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Résumé
Nous utilisons l’apprentissage automatique pour répondre à une question fonda-

mentale: comment les individus peuvent apprendre à communiquer pour partager
de l’information et se coordonner même en présence de conflits ? Cette thèse essaie
de corriger l’idée qui prévaut à l’heure actuelle dans la communauté de l’apprentis-
sage profond que les agents compétitifs ne peuvent pas apprendre à communiquer
efficacement. Dans ce travail de recherche, nous étudions l’émergence de la commu-
nication dans les jeux coopératifs-compétitifs à travers un jeu expéditeur-receveur
que nous construisons. Nous portons aussi une attention particulière à la qualité
de notre évaluation. Nous observons que les agents peuvent en effet apprendre à
communiquer, confirmant des résultats connus dans les domaines des sciences éco-
nomiques. Nous trouvons également trois façons d’améliorer le protocole de commu-
nication appris. Premierement, l’efficacité de la communication est proportionnelle
au niveau de coopération entre les agents, les agents apprennent à communiquer
plus facilement quand le jeu est plus coopératif que compétitif. Ensuite, LOLA
(Foerster et al., 2018a) peut améliorer la stabilité de l’entrâınement et l’efficacité
de la communication, principalement dans les jeux compétitifs. Et enfin, que les
protocoles de communication discrets sont plus adaptés à l’apprentissage d’un pro-
tocole de communication juste et coopératif que les protocoles de communication
continus.

Le chapitre 1 présente une introduction aux techniques d’apprentissage utili-
sées par les agents, l’apprentissage automatique et l’apprentissage par renforcement,
ainsi qu’une description des méthodes d’apprentissage par renforcement propre aux
systemes multi-agents. Nous présentons ensuite un historique de l’émergence du
language dans d’autres domaines tels que la biologie, la théorie des jeux évolution-
naires, et les sciences économiques. Le chapitre 2 approndit le sujet de l’émergence
de la communication entre agents compétitifs. Le chapitre 3 présente les conclusions
de notre travail et expose les enjeux et défis de l’apprentissage de la communication
dans un environment compétitif.

mots-clés: apprentissage profond, apprentissage par renforcement multiagents,
émergence de la communication
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Summary
We investigate the fundamental question of how agents in competition learn

communication protocols in order to share information and coordinate with each
other. This work aims to overturn current literature in machine learning which holds
that unaligned, self-interested agents do not learn to communicate effectively. To
study emergent communication for the spectrum of cooperative-competitive games,
we introduce a carefully constructed sender-receiver game and put special care into
evaluation. We find that communication can indeed emerge in partially-competitive
scenarios, and we discover three things that are tied to improving it. First, that
selfish communication is proportional to cooperation, and it naturally occurs for
situations that are more cooperative than competitive. Second, that stability and
performance are improved by using LOLA (Foerster et al., 2018a), a higher order
“theory-of-mind” learning algorith, especially in more competitive scenarios. And
third, that discrete protocols lend themselves better to learning fair, cooperative
communication than continuous ones.

Chapter 1 provides an introduction to the underlying learning techniques of the
agents, Machine Learning and Reinforcement Learning, and provides an overview
of approaches to Multi-Agent Reinforcement Learning for different types of games.
It then gives a background on language emergence by motivating this study and
examining the history of techniques and results across Biology, Evolutionary Game
Theory, and Economics. Chapter 2 delves into the work on language emergence
between selfish, competitive agents. Chapter 3 draws conclusion from the work and
points out the intrigue and challenge of learning communication in a competitive
setting, setting the stage for future work.

Keywords: deep learning, multi-agent reinforcement learning, emergent com-
munication
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1 Introduction

1.1 Machine Learning

Artificial Intelligence (AI) is a subfield of computer science that aims to design

machines that act and/or think intelligently as defined by either the yardstick of

human intelligence or some rational, correct action (Russell and Norvig, 2016).

This thesis deals with a subfield of AI, Machine Learning, the study of algorithms

that learn from data. In classical programming, we explicitly define rules that are

applied to input data in order to achieve some effect. In machine learning, we instead

observe data and improve the efficacy of our programs by learning computations

based on what we observe.

Machine learning is generally split up into three categories that correspond to

the signal given by the available input or training data. In supervised learning,

we are given pairs of inputs and targets (or labels), where the goal is to learn

the true mapping of inputs to targets. This covers tasks such as classification, if

the targets follow a categorical distribution, and regression if the targets follow a

continuous distribution. In unsupervised learning, we are only given inputs and

the goal is to uncover underlying structures or patterns in the data. This covers

tasks such as density estimation, where we estimate the distribution of the data,

and clustering, where we try to group the data into a set of discrete categories.

The final category of machine learning is what this thesis concerns itself with:

reinforcement learning, where the data is an interactive environment that gives

rewards for achieving certain goals. A common example is a video game where the

task is to control the player and the reward is winning the game.
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1.2 Reinforcement Learning

The term “Reinforcement Learning” (RL) has been used by various fields to

describe many different techniques (Herrnstein, 1961) but we will use it in the way

of Sutton and Barto (2018). Specifically, with RL we refer to the subfield of machine

learning concerned with decision making in an environment guided by obtaining

future rewards.

1.2.1 Bandits

The simplest RL environment is a bandit as exemplified by the classic problem

of slot machines also known as “one-armed bandits”. An agent is presented with

some number of slot machines and at each time step t must choose a machine for

which to pull the lever. We can consider our choice of machine as an action a so

that the space of possible actions A is just the set of machines. For a lever pull,

each machine has some distribution of winnings which we term reward r ∈ R and

since this depends on the machine we chose, we say that the reward at each time

step depends on the action Rt : At → R. The agent has some number of time steps

(T ∈ [1,∞)) and wishes to maximize their total reward
∑T

t=0 rt. We can formally

define the goal or objective we wish to maximize J

J =
T∑
t=0

γtRt (1.1)

where we can use a discount factor γ ∈ (0, 1] to avoid an infinite sum in infinite-

length environments. We term the discounted sum of future rewards to be the

return Gt =
∑T

k=0 γ
kRt+k+1.

To solve this problem, our goal is to come up with way of acting, a policy π,

that chooses the best action at every time step. We can consider a policy to be a

stochastic distribution over actions (machines). Looking for the best policy leads

to the classic problem of balancing exploration, finding the machine with the best

expected reward, and exploitation, maximizing the total reward by choosing the

machine you currently think is best. Since our policy is stochastic, we can define

the best policy as the one with the highest return in expectation

J(π) = Ea∼π[G1] (1.2)

2



In bandits, this is equivalent to choosing the optimal action At = a∗

1.2.2 Markov Decision Processes

Apart from just rewards and actions, we can make our models more realistic by

adding a state and if we make the Markov assumption about our states this makes

our model a Markov Decision Process (MDP). 1 This is the full reinforcement

learning problem in that we now have a state s ∈ S that can affect the possible

actions available A(s) ∈ A, a reward distributions for each state-action R(s, a) ∈ R

and a transition distribution P (s′|s, a) that accounts for the changing states by

giving us the probability of a next state given the current state and action.

Therefore, we also change our policy to be dependent on the state π(a|s). We

can now also talk about the return from a state by calculating the actions and

subsequent states. We call this the value function V of that state and using the

transition function we can define it recursively.

V π(s) = Ea∼π[Gt|St = s] (1.3)

= Ea∼π
[
Rt + γRt+1 + γ2Rt+2 + . . .

]
(1.4)

= Ea∼π[Rt + γV π(s′)] (1.5)

Similarly we can define an action-value function that conditions on the current

action as well Qπ(s, a) = Ea∼π[Gt|St = s, At = a]. With this, we can rewrite our

objective over states instead of over time. For the probability of each state we can

use the stationary distribution of the markov chain dπ(s).

1. The specific setup in Chapter 2 is only one time step long and can actually be modelled as
a contextual bandit. Contextual bandits differ from MDPs in that you model actions as not
affecting which future state is chosen and therefore the transition distribution P (s′|s) does not
depend on actions. This formulation is equivalent to the MDP for the task in Chapter 2 so to
keep with standard RL explanations we use an MDP.

3



J(π) =
∑
s∈S

dπ(s)V π(s) (1.6)

=
∑
s∈S

dπ(s)
∑
a∈A

π(a|s)Qπ(s, a) (1.7)

(1.8)

In practice, for finite-length MDPs we can sometimes consider J(π) to mar-

ginalize over initial states and use the probability of initial states instead of the

stationary distribution.

1.2.3 Policy Gradient

Now that we have an objective, we can treat this as an optimization problem

to find the optimal policy π∗. In many cases, our policy is a function πθ that is

parametrized by some θ and finding the optimal policy means finding the optimal

θ. We can more cleanly represent our objective J(πθ) as J(θ)

θ∗ = max
θ
J(θ) (1.9)

One way to optimize this is by changing the parameters in a direction that

improves our objective. A simple way is to follow the gradient of the objective

using gradient descent, this is known as policy gradient. We can update our θ

after each finished game (called an episode) by moving it a small step (or learning

rate) α along the gradient of the objective. Since the full objective is not easily

differentiable with respect to the policy parameters, we use the policy gradient

theorem to reformulate it

∇θJ(θ) = ∇θ

∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a) (1.10)

∝
∑
s∈S

d(s)
∑
a∈A

Qπ(s, a)∇θπθ(a|s) (1.11)

= Es∼dπ ,a∼πθ [Q
π(s, a)∇θ ln πθ(s|a)] (1.12)

4



since Qπ(s, a) = Ea∼π[Gt|St = s, At = a]

= Es∼dπ ,a∼πθ [Gt∇θ lnπθ(s|a)] (1.13)

One way we can measure Gt is empirically using Monte-Carlo sampling. By

averaging the returns from different episodes, we can get a unbiased sample of Gt.

Doing policy gradient in this way is known as REINFORCE (Sutton and Barto,

2018) (and elsewhere known as the score function estimator (Fu, 2006)). A common

trick to improve performance is to subtract a baseline value from Gt to try and

reduce the variance of the estimate while keeping the bias unchanged at 0.

1.2.4 Deep Reinforcement Learning

Deep learning (Goodfellow et al., 2016) has enjoyed much success in recent years

(LeCun et al., 2015) so many RL models now use deep neural networks as powerful

function approximators. One simple way is to use a deep neural network as the

policy π. Since deep nets can be updated by backpropogation using a gradient

(Rumelhart et al., 1986), they are easily integrated into policy gradient models.

Our parametrized policy πθ is therefore a network with weight parameters θ.

In practice, we can facilitate better learning by training on batches (allowing

for a speed up by exploiting parallelization) and updating our parameters using

stochastic gradient descent (SGD). With neural networks, we introduce va-

riance in the form of initialization and hyperparameters, parameters we fix before

training e.g. the learning rate α. Neural networks, particularly when used in RL,

are sensitive to how they are randomly initialized and which hyperparameters are

used (Henderson et al., 2018) so there are two common techniques to improve ro-

bustness: random seed replicates and hyperparameter search. To deal with

variance in initialization, it is standard to replicate an experiment using a couple

different random seeds thus varying the initialization and reporting averages and

standard deviations across replicates to show robustness as well as performance. To

deal with hyperparameter sensitivity, we run hyperparameter searches by randomly

sampling from distributions of parameters (random search) 2

2. Trying all possible combinations of parameters (grid search) is, in practice, no more ef-
fective than random sampling but much less efficient for neural networks (Bergstra and Bengio,
2012). Recent approaches also use population-based evolutionary learning during training to tune

5



1.3 Multi-Agent Reinforcement Learning

RL is further complicated when the environment is non-stationary : the reward

distribution changes over time even when conditioning on an action and state. Es-

sentially, non-stationary environment have factors in them that change over time

and that we are not explicitly accounting for, making it more difficult to learn the

best action to take. The non-stationarity discussed in this thesis is due to the pre-

sence of other agents, and this problem is known as multi-agent reinforcement

learning (MARL).

In MARL, multiple agents are all acting and possibly also learning from their

actions. The type of learning and evaluation necessary for MARL strongly depends

on the game and its dynamics. We outline three scenarios that are relevant to the

work in Chapter 2.

1.3.1 Fully Cooperative MARL

If all agents share the exact same goal (e.g. receive the same reward) then the

game is fully cooperative and the aim is to achieve the maximum expected return

much like single-agent RL. But unlike a single player that can coordinate all its

actions seamlessly, cooperative MARL agents’ main challenge is to coordinate their

actions. In this way, cooperative MARL challenges usually involve games of difficult

coordination such as the card game Hanabi (Bard et al., 2019b) or controlling two

players in a Bomberman-like game (Resnick et al., 2018).

Since the goal is simply the maximum reward, in many cases we can choose

our own team (Foerster et al., 2018b) and train in self-play – where all agents are

differently initialized versions of the same architecture – and the problem becomes

choosing the best agent architecture and training it in any reasonable way to achieve

the highest return. This is similar to single-agent RL and so we can use some of

the same optimization tricks and strategies (such as hyperparameter search).

1.3.2 Fully Competitive 2-player MARL

In contrast, 2-player fully-competitive games have agents trying to achieve com-

pletely opposing goals. These games are known in game theory as constant sum

hyperparameters (Jaderberg et al., 2017)

6



(a generalization of zero-sum) because the sum of rewards is constant and therefore

any reward an agent receives is a reward it takes from its opponent. This class of

games covers many modern strategy games such as chess, go (Silver et al., 2017),

and starcraft (Vinyals et al., 2019).

Since agents are fully opposed, the move that is best for an agent is worst for

its opponent. In this way any finite zero-sum game can be modelled as a minimax

game where one agent tries to maximize it’s reward and the other tries to minimize

it (Von Neumann, 1928). Agents can therefore make the assumption that the op-

ponent would take the move that will leave the agent worst off. This evaluation can

be simplified by assuming that the agents’ own evaluation of the game is equivalent

to the opponent’s and therefore they can use their own evaluation with a flipped

sign as a model of their opponent’s strategy.

However unlike cooperative MARL, choosing our own opponents is not an as-

sumption we can make. Instead, the goal of competitive MARL is to find an agent

that can outplay all opponents (Balduzzi et al., 2018) i.e. the best agent in the whole

space of possible agents. Since playing against all possible strategies is infeasible,

we must estimate which agent is the best from games against a sample of agents

and even more importantly we must choose the space of opponents (Shoham et al.,

2003). But even then simple self-play may not necessarily lead to better and better

agents if the game is non-transitive such as rock-paper-scissors (Balduzzi et al.,

2019). For some non-transitive games, we must demonstrate superiority against a

large diverse selection of possible opponents (Vinyals et al., 2019) and to do that,

we must play against opponents we have not trained with – ad-hoc play. This

means that competitive games compare learned agents, not just architectures, and

the goal is to find the best parameters as well as architecture.

1.3.3 General-Sum MARL

In Chapter 2, we investigate the partially competitive space between constant-

sum and fully-cooperative games known as general-sum games where there is

some amount of common interest and some amount of conflict. In this case, care

must be taken in defining the “best” agent: it is not necessarily the agent that does

as well or better than all opponents because agents must now maximize not only

the conflict but also common interest. To achieve the highest possible reward in

7



a general-sum game, agents might have to cooperate to some extent (Leibo et al.,

2017). For example, consider an agent playing iterated prisoner’s dilemma, a game

consisting of many sequential rounds of a prisoner’s dilemma, see table 1.1. The

agent that always defects will never have a reward worse than its opponent, but it

will also not have a high reward against an intelligent opponent that also chooses

to defect. A tit-for-tat agent that copies its opponent’s previous move will achieve

a similar reward against a defector but achieve a much higher reward against an

agent that chooses to cooperate.

Player 1

Cooperate Defect

P
la

y
e
r

2

Cooperate 3,3 1,4

Defect 4,1 2,2

Table 1.1 – Example rewards for a single round of Prisoner’s Dilemma

Since the maximum expected reward may only be possible by cooperating,

agents must learn how to coordinate with each other. This can be done by training

together or learning to understand opponent intentions at test time by observing

their actions. The latter allows for ad-hoc comparison of learned agents at test time ;

the former requires comparing learning algorithms trained together. The latter

should then require a sequential/iterative game, so there is time to infer opponent

intentions before acting (Fujimoto and Kaneko, 2019). But in MARL, there is no

single standard for the warmup time needed to acclimate to an opponent (and

facilitate coordination). Furthermore, agent architectures may also require meta-

learning or other modifications as current self-play methods are insufficient to adapt

to ad-hoc play even against different parametrizations of their own architecture

(Bard et al., 2019a). Instead, work in general-sum MARL has mostly been on

analysing learning algorithms’ ability to cooperate and resolve social dilemmas

(Foerster et al., 2018a; Letcher et al., 2019; Lerer and Peysakhovich, 2017). It is

clear that general-sum games provide a complex learning ground where evaluation

techniques are highly dependent not only on the games themselves but also on the

questions being asked (Shoham et al., 2003). This thesis deals with the question of

language and how it is emerged.
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1.4 Language Emergence

1.4.1 Motivation

“How does an effective communication system arise among a collection of ini-

tially noncommunicating individuals ?” (Wagner et al., 2003). This question is at

the core of all research in language emergence across the fields of anthropology,

linguistics, machine learning, and more. Motivations for studying this question can

generally be broken down into two camps. The first is the scientific question of

how animal communication and even human language has come about. Studying

this generally involves modelling real world constraints and environments to see

what factors are important in language emergence. The second is the engineering

perspective that understanding the fundamentals of communication can help us

improve communication between software systems (e.g. networking protocols) and

in multi-agent interactions (e.g. coordinating MARL (Foerster et al., 2016)).

This thesis looks at learning communication between self-interested agents in

a competitive environment. This question could be motivated by the former (e.g.

animals communicate but can not be perfectly aligned) but is more applicable

to the latter. Specifically, it is clear that both competition and cooperation are

necessary in many real world multi-agent games (e.g. Risk, Settlers of Catan) and

situations (e.g. salary negotiation). Furthermore, we cannot be sure to limit agent

coordination to existing human protocols. So it is reasonable that future agents

acting in the real world will have to coordinate and communicate with others agents

that have different goals and targets. We wish to explore whether communication

protocols can be learned for those situations and what properties we can imbue

into the protocols and therefore into the interactions.

1.4.2 Signalling

Previous work on the evolution of communicative capacities has generally ta-

ken advantage of the signalling-game framework also known as sender-receiver

games. Signalling games are a class of two-player games of incomplete information

first introduced by Lewis (1969) to explore learning meaning by convention from

initially random signals. In the basic signalling game, signals are used by an agent

to disambiguate from a number of possible referents. There are two agents, called
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the sender and receiver and some state of the world. It may consist of an exter-

nal state, such as a predator being present in the case of animal signalling, or it

may consist in some internal state of the sender, e.g their intention or preference.

The sender observes the state of the world and sends a message to the receiver ;

the receiver observes the message, but cannot observe the state of the world. The

receiver takes an action where each action is appropriate for a single state. In this

basic game, there is only one action for each of the states which provides a positive

payoff to the sender and receiver (see Fig 1.1)

Figure 1.1 – Basic Signalling Game example where the sender is given one of three shapes and
the receiver must guess the shape given only the sender’s message

The signalling game has been modelled using evolutionary game theory to ex-

plain how meaning emerges via population dynamics or low-rationality learning

dynamics (Skyrms, 2014/1996, 2010). This setup is used widely in economics (Ri-

ley, 2001), philosophy (Lewis, 1969; Skyrms, 2010), evolutionary biology (Zahavi,

1975; Spence, 1973), and political science (Banks, 1991), among others.

1.4.3 Emergent Communication

In recent years, the signalling game and language emergence have been tackled

by more powerful learning algorithms and techniques, namely deep learning and

deep reinforcement learning, and this field has been termed emergent communi-

cation. Beginning with Foerster et al. (2016); Sukhbaatar et al. (2016), the field of

language emergence was brought into the fold of modern machine learning methods.

Initially, setups had tightly-integrated agents trained together (Sukhbaatar et al.,

2016) possibly passing gradient as well as messages (Foerster et al., 2016). Follow-

up work focused on more natural communication using more decoupled execution
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(Lowe et al., 2017), learning from images to capture linguistic properties (Laza-

ridou et al., 2016), changing communication to use variable-length sequences of

discrete tokens (Havrylov and Titov, 2017), and allowing for multi-turn communi-

cation (Evtimova et al., 2017). Following claims of approaching natural language

using these setups (Mordatch and Abbeel, 2018), Kottur et al. (2017) showed that

many of these setups were contrived and brittle, demonstrating that an emerged

natural language was much more difficult than it seemed.

Next works therefore focused on emergent communication multi-agent coordi-

nation in simple shape-based 2D games (Lowe et al., 2017), classic games such as

Bomberman (Resnick et al., 2018), multi-step negotiation (Cao et al., 2018). With

the increase of work in the field and complexity of environment, Lowe et al. (2019)

pointed out common issues that trivialized results and set a simple but effective

standard of measuring successful communication: if returns using a communication

channel exceed those without a communication channel.

Despite the progress, one assumption consistently made was that emergent com-

munication is a task between purely cooperative agents Lanctot et al. (2017) with

no works exploring agents under conflict of interest until Cao et al. (2018). Singh

et al. (2018) claimed to learn in mixed cooperative-competitive scenarios. Howe-

ver, their setup uses parameter sharing between opponents ; their “mixed” case is

non-competitive (and implicitly cooperative) ; their competitive game is actually

two stages—one fully cooperative and one fully competitive ; and their results in

the competitive scenario are simply to mask out all communication. Overall, we

cannot confirm their claim of studying competitive emergent communication nor

the significance of their results. Cao et al. (2018) did test competitive agents but

found that successful communication did not arise and argue that communication

under competition was not possible. Later Jaques et al. (2019) argued that success-

ful communication between agents in a partially competitive game (Leibo et al.,

2017) did not arise without their complex learning rule. In both cases, the level of

competition between agents was not quantified and the prevailing notion is that

communication does not arise between competitive agents.
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1.4.4 Divergent Interests

Though language emergence in machine learning has not strongly investigated

cooperation as a factor, this study has a long history in biology, evolutionary game

theory, and classical games. Lewis (1969) initial formulation of the signalling game

assumes pure cooperation but it builds off the work of Shelling (1960), who noted

that games should be understood to range on a spectrum—with games of pure

cooperation on the one end and games of pure-conflict (zero-sum games) on the

other.

In biology, empirical evidence in nature also demonstrates communication dif-

fering between levels of closeness and cooperation. For example, vervet monkeys

will not produce alarm calls when there are no other monkeys present (Cheney

and Seyfarth, 1985). Similarly, ground squirrels will only produce calls when kin

are present (Sherman, 1977). In evolutionary game theory, Skyrms (2010) looks

at a small number of signalling games where the players’ interests are imperfectly

aligned and Wagner (2012, 2014) shows that it is still technically possible for mea-

ning to be conveyed in a zero-sum game, though the resultant dynamics will be

chaotic. Mart́ınez and Godfrey-Smith (2016) investigated a dynamic analysis of

signalling with conflict of interest but limited their learning to using the replicator

dynamic (Taylor and Jonker, 1978). Research in economics has investigated how

costly signalling can stabilize communication in competitive environments (Spence,

1973).

1.4.5 Strategic Information Transmission

Work in emergent communication – and this work in question – is most similar to

the economic concept of cheap talk (Crawford and Sobel, 1982; Farrell and Rabin,

1996). This is a model of communication that is costless, non-binding (does not

limit strategic choices after speaking), and unverifiable (utterances can’t be verified

to be true). Relating these qualities to environments in RL, we can simply say

that agent utterances do not directly influence the environment (i.e. the transition

function or the reward function) and may only influence the beliefs of other agents.

Therefore, the prevailing view of emergent communication under competition being

impossible seems at odds with Strategic Information Transmission (Crawford and

Sobel, 1982) – a seminal work in classical game theory – that proves possible cheap
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talk communication protocols under competition. Crawford and Sobel (1982) study

possible fixed communication equilibria under competition by giving the sender s

and receiver r targets that differ by some bias b and creating a conflict of interest.

Translating their setup to RL reward functions:

Rs(s, a) = −(a− s− b)2 (1.14)

Rr(s, a) = −(a− s)2 (1.15)

for some state s ∈ R. Their focus is on static analysis and finding Nash equilibria

— points where neither agent can improve by changing only their own strategy.

They show there exist equilibria where the amount of information communica-

ted is proportional to the alignment between the players’ interests (1
b
) ; however

no informative equilibrium exists when interest diverge too greatly. Though they

show that informative (and therefore successful) communication is possible under

a conflict of interest, there are strong assumptions that come with classical game

theory. First and foremost, the proof is not feasibility to achieve communication but

simply existence of a Nash equilibrium where informative communication exists.

In neural networks, this is equivalent to proving a point of convergence and its

properties but having no guarantees about whether that point is feasibly achieved

with SGD. Secondly, game theory assumes perfectly rational agents that know the

payoffs of their opponents as well as the structure of the game. In RL parlance,

that is equivalent to knowing the reward function of all agents as well as the tran-

sition function. Indeed, this is necessary in order for an agent to know they are in

a Nash equilibrium and not diverge from it. This assumption is at odds with the

fundamental approach to RL and is one of the reasons why MARL should not aim

to converge to equilibria (Shoham et al., 2003).

1.4.6 Competitive Emergent Communication

We wish to come at this problem from the perspective of RL where agents learn

through trial and error without being given a model of the world or other agents.

Therefore, this work focuses on a dynamic analysis, not a static analysis, and aims

to show the practical feasibility of learning communication under a conflict of in-

terest. Following Shoham et al. (2003) and recent work in emergent communication
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(Jaques et al., 2019) as well as evolutionary signalling (Skyrms, 2010) we do not

explicitly aim for equilibrium but look at average information transfer of the dy-

namical system. The question of MARL evaluation raised in section 1.3.3 is even

more difficult for emergent communication. Agents that are not trained together

could not reasonably communicate with each other and even current approaches

to meta-learning communication are still insufficient to adapt to new protocols

(Ryan Lowe, 2020). Therefore, in order to investigate feasibility of language emer-

gence it is reasonable to follow Cao et al. (2018); Jaques et al. (2019) and evaluate

agent architectures trained together. Yet an issue with Cao et al. (2018); Jaques

et al. (2019) was the lack of quantification of competitiveness, so following Lowe

et al. (2019), it is necessary to guarantee that all communication is through the

communication channel. We would like to avoid that agents situated in an envi-

ronment with non-verbal actions bypass communication and implicitly coordinate

through that environment (e.g. running towards the opponent’s goal in soccer to

communicate your teammate should pass you the ball). This is easily accomplished

by having non-situated agents that can only interact through the communication

channel. In this way, we have outlined the qualities necessary for a setup investiga-

ting practical feasibility and learnability of communication to also be as quantifiable

and controllable.
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2.1 Introduction

The principles involved in the evolution of effective communication are essential

for artificial intelligence research since they may lead to innovative communication

methods for use by interacting AI agents and multi-robot systems. AI agents need a

common language to coordinate with one another and to communicate successfully

with humans (Wagner et al., 2003). The emergence of communication protocols

between learning agents has seen a surge of interest in recent years, but most work

tends to study fully-cooperative agents that share a reward (Foerster et al., 2016;

Havrylov and Titov, 2017; Lazaridou et al., 2016). Work on selfish agents, that

separately optimise their own reward, has been limited, with results suggesting

that selfish agents do not learn to use a communication channel effectively (Cao

et al., 2018; Jaques et al., 2019). This has contributed to a perspective in the field

that emergent communication is a purely cooperative pursuit Lanctot et al. (2017).

This is in contrast to theoretical results in game theory that show it is possible to

use an existing cheap-talk communication channel effectively to resolve situations

of partial conflict (Farrell and Rabin, 1996). We aim to reconcile these different

findings and establish the degree of cooperation necessary for useful communication

to emerge.

To study this problem in detail, we look at the simplest case of communication:

a sender-receiver game (Lewis, 1969). This is a game of incomplete information,

wherein a sender obtains private knowledge and communicates this to a receiver

via a signal, or message. The receiver uses the message to inform its action in the

environment. Though messages are arbitrary, and initially meaningless, the players

can coordinate upon a conventional meaning for the signal (Skyrms, 2010). While

the classic game is fully cooperative, we introduce an arbitrary level of conflict

between our two players and investigate whether communication can emerge for

each level of conflict. Contrary to current literature in machine learning, we find

evidence that communication emerges in competitive scenarios—provided that the

agents’ interests are at least partially aligned. We further find that using LOLA

(Foerster et al., 2018a)—an effective strategy for resolving social dilemmas—to ex-

plicitly model opponent learning yields more effective communication protocols.

Finally, we consider the difference between continuous and discrete emergent com-

munication and find that discrete communication lends itself better to cooperative
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Figure 2.1 – Circular Biased Sender-Receiver Game has both agents given targets TR, TS that
are b apart and choose an action a to receive the L1 losses Lr

1, L
S
1

communication.

2.2 The Circular, Biased Sender-Receiver Game

2.2.1 Description

To investigate a range of competitive scenarios, we introduce a modified sender-

receiver game with a continuous-bias variable, b, that represents the agents’ conflict

of interest, ranging from fully cooperative to fully competitive. The two players—

the Sender (S ) and the Receiver (R)—have corresponding targets (Ts and Tr),

which are represented by angles on a circle that are b degrees apart: Tr = (Ts + b)

mod 360◦.

The game starts with the sender’s target being sampled uniformly from the

circle Ts ∼ Uniform[0, 360). The sender is given its target as input and outputs

a message, m = S(Ts), consisting of a single, discrete token from a vocabulary

m ∈ V . The receiver is given the message and outputs a scalar action a = R(m).

The goal of each agent is to make the receiver’s action as close as possible to its

own target value. After the receiver acts, both players get a loss between the action

and their respective targets, Li = L(a, Ti). In this way, the sender can implicitly

see the action of the receiver by seeing its effect. By using an L1 loss between

the angle of the target and action Li1(Ti, a) = min(|Ti − a|, 360◦ − |Ti − a|), it is
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evident that a game with b = 0◦ is fully cooperative (Lr1 = Ls1) and a game with the

maximum bias b = 180◦ is fully competitive or constant-sum (a generalisation of

zero-sum), see proof in section 2.2.2. All values in-between, b ∈ (0◦, 180◦), represent

the spectrum of partially cooperative/competitive general-sum games. Figure 2.1

gives an instance of this game ; the game’s algorithm is given in Algorithm 1. This

can be seen as the game from Crawford and Sobel (1982) modified to cover the

range of cooperative/competitive games.

Algorithm 1 Circular Biased Game Round

procedure Training Batch(b)
Ts ∼ Uniform(0, 360)
Tr ← Ts + b
m ∼ Categorical(S(Ts))
a← R(m)
Ls ← L1(Ts, a) = min(|Ts − a|, 360− |Ts − a|)
Lr ← L1(Tr, a) = min(|Tr − a|, 360− |Tr − a|)
R is updated with SGD
S is updated with REINFORCE or DiCE

2.2.2 Proof of Purely Cooperative/Competitive Game

For b = 0, Ts = Tr so trivially Ls = Lr and the game is fully cooperative.

For b = 180◦, Tr = Ts + 180 mod 360◦ we provide a visual demonstration in

Figure 2.2 that the sum is always Ls+Lr = 180◦ and therefore the game is constant-

sum and fully competitive. We can also think of this as moving the actions distance

d towards one agent’s target means moving it distance d away from the other agent’s

target.

Aside from visual, we provide a formal proof of a constant-sum game. We know

that 0 ≤ Tr, Ts, a ≤ 360◦. Assume without loss of generality Ts < Tr so Tr =

Ts + 180◦ and Ts ≤ 180◦ ≤ Tr ≤ 360◦

Ls + Lr = L1(Ts, a) + L1(Tr, a)

= min(|Ts − a|, 360◦ − |Ts − a|) + min(|Tr − a|, 360◦ − |Tr − a|)
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Figure 2.2 – The game with maximal bias 180◦ showing the sum of L1 losses Lr + Ls = 180◦

case 1: |Ts − a| < 360◦ − |Ts − a|

min(|Ts − a|, 360◦ − |Ts − a|) = |Ts − a|

|Ts − a| < 180◦

subcase a: Ts >= a

|Ts − a| = Ts − a

∵ Tr = Ts + 180◦

Tr ≥ a+ 180◦

∴ min(|Tr − a|, 360◦ − |Tr − a|) = 360− (Tr − a)

Ls + Lr = Ts − a+ 360◦ − (Tr − a)

= Ts − a+ 360◦ − Ts − 180◦ + a

= 180
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subcase b: Ts < a

|Ts − a| = a− Ts
a− Ts < 180◦

a < Ts + 180◦

a < Tr

∴ |Tr − a| = Tr − a

∵ Tr = Ts + 180◦

Tr < a+ 180◦

Tr − a < 180◦

2(Tr − a) < 360◦

Tr − a < 360◦ − (Tr − a)

∴ min(|Tr − a|, 360◦ − |Tr − a|) = Tr − a

∴ Ls + Lr = (a− Ts) + (Tr − a)

= Tr − Ts
= 180◦

We can extend the proof by symmetry (on the circle) for |Ts−a| ≥ 360◦−|Ts−a|,
so the sum of L1 losses Lr + Ls always equals 180◦ so the game is constant-sum

and therefore fully competitive.

2.2.3 Training Details

Both agents are implemented as MLPs with two hidden layers and ReLU (Nair

and Hinton, 2010) nonlinearities between all layers. The targets are sampled from

the circle, the sender takes its target, Ts, as input and outputs a categorical dis-

tribution over a vocabulary from which we sample a message—its output. The

receiver takes the message as input and deterministically outputs its action, a. Er-

rors are calculated using the L1 loss on the circle. The sender estimates its loss using

the score function estimator (Fu, 2006)—also known as REINFORCE (Williams,

1992)—and has an added entropy regularisation term. Since the loss is differen-

tiable with respect to the receiver, it is trained directly with gradient descent, so

we are training in the style of a stochastic computation graph (Schulman et al.,
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2015).

We train for 30 epochs of 250 batches, with batch size 64, and set the circum-

ference of our circle to 36 (so that a loss of 90◦ is an error of 9). Both agents are

trained using Adam (Kingma and Ba, 2014). To evaluate, we use a fixed test set

of 100 equidistant points ∈ [0◦, 180◦] and take the arg max of output distributions

instead of sampling. We do all hyperparameter searches with Oŕıon (Bouthillier

et al., 2019), using random search with a fixed budget of (100) searches. We per-

form a hyperparameter search over both agents’ learning rates, hidden layer sizes,

the vocabulary size, and entropy regularisation (when used). We always report re-

sults for given hyperparameters averaged over 5 random seeds, and we average our

metric for hyperparameter search over the last 10 epochs to capture some level of

stability as well as performance. All hyperparameter search spaces are available in

the config files of the code repository.

2.3 Communication: Cooperation or

Manipulation

2.3.1 Evaluating Information Transfer

To evaluate the communication emerged with a cheap-talk channel, we can

simply look to the sum of agents’ L1 losses. Under non-communication (or unin-

formative communication), we know that the receiver will just guess a point at

random, and the average loss for both players is the expected value of the loss—

given that it is drawn uniformly Ex∼U(0,360)[L
s
1(Ts, x)] = 90◦ Therefore, any error

for either agent below 90◦ is evidence of information transfer (Lowe et al., 2019).

Furthermore, since there is no other action space for agents to communicate in,

the information transfer must be happening in the emergent communication space

(Mordatch and Abbeel, 2018). Therefore, the lower Lr1+Ls1 is, the more informative

the learned protocol is ; and, the most informative protocol will have the lowest loss

mina∈(0,360) L
r
1 + Ls1 = b. To show this comparison, we always plot the loss under

uninformative communication (90◦) and the loss for each agent if they were to both

fairly split the bias (b/2).
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2.3.2 Information Transfer vs Communication

While we have found evidence of information transfer, does that necessarily

mean our agents have learned to communicate ? For example, our hyperparameter

search could find a minimal learning rate for the sender, such that it is essentially

static, and a normal configuration for the receiver. The game would then become not

one of learning a protocol between two agents, but rather just a receiver learning

the sender’s initial random mapping of targets to messages. The receiver could

then dominate the sender by always choosing a = Tr, which would yield Lr1 +

Ls1 = b ; namely, the optimal sum of losses and, therefore, optimal information

transfer. This situation is clearly not what we are looking for, but it would be

permissible, or potentially even encouraged, under an information-transfer objective

(as measured by the sum of agents’ L1 losses). It is, therefore, necessary to delineate

the differences in communication ; here, we can look to extant results in signalling

(Skyrms, 2010).

2.3.3 Cooperation vs. Manipulation

One perspective on information transfer is that of manipulation of receivers by

senders (Dawkins and Krebs, 1978) or vice-versa (Hinde, 1981) ; this manifests as

the domination of one agent over the other. We note that these situations are mo-

delled as cue-reading or sensory manipulation, respectively, and are distinct from

signalling—i.e., communication (Barrett and Skyrms, 2017). Accordingly, commu-

nication requires both agents to receive a net benefit (Krebs and Dawkins, 1984),

which implies some degree of cooperation (Lewis, 1969). For the fully-cooperative

case, previous metrics of joint reward (Lowe et al., 2019), or even influence of com-

munication (Jaques et al., 2019), are sufficient to drive the hyperparameter search.

But for competitive scenarios, neither of these can distinguish between manipula-

tion and cooperation (Skyrms and Barrett, 2018).

Since our focus is on the emergence of cooperative communication, we are looking

for settings where both agents perform better than either their fully-exploited losses

(Ls1 < b and Lr1 < b) or the loss under non-communication (Ls1 < 90◦ and Lr1 < 90◦).

With this goal in mind, we choose the sum of squared losses ((Ls2)
2 + (Lr2)

2) as our

hyperparameter-search metric. We can view our partially competitive scenario as

having a common-interest loss (180◦−b), in which both agents are fully cooperative,
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and a conflict-of-interest loss (b), in which both agents are fully competitive. The

sum of L1 losses optimises only for the common interest, whereas L2 prefers a more

fair division of the conflict-of-interest loss in addition to optimising common interest

(see proof in 2.3.4). We use the L2 metric only on hyperparameter search and keep

L1 as our game’s loss to maintain a constant-sum game for the fully competitive

case.

2.3.4 Proof of L2 Fairness

Assume without loss of generality Ts < Tr, we are minimizing the sum of L2

losses

min
a
Ls + Lr = min

a
(Ts − a)2 + (Tr − a)2

= min
a

(Ts − a)2 + (Ts + b− a)2

let Ts = x

= min
a

(x− a)2 + (x+ b− a)2

= min
a
x2 − 2ax+ a2 + x2 + 2bx+ b2 − 2ax− 2ab+ a2

= min
a

2(x− 2ax+ a2 + bx− ab+ b2/4) + b2/2

= min
a

2(x− a+ b/2)2 + b2/2

a = x+ b/2

Sum of L2 losses is minimized when the action is Ts + b/2 or halfway between

both agents’ targets.
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2.4 Competitive Selfish Communication

2.4.1 Communication Is Proportional To Cooperation

We use six equidistant values of b ∈ [0, 30◦, 60◦, 90◦, 120◦, 150◦] and for each

one, we do a hyperparameter search to find the lowest achievable L2
s + L2

r. We do

not usually test b = 180◦ because the game is constant-sum and therefore trivially

Ls1 + Lr1 = 180◦, but for completeness you can see the results of a hyperparameter

search with b = 180◦ in Figure 2.16. We report our results in Figure 2.3 and find

that agents do learn to cooperatively communicate without any special learning

rules contrary to current literature. We can see that the performance decreases

proportionately to the bias, meaning the sender is less informative with messages,

forcing the receiver to be less accurate in its own guesses. This matches the theoreti-

cal results of Crawford and Sobel (1982) ; information transfer with communication

is inversely proportional to the conflict of interest. Plots for each b are in shown in

Figure 2.6. For the curve, we still plot the L1 losses to maintain consistency and

to make clearer the comparison to the no-communication baseline and the optimal

information transfer (common interest maximisation).

We find that our results are basically unchanged between the different hyper-

parameter metrics ; a relatively fair and useful protocol is learned by the agents,

but this deteriorates in more competitive scenarios. This is clear when compa-

ring the stability and relative efficacy of protocols in b = 30◦, 60◦, shown in Fi-

gures 2.3b, 2.3c, and that of b = 90◦ shown in Figure 2.3d. We can understand

this through the lens of honest communication, which can be taken advantage of

in highly competitive scenarios. If, for example, the sender communicates, with

complete honesty, its own coordinates, then the receiver can take advantage of this

and choose its location exactly so that Lr = 0 and Ls = b. Comparing this situa-

tion to non-communication (Lr = Ls = 90◦), it is clear that even fully-exploited

communication is a strictly dominant strategy for b < 90◦ (i.e, when the game is

more cooperative than competitive).
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(a) Best hyperparameters found for each bias b (b) bias b = 30◦

(c) bias b = 60◦ (d) bias b = 90◦

Figure 2.3 – Figure 2.3a plots the lowest Lr
1+Ls

1 test loss found with a hyperparameter search for
b ∈ [0, 30◦, 60◦, 90◦, 120◦, 150◦], demonstrating that informative communication (below the dashed
line) is indeed learned by selfish agents. Note that performance even in the fully cooperative b = 0
is not optimal because of the bottleneck of discrete communication. For b ∈ [30◦, 60◦, 90◦] we show
the training curve of the best hyperparameters found in 2.3b,2.3c,2.3d. We plot the test loss over
training epochs and showing the mean and standard deviation over 5 seeds, finding that for
b < 90◦ we find stable and relatively fair communication is naturally learned

2.4.2 Improving Competitive Communication With LOLA-

DiCE

For more competitive cases, fully-exploitable communication is no longer domi-

nant, and active communication now requires both agents to cautiously cooperate.

To achieve this cooperation, we propose using LOLA (Foerster et al., 2018a)—a

learning rule, resembling theory-of-mind, that allows us to backpropogate through

n steps of the opponent’s learning. LOLA was able to emerge cooperative beha-

viour in an iterated prisoner’s dilemma, so it is a prime candidate for resolving our

game in a similar situation. We experiment with LOLA in three configurations—
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(a) Comparing the original setup, LOLA on the sender,
LOLA on the receiver, and LOLA on both

(b) Comparing 1, 2, and 3-step LOLA on both agents

(c) 1-step LOLA on Sender and Receiver for b = 90◦ (d) 2-step LOLA on Sender and Receiver for b = 90◦

Figure 2.4 – LOLA improves learning to communicate and it is especially visible at b = 90◦

where our original setup does very poorly. 2.4b shows that higher step LOLA improves slightly
further but not past 2-step. Best feasible communication protocols found for b = 90◦ using 1-step
(2.4c) and 2-step LOLA (2.4d) on both agents demonstrates that the gains in performance over
the basic setup shown in Figure 2.3d are not just from one agent doing better (though the sender
is doing better) but both agents improving in performance and stability. Shaded area is standard
deviation over 5 seeds
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LOLA on the sender, LOLA on the receiver, LOLA on both—and do a similar

hyperparameter search, with the added search space of the LOLA learning rate.

Per the improvements made by Foerster et al. (2019), we replace the receiver’s score

function estimate with the DiCE estimator, and we backpropogate through exact

copies of opponents. Per Foerster et al. (2018a), these results should be similar

but lower variance compared to using opponent modelling. We show our results in

Figure 2.4a with extended plots in Figures 2.8, 2.9, 2.10.

We find that LOLA on the sender is ineffective, but LOLA on the receiver and

on both agents does indeed lead to better performance. This implies that emer-

ging communication in competitive scenarios necessitates cooperation and that

this cooperation can be found through explicit opponent modelling. Furthermore,

comparing the curves of basic agents (Figure 2.3d) with those of LOLA agents

(Figure 2.4c) shows that gains in performance are not from one agent dominating

the other, but from both agents improving and increasing stability. We also look

at the performance of n-step LOLA, which backpropogates through n > 1 steps

of opponent learning. Figure 2.4b demonstrates that 2-step LOLA slightly outper-

forms 1-step LOLA, but 3-step LOLA does not provide any increase over 2-step.

We see from Figure 2.4d that the increase comes mostly from stability of learning

and slight improvement on the part of the sender.

2.4.3 Discrete vs Continuous Communication

Another axis to consider is whether discrete or continuous communication lends

itself better to learning with selfish agents. To compare, we make the sender’s mes-

sage a real-valued scalar and appropriately change its output distribution to be a

Gaussian, for which it learns the mean and variance, concretely described in Al-

gorithm 2. We, again, run hyperparameter searches, and we consider training our

baseline training with a REINFORCE Sender and deterministic receiver as well as

training both agents with 1-step LOLA. Our results in Figure 2.5a suggest that

the learned protocols for continuous communication are all highly informative and

near optimal. However, in all cases, the receiver is learning to manipulate the sen-

der, and there is little evidence of cooperative communication. Indeed, we found no

cases of both agents having a net benefit (Lr, Ls < 90◦) in any of the hyperpara-

meter runs for continuous messages between a Gaussian REINFORCE sender and
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deterministic receiver past b = 90◦, and only two cases of net benefit for LOLA-1

agents. Comparing this to discrete communication with the same LOLA-1 agents

in Figure 2.5f, we can clearly see that they have a preference for more coopera-

tive behaviour. Thus, we find that discrete messages generated with a Categorical

distribution are an important component in emerging cooperative self-interested

communication, as compared to continuous messages with a Gaussian distribution.

Algorithm 2 Continuous Circular Biased Sender-Receiver Game

procedure Training Batch(b)
Ts ∼ Uniform(0, 360)
Tr ← Ts + b
µ, σ ← S(Ts)
m ∼ Gaussian(µ, σ)
a← R(m)
Ls ← L1(Ts, a) = min(|Ts − a|, 360− |Ts − a|)
Lr ← L1(Tr, a) = min(|Tr − a|, 360− |Tr − a|)
R is updated with SGD
S is updated with REINFORCE or DiCE
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(a) Comparing discrete and conti-
nuous communication

(b) Continuous Game for b = 90◦ (c) Continuous Game for b = 120◦

(d) Ls vs. Lr for all 100 searches for b = 30◦ (e) Ls vs. Lr for all 100 searches for b = 60◦

(f) Ls vs. Lr for all 100 searches for b = 90◦ (g) Ls vs. Lr for all 100 searches for b = 120◦

Figure 2.5 – The comparison between discrete and continuous communication for both the
REINFORCE-deterministic setup as well as 1-step LOLA agents is shown in Figure 2.5a. We
see that though overall continuous communication can achieve highest information transfer, the
gains in performance seem to mostly from manipulation of the sender by the receiver. Two
examples are shown for REINFORCE agents in Figures 2.5b,2.5c. To find a trend, we plot all 100
hyperparameter runs for b ∈ [3, 6, 9, 12] between continuous and discrete communication using 1-
step LOLA agents in Figures 2.5d,2.5e,2.5f,2.5g. We find that manipulation is the common result
in continuous communication though individual cooperative points can sometimes be found. In
general, continuous communication does not lend itself to cooperative communication
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2.5 Extra Plots

(a) bias b = 0◦ (b) bias b = 30◦ (c) bias b = 60◦

(d) bias b = 90◦ (e) bias b = 120◦ (f) bias b = 150◦

Figure 2.6 – REINFORCE Sender, Deterministic Receiver, L1 hyperparameter search
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(a) bias b = 0◦ (b) bias b = 30◦ (c) bias b = 60◦

(d) bias b = 90◦ (e) bias b = 120◦ (f) bias b = 150◦

Figure 2.7 – REINFORCE Sender, Deterministic Receiver, L2 hyperparameter search. Note
these are identical to Figure 2.6 except for b = 150◦

(a) bias b = 0◦ (b) bias b = 30◦ (c) bias b = 60◦

(d) bias b = 90◦ (e) bias b = 120◦ (f) bias b = 150◦

Figure 2.8 – DiCE Sender, LOLA-1 Receiver
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(a) bias b = 0◦ (b) bias b = 30◦ (c) bias b = 60◦

(d) bias b = 90◦ (e) bias b = 120◦ (f) bias b = 150◦

Figure 2.9 – LOLA-1 Sender, Deterministic Receiver

(a) bias b = 0◦ (b) bias b = 30◦ (c) bias b = 60◦

(d) bias b = 90◦ (e) bias b = 120◦ (f) bias b = 150◦

Figure 2.10 – LOLA-1 Sender, LOLA-1 Receiver
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(a) bias b = 0◦ (b) bias b = 30◦ (c) bias b = 60◦

(d) bias b = 90◦ (e) bias b = 120◦ (f) bias b = 150◦

Figure 2.11 – LOLA-2 Sender, LOLA-2 Receiver

(a) bias b = 0◦ (b) bias b = 30◦ (c) bias b = 60◦

(d) bias b = 90◦ (e) bias b = 120◦ (f) bias b = 150◦

Figure 2.12 – LOLA-3 Sender, LOLA-3 Receiver
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(a) bias b = 0◦ (b) bias b = 30◦ (c) bias b = 60◦

(d) bias b = 90◦ (e) bias b = 120◦ (f) bias b = 150◦

Figure 2.13 – LOLA-4 Sender, LOLA-4 Receiver

(a) bias b = 0◦ (b) bias b = 30◦ (c) bias b = 60◦

(d) bias b = 90◦ (e) bias b = 120◦ (f) bias b = 150◦

Figure 2.14 – Gaussian Sender. Deterministic Receiver playing the continuous game
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(a) bias b = 0◦ (b) bias b = 30◦ (c) bias b = 60◦

(d) bias b = 90◦ (e) bias b = 120◦ (f) bias b = 150◦

Figure 2.15 – Gaussian LOLA Sender. LOLA Receiver playing the continuous game

Figure 2.16 – REINFORCE Sender vs Deterministic Receiver errors for all hyperparameter runs
with b = 180◦ shows that agents are mostly fair in the fully competitive constant-sum game
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3 Conclusion

First and foremost, we show evidence against the current notion that selfish

agents do not learn to communicate, and we hope our findings encourage more

research into communication under competition. We have shown three important

properties of communication. First, a game being more cooperative than compe-

titive is sufficient to naturally emerge communication. Second, we’ve found that

LOLA improves effective selfish communication and, using our metric, we find it

does so by improving both agents’ performance and stability. Third, we’ve compa-

red a categorical distribution over a discrete communication channel and a single

Gaussian with a continuous communication channel finding that the former better

encourages the learning of cooperative communication, whereas the latter lends

itself to non-cooperative manipulation. In order to make these experiments we’ve

also clarified the distinction between information transfer, communication, and ma-

nipulation. This extends the work of Lowe et al. (2019) to competitive scenarios,

providing a better understanding of quantitative metrics for measure emergent

communication in competitive environments.

In fully-cooperative emergent communication, both agents fully trust each other,

so cooperatively learning a protocol is mutually beneficial. In competitive MARL,

the task is using an existing protocol (or action space) to compete with each other.

However, selfish emergent communication combines these two since the inherent

competitiveness of using the protocol to win is tempered by the inherent coopera-

tiveness of learning it ; without somewhat agreeing to meanings, agents cannot use

those meanings to compete (Searcy and Nowicki, 2005; Skyrms and Barrett, 2018).

Thus, the agents must both learn a protocol and use that protocol simultaneously.

In this way, even while competing, selfish agents emerging a communication pro-

tocol must learn to cooperate.
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