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Résumé

L’apprentissage robotique est incroyablement prometteur pour l’intelligence artificielle incar-
née, avec un apprentissage par renforcement apparemment parfait pour les robots du futur:
apprendre de l’expérience, s’adapter à la volée et généraliser à des scénarios invisibles.

Cependant, notre réalité actuelle nécessite de grandes quantités de données pour former
la plus simple des politiques d’apprentissage par renforcement robotique, ce qui a suscité
un regain d’intérêt de la formation entièrement dans des simulateurs de physique efficaces.
Le but étant l’intelligence incorporée, les politiques formées à la simulation sont transférées
sur du matériel réel pour évaluation; cependant, comme aucune simulation n’est un modèle
parfait du monde réel, les politiques transférées se heurtent à l’écart de transfert sim2real:
les erreurs se sont produites lors du déplacement des politiques des simulateurs vers le monde
réel en raison d’effets non modélisés dans des modèles physiques inexacts et approximatifs.

La randomisation de domaine - l’idée de randomiser tous les paramètres physiques dans
un simulateur, forçant une politique à être robuste aux changements de distribution - s’est
avérée utile pour transférer des politiques d’apprentissage par renforcement sur de vrais
robots. En pratique, cependant, la méthode implique un processus difficile, d’essais et d’er-
reurs, montrant une grande variance à la fois en termes de convergence et de performances.
Nous introduisons Active Domain Randomization, un algorithme qui implique l’apprentis-
sage du curriculum dans des espaces de tâches non structurés (espaces de tâches où une
notion de difficulté - tâches intuitivement faciles ou difficiles - n’est pas facilement dispo-
nible). La randomisation de domaine active montre de bonnes performances sur le pourrait
utiliser zero shot sur de vrais robots. La thèse introduit également d’autres variantes de l’al-
gorithme, dont une qui permet d’incorporer un a priori de sécurité et une qui s’applique au
domaine de l’apprentissage par méta-renforcement. Nous analysons également l’apprentis-
sage du curriculum dans une perspective d’optimisation et tentons de justifier les avantages
de l’algorithme en étudiant les interférences de gradient.
Mots Clés: domain randomization, robotics, transfer learning, curriculum learning
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Abstract

Robotic learning holds incredible promise for embodied artificial intelligence, with reinforce-
ment learning seemingly a strong candidate to be the software of robots of the future: learning
from experience, adapting on the fly, and generalizing to unseen scenarios.

However, our current reality requires vast amounts of data to train the simplest of robotic
reinforcement learning policies, leading to a surge of interest of training entirely in efficient
physics simulators. As the goal is embodied intelligence, policies trained in simulation are
transferred onto real hardware for evaluation; yet, as no simulation is a perfect model of the
real world, transferred policies run into the sim2real transfer gap: the errors accrued when
shifting policies from simulators to the real world due to unmodeled effects in inaccurate,
approximate physics models.

Domain randomization - the idea of randomizing all physical parameters in a simulator,
forcing a policy to be robust to distributional shifts - has proven useful in transferring
reinforcement learning policies onto real robots. In practice, however, the method involves
a difficult, trial-and-error process, showing high variance in both convergence and perfor-
mance. We introduce Active Domain Randomization, an algorithm that involves curriculum
learning in unstructured task spaces (task spaces where a notion of difficulty - intuitively
easy or hard tasks - is not readily available). Active Domain Randomization shows strong
performance on zero-shot transfer on real robots. The thesis also introduces other variants
of the algorithm, including one that allows for the incorporation of a safety prior and one
that is applicable to the field of Meta-Reinforcement Learning. We also analyze curriculum
learning from an optimization perspective and attempt to justify the benefit of the algorithm
by studying gradient interference.

Keywords: domain randomization, robotics, transfer learning, curriculum learning
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Chapter 1

Introduction

Machine learning often concerns itself with learning information from data. In regression
settings, we often want to predict things like housing prices, or, as in classification, whether
this particular image is a dog or cat. However, implicit in all main branches of machine
learning - supervised, unsupervised, and reinforcement - is the notion of a data distribution.
Despite the fact that we may never see it, there is a data distribution - some distribution
over real estate pricing, animal images, etc. from which the data we observe is sampled from.

The machine learning paradigm comprises of two, coarsely-defined stages: training and
testing. During training, algorithms aim to extract patterns in data: mapping, for example,
from images to labels or from states to actions. The data in this stage comes with some
supervisory signal, enabling an algorithm to learn. Learning consists of updating parameters
via incorporation of the signal into an algorithm’s decision-making process.

During testing, the algorithm, using its parameters acquired from the training stage,
generates open-loop predictions given data. Often, at this stage, the supervisory signal is
known only to the human experimenter, enabling fair comparison across algorithms and
approaches.

This thesis generally concerns itself with problems under the jurisdiction of transfer
learning. The previous paragraphs, which describe the theoretical setup of most machine
learning problems, require the existence of a data distribution p(x). p(x) can be the distri-
bution of handwritten digits, natural images, or states seen by a policy in a reinforcement
learning environment. The true p(x) is often high-dimensional, vaguely-defined, and most
importantly, unattainable. However, its existence is guaranteed in most machine learning
problem settings and is often held constant across training and testing. Transfer learning
comes into play when it doesn’t.

What does it mean to change a distribution? Mathematically, it is simple: given some
random variable X (representing our data), we train an algorithm on data distribution p(x)



which has some support. Then, we test our output on a different distribution q(x), one with
a different support than p.

While transfer learning can be simple shifts in data distribution (i.e the label distribution
of cats vs. dogs being 60% − 40% at testing, when equal at training), many real-world
problems can see dramatic changes in distribution. Transfer learning is precisely the issue
that makes things like deep learning-based autonomous driving [31] and in-the-wild chatbots
[88] so difficult to deploy.

Throughout much of this thesis, the transfer learning problem studied is sim2real transfer :
a robotics-centric problem that occurs when training policies fully in simulation while testing
them on real robotic hardware. This problem is introduced in its entirety in Chapter 2.

The rest of this thesis is organized as follows:
• Section 1.1 covers mathematical preliminaries common to the work covered in this
thesis.
• Section 1.2 covers related work in the space of reinforcement learning, robot lear-
ning, multi-task learning, and curriculum learning.
• Section 1.3 covers a phenomenon of deep learning and generalization in supervised
learning, one which is exploited by the rest of the work covered in the thesis.
• Chapter 2 covers Active Domain Randomization [46], a novel algorithm which aims
to address the sim2real transfer problem.
• Chapter 3 covers optimization characteristics of curriculum learning for neural net-
works.
• Chapter 4 covers an application of Active Domain Randomization within the meta-
reinforcement learning domain.

1.1. Preliminaries
In this section, we lay out the necessary theoretical and experimental tools to understand

the remainder of the thesis. For brevity, we provide external references, and summarize only
the required information below.

1.1.1. Reinforcement Learning

We consider a Reinforcement Learning (RL) framework [76] where some task T is defined
by a Markov Decision Process (MDP) consisting of a state space S, action space A, state
transition function P : S × A 7→ S, reward function r : S × A 7→ R, and discount factor
γ ∈ (0,1). The goal for an agent trying to solve T is to learn a policy π with parameters θ that
maximizes the expected total discounted reward. We define a rollout τ = (s0, a0..., sT , aT )
to be the sequence of states st and actions at ∼ π(at|st) executed by a policy π in the
environment.
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To maximize the reward, we maximize a utility function, J(πθ), with policy gradient
methods [77]:

J(πθ) = Es,a∼πθ

[ ∞∑
t=0

γtr(st, at)
]

(1.1.1)

In our work, we use various variants of policy gradient estimators (REINFORCE [89],
REINFORCE with baseline, Actor-Critic [37, 40]), but in general, we can use various me-
thods to compute the policy gradient (direction of maximum ascent): ∇θJ(πθ).

1.1.2. Maximum Entropy Reinforcement Learning

Oftentimes, actions in reinforcement learning policies are defined as distributions over
the action distribution: p(a|s). Such a decision allows us to cleanly incorporate randomness
into the learning process, which is crucial for agents to explore the state spaces of their
environments.

Traditionally, these action distributions are characterized by simple distributions: cate-
gorical, for discrete action spaces, or by a Gaussian in the continuous action case. Using
distributions allows for the characterization of entropy, which can be roughly thought of as
the randomness of the distribution.

H(X) = EX [I(X)] = −
∑
x

p(x) log p(x) (1.1.2)

where I(X) is the self-information of the random variable X.
Maximum Entropy RL (MaxEnt RL) deals with maximizing the long-term entropy jointly

with the expected return. MaxEnt RL maximizes entropy inside of the expectation operator,
rather than the single-step entropy (which is what is known as an entropy bonus). This can
be written as:

π∗ = arg max
π

Eπ

[ ∞∑
t=0

γt(rt + αH)
]

(1.1.3)

with entropy H being controlled by temperature parameter α. The entropy H is shorthand
for the entropy of the policy distribution at each timestep.

While MaxEnt RL is commonly thought of as maximizing entropy, the entropy term itself
is derived from a KL-Divergence term:

π∗ = arg max
π

Eπ

[ ∞∑
t=0

γt(rt + αDKL[π||π̄])
]

(1.1.4)

where the KL-Divergence of π is calculated with respect to a reference policy, π̄. Following
[71], when we take π̄ to be a constantly-uniform policy, we recover the MaxEnt RL for-
mulation (up to a constant, which correctly gets dropped when taking the maximization).
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Taking a uniform prior, we encourage our learned policy to maximize reward while acting as
randomly as possible. But, if given a prior policy to follow, MaxEnt RL provides a natural
way to incorporate it into the decision making and learning process.

1.1.3. Domain Randomization

Domain randomization (DR) is a technique to increase the generalization capability of
policies trained in simulation. Domain Randomization (DR) requires a prescribed set of
Nrand simulation parameters to randomize, as well as corresponding ranges to sample them
from. A set of parameters is sampled from a randomization space Ξ ⊂ RNrand , where each
randomization parameter ξ(i) is bounded on a closed interval {

[
ξ

(i)
low, ξ

(i)
high

]
}Nrandi=1 .

When a configuration ξ ∈ Ξ is passed to a non-differentiable simulator S1, it generates an
environment E. At the start of each episode, the parameters are uniformly sampled from the
ranges, and the environment generated from those values is used to train the agent policy π.

DR may perturb any to all elements of the task T ’s underlying MDP2, with the exception
of keeping R and γ constant. DR therefore generates a set of MDPs that are superficially
similar, but can vary greatly in difficulty depending on the character of the randomization.
Upon transfer to the target domain, the hope is that the agent policy has learned to generalize
across MDPs, and sees the final domain as just another variation of parameters.

The most common instantiation of DR, UDR is summarized in Algorithm 1.

Algorithm 1 Uniform-Sampling Domain Randomization
1: Input: Ξ: Randomization space, S: Simulator
2: Initialize πθ: agent policy, Trand = ∅
3: for each episode t do
4: for i = 1 to Nrand do . Uniformly sample parameters
5: ξ

(i)
t ∼ U

[
ξ

(i)
low, ξ

(i)
high

]
6: Et ← S(ξt) . Generate randomized environments
7: rollout τt ∼ πθ(·;Et) . Rollout policy in randomized environments
8: Trand ← Trand ∪ τt
9: for each policy update step do . Agent policy update
10: with experience buffer Trand update:
11: θ ← θ + ν∇θJ(πθ) . Policy gradient update

UDR generates randomized environment instances Et by uniformly sampling Ξ. The
agent policy π is then trained on rollouts τt produced in randomized environments Et.

1We use the assumption of non-differentability because: (A) most physics simulators are non-differentiability
(B) differentiable simulators have more efficient methods of propogating reward signals that REINFORCE-
like estimates.
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1.1.4. Curriculum Learning

Curriculum learning focuses on a meta-optimization task, where a black-box learner is
required to learn a goal task ξg or a distribution of tasks, p(ξ). By abstracting away the
inner-loop learner, curriculum learning focuses on the sequence of tasks to show the agent,
rather than focusing on learning how to solve any particular task. Oftentimes, curriculum
learning focuses on showing the learner easier versions of the goal task - for example, in a
navigation setting, starting states closer to the goal may be shown to the agent first [21, 3],
progressively getting harder until the goal task ξg is achieved. Curriculum learning works
well with structured task spaces, or when there is a clear notion of difficulty between tasks.
Learning a curriculum in an unstructured task space, where a notion of easier tasks cannot
be discerned, is still an open research question.

1.1.5. Transfer Learning

When training machine learning models, we often make an assumption that the under-
lying data-generating distribution p(x) is constant for both training and testing [61], even
if the training and testing datasets are disjoint. However, when the data-generating distri-
bution is not held constant between training and testing, the problem setting becomes an
instantiation of transfer learning.

When training machine learning models solely on distribution p(x) and testing on a
different distribution q(x), zero-shot transfer deals with problem settings where no further
optimization occurs at test time using distribution q(x). The model trained in the data-
regime defined by p(x), say a simulator, is used without tuning in the new distribution q(x),
which for example, can be deployed on a real-world robot.

While zero-shot transfer is often motivated through the lens of expense (i.e it is cheaper
to train a robotic agent in a simulation than on the physical robot), many real-world ap-
plications of machine learning allow for fine-tuning in the test domain. When only a few
data samples can be collected and used for optimization, the problem lies in the few-shot
transfer regime: for example, a robotic agent, trained in simulation, may get the opportu-
nity to execute a small number of real-world rollouts, ideally used to quickly fine-tune to the
test distribution. However, in the context of RL, fine-tuning at test time requires additional
policy gradient steps. Often, evaluating the reward for RL algorithms at test time can be
problematic, leading to a surge of interest in zero-shot transfer learning.

1.1.6. Bayesian Optimization

In the Bayesian Optimization (BO) framework [6], we are concerned with the global
optimization of some stationary function f : Φ→ R:
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φ∗ = arg max
φ∈Φ

f(φ) (1.1.5)

If given knowledge about f (i.e f is convex, piece-wise constant, etc.) we can use spe-
cialized techniques, but in general, the structure of the underlying function is not known.
Moreover, f is often considered to be expensive to evaluate, which rules out the use of
exhaustive search or gradient-based methods from the choice of optimization tools.

Since f is often expensive to evaluate, we need to carefully pick where to evaluate our
function. Often given a limited budget, or number of evaluations, we transform the original
optimization problem into one that optimizes where to next evaluate the function f . The
function which handles this decision is called the acquisition function. The acquisition func-
tion is a much cheaper function to optimize, and is often chosen or designed using prior
knowledge about the types of solutions that an experimenter expects. The maximization of
the acquisition function a(x) is sequential, meaning that past choices of iterates and their
function evaluations inform future evaluations. The acquisition maximization can be written
as:

φt+1 = arg max
φ

a(φ|Dt) (1.1.6)

where dataset Dt is the set of past iterates paired with their evaluations up until time t,
Dt = {φt′ , f(φt′))}tt′=1.

1.1.7. Meta-Learning

Most deep learning models are built to solve only one task and often lack the ability to
generalize and quickly adapt to solve a new set of tasks. Meta-learning involves learning
a learning algorithm which can adapt quickly rather than learning from scratch. Several
methods have been proposed, treating the learning algorithm as a recurrent model capable
of remembering past experience [70, 51, 48], as a non-parametric model [36, 84, 73], or as
an optimization problem [64, 19]. In this paper, we focus on a popular version of a gradient-
based meta-learning algorithm called Model Agnostic Meta-Learning (MAML; [19]).

1.1.8. Gradient-based Meta-Learning

The main idea in MAML is to find a good parameter initialization such that the model
can adapt to a new task, τ , quickly. Formally, given a distribution of tasks p(τ) and a loss
function Lτ corresponding to each task, the aim is to find parameters θ such that the model
fθ can adapt to new tasks with one or few gradient steps. For example, in the case of a
single gradient step, the parameters θ′τ adapted to the task τ are

θ′τ = θ − α∇θLτ (Dtrain, fθ), (1.1.7)
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with step size α, where the loss is evaluated on a (typically small) dataset Dtrain of training
examples from task τ . In order to find a good initial value of the parameters θ, the objective
function being optimized in MAML is written as

min
θ

∑
τi

Lτi(Dtest, fθ′
τi

), (1.1.8)

where it evaluates the performance in generalization on some test examples Dtest for task
τ . The meta objective function is optimized by gradient descent where the parameters are
updated according to

θ ← θ − β∇θ

∑
τi

Lτi(Dtest, fθ′
τi

), (1.1.9)

where β is the outer step size.

1.1.9. Meta-Reinforcement Learning

In addition to few-shot supervised learning problems, where the number of training
examples is small, meta-learning has also been successfully applied to reinforcement lear-
ning problems. In meta-reinforcement learning, the goal is to find a policy that can quickly
adapt to new environments, generally from only a few trajectories. [63] treat this problem
by conditioning the policy on a latent representation of the task, and [16, 85] represent the
reinforcement learning algorithm as a recurrent network, inspired by the “black-box” meta-
learning methods mentioned above. Some meta-learning algorithms can even be adapted
to reinforcement learning with minimal changes [48]. In particular, MAML has also shown
some success in robotics applications [20]. In the context of reinforcement learning, Dtrain

and Dtest are datasets of trajectories sampled by the policies before and after adaptation (i.e
rollouts in Dtrain are sampled before the gradient step in Equation 1.1.7, whereas those in
Dtest are sampled after). The loss function used for the adaptation is REINFORCE [90],
and the outer, meta objective in Equation 1.1.9 is optimized using TRPO [72].

1.1.10. Stein Variational Policy Gradient

For interested readers, we provide a brief overview of Stein’s Method, Stein Variational
Gradient Descent, and Stein Variational Policy Gradient. A more thorough overview can be
found in [44].

Stein’s Method [75] is an approach for obtaining bounds on distances between distri-
butions, but has generally stayed in the realm of theoretical statistics. Recently, [23] and
[41] applied Stein’s Method to machine learning, showing that it can be used efficiently
for goodness-of-fit tests. As a follow-up, [42] derived Stein Variational Gradient Des-
cent (SVGD), a gradient-based variational inference algorithm that iteratively transforms
a set of particles into a target distribution, using an underlying connection between Stein’s
Method and KL-Divergence minimization.
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However, in a reinforcement learning context, the target distribution is not known, and
therefore needs to be sampled from via interactions with an environment. [43] extended
SVGD to Stein Variational Policy Gradient (SVPG), which learns an ensemble of policies
µφ in a maximum-entropy RL framework [94].

max
µ

Eµ[J(µ)] + αH(µ) (1.1.10)

SVPG uses SVGD to iteratively update an ensemble of N policies or particles µφ =
{µφi}Ni=1 using:

µφi ← µφi + ε

N

N∑
j=1

[∇µφj
J(µφj)k(µφj , µφi) + α∇µφj

k(µφj , µφi)] (1.1.11)

with step size ε and positive definite kernel k. This update rule balances exploitation (first
term moves particles towards high-reward regions) and exploration (second term repulses si-
milar policies). As the original authors use an improper prior on the distribution of particles,
we simplify the notation by dropping the term from Equation 1.1.11.

1.2. Related Work
In this section, we aggregate related work that helps understand the landscape of task

distribution learning, adaptive simulators, and curriculum learning within various contexts.

1.2.1. Dynamic and Adversarial Simulators

Simulators have played a crucial role in transferring learned policies onto real robots, and
many different strategies have been proposed. Randomizing simulation parameters for better
generalization or transfer performance is a well-established idea in evolutionary robotics
[92, 5], but recently has emerged as an effective way to perform zero-shot transfer of deep
reinforcement learning policies in difficult tasks [2, 79, 57, 69].

Learnable simulations are also an effective way to adapt a simulation to a particular
target environment. [10] and [68] use RL for effective transfer by learning parameters of a
simulation that accurately describes the target domain, but require the target domain for
reward calculation, which can lead to overfitting. In contrast, Active Domain Randomization
(ADR), presented in Ch.2, requires no target domain, but rather only a reference domain (the
default simulation parameters) and a general range for each parameter. ADR encourages
diversity, and as a result, gives the agent a wider variety of experience. In addition, unlike
[10], our method does not require carefully-tuned (co-)variances or task-specific cost func-
tions. Concurrently, [32] also showed the advantages of learning adversarial simulations and
the disadvantages of purely uniform randomization distributions in object detection tasks.
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To improve policy robustness, Robust Adversarial Reinforcement Learning (RARL) [58]
jointly trains both an agent and an adversary who applies environment forces that disrupt
the agent’s task progress. ADR removes the zero-sum game dynamics, which have been
known to decrease training stability [47]. More importantly, our method’s final outputs -
the SVPG-based sampling strategy and discriminator - are reusable and can be used to train
new agents as shown in Appendix A.3, whereas a trained RARL adversary, would overpower
any new agent and impede learning progress.

1.2.2. Active Learning and Informative Samples

Active learning methods in supervised learning try to construct a representative, some-
times time-variant, dataset from a large pool of unlabelled data by proposing elements to
be labeled. The chosen samples are labelled by an oracle and sent back to the model for
use. Similarly, ADR searches for what environments may be most useful to the agent at any
given time. Active learners, like BO methods discussed in Section 1.1.6, often require an
acquisition function (derived from a notion of model uncertainty) to chose the next sample.
Since ADR handles this decision through the explore-exploit framework of RL and the α in
SVPG, ADR sidesteps the well-known scalability issues of both active learning and BO [82].

Recently, [81] showed that certain examples in popular computer vision datasets are
harder to learn and that some examples are forgotten much quicker than others. We explore
the same phenomenon in the space of MDPs defined by our randomization ranges and try to
find the “examples” that cause our agent the most trouble. Unlike in active learning or [81],
we have no oracle or supervisory loss signal in RL, and instead, attempt to learn a proxy
signal for ADR via a discriminator.

1.2.3. Generalization in Reinforcement Learning

Generalization in RL has long been one of the holy grails of the field, and recent work
like [55], [11], and [18] highlight the tendency of deep RL policies to overfit to details of
the training environment. Our experiments exhibit the same phenomena, but our method
improves upon the state of the art by explicitly searching for and varying the environment
aspects that our agent policy may have overfit to. We find that our agents, when trained more
frequently on these problematic samples, show better generalization over all environments
tested.

1.2.4. Interference and Transfer in Multi-Task Learning

Multi-task learning deals with training a single agent to do multiple things, such as a
robotic arm trained to pick up objects and open doors. Often in multi-task learning, we
aim to train a single policy that can accomplish everything, rather than training multiple,
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separate policies for each task. When sharing parameters, or more commonly, using the same
network across tasks, gradients from various sources can interfere or transfer, hindering or
enabling learning across the curriculum. Recently, [65] have shown that when distinct tasks
with minimal gradient interference are trained on, the resulting agent transfers better in a
multi-task learning scenario.

When two separate tasks have gradients pointing in opposite directions, they can cancel
out, or combine (average) into a third direction that is not optimal for either task. When
taking the average gradient step, it has been empirically shown by [9] that when gradients
do not interfere, agents improve their multi-task performance. Ideas have been proposed
that these gradients align better [56], but in our setting, we focus on the sampled gradients
from the tasks without any transformation.

We can quantify transfer and interference of gradients using the cosine similarity of
gradients from two tasks, Ta and Tb, as follows:

ρab(θ) = 〈∇JTa(θ),∇JTb(θ)〉
||∇JTa(θ)||||∇JTb(θ)||

(1.2.1)

where cosine similarity ρ(θ) is bounded between +1 (full transfer) and −1 (full interfe-
rence).

1.2.5. Optimization Analysis in Reinforcement Learning

In policy optimization, we traditionally consider a RL framework [76] where some task T
is defined by a MDP consisting of a state space S, action space A, state transition function
P : S × A 7→ S, reward function R : S × A 7→ R, and discount factor γ ∈ (0,1). The goal
for an agent trying to solve T is to learn a policy π with parameters θ that maximizes the
expected total discounted reward.

After training the policy in this maximization setting, ideally, any solution found by
policy optimization would be some kind of local maximum. However, under a non-stationary
MDP, standard policy optimization algorithms are no longer guaranteed to converge to any
type of optima. In addition, when working with function approximators in high dimensions,
optimization analysis of solutions is very difficult.

Recently, [1] showed that with linear policies, we can analyze policy optimization solu-
tions using perturbative methods. Briefly, they approximate the solution neighborhood as a
local quadratic and estimate the curvature of the neighborhood by perturbing the solution
with a minor amount of noise. This allows for estimation of the policy quality from the per-
turbations’ effects. While the method produces a high variance estimate (we characterize the
perturbation using accumulated reward as a metric), with enough noise samples, meaningful
conclusions regarding solutions found with policy optimization can still be drawn.
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1.2.6. Task Distributions in Meta-Reinforcement Learning

When discussing meta-reinforcement learning, to the best of our knowledge, the task
distribution p(τ) has never been studied or ablated upon. As most benchmark environments
and tasks in meta-RL stem from two papers ([19, 66], with the task distributions being pres-
cribed with the environments), the discussion in meta-RL papers has almost always centered
around the computation of the updates [66], practical improvements and approximations
made to improve efficiency or learning exploration policies with meta-learning [74, 26, 25].
In this section, we briefly discuss prior work in curriculum learning that bears the most
similarity to the analyses we conduct here.

Starting with the seminal curriculum learning paper [4], many different proposals to learn
an optimal ordering over tasks have been studied. Curriculum learning has been tackled
with Bayesian Optimization [83], multi-armed bandits [24], and evolutionary strategies [86]
in supervised learning and reinforcement learning settings, but here, we focus on the latter.
However, in most work, the task space is almost always discrete, with a teacher agent looking
to choose the best next task over a set of N pre-made tasks. The notion of best has also
been explored in-depth, with metrics being based on a variety of things from ground-truth
accuracy or reward to adversarial gains between a teacher and student agent [59].

However, up until recently, the notion of continuously-parameterized curriculum learning
has been studied less often. Often, continuous-task curriculum learning exploits a notion of
difficulty in the task itself. In order to get agents to hop over large gaps, it’s been empirically
easier to get them to jump over smaller ones first [28]; likewise, in navigation domains, it is
easier to show easier goals and grow a goal space [60], or even work backward towards the
start state in a reverse curriculum manner [21].

While deep reinforcement learning, particularly in robotics, has seen a large amount
of curriculum learning papers in recent times [46, 53], curriculum learning has not been
extensively researched in meta-RL. This may be partly due to the naissance of the field; only
recently was a large-scale, multi-task benchmark for meta-RL released [91]. As we hope to
show in this thesis, the notions of tasks, task distributions, and curricula in meta-learning
are fruitful avenues of study and can make (or break) many of the meta-learning algorithms
in use today.

1.3. Preliminary Results Regarding Neural Networks
and Generalization

Before continuing onto the sim2real problem, we use this section to highlight a curious
phenomenon: the generalization of a neural network and its non-intuitive dependence on the
data distribution.
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Fig. 1.1. A diagram of data generation setup. We define regions of the training set by
zoning off rectangles of (µ, σ) pairs, and then use standard library tools to generate samples
from that distribution

1.3.1. Informative Samples

With the exception of Chapter 5, much of this thesis examines work in which neural
networks are used to learn policies or distributions. Neural networks, from a theoretical
perspective, are poorly understood. One of the foremost theoretical challenges in the field
today is the generalization properties of neural networks.

Neural networks have been known to have strangely-strong out-of-distribution perfor-
mance, and while hypotheses circulate regarding optimum geometry [15, 30], information
content [78], and the characteristics of stochastic gradient descent [93], the problem is, as
of writing, still very much open. Here, we make no attempt to address the problem of gene-
ralization in neural networks, but rather point out a curious phenomenon which we exploit
throughout the rest of this thesis.

We train a small neural network to infer the mean of a normal distribution, given samples
from that distribution. Illustrated in Figure 1.1, we generate a training set as follows: we
block off regions of mean and standard deviation pairs (the red squares) and generate data
samples from that distribution. This vector of samples is sent into the neural network and
is used to predict the mean of the normal distribution it is sampled from.

We then finely discretize a grid, and at each point (a (µ, σ) pair) generate data samples
to feed through the network to predict means. We then colorize the error, shown in the plots
of Figure 1.2, where a darker color is a higher prediction error.
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(a) (b)

Fig. 1.2. Two starkly different stories of generalization, differing only in the data distribu-
tion shown to the neural network. Figure (b) adds a small training area (upper-right red
box) that, when included, leads to almost perfect generalization across the domain. Darker
is higher error.

In Figure 1.2(a), we see an unsurprising pattern. The network does fairly well with inter-
polation: predicting values of µ correctly around or between things it saw during training.
Naturally, it does poorly in the top-right region, when tested on (µ, σ) pairs well outside of
the training distribution.

However, when we add a region to the training distribution (the upper-right red box in
Figure 1.2(b)), we see that the network learns to generalize, even for points far outside of
the training distribution3. Despite the additional training region being placed in an already
high-performing region, the addition here allows the network to generalize across the test
distribution.

This simple experiment allows us to conclude that certain regions of the data distribution
may be more informative, helping guide the neural network to an optimum that allows for
strong generalization. Yet, even in this example, such regions of data distribution are often
unknown and can be counter-intuitive when found. In traditional machine learning scenarios,
the problem of finding such regions can become ever more difficult.

Curriculum learning aims to introduce these data regions iteratively (here, we mixed all
the data from regions into one large dataset), introducing complex learning dynamics that
depend on a moving data distribution. In addition, human experimenters often use a easy-
to-hard heuristic to guide the scheduling of region introduction, but many problems may
not have this intuitive difficulty readily available. The next chapter introduces solutions to
the curriculum learning problem in unstructured data distributions, using this phenomenon
- the phenomenon of representative examples - as an underlying motivation.

3We hold constant the architecture, random seeds, training epochs, and the total number of samples seen by
the network. We show averaged results across three runs.
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Chapter 2

Active Domain Randomization

Recent trends in Deep Reinforcement Learning (DRL) exhibit a growing interest in zero-shot
domain transfer, i.e. when a policy is learned in a source domain and is then tested without
finetuning in a previously unseen target domain. Zero-shot transfer is particularly useful
when the task in the target domain is inaccessible, complex, or expensive, such as gathering
rollouts from a real-world robot. An ideal agent would learn to generalize across domains; it
would accomplish the task without exploiting irrelevant features or deficiencies in the source
domain (i.e., approximate physics in simulators), which may vary dramatically after transfer.

One promising approach for zero-shot transfer has been Domain Randomization (DR)
[79]. DR uniformly randomizes environment parameters (e.g. friction, motor torque) in
heuristically defined ranges after every training episode. By randomizing everything that
might vary in the target environment, the hope is that the agent will view the target domain
as just another variation. However, recent works suggest that the sample complexity grows
exponentially with the number of randomization parameters, even when dealing only with
transfer between simulations (i.e. in [2] Figure 8). In addition, when using DR unsuccessfully,
policy transfer fails, but with no clear way to understand the underlying cause. After a
failed transfer, randomization ranges are tweaked heuristically via human trial-and-error.
Repeating this process iteratively leads to arbitrary ranges that do (or do not) lead to policy
convergence without any insight into how those settings may affect the learned behavior.

In this chapter, we demonstrate that the strategy of uniformly sampling environment
parameters from predefined ranges is suboptimal and propose an alternative sampling me-
thod, Active Domain Randomization (ADR). ADR, shown conceptually in Figure 2.1,
formulates DR as a search for randomized environments that maximize utility for the agent
policy. Concretely, we aim to find environments that currently cause difficulties for the agent
policy, dedicating more training time to these troublesome parameter settings. We cast this
active search as a RL problem where the ADR sampling policy of the environment is para-
meterized with SVPG [43]. ADR focuses on problematic regions of the randomization space



Fig. 2.1. ADR proposes randomized environments (c) or simulation instances from a
simulator (b) and rolls out an agent policy (d) in those instances. The discriminator
(e) learns a reward (f) as a proxy for environment difficulty by distinguishing between
rollouts in the reference environment (a) and randomized instances, which is used to
train SVPG particles (g). The particles propose a diverse set of environments, trying
to find the environment parameters (h) that are currently causing the agent the most
difficulty.

by learning a discriminative reward computed from discrepancies in policy rollouts generated
in randomized and reference environments.

We first showcase ADR in a simple environment where the benefits of training on more
challenging variations are apparent and interpretable (Section 2.4.3). In this case, we de-
monstrate that ADR learns to preferentially select parameters from these more challenging
parameter regions while still adapting to the policy’s current deficiencies. We then apply
ADR to more complex environments and real robot settings (Section 2.4.5) and show that
even with high-dimensional search spaces and unmodeled dynamics, policies trained with
ADR exhibit superior generalization and lower overall variance than their UDR1 counter-
parts.

Finally, we show the safety-critical capabilities of our formulation; by ingesting arbitrarily
off-policy data, we can fit the parameters of the target environment while using a natural,
learned prior on the simulation parameters as a regularizer. This allows the few-shot learning
variant of ADR,ADR+, to maximize performance on the target task, robot, or environment,
all while staying robust across the entire generalization range. ADR+ trains policies that are
robust to non-representative datasets, while enabling the use of robotic trajectories collected
safely both offline and off-policy.

1We refer to the original version of Domain Randomization as Uniform-(Sampling) Domain Randomization
(UDR), since the entire parameter space is sampled uniformly randomly.
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2.1. Problem Formulation
In this section, we focus on learning a curriculum of environments to show the agent in

the domain randomization setting. Unlike UDR seen in Algorithm 1, we aim to show that a
learned curriculum would be beneficial in this setting, as it has proven to be useful in many
other machine learning applications [67, 28]. Given a predefined randomization space, we
aim to learn a curriculum that maximizes generalization on all target tasks - whether that be
unseen variations of the same, simulated task, or even a completely different task altogether
(i.e transfer onto a real robot).

After [45], subsequent works [54, 86] have explored the idea of progressively growing
curricula in such spaces, using metrics such as return and complex scheduling schemes to
heuristically tune when to grow the space of possible environments. In contrast, we focus
on a fixed, but unstructured, space of environments, looking for beneficial curricula in those
spaces.

2.1.1. Domain Randomization, Curriculum Learning, and Bayesian
Optimization

As shown in Section 1.1.3, domain randomization generates new environments by ran-
domly perturbing the underlying MDP. This generates a space of related tasks, all of which
the agent is expected to be able to solve at the end of training. Traditionally, we define
a randomization space, uniformly sample environments from this space, train agents, and
evaluate generalization.

In contrast, a curriculum learning setup makes an assumption of optimality - that there
exists an optimal sequencing of tasks, that, when used to train an agent, generates the
best possible agent. Our problem focuses on learning a curriculum of randomized environ-
ments in order to train a black-box RL policy πθ to generalize across a wide distribution of
environments.

On the surface, the setup is similar to the BO problem formulation, with one small caveat:
only the final policy πθ is evaluated for generalization. Thus, the maximization quantity is
now the sequence of iterates, or environments, rather than just a single value. As the goal
of curriculum learning is to find the sequence of tasks that generate the best agent after
training, in a BO setting, each sequence of training environments would comprise a single
datapoint.

If we take function f from the BO setting to be the deterministic evaluation of a para-
meterized policy πθ, and the series of task iterates {ξi} to be the environments which the
policy πθ uses to train, we obtain the objective for what we refer to as Curriculum Learning
for Reinforcement Learning (CLRL): find the tasks that when used for training, maximize
the return of the final policy.
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2.1.2. Challenges of Bayesian Optimization for Curriculum Lear-
ning

Such a setup fits nicely within the BO application area of experiment design [49]. Ho-
wever, due to the fact that curriculum learning is not permutation invariant with respect to
training tasks, the BO framework would require the entire sequence of tasks to be optimized
over. To get a single signal for the optimization step, such a setup requires the complete
training of an RL agent per proposed curriculum. Since we can only evaluate final generali-
zation to perform the BO update, every unique sequence of tasks leads to a different function
evaluation. In other words, the experiment space scales combinatorially as a function of the
BO budget (which, in the DR setting, can be thought of the number of episodes).

As BO in CLRL would require an inordinate amount of training cycles, we aim to relax
the usual definitions of the objective function f and acquisition function a. Rather than
selecting the entire curriculum for the agent at once, a more reasonable setup would be to
pick each environment configuration ξi one at a time. Such a setup now allows for iterative
adjustments to the curriculum, using feedback from each timestep to pick the next best
environment.

With the iterative approach, we are left to find a suitable definition for functions f and
a. A reasonable choice would be to take f as a function evaluation, except now a function
evaluation of the current policy after training on the current environment ξi.

While practical, the switch comes at a large cost. By switching to a sequential optimi-
zation in the CLRL setting, we lose any analog of an acquisition function. In addition, due
to the definition of f and the embedded optimization step of the agent πθ, the following
properties no longer hold:

(1) Stationarity - Each particular policy gradient update changes the underlying func-
tion that is being maximized; the task that would have provided the most benefit
to an agent at time t is not the same as the maximum-benefit task after a policy
gradient update at time t + 1. In BO, the function is thought to be stationary, and
while research has been proposed to combat noise and small evaluation errors of f
[39], in general, the framework breaks down quickly without this assumption.

(2) Stochasticity - Up to experimental errors, evaluation of f in BO is generally consi-
dered to be deterministic. In the CLRL setting, evaluating f involves stochastically
sampling a policy and estimating returns. Stochasticity in a BO setting slows lear-
ning, as more function evaluations are needed in order to reduce the uncertainty at
any given point.

(3) Irreversibility - A bad function evaluation in the BO setting, while wasteful, does
not affect future evaluations and can be safely disregarded. In the CLRL setting,
a poor policy gradient step can introduce optimization difficulties that affect future
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steps; therefore, each step in a CLRL setting is "worth more", and greater care must
be taken.

Even though we no longer have one, an acquisition function would still be helpful in the
CLRL setting. However, the function needs to be inherently robust to the issues above, while
remaining a strong indicator for which environment to sample next. In the following sections,
we show why the reinforcement learning paradigm is a more suitable approach to deal with
the non-stationarity inherent in the CLRL problem, and introduce our own method, Active
Domain Randomization.

2.2. Active Domain Randomization
The notion of optimal task sequencing in curriculum learning, discussed in Section 2.1.1,

implies that at each step, there is a next-best environment for the agent to train on. However,
outside of contrived or specific problem settings, finding these optimal environments at each
step is difficult because (1) An intuitive task ordering of MDP instances or parameter ranges
is rarely known beforehand and (2) Domain Randomization (DR) is used mostly when the
space of randomized parameters is high-dimensional or noninterpretable.

Drawing analogies with BO literature, one can consider the randomization space as a
search space. Traditionally, in BO, the search for where to evaluate an objective is informed
by acquisition functions, which trade off exploitation of the objective with exploration in
the uncertain regions of the space [7]. However, as we saw in 2.1.2, unlike the stationary
objectives seen in BO, training the agent policy renders our optimization non-stationary:
the environment with the highest utility at time t is likely not the same as the maximum
utility environment at time t+ 1.

This requires us to redefine the notion of an acquisition function while simultaneously
dealing with BO’s deficiencies with higher-dimensional inputs [87].
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Algorithm 2 Active Domain Randomization
1: Input: Ξ: Randomization space, S: Simulator, ξref : reference parameters
2: Initialize πθ: agent policy, µφ: SVPG particles, Dψ: discriminator, Eref ← S(ξref ):

reference environment
3: while not max_timesteps do
4: for each particle µφi do
5: rollout ξi ∼ µφi(·)
6: for each ξi do
7: Ei ← S(ξi) . Generate randomized environment
8: rollout τi ∼ πθ(·;Ei) . Rollout in randomized environment
9: Trand ← Trand ∪ τi
10: rollout τref ∼ πθ(·;Eref )
11: Tref ← Tref ∪ τref
12: for each τi ∈ Trand do . Calculate discriminative reward for env.
13: Calculate ri = logDψ(y|τi ∼ π(·;Ei))
14: for each particle µφi with discriminative reward ri do
15: Update acquisition function analog µφ using learned rewards ri . Eq. 1.1.11
16: with Trand update:
17: θ ← θ + ν∇θJ(πθ) . Agent policy gradient updates
18: Update Dψ with τi and τref using SGD.

To this end, we propose ADR, summarized in Algorithm 4 and Figure 2.1. ADR provides
a framework for manipulating a more general analog of an acquisition function, selecting the
most informative MDPs for the agent within the randomization space.

By formulating the search as an RL problem, ADR learns a policy µφ where states are
proposed randomization configurations ξ ∈ Ξ and actions are continuous changes to those
parameters. While RL convergence guarantees do not hold in non-stationary MDPs, empiri-
cally, deep RL algorithms are suitable candidates to deal with non-stationary environments.
In addition, framing the optimization as an RL problem allows us to more easily deal with
the stochasticity of function evaluations, folding the stochasticity from the environment into
the policy gradient update. RL allows us to remove the computational explosion descri-
bed in Section 2.1.2, allowing us to select (and incorporate feedback from) a single training
environment at each timestep, rather than optimizing for the entire curriculum all at once.

Our method takes as input an untrained agent policy π, a simulator S (which is a map
from task parameters ξ to MDP environments E), a randomization space Ξ (see Section
1.1.3), and a reference environment, Eref . The reference environment is the default environ-
ment, often shipping with the original task definition.

We parameterize the policy µφ with SVPG, a particle-based policy gradient method that
builds on Stein’s method. SVPG, as covered in Section 1.1.10, optimizes for diversity while
also maximizing reward. Using SVPG for µφ allows us to both find high-value environments

44



for agent training, while also improving diversity due to kernel repulsion terms in Equation
1.1.11.

We proceed to train the agent policy π on the randomized instances Ei, just as in UDR.
To generate each randomized environment, we rollout the SVPG particles {µφi} to generate
the set of task definitions {ξi}. Our simulator S uses the task definitions to generate envi-
ronment instances Ei. We then roll out π on each randomized instance Ei and store each
trajectory τi.

For every randomized trajectory generated, we use the same policy to collect and store a
reference trajectory τref by rolling out π in the default environment Eref (lines 10-12, Figure
2.1a, c).

Using the agent policy trajectories, we train the ensemble µφ with a discriminator-based
reward, similar to the reward seen in [17]:

rD = logDψ(y|τi ∼ π(·;Ei)) (2.2.1)

where y is a boolean variable denoting the discriminator’s prediction of which type of
environment (a randomized environment Ei or reference environment Eref ) the trajectory τi
was generated from. Using each stored randomized trajectory τi by passing them through
the discriminator Dψ, which predicts the type of environment (reference or randomized) each
trajectory was generated from.

For each particle of SVPG, the rewards are calculated with the discriminator and used
in the joint update, derived from combining Equations 1.1.11 and 2.2.1:

∆µφi = ε

n

n∑
j=1

[
∇φj

H∑
t=0

γt

α
(logDψ(y|τt ∼ π(·;Et)) + αH)k(φi, φj) +∇φjk(φi, φj)

]
(2.2.2)

Intuitively, we reward the policy µφ for finding regions of the randomization space that
produce environment instances where the same agent policy π acts differently than in the
reference environment. Since, in SVPG, each particle proposes its own environment settings
ξi (lines 4-6, Figure 2.1h), all of which are passed to the agent for training, the agent
policy benefits from the same environment variety seen in UDR. However, unlike UDR,
µφ can use the learned reward to focus on problematic MDP instances while still being
efficiently parallelizable. µφ serves as the learned analog of the acquisition function, using
the discriminative reward as a proxy for choosing what types of environments are most
beneficial to show the agent policy next.

The agent policy π sees and trains only on the randomized environments (as it would in
traditional DR), using the standard environment reward for updates. As the agent improves
on the proposed, problematic environments, it becomes more difficult to differentiate whether
any given state transition was generated from the reference or randomized environment.
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Thus, ADR can find what parts of the randomization space the agent is currently per-
forming poorly on, and can actively update its sampling strategy throughout the training
process. ADR fulfills the gap of the acquisition function we were missing in Section 2.1.2,
providing a more flexible and efficient approach to learn curricula in unstructured task spaces.

By parameterizing the higher-level policy with the particle-based SVPG, we no longer
maximize solely the utility function - given by the acquisition function analog in Equation
1.1.6 - but rather also prioritize diversity within the optimization itself. Each particle of ADR
can be seen as an independent acquisition function, interacting with the other particles via
the kernel term seen in Equation 1.1.11. This improves the diversity of samples, and as
we shall see in Section 2.4.3, performance in domain randomization and zero-shot transfer
settings.

2.3. Adapting a Simulator with Real World Trajectories
ADR enjoys practical benefits, especially as they relate to robot learning. ADR learns

curricula fully in simulation, which in turn train policies that generalize robustly to the real
world without finetuning on real-world robots.

However, in many realistic robotics settings, the benefits of zero-shot transfer in robotics
are often overstated: in many cases, experimenters have limited access to the robot and can
often run hand-designed controllers to collect trajectories. Yet, while training policies directly
on the real robot is almost always out of question, even finetuning policies on hardware
can prove to be dangerous and expensive. To most experimenters, running policies is less
desirable than running controllers - hardware-specific algorithms that can safely generate
complex and varied trajectories. In this section, we show how ADR can be extended to
adapt the simulation using this previously-collected, safe, off-policy data from the real robot,
allowing for better, safer transfer upon completion of training.

2.3.1. Using Target Domain Data in Reinforcement Learning

In section 2.4.3, we show that ADR can robustly transfer to completely unseen envi-
ronments in a reliable manner. However, in the context of robot learning, we are often
transferring our policy to a single robot - here, generalization across a wide range of en-
vironment settings is less important than reliably solving the task-specific to the robot we
care about. If we knew the parameters that "defined" the robot in simulation, an intuitive
choice would be to plug those back into our simulation, train on that specific environment,
and then transfer a policy back to our robot.

Many approaches exist for finding those parameters, lying under the umbrella of system
identification: since experiment designers know what parameters can vary in simulation, we
can perform system identification safely using real robot data, and train in our simulation

46



according to the found parameter settings. In addition, supervised learning approaches,
such as GAIL [29] or SimOpt [10], can be used to regress environment parameters until the
simulated trajectories are indistinguishable from the real-world data that was collected.

In both traditional and learned settings, such approaches makes one strong assumption:
The data is sufficiently informative, as to distinguish between various modes of the

parameter estimate distribution.
This, similar to domain randomization, is an assumption that makes environment para-

meter identification a trial-and-error process: if the identified parameters generate policies
that do not work in the real world, the only solution is to collect more diverse data and
rerun the process again. In addition, the benefits of training on a wide range of simulation
parameters are made clear throughout both this thesis and the original domain randomi-
zation papers. As regression or system identification provide mainly a point estimates of
system parameters, using those to solely train policies may reintroduce the negative effects
of simulation overfitting, which are discussed in Section 2.4.3.

2.3.2. Priors in Maximum Entropy Simulators

Instead of regressing simulation parameters to single values, we would like to fit a distri-
bution in parameter space, especially as inferring system parameters from trajectories may be
an already ill-posed problem. Additionally, regularizing any estimates would likely improve
generalization, especially if we have a "ground truth" environment distribution that, when
used for training, generates policies that generalize well. Active Domain Randomization can
be thought of as finding a worst-case distribution: environments that induce robustness due
to their difficulty for the agent policy. However, when we negate the discriminator reward fed
into SVPG (which is traditionally rewarded for finding environments where the agent policy
π acts differently than in the reference environment) and swap out a reference environment
(Figure 2.1(a)) with real-robot trajectories, our approach now prioritizes finding environ-
ments where π generates trajectories that look like the ones from the real-world dataset.
This is similar to GAIL and traditional system identification approaches, but since running
the standard ADR generates that worst-case distribution, we can use that to regularize the
environment parameters we regress from robot trajectories. Intuitively, we ask ADR to ge-
nerate environments that match the trajectories provided from the target environment while
not straying too far from the distribution is proven to generate good, robust policies.

To incorporate this ADR-prior, we begin with the maximum-entropy RL objective from
Section 1.1.2:

µ∗ = arg max
µ

Eµ

[ ∞∑
t=0

γt(rt + αDKL[µ||µ̄])
]

(2.3.1)
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As this choice of prior µ̄ is arbitrary, we can more generally use a prior policy, µ0, in this
formulation as well.

µ∗ = arg max
µ

Eµ

[ JME︷ ︸︸ ︷
∞∑
t=0

γt(rt + αDKL[µ||µ0])
]

(2.3.2)

This formulation also works with the particle-based SVPG, where each particle update
is now individually regularized against the prior policy. We can then write the policy update
for particle µφi as follows:

µφi ← µφi + ε

n

n∑
j=1

[
∇φj

(
( 1
α
JME(φj)k(φi, φj)

)
+∇φjk(φi, φj)

]
(2.3.3)

where ε is the step size and JME(φj) is the particle-based maximum-entropy variant of
the traditional utility function, as labelled in Equation 2.3.2.

Since our goal is to incorporate the robustness of the learned-ADR policy while fitting a
new policy to match real-world data, we can use the particles from a previous ADR run as
µ0, incorporating a prior on simulation parameters that we have found to induce beneficial
qualities such as robustness. However, as both µ and µ0 are actually ensembles of policies
(particles), calculating the DKL term would require fitting high-dimensional kernel density
estimators, which is problematic when the number of data points (in our case, parameter
vectors of each particle) is considerably smaller than the dimensionality (the size of each
particle’s parameter vector). Instead, we approximate Equation 2.3.3 with a constraint on
the action spaces, and set up a one-to-one mapping between new and prior particles, as done
in [33]:

µ∗ ' arg max
µ

Eµ[
∑

γt(rt + αDKL[µi||µi0])] (2.3.4)

where each µi is a particle policy. To derive the joint update for each particle, we simply
replace the entropy term H in Equation 2.2.2 with the one-to-one KL constraint shown in
Equation 2.3.4.

We fully describe this algorithm, ADR+, in Algorithm 3.
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Algorithm 3 ADR+
1: Input: Ξ: Randomization space, S: Simulator, τexpert: Expert trajectories from target

environment
2: Initialize πθ: agent policy, µφ: SVPG particles, Dψ: discriminator, Eref ← S(ξref ):

reference environment
3: Generate prior particles {µ0} = ADR(Ξ, Eref )
4: while not max_timesteps do
5: for each particle µφ do
6: rollout ξi ∼ µφ(·)
7: for each ξi do . Generate rollouts in randomized environments
8: Ei ← S(ξi) ,
9: rollout τi ∼ πθ(·;Ei)
10: Trand ← Trand ∪ τi
11: for each τi ∈ Trand do . Compute rewards for each proposed environment
12: Calculate ri for ξi / Ei (negating Eq. (2.2.1))
13: with Trand update: . Agent policy gradient update
14: θ ← θ + ν∇θJ(πθ)
15: Update particles with frozen priors {µ0} using Eq. (2.3.4)
16: Update Dψ with τi and τexpert using SGD.

2.4. Results
2.4.1. Experiment Details

To test ADR, we experiment on OpenAI Gym environments [8] across various tasks,
both simulated and real: (a) LunarLander-v2, a 2 degrees of freedom (DoF) environment
where the agent has to softly land a spacecraft, implemented in Box2D (detailed in Section
2.2), (b) Pusher-3DOF-v0, a 3 DoF arm from [27] that has to push a puck to a target,
implemented in Mujoco [80], and (c) ErgoReacher-v0, a 4 DoF arm from [22] which has
to touch a goal with its end effector, implemented in the Bullet Physics Engine [12]. For
sim2real experiments, we recreate this environment setup on a real Poppy Ergo Jr. robot
[38] shown in Figure2.2 (a) and (b), and also create (d) ErgoPusher-v0 an environment
similar to Pusher-3DOF-v0 with a real robot analog seen in Figure 2.2 (c) and (d). We
provide a detailed account of the randomized parameters in each environment in Table A.1
in Appendix A.4.

For few shot learning experiments (experiments where we incorporate an ADR-prior) , we
use multiple variants of LunarLander-v2 to generate trajectories, and continue to evaluate
both generalization and target-task performance.
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All simulated experiments are run with five seeds each with five random resets, totaling
25 independent trials per evaluation point. All experimental results are plotted mean-
averaged with one standard deviation shown. Detailed experiment information can be found
in Appendix A.6.

(a) (b) (c) (d)

Fig. 2.2. Along with simulated environments, we display ADR on zero-shot transfer tasks
onto real robots.

2.4.2. Zero-Shot Learning: Toy Experiments

To investigate whether ADR’s learned sampling strategy provides a tangible benefit for
agent generalization, we start by comparing it against traditional DR (labeled as UDR) on
LunarLander-v2 and vary only the main engine strength (MES). In Figure 2.3, we see that
ADR approaches expert-levels of generalization whereas UDR fails to generalize on lower
main engine strength (MES) ranges.

We compare the learning progress for the different methods on the hard environment
instances (ξMES ∼ U [8, 11]) in Figure 4(a). ADR significantly outperforms both the baseline
(trained only on MES of 13) and the UDR agent (trained seeing environments with ξMES ∼
U [8, 20]) in terms of performance.

Figures 4(b) and 4(c) showcase the adaptability of ADR by showing generalization and
sampling distributions at various stages of training. ADR samples approximately uniformly
for the first 650K steps, but then finds a deficiency in the policy on higher ranges of the
MES. As those areas become more frequently sampled between 650K-800K steps, the agent
learns to solve all of the higher-MES environments, as shown by the generalization curve for
800K steps. As a result, the discriminator is no longer able to differentiate reference and
randomized trajectories from the higher MES regions, and starts to reward environment ins-
tances generated in the lower end of the MES range, which improves generalization towards
the completion of training.
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Fig. 2.3. Agent generalization, expressed as performance across different engine strength
settings in LunarLander. We compare the following approaches: Baseline (default environ-
ment dynamics); Uniform Domain Randomization (UDR); Active Domain Randomization
(ADR, our approach); and Oracle (a handpicked randomization range of MES [8, 11]). ADR
achieves for near-expert levels of generalization, while both Baseline and UDR fail to solve
lower MES tasks.

(a) (b) (c)

Fig. 2.4. Learning curves over time in LunarLander. Higher is better. (a) Performance
on particularly difficult settings - our approach outperforms both the policy trained on a
single simulator instance ("baseline") and the UDR approach. (b) Agent generalization in
LunarLander over time during training when using ADR. (c) Adaptive sampling visualized.
ADR, seen in (b) and (c), adapts to where the agent is struggling the most, improving
generalization performance by end of training.

2.4.3. Zero-Shot Learning: Randomization in High Dimensions

If the intuitions that drive ADR are correct, we should see increased benefit of a learned
sampling strategy with larger Nrand due to the increasing sparsity of informative environ-
ments when sampling uniformly. We first explore ADR’s performance on Pusher3Dof-v0, an
environment where Nrand = 2. Both randomization dimensions (puck damping, puck friction
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(a) (b)

Fig. 2.5. In Pusher-3Dof, the environment dynamics are characterized by friction and
damping of the sliding puck, where sliding correlates with the difficulty of the task (as
highlighted by cyan, purple, and pink - from easy to hard). (a)During training, the algorithm
only had access to a limited, easier range of dynamics (black outlined box in the upper right).
(b) Performance measured by distance to target, lower is better.

loss) affect whether or not the puck retains momentum and continues to slide after making
contact with the agent’s end effector. Lowering the values of these parameters simultaneously
creates an intuitively-harder environment, where the puck continues to slide after being hit.
In the reference environment, the puck retains no momentum and must be continuously
pushed in order to move. We qualitatively visualize the effect of these parameters on puck
sliding in Figure 5(a).

From Figure 5(b), we see ADR’s improved robustness to extrapolation - or when the target
domain lies outside the training region. We train two agents, one using ADR and one using
UDR, and show them only the training regions encapsulated by the dark, outlined box in the
top-right of Figure 5(a). Qualitatively, only 25% of the environments have dynamics which
cause the puck to slide, which are the hardest environments to solve in the training region. We
see that from the sampling histogram overlaid on Figure 5(a) that ADR prioritizes the single,
harder purple region more than the light blue regions, allowing for better generalization to
the unseen test domains, as shown in Figure 5(b). ADR outperforms UDR in all but one
test region and produces policies with less variance than their UDR counterparts.

2.4.4. Zero-Shot Learning: Randomization in Uninterpretable Di-
mensions

We further show the significance of ADR over UDR on ErgoReacher-v0, whereNrand = 8.
It is now impossible to infer intuitively which environments are hard due to the complex
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(a) (b)

Fig. 2.6. Learning curves over time in (a) Pusher3Dof-v0 and (b) ErgoReacher on
held-out, difficult environment settings. Our approach outperforms both the policy trained
with the UDR approach both in terms of performance and variance.

interactions between the eight randomization parameters (gains and maximum torques for
each joint). For demonstration purposes, we test extrapolation by creating a held-out target
environment with extremely low values for torque and gain, which causes certain states in
the environment to lead to catastrophic failure - gravity pulls the robot end-effector down,
and the robot is not strong enough to pull itself back up. We show an example of an agent
getting trapped in a catastrophic failure state in Figure A.4, Appendix A.4.1.

To generalize effectively, the sampling policy should prioritize environments with lower
torque and gain values in order for the agent to operate in such states precisely. However,
since the hard evaluation environment is not seen during training, ADR must learn to priori-
tize the hardest environments that it can see, while still learning behaviors that can operate
well across the entire training region.

From Figure 6(a) (learning curves for Pusher3Dof-v0 on the unseen, hard environment -
the pink square in Figure 2.5) and 6(b) (learning curves for ErgoReacher-v0 on unseen, hard
environment), we observe the detrimental effects of uniform sampling. In Pusher3Dof-v0,
we see that UDR unlearns the good behaviors it acquired in the beginning of training.
When training neural networks in both supervised and reinforcement learning settings, this
phenomenon has been dubbed as catastrophic forgetting [35]. ADR seems to exhibit this
slightly (leading to "hills" in the curve), but due to the adaptive nature the algorithm, it is
able to adjust quickly and retain better performance across all environments.

UDR’s high variance on ErgoReacher-v0 highlights another issue: by continuously trai-
ning on a random mix of hard and easy MDP instances, both beneficial and detrimental
agent behaviors can be learned and unlearned throughout training. This mixing can lead to
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(a) (b)

Fig. 2.7. Zero-shot transfer onto real robots (a) ErgoReacher and (b) ErgoPusher. In
both environments, we assess generalization by manually changing torque strength and puck
friction respectively.

high-variance, inconsistent, and unpredictable behavior upon transfer. By focusing on those
harder environments and allowing the definition of hard to adapt over time, ADR shows more
consistent performance and better overall generalization than UDR in all environments tes-
ted.

2.4.5. Sim2Real Zero-Shot Transfer Experiments

In sim2real (simulation to reality) transfer, many policies fail due to unmodeled dynamics
within the simulators, as policies may have overfit to or exploited simulation-specific details
of their training environments. While the deficiencies and high variance of UDR are clear
even in simulated environments, one of the most impressive results of domain randomization
was zero-shot transfer out of simulation onto robots. However, we find that the same issues
of unpredictable performance apply to UDR-trained policies in the real world as well.

We take each method’s (ADR and UDR) five independent simulation-trained policies on
both ErgoReacher-v0 and ErgoPusher-v0 and transfer them without fine tuning onto the
real robot. We rollout only the final policy on the robot, and show performance in Figure
2.7. To evaluate generalization, we alter the environment manually: on ErgoReacher-v0, we
change the values of the torques (higher torque means the arm moves at higher speed and
accelerates faster); on ErgoPusher-v0, we change the friction of the sliding puck (slippery
or rough). For each environment, we evaluate each of the policies with 25 random goals (125
independent evaluations per method per environment setting).
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Even in zero-shot transfer tasks onto real robots, ADR policies obtain overall better or
similar performance than UDR policies trained in the same conditions. More importantly,
ADR policies are more consistent and display lower spread across all environments, which is
crucial when safely evaluating reinforcement learning policies on real-world robots.

2.4.6. Few-Shot Learning: Safe Finetuning with ADR

In this section, we study the problem of few-shot robotic learning in the context of safety-
critical applications. By safety critical, we mean that optimizing the learned policy cannot
be done by rolling out the policy on the robot; this allows for off-policy, safely-collected
trajectories, but rules many algorithms that require running the learned policy on the robot.

In the few-shot experimental setup, we provide a dataset of N expert-collected trajecto-
ries. These trajectories can be arbitrarily off-policy, meaning that they need not be generated
by any learned policy, but rather via heuristic, traditional control, or human operator. The
learning algorithm ideally would use these trajectories to fine-tune, but in a limited manner:
for example, the algorithm cannot take on-policy policy gradient steps on the collected data,
due to the mismatch between the behavior and learned policies.

2.4.7. Evaluation and Results

In the few-shot, robotic learning case, we have two main criteria that we would like any
learning algorithm to achieve:

• Performance: Given some expert trajectories sampled from a target environment,
we would like our algorithm to optimize for performance on that particular target
environment.
• Robustness: However, given either non-representative trajectories or too small a
quantity of trajectories, we would like to avoid overfitting to the dataset. An ideal
algorithm will be robust to lack of data diversity and estimation errors, especially as
learning environmental parameters from trajectories can be an underspecified (and
sometimes, degenerate) optimization problem.2 Unfortunately, datasets do not often
come labelled as underspecified or degenerate, which leads to a need for regularization.

A safe, successful few-shot robotic learning algorithm is one that succeeds on both fronts;
suboptimality in the performance objective will degrade the quality of the transferred so-
lution, while approaches that fail to account for robustness will fail in the event of a non-
representive dataset.
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GAIL ADR+
MES=10 218.1 ± 34.5 193.1 ± 23.6
MES=16 234.2 ± 22.3 225.5 ± 38.9

Tableau 2.1. Both algorithms, when given trajectories representative of the target envi-
ronment, perform strongly.

2.4.8. Performance on Target Environment

When dealing with a fully-representative dataset (i.e Ntraj = 34, trajectories pulled from
the same dataset agents are being tested on), we see that both methods, GAIL [29] and
ADR+ do relatively well in the LunarLander environment. This aligns well with the charac-
teristics of both methods: GAIL, at convergence, trains a policy to match the state-action
distribution of the dataset, whereas ADR+ drives particles towards that region of randomi-
zation space (in this case, the single-dimensional axis of engine strength), allowing the agent
to see and train on the target environment more often.

2.4.9. Robustness to Non-representative Trajectories

GAIL ADR+
MES=10 -10.5 ± 30.1 145.9 ± 40.1
MES=16 216.1 ± 9.8 201.8 ± 25.6

Tableau 2.2. When given noisy or non-representative trajectories, GAIL fails to recover on
the harder environment, whereas ADR+ is able to stay robust via the prior term.

However, when we show the GAIL agent non-representative trajectories (i.e a full-sized
dataset, but from the other environment), we see that it struggles on the much harder task
of MES=10. Meanwhile, the regularizing effect of ADR+ allows it to still show the agent a
diversity of environments (due to the standard ADR prior), allowing it to avoid overfitting
to a single target environment. This quality is incredibly useful in real robotic applications,
where robots, which may vary in calibration or manufacturing quality, often need a single
policy to operate across the whole fleet.

2.4.10. Robustness to Quantity of Expert Trajectories

In addition, when we show both agents underspecified datasets (i.e trajectories pulled
from target environment, but just fewer of them than empirically needed for convergence),
we see that GAIL struggles on even the easier, MES=16 environment andDoesNotConverge
(DNC) on the harder environments. While ADR+’s performance does not nearly match the
full dataset case, we see that it outperforms GAIL by orders of magnitude. The incorporation
2As an example, consider estimating a ball’s mass from trajectories of the ball only bouncing.
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GAIL (Easy) ADR+ (Easy) GAIL (Hard) ADR+ (Hard)
Ntraj = 1 -80.5 ± 100.1 10.4 ± 72.1 DNC DNC
Ntraj = 5 -11.1 ± 40.9 89.1 ± 32.5 DNC 1.8 ± 10.1
Ntraj = 10 145.3 ± 27.8 225.4 ± 17.0 40.6 ± 27.1 98.1 ± 37.1

Tableau 2.3. ADR seems slightly more robust in data-limited scenarios, whereas GAIL
fails to converge in limited data settings on the harder environment.

of a regularizing prior alongside the diversity of environments leads to strong performance
and robustness, both qualities of any robotic policy transfer algorithm.
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Chapter 3

Optimization Qualities of Multi-task Learning

As we saw in Chapter 2, not all generated MDPs are equally useful for learning, leading to
Active Domain Randomization (ADR) - which poses the search for informative randomiza-
tion parameters (environments, or equivalently, MDPs) as a reinforcement learning problem.
ADR scores the usefulness of various randomized environment instances by comparing trajec-
tory rollouts from a randomized simulation instance to rollouts from a reference simulation
instance. Intuitively, the regions of the randomization space that generate distinguishable
rollouts are of more interest and should be focused on during the training period, as they
correspond to more difficult environments. The work showed empirical performance impro-
vements over DR.

This chapter focuses on trying to understand why ADR works in practice. More gene-
rally, we focus on the effect of task distributions and curricula on policy optimization. We
are interested in why certain distributions of tasks (or, if that distribution evolves over time,
curricula of tasks) induce varying generalization performances. We will study this by charac-
terizing the optimization trajectory and the optima found by each strategy using empirical
perturbation methods.

3.1. Motivating Example
Before we can make wide claims about the effect of domain randomization, and more

generally, curricula, on policy optimization, we need to ensure that the choice of curricula
can truly impact optimization in a significant way. DR, as discussed, randomizes various
parameters of the simulator, generating a multitude of MDPs for an agent to train on.
We focus on a toy environment: LunarLander-v2, where the task is to ground a lander in a
designated zone, and reward is based on the quality of the landing (fuel used, impact velocity,
etc). LunarLander-v2 has one main axis of randomization that we vary: the main engine
strength (MES). Different values of MES change the MDP, and can be seen as different
tasks. The MES, shown on the X-axis of Figure 3.1, controls the strength of the landing



Fig. 3.1. Effects of curriculum order on agent performance. A wrong curriculum, shown in
blue, can induce high variance, and overall poor performance.

engine for the agent, crucial for the task performance. When we move this value away from
its default value of 13, we can generate superficially-similar MDPs that to an agent, are
easier or more difficult to solve.

To study the effects of curricula on optimization, we artificially generate two “buckets”
of tasks: UberLow, where the MES is uniformly sampled at every episode from the values of
[8, 10]; and UberHigh, where the MES is uniformly sampled at every episode from the values
of [18, 20]. The buckets of tasks are boxed in red in Figure 3.1.

We train two agents, both for one million time-steps. The only difference between the
two agents is the ordering of task buckets they see: for the first 500,000 steps (cumulative
through episodes), one agent sees UberLow MDPs, whereas the other sees UberHigh MDPs.
At the 500,000 step mark, the tasks are switched.

To simplify the analysis, we use linear networks [62] trained with REINFORCE [89],
which have been shown to perform well in simple continuous-control tasks. For every eva-
luation point, we train 10 seeds and generate 50 rollouts from each seed, totaling 500 inde-
pendent evaluations for each point. We plot the mean average of all 500 runs, and shade
in one standard deviation. To evaluate policy generalization and quality, we sweep across
the entire MES randomization range of [8, 20] and roll out the final policy in the generated
environments.

Figure 3.1 shows the results obtained from both experiments. The blue curve shows the
results of generalization when the agent was shown UberLow, then UberHigh, whereas the
orange curve shows the switched curriculum. The curriculum seems to have a strong effect
on the stability of optimization, as well as average performance. These results hint at the
notion of an underlying optimal curriculum, or an optimal sequence of tasks that an agent
should train on. However, as this is a very strong assumption, in the following section,
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Fig. 3.2. Generalization for various agents who saw different MES randomization ranges.
Crossing the Solved line "earlier" on x-axis means more environments solved (better genera-
lization).

we explore the optimization of the two agents and generate hypotheses to explain the vast
difference in stability between the two.

3.1.1. Gradient Interference in a Two-Task Setting

As noted in Section 1.2.4, continual learning researchers have long been aware of the
issues of conflicting gradients across tasks and how they can prematurely halt learning, even
when a network’s capacity has not saturated [34]. In this section, we take our toy example
of "two" tasks (which are actually buckets of related tasks) and explore the compatibility of
gradients through time.

To quantify compatibility, we use Equation 1.2.1 and take the two agents described above
at various times through training, and generate heatmaps that show positive cosine similarity
between gradients sampled from two tasks (shown on each axis of the heatmap). Briefly,
we take an agent policy, sweep it across the full [8, 20] range, and calculate the sampled
gradients from that task (i.e a particular value for MES). We average these gradients over
500 independent runs, and use Equation 1.2.1 to generate a heatmap by performing an
all-pairs comparison between gradients, shown in Figures 3.3 and 3.4.

In the heatmaps shown in Figure 3.3 and Figure 3.4, we plot the positive cosine similarity
as dark blue (ρab = +1). This scheme allows the more important metric, interference, to be
grouped together into the yellow regions of the plots (ρab ≤ 0). When a point on the plot
is colored yellow, we can denote the two tasks (on x and y-axis) as incompatible, meaning
that the two tasks’ gradients interfere with one another. Keeping in mind that these are all
high variance estimates, we focus on patches of incompatible tasks, which are more likely to
actually be incompatible than randomly dispersed points of yellow.
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Fig. 3.3. Each axis represents a discretized main engine strength, from which
gradients are sampled and averaged across 25 episodes. The heatmap shows
the cosine similarity between the corresponding task on the X and Y axes. The
different panels show gradient similarity (higher cosine similarity shown as darker
blues) after 25%, 50%, 75%, and 100% training respectively. A bad curriculum,
UberLow then UberHigh, as shown in the blue curve in Figure 3.1, seems to generate patches
of incompatible tasks, earlier in training, as shown by growing amounts of yellow.

Fig. 3.4. A good curriculum, UberHigh then UberLow, as shown in the orange curve in
Figure 3.1, seems to maintain better transfer through training, as shown by less patches of
yellow in later stages of optimization (see Panel 3).

In general, we find that the blue curve, the agent that sees UberLow then UberHigh, shows
large, consistent patches of incompatible tasks much earlier in training than its counterpart.
In addition, we find that these patches are consistent throughout training, which is not the
case of the alternate-curriculum agent (Figures 3.3, 3.4).

3.2. Increasing Complexity
While interesting, the experiment detailed in the previous section is unrealistic. One

advantage that domain randomization has over continual learning is that explicit tasks (or
in our case, "buckets" of tasks) need not be defined; continual leaning research has often
been criticized for engineering implicit task curricula based on difficulty (See OpenReview
discussion of [65]). On the contrary, domain randomization’s random sampling breaks these
types of sequences, treating each task on an equal level throughout training.
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Fig. 3.5. Policies trained with traditional domain randomization show large patches of
incompatible tasks that show up early in training (interfering gradients shown as yellow),
potentially leading to high variance in convergence, as noted in Chapter 2.

h

Fig. 3.6. Policies trained with focused domain randomization seem to exhibit high transfer
between tasks, which seems to enable better overall generalization by the end of training.

However, as we have seen above, even in domain randomization, the notion of a curricu-
lum is helpful for optimization. In this section, we study a more realistic version of domain
randomization: one where "buckets" of tasks are not designated. Rather, we specify only the
general ranges from which to vary each environment parameter.

3.2.1. Effect of Curriculum with Domain Randomization

In LunarLander-v2, we continue to vary the main engine strength (MES). Again, we eva-
luate the generalization performance of each of our curriculum choices and draw conclusions
of our optimization analyses conditioned on what we know works empirically.

We train multiple agents, with the only difference being the randomization ranges for
MES during training. Figure 3.2 shows the final generalization performance of each agent
by sweeping across the entire randomization range of [8, 20] and rolling out the policy in the
generated environments. We see that focusing on certain MDPs (labeled as Oracle, MES
∼ U(8, 11)) improves generalization over traditional DR (labeled as UDR, MES ∼ U(8, 20)),
even when the evaluation environment is outside of the training distribution.
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In Figure 3.5 and 3.6, we compare the gradient incompatibilities through training when
an agent sees a random sample from the full range (MES ∼ [8, 20]) or a sample from the
subset of the range (MES ∼ [8, 11]) (Figure 3.5, Figure 3.6 respectively). Interestingly,
we see the same types of patterns as the experiment described in Section 3.1.1. The bad
curriculum (Figure 3.5), which in this case is traditional domain randomization (MES ∼
[8, 20]), shows large patches of incompatible tasks early in training. The agent exposed to
focused domain randomization (MES ∼ [8, 11], Figure 3.6) shows high task compatibility
throughout training, until a final solution is found 1.

As shown in Figure 3.2, we find that high task compatibility throughout training corre-
lates with higher empirical generalization performance, although this statement needs to be
rigorously tested before further claims are made.

3.2.2. Analyzing Active Domain Randomization

Active Domain Randomization (ADR) was motivated by the fact that the ranges shown
in focused domain randomization will not generally be known, so an adaptive algorithm was
proposed that focused on finding environment instances (a curriculum) that highlighted the
agent policy’s current weaknesses. Posed as a higher level reinforcement learning problem,
ADR showed empirical improvements over standard domain randomization in zero-shot lear-
ning settings, including sim2real robotic transfer. In Figure 3.2, we see that ADR approaches
generalization levels of the Oracle.

Fig. 3.7. Active Domain Randomization shows its ability to adapt and bring the policy
back to areas with less inter-task interference, as shown between Panel 2 and Panel 3.

We can see a different visualization of ADR’s adaptiveness in Figure 3.7; by learning
a curriculum, we can recover and move out from regions of policy space that show large
amounts of interference, as seen by the gradual decrease in task incompatibility over time
(specifically between Panel 2 and Panel 3, or at 50% and 75% of training completion respec-
tively).

1An investigation on why even the good agent shows large patches of incompatible tasks at the end of training
is needed. A simple explanation might be that the final solution has nestled into a local optima.
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3.3. Anti-Patterns in Optimization
However, this initial investigation of learning dynamics has not resolved all problems

in continual and multi-task learning. In fact, in this section, we show that these learning
schemes produce counter-intuitive final solutions, despite the fact that their learning dyna-
mics point to gradient interference being the main culprit.

Using techniques from [1], we use perturbative methods to characterize the final solutions
found by each agent. While subject to many conditions and constraints, in general, we expect
(a) better performing policies to be at a local maxima (as discounted return maximization is
a maximization problem) and (b) better performing policies to have "smoother" optimization
paths.

However, when we analyze our solutions, we get counter-intuitive results. Worse per-
forming policies seem to be at local maximas or saddle points, but more importantly, our
better performers seem to be at local minimas. In addition, when we plot the curvature of
the direction of highest improvement (whose volatility seems to be a good metric for opti-
mization smoothness), we find that the better performing policies seem to be more volatile.
While only a single, representative seed is shown here, the results across many seeds seem
to be consistent.
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(a) (b)

(c) (d)

Fig. 3.8. In (a), final policies trained with UberHigh, UberLow (the orange curve in Figure
3.1), seem to be local minima. In (b) Final policies trained with UberLow, UberHigh (the blue
curve in Figure 3.1), seem to be saddles. In (c) final Policies trained with MES ∼ U(8, 11)
(Oracle in Figure 3.2) seem to be local minima, while in (d), final Policies trained with MES
∼ U(8, 20) (UDR in Figure 3.2) seem to be saddles
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(a) (b)

Fig. 3.9. Curvature analysis through training for various curricula. In (a), the worse per-
forming agent (blue curve, UberLowUberHigh), seems to have a smoother optimization path
than its more better-performing, flipped-curriculum counterpart. In (b) Policies trained
with full domain randomization (blue curve), also empirically shown to be less stable in
practice, show smoother optimization paths.

.
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Chapter 4

Curriculum in Meta-Learning

Meta-learning concerns building models or agents that can learn how to adapt quickly to new
tasks from datasets which are orders of magnitudes smaller than their standard supervised
learning counterparts. Put differently, meta-learning concerns learning how to learn, rather
than simply maximizing performance on a single task or dataset. Gradient-based meta-
learning has seen a surge of interest, with the foremost algorithm being Model-Agnostic
Meta-Learning (MAML) [19]. Gradient-based meta-learners are fully trainable via gradient
descent and have shown strong performance on various supervised and reinforcement learning
tasks [19, 63].

The focus of this chapter is on an understudied hyperparameter within the gradient-based
meta-learning framework: the distribution of tasks. In MAML, this distribution is assumed
given and is used to sample tasks for meta-training of the MAML agent. In supervised
learning, this quantity is relatively well-defined, as we often have a large dataset for a task
such as image classification 1. As a result, the distribution of tasks, p(τ), is built from
random minibatches sampled from this distribution.

However, in the meta-reinforcement learning setting, this task distribution is poorly
defined and is often handcrafted by a human experimenter with the target task in mind.
While the task samples themselves are pulled randomly from a range or distribution (i.e a
locomotor asked to achieve a target velocity), the distribution itself needs to be specified. In
practice, the distribution p(τ) turns out to be an extremely sensitive hyperparameter in Meta-
RL: too "wide" of a distribution (i.e the variety of tasks is too large) leads to underfitting, with
agents unable to specialize to the given target task even with larger numbers of gradient steps;
too "narrow", and we see poor generalization and adaption to even slightly out-of-distribution
environments.

Even worse, randomly sampling (as is often the case) from p(τ) can allow for sampling
of tasks that can cause interference and optimization difficulties, especially when tasks are
1Even in regression, a function such as a sinusoid is often provided by the experimenter as the task distri-
bution.



qualitatively different (due to difficulty or task definitions being changed too much by the
physical parameters that are varied).

This phenomena, called meta-overfitting (or meta-underfitting, in the former, "wide"
case), is not new to recent deep reinforcement learning problem settings. Domain rando-
mization [79], a popular sim2real transfer method, faces many of the same issues when
learning robotic policies purely in simulation. Here, we will show that meta-reinforcement
learning has analogous issues regarding generalization, which we can attribute to the random
sampling of tasks. We will then describe the repurposing of Active Domain Randomization
(Chapter 2), which aims to learn a curriculum of tasks in unstructured task spaces. In this
chapter, we address the problem of meta-overfitting by explicitly optimizing the task dis-
tribution represented by p(τ). The incorporation of a learned curriculum leads to stronger
generalization performance and more robust optimization. Our results highlight the need for
continued work in the analysis of the effect of task distributions on meta-RL performance
and underscores the potential for curriculum learning techniques.

4.1. Motivation
We begin with a simple question:

Does the meta-training task distribution p(τ) in meta-RL really matter?
To explore the answer, we run a standard meta-reinforcement learning benchmark, 2D-

Navigation-Dense. In this environment, a point-mass must navigate to a goal, with rewards
given at each timestep proportional to the Euclidean distance between the goal and the
current position.

We take the hyperparameters and experiment setup from the original MAML work and
simply change the task distribution from which the 2D goal is uniformly sampled. We then
show generalization results of the final, meta-learned initial policy after a single gradient
step. We then track the generalization of the one-step adaptation performance across a wide
range of target goals.

In 2D-Navigation-Dense, the training distribution prescribes goals where each coordinate
is traditionally sampled between [−0.5, 0.5] (the second plot in Figure 4.1) with the agent
always beginning at [0, 0]. We then evaluate each goal in the grid between [−2, 2] at 0.5
intervals, allowing us to test both in- and out-of-distribution generalization.

We see from Figure 4.1 an interesting phenomenon, particularly as the training environ-
ment shifts away from the one which samples goal coordinates gt ∼ [−0.5, 0.5]. While the
standard environment from [19] generalizes reasonably well, shifting the training distribu-
tion even slightly ruins generalization of the adapted policy. What’s more, when shown the
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Fig. 4.1. Various agents’ final adaption to a range of target tasks. The agents vary only in
training task distributions, shown as red overlaid boxes. Redder is higher reward.

entire test distribution, MAML fails to generalize to it. We see that on even the simplest en-
vironments, the meta-training task distribution seems to have a profound effect, motivating
the need for dedicating more attention towards selecting the task distribution p(τ).

Upon further inspection, we find that shifting the meta-training distribution destabi-
lizes MAML, leading to poor performance when averaged. The first environment, where
gt ∼ [−0.3, 0.3] has three out of five random seeds that converge, with the latter two,
gt ∼ [−1.0, 1.0] and gt ∼ [−2.0, 2.0], have two and one seeds that converge respectively.
The original task distribution sees convergence in all five random seeds tested, hinting at a
difference in stability due to the goals, and therefore task distribution, that each agent sees.
This hints at a hidden importance of the task distribution p(τ), a hypothesis we explore in
greater detail in the next section.

4.2. Method
As we saw in the previous section, uniformly sampling tasks from a set task distributions

highly affects generalization performance of the resulting meta-learning agent. Consequently,
we optimize for a curriculum over the task distribution p(τ):

τi∼p(τ) min
θ

∑
τi

Lτi(fθ′
i
) (4.2.1)

where θ′
i are the updated parameters after a single meta-gradient update.

While curriculum learning has had success in scenarios where task-spaces are structured,
learning curricula in unstructured task-spaces, where an intuitive scale of difficulty might be
lacking, is an understudied topic. However, learning such curricula has seen a surge of interest
in the problem of simulation transfer in robotics, where policies trained in simulation are
transferred zero-shot (no fine-tuning) for use on real hardware. Using a method called domain
randomization [79], several recent methods [53, 50] propose how to learn a curriculum of
randomizations - which randomized environments would be most useful to show the learning
agent in order to make progress on the held-out target task: the real robot.
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In the meta-RL setting, the learned curriculum would be over the space of tasks. For
example, in 2D-Navigation-Dense, this would be where goals are sampled, or in HalfChee-
tahVelocity, another popular meta-RL benchmark, the goal velocity the locomotor must
achieve.

As learning the curriculum is often treated as a reinforcement learning problem, it re-
quires a reward in order to calculate policy gradients. While many of the methods from the
domain randomization literature use proxies such as completion rates or average reward, the
optimization scheme depends on the reward function of the task. In meta-learning, optimi-
zation and reward maximization on a single task is not the goal, and such an approach may
lead to counter-intuitive results.

A more natural fit in the meta-learning scenario would be to somehow use the qualitative
difference between the pre- and post-adaptation trajectories. Like a good teacher with a
struggling student, the curriculum could shift towards where the meta-learner needs help.
For example, tasks in which negative adaptation [13] occurs, or where the return from a
pre-adapted agent is higher the post-adapted agent, would be prime tasks to focus on for
training.

To this end, we modify Active Domain Randomization (ADR) to calculate such a score
between the two types of trajectories. Rather than using a reference environment as in ADR,
we ask a discriminator to differentiate between the pre- and post-adaptation trajectories. If
a particular task generates trajectories that can be distinguished by the discriminator after
adaptation, we focus more heavily on these tasks by providing the high-level optimizer,
parameterized by Stein Variational Policy Gradient, a higher reward.

Concretely, we provide the particles the reward:

ri = log(fψ(y|Di)) (4.2.2)

where discriminator fψ produces a boolean prediction of whether the trajectory Di is a pre-
adaptation (y = 0) or post-adaptation (y = 1) trajectory. We present the algorithm, which
we term Meta-ADR, in Algorithm 4. We also illustrate the algorithm in Figure 4.2.

Meta-ADR learns a curriculum in this unstructured task space without relying on the
notion of task performance or reward functions. Note that Meta-ADR runs the original
MAML algorithm as a subroutine, but in fact Meta-ADR can run any meta-learning su-
broutine (i.e Reptile [52], PEARL [63], or First-Order MAML). In this work, we abstract
away the meta-learning subroutine, focusing instead on the effect of task distributions on
the learner’s generalization capabilities. An advantage of Meta-ADR over the ADR original
formulation is that unlike ADR, Meta-ADR requires no additional rollouts, using the rollouts
already required by gradient-based meta-reinforcement learners to optimize the curriculum.
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Fig. 4.2. Meta-ADR proposes tasks to a meta-RL agent, helping learn a curriculum of
tasks rather than uniformly sampling them from a set distribution. A discriminator learns a
reward as a proxy for task-difficulty, using pre- and post-adaptation rollouts as input. The
reward is used to train SVPG particles, which find the tasks causing the meta-learner the
most difficulty after adaption. The particles propose a diverse set of tasks, trying to find the
tasks that are currently causing the agent the most difficulty.

4.3. Results
In this section, we show the results of uniform sampling of the standard MAML agent

when changing task distribution p(τ), while also benchmarking against a MAML agent trai-
ned with a learned task distribution using Meta-ADR. All hyperparameters for each task
are taken from [19, 66], with the exception that we take the final policy at the end of 200
meta-training epochs instead of the best-performing policy over 500 meta-training epochs.
We use the code from [14] to run all of our experiments. Unless otherwise noted, all expe-
riments are run and averaged across five random seeds. All results are shown after a single
gradient step during meta-test time. For each task, we artificially create a generalization
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Algorithm 4 Meta-ADR
1: Input Task distribution p(τ)
2: Initialize πθ: agent policy, µφ: SVPG particles, fψ: discriminator
3: while not max_epochs do
4: for each particle µφ do
5: sample tasks τi ∼ µφ(·), bounded by support of p(τ)
6: for each τi do
7: Dpre, Dpost = MAMLRL(πθ, τi)
8: Calculate ri for τi using Dpost (Eq. (4.2.2))
9: // Gradient Updates
10: Update particles using SVPG update rule and ri
11: Update fψ with Dpre and Dpost using SGD.

range; potentially disjoint from the training distribution of target goals, velocities, headings,
etc., and we evaluate each agent both in- and out-of-distribution.

Importantly, since our focus is on generalization, we evaluate the final policy, rather
than the standard, best-performing policy. As MAML produces a final initial policy, when
evaluating for generalization for meta-learning, we adapt that initial policy to each target
task, and report the adaption results. In addition, in certain sections, we discuss negative
adaption, which is simply the performance difference between the final, adapted policy and
the final, initial policy. When this quantity is negative, as noted in [13], we say that the
policy has negatively adapted to the task.

We present results from standard Meta-RL benchmarks in Sections 4.4 and 4.5, and in
general find that Meta-ADR stabilizes the adaption procedure. However, this finding is not
universal, as we note in Section 4.6.

In Subsections 4.6, we highlight a need for better benchmarking and failure cases (over-
fitting and biased, non-uniform generalization) that both Meta-ADR and uniform-sampling
methods seem to suffer from.

4.4. Navigation
In this section we evaluate meta-ADR on two navigation tasks: 2D-Navigation-Dense

and Ant-Navigation.

4.4.1. 2D-Navigation-Dense

We train the same meta-learning agent from Section 4.1 on 2D-Navigation-Dense, except
this time we use the tasks2 proposed by Meta-ADR, using a learned curriculum to propose

2In navigation environments, tasks are parameterized by the x, y location of the goal.
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Fig. 4.3. When a curriculum of tasks is learned with Meta-ADR, we see the stability of
MAML improve. Redder is higher reward.

the next best task for the agent. We evaluate generalization across the same scaled up square
spanning the ranges of [−2, 2] in both dimensions.

From Figure 4.3, we see that, with a learned curriculum, the agent generalizes much
better, especially within the training distribution. A MAML agent trained with a Meta-
ADR curriculum also generalizes out-of-distribution with much stronger performance. These
results hint at the strong dependence of MAML performance and the task distribution p(τ),
especially when compared to those in Figure 4.1. Learning such a task curriculum with a
method such as Meta-ADR helps alleviate some instability.

4.4.2. Ant-Navigation

Interestingly, on a more complex variant of the same task, Ant-Navigation, the benefits
of such a learned curriculum are minimized. In this task, an eight-legged locomoter is tasked
with achieving goal positions sampled from a predetermined range; the standard environment
samples the goal positions from a box centered at (0, 0), with each coordinate sampled from
g ∼ [−3, 3]. We systematically evaluate each agent on a grid with both axes ranging between
[−7, 7], with a 0.5 step interval.

In Figure 4.4, we qualitatively see the same generalization across all training task dis-
tributions when comparing a randomly sampled task curriculum and a learned one. We
hypothesize that this stability comes mainly from the control components of the reward,
leading to a smoother, stabler performance across all training distributions. In addition, ge-
neralization is unaffected by the choice of distribution, pointing to differences between this
task and the simpler version.

Compared to the 2D-Navigation-Dense, Ant-Navigation also receives a dense reward
related to its distance to target, specifically “control cost, a contact cost, a survival reward,
and a penalty equal to its L1 distance to the target position.” In comparison, the 2D-
Navigation-Dense task, while a simpler control problem, receives reward information only
related to the Euclidean distance to the goal. Counter-intuitively, this simplicity results in
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Fig. 4.4. In the Ant-Navigation task, both uniformly sampled goals (top) and a learned
curriculum of goals with Meta-ADR (bottom) are stable in performance. We attribute this
to the extra components in the reward function. Redder is higher reward.

less stable performance when uniformly sampling tasks, an ablation which we hope to study
in future work.

4.5. Locomotion
We now consider locomotion, another standard meta-RL benchmark, where we are tasked

with training an agent to quickly move in a particular target velocity (Section 4.5.1) or in
a particular direction (Section 4.5.2). In this section, we focus on two high-dimensional
continuous control problems. In the AntVelocity, an eight-legged locomoter must run at a
specific speed, with the task space (both for learned and random curricula) being the target
velocity. In Humanoid-Direc-2D, a benchmark introduced by [66], an agent must learn to
run in a target direction, θ in a 2D plane.

Both tasks are extremely high-dimensional in both observation and action space. The
ant has a (111 × 1) sized observation space, with each step requiring an action vector of
length eight. The Humanoid, which takes in a (376 × 1) element state, requires an action
vector of length 17.
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4.5.1. Target Velocity Tasks

When dealing with the target velocity task, we train an ant locomoter to attain target
speeds sampled from vt ∼ [0, 3] (Figure 4.5 left, the standard variant of AntVelocity) and
speeds sampled from vt ∼ [0, 5] (Figure 4.5 right).

Fig. 4.5. Ant-Velocity sees less of a benefit from curriculum, but performance is greatly
affected by a correctly-calibrated task distribution (left). In a miscalibrated one (right), we
see that performance from a learned curriculum is slightly more stable.

While we see that learned curricula make insignificant amounts of performance improve-
ment over random sampling when shown the same task distribution, we see large differences
in performance between task distributions, motivating our hypothesis that p(τ) is a crucial
hyperparameter for successful meta-RL. In additon, we notice that the highest scores are
attained on the velocities closer to the easiest variant of the task: a vt = 0, which requires
the locomoter to stand completely still.

4.5.2. Humanoid Directional

In the standard variant of Humanoid-Direc-2D, a locomoter is tasked with running in a
particular direction, sampled from [0, 2π]. This task makes no distinction regarding target
velocity, but rather calculates the reward based on the agent’s heading and other control
costs.

In this task, we shift the distribution from [0, 2π] to subsets of this range, subsequently
training and evaluating MAML agents across the entire range of tasks between [0, 2π], as seen
in the first two panels of Figure 4.6. Again, we compare agents trained with the standard
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Fig. 4.6. In the high-dimensional Humanoid Directional task, we evaluate many different
training distributions to understand the effect of p(τ) on generalization in difficult conti-
nuous control environments. In particular, we focus on symmetric variants of tasks - task
distributions that mirror each other, such as 0−π and π− 2π in the right panel. Intuitively,
when averaged over many trials, such mirrored distrbutions should produce similar trends
of in and out-of-distribution generalization.

Tableau 4.1. We compare agents trained with random curricula on different but symme-
tric task distributions p(τ). Changing the distribution leads to counter-intuitive drops in
performance on tasks both in- and out-of-distribution.

p(τ) θ = 0 θ = 30 θ = 60
0 - 360 62.39±7.01 64.7±5.38 99.93±77.5
0 - 60 71.51±16.74 82.95±32.06 95.96±37.49
0 - 180 171.77±117.8 221.4±91.66 87.78±45.41

300 - 360 65.64±10.42 95.21±40.08 105.4±50.75
180 - 360 134.52±70.07 79.69±26.01 59.52±2.73

uniformly-random sampled task distribution against those trained with a learned curriculum
using Meta-ADR.

When studying the generalization capabilities on this difficult continuous control task,
we are particularly interested in symmetric versions of the task; for example, tasks that
sample the right and left semi-circles of the task space. We repeat this experiment with
many variants of this symmetric task description, and report representative results due to
space in Figure 4.7.

When testing various training distributions, we find that, in general, learned curricula
stabilize the algorithm. We see more consistent performance increases, with smaller losses
in performance in the directions that UniformSampling-MAML outperforms the learned
curriculum. However, as noted in Tables 4.1 and 4.2, we see that again, the task distribution
p(τ) is an extremely sensitive hyperparameter, causing large shifts in performance when
uniformly sampling from those ranges. Worse, this hyperparameter seems to cause counter-
intuitive gains and drops in performance, both on in and out-of-distribution tasks.
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Fig. 4.7. In complex, high-dimensional environments, training task distributions can wildly
vary performance. Even in the Humanoid Directional task, Meta-ADR allows MAML to
generalize across the range, although it too is affected in terms of total return when compared
to the same algorithm trained with "good" task distributions.

Tableau 4.2. Evaluating tasks that are qualitatively similar, for example running at a
heading offset from the starting heading by 30 degrees to the left or right, leads to different
performances from the same algorithm.

p(τ) θ = 180 θ = 330 θ = 300
0 - 360 154.1±121.6 81.26±16.39 75.47±18.92
0 - 60 120.2±62.74 84.34±35.9 126.2±101.3
0 - 180 87.78±45.41 103.5±87.24 89.49±31.0
300 - 360 116.03±52.44 81.25±43.82 100.45±48.41
180 - 360 99.1±88.85 80.52±21.79 80.67±21.82

While learned curricula seem to help in such a task, a more important consideration from
many of these experiments is the variance in performance between tasks. As generalization
across evaluation tasks is a difficult metric to characterize due to the inherent issues when
comparing methods, it is tempting to take the best performing tasks, or average across the
whole range. However, as we show in the remaining sections, closer inspection on each of
the above experiments sheds light on major issues with the evaluation approaches standard
in the meta-RL community today.
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Fig. 4.8. Uniform sampling causes MAML to show bias towards certain tasks, with the
effect being compounded with instability when using "bad" task distributions, here shown as
±0.3,±1.0,±2.0 in the 2D-Navigation-Dense environment.

4.6. Failure Cases of MAML
In this section, we discuss intermediate and auxillary results from each of our previous

experiments, highlighting uninterpretable algorithm bias, meta-overfitting, and performance
benchmarking in meta-RL.

4.6.1. Non-Uniform Generalization

To readers surprised by the poor generalization capabilities of MAML on such a simple
task seen in Figure 4.1, we offer Figure 4.8, an unfiltered look at each seed used to calculate
each image in Figure 4.1.

What we immediately notice is the high variance in all but the standard variant of the
task, an agent trained on goals with coordinates sampled from gt ∼ [−0.5, 0.5]. We even see
a reoccurring bias towards certain tasks (visualized as the top-left of the grid). Interestingly,
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when changing the uniform sampling to a learned curriculum, we no longer see such high-
variance in convergence across tasks. While our results seem in opposition to many works
in the meta-reinforcement learning area, we restate that in our setting, we can only evaluate
the final policy, as the notion of best-performing loses much of its meaning when evaluating
for generalization.

4.6.2. Meta-Overfitting

Many works in the meta-reinforcement learning setting focus on final adaption perfor-
mance, but few works focus on the loss of performance after the adaption step. Coined by
[13] as negative adaption, the definition is simple: the loss in performance after a gradient
step at meta-test time. Negative adaptation occurs when a pre-adaption policy has overfit to
a particular task during meta-training. During meta-test time, an additional gradient steps
degrade performance, leading to negative adaptation.

We extensively evaluate negative adaption in the Humanoid-Direc-2D benchmark descri-
bed in Section 4.5.2, providing correlation results between performance and the difference
between the post- and pre-adaption performance.

When we systematically evaluate negative adaption across all tested Humanoid-Direc-
2D training distributions, we notice an interesting correlation between performance and the
amount of negative-adaptation. Both methods produce near-linear relationships between the
two quantities, but when evaluating generalization, we need to focus on the left-hand side of
the x-axis, where policies already are performing poorly, and what qualitative effects extra
gradient steps have.

We notice a characteristic sign of meta-overfitting, where strongly performing policies
continue to perform well, but poorly performing ones stagnate, or more often, degrade in
performance. When tested, Meta-ADR does not help in this regard, despite having slightly
stronger final performance in tasks.
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Fig. 4.9. When we correlate the final performance (x-axis) with the quality of adaption
(denoted as post-pre on the y-axis), we see a troubling trend. MAML seems to overfit to
certain tasks, with many tasks that were already neglected during training showing worse
post-adaptation returns.
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Chapter 5

Conclusion

Data distributions are central to machine learning; despite being treated as a given in most
work, they have complex interplays with models, optimizers, learning dynamics, and lear-
ning algorithms. Reinforcement learning - with its non-stationarity of data distribution -
complicates analysis even further. Meta-reinforcement learning generates i.i.d samples of
these non-i.i.d learning scenarios, mixing learning updates of supervised and reinforcement
learning.

In this thesis, we explored the idea of generating curricula in unstructured task spaces
and proposed Active Domain Randomization as a way to solve some of the core issues. We
showed strong results in zero-shot, few-shot, and meta-learning settings, and provided some
initial analysis on the effects of curricula on optimization.

Multi-task and transfer learning are core to deploying machine learning in the wild. A
concern is that the community does even have a unified language with which to discuss
multi-task learning: When will these systems fail? When will they work? Can we know in
advance?

Multi-task learning comes in many variants and deserves to be treated as such. In the
future, work needs to highlight these flavors of multi-task learning, bringing the field to
firmer theoretical ground. From here, we can fruitfully discuss benefits and shortcomings,
and from which angles we can systematically attack the problems of multi-task learning.
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Annexe A

Appendices

A.1. Learning Curves for Reference Environments
For space concerns, we show only the hard generalization curves for all environments in

the main document. For completeness, we include learning curves on the reference environ-
ment here.

(a) (b) (c)

Fig. A.1. Learning curves over time reference environments. (a) LunarLander (b) Pusher-
3Dof (c) ErgoReacher.

A.2. Interpretability Benefits of ADR
One of the secondary benefits of ADR is its insight into incompatibilities between the

task and randomization ranges. We demonstrate the simple effects of this phenomenon in
a one-dimensional LunarLander-v2, where we only randomize the main engine strength.
Our initial experiments varied this parameter between 6 and 20, which lead to ADR learning
degenerate agent policies by learning to propose the lopsided blue distribution in Figure A.2.
Upon inspection of the simulation, we see that when the parameter has a value of less than
approximately 8, the task becomes almost impossible to solve due to the other environment
factors (in this case the lander always hits the ground too fast, which it is penalized for).



Fig. A.2. Sampling frequency across engine strengths when varying the randomization
ranges. The updated, red distribution shows a much milder unevenness in the distribution,
while still learning to focus on the harder instances.

After adjusting the parameter ranges to more sensible values, we see a better sampled
distribution in pink, which still gives more preference to the hard environments in the lower
engine strength range. Most importantly, ADR allows for analysis that is both focused -
we know exactly what part of the simulation is causing trouble - and pre-transfer, i.e. done
before a more expensive experiment such as real robot transfer has taken place. With UDR,
the agents would be equally trained on these degenerate environments, leading to policies
with potentially undefined behavior (or, as seen in Section 2.4.4, unlearn good behaviors) in
these truly out-of-distribution simulations.

A.3. Bootstrapping Training of New Agents
Unlike DR, ADR’s learned sampling strategy and discriminator can be reused to train

new agents from scratch. To test the transferability of the sampling strategy, we first train
an instance of ADR on LunarLander-v2, and then extract the SVPG particles and discri-
minator. We then replace the agent policy with an random network initialization, and once
again train according the the details in Section 2.4.1. From Figure 3(a), it can be seen that
the bootstrapped agent generalization is even better than the one learned with ADR from
scratch. However, its training speed on the default environment (ξMES = 13) is relatively
lower.

A.4. Environment Details
Please see Table A.1.

92



(a) (b)

Fig. A.3. Generalization and default environment learning progression on LunarLander-v2
when using ADR to bootstrap a new policy. Higher is better.

A.4.1. Catastrophic Failure States in ErgoReacher

In Figure A.4, we show an example progression to a catastrophic failure state in the
held-out, simulated target environment of ErgoReacher-v0, with extremely low torque and
gain values.

Fig. A.4. An example progression (left to right) of an agent moving to a catastrophic failure
state (Panel 4) in the hard ErgoReacher-v0 environment.

A.5. Untruncated Plots for Lunar Lander
All policies on Lunar Lander described in our paper receive a Solved score when the engine

strengths are above 12, which is why truncated plots are shown in the main document. For
clarity, we show the full, untruncated plot in Figure A.5.
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Environment Nrand Types of Randomizations Train Ranges Test Ranges

LunarLander-v2 1 Main Engine Strength [8, 20] [8, 11]
Pusher-3DOF-v0 2 Puck Fric., Puck Joint Damping [0.67, 1.0]× def. [0.5, 0.67]× def.
ErgoPusher-v0 2 Puck Fric., Puck Joint Damping [0.67, 1.0]× def. [0.5, 0.67]× def.

ErgoReacher-v0 8 Joint Damping [0.3, 2.0]× def. 0.2× def.
Joint Max Torque [1.0, 4.0]× def. def.

Tableau A.1. We summarize the environments used, as well as characteristics about the
randomizations performed in each environment.

Fig. A.5. Generalization on LunarLander-v2 for an expert interval selection, ADR, and
UDR. Higher is better.

A.6. Network Architectures and Experimental Hyper-
parameters

All experiments can be reproduced using our Github repository1.
All of our experiments use the same network architectures and experiment hyperparame-

ters, except for the number of particles N . For any experiment with LunarLander-v2, we
use N = 10. For both other environments, we use N = 15. All other hyperparameters and
network architectures remain constant, which we detail below. All networks use the Adam
optimizer kingma2014adam.

We run Algorithm 4 until 1 million agent timesteps are reached - i.e. the agent policy
takes 1M steps in the randomized environments. We also cap each episode off a particular
number of timesteps according to the documentation associated with brockman2016gym. In

1https://github.com/montrealrobotics/active-domainrand
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particular, LunarLander-v2 has an episode time limit of 1000 environment timesteps, whe-
reas both Pusher-3DOF-v0 and ErgoReacher-v0 use an episode time limit of 100 timesteps.

For our agent policy, we use an implementation of DDPG (particularly, OurDDPG.py) from
the Github repository associated with Fujimoto2018AddressingFA. The actor and critic both
have two hidden layers of 400 and 300 neurons respectively, and use ReLU activations. Our
discriminator-based rewarder is a two-layer neural network, both layers having 128 neurons.
The hidden layers use tanh activation, and the network outputs a sigmoid for prediction.

The agent particles in SVPG are parameterized by a two-layer actor-critic architecture,
both layers in both networks having 100 neurons. We use Advantage Actor-Critic (A2C) to
calculate unbiased and low variance gradient estimates. All of the hidden layers use tanh
activation and are orthogonally initialized, with a learning rate of 0.0003 and discount factor
γ = 0.99. They operate on a RNrand continuous space, with each axis bounded between
[0, 1]. We allow for set the max step length to be 0.05, and every 50 timesteps, we reset each
particle and randomly initialize its state using a Nrand-dimensional uniform distribution.
We use a temperature α = 10 with an RBF-Kernel as was done in svpg. In our work
we use an Radial Basis Function (RBF) kernel with median baseline as described in svpg
and an A2C policy gradient estimator mnih2016asynchronous, although both the kernel and
estimator could be substituted with alternative methods gangwani2018diverse. To ensure
diversity of environments throughout training, we always roll out the SVPG particles using
a non-deterministic sample.

For DDPG, we use a learning rate ν = 0.001, target update coefficient of 0.005, dis-
count factor γ = 0.99, and batch size of 1000. We let the policy run for 1000 steps before
any updates, and clip the max action of the actor between [−1, 1] as prescribed by each
environment.

Our discriminator-based reward generator is a network with two, 128-neuron layers with
a learning rate of .0002 and a binary cross entropy loss (i.e. is this a randomized or reference
trajectory). To calculate the reward for a trajectory for any environment, we split each
trajectory into its (st, at, st+1) constituents, pass each tuple through the discriminator, and
average the outputs, which is then set as the reward for the trajectory. Our batch size is set
to be 128, and most importantly, as done in eysenbach2018diversity, we calculate the reward
for examples before using those same examples to train the discriminator.
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