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Résumé 

Les systèmes infonuagiques deviennent de plus en plus complexes, dynamiques et vulnérables 

aux attaques. Par conséquent, il est de plus en plus difficile pour qu’un seul système de détection 

d’intrusion (IDS) basé sur le cloud puisse repérer toutes les menaces, en raison des lacunes de 

connaissances sur les attaques et leurs conséquences. Les études récentes dans le domaine de la 

cybersécurité ont démontré qu’une coopération entre les IDS d’un nuage pouvait apporter une 

plus grande efficacité de détection dans des systèmes informatiques aussi complexes. Grâce à 

cette coopération, les IDS d’un nuage peuvent se connecter et partager leurs connaissances afin 

d’améliorer l’exactitude de la détection et obtenir des bénéfices communs. L’anonymat des 

données échangées par les IDS constitue un élément crucial de l’IDS coopérative. Un IDS 

malveillant pourrait obtenir des informations confidentielles d’autres IDS en faisant des 

conclusions à partir des données observées. Pour résoudre ce problème, nous proposons un 

nouveau système de protection de la vie privée pour les IDS en nuage. Plus particulièrement, nous 

concevons un système uniforme qui intègre des techniques de protection de la vie privée dans 

des IDS basés sur l'apprentissage automatique pour obtenir des IDS qui respectent les 

informations personnelles. Ainsi, l’IDS permet de cacher des informations possédant des données 

confidentielles et sensibles dans les données partagées tout en améliorant ou en conservant la 

précision de la détection. Nous avons mis en œuvre un système basé sur plusieurs techniques 

d’apprentissage automatique et de protection de la vie privée. Les résultats indiquent que les IDS 

qui ont été étudiés peuvent détecter les intrusions sans utiliser nécessairement les données 

initiales. Les résultats (c’est-à-dire qu’aucune diminution significative de la précision n’a été 

enregistrée) peuvent être obtenus en se servant des nouvelles données générées, analogues aux 

données de départ sur le plan sémantique, mais pas sur le plan synthétique. 

Mots-clés : Systèmes infonuagiques, Cyber-attaques, Intimité, Système de détection d’intrusion, 

IDS coopératif. 
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Abstract 

Cloud systems are becoming more sophisticated, dynamic, and vulnerable to attacks. Therefore, 

it's becoming increasingly difficult for a single cloud-based Intrusion Detection System (IDS) to 

detect all attacks, because of limited and incomplete knowledge about attacks and their 

implications. The recent works on cybersecurity have shown that a co-operation among cloud-

based IDSs can bring higher detection accuracy in such complex computer systems. Through 

collaboration, cloud-based IDSs can consult and share knowledge with other IDSs to enhance 

detection accuracy and achieve mutual benefits. One fundamental barrier within cooperative IDS 

is the anonymity of the data the IDS exchanges. Malicious IDS can obtain sensitive information 

from other IDSs by inferring from the observed data. To address this problem, we propose a new 

framework for achieving a privacy-preserving cooperative cloud-based IDS. Specifically, we design 

a unified framework that integrates privacy-preserving techniques into machine learning-based 

IDSs to obtain privacy-aware cooperative IDS. Therefore, this allows IDS to hide private and 

sensitive information in the shared data while improving or maintaining detection accuracy. The 

proposed framework has been implemented by considering several machine learning and 

privacy-preserving techniques. The results suggest that the consulted IDSs can detect intrusions 

without the need to use the original data. The results (i.e., no records of significant degradation 

in accuracy) can be achieved using the newly generated data, similar to the original data 

semantically but not synthetically. 

Keywords: Cloud Systems, Cyber Attacks, Privacy, Intrusion Detection System, Cooperative IDS. 
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Chapter 1 – Introduction 

In this chapter, we present the context of our research work and define the problems 

addressed in this thesis. We also present the corresponding research questions and finally identify 

the objectives of our research work. We present the background and related work in the next 

chapter (Chapter 2). 

1.1 Problem Statement 

The explosive rise1 in cloud computing solutions and technologies, such as Amazon Web 

Services, Google Cloud and Microsoft Azure, is currently driven by the idea that it is economically 

profitable as it enables companies to streamline expenditure on infrastructure (Low, Chen, & Wu, 

2011). Companies and governments are expecting to transfer their IT solutions to the cloud, if not 

yet (Oliveira, Thomas, & Espadanal, 2014). 

With the complex, dynamic, and heterogeneous architecture of the cloud, it has become 

increasingly difficult for a traditional cloud-based intrusion detection system (IDS) to detect all 

attacks (Rowland, 2002). A single intrusion into a heterogeneous system may take various forms 

that are semantically but not synthetically similar. 

Another problem with the heterogeneity of the cloud is that recent intrusions have 

evolved, becoming more sophisticated and difficult to detect. The attackers are becoming experts 

in creating and launching complex intrusions and concealing their malicious behavior (Herrington 

& Aldrich, 2013). Thus, it has become difficult for a single IDS to detect all attacks due to limited 

knowledge about intrusion patterns (Liao, Lin, Lin, & Tung, 2013). 

A collaboration among cloud-based IDSs has proven its efficiency (i.e., accuracy) in 

identifying new and complex attacks (Bakshi & Dujodwala, 2010; Zargar, Takabi, & Joshi, 2011; 

Zhou, Leckie, & Karunasekera, 2010). By collaborating, IDSs in different locations or those 

                                                        
1 https://www.forbes.com/sites/louiscolumbus/2019/04/07/public-cloud-soaring-to-331b-by-2022-according-to-
gartner/#76dba21b5739 
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belonging to different Cloud Providers (CPs) may cooperate to use each other's expertise to cover 

evolving and unknown patterns of attack. To achieve that, IDSs can share knowledge and 

experience with others to enhance the detection accuracy and achieve mutual benefits. Recent 

works by (Abusitta, Bellaiche, Dagenais, & Halabi, 2019) (Fung & Zhu, 2016) show that 

cooperation among IDSs can enhance the detection accuracy by up to 60%. 

While several methods were proposed to model the cooperation among cloud-based IDSs 

(Lo, Huang, & Ku, 2010), these approaches do not consider sharing the privacy of the data. 

Therefore, Song et al. (Song, Shi, Fischer, & Shankar, 2012) are researching personal data (i.e., 

data from clouds clients or users) protection measures for in-flight data. In recent times, it has 

become significantly challenging to avoid data leaks in cooperative cloud-based IDS, given the 

large amount of data shared among the IDSs to enhance detection accuracy and achieve mutual 

benefits (Hudis, Helman, Malka, & Barash, 2013). Thus, it reduces the motivation of cloud-based 

IDSs to participate in IDS communities.  

The problems have led to the following research questions that we have attempted to address 

throughout the thesis: 

• How to preserve privacy in cooperative cloud-based IDS while simultaneously enhancing 

or maintaining their detection accuracy? 

• How to evaluate the anonymity of data and decide which data points should be shared? 

• How to find an efficient mechanism that allows an IDS to convert the single private data 

points to a new form similar to the original one semantically but not synthetically, to use 

the newly generated data to feed other IDSs in the community and improve detection 

accuracy? 

1.2 Research Objectives 

This thesis aims to maintain and enhance the detection accuracy of cooperative cloud-based 

IDS, simultaneously attempting to protect the privacy of cloud-based IDSs’ users and clients. More 

specifically, the objectives of the thesis are: 
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- To propose a framework that allows us to integrate privacy-preserving techniques into 

cooperative cloud-based IDSs.  

- To devise a decision model that lets an IDS decide which data to be shared while satisfying 

the goals of enhancing the detection accuracy and protecting private data. 

- To design g a mechanism that enables an IDS to create new data similar to the original 

data semantically but not synthetically to allows the IDSs to handle the generated data 

instead of the original data. The challenge is to maintain accuracy with the new synthetic 

data. 

1.3 Main Contributions and Originality 

The originality of our work lies in the design of privacy-preserving cooperative cloud-based 

IDS. The principal contributions are: 

- Proposing a unified framework for integrating privacy-preserving techniques into machine 

learning-based IDS. The proposed framework enables us to maintain or enhance detection 

accuracy. 

- Designing a novel algorithm that allows an IDS to evaluate or investigate the efficiency of 

applying privacy-preserving techniques into machine learning-based IDS. The proposed 

algorithm allows us to determine the data points to share and increase the detection accuracy 

while preserving the privacy of cloud-based IDS users and clients. 

- Designing and implementing a new method that allows us to convert the IDS original data into 

new synthetic data. The generated data is used to feed machine-learning models and achieve 

a high detection accuracy for each IDS in the coalition. 

1.4 Thesis Structure 

The rest of the thesis is organized as follows. In Chapter 2, we discuss the related work. In 

Chapter 3, we present the proposed privacy-preserving cooperative cloud-based IDS. In 

Chapter 4, we report our empirical results to show the effectiveness of the proposed framework. 

Chapter 5 presents a discussion of our work. Finally, Chapter 6 concludes the thesis by 
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summarizing our contributions and discussing some research gaps that require further 

investigation. 
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Chapter 2 – Related Work 

In this chapter, we discuss recent works in the areas related to this thesis. We first present 

some basic definitions of the topic and discuss the related work. 

2.1 Cloud Computing 

Cloud computing allows cloud providers (CPs) such as Amazon Web Services, Azure, and 

Google Cloud to rent out space on their infrastructures, platforms, and services to consumers. 

Thanks to the virtualization, it is possible for the smooth migration of applications and services 

from node to node. Many companies, organizations, and governments have plans or already 

planned to transfer2, if they have not already, all or parts of their IT solutions to the cloud. This 

transfer is beneficial from an economic viewpoint (Low et al., 2011) as it allows them to streamline 

operating workflows and reduce expenditure on infrastructure. 

2.2 Intrusion Detection System 

Intrusion detection is the process of monitoring performance metrics to explore attack 

symptoms. Some examples of IDS systems are Snort by Cisco and an open-source Zeek3 for traffic 

logging and analysis. Such symptoms might be at an early stage or advanced enough to affect the 

efficiency of the system. The IDS are of two main types: Signature-based and Anomaly-based IDS. 

The signature-based IDS contrasts the behavior of the attack with known types and patterns. In 

order to ensure that this style of the IDS system is successful, the list of known signatures must 

to be regularly updated. To fix the vulnerabilities faced by the former, we use the anomaly-based 

IDS to raise alarms when irregular network traffic behavior is observed. Anomaly-based IDS also 

                                                        
2 https://www2.deloitte.com/us/en/insights/industry/technology/why-organizations-are-
moving-to-the-cloud.html  
3 https://zeek.org/ 
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has the weakness of mistaking normal activity for an attack and an attack for normal activity 

(Spathoulas & Katsikas, 2010). 

 2.2.1 Cooperative Intrusion Detection System 

It has become challenging for a sole IDS to detect all attacks due to limited knowledge. 

Collaboration among IDS has proven its efficiency in terms of the accuracy in detecting new and 

sophisticated attacks. See some examples of cooperative IDS by (Fung & Zhu, 2016) and Revmatch 

(Fung, Lam, & Boutaba, 2014). 

Through collaboration, IDSs in different regions, and possibly belonging to different Cloud 

Providers (CPs), can cooperate in a way that they use each other’s expertise to cover unknown 

threat patterns. By enabling IDSs to consult each other about suspicious behavior, the received 

feedback can help decide whether to raise the alarm. 

2.2.2 Cloud-based Cooperative Intrusion Detection System 

We classify attack detection approaches into three significant categories: signature-based, 

anomaly-based, and hybrid detection approaches. Hybrid detection efficiently combines both 

signature-based and anomaly-based approaches to improve detection accuracy. 

Figure 1 shows an example of a cloud-based cooperative IDS. If multiple clouds, 

represented by the small clouds with the red circles signifying the IDS, collaborate with each other 

through the cloud federation's exchange of metrics and data, they can improve their performance 

and efficiency in detecting different types of attacks.  
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Figure 1. Cooperative Cloud Based IDS 

2.2.3 Signature Based Detection System 

A signature-based IDS is designed with known rules and filters for an IDS to detect and 

raise the alarm. An implementation by (Lonea, Popescu, & Tianfield, 2013) proposes SNORT, a 

signature-based detection method configured with already known rules to detect known attacks 

in the cloud environment. They tested their method by simulating the flooding attacks across 

different protocols. Another approach (Bakshi & Dujodwala, 2010) deploys SNORT on every 

virtual machine (VM) at its virtual interface, allowing VMs to analyze traffic in real-time. Snort-

based detection methods utilize the advantage of sniffing attacker packets on known patterns 

and raising the alarm on the unknown packets. They are also useful in detecting Networked Denial 

of Service (NDoS) attacks. 

Moreover, other IDSs designed by (Gupta & Kumar, 2013) use a similar attack detection 

approach based on VMs profile optimization. Their approach involves deploying a rule-based 

detection method for matching packets in flooding attacks by generating a threshold for each rule 

pattern.  
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Although signature-based detection approaches are extremely effective in detecting 

known attack patterns, the weakness of these approaches is apparent when the attack patterns 

are dynamic and ever-changing. Attackers are becoming smarter in launching attacks in such a 

way that they try to avoid known patterns of attack and bypass the IDS rule(s) from detecting 

their attack. Instead, more complex and better methods must be adopted by observing and 

adapting to the cloud environment they are deployed in. Fortunately, the majority of the new 

tools used to launch DoS attacks are available on the internet and are proactively understood 

(Bhuyan, Kashyap, Bhattacharyya, & Kalita, 2014) to design newer rules for a static rule set based 

IDS. 

2.2.4 Anomaly-Based Detection System 

The approach of an anomaly-based is different for detecting attacks than the signature-

based approach in terms of its ability to detect unknown attack patterns. We classify the state-

of-the-art anomaly-based detection techniques into two main categories: Machine Learning (ML) 

and Statistical approaches. 

Several methods have been proposed by (Garcia-Teodoro, Diaz-Verdejo, Maciá-

Fernández, & Vázquez, 2009) to use machine learning models as Bayesian Networks, Markov 

Models and Neural Networks to improve the anomalous detection with high detection rate 

results. 

 Also, (Garcia-Teodoro et al., 2009) have used the statistical model and knowledge-based 

models for designing the anomaly-based detection system. Besides, (Su, 2011) has designed a 

model by using the KNN Based Classifiers for online anomaly network classification. 

Earlier methods used data mining techniques in intrusion detection, and a general study of their 

implementation by (C. C. Aggarwal & Philip, 2008) and (Barbara, Couto, Jajodia, Popyack, & Wu, 

2001) show the various ways it helped in the detection of attacks by allowing the IDS to learn by 

itself. 

The approaches elaborated so far do not consider the privacy aspect of the data traveling 

on the network in a cooperative cloud or between multiple standalone IDS. Several privacy-
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preserving intrusion detection systems address this issue. In Section 2.2.5, we explore them in 

further detail. 

2.2.5 Privacy Preserving Intrusion Detection System 

As we have observed, the anomaly detection method is better than the static signature-

based approach. Most of the IDSs are built with anomaly detection features. The inherent 

weakness in this approach is that with the lack of datasets, the system cannot correctly classify 

the attacks. 

In a cooperative cloud environment, multiple IDSs are strategically placed. The protection of the 

privacy of the data shared is a growing concern. Several methods of intrusion detection were 

designed and developed to address this issue while maintaining data privacy. (Shokri & 

Shmatikov, 2015) have designed a deep learning technique that enables multiple parties to learn 

an accurate neural-network model for an objective without sharing their input datasets. The 

advantage of the optimization algorithms used in modern deep learning, namely, those based on 

stochastic gradient descent, is that it can be parallelized and executed asynchronously. The 

system they have invented allows the participants to independently train their datasets and 

selectively share small subsets of their model’s key parameters during training. This offers an 

attractive point in the trade-off space of utility/privacy. Participants maintain the privacy of their 

data while benefiting from the models of other participants and thus boosting their learning 

accuracy beyond what they achieve through their sole inputs.4 

 (T. Zhang & Zhu, 2018) have designed a privacy-preserving framework for Vehicular Ad- 

Hoc networks (VANets) enabling technology in modern transportation systems in helping to 

provide safety and valuable information and yet vulnerable to attacks from passive 

eavesdropping to active interference. 

To this end, distributed machine learning is an appropriate framework for the design of scalable 

and implementable collaborative detection algorithms over VANets. One fundamental barrier to 

collaborative learning is the privacy concern as nodes exchange data among them. A malicious 

                                                        
4 https://www.cs.cornell.edu/~shmat/shmat_ccs15.pdf 
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node can obtain sensitive information from other nodes by inferring from the observed data the 

algorithm employs the alternating direction method of multipliers to a class of empirical risk 

minimization problems and trains a classifier to detect the intrusions in the VANets. The authors 

use the concept of differential privacy to capture the privacy notation of the privacy-preserving 

machine-learning-based collaborative IDS (PML-CIDS) and propose a method of dual-variable 

perturbation to provide dynamic differential privacy. 

 (Niksefat, Sadeghiyan, Mohassel, & Sadeghian, 2014) introduce a client- server solution 

mechanism in detecting attacks based on signatures, in which the server is frequently updated 

with the sensitive signatures of zero-day attacks. For clients connecting to the IDS, the server 

compares both signatures and thus can classify it as an attack or not. In this approach, neither the 

server nor the client is aware of each other’s data, which gives a guarantee in preserving the 

privacy of the shared data. 

To implement this, the authors reduce privacy-preserving intrusion detection to an 

instance of secure two-party oblivious deterministic finite automata (ODFA) evaluation 

(Hromkovič & Schnitger, 2003). Then, motivated by the fact that the DFAs associated with attack 

signature is often sparse, the authors proposed a new and efficient ODFA protocol that takes 

advantage of this sparsity. 

 (Niksefat et al., 2014) and (Meng, Li, Kwok, & Xiang, 2013) also suggested a signature 

comparison for having Intrusion Detection Systems as a Service (IDSaaS). (Dara & Muralidhara, 

2016) have proposed a cryptographic approach to the real-world use cases to defend against 

intrusion detection attempts from the availability of global data, which is a must for organizations 

to defend against modern advanced persistent threats (APTs). Although several implementations 

of use case-specific versions in privacy-preserving IDS have been examined, privacy concerns 

continue to be of major hindrance of cooperative intrusion detection.  

As with anomaly-based intrusion detection systems, which use machine learning-based 

training to improve and detect outliers, we briefly introduce machine learning in intrusion 

detection systems in Section 2.3. 



11 

2.3 Machine Learning in Intrusion Detection Systems 

Machine Learning (Michie, 1994) has been effectively utilized in calculating the accuracy 

of attack detection and determination. The use of machine learning has helped decide which sets 

of data and parameters are tantamount to an attack or false flag. The results are based on the 

accuracy, precision, recall, and f-score of the machine learning algorithms. Classification is a data 

mining method of assigning data instances into one among the few categories. Many classification 

algorithms have been developed to outperform one another, and they work based on 

mathematical techniques like decision tree, linear programming, and neural networks. These 

techniques analyze the available data to make predictions of an attack. Other more advanced 

algorithms in machine learning have also been utilized in various contexts such as deep learning, 

neural network, and Bayesian classifiers. 

As part of our experimental study, we have considered four machine-learning algorithms, 

Random Forest (Liaw & Wiener, 2002), K-Nearest Neighbors (Peterson, 2009), Support Vector 

Machines (Suykens & Vandewalle, 1999) and Decision Trees (Safavian & Landgrebe, 1991). 

Several implementations that enhance the wide usage of machine learning techniques 

exist, but we focus on the use case of privacy preservation, where we discuss them in Section 

2.3.1. 

2.3.1 Privacy Preserving Machine Learning 

(Sweeney, 2002b) explain the situations where aggregate statistical information was once 

the reporting norm now rely heavily on the transfer of detailed information. It happens at a time 

when more and more historically, public information is also electronically available. When these 

data are linked together, they provide an electronic shadow of a person or organization that is as 

identifying and personal as fingerprints, even when the sources of information contains no 

explicit identifiers. Owners of data remove or encrypt explicit identifiers such as names, 

addresses, and phone numbers to protect individuals' anonymity to whom released data refer to. 

However, other distinctive data, which we refer to as quasi-identifiers when combined, are linked 

to publicly available information to re-identify individuals. 
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 (Sweeney, 2002b) have proposed the k-anonymity approach to preserve privacy, by 

elaborating how they addressed the problem of releasing personal data while safeguarding 

anonymity. The approach pursued for multidimensional attributes is based on the extension of k-

anonymity to multidimensional attributes, namely, Mondrian k-anonymity. A dataset is said to 

satisfy the k-anonymity principle for k > 1 if, for each combination of fundamental attribute 

values, at least k records exist in the dataset sharing that combination (Domingo-Ferrer, 2018). 

In the information age, our internet searches, history of purchases, videos watched, and 

movie preferences are a few types of information that are being collected and stored daily. This 

data collection happens within every electronic gadget. Such private data is used in various 

applications like machine learning and statistics. 

To address the privacy aspect of the collected data, (Al-Rubaie & Chang, 2019) have 

proposed several methods of privacy preservation to collect data  on a contextual basis. The 

methods they have proposed vary from homomorphic encryption to secret sharing approach, 

where the secret is broken down into multiple parts with each entity holding a “share” of the 

secret. Individual shares are of no use on their own; however, when the shares are recombined, 

the secret can be reconstructed. With threshold secret sharing, not all the “shares” are required 

to reconstruct the secret, but only a threshold “t” of them is required to reconstruct the secret. 

(Al-Rubaie & Chang, 2019) have also explored differential privacy by (Friedman & Schuster, 2010) 

for gently perturbing the data and the different ways of achieving differentially private data for 

input data. They show that it is also applicable algorithmically and perturbing output data by 

additive noise. 

Deep Learning methods have also been proposed by (Hesamifard, Takabi, & Ghasemi, 

2017) by using Neural Networks as a way to allow for anomalous detection of the data while 

maintaining privacy. On the other hand, with the increasing growth of cloud services, several 

Machine Learning as a Service (MLaaS) (Ribeiro, Grolinger, & Capretz, 2015) are offered where 

training and deploying machine learning models are performed on cloud provider’s 

infrastructure. They address the issue of privacy preservation for the data by developing a new 

technique of applying neural network algorithms to the encrypted data. They also show that the 
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result they achieve is also encrypted, thus proving the applicability of encryption to privacy-

preserving machine learning. The empirical results they have achieved show that it provides an 

accurate training and classification while preserving the privacy of the data. (Mendes & Vilela, 

2017) have explored several approaches such as noise addition, data perturbation, generalization, 

and homomorphic encryption depending on the collected data or published data. 

Major companies namely, Apple5, Google, and IBM, have understood the growing need 

for privacy in the data they collect and have responded with their versions of privacy-preserving 

machine learning methods. Apple has positioned itself to stand up for user privacy rights and has 

taken a significant number of steps towards achieving that. Apple has gone further to improve 

the privacy of the data it collects by establishing an on-device computing version of differential 

privacy before the data is collected for analysis. Google has released a Tensorflow based version 

of its privacy-preserving machine learning algorithms such as RAPPOR (Erlingsson, Pihur, & 

Korolova, 2014). Similarly, IBM has released its set of libraries for Privacy-Preserving Machine 

Learning. Microsoft has also proposed SecureNN6 to promote privacy-preserving machine 

learning by using neural networks. 

Further research by (Lin, Shi, & Xue, 2018) has shown a practical approach for enhancing 

intrusion detection, which is an implementation of the generative adversarial network (GANN) 

model, IDSGAN, to generate the adversarial attacks, which can deceive and evade the intrusion 

detection system. Considering that the detection system’s internal structure is unknown to 

attackers, adversarial attack examples perform the black-box attacks against the detection 

system. They utilize the fact that an IDSGAN leverages a generator to transform original traffic 

into trained traffic they can learn on. They have used a discriminator that classifies traffic 

examples and simulates the black-box detection system. Their tests on the NSL-KDD dataset have 

                                                        
5 https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf 

 
6 https://www.microsoft.com/en-us/research/uploads/prod/2018/09/securenneprint.pdf 
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demonstrated excellent results in detecting various attacks with generated data similar to the 

original.  

2.4 Summary 

Generally, for a multi-cloud environment, the preservation of privacy in a cooperative IDS 

was yet to be addressed. Thus, in this thesis, we present a new framework that allows us to 

integrate privacy-preserving techniques into anomaly-based IDSs to obtain privacy-preserving 

cooperative IDSs. The proposed framework allows us to hide private and sensitive information in 

shared data while improving or maintaining the IDS detection accuracy. We choose the anomaly-

based IDS since we can implement the privacy-preserving machine learning algorithms over the 

synthesized data and train the overall system to detect unknown attacks easily. 
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Chapter 3 – Privacy Preserving Framework in a Cooperative 

Cloud-based IDS 

In this section, we present the proposed framework for achieving privacy-preserving 

cloud-based cooperative IDS.  

3.1 Problem Definition & Challenges 

Some detection methods, such as machine learning methods, based on anomalous 

behavior, are employed to decide whether a suspicious activity is an attack or not to improve the 

accuracy of IDS. However, in a cooperative setting (i.e., cooperative cloud-based IDS), data needs 

to be shared among IDSs to achieve a greater detection accuracy. When the data is shared among 

these nodes, the aspect of information privacy is not considered. Therefore, personal data 

breaches occur. It has become increasingly challenging to avoid data leaks in cooperative cloud-

based IDS, given the vast amount of data shared among IDSs to enhance detection accuracy. 

It’s becoming a challenge to protect privacy in data-sharing IDSs since we need to preserve 

the privacy on these systems while enhancing or maintaining their detection accuracy. In fact, 

most privacy-preserving algorithms are based on achieving a trade-off between privacy and 

accuracy (T. Li & Li, 2009; Rastogi, Suciu, & Hong, 2007; Sankar, Rajagopalan, & Poor, 2010; H. 

Zhang, Shu, Cheng, & Chen, 2016). 

Thus, the challenge is to find an efficient mechanism that allows for data conversion into new 

data similar to the original one semantically but not synthetically. Then, an IDS inside the IDS 

community should use the generated data rather than the original data to decide whether 

suspicious activity is an attack or not. The mechanism would effectively allow us to achieve high 

accuracy without the need to share the original data points. 

3.2 The Proposed Framework 

To address the problems mentioned above, we propose a unified framework for 

integrating privacy-preserving methods into machine learning models that allows IDSs in the 
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community to hide the private information of their users or clients while maintaining the 

detection accuracy. We can do that by converting the original data points to new data points 

similar to the original ones semantically but not synthetically. As a result,  we achieve high 

accuracy without the need to use original data. To this end, we propose a decision-based 

mechanism that allows us to investigate the extent to which the generated data using privacy-

preserving techniques is useful for achieving higher detection accuracy. This allows an IDS to 

decide whether to publish the newly generated synthetic data or not. Figure 2 shows the 

flowchart steps of the proposed framework. 

For simplicity, we have decided to apply the following machine learning algorithms in the 

experiment: Random Forest (RF), K-Nearest Neighbours (KNN), Decision Trees (DT), and Support 

Vector Machines (SVM). Each of these machine learning algorithms can be used to train our 

datasets after applying privacy-preserving techniques. We have decided to use these algorithms 

because they are widely accepted in the literature and proved to achieve higher detection 

accuracy than other machine learning methods (Tsai, Hsu, Lin, & Lin, 2009). 

As shown in the proposed flow chart diagram (Figure 2), we first run machine learning algorithms 

on the original data D0. In particular, we used each of our selected machine learning algorithms 

and calculated the average accuracy as A0. We repeated these steps for the data D1, which results 

from the modifications applied on D0 using differential privacy. We then compare the accuracy of 

A0 and A1. If the accuracy is more or less similar to each other, the algorithm will progress to the 

next step; otherwise, it will stop. The decision to stop this algorithm indicates that the disclosure 

of D1 privacy-preserved data is not feasible due to the deterioration of the detection accuracy. 
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Figure 2. Flow Chart of Our Proposed Framework 
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When the algorithm progresses to the next phase, the average accuracy of machine 

learning algorithms to a new privacy-preserving technique A2 is compared with A1 to ensure that 

the accuracy will not be degraded using the new privacy-preserving technique. If the accuracies 

are indeed similar, then the algorithm pushes forward to the next phase. If the accuracies are not 

similar, the algorithm publishes the data D1. The published data may be used by other IDSs in our 

cooperative system to apply a machine learning algorithm(s). However, we are still in a position 

to apply other privacy-another preservation technique(s) in the next phase, hoping to guarantee 

more data privacy. It is worth mentioning that the privacy-preserving techniques used in the 

proposed framework are designed to ensure that the next privacy-preserving technique provides 

more protection than the previous one. The same can be applied to the next phases until we 

reach the most protected data D4 for the machine learning and privacy preservation techniques 

used.  

This algorithm guarantees the anonymity of the published data over the different stages 

and the efficiency of its usage to train machine-learning models and achieve acceptable accuracy 

in collaborative IDS. Note that at each point, we argue that the framework is allowed to publish 

the protected data generated in the previous stage if the accuracy obtained is acceptable. 

However, the anonymity of the data is optimally protected after passing through all the four 

stages of our framework. 

The dataset used to verify and evaluate the proposed flowchart is the NSL-KDD Dataset (Dhanabal 

& Shantharajah, 2015), widely used in the cybersecurity community. Other datasets can also be 

applied. However, different machine learning algorithms might be used to enhance the detection 

accuracy. 

3.3 Selecting and Sorting Privacy Preserving Techniques 

In Section 3.2, we proposed a decision-based mechanism that allows an IDS to decide 

whether to publish data or not. The suggested framework decides to publish the most protected 

data if the calculated detection accuracy for each privacy technique and machine learning model 

used is acceptable or high. The shortcoming of the proposed framework (Figure 2) is that the 

privacy-preserving listed techniques should be sorted in such a way that any shortcomings in the 
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current phase can be addressed in the next phase. In other words, the proposed framework 

should work in such a way that the current phase (the current privacy-preserving technique) 

should cover the weaknesses and problems faced by the previous phases. To address this issue, 

we investigate the use of privacy-preservation techniques capable of achieving this property. 

To this end, we have selected a set of approaches, namely Generalization (Bayardo & 

Agrawal, 2005), Suppression (Sweeney, 2002a), and Perturbation (Kargupta, Datta, Wang, & 

Sivakumar, 2003). In the next subsection, we show how some techniques extracted from these 

approaches can complement each other and achieve higher privacy protection levels. 

Below, we briefly introduce the privacy-preserving approaches. Then, we describe the 

techniques selected from these approaches to achieve complementary properties as described 

above. In the next section, we review some techniques such as k-anonymity, l-diversity, t-

closeness. 

1. Generalization: This method of anonymization involves the replacement of a value by 

a more general one. Numerical data may be specified by intervals (e.g., an age of 53 

may be specified as an interval in the form of [50, 55]), whereas categorical attributes 

require the definition of a hierarchy. An excellent example of a hierarchy is to 

generalize engineers and artists’ values from occupation and attribute them to a 

professional. Another possibility would be to have students’ parent values represent 

all types of students in the same occupation attribute.  

2. Suppression: This method of data anonymization involves the extraction of some 

attribute values to prevent information disclosure. This operation can also be 

performed column-wise, in a data set (removes all values of an attribute), or row-wise 

(removes an entry). 

3. Perturbation: In this data anonymization method, the original data is replaced by 

synthetic values with the same statistical information. The randomization methods are 

mostly additive and multiplicative noise. Data swapping and synthetic data generation 

are also perturbation techniques. Differential privacy is one commonly used method 

of data perturbation. 
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4. Data Swapping: The swapping of data has been proposed by (Dalenius & Reiss, 1982). 

In this method, sensitive attributes are exchanged between different entries of the 

dataset to prevent the linkage of records to identities. 

From the four methods mentioned above, we combine the methods of perturbation and 

generalization in such a way that one method can improve the weaknesses perceived by the 

other. We have chosen perturbation and generalization specifically since they prevent the re-

identification of the users in the data in the best manner while maintaining the trade-off between 

privacy and utility. 

Techniques such as suppression and data swapping can also be used depending on the 

datasets. We propose using machine learning to determine accuracy, suppressing the data is not 

constructive, and data swapping can be easily undone any adversary who has background 

knowledge of the dataset.  

In Figure 3, we show the selected privacy-preserving methods. As represented in Figure 3, the 

initial perturbation of data by differential privacy improves the weakness of prior knowledge 

attacks faced by k-anonymity. In this method of synthesizing information, a mathematical model 

is constructed with the original data and is applied discreetly so that the attacker cannot predict 

that the synthetic data was added to the normal data set. This is simpler than the data swap 

procedure, where the data is swapped randomly between columns, and the attacker can quickly 

revert the changes made. 
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Figure 3. Our Proposed Framework 

The technique of using Mondrian k-anonymity for multidimensional data is insufficient. 

An adversary who knows that a person is in the k-anonymous group can still learn the sensitive 

attribute of a person with absolute certainty. An extension of k-anonymity solves this issue, l-

diversity ensures that each k-anonymous group contains at least l different values for the sensitive 

attribute. Finally, the weakness of l-diversity has overcome by t-closeness. The weakness of l-

diversity arises as it generates partitions that contain a massive number of entries for one 

sensitive attribute and only a few entries for the other sensitive attributes. It is fixed by extending 

the l-diverse data to t-closeness, which specifies that the statistical distribution of the sensitive 

attribute in each l-diverse group is similar to the overall distribution. Section 3.3.2, 3.3.3, and 3.3.4 

go into greater detail.  

Figure 3 lists our proposed data anonymization strategy that can be applied to other 

datasets beyond those related to network intrusion, including telemetry and analytical data. In 

the next section, we briefly introduce the privacy-preserving techniques. Moreover, we explain 

how each technique overcomes the shortcoming of the previous technique. The perturbed data 

is an improvement over using the actual data as it covers the weakness of prior knowledge attack 

on the next approach in the framework, namely k-anonymity. 
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3.3.1 Differential Privacy 

An algorithm is said to be differentially private if an observer is unable to tell whether an 

individual’s information was used in the computation by seeing its output. Differential privacy is 

often used in situations where sensitive and recognizable personal data is stored in a database. 

Differentially, secret algorithms do not directly refer to attacks for identification and re-

identification because they are resistant to such attacks. Examples of implementing the 

differential privacy for real-time data are by Apple7 and Google8 collecting data from their users 

in a manner where personally identifiable data is not easily done. 

The research done by (Dwork, 2011) introduces the concept of ε-differential privacy, a 

quantitative description of privacy loss associated with any release of information from a 

statistical database. In describing the statistical database concept, we may expand the fact that a 

collection of information is obtained in compliance with the guarantee of confidentiality for 

producing statistics. The rationale for the concept of ε-differential privacy is that the privacy of 

an individual is not violated by a statistical release, even if their information is in the database. 

The purpose of using differential privacy is mainly to give each person the same privacy as 

that which would result from the deletion of their information. In other words, the statistical 

functions performed on the data should not be overly dependent on the data of any entity and, 

therefore, on our case of multi-attribute data. We test the definition of ε-differential privacy to a 

combination of several attributes we have defined as quasi-identifiers (QIs). 

3.3.1.1 Implementing ε-differential privacy 

We apply the concept of additive noise; one such example is the Laplacian mechanism 

allowing us to add controlled noise into the data to prevent identification or re-identification of 

published data. Additive Noise Mechanism works in the way that for any sample data in a table 

named X and the noise generated through a chosen noise function is Y. 

                                                        
7 https://www.wired.com/2016/06/apples-differential-privacy-collecting-data/ 
8 https://www.macobserver.com/analysis/google-apple-differential-privacy/ 
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The mechanism of additive noise is explained in equation 1, where X is the data, and Y is the 

controlled and random noise generated via the Laplacian Mechanism.  

X = X + Y         ---(1) 

Equation 2 describes the working of Laplacian noise generation. Let 𝐷 be a collection of data 

points and 𝑓:𝐷 → 𝑅 be a real-valued function, the sensitivity ∆𝑓 = 𝑚𝑎𝑥|𝑓(𝑥) − 𝑓(𝑦)|, where 

the maximum is over all pairs of datasets 𝑥 and 𝑦 in 𝐷, where 𝜇 is the expected value of the 

Laplace distribution and 𝑏 is the scale parameter. 

M345(𝑥, 𝑓, 𝜖) = 𝑓(𝑥) + 𝐿𝑎𝑝(𝜇 = 0, 𝑏 = ∆<
=
)      ---(2) 

Laplacian noise is applied to the data with a low expected value and scale so that the resulting 

skewed data is intentionally statistically close to the original values in order that as little 

information as possible can be leaked. Heavy noise generation can drastically affect the utility of 

the data for which the intrusion detection system needs to learn and fine-tune itself. Following 

the initial phase of data disruption, we explain in Section 3.3.2 how k-anonymization benefits 

from the perturbed data. 

3.3.2 K-Anonymity 

K-anonymity is a lexical transformation on attributes. It is a mapping from the universe of 

all possible data to those who respect the k-anonymity principle (Domingo-Ferrer, 2018). The 

values of k can significantly affect the anonymity achieved. There exists the possibility of leakage 

of private data when poor values of k are chosen or when the distance between the original data 

and the mapped data is small. On the other hand, the data is mostly useless when the distance 

between the original and mapped values is large. One of the best use cases for k-anonymity is 

password leak validation; one such implementation is by Cloudflare9. 

The argument against k-anonymity is that it does not work well with prior knowledge. The 

possibility of information exposure is significant if attackers have outside knowledge of the data 

                                                        
9 https://blog.cloudflare.com/validating-leaked-passwords-with-k-anonymity/ 
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set. This attack is further explained as if the attacker has a background knowledge of the data and 

can leverage the association between one or more quasi-identifier (X. Zhang, Liu, Nepal, & Chen, 

2013) attributes with the sensitive attribute to reduce the set of possible values for de-

identification. 

We choose differentially private data as input for the next step in our framework to cover 

the weakness of the pre-existing knowledge attack in k-anonymity. Our previous method of using 

differential privacy is intended to prevent the background knowledge attack from happening. 

Since the responses are statistically close, no matter what prior knowledge the attacker has on 

the dataset, not much information is exposed in the prior knowledge attack (Smith, 2012). 

The k-anonymity algorithm exists in various forms, namely, alpha k-anonymity (Wong, Li, 

Fu, & Wang, 2006) and incognito full-domain k-anonymity (LeFevre, DeWitt, & Ramakrishnan, 

2005). It indicates that multiple approaches for different use cases exist. We utilize the Mondrian 

multidimensional k-anonymity approach as IDS traffic contains multiple attributes. K-anonymity 

is of two types: generalization and suppression. We used the generalization hierarchy to achieve 

k-anonymized data. 

K-anonymity protects the privacy of the entity by pooling attributes into groups of at least 

k entities. These attributes, known as quasi-identifiers, combined several of them into a single 

identifier, can often uniquely identify a person even in large datasets. For example, the 

combination of gender, age, and zip code might be so specific that only a single person in a dataset 

has a given combination. 

Now, k-anonymity requires that the rows in our dataset be grouped into groups of at least 

k rows and replace the quasi-identifying attributes of these rows with aggregate values no longer 

make it possible to read the individual rows. This protects the data anonymity by ensuring that 

an opponent who knows all the values of the quasi-identifying attributes of a target can only find 

out which group that target might belong to. However, the adversary might not know if the target 

is really in the dataset. 
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Making a dataset k-anonymous is a complex problem, and finding the optimal partition in 

k-anonymous groups is an NP-hard problem (Meyerson & Williams, 2004). Fortunately, practical 

algorithms that often deliver optimum results by using greedy search techniques exist. 

We specifically utilize the form of k-anonymity used for multidimensional data, the Mondrian k-

anonymity algorithm. This approach uses a greedy search algorithm to partition the original data 

into smaller and smaller groups. The algorithm assumes that we have converted all attributes into 

numerical or categorical values to measure the span of a given attribute. 

3.3.2.1 Mondrian K-Anonymity Generalization Approach 

The Mondrian Multidimensional K-Anonymity (LeFevre, DeWitt, & Ramakrishnan, 2006) 

technique of anonymizing the data is shown in Figure 4. 

 

Figure 4. Mondrian K-Anonymity Algorithm 

We will show how the Mondrian k-anonymity algorithm, presented in Figure 4, works. 

First, we determine the relative spans of all columns in the partition, sort, and iterate the resulting 

columns by span (in descending order). Second, for each column, we try to split the partition 

along the column using the median column values as the split point and test if the resulting 

partitions satisfy the k-anonymity criterion. If the two new partitions are valid, attach them to the 

working set and break out of the loop. If no column produces a valid partition, we add the original 

partition to the complete partition set. Third, we aggregate quasi-identifiers’ values and the 

sensitive attributes in each k-anonymous group after obtaining the partitions. 
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The approach can be extended to datasets with more than one sensitive attribute or 

datasets, where quasi-identifiers and sensitive attributes are not clearly differentiated. Because 

our dataset is multidimensional and has several sensitive attributes, we find this approach helpful. 

The k-anonymity technique of our framework has its weaknesses. The weaknesses, such as the 

homogeneity attack on k-anonymous data that do not provide complete anonymity if the 

equivalence classes (i.e., a set of records that are indistinguishable for certain identifying 

attributes) lack diversity. We would better address the weakness of sensitive data stored, such as 

zip code and age data, if the zip code has common digits or age groups fall within a range of 20-

30 or 30-40. The data for zip codes would be stored as 123***, and the age data would be stored 

as 2* or 3* for that homogenous dataset. The other weakness of the k-anonymous dataset is that 

an attacker may have an idea of how the dataset is organized, also known as background 

knowledge attack10. 

Whereas the benefits of using k-anonymity for distorting data from perturbation, Section 3.3.3 

extends the framework to address the drawbacks of using k-anonymity technique. 

3.3.3 L-Diversity 

We turn to the concept of l-diversity that addresses the problem faced by the weakness of k-

anonymity (Machanavajjhala, Gehrke, Kifer, & Venkitasubramaniam, 2006). An adversary who 

knows that a person is in the k-anonymous group can still learn the sensitive attribute of a person 

with absolute certainty. Using l-diversity, an extension of k-anonymity can solve this problem. L-

diversity ensures that each k-anonymous group contains at least l different values for the sensitive 

attribute. Therefore, even if an adversary can identify the group of a person with a high degree 

of certainty, he/she would not be able to find the sensitive attribute(s). 

 L-diversity is a group-based anonymization used to preserve privacy in data sets by reducing the 

granularity of a data representation. The reduction is a trade-off that results in some loss of 

effectiveness of data management or mining algorithms to gain some privacy.11 

                                                        
10 http://www.cs.cornell.edu/~shmat/courses/cs5436/anonymization.pdf 
11 https://en.wikipedia.org/wiki/L-diversity 
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The l-diversity model handles the k-anonymity model’s weaknesses, where protecting identities 

to the level of k-individuals is not equivalent to protecting the corresponding sensitive values that 

were generalized or suppressed. The problem arises when the sensitive values within a group 

exhibit homogeneity. The l-diversity model adds to the anonymization process by fostering intra-

group heterogeneity of sensitive attribute values. 

To obtain l-diversity in our data, we check each partition’s size while ensuring that the 

values of the sensitive attribute in the partition are sufficiently diverse by modifying the split 

functions for diverse splits. 

Like with l-diversity, which addresses the weaknesses in k-anonymity, it also has weaknesses and 

limitations. It is neither necessary nor sufficient to reduce attribute disclosure. Even when using 

l-diversity, the adversary could still learn some details about an individual's sensitive attribute 

through probabilistic reasoning. For example, if four out of five individuals in a 5-anonymous 

group have a specific value of a sensitive attribute, the perpetrator may probabilistically reason 

that the person he/she knows is part of a group that has that value and narrow down his scope 

of attacks. 

Section 3.3.4 further elaborates on the approach to address the drawbacks of using l-diversity. 

3.3.4 T-Closeness 

For a dataset with multiple sensitive attributes, l-diversity generates partitions that 

contain a vast number of entries for one sensitive attribute and only a few entries for the other 

sensitive attributes. That problem is overcome by extending the l-diverse data to t-closeness, 

which specifies that the statistical distribution of the sensitive attribute in each l-diverse group is 

similar to its overall distribution. 

 (N. Li, Li, & Venkatasubramanian, 2007) define an equivalence class (i.e., a set of records 

that are indistinguishable from each other with respect to certain identifying attributes) to be t-

closeness if the Kullback-Leibler distance between the distribution of the sensitive attribute in 

this class and the distribution of the attribute in the whole table is not more than a threshold t. A 

table satisfies t-closeness property if all equivalence classes have t-closeness or satisfy the 
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threshold t. T-closeness demands that the statistical distribution of the sensitive attribute values 

in each l-diverse group is close to the distribution of that attribute in the entire dataset. The 

reduction is a trade-off that results in some loss of effectiveness of data utility to gain some 

privacy. 

To achieve the principle of t-closeness over our data, we test a function that returns True 

if the partition is diverse enough and False otherwise. To measure diversity, we calculate the 

Kolmogorov-Smirnov (Massey Jr, 1951) distance between the empirical probability distribution of 

the sensitive attribute over the entire dataset vs. the distribution over the partition. 

Since, k-anonymity, l-diversity, and t-closeness limit the information that a legitimate user 

can also learn from the data we need to find a balance between preservation of privacy against 

the utility of the resulting data. 

We conclude the framework that we have sought to anonymize the data for each level of 

the framework complements the other. Section 3.4 examines the issues that arise from 

anonymizing cloud/network data. 

3.4 Challenge of Selecting Sensitive Attributes 

In Section 3.3, we explained the framework that provides anonymity in datasets. The 

described framework applies generically to any data sets taken into consideration to be specific 

to our test network dataset, namely NSL-KDD, which consists of data in granular form or known 

as “microdata”. 

The challenge of publishing anonymized network data, which is a form of microdata (Coull, 

Monrose, Reiter, & Bailey, 2009), has been the focus of study for many research groups. It 

continues to be an area of interest, leading to the rise of several methods that assist with 

microdata anonymization. 

In our research, we recognize the different aspects of sharing network data in. The 

problem of sharing network data is the inherently complex nature of each member of the cloud 

network makes it virtually impossible to enforce a single standardized privacy policy across the 
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network. Besides, it is difficult to identify the appropriate types of microdata that need to be 

anonymized. 

Microdata anonymization works in such a way that it is quantifiable and difficult to infer 

potentially sensitive details about data entities such as protocol_type, service, flag, 

num_failed_logins, etc. If we share data between the different cloud users, we would like it to be 

difficult for the members of each cloud-based entity to recognize the data of the members in 

another cloud. Key attributes of the microdata are generally used to make inferences on the row’s 

identity from external sources of data. They do not explicitly identify a row, but the unique 

attribute values may be used to connect rows in the anonymized microdata with other databases 

that have the identifying information. For example, if a row in the microdata had a unique 

combination of key attributes, then an adversary could use these attributes to look up the row’s 

identity in an auxiliary database that has the data he can correlate. Finally, sensitive attributes 

are classified in that manner as they aren’t found in any other databases for the adversary to link 

to specific identities (Coull et al., 2009). To accomplish the objective of anonymization, the data 

publisher eliminates attributes and uses one or more anonymization methods to modify the 

relationship between key attributes and sensitive attributes to ensure that such inferences are 

unlikely to occur. The resulting sanitized microdata is evaluated to quantify its level of privacy and 

utility. 

For our use case, the cloud administrator is interested in protecting the confidentiality of 

several entities; clients, security protocols, and hosts running on the cloud. The fact that cloud 

information is multifaceted and of different types makes it difficult to define an entity’s 

sensitivity. However, a single data record may have an impact on the privacy of different cloud 

entities. 

Additionally, the confidentiality of these individuals does not depend on a single row of 

data, but on several rows characterizing their behavior over time. Data traveling on a cloud has a 

tremendous amount of information encoded within it. To enhance the detection and preserve 

the privacy of the data traveling, we need to not consider every single entity. Instead, we select 
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the right entities that researchers can make the most out of, to improve the detection metrics, 

and analyze the traffic. 

As we move forward, we must decide which entities in the cloud are considered sensitive. 

The solution to this is relatively simple: any feature in the data that is likely to be inaccessible for 

an adversary should be marked sensitive. For example, the process data and the generated logs 

in between clouds are not available to an external purveyor. 

The inherent difficulties in defining the sensitivity of data may lead to useless data. For 

example, if any unique information in the cloud is considered sensitive, it is easy to imagine a 

scenario in which the data exhibits a homogeneous behavior. 

This homogeneous data would be of no use to researchers interested in investigating 

anomalous behavior or seeking an accurate estimate of cloud data characteristics. In general, a 

measure of utility is derived by comparing the results of anonymized data with non-anonymized 

data. Section 3.5 elaborates on the solution to selecting the best quasi-identifiers/sensitive 

attributes in detail. 

3.5 Alpha Distinction & Beta Separation in Attributes 

In Section 3.4, we described the challenges of anonymizing network data. More 

specifically, the problem arises from the IDS attributes when we have to choose the best 

combination of attributes to reduce the risk to identify the user in the respective IDS region. To 

address that, we use the principle of alpha distinction and beta separation between key-attributes 

in network/cloud data or data in general. The said principle of alpha distinction and beta 

separation helps us in selecting the best Quasi Identifiers and sensitive attributes. 

According to (Motwani & Xu, 2007), the α-distinction between attributes is defined as a 

subset of attributes that become the key in the table after removing of at most the 1−α fraction 

of attributes in the original table. 

β-Separation is when we delete a minimum number of attributes such that there is no 

quasi-identifier with separation or a distinct ratio greater than β in the remaining attributes. 

Separation defines the degree to which combinations of attributes separate the records from 
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each other, and distinction defines to which degree the attributes make records distinct. As 

Motwani explains, the separation between quasi-identifiers is always higher than the distinction 

between quasi-identifiers. For example, in the case of a table containing age, gender, and status 

as quasi-identifiers, if a combination of two of the three is chosen and the third is deleted, the 

combination is separate from other combinations. 

We utilize the ARX (Prasser & Kohlmayer, 2015) De-identification tool. ARX is a 

comprehensive open-source software for anonymizing sensitive personal data. It supports a wide 

variety of privacy and risk models, methods for transforming data, and methods for analyzing the 

usefulness of output data. The tool is used in various contexts, including industrially large data 

analytics platforms, research projects, data sharing in clinical trials, and training purposes. By 

using the ARX Anonymization tool12, we have found a way to identify the combination of 

attributes in the NSL-KDD Dataset with the best separation between them and the best 

distinction. It has allowed us to select the attributes for use in data anonymization methods. 

 (P. Aggarwal & Sharma, 2015) explore the list of attributes present in the NSL-KDD dataset, 

where it has different attributes classified into four categories: 

• Basic (B) Features are the attributes of individual TCP connections. 

• Content (C) features are the attributes within a connection suggested by the domain 

knowledge. 

• Traffic (T) features are the attributes computed using a two-second time window.  

• Host (H) features are the attributes designed to assess attacks that last for more than 

two seconds. 

Figure 5 below shows the different attributes. 

                                                        
12 https://arx.deidentifier.org/ 
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Figure 5. List of Features in the NSL-KDD Dataset attributes 

We run ARX tool on the NSL-KDD dataset and select the following attributes  that have the largest 

distinction and separation ratios of 36.7293% and 98.75901%, respectively, therefore, we choose 

the combination of the following attributes in the NSL-KDD Dataset from the ARX Anonymization 

Tool as our quasi-identifiers (QI) and sensitive attributes and protocol_type, service and flag are 

categorical attributes: 

o duration 

o protocol_type (C) 

o service (C) 

o flag (C) 

o src_bytes 

o dst_bytes 

o land 

o wrong_fragment 

o dst_host_rerror_rate 



33 

o dst_host_srv_rerror_rate 

3.6 Data Publishing 

After passing the original unmodified data through the four stages of our framework and 

verifying that the accuracy is more or less the same before and after anonymization. The data can 

be shared with other cooperative cloud administrators who wish to improve their IDS 

performance. 

Processing the data over all four privacy-preserving strategies outlined is an optimal 

solution to protect the data in the best way. The information publisher decides to set the degree 

of anonymization and disclose it in compliance with its requirements. We, therefore, conclude 

our framework and demonstrate a method of sharing data between members in such a way that 

we maintain optimum accuracy, while at the same time preserving the privacy of user data. 
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Chapter 4 – Experiment and Results 

4.1 Implementation 

The dataset we used for our experimental study is the NSL-KDD dataset (Dhanabal & 

Shantharajah, 2015), an improvement over the existing KDD99 Cup dataset (Kayacik, Zincir-

Heywood, & Heywood, 2005). To run our experiment for the large data set, we used an 

Anaconda Project configuration of Jupyter Notebooks powered by a 64-bit Windows 10 Desktop 

and supported by an x64 Intel ® Core™ i7-8700 CPU to implement the proposed framework. We 

used up to 32 GB RAM to help in our heavy calculations. 

We used four methods to support our machine learning approaches: Random Forest, K-

Nearest Neighbors, Support Vector Machines (SVMs), and Decision Trees. 

4.1.1 Experiment Methodology 

The accuracy and performance metrics can be considerably improved by selecting 

relevant features for an intrusion detection system. It is not feasible and practical to select all the 

attributes in the detection system, as we have seen for the NSL-KDD dataset. 

However, in a large dataset, not all features represent the traffic. Therefore, reducing and 

selecting adequate features may improve the speed and accuracy of the intrusion detection 

system. In our approach, a feature selection-mechanism is used to eliminate non-relevant 

features and identify the features that contribute to improvement in the detection rate, based 

on the score of each feature established during the selection process. The resulting features are 

used in the chosen machine learning approaches. Section 4.1.2, we elaborate on the steps we 

have followed in the analysis of our framework. 

4.1.2 Steps 

The experiment follows several steps to clean and parse the data used in this thesis. We elaborate 

on: 
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Data Preprocessing: Because of numerical and non-numeric instances in the data set, the NSL-

KDD dataset has been pre-processed. The classifier defined in scikit-learn (Pedregosa et al., 2011) 

works well with numerical data, as our dataset has numerical and categorical data, we use one-

of-K or one-hot encoding system. This technique converts each categorical feature into binary. 

Feature Scaling: A common requirement in machine learning to avoid features with large values 

that weigh too much on the performance. Scaling calculates the mean for each feature, 

subtracting the mean value from the value of that feature, and finally dividing the result by its 

standard deviation. As a result, features with uniform and equal weight on the performance are 

used. 

Feature Selection: This step eliminates redundant and irrelevant data. It is a method where a 

subset of relevant features that fully represents the problem is chosen. It is ideal to restrict the 

number of features for the following reasons: First, there is a possibility that irrelevant features 

could suggest correlations between features and target classes that arise just by chance and do 

not correctly model it. This aspect is related to overfitting, usually in a decision tree classifier. 

Second, a vast number of features could significantly increase the computation time without a 

corresponding classifier improvement. 

Once the best subset of features is found, a recursive feature elimination was applied to 

repeatedly build a model, placing the feature aside and repeating the process with the remaining 

features until all features in the dataset are exhausted. 

Prediction: The recursive feature elimination chooses the features each class of attacks, DoS, 

Probe, R2L, and U2R.We fit our machine learning classifiers to each class of attack, and finally 

allow it to calculate the accuracy. 
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Table 1. Selected Features After Recursive Feature Elimination 

Attack Class Features Selected 

Denial of Service “src_bytes”, “dst_bytes”, “wrong_fragment”, “count”, 
“srv_count”, “same_srv_rate”, “dst_host_diff_srv_rate”, 
“dst_host_same_src_port_rate”, “dst_host_serror_rate”, 
“Protocol_type_icmp”, “service_ecr_i”,’flag_S0’, 
“flag_SF.” 

 

Probe 'src_bytes', 'dst_bytes', 'count', 'rerror_rate', 
'dst_host_count', 'dst_host_srv_count', 
'dst_host_same_srv_rate', 'dst_host_diff_srv_rate', 
'dst_host_same_src_port_rate', 
'dst_host_srv_diff_host_rate', 'dst_host_rerror_rate', 
'service_eco_i', 'service_private'. 

 

R2L 'duration','src_bytes', 'dst_bytes', 'hot', 
'num_failed_logins', 'is_guest_login', 'srv_count', 
'dst_host_count', 'dst_host_srv_count', 
'dst_host_same_src_port_rate', 
'dst_host_srv_diff_host_rate', 'dst_host_serror_rate', 
'service_ftp_data' 

 

U2R 
'duration', 'src_bytes', 'dst_bytes', 'hot', 
'num_compromised', 'root_shell', 'num_file_creations', 
'count', 'dst_host_count', 'dst_host_srv_count', 
'dst_host_diff_srv_rate', 'dst_host_same_src_port_rate', 
'dst_host_srv_diff_host_rate' 

 

 

4.2 Results  

 The accuracy and precision as the evaluation metrics give us the best way to compare the 

detection in the case of Intrusion Detection Systems. The accuracy score shows the number of 

correct predictions divided by the total number of predictions. The precision score attempts to 

answer the question as to what proportion of predictions were actually correct. 
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Table 2. Normal NSL-KDD Dataset 

 

 

DoS 

 

 

 Accuracy Precision Recall F-Score 

RF 0.99802 0.99799 0.99678 0.99779 

KNN 0.99715 0.99678 0.99665 0.99672 

SVM 0.99371 0.99107 0.99450 0.99278 

DT 0.99639 0.99505 0.99665 0.99585 
 

Probe 

 

 

 Accuracy Precision Recall F-Score 

RF 0.99654 0.99509 0.99262 0.99469 

KNN 0.99077 0.98606 0.98508 0.98553 

SVM 0.98450 0.96907 0.98365 0.97613 

DT 0.99571 0.99391 0.99267 0.99329 

 

 

 R2L  

 Accuracy Precision Recall F-Score 

RF 0.97968 0.97436 0.96999 0.97213 

KNN 0.96737 0.95311 0.95484 0.95389 

SVM 0.96793 0.94584 0.96264 0.95529 

DT 0.97920 0.97150 0.96957 0.97050 
 

U2R  

 Accuracy Precision Recall F-Score 

RF 0.99755 0.94916 0.86641 0.89226 

KNN 0.99703 0.93282 0.84835 0.87754 

SVM 0.99652 0.91988 0.83931 0.85918 

DT 0.99663 0.86841 0.91672 0.88628 
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Table 3. Differential Privacy Perturbation 

 

 

DoS  

 Accuracy Precision Recall F-Score 

RF 0.99796 0.99839 0.99611 0.99738 

KNN 0.99377 0.99185 0.99383 0.99284 

SVM 0.98975 0.98484 0.99169 0.98824 

DT 0.99668 0.99559 0.99678 0.99618 
 

Probe 

 

 

 Accuracy Precision Recall F-Score 

RF 0.99596 0.99566 0.99184 0.99417 

KNN 0.98937 0.98234 0.98452 0.98340 

SVM 0.98368 0.96674 0.98376 0.97493 

DT 0.99522 0.99300 0.99205 0.99251 

 

 

 R2L  

 Accuracy Precision Recall F-Score 

RF 0.98230 0.97560 0.97445 0.97467 

KNN 0.96912 0.95615 0.95671 0.95631 

SVM 0.96626 0.94732 0.95887 0.95284 

DT 0.98229 0.97576 0.97402 0.97488 
 

U2R  

 Accuracy Precision Recall F-Score 

RF 0.99755 0.94929 0.84146 0.88454 

KNN 0.99673 0.94217 0.81154 0.84776 

SVM 0.99652 0.91988 0.83981 0.85918 

DT 0.99724 0.89882 0.91465 0.89795 
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 Table 4. K-Anonymity Generalization 

 

DoS  

 Accuracy Precision Recall F-Score 

RF 0.98975 0.99737 0.96086 0.98207 

KNN 0.98766 0.98787 0.98338 0.98548 

SVM 0.98567 0.97803 0.98928 0.98361 

DT 0.96455 0.97296 0.93378 0.94603 
 

Probe 

 

 

 Accuracy Precision Recall F-Score 

RF 0.98584 0.98955 0.97801 0.96921 

KNN 0.98459 0.9772 0.97351 0.97536 

SVM 0.98154 0.96605 0.97733 0.97127 

DT 0.97637 0.96791 0.94740 0.94761 

 

 

 R2L  

 Accuracy Precision Recall F-Score 

RF 0.96691 0.96699 0.93997 0.94293 

KNN 0.96174 0.94990 0.93989 0.94309 

SVM 0.95817 0.94319 0.93892 0.93719 

DT 0.96873 0.95894 0.95002 0.95357 
 

U2R  

 Accuracy Precision Recall F-Score 

RF 0.99755 0.95329 0.84488 0.87567 

KNN 0.99683 0.89667 0.87071 0.87525 

SVM 0.99673 0.91761 0.83991 0.86317 

DT 0.99509 0.85341 0.88050 0.85699 
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Table 5. L-Diversity Generalization 

 

DoS  

 Accuracy Precision Recall F-Score 

RF 0.99627 0.99864 0.99223 0.99553 

KNN 0.99196 0.98751 0.99424 0.99083 

SVM 0.98260 0.97801 0.99062 0.98424 

DT 0.99266 0.99201 0.99102 0.99149 
 

Probe 

 

 

 Accuracy Precision Recall F-Score 

RF 0.99613 0.99597 0.99154 0.99379 

KNN 0.98797 0.98037 0.98287 0.98139 

SVM 0.98360 0.96655 0.98371 0.97481 

DT 0.99456 0.99226 0.99072 0.99147 

 

 

 R2L  

 Accuracy Precision Recall F-Score 

RF 0.98166 0.97689 0.97193 0.97374 

KNN 0.97031 0.95817 0.95796 0.95800 

SVM 0.96602 0.94726 0.95811 0.95245 

DT 0.97991 0.97286 0.97016 0.97148 
 

U2R  

 Accuracy Precision Recall F-Score 

RF 0.99795 0.97178 0.82733 0.89803 

KNN 0.99703 0.91444 0.87081 0.88106 

SVM 0.99683 0.91586 0.84705 0.86701 

DT 0.99652 0.88166 0.87293 0.87214 
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Table 6. T-Closeness Generalization 

 

DoS  

 Accuracy Precision Recall F-Score 

RF 0.99779 0.99893 0.99678 0.99792 

KNN 0.99447 0.99146 0.99584 0.99365 

SVM 0.98794 0.98130 0.99115 0.98619 

DT 0.99651 0.99558 0.99638 0.99598 
 

Probe 

 

 

 Accuracy Precision Recall F-Score 

RF 0.99629 0.99592 0.99257 0.99391 

KNN 0.99044 0.98522 0.98488 0.98502 

SVM 0.98343 0.96667 0.98299 0.97453 

DT 0.99522 0.99330 0.99715 0.99251 

 

 

 R2L  

 Accuracy Precision Recall F-Score 

RF 0.98206 0.97581 0.97274 0.97495 

KNN 0.97190 0.96075 0.95972 0.96017 

SVM 0.96697 0.94839 0.95970 0.95382 

DT 0.97592 0.97279 0.96905 0.97088 
 

U2R  

 Accuracy Precision Recall F-Score 

RF 0.99724 0.94942 0.85554 0.86293 

KNN 0.99703 0.91444 0.87081 0.88106 

SVM 0.99673 0.91761 0.83991 0.86317 

DT 0.99673 0.87910 0.89550 0.88642 
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We now provide a visual comparison of the accuracy achieved before and after applying the 

proposed framework. We have structured accuracy scores and precision scores for every class of 

attack, on each class of privacy protection technique in a chronological order. 

4.2.1 Differential Privacy Perturbation 

In Figures 6 to 13, we show the accuracy and precision obtained by the proposed model 

considering different attacks and different machine learning models (i.e., RF, KNN, SVM, and DT). 

The results reveal that our framework is resilient to the modifications applied to data using DP 

perturbation. The results show that the percentage of accuracy that is preserved is 99.6% for the 

adjustments on data. By using our model, the accuracy decreases by the differential privacy 

perturbation, which is only 0.04%, has no major impact, and is disregarded. These results suggest 

that the consulted IDSs can detect intrusions without the need to use the original data. The same 

results (i.e., no significant degradation has been recorded) can be achieved using the newly 

generated data, which is similar to the original data semantically but not synthetically. 

We elaborate on the results in detail. The first phase of differentially perturbing our data 

shows a slight decrease in accuracy and precision scores when there is noise (Kalapanidas, 

Avouris, Craciun, & Neagu). 

As we observe in Figures 6 and 7, the DoS attack class accuracy scores show negligible 

change when differentially private data is used for the various machine learning algorithms. The 

variation can be as low as 0.01% and 0.02%. The maximum change shown in KNN is just 0.396%. 

The precision score for KNN shows a maximum change of 0.623%, and the other machine learning 

methods mirror the accuracy score. 
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Figure 6. Accuracy Scores for DoS Perturbation 

 

Figure 7. Precision Scores for DoS Perturbation 

As we observe in Figures 8 and 9, there is a negligible change in the accuracy and precision 

scores when differentially private data is used for probe attack class in the various machine 

learning algorithms. The change we observe can be as low as 0.01% and 0.02%. The precision 

score for all the machine learning techniques is more or less the same. 
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Figure 8. Accuracy Scores for Probe Perturbation 

 

Figure 9. Precision Scores Probe Perturbation 

In Figure 10 and 11, there is a negligible variation in the accuracy scores for differentially 

private data used in the R2L attack class for the various machine learning algorithms. The change 

can be as low as 0.01% and 0.02%. The accuracy is improved for KNN, Decision Trees, and Random 

Forest by a small amount. The precision score for DT shows an improvement of 0.06%. 
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Figure 10. Accuracy Scores for R2L Perturbation 

 

Figure 11. Precision Scores for R2L Perturbation 

In Figure 11, there is negligible or no change in the accuracy scores for differentially private 

data used in the U2R attack class for different machine learning algorithms. We see that the 

change is as low as 0.01% and 0.02%, respectively. The accuracy in Decision Trees is improved by 

a small amount. 
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Figure 12. Accuracy Scores for U2R Perturbation 

In Figure 13, there is also a negligible or no change in the precision scores for differentially 

private data used in the U2R attack class for the different machine learning algorithms. We notice 

that the shift is as small as 0.01% and 0.02%. For RF and KNN. The precision score is increased by 

a small amount, and for DT, there is a 0.03% improvement. 

 

Figure 13. Precision Scores U2R Perturbation 
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As we have seen, accuracies are similar when the data is gently perturbed and passed to 

the chosen machine learning algorithms. It means that the accuracies are not drastically changing 

but are staying close to the accuracy before perturbation. 

4.2.2 K-Anonymization Generalization 

We now present our findings for the k-anonymity method of anonymizing data. Figures 14 

to 21 show the average accuracy and precision obtained by the proposed model considering 

different attacks and different machine learning models. The results reveal that our framework is 

also resilient to the modifications applied to data using k-anonymization generalization. The 

results also show that the percentage of accuracy preserved when the data is adjusted is 99.7%. 

This means that, by using our model, the decrease of accuracy by the k-anonymity perturbation 

is only 0.03%, which has no significant impact and can be disregarded. These results suggest that 

the consulted IDSs detect intrusions without the need to use the original data. There was no 

record of significant degradation using the newly generated data, which is similar to the original 

data. 

In the second phase of our framework, we considered using the k-anonymization 

generalization method on perturbed data. We then noted that the noise we added to the dataset 

was generalized. Furthermore, we can see that generalization can be extended to noise 

(Kodratoff, Manago, & Blythe, 1987), and thus, we see some cases where the accuracy and 

precision metrics are showing a minor improvement/negligible decrease. 

As shown in Figures 14 and 15, there is a negligible change in the accuracy scores for the 

k-anonymized data used by various machine learning algorithms in the DoS attack class. The 

change we observe is as low as 0.01% and 0.02%, respectively. The precision score shows a slight 

decrease in accuracy for almost all machine learning methods. There is also a slight decrease in 

the precision score. 
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Figure 14. Accuracy Scores for DoS K-Anonymization 

 
Figure 15. Precision Scores for DoS K-Anonymization 

As shown in Figures 16 and 17, there is a small variation in the accuracy scores for the k-

anonymized data used in the probe attack class for the various machine learning algorithms. The 

change we observe can be too low, at 0.01% and 0.02%. The precision score also shows the same 

behavior, while the RF score increases minimally. 
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Figure 16. Accuracy Scores for Probe K-Anonymization 

 

Figure 17. Precision Scores for Probe K-Anonymization 

In Figures 18 and 19, there is a negligible variation in the accuracy scores for k-anonymized 

data used in the R2L attack class for the various machine learning algorithms. We observe a 

minimal change of 0.01% and 0.02%. The precision score is negligibly changing, but for DT, it 

increases by 0.04%. 
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Figure 18. Accuracy Scores for R2L K-Anonymization 

 

Figure 19. Precision Scores for R2L K-Anonymization 

In Figures 20 and 21, the accuracy scores for the k-anonymized data used in the U2R attack 

class for the various machine learning algorithms varies negligibly. We see small changes of 0.01% 

and 0.02%, respectively. The precision score changes negligibly, while the RF score increases 

minimally. 
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Figure 20. Accuracy Scores for U2R K-Anonymization 

 

Figure 21. Precision Scores for U2R K-Anonymization 

4.2.3 L-Diversity Generalization 

We now present our findings for the L-Diversity Method of Anonymizing Data. Figures 22 

to 29 show the accuracy and precision obtained by the proposed model considering different 

attacks and different machine learning models. The results reveal that our framework is also 

resilient to the modifications applied to data using L-diversity generalization. The results also 

show that the percentage of accuracy preserved for the adjustments on data is 99.7%. By using 
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our model, the decrease of accuracy by the L-diversity generalization is only 0.03%, which has no 

significant impact and is disregarded. These results suggest that the consulted IDSs detect 

intrusions without needing to use the original data. The same results can be achieved using the 

newly generated data, which is similar to the original data semantically but not synthetically. 

In the third phase of our framework we have the input data accrued from k-anonymized 

data. As shown in Figures 22 and 23, the accuracy scores for the L-Diverse data used in the Probe 

Attack class show a negligible change in the various machine learning algorithms. The change we 

observe can be very low at 0.01% and 0.02%. The precision score has been negligibly changed and 

slightly increases for RF. 

 

 

Figure 22. Accuracy Scores for DoS L-Diversity 
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Figure 23. Precision Scores for DoS L-Diversity 

In Figures 24 and 25, there is a negligible change in the accuracy scores for L-Diverse data 

utilized in the Probe attack class, the various machine learning algorithms. The change can be as 

low as 0.01% and 0.02%. The precision score is negligibly changing and slightly increases for RF. 

 

Figure 24. Accuracy Scores for Probe L-Diversity 
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Figure 25. Precision Scores for Probe L-Diversity 

In Figures 26 and 27, the accuracy scores for L-Diverse data utilized in the R2L attack class, 

the various machine learning algorithms show a slight improvement except for the SVM 

technique where it slightly reduces. The difference we observe can be as minor as 0.01% and 

0.02%. The precision score increases minimally for RF, KNN, SVM while it shows a 0.06% increase 

for DT. 

 

Figure 26. Accuracy Scores for R2L L-Diversity 
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Figure 27. Precision Scores for R2L L-Diversity 

As shown in Figure 28, the accuracy scores for L-Diverse data used in the U2R attack class, 

the various machine learning algorithms show a slight improvement or remain the same, except 

for the DT technique where it reduces slightly. The difference can be less than 0.01% and 0.02%. 

 

Figure 28. Accuracy Scores for U2R L-Diversity 

 Figure 29 shows the improved precision scores for RF and DT techniques while for SVM it 

remains the same and decreases slightly for KNN, and the observed change can be less than 0.01% 
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Figure 29. Precision Scores for U2R L-Diversity 

We have seen that the accuracies are similar to the improved data over the k-

anonymization technique. L-Diversity has its weaknesses which are addressed in the last phase of 

our framework. 
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data for the machine learning models to learn. 
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and DT). The results reveal that our framework is resilient to the modifications applied to data 

using t-closeness generalization. The results also show that the percentage of accuracy preserved 

is 99.7% for the adjusted data. By using our model, the accuracy decrease by the T-Closeness 
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degradation has been recorded) using the newly generated data, which is semantically similar to 

the original data but not synthetically. 

As shown in Figure 30, the accuracy scores for the t-closeness data used in the DoS attack class 

show a negligible change in the various machine learning algorithms. The change we observe is 

as low as 0.01%and 0.02%. 

 

Figure 30. Accuracy Scores for DoS T-Closeness 

As we observe in Figure 30. Accuracy Scores for DoS T-Closeness , the precision score is 

slightly increasing for RF and DT techniques while it decreases negligibly for the KNN and SVM 

techniques. 
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Figure 31. Precision Scores for DoS T-Closeness 

As shown in Figures 32 and 33, the accuracy scores for the t-closeness data used in the 

Probe Attack class show a negligible change in the various machine learning algorithms. The 

change, as we have seen, is less than 0.01% and 0.02%. The precision score for RF shows a slight 

improvement while showing a negligible decrease in performance for KNN, SVM, and DT. 

 

Figure 32. Accuracy Scores for Probe T-Closeness 
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Figure 33. Precision Scores for Probe T-Closeness 

As shown in Figure 33, the precision scores for the t-closeness data used in the R2L attack 

class, the various machine learning algorithms show a slight improvement, except for the SVM, 

where there is a negligible decrease in accuracy scores. 

In Figure 34, the accuracy improvement we see is as low as 0.01% and 0.02%. The precision 

score in Figure 35 also shows a slight increase by 0.06% for DT and RF, KNN, SVM by 0.01%. 

 

Figure 34. Accuracy Scores for R2L T-Closeness 
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Figure 35. Precision Scores for R2L T-Closeness 

As shown in Figures 36 and 37, the accuracy scores for the t-closeness data used in the 

U2R attack class, KNN, SVM, and DT algorithms show a slight improvement of 0.01%, and for RF 

it does not decrease significantly. The deterioration we see is as low as 0.01% and 0.02% 

respectively. The precision score in Figure 36 shows a slight improvement for RF by 0.01 per cent 

and DT by 0.12 per cent, while it decreases negligibly for SVM and KNN techniques. 

 

Figure 36. Accuracy Scores for U2R T-Closeness 
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Figure 37. Precision Scores for U2R T-Closeness 

Finally, we note that the accuracy and precision values achieved are the same for all four 

phases of our framework. We have a reasonable way of publishing to guarantee that the 

published data are anonymous and that the outsider/attacker’s potential to re-identify is 

minimal. 
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Chapter 5 – Discussion 

In this chapter, we first recall the research objectives that we mentioned at the beginning 

of the thesis and then illustrate to what extent these objectives were achieved.  

5.1 Objectives Achievement 

This thesis’ main objective was to enable data sharing between members of the Intrusion 

Detection Systems (IDS) in a cooperative cloud network while preserving data privacy. 

When coupled with machine learning techniques, our research and work helped detect 

cyber-attacks in the cloud in a dynamic and heterogeneous environment while preserving the 

privacy of the data shared and helped reduce the trade-off between privacy and accuracy. More 

specifically, we were able to achieve the two following objectives. 

5.1.1 Building privacy preserving cloud-based intrusion detection system 

For the different types of data collected, there are several privacy-preserving techniques 

available. Figure 2 showed the paradigm we have followed in such that each of the techniques is 

complemented by the one that follows it and helps resolve the limitations of the previous one. 

Therefore, we prove that we have a steady-state framework, where each method is 

protected by the other, which complements each method in its functionality. Metrics of Machine 

learning, such as accuracy and precision scores, perform to check the reliability of each phase of 

the anonymization process. Like we have pursued, it remains essentially the same as presented 

in Chapter 4. 

5.1.2 Maintaining efficiency of detection 

As explained in Chapter 3, we posed the problem of whether the information is private or 

confidential in network traffic data. We also clarified and illustrated the ARX anonymization 

method and the principle of alpha-distinction and beta-separation between quasi-identifiers. In 

addition, we have expertly chosen the best combination of attributes with the best distinction 

and separation ratios from the results of the ARX anonymization tool. 
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Besides, the experiments were conducted on different machine learning techniques over 

different attack classes. And we verified that the accuracy of detection before and after the data 

modification has not degraded heavily, which allows us to share the semantically generated data. 

5.2 Further Applications 

The proposed structure is not limited in its approach, and it can be extended to other types 

of data, such as telemetry and analytics data. In the case of non-uniform data, we leave it to the 

network administrator to publish the collected data at his discretion, slightly or severely 

perturbing the data depending on its distribution. In the case of uniform data, the data 

perturbation parameters can be designed to be set by the algorithm, and the Laplacian noise 

generation is done spontaneously without the involvement of the cloud administrator. 
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Chapter 6 – Conclusion and Future Work 

In this thesis, we proposed a new framework for achieving privacy in cooperative cloud-

based IDS. We listed the challenges faced and laid out the specific problems we intended to 

address. 

We undertook a literature review to ensure our framework’s originality and to ensure to 

fill the void in the state-of-the-art research. We then analyzed the pursued solutions and found 

that they are used in case-specific and are not applicable at any point in a cloud-based IDS. To 

address this weakness and apply it in general, we designed a framework that allows us to 

integrate privacy-preserving methods into machine learning-based IDSs to achieve a privacy-

aware cooperative IDS. 

We have also devised a new algorithm that allows the IDS to decide which dataset is 

shared to improve detection accuracy while preserving users’ privacy in the IDS region. The 

proposed framework allows the IDS to hide private and sensitive information in shared data while 

improving or maintaining its metrics detection. 

We finally concluded the thesis by proving the designed framework on the NSL-KDD 

dataset. In the future, we plan to design an automated privacy-preserving cooperative IDS. More 

specifically, the IDS will automatically analyze and recognize the data and select the best privacy-

preserving and machine-learning techniques to ensure optimal detection accuracy while 

preserving data privacy. We aim to make the system perform all the tasks spontaneously. 
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