics for

classes, distributed in 6 categories: cohesion metrics (1), complexity metrics (3), coupling

metrics (5), documentation metrics (8), inheritance metrics (5), size metrics (30) with the

respective number of metrics for each category. The detailed documentation for each metric

and how it’s calculated is available on SourceMeter’s publisher website [3].

In Chapter 4, we use a subset consisting of four metrics: Coupling between objects

(CBO) to measure coupling, Depth of inheritance (DIT) for inheritance complexity, Lack of

cohesion of methods 5 (LCOM5) for cohesion, and Weighted methods per class (WMC) for

method complexity. These metrics were selected in a process explained in the aforementioned

chapter.

CBO measures coupling between objects by counting the number of classes a class is de-

pending on. A high count indicates that the class is linked to many others which can cause

maintainability problems such as a brittle reliability when the dependencies change often.
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DIT measures inheritance complexity by counting recursively the number of subclasses a

class has. In other words, it measures the length of the path to the deepest ancestor. The

deeper the inheritance tree runs, the harder it is to modify or reuse the elements of the

hierarchy because they become very specialized and depend on their parents for function-

alities. LCOM5 measures class cohesiveness by counting the number of methods linked to

the same attribute or abstract method as OOP practices advise that a class should only

have one responsibility. If multiple methods do not share the same attributes or abstract

methods, it creates groups of methods that are indicators of a fragmented class. The higher

the lack of cohesion is, the lowest the responsibility of the class is crisply defined, often

resulting in brittle implementations of features that do not actually belong together. Finally

WMC, measures the complexity, in terms of independent control flow path, for a class. It is

calculated by summing up the McCabe’s Cyclomatic Complexity [56] for each method and

the init block of a class. The higher the number, the harder it is to understand, and thus

verify and maintain, the class and its methods because of the number of different control

flow paths available.

2.6. Summary

In this section, we introduced the core concepts we rely on in our research. Software

design represents the end phenomenon we are trying to capture and recover. However, the

notion of software design, while well-defined, can be somewhat abstract in practice. Thus,

we use the SOLID design principles as a concrete and measurable manifestation of software

design concerns. In addition, we rely on VCSs as the framework that allow us to retrieve the

evolution information of a software project as its history of change is recorded through it in

the form of commits. Our study is guided by the principles and methodologies developed for

research in the area of Mining Software Repositories. Finally, we introduce the metrics we

use to characterize the source code changes happening between versions.
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Chapter 3

Data collection

In this chapter, we present our overall study design. We describe our processes and the

different datasets created. We specify the scope, the population and its sampling, and the

data collection techniques. Our approach consists of six steps: A) Commit selection, B)

Refactoring identification, C) Mining metrics D) Converting metrics’ format, E) Computing

changes, and F) Aggregating metrics. We detail them in the following sections. Fig. 3.1

provides an overview of our approach and datasets.
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Fig. 3.1. Different datasets mined from the source code of the project



3.1. Design

3.1.1. Unit of analysis

Our unit of analysis is the commit or revision. In version control systems, a revision

represents the list of differences for the files that changed in the project from a previous

– also known as parent – version to the next version. Revisions are groups of incremental

changes between a pair of versions, each revision represents an atomic unit of work, usually

containing a cohesive set of changes although it is not always the case in practice [2]. We can

think of the list of revisions of a project as its evolutionary history; each revision embodies

a version of the software.

3.1.2. Target population

We aim to understand the patterns of metric fluctuations in software projects written

in Java under version control. The target population of our study is therefore the set of all

revisions present in the version histories of such projects. The version history contains the

incremental changes applied to the project until its latest state of development as explained

in the previous paragraph.

3.1.3. Sampling technique

We selected revisions from the version history of a sample of 13 popular open-source Java

projects. The selection was conducted using a mix of convenience, maximum variation, and

critical sampling based on a blend of several attributes such as projects’ popularity amongst

developers, usage as research subjects, size, number of contributors, platform, development

style, and type (e.g., library, desktop application). Each project has a website and a public

repository of source code under an arbitrary version control system – The type of the VCS

was not a criterion.

3.2. Project selection

We selected 13 popular open-source Java projects. The projects are listed in Tab. 3.1 with

the branch, source code location, number of commits mined and size. The projects also came

with optional issue trackers, mailing lists, forums, or changelogs (i.e., files maintained by

developers to keep track of changes happening in commits). For projects that use Subversion
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Tab. 3.1. List of the software projects retained.

Project Source code Branch Commits Size (SLOC)

Ant https://github.com/apache/ant master 14 234 139k

Apache Xerces-J https://github.com/apache/xerces2-j trunk 5 508 142k

ArgoUML http://argouml.tigris.org/source/browse/argouml/trunk/src/ trunk 17 797 176k

Dagger2 https://github.com/google/dagger master 1 969 74k

Hibernate ORM https://github.com/hibernate/hibernate-orm master 9 320 724k

jEdit https://sourceforge.net/p/jedit/svn/HEAD/tree/jEdit/trunk/ trunk 22 873 124k

Jena https://github.com/apache/jena master 7 112 515k

JFreeChart https://github.com/jfree/jfreechart master 3 640 132k

JMeter https://github.com/apache/jmeter trunk 15 898 133k

JUnit4 https://github.com/junit-team/junit4 master 1 972 30k

OkHttp https://github.com/square/okhttp master 1 951 61k

Retrofit https://github.com/square/retrofit master 1 038 20k

RxJava https://github.com/ReactiveX/RxJava 2.x 4 137 276k

(jEdit, ArgoUML) as their VCS, we first migrated their version history to Git using GitHub

Importer [27].

3.3. Commit selection (A)

After downloading the projects onto disk, we extracted the commits from the default

branch of each of the 13 projects until 2018-12-31 (included). A branch represents an inde-

pendent line of development [11]. We focus on the default branch because it is often this

rendition of the development that will be released to the public. It represents the mature

code changes of a project. From this set, we exclude commits that are the results of a merge

operation. In VCS, “merging” means to integrate all the changes from a “source” branch to

a “destination” branch in a single commit. The resulting commit is generally hard to read

for humans and presents little interest for analysis as the individual changes can be found

on the source branch.

We used the following command to obtain the list of commits to be analyzed for each

project (where <branch> is the name of the default branch):

git log <branch > --pretty ="%H" --no-merges --until ="2018-12 -31"

Overall, the 13 projects represent a cumulative 107 449 versions of projects spanning 20

years of software development history.
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3.4. Refactorings (B)

As explained in the introduction, our study is interested in the refactoring activity of de-

velopers. To isolate the revisions containing refactorings, we used RMiner [81], a specialized

tool that can detect refactorings automatically in the history of a project with high recall

and precision compared to other similar tools, such as RefDiff [69]. We ignore refactorings

related to tests because we are not studying the role of tests in a software’s design. The

refactoring detection yields a list of revisions containing at least one refactoring. Henceforth,

we refer to these revisions as RC. Each of these RC is also accompanied by a detailed list of

the refactorings it contains.

3.5. Native dataset (C)

We used SourceMeter [20] to calculate the software metrics for individual revisions. We

automated the execution of SourceMeter to run in batch multiple commits of a project with

our command line tool MetricHistory [78].

Calculating the metrics for thousands of revisions is a computationally intensive task,

especially for large projects (e.g. jEdit, Hibernate ORM). It can be seen as the equivalent

of calculating the metrics for 107 449 projects. To accommodate this process, we built a

distributed computation system based on the Akka toolkit and runtime [47]. Each compu-

tation node invokes MetricHistory tasks to calculate the metrics for individual revisions of

a project. Job assignment is performed by a scheduler node that also collects and stores the

results in a data repository.

MetricHistory is an extensible tool designed to collect and process software measurements

across multiple versions of a code base. The measurement itself is modular and executed

by a third party analyzer, in the case of this study we use SourceMeter. The core design

principles of MetricHistory is to integrate into any toolchain using its command line interface

or Java API. It also aims to be easily customizable by its modular architecture. For example,

adding a new analyzer or supporting another VCS only requires to implement an interface.

MetricHistory is also operationally modular to accommodate the explorative workflows of

researchers. The results of each step mentioned in this chapter can be saved or recomputed

at any moment so one can resume from any point in their workflow and interchange data

between steps. In the case of the aforementioned distributed setting, each worker goes
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through all the steps at once for one commit only. However, if you have a computer powerful

enough or a smaller number of projects, it also support to calculate all the measurements

for one step for all commits in batch manner and save the results for a later use, or analysis

through a custom toolchain. A detailed description of MetricHistory’s features, installation,

and usage is presented in Appendix A.

3.6. Raw dataset (D)

Since MetricHistory can make use of different analyzers – each with their own output

format – we make a distinction between the format of the metrics used to calculate the

fluctuations and the output format of our analysis tool. Supporting this transient step make

our toolkit modular, allowing future use of, not only different analyzers, but also pre-compiled

measurements from other researchers and studies.

Using MetricHistory again, we convert the class measurements into a common basic

"RAW" format. This scalable file format identifies the measurements for a given artifact

through multiple versions. This dataset contains the metrics generated by SourceMeter

for each class (identified by its canonical name i.e. com.example.FooBar) for each version

obtained in step A. You will find below the 5 first lines of typical raw file. Only three metrics

are shown for readability.

commit;class;LOC;CBO;DIT

9b23cc2184438f93923c972c45b7caeb43d77d24;org.animals.CowRenamed;19;2;1

9b23cc2184438f93923c972c45b7caeb43d77d24;org.animals.Dog;13;1;2

9b23cc2184438f93923c972c45b7caeb43d77d24;org.animals.Labrador;124;0;1

9b23cc2184438f93923c972c45b7caeb43d77d24;org.animals.Poodle;24;5;1

For projects with a large number of commits to analyze, we can separate the results by

commit. In other words, we create one file for each commit instead of writing all the results

into a single file for all commits and classes.

3.7. Fluctuations dataset (E)

Using the transformed data acquired in D, we use MetricHistory to compute the change

of metric for each class from each commit in A. For example, if class Foo’s LOC metric is

measured as 3 in commit 1 and is measured at 5 in commit 2, the change of metric LOC
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for Foo in version 2 is of 5 − 3 = +2. Commit 1 is the set of code changes directly before

commit 2, also referred as the "parent" commit.

3.8. Aggregation (F)

The last step converts the metric fluctuations for each class (class fluctuations) into

metric fluctuations describing the changes in a commit (commit fluctuation). We aggregate

the fluctuations of each metric across every changed class into one value per metric using

a naïve summation. For example, if commit 2 has classes Foo and Bar that have changed

with the metric fluctuations for metric LOC as +20 and +30 respectively. Then the metric

fluctuation at the commit level will be 20 + 30 = +50.

We note two crucial details. First, we only retain the metric fluctuations from classes

that have changed; we ignore classes that were added or deleted in order to capture design

changes inside classes and not inside a package or group of components. Second, we count the

number of metrics that are affected by a change during the aggregation process. This prevents

metrics changes to disappear at the commit level (the sum is 0) when metric fluctuations at

the class level are cancelling each other.

3.9. Summary

In this Chapter, we presented our pipeline and the datasets collected. Once the projects

are identified, the first steps are to determine the commits to include for each project (A) and

then find the commits in this selection that contain refactorings (B). Then, using MetricHis-

tory, we extract the metrics at each commit for all projects to create the native dataset

(C). After that, we use MetricHistory to transform the native dataset in the raw dataset

that contains the metrics for each class across all commits (D). At that time, we create the

fluctuation dataset that contains the metric fluctuations for each class for all commits (E).

Finally, we aggregate the class fluctuations with a summation operator to create the metric

fluctuations to represent individual commits (F).
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Chapter 4

Exploratory studies

In this section, we are interested to lay the basis of knowledge regarding metric fluctuations

and determine if our hypothesis presented in Chapter 1 is sound. We hypothesized that when

a RC affects multiple metrics, improving some while deteriorating others, we have evidence

of a developer intentionally changing the design (design intent) by making specific tradeoffs.

Specifically, we explore the concept of metric fluctuations and their relation to development

activities in the context of design. We conduct three experiments from the datasets created

through the approach presented in Chapter 3.

The first experiment is a qualitative study on a subset of commits of JFreeChart where we

classify revisions into four categories based on the pattern of the metric fluctuations. We focus

on RCs because they are likely to contain intentional structural changes from developers.

We then manually analyze each commit to understand its changes and their relation to the

categories. In the second experiment, we conduct a quantitative study where we analyze all

the commits of the 13 projects under different lenses to test the generalizability of metric

fluctuations. Finally, in a third experiment, we look at the capacity of metric fluctuations to

act as indicators for design related changes, specifically design intent, in a sample of commits.

In the subsequent explorations, to detect and characterize changes in the software’s de-

sign, we measure its internal quality properties using multiple metrics. We focus our analysis

on four metrics on the interval scale: CBO to measure coupling, DIT for inheritance complex-

ity, LCOM5 for cohesion, and WMC for method complexity. We focus on this small set of

metrics as they are considered some of the most representative for their particular properties

and good indicators of design quality [53, 74]. In addition, to locate intentional changes, we

scope our exploration using refactorings as they are embodying conscious changes made by



developers [70]. Finally, when coupled with our aforementioned hypothesis, it means that

commits containing tradeoffs expressed by metric fluctuations have a strong likelihood to be

indicators of the implementation of design decisions made by the developers.

By characterizing the metric fluctuations across the history of development, we aim to

provide a baseline for understanding changes to identify development activities, and facilitate

the detection of specific change patterns that can be relevant as documentation to developers

or other stakeholders.

4.1. Exploring JFreeChart

In this section, we present an exploratory study to estimate RCs’ contributions to design

quality through the use of internal quality metrics. We studied the development history and

refactoring activity of JFreeChart 1, a well-studied [1, 86] software project in order to answer

RQ1.

4.1.1. Setup

4.1.1.1. Project selection

We selected the open-source project JFreeChart. It provides a chart library written in

Java which enables developers to integrate professional-looking charts in their programs.

This project has been studied extensively by the refactoring community [1, 86]. Its medium

size (∼600 classes) and history (over 10 years old) is ideal. It is big enough to be relevant

in quantitative analysis, while being small enough to allow manual and qualitative analysis.

Its size may also support relatively strong conclusions and help to guide our future studies.

The project has been used by a variety of applications from different domains over the years

and is still actively developed2.

4.1.1.2. Objects

The JFreeChart project is composed of two source code repositories, two bug trackers,

mailing lists, a forum, and a website:

Repositories

1http:/www.jfree.org/jfreechart/

2http://www.jfree.org/jfreechart/users.html

24



• https://sourceforge.net/p/jfreechart

• https://github.com/jfree/jfreechart

Bug trackers

• https://sourceforge.net/p/jfreechart/bugs

• https://github.com/jfree/jfreechart/issues

Mailing lists: : https://sourceforge.net/p/jfreechart/mailman

Forum: : http://www.jfree.org/forum/index.phps

Website: : http://www.jfree.org/jfreechart/

This project has a particularity: The development started on SourceForge and was then

imported to GitHub. However, the content of the bug tracker was not imported to GitHub

at once; they gradually stopped using the one provided by SourceForge and moved gradually

to the one provided by GitHub. As a result, the source code and the issue repositories are

split between the two platforms.

Thus, we selected all the revisions available on the GitHub repository before 2018-05-01.

This selection contains 3 646 revisions covering over 10 years of development in a mature

project. Each revision is characterized by its source code, comments, commit message, and

updates to the changelog (this artifact is edited by the developers to detail the modifications

to the source code for every revision; it is stored in the same repository as the source code).

4.1.2. Computing the dataset

Using the procedure described in Chapter 3, we calculated the metric fluctuations at

the commit level for all commits in the GitHub repository before 2018-05-01 for the metrics

CBO, DIT, LCOM5, and WMC. These quadruples are further used to proxy the direction of

change in internal design quality. The focus is on the direction of change that constitutes a

trend, rather than on change magnitude. To better understand such trends, we defined four

intuitive scenarios to classify the patterns of activity for a RC, given the metric changes.

These scenarios are described in the next paragraphs and summarized in Tab. 4.1.

Scenario 1: RCs with no change in metrics. An example of this scenario is a revision where a

refactoring was found to have been applied, but no change in any of the selected metrics was

found. This is the case for refactorings like renames. Based on the metrics we have selected,
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Tab. 4.1. Summary of the scenarios

Scenario Definition

1 No metric changes

2 One metric changes

3 At least two metrics change, and the changes are in the same direction (all improve or all worsen)

4 At least two metrics change, and the changes are in mixed directions (some improve and some worsen)

Scenario 1 instances are not normally expected to represent important design decisions, but

rather pure functionality addition or understandability enhancements.

Scenario 2: RCs with a change in a single metric. In this scenario, we include RCs that

affect a single metric, positively or negatively. Especially, in the case of positive impact,

these instances could correspond to targeted changes to specifically improve the particular

metric. While this shows clear intent, the intent is not necessarily related to design decisions.

Scenario 3: RCs where all metrics change monotonically towards improving or declining

direction. This scenario includes RCs where more than one metric was impacted. A special

inclusion condition is that all the affected metrics should have changed towards the same

direction, either all positively or all negatively. Similar to Scenario 2, RCs in this scenario

show clear intent. However, due to the scale of change and the impact on metrics, the intent

is more inclined to be closer to a design decision.

Scenario 4: RCs where multiple metrics change in different directions. Scenario 4 is the same

as Scenario 3 in terms of multiple metrics being affected, with the important difference that

not all metrics change towards the same direction. One popular example is the metrics

for cohesion and coupling, which in many cases change at the same time, but in opposite

directions, especially during remodularization tasks [74]. In our view, these instances are

the most interesting ones, as they indicate conflicting goals.

In the context of our work, we call instances of Scenario 4, "design tradeoffs". Indeed, we

established earlier that changes in internal quality metrics in opposite directions translate

to tradeoffs in internal quality, which are likely to capture design tradeoffs.. In practice,

a design tradeoff is a situation where a change, i.e., a refactoring action, would result in

a controversial impact to design quality; while some dimensions are improved, others may

deteriorate. In this situation, the developer will have to make a decision as to which metrics

and quality aspects are more important than others (given the current requirements) and
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eventually settle for specific tradeoffs. This is why we consider instances in Scenario 4 to

be closely related to design decisions. It is also possible that design decisions also appear in

instances of Scenario 3, where there is no tradeoffs but a clear direction of changes measured.

4.1.3. Manual Evaluation

We manually analyzed each RC to identify the design intent behind applied refactor-

ings. We based our analysis on code and comment inspection, commit messages, and the

changelog of refactored classes. Specifically, we studied the developers’ design intent from

two perspectives:

(1) The involvement of design decisions in the refactoring process, i.e., whether the de-

veloper applied the identified refactorings as part of introducing new design decisions

or enforcing design decisions that were established in previous revisions.

(2) The type of implementation task the developer was engaged in, while changing code

structure through refactoring, i.e., whether any design decisions were enforced as part

of (a) refactoring low quality code, (b) implementing new features, or (c) fixing bugs.

The detection of design decisions in RCs is a rather challenging task since it requires

understanding not only the changed code parts, but the overall design of affected classes.

Moreover, determining whether a set of refactorings enforce a past design decision, requires

tracing back to previous revisions of refactored code. A successful strategy to improve

this process was to begin the analysis with the oldest refactoring and then go forward in

time: This helps the reviewer to understand the evolution of the design. Additionally, the

developers of JFreeChart scrupulously maintain a changelog of their source code changes at

the project and file level, giving us insights about their intents.

In order to reduce the subjectivity of this process, the evaluation was performed inde-

pendently by two of the authors and it was followed by a strict conflict resolution procedure.

The inter-rater agreement between their assessments was initially moderate, indicated by a

value of 0.49 for Cohen’s Kappa [14, 43].

4.1.4. Results

We have automatically analyzed 3 646 commits in the version history of JFreeChart

with an extended version of RMiner [81]. The tool identified 247 refactoring operations in

the production code that were distributed across 68 revisions. The automatically identified
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Tab. 4.2. Refactoring operations in JFreeChart

Refactoring Type Count

Extract And Move Method 6 (2.5%)

Extract Method 80 (33.5%)

Extract Superclass 2 ( 0.8%)

Inline Method 4 ( 1.7%)

Move Class 20 ( 8.4%)

Move Method 6 ( 2.5%)

Move Source Folder 1 ( 0.4%)

Pull Up Attribute 12 ( 5.0%)

Pull Up Method 14 ( 5.9%)

Rename Class 15 ( 6.3%)

Rename Method 79 (33.0%)

Total 239 (100%)

refactorings were manually validated and eight of them (7 cases of Extract Method, 1 case

of Rename Method) were rejected as false positives. The refactoring revisions containing

them did not include any true positives and were also rejected from further analysis (4

revisions). Tab. 4.2 presents the distribution of true positives to different refactoring types

in the 64 remaining RCs. The 64 RCs were further processed in order to measure the

differences of internal metrics for all changed classes, as explained in Section 4.1.2.

We then automatically classified each RC to one of the four scenarios introduced in

Section 4.1.2. We show the classification in Tab. 4.3. Noticeably, a large part of RCs (29.7%)

do not involve changes to internal metrics (Scenario 1). Source code changes in these revisions

are due to rename and move class refactoring operations. RCs with a single changed metric

(Scenario 2), amount for 35.9% of total revisions. These revisions involve mainly extract

method refactorings that affect the WMC metric. Revisions classified to Scenario 3 make up

25% of the total. In them, developers applied a more extensive set of refactoring operations,

such as Move Attribute/Method, Extract Superclass, and Move Class. Such

refactorings have a combined effect on internal metrics, either improving or deteriorating

all of them. Finally, we found that in 9.4% of RCs multiple metrics are changed towards
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Tab. 4.3. RCs for each Scenario

Scenario Revisions (%)

1 19 (29.7%)

2 23 (35.9%)

3 16 (25.0%)

4 6 ( 9.4%)

Tab. 4.4. Implementation tasks and RCs

Task type Revisions (%)

Refactoring 30 (46.9%)

Feature Implementation 29 (45.3%)

Bug Fix 5 ( 7.8%)

different directions. Such revisions usually involve design tradeoffs, i.e., improvement of a

design property of one or more classes at the expense of deteriorating another. For instance,

a Move Method refactoring may improve the cohesion of the origin class at the expense

of increasing the coupling of the destination class.

We summarize the types of implementation tasks that developers were involved in RCs

in Tab. 4.4. We determined the type of implementation task through inspection of code

differences combined with analysis of commit logs, and embedded change logs of refactored

classes. In several cases, commit and change logs included references to issue tracking iden-

tifiers. Revisions with a pure refactoring purpose (termed “root canal” by [61]) correspond

to 46.9% of total revisions. Most of these revisions (20 out of 30) involved only renaming

operations, while the rest applied Extract/Inline/Move Method refactorings. Simple

refactorings (Extract/Move Method) are also applied within revisions that focus on fix-

ing bugs. The most complex and, also, interesting cases of refactorings are part of revisions

that focus on new feature implementation tasks (termed “flossing” by [61]). These revisions

correspond to 45.3% of the total and involve moving state and behavior among classes, as

well as, superclass extraction in class hierarchies. We discuss the most interesting of these

cases that are also characterized by design tradeoffs in Section 4.1.4.1.
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Tab. 4.5. Metric fluctuations in interesting cases

Id Scenario Commit WMC LCOM5 CBO DIT

R1 3 4c2a050 10 3 25 18

R2 3 74a5c5d 4 2 2 0

R3 4 1707a94 -9 -1 5 2

R4 4 202f00e 1 0 -1 0

R5 4 528da74 -2 -2 1 -1

R6 4 efd8856 12 -3 0 0

4.1.4.1. Interesting cases

Our manual evaluation of revisions revealed several design decisions related to the refac-

torings that we detected. In this section, we select and explain interesting design decisions

identified in RCs from Scenarios 3-4. Moreover, we discuss the effect on internal metrics of

the refactorings applied in each revision. We summarize these revisions in Tab. 4.5. Each

revision is given a number, which we use in the rest of the text for identification. Further,

for each one, in Columns 2–7, we list under what scenario it was classified, its abbreviated

Git Commit ID and the aggregate metric differences. For each revision, we display its key

take-away in a boxed sentence.

The first two revisions were classified in Scenario 3 and include some interesting design

decisions. The remaining four revisions were classified in Scenario 4. One of these revisions,

R3, involves one of the most complex refactorings in the revision history of JFreeChart.

Revision R1. In this revision, an Extract Superclass refactoring unifies under a com-

mon parent, the TextAnnotation and AbstractXYAnnotation class hierarchies, as well as

the individual class CategoryLineAnnotation. This way, a larger class hierarchy is formed

having the extracted superclass AbstractAnnotation as root. The refactoring was motivated

by the need to add an event notification mechanism to plot annotation classes3. The devel-

opers decided to add this feature to all plot annotation classes through its implementation in

a common superclass (AbstractAnnotation). The implementation comprises appropriate

state variables and methods for adding/removing listeners and firing change events. The

3https://sourceforge.net/p/jfreechart/patches/253/
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Fig. 4.1. Revision R1.

new feature increased the DIT value of all AbstractAnnotation subclasses, as well as their

coupling (CBO) due to invocations of inherited methods. The negative impact on WMC

and LCOM5 metrics is due to extra functionality added to client classes of the new feature

(e.g. Plot, CategoryPlot).

Revision R1 shows an occurrence of a design decision that spans over multiple classes

where there is no tradeoff with respect to metrics.

Revision R2. This revision involves two Pull Up Method refactorings from

AbstractCategoryItemRenderer to the parent class AbstractRenderer. The refac-

torings enable reuse of functionality related to adding rendering hints to a graphics object.

The functionality was introduced in a previous revision to AbstractCategoryItemRenderer

and is reused in order to provide hinting support to all renderers. In revision R2 the

methods are invoked from AbstractXYItemRenderer and its subclass XYBarRenderer. The

refactorings added extra methods to AbstractRenderer and, thus, increased the values

of WMC, LCOM5 and CBO metrics. Although metric values were improved (negative

change) for AbstractCategoryItemRenderer, the aggregate change values for the revision

are still positive due to method declarations and invocations in AbstractXYItemRenderer

and XYBarRenderer.

Revision R2, while very similar to R1, shows that the direction of changes happening

at the class granularity can be masked by the revision granularity in the same design

decision.
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Revision R3. This revision includes 20 refactoring operations comprising 1 Ex-

tract Superclass, 1 Extract Method, 1 Rename Method, 10 Pull Up

Attribute and 8 Pull Up Method. The refactoring inserts an intermediate sub-

class (DefaultValueAxisEditor) between DefaultAxisEditor, the hierarchy root, and

DefaultNumberAxisEditor, its direct child. The new parent of DefaultNumberAxisEditor

absorbs a large part of its state and behavior. The refactoring was motivated by the need to

introduce a properties editing panel for the logarithmic scale numeric axis. The new panel

(DefaultLogAxisEditor) has overlapping functionality with DefaultNumberAxisEditor.

This functionality is reused through inheritance and DefaultLogAxisEditor is imple-

mented as a subclass of DefaultValueAxisEditor. Moreover, the developers decided

to reuse DefaultNumberAxisEditor functionality through a new parent class, in order

to maintain the abstraction level of the hierarchy root. However, the CBO and WMC

of DefaultAxisEditor have increased, since it, also, serves as a factory for creating

instances of its subclasses. The positive impact on metrics in revision R3 (reduction of

WMC, LCOM5) is dominated by the simplification of the DefaultNumberAxisEditor

implementation due to pull up refactorings.

Revision R3 shows a design decision spanning over multiple classes where there is a

trade-off in metrics. Moreover, it shows that examining metrics at revision level can

mask important details happening in smaller levels. Additionally, this is an example of

tangled commit where an implementation is also added for PolarPlot editor.

Revision R4. The focus of code changes in this revision is the simplification of the API that

Plot class provides to its subclasses. The applied refactorings extract the notify listeners

functionality to a new method, fireChangeEvent() with protected visibility. Although the

implementation of the extracted method is rather simple, it replaces the notification logic in

fifteen locations in the Plot class and in several locations in its subclasses CategoryPlot,

FastScatterPlot and XYPlot. Moreover, it decouples Plot subclasses from the implemen-

tation of the change event. The refactoring increases the WMC of Plot due to the new

method declaration and decreases the CBO of its subclasses due to the removal of refer-

ences to the change event implementation (PlotChangeEvent). We note that due to unused

imports of the PlotChangeEvent class in Plot subclasses, the SourceMeter tool does not

recognize the reduction of CBO in all cases.
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Revision R4 shows a design decision affecting multiple classes where the trade-off is

between two metrics only. Additionally, this is a revision where there is no granularity

conflict between revision and classes. This represents a best case: the revision contains

only the refactoring implementation which corresponds to a single design decision that

is represented by a metric trade-off.

Revision R5. In this revision, the identified refactorings involve moving an attribute

and two methods, relevant to rendering a zoom rectangle, from ChartViewerSkin to

ChartViewer class. The ChartViewerSkin is removed from project and ChartViewer is

turned from a UI control to a container for the layout of chart canvas and zoom rectangle

components. The simplification of ChartViewer is responsible for the improvement of WMC,

LCOM5 and CBO in revision R5. However, the CBO improvement has been counterbalanced

due to another refactoring, not detected by RMiner, that implements a second design decision

within the same revision. The refactoring involves the move and inline of two ChartCanvas

methods in the DispatchHandlerFX class. The methods are related to dispatching of mouse

events and their relocation introduces a Feature Envy code smell in DispatchHandlerFX

and respective increase in the CBO metric. Nevertheless, this solution is preferred since it

enforces a basic decision in the design of ChartCanvas: its behavior related to user inter-

action should be dynamically extensible through registration of AbstractMouseHandlerFX

instances.

Revision R5 shows two design decisions affecting multiple classes resulting in a classifi-

cation into Scenario 4. If only one design decision where to have been implemented, it

would have been categorized as Scenario 3.

Revision R6. Finally, this revision includes a Move Method refactoring from

SWTGraphics2D to SWTUtils. The refactoring enforces the decision that reusable

functionality related to conversions between AWT and SWT frameworks should be located

in SWTUtils class. The move method lowers the complexity and improves the cohesion of

SWTGraphics2D, although its WMC value is not changed due to extra functionality added

in the same revision. On the other hand, the cohesion of SWTUtils is slightly changed

contributing, thus, to the tradeoff between WMC and LCOM5 at revision level.

Revision R6 shows a design decision paired with a feature implementation creating an

opposite change for one metric at the class granularity.
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In-depth inspection of revisions R1–R6 lead us to noteworthy observations on the presence

of design decisions and the hints that refactorings and metric fluctuations provide for their

identification. First of all, combined fluctuations of DIT and CBO within revisions, as is

the case in {R1, R3} provide evidence of structural changes potentially related to design

decisions. The type and target of refactoring operations can contribute to tracing the classes

affected by these decisions. On the other hand, fluctuations of WMC and LCOM5 metrics,

usually indicating changes to class responsibilities, provide a strong indication of design

decisions when they cause tradeoffs with other metrics (e.g, R3–R5). However, the impact

of refactorings to fluctuations of WMC and LCOM5 is often obscured by code additions that

implement new features. The problem is exaggerated in RCs with tangled changes, as is the

case in {R3, R5}.

We also observe that interesting decisions are identified in RCs that implement new

features. Moreover, given that refactorings R4–R6 enforce past decisions, the identification

of recurrent patterns of past revisions provide stronger hints on the importance of decisions.

In conclusion, the qualitative analysis gives us confidence that the phenomenon is real

and worth further inspection.

4.2. Exploring Tradeoffs

A key component of our approach is the notion of quality tradeoffs, i.e., changes where

developers consciously prioritize some internal code quality characteristics at the expense of

others. In practical terms, these revisions would include both metrics that have improved

and metrics that have deteriorated, due to the changes. Our argument is that they are

an indicator of design activity. Our underlying assumption is that when contributors make

tradeoffs between quality characteristics, they are deliberately or inadvertently expressing

specific design choices in code.

In this section, we aim to answer RQ1, RQ2 and RQ3 with an empirical method in

order to characterize metric fluctuations. We begin by specifying our methodology, then we

describe our data collection process and the steps taken to analyze the data. Finally, we

discuss our results and introduce the concept of quality tradeoffs.
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4.2.1. Refined classification

Using the approach described in Chapter 3 and the results from Section 4.1, we introduce

a classification taxonomy with two dimensions to characterize the changes in a commit at a

macroscopic level. The taxonomy was further consolidated as the full dataset was collected.

A classification is defined as a tuple from the space Ω := (C,D) where:

• C := {zero,one,many} representing the cardinality of changed metrics.

• D := {neutral, improve,decline,mixed} representing the direction of change

for the changed metrics.

For the cardinality of change, we define zero when there is strictly no metric that

changed for a revision; one when exactly one metric changed for a revision; and many

when multiple metrics changed for a revision. For the direction of change, we define im-

prove and decline when all metrics go in a positive or negative direction with respect to

quality respectively; neutral when the metrics of the artifacts change but balance out to

zero during aggregation ; and mixed for cases where some metrics improve and others de-

cline. The combination (zero, neutral) is a special case that signifies nothing changed.

For example, the classification (one, improve) means that there was exactly one positive

fluctuation of metric. Note that improvement or decline is defined with respect to quality,

not value. Hence an increase in the value for, e.g., CBO, is measured as decline, since

increased coupling signifies quality deterioration.

We characterized every revision from Section 3.3 with the classification scheme proposed

above. We present the results for each project in Fig. 4.2 and overall (average and cumulative)

in Fig. 4.3 . The results are shown as heatmap tables, where the rows correspond to C and

the columns to D. Darker shades indicate higher numbers, whereas thatched lines indicate

invalid combinations. The cells (zero, [improve, decline, mixed ]) and (one, mixed)

are hatched because these categories are impossible to fulfill: it is not possible to have zero

metrics that improve, decline, or worse, improve and decline at the same time or have one

metric that is simultaneously positive and negative.

Comparing the per-project and overall heatmaps, we observe that our distribution of

categories is relatively uniform with no major variations between projects for each category.

Indeed, the heatmaps in Fig. 4.3a and Fig. 4.3b are the same. Individual project heatmaps
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Second, we observe that the case where metric fluctuations cancel each other out in

a revision represents only a small fraction of the overall observations. In this case, artifact

metrics fluctuate but the aggregation process masks the effect (i.e., the net metric fluctuation

for a revision sums up to 0). This case is represented by the revisions that were classified in

the cells {one,many} × {neutral}.

Third, we note that the group of four cells {one,many} × {improve,decline} is

well populated in all projects and that observations in these cells represent 29.76% of the

occurrences. In these cells, the overall quality of the code (as viewed through metrics) is

either monotonically improved or worsened in one or more aspects. While the distribution

of occurrences between each of the four cells is variable, we can see that there are always

more decline occurrences than improve occurrences. Keeping in mind that we track the

fluctuations of only a subset of metrics and that we ignore the changes induced by new or

deleted classes, this observation suggests that, over the development of these applications,

classes tend to decline in quality more than they improve overall. This can be explained as

a reflection of the fact that as a program grows with new capabilities, so does its intrinsic

complexity and size, which seems to be evidence for the design erosion phenomenon [82].

Fourth, we observe a significant minority of occurrences clustered in the cell (many,

mixed). This cell represents cases when at least two quality metrics changed in opposite

directions. It represents, on average, 5.46% of the occurrences, which is about a fifth of the

cases where metrics change monotonically. These cases are notable because they capture

revisions where code changes improve the codebase in some quality aspects at the cost of

others. We consider this fluctuation pattern as a reflection of tradeoffs between metrics.

In summary, we found that (a) in the majority of revisions, there are no metric fluc-

tuations; (b) metric fluctuations rarely “cancel out”; (c) metrics change monotonically in

roughly a third of all revisions; (d) quality deteriorates more often than it improves; (e)

metric tradeoffs exist in a minority of revisions.

Based on observation (a), we can confirm that, at least from a metrics perspective, in

the largest part of a project’s history there is very little happening that is significant to

the measurable design quality of the project. By extension, for most of a project’s history,

measurable quality characteristics (i.e., metrics) cannot help developers understand what

quality attributes are of greater priority to the project. However, observation (e) leads us
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to conclude that there consistently exists a small number of revisions in which there are

observable and measurable quality tradeoffs. These can be indicative of design activity, and

can potentially reveal a great deal of information about the design decisions and principles

followed in a project. Narrowing the scope to these signs of activity for future qualitative

analysis of the system’s design quality has the potential to provide insights for improving

project awareness, onboarding and overall developer productivity. It is important to mention

that, even though we focused on illustrating fluctuations along two dimensions (direction,

cardinality), our approach can be easily adapted to take into account further characterization

dimensions, such as the magnitude of the metrics fluctuations.

4.2.2. Fluctuations in context

In this section, we address RQ3 by analyzing our dataset under the lens of three separate

development contexts: (a) production versus test code, (b) refactoring, and (c) the different

phases of the release cycle. We compare how the categorization of revisions according to their

metric fluctuations changes for each of the contexts. Further, as our exploratory analysis

pointed to the existence of revisions with measurable quality tradeoffs, we specifically focus

our investigation on understanding how such tradeoffs fit with existing theories about each

of the studied contexts.

4.2.2.1. Context 1 – Production vs. Test Code

We want to compare the distributions in metric fluctuation categories for revisions that

affect production code versus those that affect test code artifacts. Tests can be considered a

form of specification of the requirements of a software project. We thus expect their quality

to be more stable than that of production code as shown in Fig. 4.3. Further, if revisions

whose metric fluctuation matches the tradeoffs category are indeed signs of design activities,

we expect that test code should have relatively fewer revisions in this category, as design is

an effort that mostly concerns production code.

To make the comparison, we modify the Calculating changes (E) analysis step described

in Chapter 3 in order to include test artifacts. For each commit, we creates to sets of

changes, one for the the production code and want for test code We then continue the rest of

the analysis procedure for each set of metric fluctuations, resulting in two sets of classification

for all revisions: ωp and ωt, for production and test code respectively.

38







design intentions [70]. We thus expect that there should be relatively fewer RCs that have

no impact in metrics.

Refactoring activity can carry various kinds of design intent, including but not limited

to: removal of code smells, resolution of technical debt, application of design principles, and

introduction of design patterns. Additionally, we know that changes in design, positive or

negative, are reflected in software metrics [44] and that refactoring doesn’t always improve

monotonically the quality of an application. In other words, developers consciously make

design quality tradeoffs while refactoring. It is therefore a very interesting context in which

to study metric fluctuations. We thus also expect to find an increased presence of tradeoffs

among RCs.

We filtered the 107 449 commits of all the projects, down to 12 115 RC, i.e., revisions

with at least one refactoring. The median percentage of RCs in the entire revision history

is 14.84%. The project with the lowest percentage is JFreeChart with 4.37% and highest is

Dagger2 with 28.91%. This gap can have many causes including the accuracy of RMiner,

the complexity of refactorings used by the developers, and their development habits and

guidelines. The ratio for each project is shown in Table 4.6.

The heatmap showing the distribution of metric fluctuations for RCs, averaged for all

projects is shown on Fig. 4.6(a). We show the percentage of RCs compared to the total

number of revisions in each category in Fig. 4.6(b). It is immediately evident that the

distribution is very different from the one in Fig. 4.3(b).

First we note that in the context of refactoring the category (zero,neutral) is notably

less populated, as on average only 20.2% of RCs fall in this category. We can also see in

Fig. 4.6(b) that RCs are more than 50% of the total number of (many,mixed) revisions.

These observations are consistent with our hypothesis that RCs are more likely to be affecting

design quality.

Second, we note that there are about four times as many RCs that are categorized as

(many,mixed) and are thus potentially design activities because of tradeoffs in metrics. This

is also consistent with our hypothesis that refactoring is an activity during which developers

are bound to be making design quality tradeoffs. Similarly to the previous context, we also

observe design erosion.

We thus conclude that the refactoring context has a big effect on metric fluctuations.
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Tab. 4.7. Analyzed minor releases for each project

Project Release Range Commits

Start End Count

Ant ANT_12 ANT_1.10.0_RC1 9 13225

Dagger2 dagger-parent-1.0.0 dagger-2.20 24 1839

Hibernate ORM 4.0.0.Final 5.4.0 9 7654

Jena jena-2.10.0 jena-3.10.0 15 6960

JMeter v2_7 v5_0 13 7572

JUnit4 r4.6 r4.13-beta-2 8 1815

OkHttp parent-1.1.0 parent-3.12.0 26 1811

Retrofit parent-1.0.0 parent-2.5.0 16 944

RxJava 0.5.0 v2.2.0 23 4403

Apache Xerces-J Xerces-J_1_1_0 Xerces-J_2_12_0 17 5470

first revisions of a release slice and can be regarded as the first commits that follow

release Ri−1 (hence the term Post-release).

• Mid-release 1 : commits with proximity to release that is larger than the second

quartile Q2 (median) of proximity values and less or equal to Q3. Mid-release 1

follows the post-release period and can be regarded as a period when concerns handled

by the release start to become more mature towards the pre-release period.

• Mid-release 2 : commits with proximity to release that is larger than the first quartile

Q1 (25th percentile) of proximity values and less or equal to Q2.

• Pre-release: commits with proximity to release that is less or equal to Q1. These

commits represent the last commits of the release slice that lead to release Ri.

We implemented the retrieval of release slices and release periods for commits as a feature

of MetricHistory. We summarize the details of the data collected in Tab. 4.7. Columns 2–3

show the first and last minor releases, while columns 4–5 show the total number of releases

analyzed for each project and the overall number of commits. We exclude the first minor

release of each project (as they have no “post release” phase) and releases with made beyond

2018-12-31.

The heatmaps representing the average ratio of project revisions over metric fluctuation

categories and release periods is shown in Fig. 4.7(a). Each cell with row label Ri and column

label Cj provides the average and standard deviation over all projects, for the ratio of project
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revisions that are committed in release period Ri and classified as category Cj. For brevity

we omit categories with very few revisions ((one,neutral), (many,neutral)).

We observe that in Fig. 4.7(a) the fluctuations in metrics do not change dramatically

across the different release periods. The overall fluctuation pattern is that the majority

of revisions are in the (zero,neutral) category, with a noticeable design erosion effect

indicated by the decline categories, and a small minority of (many,mixed) revisions. We

do however note a small observed increase in the (zero,neutral) category closer to the

release date, which is consistent with the conclusions of published research mentioned above.

To further understand these observations, we also calculated the percent change of average

ratio for each category of metric fluctuations over successive phases. The resulting heatmap

is shown in Fig. 4.7(b). This representation shows more clearly the trends, normalizing the

domination of the (zero,neutral) category. We make a few observations. First, we note

that the increase in the (zero,neutral) category in the pre-release period is coupled with

a decrease in all other categories. This is again consistent with published research. Second,

we note that there is a marked increase in all other categories during the first mid-release

period. One explanation could be it is during this period that the project is most in flux, with

feature additions and maintenance tasks. It is notable that the (many,mixed) category is

most increased during this period. This might indicate that future research should focus in

this period to identify quality tradeoffs.

We conclude that the effect of the release context to metric fluctuations is not big.

However we can be observe some interesting differential effects.

4.2.3. Discussion

We have studied metric fluctuations in three contexts. First we compared the fluctuations

in production and test code and found that there is a noticeable difference between the two,

with test code being more stable and containing fewer tradeoffs. Second, we investigated

refactoring and found that it has a clearly identifiable effect on metric fluctuations. Third,

we studied how metric fluctuations change over time during releases. We found a very

small effect closer to release dates, as well as some interesting differential effects. These

observations lead us to formulate an answer to RQ3 that fluctuations in metrics can depend
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on the development context. Future research should investigate additional contexts and

fluctuation categories, as well as differential effects.

Our study found that quality tradeoffs coincide with particular and significant develop-

ment activities and milestones. We also found that, although they carry a lot of information

about an artifact, quality tradeoffs are the minority of metric fluctuation patterns in com-

mits, which actually confirms our premise that developers need only focus on a subset of

the artifact’s history to understand. This study is the first step towards improving (a) the

productivity of developers, by reducing the size of the material that needs to be studied to

contribute to a component, and (b) the understanding of developers about a project.

4.3. Towards Design Intent

In this section, we conduct a preliminary study for RQ4. We are interested to see if there

is a correlation between internal quality metric fluctuations in RCs and design intent.

To study this question, we manually analyze 106 commits. These commits are sampled

from the RCs of eleven projects (Hibernate ORM and Apache Xerces-J data were not yet

mined when we conducted this study)4. For each project, we selected randomly up to 10

commits classified as (many, mixed) (corresponding to Scenario 4). The goal is to identify

the design intent behind the applied refactorings; we determine whether in each RC in the

sample the developer applied the identified refactorings as part of introducing new design

decisions or enforcing design decisions that were established in previous commits.

To better understand the context in which these activities happen, we also wanted to

find out the type of implementation task the developer was engaged in while refactoring,

i.e., whether any design decisions were enforced as part of refactoring low quality code,

implementing new features, or fixing bugs.

4.3.1. Setup

We based our analysis on code and comment inspection, commit messages, and the

changelog of refactored classes. Using this information, we recorded for every RC in the

sample (b, c) whether the proposition “the revision carries design intent” holds, and (d) the

task type (refactoring, feature implementation, or bug fix). To calibrate the manual analysis,

4JFreeChart only had 6 commits conforming to this classification as described in the first preliminary

study in Section 4.1.
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V. Zafeiris and T. Schweizer independently analyzed all RCs found by RMiner in JFreeChart.

The inter-rater agreement between their assessments was moderate, indicated by a value of

0.490 for Cohen’s Kappa and the percentage of observed agreements was 73.53%. Then,

we did a consolidation phase, where we defined a common annotation protocol (described

below). The protocol was then used to analyze the rest of the RC.

Specifically, we defined and followed the following annotation protocol for each RC:

Find relevant entities (a): First, we identify all refactorings in the RC and the entities

they affect. This information is generated by RMiner. Unless they are related to

other structural changes, we ignore Rename refactorings because we are interested in

the intent behind decisions affecting the structural design of the software.

Decide if the refactoring itself implements a design decision (b): Then, we decide

if at least one of the refactorings in the RC is an expression of a design decision. For

example, the developer may decide to delegate some functionality to a utility class

using a Move Method refactoring. To determine whether a refactoring (or a set of

refactorings) enforce a past design decision, we also trace back to previous revisions

of the refactored code to understand the evolution of the design.

Decide if the refactoring is part of a design decision (c): In this step, we decide if

at least one of the refactorings in the RC is used to implement a wider-range design

decision that primarily affects another code entity (i.e., an entity not affected by a

refactoring) in the same RC. For example, the developer may decide to introduce a

new design pattern to regulate the communication between two classes and use Move

Method as part of the implementation of this decision. To better understand the

architectural role of each entity, we also first study the overall context of the project,

its organization, structure, and business logic.

Determine the task type (d): Finally, we record the type of implementation task that

the developer was involved in when they did the refactoring. We use the terms defined

by Murphy-Hill et al. [61]: “root canal” describes revisions with a pure refactoring

purpose, whereas refactorings that are part of the implementation of new features

are termed “flossing”. A refactoring can also be part of a bug fix. We detected the

task type by inspecting code differences combined, and analyzing commit logs and
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Fig. 4.8. Percentage of design decisions in each sample per project. The red line is the

average number of detected design decisions across all samples.

Tab. 4.8. Distribution of the implementation tasks in the sampled set of RCs.

Task type Revisions Design intent present

“Root canal” refactoring 56 (52.83%) 40 (37.74%)

“Flossing” (feat. implem.) 33 (31.13%) 24 (22.64%)

Bug fix 17 (16.04%) 7 (6.60%)

Total 106 (100%) 71 (66.98%)

embedded change logs of refactored classes. In several cases, we took advantage of

references to issue tracking identifiers in commit and change logs.

If in steps (b) or (c) we identify a design decision, we annotate the RC in the sample as

containing a design decision.
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4.3.2. Results

We found that 71 out of 106 total RCs in our sample carry design intent. That corresponds

to an average 67% RCs out of all scenario 4 sampled RCs in the projects that we studied.

With a confidence interval of 95%, the results should be taken with a margin of error of 8.6.

We summarize our findings per project in Fig. 4.8. We observe a degree of variation in the

percentages for each project, but for 10 out of 11 projects, the coincidence of metric tradeoffs

and refactoring indicates the presence of design intent in more than half of the cases. For

RxJava the percentage is 50% and for Jena 40%, making it the only exception. Jena is so

low because the sampling gave RCs with a lot of Rename refactorings that are not directly

tied to design decisions.

We summarize the types of implementation tasks that developers were involved in RCs

in Tab. 4.8. “Root canal” refactoring corresponds to 52.83% of total revisions. “Flossing”

refactoring corresponds to 31.13% of total revisions and involve moving state and behavior

among classes, as well as superclass extraction in class hierarchies. If we only take into

account the RCs containing decisions we can see that pure refactoring and feature addition

contains the most design decisions while bug fixes has the lowest. Indeed, the Refactoring

category has a percentage decrease of 28.57%, Feature Implementation has 27.27%, and Bug

Fix has 58.82%.

We can see a concrete example in action in a commit submitted to JFreeChart on

2011-11-12 by the user matinh5 and was classified as Scenario 4 by MetricHistory, com-

puting the tuple s=(WMC=-9, LCOM5=-1, CBO=5, DIT=2, hit_count=4). This

revision includes 20 refactoring operations: 1 instance of Extract Superclass, 1 of Ex-

tract Method, 1 of Rename Method, 10 of Pull Up Attribute, and 8 of Pull Up Method.

The original version of the code contained the class DefaultAxisEditor and a subclass

DefaultNumberAxisEditor. These classes implement panels in JFreeChart. In this revision,

the developer wants to add a new panel class, DefaultLogAxisEditor that allows editing

logarithmic axes. However, the functionality of this new class overlaps with the existing class

DefaultNumberAxisEditor. To avoid duplication, the developer refactors the class inheri-

tance hierarchy. He inserts a new intermediate subclass, DefaultValueAxisEditor between

DefaultAxisEditor and DefaultNumberAxisEditor. Large parts of the state and behavior

5https://github.com/jfree/jfreechart/commit/1707a94af46df84373e3118c62e18359d40b1f16
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DefaultAxisEditor
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DefaultNumberAxisEditor
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Fig. 4.9. (a) Slice of the JFreeChart design. (b) The same slice after the in-

troduction of DefaultLogAxisEditor and the compound refactoring that created

DefaultValueAxisEditor.

of DefaultNumberAxisEditor are then pulled up to the new class so it can be reused by

DefaultLogAxisEditor through inheritance. We illustrate the two versions in the UML

Class Diagram shown in Fig. 4.9.

At the revision level, the WMC (complexity) and LCOM5 (cohesion) metrics are im-

proved (i.e., reduced) due to the simplification of the DefaultNumberAxisEditor class im-

plementation caused by the pull up refactorings. On the other hand, the design becomes

more complex, evidenced by the deterioration (i.e., increase) in the DIT (inheritance depth)

and CBO (coupling) metrics. This is clearly the result of the developer’s intent to incorporate

the new class in the existing design.

In conclusion, this qualitative study confirms that a correlation between the four internal

quality metrics and design intent exists to some extent in the context of RCs.

4.4. Threats to validity

Construct validity is threatened by multiple sources. First, by using only four metrics,

we are bound to miss some aspects of changes in a RC. To mitigate this, we selected metrics

that have been tied to well known internal quality attributes and that are general enough to

capture a maximum of their respective code aspect.
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Second, as mentioned in Chapter 3, we ignore the metric fluctuations generated from

classes that are added or deleted. This means our pipeline does not capture metric fluctua-

tions on the entire change set of a revision, in cases of class addition or removal. Interestingly,

we observed no statistical differences in distributions for detecting tradeoffs when taking into

account added and deleted classes.

Third, we concentrated on metric fluctuations at the class level. Doing that, we might

have missed variations in metrics in smaller or larger granularities. To mitigate this, we

count the number of metric changed when we aggregate the metrics at the class level to

represent the revision. This way, we would see if a metric changed even if the changes of

metric of two classes or more would cancel each other. For these reasons, we cannot draw

general conclusions about what would happen at different granularity levels or with other

metrics. Regardless, this does not impact the main contributions of this exploratory, i.e.,

the systematized methodology, classification scheme and research questions.

Fourth, we do not count Rename operations as design decisions in Section 4.1. One could

argue that pure Rename refactorings (who constitutes the majority of scenario 1) also defines

design decisions. After all, we use natural language to communicate intent. If the name of

an entity change so should the intent behind the class. However, for this study we are only

interested in structural or architectural design decisions.

Fifth, the initial inter-rater agreement presented in Section 4.1.3 is also a potential threat

to validity since the reviewers were only in moderate agreement. This threat was mitigated

by the conflict resolution procedure we conducted afterward to harmonize the datasets.

Moreover, from this experience, we were able to improve our manual analysis procedures for

subsequent usages such as Section 5.1.

Finally, the study is based on the analysis of arbitrarily-cohesive units of work determined

by each developer. The content of a commit is determined by the developer. During our

manual analysis, we saw different level of commit hygiene – how well a commit is made. Does

it contain a good description? Are the changes separated? Some would neatly describe the

changes and include strictly the relevant code changes. Others, would commit everything

they changed since their last commit whether it was a few hours or a few weeks, resulting

in very hard to read commits [2]. Incidentally these commits tended to also have the worst

descriptions. In our context, this diversity is not very relevant since we’re doing exploration.
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However, while building a classifier it could become a problem and cause the model to miss

classify commits. However, this is mitigated by the fact that big commits are likely to touch

multiple concerns of the code and thus certainly affect design that will be reflected in the

metrics. In a more fine grained approach where we want to locate the design changes, this

would potentially be a problem. Approaches are being researched to untangled code changes

in commits [72].

Internal validity is threatened by the off-the-shelf tools used in our data processing

pipeline. Despite its high accuracy and recall, RMiner has a small chance to produce false

positives and miss refactorings. To mitigate this factor, we combed through the refactorings

of JFreeChart manually to remove false positives and assessed the gravity of the threat. We

determined that RMiner was giving false positives in cases that were innocuous to the study.

Allowing us to proceed for the other projects with confidence.

Additionally, we depend on SourceMeter for the calculation of metrics and are, therefore,

tied to its quality. This threat will be mitigated in future reproductions of the study, since

we architected our toolchain such that new versions of the tool or entirely different tools can

be easily integrated.

External validity is threatened by the generalizability of the study. We analyzed 13

open source projects and focused on a subset of their version history. Thus, our study

is biased by the development practices used in these projects. An argument towards the

representativeness of the selected sample of RCs are the different levels of commit hygiene

revealed by a preliminary manual analysis; some revisions were very well documented and

worked toward a clear, unique, defined goal while some other had misleading, vague or empty

descriptions with code changes affecting different concerns (tangled commits). However, our

studies are exploratory in nature, with a clearly defined scope; we, therefore, do not claim

that our results are generalizable, but rather make an existential argument that it is possible

to detect design tradeoffs using refactorings as an indicator.

Another concern is the reproducibility of our study. To ensure that our findings are

reproducible, we explicitly documented each step of our study, using existing, publicly avail-

able data and tools and published our custom-developed tool MetricHistory and associated

scripts as open source.
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4.5. Lessons Learned

In this Chapter, we presented groundwork to validate our initial assumption and answer

the RQs 1, 2, and 3 presented in Section 1.3.

In Section 4.1, we explored the relationship between design, internal quality metrics, and

RCs in the project JFreeChart. We found that RCs can be classified into four scenarios. Each

scenario captures a specific pattern of changes. Moreover, we found that scenarios containing

tradeoffs between different quality metrics were more susceptible to contain design related

changes compared to the first and second scenario, validating our assumption and sketching

the beginning of the answers to RQs 1, 2, and 3.

In Section 4.2, we conducted a large scale quantitative study on thirteen projects. We re-

fine our classification into a two-dimensional taxonomy, providing an answer for RQ2. Then

we observe the metric fluctuations in various development contexts. We observed a notice-

able effect on metric fluctuations depending on the environmental context answering RQ3.

Additionally, we observed that about half of the tradeoffs between coupling, complexity, in-

heritance, and cohesion captured in our approach appear in commits containing RC. This

finding, connected with the results of the study presented in Section 4.1 provides further

evidence towards RQ1. The conjunction demonstrates that refactorings contain valuable de-

sign changes and that metric fluctuations, particularly tradeoffs, have a certain correlation

with design related changes.

Finally, we conduct a third study in Section 4.3 where we conduct a qualitative analysis

over a sample of the projects to understand the extent to which tradeoffs are indicators of

design related changes and intent in the context of refactoring. The results show that a

measurable correlation exists, thus completing our answer to RQ1 and provides a compelling

foundation for the study presented in Section 5.
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Chapter 5

Predicting SOLID Principles

In this chapter, we aim to determine if metric fluctuations can be used as an indicator for

detecting design changes (RQ4). Specifically, using the knowledge acquired in the exploratory

studies from Chapter 4, we want to use metric fluctuations to detect the applications of a

known set of design principles, namely the SOLID design principles (see Section 2.2).

To answer this question, we create a predictive model and measure its capacity to predict

if a commit contains the application of a design principle and compare it to the ground truth.

The ground truth is determined by an oracle that we created by manually analyzing commits

and annotating whether they contained applications of SOLID principles.

5.1. Building an oracle

We annotate a sample of commits from the projects presented in Chapter 3. We sampled

RCs from the entire project commit history of each project. The sampling size for each

project is determined using a 95% confidence interval and a 10% margin of error [75]. We

tagged each RC to indicate which of the five design principles were detected, and if the

commit is tangled. Additionally, we assign the project an overall "commit hygiene" score

to qualify the ease of readability and understandability of the commit messages and source

code changes.

5.1.1. Protocol

To annotate the set, we adapted the protocol of 4.1 for RC with SOLID principles and was

performed by the same two researchers. The consolidation phase, in this case, involved the

establishment of heuristics for deciding which SOLID principle(s) influenced design changes



in each RC. For instance, the redistribution of class members through Move Method, Move

Attribute, Pull Up Method refactorings that improve class cohesion are typical applications

of SRP. A typical indication for the application of OCP is the replacement of class depen-

dencies on concrete implementations with abstract classes or interfaces. The introduction of

Template Method and Strategy design patterns is another hint for the application of

OCP. Moreover, splitting a crowded1 interface to simpler ones denotes the application of ISP.

Finally, since both OCP and DIP require classes to depend on abstractions, we distinguished

the application of DIP on the basis of “ownership inversion” of interfaces. Ownership inver-

sion requires that an interface is packaged in the same module with the client component that

uses it. On the other hand, interface implementations are packaged in external modules that

depend on the client module [55]. Regarding the application of LSP, we searched for cases

where the design of subclasses changes for conformance to the contract of the superclass, e.g.,

narrowing down their public interface to match that of their parent, fixing pre/postcondition

violations in concrete overriding. A transcription of the complete guidelines is available in

Appendix B.

In order to gain more insight about the nature of the commits we were evaluating, we

annotated two additional aspects. First, for each commit, we flag to ’1’ if the commit

is tangled and ’0’ if the commit isn’t tangled (See Section 2.3). Second, at the end of a

project’s analysis, we also assign it an overall "commit hygiene" score going from Poor, Fair,

Good, High. Commits dedicated to a unique modification in the source code (e.g., adding

a feature, fixing typos, refactoring an aspect of a class) and showcasing a clear message are

signs of high commit hygiene [8] while commits bundling many changes together or described

vaguely are signs of low commit hygiene because it is hard to understand what changed in

the commit and defeats parts of the VCSs’ purpose.

5.1.2. Dataset

Overall, we manually analyzed a total 928 commits from 11 projects: Ant, ArgoUML,

Dagger2, Hibernate ORM, jEdit, Jena, JMeter, JUnit4, OkHttp, Retrofit, RxJava. The

analysis was done by two reviewers independently after a pilot run on JFreeChart used to

synchronize the protocol and clear misunderstandings. The number of RC for each project,

1Also known sometimes as a "fat" interface in the terminology used by M. Fowler [22]
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Tab. 5.1. Summary of the collected dataset per project.

Project Sample size Hygiene Tangled SRP OCP LSP ISP DIP

Ant 91 High 25% 26 9 8 3 2

ArgoUML 92 Good 42% 26 9 5 2 3

Dagger2 83 Good 16% 26 7 4 1 1

Hibernate ORM 91 Fair 21% 21 15 3 2 1

jEdit 90 Poor 70% 41 14 7 4 4

Jena 89 Good 33% 21 10 1 0 1

JFreeChart 60 Good 40% 13 5 1 0 0

JMeter 90 Fair 32% 19 5 2 0 0

JUnit4 75 Fair 56% 29 8 4 0 4

OkHttp 80 Good 33% 30 9 4 0 1

Retrofit 64 Good 9% 19 8 2 1 5

RxJava 83 Good 28% 19 7 5 2 1

its associated commit hygiene and percentage of tangled commits, are presented in Tab. 5.1

as well as the number of occurrences for each design principle.

Among all projects, we found 334 SOLID commits and 594 NON-SOLID commits. It’s

a ratio of 1:1.78 for SOLID over NON-SOLID commits. This result is reasonable since we

established in Chapter 4.2 that RCs are more likely to contain design related changes. In

Fig. 5.1, we observe approximately the same ratio across each project. A notable outlier is the

jEdit project which has almost the same number of commits in each category. Rather than

being a sign of superior oriented object design or a systematic application of refactorings we

believe this result is caused by the commit hygiene of the project. Indeed, this project was

rated with a Poor commit hygiene, the developers often bundling many unrelated changes

together in large commits as demonstrated by a high percentage of tangled commits (70%).

Thus, a commit is more likely to contain design changes than a project with more commits.

However, this means that recovering meaningful design information from the diff in jEdit is

also harder than in projects with a better commit hygiene because the changes are hidden

by other changes in the same commit.
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equal. There is multiple ways for a commit to become tangled and they are not equal it

terms of added complexity when trying to understand the code changes they incur.

5.2. Approach

To build our model, we use a decision tree approach from the family of supervised learn-

ing. We use decision trees for their capacity to model complex phenomena and their explica-

bility. Moreover, decision trees are great at filtering relevant features which will inform us on

which metrics are instrumental, among the 52 we extracted via SourceMeter that are using

to train this model, in order to build a first intuition towards a theory of change patterns.

We train the model using the fluctuations for each commit as features and the oracle data

collected previously as target value. The target value is a binary value indicating that either

a commit contains an application of SOLID principles or it doesn’t. We are not trying to

detect which specific principle was applied at this time as we have a low class representation

for LSP, ISP, DIP. We use the metric fluctuations in RCs because they have a high density of

design related changes compared to regular commits as found in Section 4.2. The advantage

is that we are more likely to have relevant examples for training and more balanced training

sets. Before the model is trained, we run hyperparameter optimization on the training set

with cross-validation to select the best hyperparameters for the decision tree. To mitigate the

imbalance in SOLID and NON-SOLID commits, we use a weighted training and evaluation

method which mitigates the possible overfitting caused by unbalanced datasets [23].

Since we are interested in a general model capable of predicting the application of design

principles for commits of any project, we have to evaluate its performance on new projects.

Simply splitting the available data into training and testing sets would not be an accurate

evaluation of performance. Thus, we reserve the data for one arbitrary project for testing

(acting as the "new project") and use the remaining projects’ data for the training. This

process is repeated such that each project is reserved in turn and tested as the "new project".

The results for each experiment are then averaged to give the final performance of our ap-

proach. This procedure guarantees that new commits are never seen during hyperparameter

optimization or training and make the most of our available dataset.
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5.3. Results

We evaluate the performance of our models on several metrics. We use accuracy, the Area

Under The Curve (AUC) of the Receiver Operating Characteristics (ROC), often abbreviated

as Area Under the Receiver Operating Characteristics (AUROC) [62], and the F1 Score [84].

The results are shown in Tab. 5.2.

Tab. 5.2. Average performance of the approach with respective standard deviations.

Accuracy AUROC F1 F1 SOLID F1 NON-SOLID

65.9% (±5) 68.8% (±7) 66.4% (±7) 58.8% (±8) 69.8% (±1)

We obtain an average weighted accuracy of 65.9% which indicates that our model is

somewhat capable of detecting the application of SOLID principles. However, this does not

inform us of the capacity of the model to distinguish between our two class of data: SOLID

and NON-SOLID. For this, we use AUROC. A value of 50% signifies the model has no class

separation capacity, similar to a random classification. We use this value as our baseline.

We obtained an average of 68.8% for AUROC for our model, confirming the capacity of the

model of making adequate predictions most of the time. Interpreted, it means our model

has about 68.8% of chance to predict the right class. The F1 score is another measure of

prediction performance based on the precision (number of selected items that are relevant)

and recall (number of relevant items that are selected). We obtain a value of 66.4% which

indicate again a certain capacity of prediction for the model.

Finally, F1 SOLID and F1 NON-SOLID inform us on the capacity of the model to make

predictions for each class. We see that in average, our models had an easier time guessing

RC containing no application of SOLID principles as suggested by the higher F1 score for

NON-SOLID than SOLID. Additionally, we can see that the NON-SOLID predictions are

more reliably learned with a low standard deviation of 1%. SOLID predictions, however,

suffer from a high standard deviation (8%) relatively to the average F1 SOLID score.

Next, we want to understand what metrics are most useful for the classification. To do

this, we rank the metrics usage by the classifiers in Tab. 5.3. For each model, we count

the metrics in the first 3 levels starting from the root that appear at least twice among all
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projects. An exact description of each metric is available on the official documentation of

SourceMeter [3].

Tab. 5.3. Number of occurrences for recurring metric in the three first levels of the decision

trees.

Metric Abbreviation Occurrences

Number of Local Attributes NLA 8

Total Number of Methods TNM 7

Coupling Between Objects CBO 6

Total Number of Private Methods TNPM 6

Number of Local Public Attributes NLPA 5

Total Number of Local Attributes TNLA 4

Number of Incoming Invocations NII 4

Total Logical Lines of Code TLLOC 4

Total Number of Local Getters TNLG 3

Number of Parents NOP 3

Total Number of Attributes TNA 2

Total Number of Statements TNOS 2

Documentation Lines of Code DLOC 2

Number of Statements NOS 2

Public Documented API PDA 2

Number of Attributes NA 2

We observe that the most useful metrics are NLA and TNM. They are almost always

present as one of the most decisive variables. Moreover, we found that NLA was the root

metric in 8 out of 11 times while TNM was in the one 3 remaining. This is a surprising

result for a size metric. We also see that most of the top metrics are concerned with either

attributes or methods. Only a handful are concerned with classes or documentation which

is also counter intuitive since we predicted the application of SOLID principles, inherently

operating at a higher granularity than attributes and methods. Overall, 11 of the metrics

presented are measuring size. 2 metrics (CBO, NII) are measuring coupling. 2 metrics

(DLOC, PDA) are measuring documentation, and a single metric is measuring inheritance.
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There is no metric measuring cohesion or complexity. A possible explanation may be that

other types of metrics are not precise enough given the cleanliness of the data (tangled

changes) so the model defaults to using size metrics as its best proxy. Another aspect

to take into account is the redundancy between some metrics (e.g., there are five metrics

concerning attributes). It would be interesting to force the model to use only one per type

of object and see then which is the most relevant.

5.4. Preliminary Evaluation of Usefulness

Our objective is not only to provide a model that can generalize to other projects, but

whose predictions are actually helping the developers. In addition to the performance vali-

dation described in Section 5.2, we investigate whether our model is able to give predictions

that are relevant to developers for any commit (i.e., not only RCs) for new projects. In order

to do this, we took a dogfooding approach where we apply our approach presented in this

chapter on our own projects [30].

5.4.1. Protocol

T. Schweizer and V. Zafeiris will evaluate the predictions from the model on their respec-

tive projects MetricHistory (356 commits and 3977 LLOCs), and a proprietary project that

measure software quality in governmental projects, anonymized Q. In parallel, we compute

the metric fluctuations for the entire revision history of both projects using the procedure

described in Chapter 3. Then, we train a general model using the approach and the data

presented in the Sections 5.1 and 5.2 sections. Afterwards, we run the metric fluctuations

of MetricHistory and Q through the classifier to obtain the predictions of the applications

SOLID principles, and we selected 10 commits classified as SOLID and 10 commits classified

as NON-SOLID for each project. Finally, both developers described the extent to which

they agreed, or disagreed with the prediction of the classifier for the sample of 20 commits

from their respective projects:

• if a commit was tagged as SOLID, whether they agreed that this commit contained

changes related to design

• if the commit was tagged as NON-SOLID, whether they agreed that this commit did

not contain changes related to design
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were mostly agreeing with the results of the classifier as demonstrated by a combined total

of 29 (13 + 16) positive opinions versus 10 (7 + 3) negative opinions. This is an encouraging

finding that signifies that the classifier was relevant in its task and was able to give useful

results in practice.

Looking at the SOLID agreement, we observe that the model had equivocal results. In

MetricHistory slightly less than half of the commits classified as containing SOLID principles

actually contained relevant design knowledge for the developer, while in Q, more than half of

the commits classified as containing SOLID principle were actually useful for the developer.

Given our limited sample of projects, this can indicate that the classifier performs differently

depending on the project but also that we need to gather more opinions for a given commit

from multiple developers as their opinion is, definition, subjective. However, the NON-

SOLID agreement seems to be converging for both developers. Indeed they agreed with the

prediction of the classifier for almost all commits classified as NON-SOLID. This result aligns

with the F1 scores obtained previously which indicated that our model performed better in

detecting NON-SOLID instances than SOLID instances.

We provide the model as well as the script to generate it in a replication package on

Zenodo [67].

5.5. Threats to validity

In Section 4.4, we described the threats to validity related to the mining of the fluctuations

in metrics. In this section, we will address the threats to validity affecting the creation of

the annotated dataset, and the user study.

The process of detecting design intent and applications of SOLID principles is subject to

researcher bias which constitutes a threat to internal validity. To mitigate this, a calibration

analysis was exercised independently by two reviewers on all the RCs of JFreeChart. Then

we proceeded to resolve any conflicts by consensus and and created a common annotation

protocol as a result. The full protocol is available in Appendix B.

The usefulness study is also threatened by researcher bias since the developers are also

the researchers of the study. However, the objective of this usefulness study was not to prove

the general relevance and usefulness of our model but to verify that the predictions of the

classifier were sound and could be transposed to real projects.
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5.6. Lessons Learned

In this chapter, we put the observations from the exploratory studies in Chapter 4 into

practice. We were able to demonstrate that metric fluctuations can be used as indicators

of design knowledge, SOLID design principles in our case (RQ4). The results we obtained

are encouraging despite their limitations, and given that we made certain simplifications to

our approach such as using a naïve aggregation process and considering commits containing

multiple sets of unrelated changes. In Chapter 7, we propose certain possible avenues for

improvement that could result in better prediction performance, especially for detecting

positive instances of SOLID applications.

During the process of creating the oracle, we noticed that it was sometimes possible

to guess when a functionality was moved around using only the changes in lines of code.

Most of the time, it’s only a few lines that change across files: the developer will wrap an

if condition around a group of statements or some functionality will be tweaked; radical

changes are rather an exception. Thus, the displacement of a concept to other files in the

project will stand out from the usual editing pattern described above. We think it’s a similar

process that made our model privilege size metric changes than the coupling, cohesion, and

inheritance metrics we expected. We believe that when we will refine our methodology, we

will be able to tap into the metrics that are eluding the model currently. Moreover, this is

also a sign that reinforces the intuition presented in Chapter 1 that fluctuations in metrics

can be used to trace macroscopic changes relevant to developers.
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Chapter 6

Related work

Metrics have played an important role in evaluating the quality of a software system and

in guiding its design and evolution. This role is summarized very well by Stroggylos et

al. [74], who present a set of research works that have used metrics for these tasks especially

in the context of refactoring. The authors also present a study where, similarly to our

work, they measure software quality metrics before and after refactorings for a set of object-

oriented systems. According to their findings, the impact on metrics depends on the subject

system, the type of refactoring and in some cases on the tool used to measure the metrics.

Nevertheless, the impact is not always positive, as one would expect. This has motivated

our study and definition of tradeoffs, in order to correlate metrics and refactoring activity

with design intent that possibly justifies any potential deterioration in quality metrics. In

our study, we automated the refactoring detection, allowing us to measure the effect on

the design of more projects. We were able to confirm that refactoring activities does not

necessarily lead to improvements in quality in 13 projects compared to their four original

projects. Additionally, we provide an intuitive and scalable characterization of commits by

classifying them in scenarios and then in a refined taxonomy.

Each type of refactoring may affect multiple metrics and not always in the same direc-

tion. Researchers have explored this complex impact to detect design problems known as

code smells. Marinescu defined thresholds on a number of metrics and then combined those

using AND/OR operators in rules called detection strategies [53]. A detection strategy

could identify an instance of a design anomaly, which could orthogonally be fixed by a cor-

responding refactoring. A very similar approach, using metrics and thresholds, was followed

by Munro et al. [60]. Although, in principle, metric tradeoffs could be captured in detection



rules, Tsantalis et al. went one step further and defined a new metric to capture a trade-

off [79]. Since, coupling and cohesion metrics can often be impacted in opposite directions

during refactoring [74], Tsantalis and Chatzigeorgiou defined a new metric, Entity Place-

ment, that combines coupling and cohesion. Quality assessment using Entity Placement is

supposed to give more global results with respect to detection and improvement after refac-

toring. Kádár et al. and Hegedüs et al. focused exclusively on the relation between metrics

and maintainability in-between releases [38, 31]. A cyclic relation was found, where low

maintainability leads to extended refactoring activity, which in turn increases the quality of

the system.

The activity of refactoring and its relation to design has been extensively studied. Chávez

et al. performed a large-scale study to understand how refactoring affects internal quality

attributes at a metric level [13]. In contrast, our study aims at exploring the specific role

of refactoring on internal qualities when metrics embody a tradeoff and how it relates to

design. Cedrim et al. investigated the extent to which developers are successful at removing

code smells while refactoring [10]. Soetens et al. analyzed the effects of refactorings on

the code’s complexity [71]. Tsantalis et al. investigated refactorings across 3 projects and

examined the relationship between refactoring activity, test code and release time [80]. They

found that refactoring activity is increased before release and it’s mostly targeted at resolving

code smells. Compared to the study presented in this paper, their study was not guided by

metrics, nor did it involve extensive qualitative analysis and, finally, it did not discuss more

major design decisions as part of the intent.

Recovery of design decisions has been studied from an architectural perspective. Jansen

et al. proposed a methodology for recovering architectural design decisions across releases of

a software system [37]. The methodology provides a systematic procedure for keeping up-

to-date the architecture documentation and prescribes the steps that the software architect

must follow in order to identify and document architectural design decisions across releases.

A fully automated technique for the recovery of architectural design decisions has been,

recently, proposed by Shahbazian et al.[68]. The technique extracts architectural changes

from the version history of a project and maps them to relevant issues from the project’s issue

tracker. Each disconnected subgraph of the resulting graph corresponds to an architectural

decision. The recovered decisions are relevant to structural changes in system components,
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applied across successive releases.Our method focuses on decisions affecting detailed design

and concern the structure of classes and the distribution of state and behavior among them.

Moreover, decision recovery takes place at the revision level and is guided by metrics’

fluctuations and fine-grained changes due to refactorings. Besides, we employ issue tracker

information for manual cross-checking of design decisions as well as commit messages and

source code comments. Their big picture is very similar to ours. However, there is consider-

able differences in the approaches. Our main goal is to find design tradeoffs. In our study,

the tradeoffs emerge from the metric fluctuations between versions. The design detection is

a component of our process that is done manually. Another big difference with their study

is the size. They analyze fewer version than us but the projects they choose have a high

density of issues that can be mapped to commits. Our method focuses on decisions affecting

the lower level design and which concern the structure of classes and the distribution of state

and behavior among them.
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Chapter 7

Conclusion

7.1. Summary

Our vision is to help developers better understand the code artifacts they work with.

With this research, we took the first step by studying the fluctuations in quality metrics

in projects’ revision histories. By characterizing the metric fluctuations we aim to better

understand change, especially design, and to facilitate the detection of change patterns that

can be relevant as documentation to developers or other stakeholders.

Given the foundational nature of our research, we first presented an qualitative explo-

ration of JFreeChart. Then, we refine our comprehension of the domain in a second study

where we conduct a quantitative study of the entire revision history of thirteen projects that

characterizes metric fluctuations categories and observing how they change in different con-

texts. In a third step, we conduct a qualitative study on a sample of commits to understand

if internal quality metrics in the context of refactoring are correlated with design intent from

developers. Finally, having tested our hypothesis and built a significant dataset, we built a

model to detect applications of SOLID principles in commits.

We observed that source code changes containing refactorings affects internal quality

metrics and design in a number of ways. Refactoring induced changes are more likely to

improve or deteriorate the internal quality of a software than commits without refactorings.

Moreover, RCs containing certain metric tradeoffs were found to be relevant indicators for

important design quality tradeoffs, likely embodying the design intent of the author (RQ1).

Secondly, we created a robust taxonomy to characterize metric fluctuations on two, but not

limited to, dimensions enabling researchers to navigate through vast number of commits and



select relevant change patterns (RQ2). Thirdly, we found that there is a dependency between

metric fluctuations and development context. Metric fluctuations will change based on the

context, giving insight on the effect of a development activity like refactoring or the type of

changes between test code and business logic code (RQ3). Finally, we completed this first

step by demonstrating that metric fluctuations can give insight about a software’s design

by building a model using the fluctuations of 52 metrics to detect the application of SOLID

design principles with a 68.8% class prediction accuracy and an average F1 score of 66.4%

(RQ4). In conclusion, through a assortment of qualitative and quantitative exploratory

studies, we were able to demonstrate that metric fluctuations in RCs can be used to gain

insights about the design evolution of the source code.

7.2. Limitations & Future Work

In this section, we discuss the next steps to be addressed in order to generate historical

based design meta-data for each artifact. We envision this meta-data to automatically docu-

ment design concerns and facilitate code comprehension tasks for developers, enabling them

to make reliable and informed development decisions.

7.2.1. Technical Improvements

The most straightforward future work is to improve the data acquisition pipeline in

making it easier to use and more flexible for researchers.

For a study about design and refactoring, several factors can be important in selecting a

project. Depending on the research questions and what one is looking for, important factors

may include programming language, architecture style (object-oriented or other), history

length (i.e., number of revisions or commits), number of developers and contributors and

others. Thankfully, most VCS service providers, like GitHub [34], Bitbucket [4], GitLab [35],

which contain a large number of open source software systems of great variety, already

contain this metadata for each project. Therefore, we can integrate a repository crawler like

Sourcerer [49] or develop a customizable one, where we can specify the criteria and fetch the

repositories to be analyzed.

Despite the vast use of Git in software development nowadays, some projects, particularly

older ones, are often hosted on different VCSs such as Subversion [21], Mercurial [51], or
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CVS [77]. We want to support these systems in MetricHistory so that researchers have

access to a larger pool of projects and enables them to see if VCSs have an impact on the

development process.

Another current limitation is the time it takes to extract the metric for each commit

of a project, especially ones with an large number of lines of codes or projects with a long

version history. In our research, we used Akka [47] to distribute the workload on multiple

computers. This setup, while very effective, requires extra time to arrange and learning

how the framework works. Optimally, we want a seamless implementation of distributed

computing behind MetricHistory where the researcher wouldn’t have to think about it, saving

him a lot of time in learning and troubleshooting.

Staying in the domain of computation, we found that we could process a high number of

commits in large projects if instead of computing from scratch the metrics for each version,

we base the metric computation on the previous version plus the changes, effectively doing

incremental static analysis between versions. This is not a straightforward task, particularly

for metrics measuring dependencies such as incoming and outgoing invocations.

Finally, metrics are currently produced and stored in Comma Separated Value (CSV)

files. To accommodate a large volume of measurements, MetricHistory can already split the

data into one file of metrics per commit, avoiding the generation of very large files (i.e.,

almost a hundred gigabytes in certain projects) and the subsequent problems faced when

trying to work with them such as limited RAM and parsing time. These concerns can en-

tirely be avoided if we integrate a database as a core part of our methodology and process.

Measurements would directly be saved in the database and the post processing would query

the database for only what it needs. This solution would reduce storage needs of researcher

and improve the speed of saving new data and accessing existing data. Moreover, this con-

figuration comes with a significant advantage: it scales. Indeed, it would be straightforward

to host the database in the cloud or in a server farm and add as many resources necessary.

This last benefit brings another one. It enables us to open our dataset to collaboration to

other researchers by providing the public address of the database instead of giving a static

copy of our dataset. This way, researchers can access the database for their own studies and

even enrich the database.
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7.2.2. Methodology Improvements

Regarding methodology, we identified multiple areas that can be improved. First of all,

regarding metrics, we intend to expand our analysis to include more quality metrics, as well

as other types of static analysis (e.g., bugs, anti-patterns, code smells). Additionally, we

want to look at the effect of granularity on fluctuations measurements. In these studies, we

only look at the commit level. We believe interesting change patterns can emerge on software

classes or packages through time. Finally, we want to also include the relative changes in

metrics between two versions. Currently, we only use absolute values which we believe loses

information.

The quality of the version history is a critical aspect for our method. By being confronted

to a diversity of version histories, we were able to confirm that the hygiene of the commits in

a project has a direct impact on the difficulty and time necessary to understand the project

and source code changes. Specifically, we noticed that commits containing tangled changes

are problematic. These commits are harder to understand for researchers and developers

alike. Moreover, they also introduce non-negligible noise that we believe is detrimental to

our approach. To solve this issue we want to find a method to untangle unrelated sets of

changes inside one commit leveraging existing work on tangled commits [2] and software

traceability [73, 45].

Another critical aspect is our aggregation process. Currently, we use a simple approach

where we sum the changes of metrics for each class for each metric. As discussed previously,

this technique has several drawbacks. We want to refine this aggregation process by working

with distributions of changes for a given metrics instead of collapsing all the change points

into one value. This distribution would enable more complex analysis and use advanced

statistical tools to identify how that changes are distributed at the level of a commit.

Finally, we want to compare the decision tree model we used detect SOLID principles

with other supervised learning approaches such as linear models, support vector machines,

stochastic gradient descent, nearest neighbors, Bayesian approaches, and ensemble meth-

ods [23].
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7.2.3. Indicators of design

In future work, we want to investigate whether we can use alternative sources such as self-

admitted technical debt, code documentation, and bugs as indicators of design knowledge.

Additionally, we want to encompass a larger set of design changes and intent than a subset

of architectural concerns. We want to include as indicators additional architectural changes

but also factors such as semantic changes, frameworks, and language choice. The rationale

is that the process of software development and thus designing software is never done in

a vacuum but is tributary to the context in which its developed. Certain programming

languages and paradigms prefer certain code structures while others privilege something

else. This is also true for frameworks which often require particular ways of programming,

forcing the developer to write in a certain way. Semantic changes, such as renames, are

also a powerful tool to understand the design choices among of group of software artifacts

since, in a world of abstract concepts, names and their relations form the cognitive fabric of

an application; they give meaning to the arrangements of code developers come up with to

satisfy the stakeholders requirements.

7.2.4. Design Intents and Cross-referencing

The manual identification of design intent was possibly the most complicated step of our

process and the one that required extensive manual effort. The reason for this is because

refactorings, design decisions and generally the intent of developers is not always explicitly

expressed in comments or documentation. For JFreeChart, the artifact that conveyed the

most information was the changelog. The changelog was Javadoc comments that preceded

one or more classes within a commit (usually classes that had the most significant changes)

and described in natural language how the classes were changed. Conversely, commit com-

ments did not contain much information about design intent or something more high-level

other than the change itself. In order to understand the intent, we studied the commit com-

ments, the changelog and the source code itself, and we went back in the project’s history to

understand more about the changes and the evolution of the metrics. The automation of this

step would require significant effort. The first idea is to employ Natural Language Processing

(NLP) to mine all textual data of the project (e.g., mails, commit comments, source code

comments, changelogs) and look for specific textual patterns pertaining to design and design
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maintenance. Next, we will use time-series clustering to find relationships between current

and previous changes to track design decisions through the project’s history. Finally, we will

use association rules to complete the cross-reference step between the classified commit ac-

cording to metrics and the design decisions as identified before. It is not certain that manual

effort will be completely eradicated even after the use of these machine learning techniques,

but the goal is to minimize it as much as possible and increase the accuracy of the analysis.
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Appendix A

Metric History

MetricHistory is an extensible tool designed to collect and process software measurements

across multiple versions of a code base. The measurement itself is modular and executed

by a third party tool. The default analyzer is SourceMeter [20] which offers more than 52

metrics at the project, package, class, and method level.

A.1. Features

• Automated collection of measurements for multiple version of a project.

• Computation of the difference in metrics between two version of a project.

On top of these features, MetricHistory offers a collection of optional utilities:

• Conversion of native analysis results into a easily readable reference format (RAW

format).

• Retrieval of the parent versions of a list of versions.

• Exports to Mongodb database (Incubating).

A.2. Installation

Download the latest release at https://github.com/Thomsch/metric-history/

releases. Unzip it and run ’./bin/metric-history -V’ to check if your installation is

good. This instruction should print the current version. If you plan on using SourceMeter

as the analyzer, you need to install it beforehand from the vendor’s website.



A.3. Usage

A.3.1. Running from command line

MetricHistory comes with a rich command line interface. Every command is explained

in the ’help’ command (./metric-history help).

For example, to collect the metrics from a list of version using SourceMeter type

./metric-history collect versions.txt path/to/repository/ output/folder/

SOURCEMETER -e=path/to/sourcemeter/executable

This command analyzes the versions given in versions.txt of the project located in path/-

to/repository using the analyzer ’SourceMeter’. versions.txt contains a list of commit ids (in

case of a git project). The results are stored in output/folder.

A.3.2. Using the API

You can also choose to integrate metric history to your projects by using its public API.

Inspire yourself from the implementations in org.metrichistory.cmd.*; they all use the

public API!

A.4. Building

We use Gradle [36] to manage dependencies and compile the project the project.

• Run ./gradlew build (or ./gradlew.bat ... if you’re on Windows) to build the

project. Dependencies will be download automatically.

• Run ./gradlew installDist to install the application locally.

• Run ./gradlew distZip to create a full distribution ZIP archive including runtime

libraries and OS specific scripts.

A.5. Testing

Run ./gradlew test to execute the tests.
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Appendix B

Codebook

The annotation handbook presented below is copied as-is from its original document. The

guidelines have been co-written with Dr. Vassilis Zafeiris who authored most of the content.

This version of the codebook was used as the guidelines for the creation of the oracle presented

in Chapter 5.

B.1. Annotation guidelines

This work studies the recovery of design intent from the revision history of a software

project. The focus is on the identification of revisions whose change-set introduces structural

improvements to system design. The recovery of design intent from software revisions would

contribute to better understanding the evolution of a project through identification of im-

portant milestones in its lifecycle. Besides retrospection, the identification of design intent

in new commits could enhance the code review process by giving priority to those commits

that alter design and could potentially impact the architectural conformance of the software.

We intend to create a classifier that characterizes the presence or not of design intent to a

given revision.

The proposed method involves the following assumptions:

• Design intent denotes a deliberate attempt to improve system design

• Since the notion of design improvement is rather abstract and may refer to a broad

set of design options, we proxy it with the intent for enforcement of well established

OO design principles

• We adopt the SOLID set of design principles that focus on code maintainability



• The enforcement of a design principle denotes the introduction of structural changes

to existing classes so as to achieve better conformance to the given principle, e.g.

Single Responsibility Principle through relocation of functionality

• Structural changes relevant to design improvement can be traced to the application

of refactorings.

• The identification of structural changes in software revisions can be reduced to mining

the application of refactorings.

• Design interventions may, also (on purpose or not), deteriorate design, as manifested

by the violation of design principles. Tracking of violations of design principles is

currently out of context of this work, but could be an interesting part of another

study. However, in these cases, refactorings cannot always reveal these violations.

Most probably these could be traced to additions of methods/fields/dependencies to

a given class.

Our method tries to identify the design intent on the basis of more primitive features of a

revision: (a) the presence of refactorings and (a) the change in four object oriented metrics.

Should we use the presence of each individual refactoring as a separate feature?

B.1.1. Classifier for SOLID principles detection in RCs

• What if the presence of each principle is correlated with specific types of refactorings

(e.g. SRP with extract method, OCP with extract interface/superclass etc.)? In this

case metric fluctuations will have no effect on the classifier. Do we notice such a

correlation in the results so far?

• Should revisions be evaluated by both reviewers and report on consensus on what is

SOLID application or not?

• Could the analysis of non RCs (as side result of our evaluation) strengthen our posi-

tion?

– changed classes would probable involve addition/deletion of code which does not

reflect design changes

– we may have enforcement of SOLID principles in new code (that is also taken

into account during tagging RCs).
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– presence of refactorings would be introduced as an extra feature [refactoring-

revision: yes/no]

– requires evaluation of several revisions and we will be biased towards non-design.

A better protocol could involve mixing refactoring and non-RCs before manual

tagging

B.1.2. Manual characterization of SOLID principles

The manual analysis on the introduction of SOLID principles that was carried out for

our initial submission to ICSE’18 is based on the following notes:

Notice that more than one principle may apply to a RC. In any case, the application of

at least one denotes a design decision. The evaluation involves checking all the changes in

the RCs that the identified refactoring is part of, for instance, if the refactoring is part of a

feature implementation all relevant changes are checked.

Document in generic terminology the intent of a design change with reference to SOLID

principles, e.g.: An inner class absorbs responsibility from its context class...

B.1.2.1. Single Responsibility Principle (SRP)

The principle denotes that "each class, method, or module should have one reason to

change". Simple heuristics on the application of SRP

• move functionality of a class to another class (Move Method) to increase its cohesion,

considered in every case of functionality redistribution among classes, e.g., move of a

responsibility from a subclass to its parent,

• considered also in cases of attribute relocation among classes,

• although the resulting classes usually do not have a single responsibility, any contri-

bution towards a better situation is tagged with SRP

• replace constructor with factory method (a class acquires stricter control over the

creation of its objects)

• Extracting functionality or behavior to a new method

• replacement of constants with enumerations (single responsibility for the domain of

value types?)
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B.1.2.2. Open Closed Principle (OCP)

The principle states that "a class should be open for extensions and closed for changes".

Simple heuristics on the application of OCP:

• refactorings or changes that implement Template Method or Strategy Design patterns

• a class dependency (constructor parameter, method parameter or injected in other

way) is replaced by an abstract class or interface

• a class is decoupled from a concrete implementation of a specific abstraction.

• replace conditional logic with polymorphism

B.1.2.3. Liskov’s Substitution Principle (LSP)

The principle states that "supertype objects can be replaced by subtype objects without

breaking the program". The principles is considered to be applied in cases of refactor-

ing/changing members of an inheritance hierarchy:

• the public interface of a child class is narrowed down to conform to that of its parent

(not found in any case in JFreeChart/Retrofit)

• method implementation changed for contract rules enforcement (hard to find, not

found in any case), i.e.

– method preconditions should not be strengthened

– postconditions should not be weakened

– invariants of the supertype must be maintained in the subtype

• enforcement of variance rules (parameter contravariance, return type covariance)

through class parameterization (generic class)

– e.g. a parent class that uses Object, Map, List etc. method parameters or return

types is converted to parametric class and respective types replaced by class

parameters.

– the subclasses usually remove relevant type checking code.

• some cases found in Retrofit although not characterized by changes in revision metrics

• Implementation of multiple classes to implement different interfaces, such as multiple

ActionListener.

• replace inheritance with composition and vice versa
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B.1.2.4. Interface Segregation Principle (ISP)

The principle states that "clients should not be forced to depend on methods they do not

use", in other words a class should implement small interfaces with targeted functionality.

The application of the principle is spotted when

• a fat interface is split into two or more simpler interfaces (found in retrofit)

B.1.2.5. Dependency Inversion Principle (DIP)

The principle states that "high-level modules should not depend on low level modules -

both should depend on abstractions.” According to R.Martin "a naïve still powerful inter-

pretation of DIP: depend on abstractions", i.e. no variable should hold reference to concrete

class, no class should derive from concrete class, no method should override an implemented

method (and call the super implementation).

Simple heuristics on the application of DIP are:

• replacement of implementation inheritance to interface inheritance (remove overriding

of concrete methods), although not found in JFreeChart/Retrofit

• in Retrofit, cases of refactoring/changing code to depend on abstractions is tagged

as OCP

• search for "ownership inversion: clients own the abstract interfaces and servers derive

from them (Hollywood Principle)"

• the implementations of an interface are distributed in a separate module, e.g. Retrofit

main module owns Converter, Adapter etc. interfaces and knows nothing about

implementations that are provided in separate modules
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