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Résumé

Les réseaux de neurones récurrents (RNN) sont connus pour leur problème de gradient d’ex-
plosion et de disparition notoire (EVGP). Ce problème devient plus évident dans les tâches
où les informations nécessaires pour les résoudre correctement existent sur de longues échelles
de temps, car il empêche les composants de gradient importants de se propager correctement
sur un grand nombre d’étapes. Les articles écrits dans ce travail formalise la propagation
du gradient dans les RNN paramétriques et semi-paramétriques pour mieux comprendre
la source de ce problème. Le premier article présente un algorithme stochastique simple
(h-detach) spécifique à l’optimisation LSTM et visant à résoudre le problème EVGP. En uti-
lisant cela, nous montrons des améliorations significatives par rapport au LSTM vanille en
termes de vitesse de convergence, de robustesse au taux d’amorçage et d’apprentissage, et de
généralisation sur divers ensembles de données de référence. Le prochain article se concentre
sur les RNN semi-paramétriques et les réseaux auto-attentifs. L’auto-attention fournit un
moyen par lequel un système peut accéder dynamiquement aux états passés (stockés en mé-
moire), ce qui aide à atténuer la disparition des gradients. Bien qu’utile, il est difficile à
mettre à l’échelle car la taille du graphe de calcul augmente de manière quadratique avec le
nombre de pas de temps impliqués. Dans l’article, nous décrivons un mécanisme de criblage
de pertinence, inspiré par le processus cognitif de consolidation de la mémoire, qui permet
une utilisation évolutive de l’auto-attention clairsemée avec récurrence tout en assurant une
bonne propagation du gradient.

Mots clés: Apprentissage automatique, L’apprentissage en profondeur, Réseaux de neu-
rones récurrents, Dépendances à long terme, Problème d’explosion des dégradés de fuite,
Réseaux auto-attentifs, Évolutivité.

5





Abstract

Recurrent neural networks (RNN) are known for their notorious exploding and vanishing
gradient problem (EVGP). This problem becomes more evident in tasks where the informa-
tion needed to correctly solve them exist over long time scales, because it prevents important
gradient components from being back-propagated adequately over a large number of steps.
The papers written in this work formalizes gradient propagation in parametric and semi-
parametric RNNs to gain a better understanding towards the source of this problem. The
first paper introduces a simple stochastic algorithm (h-detach) that is specific to LSTM
optimization and targeted towards addressing the EVGP problem. Using this we show sig-
nificant improvements over vanilla LSTM in terms of convergence speed, robustness to seed
and learning rate, and generalization on various benchmark datasets. The next paper fo-
cuses on semi-parametric RNNs and self-attentive networks. Self-attention provides a way
by which a system can dynamically access past states (stored in memory) which helps in
mitigating vanishing of gradients. Although useful, it is difficult to scale as the size of the
computational graph grows quadratically with the number of time steps involved. In the
paper we describe a relevancy screening mechanism, inspired by the cognitive process of
memory consolidation, that allows for a scalable use of sparse self-attention with recurrence
while ensuring good gradient propagation.

Key words: Machine Learning, Deep Learning, Recurrent Neural Networks, Long Term
Dependencies, Exploding Vanishing Gradients Problem, Self Attentive Networks, Scalability.
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Introduction

With the ever increasing amount of data being generated in today’s world the use of Artificial
Neural Networks (ANN) has exponentially increased over the past few years. There is an
increased need for deep learning [19] algorithms to learn better representations of the given
data in several domains like Computer Vision, Natural Language Processing (NLP), Speech
recognition and Reinforcement learning (RL). These networks use gradient descent based
learning methods to learn the optimal solution for a given task.

Recurrent Neural Networks (RNN) [57] are a class of neural networks that deal with
sequential data. Although useful, these networks become increasingly difficult to train on
harder tasks that require learning long term dependencies in the data and have a loss land-
scape that is much harder to optimize as compared to feed-forward networks. More formally,
they run into the Exploding and Vanishing Gradients Problem (EVGP) [10]. EVGP is a
potential problem for all ANNs but occurs more frequently in RNNs where information has
to flow over large time scales. In order to bypass this the use of an attention mechanisms [5],
[65] was proposed with RNNs. The caveat with these mechanisms is that they are memory
intensive and are difficult to scale to larger sequences. The work presented in this thesis
is a step towards solving the these problems in RNNs. In this chapter we will first lay the
foundations required to move forward and describe the previously mentioned problems in
detail.

0.1. Introduction to Neural Networks
0.1.1. Artificial Neurons

An artificial neuron is a mathematical model inspired by a biological neuron and is
the fundamental building block of an ANN. It is connected to and receives several inputs
from neighbouring neurons, computes a weighted sum of them and produces a scalar output.
This output is then passed through an activation function to get the output of the artificial
neuron which in turn can be fed as an input to the next downstream neurons.



Fig. 1. Graphs of commonly used activation functions. Binary step (top left), Sigmoid
(top right), tanh (bottom left) and ReLU (bottom right).

More formally, let there be k inputs {x1, x2,.., xk} to a neuron and let φ be the activation
function. Then, we define the function of the artificial neuron h(x) with parameters θ as:

h(x) = φ

(
k∑
i=1

wixi + b

)
(0.1.1)

where wi ∈ R are the weights, b ∈ R is the bias and θ = {w1, w2,..,wk, b} are the parameters
to be learned. The term ∑k

i=1wixi + b is referred to as the pre-activation and can also be
written as wT · x + b in vector form.

Some commonly used activation functions (Figure 1) are:
• Binary Step function - Denoted by f : R→ {0, 1}. Defined as,

f(x) = 1x≥0 (0.1.2)

• Sigmoid function - Denoted by σ : R→ (0,1). Defined as,

σ(x) = 1
1 + e−x

(0.1.3)

• Hyperbolic Tangent function - Denoted by tanh : R→ (−1, 1). Defined as,

tanh(x) = ex − e−x

ex + e−x
(0.1.4)
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• Rectified Linear Unit function - Denoted by ReLU : R→ [0,∞). Defined as,

ReLU(x) = max(0, x) = x · 1x≥0 (0.1.5)

0.1.2. Feed-forward Neural Networks

Feed-forward networks or Multi Layer Perceptrons (MLP) are a class of models where
several artificial neurons are stacked in a layer-wise structure. It can be defined as having an
input layer consisting of d inputs, hidden layers consisting of nl neurons each and an output
layer consisting of k neurons. The flow of information in these networks is only forward, that
is information flows from the input layer, through the hidden layers if any and to the output
layer.

More formally, suppose we have L hidden layers indexed l = 1, . . . ,L and the neurons of
each hidden layer is indexed j = 1, . . . ,nj, then we can write:

h
(l)
j (x) = φl

(
(w(l)

j )T · x + bj
)
· (0.1.6)

where (w(l)
j , bj) are the weights and biases respectively for the neuron h

(l)
j and φl is the

activation function used for hidden layer l. Note that the size of x has to be the number of
neurons in layer l − 1. Another common used notation is to represent the weights for each
layer in the form of a matrix W(l), biases of each layer as a vector b(l) and the output of
each layer as a vector h(l). Then,

h(l)(x) = φl
(
W(l) · x + b(l)

)
· (0.1.7)

The input layer can be thought of as the layer defined by l = 0 and the output layer defined
by l = L. The overall feed-forward network F can be defined as,

F (x) =
(
h(L) ◦ h(L−1) ◦ . . . ◦ h(1)

)
(x)· (0.1.8)

The universal approximation theorem [30] states that a feed-forward network with
a single hidden layer and a finite number of neurons can approximate arbitrary well any
continuous function on compact sets on Rn, given enough neurons in the hidden layer. The
theorem does not describe a way to find the weights, but tells us that simple feed-forward
networks can represent a large variety of interesting functions.

0.1.3. Training Artificial Neural Networks

Most ANNs today are trained by gradient based learning methods. Gradient Descent
is a first-order optimization algorithm for iteratively finding a local minimum for a given
differentiable objective function. Given a dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)} of size
n drawn from the underlying data generating distribution pdata we would like to adapt the
weights and the biases of network to optimize a performance measure P for a given task.
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Fig. 2. Illustration of Gradient Descent on an example objective function J with two pa-
rameters θ0 and θ1. The cross with the red circle denotes the initialization of the network and
the goal of the optimization process is to reach the blue areas where the objective function
is minimum.

More formally, let θ be the set of network parameters, F (x; θ) be the network predicted
output, y be the target output and L : R × R → R be the per-example loss function. The
objective function we would ideally like to optimize using gradient descent is as follows,

J(θ) = E(x,y)∼pdata [L(F (x; θ), y)]· (0.1.9)

This objective function is also known as risk. However, we do not have access to the data
generating distribution pdata directly but have access to the empirical distribution p̂data via
the dataset D. Hence we can define the objective function Ĵ as,

Ĵ(θ) = E(x,y)∼p̂data [L(F (x; θ), y)] = 1
n

n∑
i=1

L(F (xi; θ), yi)· (0.1.10)

This objective function is called empirical risk and the process of minimizing it is called
Empirical Risk Minimization (ERM). We can now use this objective to compute the gradient
in order to update the network. Gradient Descent is an iterative process that takes small
steps towards the steepest direction of descent in order to optimize the objective as illustrated
in Figure 2. Hence, we can write

θt+1 ← θt − η∇θĴ(θ) (0.1.11)

where θt is the parameters of the network after t updates and η is the learning rate which
controls the size of the step taken.

In practice, Gradient Descent or batch Gradient Descent is computationally inefficient
as computing ∇θĴ(θ) requires the computing the predictions of the entire dataset. A vari-
ant known as Stochastic Gradient Descent (SGD) or mini-batch Gradient Descent is more
commonly used. Instead of computing ∇θĴ(θ) over the entire dataset, we compute it over a
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subset S sampled from D where,

ES [∇θĴS(θ)] = ∇θĴ(θ)· (0.1.12)

In SGD we have |S| = 1 while in mini-batch Gradient Descent we have 1 < |S| � n.

0.1.4. Model Selection and Evaluation

Model selection and evaluation is an important component in training neural networks.
In machine learning it is important that the model we select can generalize well to unseen
data. Since we optimize Ĵ(θ) which is defined over a finite dataset D, picking the model
that gives us the lowest Ĵ(θ) does not assure us the model will perform well on unseen data.
To solve this, we partition D = Dtrain ∪ Dvalid and define our objective function Ĵ(θ) only
based on Dtrain. We split our dataset into a training set and validation set. To evaluate our
model we test its performance on Dvalid and use this as an estimate of its generalization.

The method of picking the best model that gives the best performance on the validation
set during training is called early stopping since the training is effectively stopped once the
validation performance stops improving. Another common way to pick the best model is
k-fold cross validation. In this D is split into k blocks and the model is repeatedly trained on
k−1 blocks and tested on the remaining block. The generalization of the model is estimated
to be the average of all the test performances.

When it comes to generalization, the two most common problems faced by these models
are overfitting and underfitting. A model is said to overfit the data when its performs well
on the training set but poorly on the validation set. On the other hand a model is said to
underfit the data when it cannot sufficiently capture the underlying structure of the data.
In this case the model performs poorly on the training set and well as the validation set.

0.2. Recurrent Neural Networks
0.2.1. Definition

Recurrent Neural Networks (RNNs) [57] are a class of neural networks that deal with
sequential data of varying length. They utilize recurrent connections by using the output of
the previous time step as an input to the current time step in order to capture temporal in-
formation. Also, all the parameters of the RNN are shared across time. They take sequences
as input and can output sequences or a scalar value.

More formally, suppose we have an input sequence x1, x2, . . . , xT where xi ∈ Rn, a target
output sequence y1, y2, . . . , yT where yi ∈ Rk, then for t = 1 to t = T , we define the equations
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Fig. 3. Illustration of an RNN unrolled in time.

of the RNN as,

ht = φ(Uxt + V ht−1 + b) (0.2.1)

ot = Wht + c (0.2.2)

ŷt = softmax(ot) (0.2.3)

where φ is the activation function, h0 is the initial state, ht ∈ Rm is the hidden state of size
m, ot is the output and ŷt is the predicted output. V ∈ Rm×m, U ∈ Rm×n, W ∈ Rm×k,
b ∈ Rm and c ∈ Rk are the parameters of the network. Let us define at = Uxt + V ht−1 + b

as the pre-activation. The softmax function: Rk → Rk is defined as,

softmax(z)j = ezj∑k
i=1 e

zk
(0.2.4)

The loss function can L can be written as the sum of the loss function between yt and ŷt
for all t. That is,

L =
∑
t

Lt(yt, ŷt) (0.2.5)

Lt can be a loss function like mean squared error or cross-entropy. There have been several
modifications to RNNs, most notably the use of gating mechanisms like the ones proposed
in LSTM [28] and GRU [15] to control the flow of information over time.

0.2.2. Exploding and Vanishing Gradients Problem in RNNs

In this section we will first derive the gradient of an RNN with respect to the loss function.
The forward pass involves unrolling the network over time for a given input sequence of τ
time steps. Then a backward pass follows where the gradients are back propagated from
t = τ to t = 1. This algorithm is called back-propagation through time (BPTT).

Let us assume we have a sequences of length τ and a loss function L is applied only at
t = τ . Then, using the RNN equations described in Section 0.2.1 we can derive the gradient
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for parameters V , W , W , b and c as,
dL

dV
=

τ∑
t=1

dL

dat
· ∂at
∂V

=
τ∑
t=1

dL

dat
· hTt−1 =

τ∑
t=1

diag(φ′(at)) ·
dL

dht
· hTt−1 (0.2.6)

dL

dU
=

τ∑
t=1

dL

dat
· ∂at
∂U

=
τ∑
t=1

dL

dat
· xTt =

τ∑
t=1

diag(φ′(at)) ·
dL

dht
· xTt (0.2.7)

dL

dW
= dL

doτ
· doτ
dW

= dL

doτ
· hTτ (0.2.8)

dL

db
=

τ∑
t=1

dL

dat
· dat
db

=
τ∑
t=1

diag(φ′(at)) ·
dL

dht
(0.2.9)

dL

dc
= dL

doτ
· doτ
dc

= dL

doτ
(0.2.10)

For the derivation in the case where L = ∑
t Lt the corresponding gradients are summed up.

Let us define Dt = diag(φ′(at)). Notice that dL
doτ

is dependent on the loss function L and is
simple to compute. Now we can derive dL

dht
as,

dL

dht
=
(
doτ
dht

)T
· dL
doτ

=
(
dhτ
dht

)T
·W T · dL

doτ
(0.2.11)

(
dhτ
dht

)T
=

τ−1∏
k=t

(
dhk+1

dhk

)T
=

τ−1∏
k=t

V TDk+1 (0.2.12)

dL

dht
=
(
τ−1∏
k=t

V TDk+1

)
·W T · dL

doτ
· (0.2.13)

Let us first assume we use identity as the activation function, that is φ′(x) = Id. Notice that
in the above equation the matrix V is present as (V T )τ−t which leads to the exploding and
vanishing gradients problem (EVGP) [10], [26] when t� τ . The value of (V T )τ−t depends
on the largest eigenvalue of V . If the largest eigenvalue of V is less than 1 the final matrix
would vanish and be close to 0 and if it is greater than 1 the final value would explode and
become infinity. If φ is not the identity, then that could also be a source for EVGP based
on the values of Dk+1.

This is a common problem when the network has to learn tasks with long term depen-
dencies, if an event at time t is crucial in determining the outcome at time τ where t � τ .
Then if dL

dht
vanishes the parameters will not be updated to learn this dependency while if it

explodes it will not contribute to a meaningful gradient for a gradient descent based learning
algorithm. Hence, training RNNs on tasks with long term dependencies is difficult.

0.2.3. Self-Attentive Recurrent Networks

Self-Attentive RNNs are networks that have semi-parametric memory modules as opposed
to vanilla RNNs that have parametric memory modules. This is because in addition to the
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hidden state the network also has access to and attends over all the past hidden states. The
concept of attention was originally introduced in [5] in which a decoder network attended
over all the hidden states of the encoder network. Self-attention is different as the network
attends over past hidden states of the same sequence [65] and is more formally described
in the second article. This introduces skip connections in the sequence and allows the
information to directly flow from one time step to any other time step.

Although useful, these networks do not scale as the size of the computational graph
increases quadratically with time. The following two articles cover all the related work
towards solving these problems faced by RNNs and self-attentive networks respectively, and
present ways of mitigating them.
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Abstract. Recurrent neural networks are known for their notorious exploding and van-
ishing gradient problem (EVGP). This problem becomes more evident in tasks where the
information needed to correctly solve them exist over long time scales, because EVGP pre-
vents important gradient components from being back-propagated adequately over a large
number of steps. We introduce a simple stochastic algorithm (h-detach) that is specific to
LSTM optimization and targeted towards addressing this problem. Specifically, we show
that when the LSTM weights are large, the gradient components through the linear path
(cell state) in the LSTM computational graph get suppressed. Based on the hypothesis that
these components carry information about long term dependencies (which we show empiri-
cally), their suppression can prevent LSTMs from capturing them. Our algorithm prevents
gradients flowing through this path from getting suppressed, thus allowing the LSTM to
capture such dependencies better. We show significant improvements over vanilla LSTM
gradient based training in terms of convergence speed, robustness to seed and learning rate,
and generalization using our modification of LSTM gradient on various benchmark datasets.
Keywords: LSTM, Exploding and vanishing gradients problem.

1. Introduction
Recurrent Neural Networks (RNNs) ([57, 17]) are a class of neural network architectures

used for modeling sequential data. Compared to feed-forward networks, the loss landscape
of recurrent neural networks are much harder to optimize. Among others, this difficulty may
be attributed to the exploding and vanishing gradient problem [26, 10, 53] which is more
severe for recurrent networks and arises due to the highly ill-conditioned nature of their loss
surface. This problem becomes more evident in tasks where training data has dependencies
that exist over long time scales.

Due to the aforementioned optimization difficulty, variants of RNN architectures have
been proposed that aim at addressing these problems. The most popular among such ar-
chitectures that are used in a wide number of applications include long short term memory
(LSTM, [28]) and gated recurrent unit (GRU, [15]) networks, which is a variant of LSTM
with forget gates [18]. These architectures mitigate such difficulties by introducing a linear
temporal path that allows gradients to flow more freely across time steps. [2] on the other
hand try to address this problem by parameterizing a recurrent neural network to have uni-
tary transition matrices based on the idea that unitary matrices have unit singular values
which prevents gradients from exploding/vanishing.

Among the aforementioned RNN architectures, LSTMs are arguably most widely used
(for instance they have more representational power compared with GRUs [69]) and it re-
mains a hard problem to optimize them on tasks that involve long term dependencies. Ex-
amples of such tasks are copying problem [10, 53], and sequential MNIST [39], which are
designed in such a way that the only way to produce the correct output is for the model to
retain information over long time scales.
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Fig. 4. The computational graph of a typical LSTM. Here we have omitted the inputs xi for
convenience. The top horizontal path through the cell state units cts is the linear temporal
path which allows gradients to flow more freely over long durations. The dotted blue crosses
along the computational paths denote the stochastic process of blocking the flow of gradients
though the ht states (see Eq 2.2) during the back-propagation phase of LSTM. We call this
approach h-detach.

The goal of this paper is to introduce a simple trick that is specific to LSTM optimiza-
tion and improves its training on tasks that involve long term dependencies. To achieve
this goal, we write out the full back-propagation gradient equation for LSTM parameters
and split the composition of this gradient into its components resulting from different paths
in the unrolled network. We then show that when LSTM weights are large in magnitude,
the gradients through the linear temporal path (cell state) get suppressed (recall that this
path was designed to allow smooth gradient flow over many time steps). We show empirical
evidence that this path carries information about long term dependencies (see section 3.5)
and hence gradients from this path getting suppressed is problematic for such tasks. To
fix this problem, we introduce a simple stochastic algorithm that in expectation scales the
individual gradient components, which prevents the gradients through the linear temporal
path from being suppressed. In essence, the algorithm stochastically prevents gradient from
flowing through the h-state of the LSTM (see figure 4), hence we call it h-detach. Using this
method, we show improvements in convergence/generalization over vanilla LSTM optimiza-
tion on the copying task, transfer copying task, sequential and permuted MNIST, and image
captioning.

2. Proposed Method: h-detach
We begin by reviewing the LSTM roll-out equations. We then derive the LSTM back-

propagation equations and by studying its decomposition, identify the aforementioned prob-
lem. Based on this analysis we propose a simple stochastic algorithm to fix this problem.
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2.1. Long Short Term Memory Networks

LSTM is a variant of traditional RNNs that was designed with the goal of improving the
flow of gradients over many time steps. The roll-out equations of an LSTM are as follows,

ct = ft � ct−1 + it � gt (2.1)

ht = ot � tanh(ct) (2.2)

where � denotes point-wise product and the gates ft, it, ot and gt are defined as,

gt = tanh(Wghht−1 + Wgxxt + bg) (2.3)

ft = σ(Wfhht−1 + Wfxxt + bf ) (2.4)

it = σ(Wihht−1 + Wixxt + bi) (2.5)

ot = σ(Wohht−1 + Woxxt + bo)· (2.6)

Here ct and ht are the cell state and hidden state respectively. Usually a transformation
φ(hT ) is used as the output at time step t (Eg. next word prediction in language model)
based on which we can compute the loss `t := `(φ(ht)) for that time step.

An important feature of the LSTM architecture is the linear recursive relation between
the cell states ct as shown in Eq. 2.1. This linear path allows gradients to flow easily
over long time scales. This however is one of the components in the full composition of
the LSTM gradient. As we will show next, the remaining components that are a result of
the other paths in the LSTM computational graph are polynomial in the weight matrices
Wgh,Wfh,Wih,Woh whose order grows with the number of time steps. These terms cause
an imbalance in the order of magnitude of gradients from different paths, thereby suppressing
gradients from linear paths of LSTM computational graph in cases where the weight matrices
are large.

2.2. Back-propagation Equations for LSTM

In this section we derive the back-propagation equations for LSTM network and by
studying its composition, we identify a problem in this composition. The back-propagation
equation of an LSTM can be written in the following form.
Theorem 1. Fix w to be an element of the matrix Wgh,Wfh,Wih, Woh,Wgx,Wfx,Wix or
Wox. Define,

At =


Ft 0n diag(kt)
F̃t 0n diag(k̃t)
0n 0n Idn

 Bt =


0n ψt 0n
0n ψ̃t 0n
0n 0n 0n

 zt =


dct
dw
dht
dw

1n

 (2.7)
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Then zt = (At + Bt)zt−1. In other words,

zt = (At + Bt)(At−1 + Bt−1) . . . (A2 + B2)z1 (2.8)

where all the symbols used to define At and Bt are defined in notation 1 in appendix.
To avoid unnecessary details, we use a compressed definitions of At and Bt in the above

statement and write the detailed definitions of the symbols that constitute them in notation
1 in appendix. Nonetheless, we now provide some intuitive properties of the matrices At

and Bt.
The matrix At contains components of parameter’s full gradient that arise due to the

cell state (linear temporal path) described in Eq. (2.1) (top most horizontal path in figure
4). Thus the terms in At are a function of the LSTM gates and hidden and cell states.
Note that all the gates and hidden states ht are bounded by definition because they are a
result of sigmoid or tanh activation functions. The cell state ct on the other hand evolves
through a linear recursive equation shown in Eq. (2.1). Thus it can grow at each time step
by at most ±1 (element-wise) and its value is bounded by the number of time steps t. Thus
given a finite number of time steps and finite initialization of c0, the values in matrix At are
bounded.

The matrix Bt on the other hand contains components of parameter’s full gradient that
arise due to the remaining paths. The elements of Bt are a linear function of the weights
Wgh,Wfh,Wih,Woh. Thus the magnitude of elements in Bt can become very large irre-
spective of the number of time steps if the weights are very large. This problem becomes
worse when we multiply Bts in Eq. (2.8) because the product becomes polynomial in the
weights which can become unbounded for large weights very quickly as the number of time
steps grow.

Thus based on the above analysis, we identify the following problem with the LSTM
gradient: when the LSTM weights are large, the gradient component through the cell state
paths (At) get suppressed compared to the gradient components through the other paths (Bt)
due to an imbalance in gradient component magnitudes. We recall that the linear recursion
in the cell state path was introduced in the LSTM architecture [28] as an important feature
to allow gradients to flow smoothly through time. As we show in our ablation studies (section
3.5), this path carries information about long term dependencies in the data. Hence it is
problematic if the gradient components from this path get suppressed.

2.3. h-detach

We now propose a simple fix to the above problem. Our goal is to manipulate the
gradient components such that the components through the cell state path (At) do not get
suppressed when the components through the remaining paths (Bt) are very large (described
in the section 2.2). Thus it would be helpful to multiply Bt by a positive number less than 1
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to dampen its magnitude. In Algorithm 1 we propose a simple trick that achieves this goal.
A diagrammatic form of algorithm 1 is shown in Figure 4. In simple words, our algorithm
essentially blocks gradients from flowing through each of the ht states independently with
a probability 1 − p, where p ∈ [0,1] is a tunable hyper-parameter. Note the subtle detail
in Algorithm 1 (line 9) that the loss `t at any time step t is a function of ht which is not
detached.

Algorithm 1 Forward Pass of h-detach Algorithm
1: INPUT: {xt}Tt=1, h0, c0, p
2: ` = 0
3: for 1 ≤ t ≤ T do
4: if bernoulli(p)==1 then
5: h̃t−1 ← stop-gradient(ht−1)
6: else
7: h̃t−1 ← ht−1

8: ht, ct ← LSTM(xt, h̃t−1, ct−1) (Eq. 2.1- 2.6)
9: `t ← loss(φ(ht))
10: `← `+ `t
11: return `

We now show that the gradient of the loss function resulting from the LSTM forward
pass shown in algorithm 1 has the property that the gradient components arising from Bt

get dampened.
Definition 1. Let zt = [dct

dw

T ; dht
dw

T ; 1Tn ]T and z̃t be the analogue of zt when applying h-detach
with probability 1− p during back-propagation. Then,

z̃t = (At + ξtBt)(At−1 + ξt−1Bt−1) . . . (A2 + ξ2B2)z̃1

where ξt, ξt−1, . . . , ξ2 are i.i.d. Bernoulli random variables with probability p of being 1, and
w, At and Bt and are same as defined in theorem 2.

The above theorem shows that by stochastically blocking gradients from flowing through
the ht states of an LSTM with probability 1 − p, we stochastically drop the Bt term in
the gradient components. The corollary below shows that in expectation, this results in
dampening the Bt term compared to the original LSTM gradient.
Corollary 1. Eξ2,...,ξt [z̃t] = (At + pBt)(At−1 + pBt−1) . . . (A2 + pB2)z̃1

Finally, we note that when training LSTMs with h-detach, we reduce the amount of
computation needed. This is simply because by stochastically blocking the gradient from
flowing through the ht hidden states of LSTM, less computation needs to be done during
back-propagation through time (BPTT).
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3. Experiments
3.1. Copying Task

This task requires the recurrent network to memorize the network inputs provided at the
first few time steps and output them in the same order after a large time delay. Thus the
only way to solve this task is for the network to capture the long term dependency between
inputs and targets which requires gradient components carrying this information to flow
through many time steps.

We follow the copying task setup identical to [2] (described in appendix). Using their
data generation process, we sample 100,000 training input-target sequence pairs and 5,000
validation pairs. We use cross-entropy as our loss to train an LSTM with hidden state size
128 for a maximum of 500-600 epochs. We use the ADAM optimizer with batch-size 100,
learning rate 0.001 and clip the gradient norms to 1.

Figure 5 shows the validation accuracy plots for copying task training for T = 100 (top
row) and T = 300 (bottom row) without h-detach (left), and with h-detach (middle and
right). Each plot contains runs from the same algorithm with multiple seeds to show a
healthy sample of variations using these algorithms. For T = 100 time delay, we see both
vanilla LSTM and LSTM with h-detach converge to 100% accuracy. For time delay 100
and the training setting used, vanilla LSTM is known to converge to optimal validation
performance (for instance, see [2]). Nonetheless, we note that h-detach converges faster in
this setting. A more interesting case is when time decay is set to 300 because it requires
capturing longer term dependencies. In this case, we find that LSTM training without
h-detach achieves a validation accuracy of ∼ 82% at best while a number of other seeds
converge to much worse performance. On the other hand, we find that using h-detach with
detach probabilities 0.25 and 0.5 achieves the best performance of 100% and converging
quickly while being reasonably robust to the choice of seed.

3.2. Transfer copying task

Having shown the benefit of h-detach in terms of training dynamics, we now extend the
challenge of the copying task by evaluating how well an LSTM trained on data with a certain
time delay generalizes when a larger time delay is used during inference. This task is referred
as the transfer copying task [28]. Specifically, we train the LSTM architecture on copying
task with delay T = 100 without h-detach and with h-detach with probability 0.25 and 0.5.
We then evaluate the accuracy of the trained model for each setting for various values of
T > 100. The results are shown in table 1. We find that the function learned by LSTM when
trained with h-detach generalize significantly better on longer time delays during inference
compared with the LSTM trained without h-detach.
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Fig. 5. Validation accuracy curves during training on copying task using vanilla LSTM
(left) and LSTM with h-detach with probability 0.25 (middle) and 0.5 (right). Top row is
delay T = 100 and bottom row is delay T = 300. Each plot contains multiple runs with
different seeds. We see that for T = 100, even the baseline LSTM is able to reach ∼ 100%
accuracy for most seeds and the only difference we see between vanilla LSTM and LSTM with
h-detach is in terms of convergence. T = 300 is a more interesting case because it involves
longer term dependencies. In this case we find that h-detach leads to faster convergence and
achieves ∼ 100% validation accuracy while being more robust to the choice of seed.

T Vanilla LSTM h-detach 0.5 h-detach 0.25
200 64.85 74.79 90.72
400 48.17 54.91 77.76
500 43.03 52.43 74.68
1000 28.82 43.54 63.19
2000 19.48 34.34 51.83
5000 14.58 24.55 42.35

Table 1. Accuracy on transfer copying task. We find that the generalization of LSTMs
trained with h-detach is significantly better compared with vanilla LSTM training when
tested on time delays longer that what the model is trained on (T = 100).

3.3. Sequential MNIST

This task is a sequential version of the MNIST classification task [40]. In this task, an
image is fed into the LSTM one pixel per time step and the goal is to predict the label
after the last pixel is fed. We consider two versions of the task: one is which the pixels
are read in order (from left to right and top to bottom), and one where all the pixels are
permuted in a random but fixed order. We call the second version the permuted MNIST
task or pMNIST in short. The setup used for this experiment is as follows. We use 50000
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Fig. 6. Validation accuracy curves of LSTM training on pixel by pixel MNIST. Each
plot shows LSTM training with and without h-detach for different values of learning rate
0.0001(left), 0.005(middle), 0.001(right). We find that h-detach is both more robust to dif-
ferent learing rates and converges faster compared to vanilla LSTM training. Refer to the
Fig. 9 in appendix for validation curves on multiple seeds.

Method MNIST pMNIST
Vanilla LSTM 98.5 91.1

SAB [35] - 94.2
iRNN [39] 97.0 82.0
uRNN [2] 95.1 91.4

Zoneout [38] - 93.1
IndRNN [41] 99 96
h-detach (ours) 98.5 92.3

Table 2. A comparison of test accuracy on pixel by pixel MNIST and permuted MNIST
(pMNIST) with existing methods.

images for training, 10000 for validation and 10000 for testing. We use the ADAM optimizer
with different learning rates– 0.001,0.0005 and 0.0001, and a fixed batch size of 100. We
train for 200 epochs and pick our final model based on the best validation score. We use an
LSTM with 100 hidden units. For h-detach, we do a hyper-parameter search on the detach
probability in {0.1, 0.25, 0.4, 0.5}. For both pixel by pixel MNIST and pMNIST, we found
the detach hyper-parameter of 0.25 to perform best on the validation set for both MNIST
and pMNIST.

On the sequential MNIST task, both vanilla LSTM and training with h-detach give an
accuracy of 98.5%. Here, we note that the convergence of our method is much faster and
is more robust to the different learning rates of the ADAM optimizer as seen in Figure 6.
Refer to appendix (figure 9) for experiments with multiple seeds that shows the robustness
of our method to initialization.

In the pMNIST task, we find that training LSTM with h-detach gives a test accuracy of
92.3% which is an improvement over the regular LSTM training which reaches an accuracy
of 91.1%. A detailed comparison of test performance with existing algorithms is shown in
table 2.

39



3.4. Image Captioning

We now evaluate h-detach on an image captioning task which involves using an RNN for
generating captions for images. We use the Microsoft COCO dataset [42] which contains
82,783 training images and 40,504 validation images. Since this dataset does not have a
standard split for training, validation and test, we follow the setting in [34] which suggests
a split of 80,000 training images and 5,000 images each for validation and test set.

We use two models to test our approach– the Show&Tell encoder-decoder model [67]
which does not employ any attention mechanism, and the ‘Show, Attend and Tell’ model
[71], which uses soft attention. For feature extraction, we use the 2048-dimensional last layer
feature vector of a residual network (Resnet [24]) with 152 layers which was pre-trained on
ImageNet for image classification. We use an LSTM with 512 hidden units for caption
generation. We train both the Resnet and LSTM models using the ADAM optimizer [36]
with a learning rate of 10−4 and leave the rest of the hyper-parameters as suggested in their
paper. We also perform a small hyperparameter search where we find the optimial value
of the h-detach parameter. We considered values in the set {0.1,0.25,0.4,0.5} and pick the
optimal value based on the best validation score. Similar to [61], we early stop based on
the validation CIDEr scores and report BLEU-1 to BLEU-4, CIDEr, and Meteor scores.
The BLEU-k score is an metric for evaluating the quality of a sentence, it uses a modified
form of precision using k-grams from the sentence when compared to the reference sentence.
CIDEr [66] and METEOR [7] are other well known metrics for measuring the quality of the
sentences produced.

The results are presented in table 3. Training the LSTM with h-detach outperforms
the baseline LSTM by a good margin for all the metrics and produces the best BLEU-1 to
BLEU-3 scores among all the compared methods. Even for the other metrics, except for
the results reported by [45], we beat all the other methods reported. We emphasize that
compared to all the other reported methods, h-detach is extremely simple to implement and
does not add any computational overhead (in fact reduces computation).

3.5. Ablation Studies

In this section, we first study the effect of removing gradient clipping in the LSTM train-
ing and compare how the training of vanilla LSTM and our method get affected. Getting
rid of gradient clipping would be insightful because it would confirm our claim that stochas-
tically blocking gradients through the hidden states ht of the LSTM prevent the growth of
gradient magnitude. We train both models on pixel by pixel MNIST using ADAM without
any gradient clipping. The validation accuracy curves are reported in figure 7 for two dif-
ferent learning rates. We notice that removing gradient clipping causes the Vanilla LSTM
training to become extremely unstable, there are sudden drops in the validation accuracy at
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Table 3. Test performance on image captioning task on MS COCO dataset using metrics
BLEU 1 to 4, METEOR, and CIDEr (higher values are better for all metrics). We re-
implement both Show&Tell [67] and Soft Attention [71] and train the LSTM in these models
with and without h-detach.

Models B-1 B-2 B-3 B-4 METEOR CIDEr
DeepVS [34] 62.5 45.0 32.1 23.0 19.5 66.0

ATT-FCN [74] 70.9 53.7 40.2 30.4 24.3 —
Show & Tell [67] — — — 27.7 23.7 85.5
Soft Attention [71] 70.7 49.2 34.4 24.3 23.9 —
Hard Attention [71] 71.8 50.4 35.7 25.0 23.0 —

MSM [73] 73.0 56.5 42.9 32.5 25.1 98.6
Adaptive Attention [45] 74.2 58.0 43.9 33.2 26.6 108.5

TwinNet [61]
No attention, Resnet152 72.3 55.2 40.4 29.3 25.1 94.7

Soft Attention, Resnet152 73.8 56.9 42.0 30.6 25.2 97.3

No attention, Resnet152
Show&Tell (Our impl.) 71.7 54.4 39.7 28.8 24.8 93.0

+ h-detach (0.25) 72.9 55.8 41.7 31.0 25.1 98.0
Attention, Resnet152

Soft Attention (Our impl.) 73.2 56.3 41.4 30.1 25.3 96.6
+ h-detach (0.4) 74.7 58.1 44.0 33.1 26.0 103.3

several points in the training. h-detach on the other hand seems robust to removing gradient
clipping for both the learning rates used. Additional experiments with multiple seeds and
learning rates can be found in figure 11 in appendix.

Second, we conduct experiments where we stochastically block gradients from flowing
through the cell state ct instead of the hidden state ht and observe how the LSTM behaves
in such a scenario. We refer detaching the cell state as c-detach. The goal of this experiment is
to corroborate our hypothesis that the gradients through the cell state path carry information
about long term dependencies. Figure 8 shows the effect of c-detach (with probabilities
shown) on copying task and pixel by pixel MNIST task. We notice in the copying task for
T = 100, learning becomes very slow (figure 8) and does not converge even after 500 epochs,
whereas when not detaching the cell state, even the Vanilla LSTM converges in around 150
epochs for most cases for T=100 as shown in the experiments in section 3.1. For pixel by pixel
MNIST (which involves 784 time steps), there is a much larger detrimental effect on learning
as we find that none of the seeds cross 60% accuracy at the end of training (Figure 8 (b)).
This experiment corroborates our hypothesis that gradients through the cell state contain
important components of the gradient signal as blocking them worsens the performance of
these models when compared to Vanilla LSTM.
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Fig. 7. The effect of removing gradient clipping from vanilla LSTM training vs. LSTM
trained with h-detach on pixel by pixel MNIST dataset for two learning rates 0.0005(left)
and 0.0001(right). Refer to Fig. 11 in appendix for experiments with multiple seeds.

Fig. 8. Validation accuracy curves for copying task T=100 (left) and pixel by pixel MNIST
(right) using LSTM such that gradient is stochastically blocked through the cell state (the
probability of detaching the cell state in this experiment is mentioned in sub-titles.). Block-
ing gradients from flowing through the cell state path of LSTM (c-detach) leads to signifi-
cantly worse performance compared even to vanilla LSTM on tasks that requires long term
dependencies.

4. Related Work
Capturing long term dependencies in data using recurrent neural networks has been long

known to be a hard problem [26, 9]. Therefore, there has been a considerable amount of work
on addressing this issue. Prior to the invention of the LSTM architecture [28], another class
of architectures called NARX (nonlinear autoregressive models with exogenous) recurrent
networks [43] was popular for tasks involving long term dependencies. More recently gated
recurrent unit (GRU) networks [15] was proposed that adapts some favorable properties of
LSTM while requiring fewer parameters. Other recent recurrent architecture designs that
are aimed at preventing EVGP can be found in [76], [33] and [41]. Work has also been done
towards better optimization for such tasks [48, 36]. Since vanishing and exploding gradient
problems [26, 10] also hinder this goal, gradient clipping methods have been proposed to
alleviate this problem [63, 53]. Yet another line of work focuses on making use of unitary
transition matrices in order to avoid loss of information as hidden states evolve over time.
[39] propose to initialize recurrent networks with unitary weights while [2] propose a new
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network parameterization that ensures that the state transition matrix remains unitary.
Extensions of the unitary RNNs have been proposed in [70], [49] and [32]. Very recently, [35]
propose to learn an attention mechanism over past hidden states and sparsely back-propagate
through paths with high attention weights in order to capture long term dependencies. [64]
propose to add an unsupervised auxiliary loss to the original objective that is designed to
encourage the network to capture such dependencies. We point out that our proposal in this
paper is orthogonal to a number of the aforementioned papers and may even be applied in
conjunction to some of them. Further, our method is specific to LSTM optimization and
reduces computation relative to the vanilla LSTM optimization which is in stark contrast to
most of the aforementioned approaches which increase the amount of computation needed
for training.

5. Discussion and Future Work
In section 3.5 we showed that LSTMs trained with h-detach are stable even without

gradient clipping. We caution that while this is true, in general the gradient magnitude
depends on the value of detaching probability used in h-detach. Hence for the general case,
we do not recommend removing gradient clipping.

When training stacked LSTMs, there are two ways in which h-detach can be used: 1)
detaching the hidden state of all LSTMs simultaneously for a given time step t depending on
the stochastic variable ξt) stochastically detaching the hidden state of each LSTM separately.
We leave this for future work.

h-detach stochastically blocks the gradient from flowing through the hidden states of
LSTM. In corollary 1, we showed that in expectation, this is equivalent to dampening the
gradient components from paths other than the cell state path. We especially chose this
strategy because of its ease of implementation in current auto-differentiation libraries. An-
other approach to dampen these gradient components would be to directly multiply these
components with a dampening factor. This feature is currently unavailable in these libraries
but may be an interesting direction to look into. A downside of using this strategy though
is that it will not reduce the amount of computation similar to h-detach (although it will
not increase the amount of computation compared with vanilla LSTM either). Regularizing
the recurrent weight matrices to have small norm can also potentially prevent the gradi-
ent components from the cell state path from being suppressed but it may also restrict the
representational power of the model.

Given the superficial similarity of h-detach with dropout, we outline the difference be-
tween the two methods. Dropout randomly masks the hidden units of a network during the
forward pass (and can be seen as a variant of the stochastic delta rule [22]). Therefore, a
common view of dropout is training an ensemble of networks [68]. On the other hand, our
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method does not mask the hidden units during the forward pass. It instead randomly blocks
the gradient component through the h-states of the LSTM only during the backward pass
and does not change the output of the network during forward pass. More specifically, our
theoretical analysis shows the precise behavior of our method: the effect of h-detach is that
it changes the update direction used for descent which prevents the gradients through the
cell state path from being suppressed.

We would also like to point out that even though we show improvements on the image
captioning task, it does not fit the profile of a task involving long term dependencies that
we focus on. We believe the reason why our method leads to improvements on this task is
that the gradient components from the cell state path are important for this task and our
theoretical analysis shows that h-detach prevents these components from getting suppressed
compared with the gradient components from the other paths. On the same note, we also
tried our method on language modeling tasks but did not notice any benefit.

6. Conclusion
We proposed a simple stochastic algorithm called h-detach aimed at improving LSTM

performance on tasks that involve long term dependencies. We provided a theoretical under-
standing of the method using a novel analysis of the back-propagation equations of the LSTM
architecture. We note that our method reduces the amount of computation needed during
training compared to vanilla LSTM training. Finally, we empirically showed that h-detach
is robust to initialization, makes the convergence of LSTM faster, and/or improves gener-
alization compared to vanilla LSTM (and other existing methods) on various benchmark
datasets.

7. Appendix
7.1. Additional Information

Copying Experiment setup - We define 10 tokens, {ai}9
i=0. The input to the LSTM is a

sequence of length T +20 formed using one of the ten tokens at each time step. Input for the
first 10 time steps are sampled i.i.d. (uniformly) from {ai}7

i=0. The next T −1 entries are set
to a8, which constitutes a delay. The next single entry is a9, which represents a delimiter,
which should indicate to the algorithm that it is now required to reproduce the initial 10
input tokens as output. The remaining 10 input entries are set to a8. The target sequence
consists of T +10 repeated entries of a8, followed by the first 10 entries of the input sequence
in exactly the same order.
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Fig. 9. Validation accuracy curves on pixel by pixel MNIST dataset with vanilla LSTM
training and LSTM training with h-detach with various values of learning rate and initial-
ization seeds. Vanilla LSTM is on the left and h-detach 0.25 is on the right. The top row
has a learning rate of 0.001 while the bottom row has 0.0005.

Fig. 10. Validation accuracy curves on pMNIST dataset with vanilla LSTM training and
LSTM training with h-detach.

7.2. Derivation of Back-propagation Equation for LSTM

Let us recall the equations from an LSTM

ot = σ
(
Wo[ht−1,xt]T + bo

)
it = σ

(
Wi[ht−1,xt]T + bi

)
gt = tanh

(
Wg[ht−1,xt]T + bg

)
ft = σ

(
Wf [ht−1,xt]T + bf

)
ht = ot � tanh(ct)
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Fig. 11. The effect of removing gradient clipping during optimization. Validation accuracy
curves on pixel by pixel MNIST dataset with vanilla LSTM training and LSTM training
with h-detach with various values of learning rate and initialization seeds. LSTM training
using h-detach is both significantly more stable and robust to initialization when removing
gradient clipping compared with vanilla LSTM training. Vanilla LSTM is on the left and
h-detach 0.25 is on the right. The top row has a learning rate of 0.001 while the bottom row
has 0.0005.

ct = ft � ct−1 + it � gt
Here � denotes the element-wise product, also called the Hadamard product. σ denotes

the sigmoid activation function. Wo = [Woh; Wox]. Wi = [Wih; Wix]. Wg = [Wgh; Wgx].
Wf = [Wfh; Wfx].
Notation 1.

∆c
t = diag[ot � (1− tanh2(ct))]

∆o
t = diag[ot � (1− ot)� tanh(ct)]

∆f
t = diag[ft � (1− ft)� ct−1]

∆i
t = diag[it � (1− it)� gt]

∆g
t = diag[(1− g2

t )� it]
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For any ? ∈ {f,g,o,i}, define E?(w) to be a matrix of size dim(ht) × dim([ht; xt]). We set
all the elements of this matrix to 0s if if w is not an element of W?. Further, if w = (W?)kl,
then (E?(w))kl = 1 and (E?(w))k′l′ = 0 for all (k′,l′) 6= (k,l).

ψt = ∆f
t Wfh + ∆g

tWgh + ∆i
tWih

ψ̃t = ∆o
tWoh + ∆c

tψt

kt =
(
∆f

t Ef (w) + ∆g
tEg(w) + ∆i

tEi(w)
)
· [ht−1,xt]T

k̃t = ∆o
tEo(w) · [ht−1,xt]T + ∆c

tkt

Ft = diag(ft)

F̃t = ∆c
tdiag(ft)

Lemma 1. Let us assume w is an entry of the matrix Wf ,Wi,Wg or Wo, then

dft
dw

= diag[ft � (1− ft)] ·
(

Wfh ·
dht−1

dw
+ Ef (w) · [ht−1,xt]T

)

dot
dw

= diag[ot � (1− ot)] ·
(

Woh ·
dht−1

dw
+ Eo(w) · [ht−1,xt]T

)

dit
dw

= diag[it � (1− it)] ·
(

Wih ·
dht−1

dw
+ Ei(w) · [ht−1,xt]T

)

dgt
dw

= diag[(1− g2
t )] ·

(
Wgh ·

dht−1

dw
+ Eg(w) · [ht−1,xt]T

)
Proof By chain rule of total differentiation,

dft
dw

= ∂ft
∂w

+ ∂ft
∂ht−1

dht−1

dw

We note that,
∂ft
∂w

= diag[ft � (1− ft)] · Ef (w) · [ht−1,xt]T

and,
∂ft
∂ht−1

= diag[ft � (1− ft)] ·Wfh ·
dht−1

dw

which proves the claim for dft
dw
. The derivation for dot

dw
, dit
dw
, dgt
dw

are similar.
Now let us establish recursive formulas for dht

dw
and dct

dw
, using the above formulas.

Corollary 2. Considering the above notations, we have
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dht
dw

= ∆o
tWoh ·

dht−1

dw
+ ∆c

t ·
dct
dw

+ ∆o
tEo(w) · [ht−1,xt]T

Proof Recall that ht = ot � tanh(ct), and thus

dht
dw

= dot
dw
� tanh(ct) + ot � (1− tanh2(ct))�

dct
dw

Using the previous Lemma as well as the above notation, we get

dht
dw

= diag[ot�(1−ot)]·
(

Woh ·
dht−1

dw
+ Eo(w) · [ht−1,xt]T

)
�tanh(ct)+ot�(1−tanh2(ct))�

dct
dw

= ∆o
tWoh ·

dht−1

dw
+ ∆o

tEo(w) · [ht−1,xt]T + ot � (1− tanh2(ct))�
dct
dw

= ∆c
t

dct
dw

+ ∆o
tWoh ·

dht−1

dw
+ ∆o

tEo(w) · [ht−1,xt]T

Corollary 3. Considering the above notations, we have

dct
dw

= Ft
dct−1

dw
+ ψt ·

dht−1

dw
+ kt

Proof Recall that ct = ft � ct−1 + it � gt, and thus

dct
dw

= dft
dw
� ct−1 + ft �

dct−1

dw
+ dgt
dw
� it + gt �

dit
dw

Using the previous Lemma as well as the above notation, we get

dct
dw

= diag[ft � (1− ft)] ·
(

Wfh ·
dht−1

dw
+ Ef (w) · [ht−1,xt]T

)
� ct−1 + ft �

dct−1

dw

+diag[(1− g2
t )] ·

(
Wgh ·

dht−1

dw
+ Eg(w) · [ht−1,xt]T

)
� it

+diag[it � (1− it)] ·
(

Wih ·
dht−1

dw
+ Ei(w) · [ht−1,xt]T

)
� gt

= ∆f
t Wfh ·

dht−1

dw
+ ∆f

t Ef (w) · [ht−1,xt]T + ft �
dct−1

dw

+∆g
tWgh ·

dht−1

dw
+ ∆g

tEg(w) · [ht−1,xt]T

+∆i
tWih ·

dht−1

dw
+ ∆i

tEi(w) · [ht−1,xt]T

= Ft
dct−1

dw
+
(
∆f

t Wfh + ∆g
tWgh + ∆i

tWih

)
· dht−1

dw

+
(
∆f

t Eg(w) + ∆g
tEg(w) + ∆i

tEg(w)
)
· [ht−1,xt]T
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= Ft
dct−1

dw
+ ψt ·

dht−1

dw
+ kt

Let us now combine corollary 1 and 2 to get a recursive expression of dht
dw

in terms of
dht−1
dw

and dct−1
dw

Corollary 4. Considering the above notations, we have

dht
dw

= F̃t
dct−1

dw
+ ψ̃t ·

dht−1

dw
+ k̃t

Proof From Corollary 1, we know that
dht
dw

= ∆o
tWoh ·

dht−1

dw
+ ∆c

t ·
dct
dw

+ ∆o
tEo(w) · [ht−1,xt]T

Using Corollary 2, we get

dht
dw

= ∆o
tWoh ·

dht−1

dw
+ ∆c

t ·
(

Ft
dct−1

dw
+ ψt ·

dht−1

dw
+ kt

)
+ ∆o

tEo(w) · [ht−1,xt]T

= ∆c
t · Ft

dct−1

dw
+ (∆o

tWoh + ψt) ·
dht−1

dw
+
(
kt + ∆o

tEo(w) · [ht−1,xt]T
)

= F̃t
dct−1

dw
+ ψ̃t ·

dht−1

dw
+ k̃t

Theorem 2. Fix w to be an element of the matrix Wgh,Wfh,Wih or Woh. Define,

At =


Ft 0n diag(kt)
F̃t 0n diag(k̃t)
0n 0n Idn

 Bt =


0n ψt 0n
0n ψ̃t 0n
0n 0n 0n

 zt =


dct
dw
dht
dw

1n

 (7.1)

Then,

zt = (At + Bt)zt−1

In other words,

zt = (At + Bt)(At−1 + Bt−1) . . . (A2 + B2)z1

where all the symbols used to define At and Bt are defined in notation 1.
Proof By Corollary 2, we get

dct
dw

= Ft
dct−1

dw
+ ψt ·

dht−1

dw
+ kt

= Ft
dct−1

dw
+ ψt ·

dht−1

dw
+ diag(kt)1n
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=
[
Ft ψt diag(kt)

]
· zt−1

Similarly by Corollary 3, we get

dht
dw

= F̃t
dct−1

dw
+ ψ̃t ·

dht−1

dw
+ k̃t

= F̃t
dct−1

dw
+ ψ̃t ·

dht−1

dw
+ diag(k̃t)1n

=
[
F̃t ψ̃t diag(k̃t)

]
· zt−1

Thus we have

zt =


Ft ψt diag(kt)
F̃t ψ̃t diag(k̃t)
0n 0n Idn

 · zt−1 = (At + Bt) · zt−1 (7.2)

Applying this formula recursively proves the claim.
Note: Since At has 0n’s in the second column of the block matrix representation, it

ignores the contribution of zt coming from ht−1, whereas Bt (having non-zero block matrices
only in the second column of the block matrix representation) only takes into account the
contribution coming from ht−1. Hence At captures the contribution of the gradient coming
from the cell state ct−1.

7.3. Derivation of Back-propagation Equation for LSTM with h-
detach

Theorem 3. Let zt = [dct
dw

T ; dht
dw

T ; 1Tn ]T and z̃t be the analogue of zt when applying h-detach
with probability p during back-propagation. Then,

z̃t = (At + ξtBt)(At−1 + ξt−1Bt−1) . . . (A2 + ξ2B2)z̃1

where ξt, ξt−1, . . . , ξ2 are i.i.d. Bernoulli random variables with probability p of being 1,
At and Bt and are same as defined in theorem 2.

Proof Replacing ∂
∂ht−1

by ξt ∂
∂ht−1

in lemma 1 and therefore in Corollaries 2 and 3, we
get the following analogous equations

dct
dw

= Ft
dct−1

dw
+ ξtψt ·

dht−1

dw
+ kt

and
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dht
dw

= F̃t
dct−1

dw
+ ξtψ̃t ·

dht−1

dw
+ k̃t

Similarly as in the proof of previous theorem, we can rewrite

dct
dw

=
[
Ft ξtψt diag(kt)

]
· z̃t−1

and

dht
dw

=
[
F̃t ξtψ̃t diag(k̃t)

]
· z̃t−1

Thus

z̃t =


Ft ξtψt diag(kt)
F̃t ξtψ̃t diag(k̃t)
0n 0n Idn

 · z̃t−1 =



Ft 0n diag(kt)
F̃t 0n diag(k̃t)
0n 0n Idn

+ ξt


0n ψt 0n
0n ψ̃t 0n
0n 0n 0n


 · z̃t−1

= (At + ξtBt) · z̃t−1

Iterating this formula gives,

z̃t = (At + ξtBt)(At−1 + ξt−1Bt−1) . . . (A3 + ξ3B3)z̃2

Corollary 5.
E[z̃t] = (At + pBt)(At−1 + pBt−1) . . . (A3 + pB3)z̃2

It suffices to take the expectation both sides, and use independence of ξt’s.
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Abstract. Attention and self-attention mechanisms, inspired by cognitive processes, are
now central to state-of-the-art deep learning on sequential tasks. However, most recent
progress hinges on heuristic approaches with limited understanding of attention’s role in
model optimization and computation, and rely on considerable memory and computational
resources that scale poorly. In this work, we present a formal analysis of how self-attention
affects gradient propagation in recurrent networks, and prove that it mitigates the problem
of vanishing gradients when trying to capture long-term dependencies. Building on these
results, we propose a relevancy screening mechanism, inspired by the cognitive process of
memory consolidation, that allows for a scalable use of sparse self-attention with recur-
rence. While providing guarantees to avoid vanishing gradients, we use simple numerical
experiments to demonstrate the tradeoffs in performance and computational resources by
efficiently balancing attention and recurrence. Based on our results, we propose a concrete
direction of research to improve scalability of attentive networks.
Keywords: Exploding and vanishing gradients problem, self-attention, scalablity, gradient
propagation

1. Introduction
We live in a world where most of the information takes a sequential form, largely because

it is delivered over time. Performing computations on streams of sequential inputs requires
extracting relevant temporal dependencies and learning to recognize patterns across several
timescales. Humans can effortlessly make associations relating events stored in memory
which are far from each other in time and thus, capture long-term dependencies.

Historically, recurrent neural networks (RNNs) have been the deep network architecture
of choice for this type of task since, just like neural circuits in the brain, they enable dy-
namics that can be shaped to interact with input streams. However, RNNs (including gated
RNNs [59, 15]) still struggle with large timescales as their iterative nature leads to unsta-
ble information propagation [8, 52, 59, 27].This is because most standard RNNs rely on
their current state ht, a vector of fixed dimension, to represent a summary of relevant past
information. Indeed, [8] showed that without making additional assumptions, storing infor-
mation in a fixed-size state vector in a stable way necessarily leads to vanishing gradients
when back-propagating through time (see also [27]).

Several attempts have been made to augment RNN dynamics with external memory to
mitigate these issues [62, 20, 58, 21], but it is only recently that access to externally stored
information has become effective with the introduction of attention, and more particularly
soft attention mechanisms [5]. Attention provides a way by which a system can dynami-
cally access past states and inputs across several timescales, bypassing the need of sequential
propagation and ignoring irrelevant information (or distractor information). There is sub-
stantial empirical evidence that attention, especially self-attention ([65, 35]), is very helpful
to improve learning and computations over long-term dependencies.
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However, this requires to hold inputs and/or past states in memory in order to be consid-
ered for attentive computations, a process that typically scales quadratically with sequence
length. As for recurrent networks, a promising solution to this has been the use of sparse
attention (see e.g. SAB [35]), leading to models with varying degrees of reliance on both
recurrence and self-attention. However most of these models only delay computational issues
by a constant factor and are thus still scaling quadratically with sequence length.

In this paper, we are pushing the idea of sparse attention in RNNs further, by asking: how
can we sparsify attention in RNNs, in order to maximally reduce computational complexity
and memory usage, while simultaneously maintaining good gradient propagation over large
time scales?

In Section 2, we give a brief outline of related cognitive processes and neural network
mechanisms. In Section 3, we derive asymptotic guarantees for gradient propagation in self-
attentive recurrent networks. Building on these results in Section 4, we showcase a simple
relevancy screening mechanism that aims to efficiently consolidate relevant memory, reducing
the size of the computational graph from quadratic to linear in sequence length. Finally, in
Section 5, we compare various recurrent and attention models with our proposed relevancy
screening mechanism on a series of simple numerical experiments, while, in Section 6, we
analyze their gradient propagation properties together with their GPU usage.

2. Background
To perform complex tasks, our brains rely on mechanisms to encode and retrieve infor-

mation to and from memory [75, 56]. In contrast, standard RNNs follow rigid sequential
dynamics as they are parametric i.e with a fixed-size state vector. Self-attention methods
can overcome this limitation by giving access to previous past states for computing the next
state. For the sake of the discussion, we call such RNNs, which are augmented by the
memory of the past states as semi-parametric RNNs. The use of soft-attention [5] in such
models has improved performance on many tasks such as reading comprehension, abstractive
summarization, textual entailment and learning task-independent sentence representations
[51, 44, 54, 72] as well as in the self-supervised training of extremely large language models
[16, 55] due to their ability to handle long-term dependencies.

Intriguingly, the most notable advances in the use of attention is in purely attention-based
systems such as the Transformer [65], which completely foregoes recurrence and inspired
some of the work listed above. While the performance of these systems is impressive, their
memory and computation requirements grows quadratically with the total sequence length.
To address this issue, many variants that aim to "sparsify" the attention matrix have been
proposed. Notably, [35] developed the Sparse Attentive Backtracking model (SAB), a self-
attentive Long Short-Term Memory network (LSTM) [59] that leverages sparsity by selecting
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only the top-k states in memory based on an attention score, propagating gradients only to
those chosen hidden states. Recently, [77] propose to use a similar top-k attention, and [14]
introduce sparse masks which attends to roughly

√
n locations in memory, implementing

explicit selection methods for Transformers. Reformer models [37] replace the dot-product
attention by locality-sensitive hashing, changing its complexity from O(T 2) to O(T ), where
T is the sequence length.

Still, most of these approaches naively sub-sample input streams for memory storage.
Our brains on the other hand, seem to select relevant information from the recent past to
commit to long term memory based on their relevancy, a process often referred to as memory
consolidation [1]. Attempts at mimicking this sparse temporal selectivity process has shown
great promise in a variety of contexts [20, 50, 23], and our work aims to formalize this idea
for self-attentive recurrent networks.

3. Theoretical analysis of gradient propagation
In this section, we analyze the influence of self-attention onto gradient propagation in

recurrent networks with self-attention. In order to so let us first recall the equations of a
recurrent neural network with self-attention. We note that even though we are using "vanilla
RNNs" in the formulations of our results, any recurrent network can take its place (see
Section 5 where we use LSTMs in the experiments). Let xt ∈ Rm be the input and ht ∈ Rn

be the hidden state at time step t, satisfying the update equation for all t ≥ 1,

ht+1 = φ(V st + Uxt+1 + b) (3.1)

st = f(ht,ct) (3.2)

where φ is a non-linearity, f : Rn×Rn → Rn, V ∈ Rn×n, U ∈ Rn×m, b ∈ Rn and ct = α1,th1 +
α2,th2 + . . .+ αt,tht with αi,t := exp (ei,t)∑t

j=1 exp (ej,t)
and ei,t := a(st−1,hi), where a : Rn × Rn → Rn

is the attention alignment function. Throughout, we assume training is done via gradient
descent of a cost function L using back-propagation.

Oftentimes, one uses st = f(ht,ct) = ht + ct (but concatenation would be more general),
and for all t > 1 and 1 ≤ j ≤ t, a(st−1,hj) = vTa · tanh (Wa · st−1 + Ua · hj), where va ∈ Rn,
and Wa,Ua ∈ Rn×n. The latter choice for alignment function is sometimes referred to as
"additive self-attention" and was used in the original paper [5]. Let us emphasize that the
results presented in this section hold independently of the choice of the alignment function
as we will discuss later in this section.
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3.1. Preliminaries

Our goal in this section is to establish formal propagation rules for a system where mul-
tiple paths of signal propagation are possible. We would like to understand the relationship
between skip connections (those coming from self-attention) and recurrent connections, as
well as how the interplay between the two leads to good gradient propagation. In order to
achieve this, we seek to analyze the asymptotic behaviour of ‖∇htL‖ = ‖

(
dsT
dht

)T
∇sTL‖, as

T → ∞. We accomplish this by decomposing ∇htL with respect to all possible gradient
backpropagation paths, or in other words, by decomposing dsT

dht
into sums of products of

Jacobian matrices corresponding to those gradient paths, using Proposition 2.
Proposition 1. For all t ≥ 1, k ≥ j ≥ 0, k′ ≥ 0, let E(t)

k′ = ∂st+k′
∂ht

, and F (t)
k+1,j = ∂st+k+1

∂ht+j+1
·

Jt+j + 1j=k · ∂st+k+1
∂st+k

, with Jt+j the Jacobian matrix dht+j+1
dst+j

. Then, we have

dst+k
dht

=
k∑
s=0

ξ̄
(t)
0:k(s) (3.3)

where for all s ≥ 1, ξ̄(t)
0:k(s) = ∑

0≤i1<...<is<k F
(t)
k,is
· F (t)

is,is−1 · . . . · F
(t)
i2,i1 ·E

(t)
i1 and where ξ̄(t)

0:k(0) =
E

(t)
k . (Proof in Appendix 8.2, Proposition 2)
Here, each term F

(t)
k,is
· F (t)

is,is−1 · . . . · F
(t)
i2,i1 · E

(t)
i1 corresponds to exactly one gradient path

involving exactly s + 1 skip connections going from t to t + k, via the s hidden states
ht+is+1, . . . , ht+i1+1. In particular, ξ̄(t)

0:k(s) is the sum of all terms containing exactly s Jacobian
matrices J , and thus the larger s is, the more ξ̄(t)

0:k(s) is prone to vanishing.
Intuition: In order to find paths that are not vanishing as T → ∞, we want to find

gradient paths with: (i) a bounded path length s so that the number of Jacobian matrices
involved in the product is limited. (ii) attention scores that are sufficiently bounded away
from 0, so that the resulting product of attention scores is sufficiently bounded away from
0 as well. In order to see how exactly the attention weights come into play via matrices E
and F , we refer to Proposition 3 from Appendix 8.2.

Defintions: Let us fix an integer t ≥ 1, an integer s ∈ {1,2, . . . ,T − t}, and an ordered
set of indices i1,i2, . . . , is ∈ {0,1, . . . ,T − t− 1}, verifying i1 ≤ i2 ≤ . . . ≤ is.

• For sequences {g(T )}T≥1 and {f(T )}T≥1, we say that f(T ) = Ω(g(T )) if there exists
positive constants c and T0 such that f(T ) ≥ c · g(T ) for all T ≥ T0.
• At time t, we call a past hidden state hi a relevant event if the attention weight αi,t
is sufficiently bounded away from zero.
• We call the s-tuple (i1,i2, . . . ,is) a dependency chain γ of depth s, as it induces a
gradient backpropagation path going via the s hidden states ht+is+1, . . . , ht+i1+1.
• We call dependency depth the smallest depth among all dependency chains where the
product of the corresponding attention scores is Ω(1) as T →∞.
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The central message is that if the dependency depth is bounded from above and sufficiently
small, then we mitigate gradient vanishing. As we see below, task structure introduces
different ways in which this may happen. We now present a formal treatment for specific
cases, and lay the groundwork to take advantage of this structure during learning.

3.2. Uniform relevance case

Suppose each state has equal relevance in some task. What can be said about gradient
propagation? This translates to having each attention weight αi,t = 1/t for all t ≥ i ≥ 1.
We then have dependency chains of depth 1 but with vanishing rate Ω(1/T ), as formalized
in the following theorem (cf. 8.3)
Theorem 4. Let ht be the hidden state at time t of a vanilla RNN with uniform attention,
under mild assumptions on the connectivity matrix V , and trained with respect to a loss L,
then if T is the total sequence length, we have

‖∇htL‖ = Ω(1/T ) (3.4)

as T →∞. (proof in Appendix 8.3, Theorem 6)
This corresponds to the case where all past events contribute equal error signals. We also

note that this result is independent of the choice of the alignment function a (cf. Remark 8
in the Appendix 8.3).

Intuition: As a "worst case scenario" Theorem 4 reveals the true trade-off of early self-
attentive recurrent networks [5]. On one hand, the lower bound obtained on gradient norm
is substantially better than in a vanilla RNN without attention, where vanishing happens
at an exponential rate, as opposed to a polynomial one here. On the other, this situation
fulfills the quadratic scaling bounds for computations, and requires that all events be held
in memory. Many inputs and tasks do not call for uniform attention and naturally lend
themselves to sparse dependency paths for computation. The next case treats this situation.

3.3. Sparse relevance case with bounded dependency depth

Now let us look at a more realistic case where only a sparse subset of past states are
relevant for the task at hand, and the gradient needs to access those states efficiently for good
learning. Figure 12 illustrates this scenario by showing the attention scores for two input
examples computed by a simple self-attentive model [5], trained on Copy and Denoise tasks
respectively (see Section 5). This structure introduces the possibility to impose sparsity in
the computational graph, and to limit memory use. With these constraints in mind, the
goal is to engineer dependency chains that enable best gradient propagation between these
relevant events.

Notation: We consider a κ-sparse attention mechanism of dependency depth d.
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Fig. 12. Magnitude of attention weights between states in a trained, fully recurrent and
fully attentive model ([5]). Each pixel in the lower triangle corresponds to the attention
weight of the skip connection departing from the state marked on the y-axis to the state
marked on the x-axis. Left shows Copy task, right shows Denoise task. Task details in
Section 5

• Sparsity coefficient: κ ≥ 1. Borrowing from the SAB model [35], at each time step,
attention is allowed at most κ relevant events from the past. That is, for any t there
are at most κ indices i such that αi,t 6= 0, which gives rise to a sparse temporal
segmentation via the most relevant events.
• Maximal dependency depth: d. This is the maximal dependency depth across all time
steps t.

Theorem 5. Let ht be the hidden state at time t of a vanilla RNN with κ-sparse uniform
attention mechanism of maximal dependency depth d, and under mild assumptions on the
connectivity matrix V , then

‖∇htL‖ = Ω(1/κd) (3.5)

as T →∞. (proof in Appendix 8.4, Theorem 7)
Similarly to uniform case, Theorem 5 is independent of the choice of the alignment

function a (cf. remark 19 in the appendix).
Intuition: If κ and d are assumed to be bounded, we have Ω(1/κd) = Ω(1) as T →∞,

and thus we mitigate gradient vanishing. Furthermore, notice the dependency depth d affects
the lower bound exponentially, while κ affects it polynomially. In other words, the number
of relevant events attended to at each time step contributes far less to gradient vanishing
than the number of events in the longest dependency chain. Theorem 5 outlines the tradeoff
between computational complexity as T → ∞ and gradient propagation when balancing
attention and recurrence.
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4. Relevancy screening mechanism
Equipped with the results from the previous section, we wish to refine heuristics that

strike a balance between good gradient propagation and computational/memory complexity.
Building on the SAB model [35], we remark that although sparse attention attends to the
top-κ events at any point in time, attention scores must be computed on all events stored
in memory to extract the κ best ones. Thus, the resource bottleneck is not controlled by κ,
but rather by the number of stored events in memory. In SAB, there is a naive attempt to
control this number by only recording network states at each 10 time steps. However, this
reduces the size of the computational graph only by a constant factor, but retains O(T 2)
complexity. In contrast, Theorem 5 tells us that the only important events to conserve for
good gradient propagation are the relevant ones or the ones likely to receive high attention
scores (also see Remark 6 in Appendix 8.2). Thus, we propose to reduce complexity while
maintaining good gradient propagation by selectively storing events that are predicted to be
relevant in the future, using a relevancy screening mechanism.

Algorithm 2 Relevancy Screening
1: procedure: RelRNN(st−1,xt)

Require: Previous macro-state - st−1
Require: Input - xt, ν > 0, ρ > 0
Require: Short-term buffer s(i)

t−1 ∈ St−1

Require: Relevant set r(i)
t−1 ∈ Rt−1

2: ht ← φ(V st−1 + Uxt + b)
3: St = St−1.add(ht)
4: if t− ν > 0 then
5: St = St.remove(ht−ν)
6: if t− ρ > 0 and C(t− ρ) = True then
7: Rt = Rt−1.replaceWith(ht−ρ)
8: Mt = [St, Rt]
9: for all m(i) ∈Mt do
10: z̃(i) ← vTa · tanh (Wast−1 + Uam

(i))
11: z ← softmax(z̃)
12: st = ht +∑

i z
(i)m(i)

13: return st

The idea is simple: devise a screening function C(i) which estimates the future relevance
of hi, and store selected events in a relevant set Rt = {hi|i < t ∧ C(i) = True} for future
attention. In principle, one can explicitly control how Rt grows with t, thus mitigating the
complexity scaling outlined above. Here, C(i) could take many forms, the best of which
depends on task structure. In what follows, we present an example screening mechanism
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meant to showcase the lessons learned from Theorem 5, but we refer the interested reader
to Section 7 for further possibilities.

We take inspiration from memory consolidation principles in human cognition [1], which
defines the transfer of events from short-term to long-term memory. We remark that for
some tasks such as those depicted in Figure 12, relevance varies very little across time. To
implement relevancy screening for such tasks, at every time step t we attend to two subsets of
the past hidden states. We call the first subset a short-term buffer St = {ht−ν , ht−ν+1, .., ht−1}
which consists of the hidden states of the last ν time steps, while the second subset is the
relevant set Rt. We compute the relevance score at time step i, β(i) = ∑i+ν−1

j=i αi,j, measuring
the integrated attention scores over our short-term buffer St. More precisely, C(i) is satisfied
if β(i) is part of the top ρ relevance scores when compared to all previously observed hidden
states, where ρ is a fixed hyper-parameter satisfying ρ ≥ |Rt| for all t. The pseudo-code in
Algorithm 2 describes the screening mechanisms and the interaction between the short-term
buffer St and a finite size relevant set Rt. ’.replaceWith()’ is a function replacing the hidden
state with the lowest relevance score by the hidden state in the argument.

We note that the sets St and Rt give rise to a sparse attention mechanism with sparsity
coefficient κ satisfying κ = ν + ρ ≥ |St| + |Rt|. Hence, memory complexity is constant
while the O(T 2) bottleneck of computational complexity is replaced by O((ρ + ν) · T ) =
O(T ). Lastly, applying Theorem 5, we get the following guarantee for all t ≥ 0: ‖∇htL‖ =
Ω(1/(ρ+ν)d) as T →∞. Thus the choices of ν and ρ not only directly impact computational
complexity and gradient propagation, but also indirectly influence gradient propagation via
the implicit effect of κ = ν + ρ on d as already discussed in Section 3.

5. Experiments
Before describing experiments, we make a few remarks. First, we stress that Relevancy

Screening can be applied to any semi-parametric attentive model but we refer to the version
presented below, which uses an RNN/LSTM base, as RelRNN/RelLSTM ("Relevance RNN
/LSTM "). Second, our objective is not to find state-of-the-art performance but to highlight
the advantages of event relevancy and selective sparsity. Finally, we note that relevancy-based
sparsity does not necessarily improve performance over fully attentive models, but rather
allows efficient and scalable usage. As we show below, RelRNN and RelLSTM perform
almost identically to other self-attentive recurrent models (e.g. [5, 35]) on simple tasks,
but use considerably less memory and compute complexity. In what follows, we denote
MemRNN/MemLSTM for vanilla self-attention RNN/LSTM as defined in [5]. We consider
three task categories to highlight distinct impacts of selective attention and recurrence. The
first category specifies tasks with sparse dependency chains, the second one those with dense
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T 100 200 400 2000 5000
orth-RNN 99% 4% 16% 10% 0%
expRNN 100% 86% 73% 58% 50%
MemRNN 99% 99% 99% 92% OOM
RelRNN 100% 99% 99% 99% 99%
LSTM 99% 64% 48% 19% 14%
h-detach 100% 91% 77% 51% 42%
SAB 99% 95% 95% 95% 95%

RelLSTM 100% 99% 99% 99% 99%
Table 4. Results for Transfer Copy task.

temporal dependencies, and the third includes a variety of reinforcement learning (RL) tasks.
All implementation details and hyper-parameters can be found in the Appendix 8.6.

5.1. Tasks with sparse dependency chains

A good stereotypical task type that captures sparse sequences of important events are
memorization tasks. Here, the network has to memorize a sequence of relevant characters
presented among several non-relevant ones, store it for some given time delay and output
them in the same order as they were read towards the end of the sequence.

Copy task [29]: The characters to be copied are presented in the first 10 time steps,
then must be outputted after a long delay of T time steps (see full description in [3]). Thus,
all the relevant events occur in the first 10 time steps. This can be corroborated by the
attention score found in Figure 12 which was generated using full self-attention. [25] show
that orthogonal RNNs (orth-RNN) provide an optimal solution. We also consider expRNN
[12] which does optimization in the unitary space and is so far the best purely performing
recurrent model for large time delays for this task.

Table 8 (Appendix 8.6) reports test performances of orth-RNN, expRNN, MemRNN,
SAB, RelRNN and RelLSTM for T = {100, 200, 300, 500, 1000, 2000} on the Copy Task. We
find that orth-RNN solves this task up to T = 500, but that accuracy decays beyond that
point, similarly to LSTM. RelRNN, RelLSTM, SAB and expRNN perfectly solve this task
with 100% accuracy for all T , and learn much faster than orth-RNN. MemRNN solves this
task until T = 100 but overflows memory (OOM) afterwards.

Transfer Copy task: An important advantage of sparse attentive recurrent models such
as RelRNN is that of generalization. This is illustrated by the Transfer Copy scores [29]
where models are trained on Copy task for T = 100 and evaluated for T > 100. Table 4 shows
results for the models listed above, in addition to h-detach [4], an LSTM-based model with
improved gradient propagation. Importantly, where purely recurrent networks performed
well on the original task, all fail to transfer, with discrepancy growing with T . As expected,
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T 100 300 500 1000 2000
orth-RNN 90% 71% 61% 29% 3%
expRNN 34% 25% 20% 16% 11%
MemRNN 99% 99% 99% 99% OOM
RelRNN 100% 99% 99% 99% 99%
LSTM 82% 41% 33% 21% 15%
GORU 92% 93% 91% 93% 73%
SAB 99% 99% 99% 99% 99%

RelLSTM 100% 99% 99% 99% 99%
Table 5. Results for Denoise task.

MemRNN and SAB keep good performance but RelRNN outperforms them, with almost
perfect performance for all T . While both SAB and RelRNN use sparse memory storage
and retrieval, the distinguishing factor is RelRNN’s use of relevancy screening, indicating
it’s importance for transfer. The performance of RelLSTM on Transfer Copy is exactly the
same as RelRNN.

Denoise task [31]: This generalizes the Copy task as the symbols that need to be
copied are now randomly distributed among the T time steps, requiring the model to selec-
tively pick the inputs that need to be copied. We test our method against all the previously
mentioned models in addition to GORU [31] for various values of T (Table 5). RelLSTM
performs exactly as RelRNN and again, we see RelRNN maintain complete performance
across all T values, outperforming all purely recurrent models. MemRNN performs as Rel-
RNN/RelLSTM but fails to train due to memory overflow beyong T = 500.

5.2. Tasks with dense temporal dependencies

In contrast to sparse information found in the tasks above, we now illustrate RelRNN and
RelLSTM’s performance on tasks with densely distributed information on long sequences.

Here, we perform tests on pMNIST [39], a variant of MNIST [40] where pixels are
fed sequentially in a permuted order to the network, as well as character level Penn Tree
Bank corpus (PTB) [47] where the next letter in a text needs to be predicted. See Table 6
for results. Implementation details and further test data found in Appendix 8.6, including
attention heatmaps such as the ones found in Figure 12, showing dense attention for RelRNN
in both tasks. We note that gated RNNs such as LSTMs are known to perform well here,
and that orthogonal RNNs such as those tested here are also very good. The full attention
model (MemRNN) fails to train on the optimization setup used here for both tasks, again
due to overflow in memory. The current state of the art in pMNIST is 98.13% achieved by
TrellisNet [6] and for PTB is a bpc of 1.147 achieved by Recurrent highway networks [46].
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PTB Task pMNIST
Model BPC Accuracy Accuracy

RNN 1.56 66% 90.4%
orth-RNN 1.53 66% 93.4%
expRNN 1.49 68% 96.6%
RelRNN 1.43 69% 92.8%

LSTM 1.36 73% 91.1%
h-detach - - 92.3%
SAB 1.37 - 94.2%

RelLSTM 1.36 73% 94.3%
Table 6. PTB and pMNIST results.

Environment LSTM MemLSTM RelLSTM

Train
RedBlueDoors-6x6 0.97 0.97 0.97
GoToObject-6x6 0.81 0.85 0.84

MemoryS7 0.96 0.4 0.94
GoToDoor-5x5 0.28 0.17 0.25

Fetch-5x5 0.48 0.42 0.5
DoorKey-5x5 0.94 0.94 0.93

Test
RedBlueDoors-8x8 0.95 0.95 0.95
GoToObject-8x8 0.66 0.66 0.74

MemoryS13 0.25 0.24 0.30
GoToDoor-8x8 0.13 0.11 0.15

Fetch-8x8 0.38 0.44 0.45
DoorKey-16x16 0.09 0.31 0.44

Table 7. Average Train and Test Rewards for MiniGrid Reinforcement Learning task. The
models were trained on the smaller version of the environment and tested on the larger
version to test to generalization of the solution learned.

5.3. MiniGrid reinforcement learning tasks

We next consider a few tasks from MiniGrid [13] in the OpenAI gym [11] in which an
agent must get to certain goal states. We use a partially observed formulation of the task,
where the agent only sees a small number of squares ahead of it.

These tasks are difficult to solve with standard RL algorithms, due to (1) the partial
observability of the environment and (2) the sparsity of the reward, given that the agent
receives a reward only after reaching the goal. We use Proximal Policy Optimization (PPO,
[60]) along with LSTM, MemLSTM, and RelLSTM as the recurrent modules. All models
were each trained for 5000000 steps on each environment. The hyperparameters used for
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RelLSTM are ν = 5 and ρ = 5. Our goal is to compare generalization of the solutions
learned by each model by training on smaller version of an environment and testing it on a
larger version. On the MiniGrid-DoorKey-5x5-v0 environment the average reward for LSTM
is 0.94, MemLSTM is 0.94 and RelLSTM is 0.93. On transferring the learned solution to the
16x16 version of that environment the average reward for LSTM is 0.09, MemLSTM is 0.31
and RelLSTM is 0.44. As illustrated in Table 7, we find that transfer scores for RelLSTM
are much higher than for MemLSTM across several environments.

6. Analysis
In this section we analyze the maximal GPU usage and gradient norm of ‖∇htL‖ across

time t for the Denoise Task. All the models were run using a NVIDIA TitanXP GPU and
their peak usage was recorded in order to quantify the amount of computational resources
used for each of them. We varied sequence length T from 200 to 2000 in order to measure the
trend in the usage. To measure propagating gradients as a function of t, we trained models
on T = 1000 and computed log ‖∇htL‖.

As illustrated in Figure 13 (center), we confirm MemRNN scales quadratically with T ,
same as SAB which shows an improvement but only by a constant factor. We also confirm
that RelLSTM scales linearly with T similar to RNN and LSTM. Figure 13 (left) shows
that the gradient norms for RNN explode and for LSTM vanish as t increases. The gradient
norms of all attention models were stable, as expected from the results of Section 3. To
better visualize the interplay between gradient norm and GPU usage, Figure 13 (right)
shows the final averaged log gradient norm against Max GPU usage for different times T =
{400, 600, 800}. As expected, purely recurrent models (RNN, LSTM) show very little GPU
usage differences across distinct T values, while their performance and gradients degrade
with increasing t. Note that the RNN’s gradients explode while the LSTM’s vanish, both
exponentially in t. Standard self attentive models (MemRNN, SAB) on the other hand,
show opposite trends, with stable gradients but GPU usage quadratically increasing in T .
As expected from Theorem 2 (Section 3), RelLSTM shows both stable gradients and stable
GPU usage. The measurements for both GPU usage and gradient norm are identical for
both RelLSTM and RelRNN.

The optimal trade-off between memory usage and good gradient propagation achieved by
RelLSTM highlights the importance of a dynamic memory that attempts to predict relevancy
in order to only store exactly those events that help with learning. We note the Denoise task
has a small number of relevant events and that not all tasks share this structure. Nevertheless,
this experiment highlights how important resource gains can be made by shifting efforts from
offsetting memory growth by a constant factor, to a relevancy screening method.
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Fig. 13. (Left) gradient norm plots of ‖∇htL‖ in log scale after training for Denoise Task
with t ranging from 0 (latest time step) to 1000 (furthest time step).(Center) Maximal
GPU usage as a function of total sequence length T .(Right) Mean log gradient norm v.s.
Max GPU usage for T = 400,600,800. Model testing accuracy is 100% unless indicated by
marker label (see Table 5).

7. Conclusion & Discussion
Our main contribution is a formal analysis of gradient propagation in self-attention RNNs,

from which we derive two quantities that are governing gradient propagation: sparsity and
dependency depth. Meanwhile we identify event relevancy as a key concept to efficiently scale
attentive systems to very long sequential computations. This is illustrated via a Relevancy
Screening Mechanism, inspired by the cognitive process of memory consolidation in the brain,
that efficiently selects network states, called relevant events, to be committed to long-term
memory based on a screening heuristic operating on a fixed-size short-term memory buffer.
We showcase the benefits of this mechanism in an attentive RNN and LSTM which we call
RelRNN and RelLSTM respectively, using simple but illustrative numerical experiments, and
demonstrate the optimal trade-off between memory usage and good gradient propagation it
achieves.

As outlined in Sections 3 and 4, this trade-off is a reflection of the task-specific balance
between sparsity and dependency depth parameters. While our proposed relevancy screening
mechanism exploits "local" attention scores (measured while events are in short-term mem-
ory buffer), we acknowledge other types of relevancy could be formulated with heuristics
better suited to distinct environments. For instance, promising directions include leveraging
predictive coding principles to select "surprising events", or neural networks could be used
to learn the screening function C(i) in an end-to-end fashion.
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8. Appendix
8.1. Notational convention

In this paper, we use the notation df
dx

to denote the total derivative of f with respect to
x, and ∂f

∂x
to denote the partial derivative of f with respect to x.

If we assume f : Rn → Rm, and x ∈ Rn, then df
dx

denotes the Jacobian matrix Jf such
that

(Jf )ij = dfi
dxj

(8.1)

In particular, with this notation, we have that if a function L : Rm → R, and y ∈ Rm then
dL
dy

is a row vector, while the conventional notation for ∇yL indicates a column vector. In
other words, (∇yL)T = dL

dy
. Hence if L is a function of f(x), then

dL

dx
= dL

df
· df
dx

(8.2)

while

∇xL =
(
df

dx

)T
· ∇f(x)L = JTf · ∇f(x)L (8.3)

Similarly, we have that ∂L
∂y

is a row vector.

8.2. Preliminary results

Let

st = ψt(h1,h2, . . . ,ht,st−1) (8.4)

where

hi+1 = φ(V si + Uxi+1 + b) (8.5)

Lemma 2. For all t,k ≥ 0, we have

dst+k+1

dht
= ∂st+k+1

∂ht
+
 k∑
j=0

∂st+k+1

∂ht+j+1

dht+j+1

dht

+ ∂st+k+1

∂st+k

dst+k
dht

(8.6)

Proof. Follows directly from the following multivariable chain rule: if

g(t) = f(g1(t),g2(t), . . . ,gn(t)) (8.7)
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then
dg

dt
=

n∑
i=1

∂f

∂gi

dgi
dt

(8.8)

�

Lemma 3. If we further denote the Jacobian matrix Jk = ∂sk+1
∂hk

, then we get that for all
t,k ≥ 0, we have

dst+k+1

dht
= ∂st+k+1

∂ht
+

k∑
j=0

(
∂st+k+1

∂ht+j+1
· Jt+j + 1j=k ·

∂st+k+1

∂st+k

)
· dst+j
dht

(8.9)

Proof. Follows directly from the observation that
dht+j+1

dht
= ∂ht+j+1

∂st+j

dst+j
dht

= Jt+j ·
dst+j
dht

(8.10)

�

Remark 1. Let us denote

C
(t)
k+1 = dst+k+1

dht
(8.11)

E
(t)
k+1 = ∂st+k+1

∂ht
(8.12)

and

F
(t)
k+1,j = ∂st+k+1

∂ht+j+1
· Jt+j + 1j=k ·

∂st+k+1

∂st+k
(8.13)

and thus the recursion formula in Lemma 3 rewrites as

C
(t)
k+1 = E

(t)
k+1 +

k∑
j=0

F
(t)
k+1,j · C

(t)
j (8.14)

The next two results highlight how to solve this recursion.

Lemma 4. Let Ci,Ei, Fi,j ∈ Rn×n such that for all k ≥ 0, we have

Ck+1 = Ek+1 +
k∑
j=0

Fk+1,j · Cj (8.15)

Then for all k ≥ 1, we have

Ck = ξ0:kC0 +
k∑
r=1

ξr:kEr (8.16)
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where

ξr:k =
k−r∑
s=1

ξr:k(s) (8.17)

with

ξr:k(s) =
∑

r=i1<...<is+1=k
Fis+1,is · Fis−1,is−2 · . . . · Fi2,i1 (8.18)

and ξk:k = Id.

Proof. Let us prove the statement by induction on k ≥ 1.
For k = 1, we have

C1 = E1 + F1,0C0 = ξ1:1E1 + ξ0:1C0 (8.19)

Now let us assume the statement to be true for k, then we get

Ck+1 = Ek+1 +
k∑
j=0

Fk+1,j ·

ξ0:jC0 +
j∑
r=1

ξr:jEr

 (8.20)

= Ek+1 +
 k∑
j=0

Fk+1,j · ξ0:j

 · C0 +
k∑
j=0

j∑
r=1

Fk+1,jξr:jEr (8.21)

= Ek+1 + ξ0:k+1C0 +
k∑
r=1

 k∑
j=r

Fk+1,jξr:j

 · Er (8.22)

= ξk+1:k+1Ek+1 + ξ0:k+1C0 +
k∑
r=1

ξr:k+1Er (8.23)

= ξ0:k+1C0 +
k+1∑
r=1

ξr:k+1Er (8.24)

(8.25)

�

Lemma 5. If we further assume that C0 = E0, then we have for all k ≥ 1

Ck = Ek +
k∑
s=1

k∑
q=s

ξk−q:k(s)Ek−q (8.26)

Proof. Using the previous lemma, we get

Ck = Ek +
k∑

s′=1
ξ0:k(s′)C0 +

k−1∑
r=1

k−r∑
s=1

ξr:k(s)Er (8.27)
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Using the assumption C0 = E0, we get

Ck = Ek +
k∑

s′=1
ξ0:k(s′)E0 +

k−1∑
r=1

k−r∑
s=1

ξr:k(s)Er (8.28)

= Ek +
k−1∑
r=0

k−r∑
s=1

ξr:k(s)Er (8.29)

(8.30)

Now let us put q = k − r, we get

Ck = Ek +
k∑
q=1

q∑
s=1

ξk−q:k(s)Ek−q (8.31)

= Ek +
k∑
s=1

k∑
q=s

ξk−q:k(s)Ek−q (8.32)

(8.33)

�

Remark 2. First, note that Lemma 5 applies here, since C(t)
0 = E

(t)
0 , and thus

C
(t)
k = E

(t)
k +

k∑
s=1

k∑
q=s

ξ
(t)
k−q:k(s)E

(t)
k−q (8.34)

The idea of Lemma 5 was to regroup all terms with the same number of F factors (where each
F contains a Jacobian matrix Jk which contains the connectivity matrix V of the recurrent
net). One could roughly perceive the term

k∑
q=s

ξ
(t)
k−q:k(s)E

(t)
k−q (8.35)

as being the term of degree s for s = 1,2, . . . ,k and E(t)
k the term of degree 0. This will allow

us to consider the terms C roughly as a polynomial in V and we can look the asymptotic
behaviour of each of the coefficients of this polynomial individually. This will then give us
a very good understanding on how the distribution of the attention weights are affecting the
magnitude of total gradient.

Proposition 2. For all t ≥ 1, and all k ≥ 0, we have that

dst+k
dht

=
k∑
s=0

ξ̄
(t)
o:k(s) (8.36)

where for all s ≥ 1,

ξ̄
(t)
o:k(s) =

∑
0≤i1<...<is<k

F
(t)
k,is
· F (t)

is,is−1 · . . . · F
(t)
i2,i1 · E

(t)
i1 (8.37)
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and where ξ̄(t)
o:k(0) = E

(t)
k . With for all k ≥ 0 we have

E
(t)
k = ∂st+k

∂ht
(8.38)

and for all k ≥ j we have

F
(t)
k+1,j = ∂st+k+1

∂ht+j+1
· Jt+j + 1j=k ·

∂st+k+1

∂st+k
(8.39)

Proof. Let t ≥ 1, and recall that we defined C(t)
k = dst+k

dht
, for all k ≥ 0.

As already pointed out, we know that C(t)
0 = E

(t)
0 (thus the claim holds for k = 0).

Then by Lemma 5, we know that for all k ≥ 1 we have

C
(t)
k = E

(t)
k +

k∑
s=1

k∑
q=s

ξ
(t)
k−q:k(s)E

(t)
k−q (8.40)

= ξ̄
(t)
o:k(0) +

k∑
s=1

k∑
q=s

∑
k−q=i1<...<is+1=k

F
(t)
k,is
· F (t)

is,is−1 · . . . · F
(t)
i2,i1 · E

(t)
i1 (8.41)

= ξ̄
(t)
o:k(0) +

k∑
s=1

∑
0≤i1<...<is<k

F
(t)
k,is
· F (t)

is,is−1 · . . . · F
(t)
i2,i1 · E

(t)
i1 (8.42)

= ξ̄
(t)
o:k(0) +

k∑
s=1

ξ̄
(t)
o:k(s) (8.43)

=
k∑
s=0

ξ̄
(t)
o:k(s) (8.44)

�

Remark 3. In what follows the main emphasis will be to calculate the F (t)
i,j and E(t)

i terms
explicitly, since they are the building blocks of the mentioned polynomials in 2.

We will assume that

st = f(ht,ct) (8.45)

with

ct = α1,th1 + α2,th2 + . . .+ αt,tht (8.46)

and

αj,t = exp (ej,t)∑t
i=1 exp (ei,t)

(8.47)
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where

ei,t = a(st−1,hi) (8.48)

Let us recall that for all k ≥ 0 we have

E
(t)
k = ∂st+k

∂ht
(8.49)

and for all k ≥ j we have

F
(t)
k+1,j = ∂st+k+1

∂ht+j+1
· Jt+j + 1j=k ·

∂st+k+1

∂st+k
(8.50)

Lemma 6. With the assumption of Remark 3, we have that for all t ≥ 2

∂st
∂st−1

= ∂2f(ht,ct) ·
(

t∑
i=1

αi,tYi,t

)
(8.51)

where ∂2f is the the partial derivative of f with respect to the second variable, and where we
define

Yi,t = hi ·

 ∂ei,t
∂st−1

−
t∑

j=1
αj,t ·

∂ej,t
∂st−1

 (8.52)

Proof.
∂st
∂st−1

= ∂2f(ht,ct) ·
∂ct
∂st−1

(8.53)

= ∂2f(ht,ct) ·
[

t∑
i=1

hi ·
(
∂αi,t
∂st−1

)]
(8.54)

= ∂2f(ht,ct) ·
 t∑
i=1

hi ·

 t∑
j=1

∂αi,t
∂ej,t

· ∂ej,t
∂st−1

 (8.55)

= ∂2f(ht,ct) ·
 t∑
i=1

hi ·

 t∑
j=1

αi,t(1i=j − αj,t) ·
∂ej,t
∂st−1

 (8.56)

= ∂2f(ht,ct) ·
 t∑
i=1

αi,thi

 ∂ei,t
∂st−1

−
t∑

j=1
αj,t

∂ej,t
∂st−1

 (8.57)

= ∂2f(ht,ct) ·
(

t∑
i=1

αi,tYi,t

)
(8.58)

�

Lemma 7. With the assumption of Remark 3, we have that for all k ≥ j:
∂sk
∂hj

= 1k=j · ∂1f(hk,ck) + αj,k∂2f(hk,ck) · (I +Xj,k) (8.59)
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where ∂1f and ∂2f are the partial derivatives of f with respect to the first and second variable,
respectively, and where we define

Xj,k =
(
hj −

k∑
i=1

hiαi,k

)
· ∂ej,k
∂hj

(8.60)

Proof.
∂sk
∂hj

= 1k=j · ∂1f(hk,ck) ·
∂hk
∂hk

+ ∂2f(hk,ck) ·
∂ck
∂hj

(8.61)

= 1k=j · ∂1f(hk,ck) + ∂2f(hk,ck) ·
[
αj,k · I +

k∑
i=1

hi ·
∂αi,k
∂hj

]
(8.62)

= 1k=j · ∂1f(hk,ck) + ∂2f(hk,ck) ·
[
αj,k · I +

k∑
i=1

hi ·
∂αi,k
∂ej,k

∂ej,k
∂hj

]
(8.63)

= 1k=j · ∂1f(hk,ck) + ∂2f(hk,ck) ·
[
αj,k · I +

k∑
i=1

hi · αi,k(1i=j − αj,k)
∂ej,k
∂hj

]
(8.64)

= 1k=j · ∂1f(hk,ck) + ∂2f(hk,ck) ·
[
αj,k · I +

(
hjαj,k − αj,k

k∑
i=1

hi · αi,k
)
∂ej,k
∂hj

]
(8.65)

= 1k=j · ∂1f(hk,ck) + αj,k∂2f(hk,ck) ·
[
I +

(
hj −

k∑
i=1

hi · αi,k
)
∂ej,k
∂hj

]
(8.66)

= 1k=j · ∂1f(hk,ck) + αj,k∂2f(hk,ck) · (I +Xj,k) (8.67)

�

Corollary 6. With the assumption of Remark 3, and the notations of lemma 6 and 7, we
have for all k′ ≥ 0,

E
(t)
k′ = 1k′=0∂1f(ht,ct) + αt,t+k′∂2f(ht+k′ ,ct+k′) · [I +Xt,t+k′ ] (8.68)

and for all k ≥ j,

F
(t)
k+1,j = αt+j+1,t+k+1 · ∂2f(ht+k+1,ct+k+1) · [I +Xt+j+1,t+k+1] · Jt+j (8.69)

+ 1k=j ·
(
∂1f(ht+k+1,ct+k+1)Jt+j + ∂2f(ht+k+1,ct+k+1) ·

[
t+k+1∑
i=1

αi,t+k+1Yi,t+k+1

])
(8.70)

Proof. Applying lemma 7, we get that for all k ≥ 0,

E
(t)
k′ = ∂st+k′

∂ht
(8.71)

= 1k′=0 · ∂1f(ht,ct) + αt,t+k′ · ∂2f(ht+k′ ,ct+k′) · [I +Xt,t+k′ ] (8.72)

(8.73)
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and then by applying lemma 6 and 7, we get that for all k ≥ j,

F
(t)
k+1,j = ∂st+k+1

∂ht+j+1
· Jt+j + 1j=k ·

∂st+k+1

∂st+k
(8.74)

= [1k=j∂1f(ht+k+1,ct+k+1) (8.75)

+ αt+j+1,t+k+1∂2f(ht+k+1,ct+k+1) · (I +Xt+j+1,t+k+1)] · Jt+j (8.76)

+ 1k=j · ∂2f(ht+k+1,ct+k+1) ·
(
t+k+1∑
i=1

αi,t+k+1Yi,t+k+1

)
(8.77)

= αt+j+1,t+k+1 · ∂2f(ht+k+1,ct+k+1) · [I +Xt+j+1,t+k+1] · Jt+j (8.78)

+ 1k=j ·
(
∂1f(ht+j+1,ct+k+1)Jt+j + ∂2f(ht+k+1,ct+k+1) ·

[
t+k+1∑
i=1

αi,t+k+1Yi,t+k+1

])
(8.79)

�

Proposition 3. We can rewrite for all k′ ≥ 0 and all k ≥ j ≥ 0

E
(t)
k′ = αt,t+k′ · D̃(t)

k′,0 + 1k′=0R̃
(t)
0 (8.80)

F
(t)
k+1,j = αt+j+1,t+k+1 ·D(t)

k+1,j + 1k=j ·R(t)
k+1 (8.81)

where

D
(t)
k+1,j+1 = ∂2f(ht+k+1,ct+k+1) · [I +Xt+j+1,t+k+1] · Jt+j (8.82)

R
(t)
k+1 = ∂1f(ht+k+1, ct+k+1) · Jt+k + ∂2f(ht+k+1,ct+k+1) · [

t+k+1∑
i=1

αi,t+k+1Yi,t+k+1] (8.83)

D̃
(t)
k′ = ∂2f(ht+k′ ,ct+k′) · [I +Xt,t+k′ ] (8.84)

R̃
(t)
0 = ∂1f(ht,ct) (8.85)

while Xi,i′ and Yi,i′ are defined as in lemma 6 and 7.

Proof. Follows straight from Corollary 6. �

Remark 4. If we are further assuming that

st = f(ht,ct) = ht + ct (8.86)

then for all k ≥ 0, we have

E
(t)
k = 1k=0 · I + αt,t+k · [I +Xt,t+k] (8.87)
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and for all k ≥ j, we have

F
(t)
k+1,j = αt+j+1,t+k+1 · [I +Xt+j+1,t+k+1] · Jt+j + 1k=j ·

(
Jt+j +

[
t+k+1∑
i=1

αi,t+k+1Yi,t+k+1

])
(8.88)

Proof. This follows directly form corollary 6 and the observation that

∂1f(ht,ct) = ∂2f(ht,ct) = I (8.89)

�

Remark 5. If we are further assuming that

ej,t = a(st−1,hj) = vTa · tanh (Wast−1 + Uahj) (8.90)

as done in [5], we get that
∂ej,t
∂hj

= vTa · diag[1− tanh2 (Wast−1 + Uahj)] · Ua (8.91)

and
∂ej,t
∂st−1

= vTa · diag[1− tanh2 (Wast−1 + Uahj)] ·Wa (8.92)

which we can plug into the definitions of Xj,k and Yj,k to get explicit expressions for matrices
E

(t)
k′ and F (t)

k+1,j.
Lemma 8. If, with the assumptions Remark 3, we assume that for all i,t ≥ 1, we have
ei,t = a(st−1,hi, θ) depending on some parameter θ ∈ RN×M , then we have

dL

dθ
=
∑
j,t

αj,t ·
dL

dst
· ∂2f(ht,ct) · hj ·

[∑
i

(1i=j − αi,t) ·
∂ei,t
∂θ

]
(8.93)

Proof. If we denote θ(i,t) to be the parameter for ei,t, then we have
dL

dθ
=
∑
i,t

dL

dθ(i,t) (8.94)

=
∑
i,j,t

dL

dαj,t
· ∂αj,t
∂ei,t

· ∂ei,t
∂θ(i,t) (8.95)

=
∑
i,j,t

αj,t(1i=j − αi,t) ·
dL

dαj,t
· ∂ei,t
∂θ

(8.96)

where
dL

dαj,t
= dL

dst
· ∂st
∂ct
· ∂ct
∂αj,t

= dL

dst
· ∂2f(ht,ct) · hj (8.97)
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Hence
dL

dθ
=
∑
i,j,t

αj,t(1i=j − αi,t) ·
dL

dst
· ∂2f(ht,ct) · hj ·

∂ei,t
∂θ

(8.98)

=
∑
j,t

αj,t ·
dL

dst
· ∂2f(ht,ct) · hj ·

[∑
i

(1i=j − αi,t) ·
∂ei,t
∂θ

]
(8.99)

�

Lemma 9. Let us recall that for all t ≥ 0, we have

ht+1 = φ(V st + Uxt+1 + b︸ ︷︷ ︸
=at

) (8.100)

where φ is a non-linear activation function, V ∈ Rn×n, U ∈ Rn×m and b ∈ Rn. Then we
have that [

dL

dV
,
dL

dU
,
dL

db

]
=

T∑
t=1

[st−1,xt,1] · dL
dht
· diag(φ′(at)) (8.101)

Proof. Let us denote V (t), U (t), b(t) the matrices V,U,b of at−1 respectively, then[
dL

dV
,
dL

dU
,
dL

db

]
=
∑
t

[
dL

dV (t) ,
dL

dU (t) ,
dL

db(t)

]
(8.102)

=
∑
t

[st−1,xt,1] · dL

dat−1
(8.103)

=
∑
t

[st−1,xt,1] · dL
dht
· dht
dat−1

(8.104)

=
∑
t

[st−1,xt,1] · dL
dht
· diag(φ′(at−1)) (8.105)

�

Remark 6. Combining the fact that dL
dht

= dL
dsT

dsT
dht

, the results from propositions 2 and 3,
with lemma 9, we see that attention weights αi,t which are very close to 0, do not contribute
to the gradient and the learning of V,U and b.

Similarly, it follows directly from lemma 8, that attention weights αi,t which are very
close to 0, do not contribute to the gradient and the learning of any parameters θ of the
alignment function ei,t = a(st−1,hi,θ). In case we have an alignment function as in remark
5, these parameters are Wa, Ua and va.

If we have the case where one state hi is such that all attention weights αi,t ≈ 0 for
all t ≥ i, then we can see that hi does not contribute to the gradient and learning to any
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parameters be it parameters from the recurrence or the alignment function.

In practice we have observed that in the majority of tasks, most states hi fall in either of
two categories:

• αi,t is sufficiently bounded away from 0 for most t ≥ i, and thus contributes to
learning. This is what we call a "relevant state".
• αi,t ≈ 0 for almost all t ≥ i, and thus doesn’t contribute much to learning, and the
gradient can be approximated by assuming αi,t = 0 for all t ≥ i. This is what he call
a "non-relevant state".

This observation is what lead us to the intuition that we can approximate the gradient, by
decomposing it via proposition 2, into gradient paths involving only skip connections between
"relevant states".

8.3. Uniform attention case

Remark 7. In this subsection, we are going to assume:
• no non-linearity in the hidden-to-hidden connection: Jt = V for all t.
• all assumptions from Remark 3.
• uniform attention: αi,t = 1/t for all t ≥ 1.

8.3.1. Overview.
Remark 8. Recalling corollary 6, together the main proposition 2 form last section, we can
hope to simplify these expressions using the new assumptions from the previous remark 7.
Recalling expression from lemma 6 and 7:

Xj,t =
(
hj −

t∑
i=1

hiαi,t

)
· ∂ej,t
∂hj

(8.106)

=
(
hj −

1
t

t∑
i=1

hi

)
· ∂ej,t
∂hj

(8.107)
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Hence, for our calculations we are going to assume that
(
hj − 1

t

∑t
i=1 hi

)
≈ 0, and thus

Xj,t ≈ 0 for all 1 ≤ j ≤ t. Similarly,
t∑
i=1

αi,tYi,t =
t∑
i=1

αi,thi ·

 ∂ei,t
∂st−1

−
t∑

j=1
αj,t ·

∂ej,t
∂st−1

 (8.108)

= 1
t

t∑
i=1

hi ·

 ∂ei,t
∂st−1

−
t∑

j=1

1
t
· ∂ej,t
∂st−1

 (8.109)

= 1
t

t∑
i=1

hi ·
∂ei,t
∂st−1

− 1
t

t∑
j=1

(
1
t

t∑
i=1

hi

)
· ∂ej,t
∂st−1

(8.110)

= 1
t

t∑
i=1

hi ·
∂ei,t
∂st−1

− 1
t

t∑
i=1

1
t

t∑
j=1

hj

 · ∂ei,t
∂st−1

(8.111)

= 1
t

t∑
i=1

hi − 1
t

t∑
j=1

hj

 · ∂ei,t
∂st−1

(8.112)

≈ 0 (8.113)

Recalling the expression from corollary 6 and that f(ht,ct) = ht + ct by remark 3, and that
Jt = V for all t, this will give for all k′ ≥ 0

E
(t)
k′ =

( 1
t+ k′

+ 1k′=0

)
· I (8.114)

and for all k ≥ j, we get

F
(t)
k+1,j =

( 1
t+ k + 1 + 1k=j

)
· V (8.115)

Hence by recalling proposition 2, the main expression of interest becomes

dst+k
dht

=
k∑
s=0

ξ̄
(t)
0:k(s) =

k∑
s=0

V s · χ(t)
0:k(s) (8.116)

where

χ
(t)
0:k(s) =

∑
0≤i1<...<is<k

( 1
t+ k

+ 1k−is=1

)
·
( 1
t+ is

+ 1is−is−1=1

)
· . . . (8.117)

. . . ·
( 1
t+ i2

+ 1i2−i1=1

)
·
( 1
t+ i1

+ 1i1=0

)
(8.118)

Remark 9. The goal is thus to have a good estimation of the terms

χ
(t)
0:k(s) (8.119)

in order to then find an asymptotic estimation for

dst+k
dht

=
k∑
s=0

V s · χ(t)
0:k(s) (8.120)
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as k →∞. In order to do so, we will adopt the following strategy:

Step 1. Estimate the expression

ω
(t)
l:k(s) =

∑
l≤i1<...<is<k

1
t+ is

· 1
t+ is−1

· . . . · 1
t+ i2

· 1
t+ i1

(8.121)

for all s ≥ 1. This will be done in sub-subsection 8.3.2.

Step2. Estimate the expression

θ
(t)
l:k(s) =

∑
l≤i1<...<is<k

( 1
t+ is

+ 1is−is−1=1

)
·
(

1
t+ is−1

+ 1is−1−is−2=1

)
· . . . (8.122)

. . . ·
( 1
t+ i2

+ 1i2−i1=1

)
·
( 1
t+ i1

+ 1i1=0

)
(8.123)

for all s ≥ 1, because as we will see the expression θ
(t)
l:k(s) can be decomposed into ω(t)

l′:k′(s′)
expressions for s ≥ s′ ≥ 1. This will be done in sub-subsection 8.3.3.

Step 3. The final step will consist in putting the results from the two previous sub-subsections
together, and getting a final asymptotic estimate for dst+k

dht
as k →∞, by noting that

χ
(t)
0:k(s) = 1

t+ k
· θ(t)

0:k(s) + 1
t+ k − 1 · θ

(t)
0:k−1(s− 1) + . . . (8.124)

. . .+ 1
t+ k − s+ 1 · θ

(t)
0:k−s+1(1) + 1

t+ k − s
+ 1k=s (8.125)

This will be treated in sub-subsection 8.3.4.

8.3.2. Estimating ω.
Remark 10. In this sub-subsection we are going to estimate ω(t)

0:k(s), which is a sum of
products of s distinct factors. The idea will be to start from the expression(1

t
+ 1
t+ 1 + . . .+ 1

t+ k − 1

)s
(8.126)

and substract all products containing at least two identical factors, followed by a division by s!.

This approach will be similar in spirit to the inclusion-exclusion principle, with the only
difference that the desired term will not computed directly, but instead one first establishes a
recursive formula using ω(t)

0:k(s′) with s′ ≤ s.

79



Solving this recursive formula will enable us to express ω
(t)
0:k(s) only in terms of

(1
t
+ 1
t+1 +. . .+ 1

t+k−1). In fact, ω(t)
0:k(s) will be a polynomial of degree s in (1

t
+ 1
t+1 +. . .+ 1

t+k−1).

We adopt this approach, because we have a very good estimate for
1
t

+ 1
t+ 1 + . . .+ 1

t+ k − 1 (8.127)

Namely, we know that for all n, we have

1 + 1
2 + . . .+ 1

n− 1 + 1
n

= lnn+ γ + εn ≤ lnn+ 1 (8.128)

where γ > 1
2 is the Euler-Mascheroni constant and εn behaves asymptotically as 1

2n . In other
words,

1
t

+ 1
t+ 1 + . . .+ 1

t+ k − 1 = ln
(
t+ k − 1
t− 1

)
+ εt+k−1 − εt−1 (8.129)

= ln
[
t+ k − 1
t− 1 · exp (εt+k−1 − εt−1)

]
(8.130)

= ln βt−1,t+k−1 (8.131)

where βl,l′ = l′

l
· exp (εl′ − εl). In order to reinforce the intuition here, let us imagine that

T = t+ k, then

ln βt−1,t+k−1 ∼ lnT (8.132)

as T → ∞. Hence we should expect ω(t)
0:k(s) to behave asymptotically as a polynomial of

degree s in lnT .
Let us emphasize that we would like to express ω

(t)
0:k(s) with as much precision as

possible (i.e. not omitting the monomials in lnT of degree less than s), since we would like
to later on use this estimate in subsequent steps when summing multiple ω(t)

0:k(s) terms over s.

In order to further ease notation, we will simply write ω(s) for ω(t)
0:k(s), whenever there

is no ambiguity.

Finally, for this sub-subsection only we will use the following notation

Sl = 1
tl

+ 1
(t+ 1)l + . . .+ 1

(t+ k − 1)l (8.133)

for all l ≥ 1, and keeping in mind that Sl converges as k →∞, for all l ≥ 2.
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Remark 11. Let us now build a first intuition on how to apply an inclusion-exclusion-like
principle in order to calculate ω(s) for small s.

For s = 1:

ω(1) = S1 (8.134)

For s = 2:

ω(2) = 1
2!
(
S2

1 − S2
)

(8.135)

Here we expand S2
1 , then substract the sum of products of doubles S2, followed by a division

of 2! = 2 to divide out the number of permutations.

For s = 3: first we need to substract the sum of products of triples S3, and then the
sum products where exactly two factors are identical S2 · ω(1) − S3. The latter appears(

3
2,1

)
= 3!

2!1! = 3 times in the expansion of S3
1 . Similarly, we need to divide out the number of

permutations 3!. Hence

ω(3) = 1
3!
[
S3

1 − S3 − 3 · (S2 · ω(1)− S3)
]

= S3
1

3! −
1
2S2 · ω(1) + 1

3S3 (8.136)

Let us form now on denote (3) for the sum of products of triples, and (2,1) the sum of
products where exactly two factors are the same.

More generally we would denote

(j1,j2, . . . ,jk) (8.137)

with j1 ≥ j2 ≥ . . . ≥ jk ≥ 1, to denote the sum of products where one factor appears exactly j1

times, another factor (distinct from the previous one!) appears exactly j2 times, and another
factor (distinct from the previous two!) appears exactly j3 times, etc. This leaves us with
exactly k distinct factors each having multiplicity j1,j2, . . . ,jk respectively. This sum appears
with

(
s

j1,j2, . . . ,jk

)
= s!
j1! · j2! · . . . · jk!

(8.138)

repetitions in the expansion of Ss1, where s = j1 + j2 + . . .+ jk.

For s = 4: when expanding S4
1 , we need to take into account

• (4) = S4 with
(

4
4

)
= 4!

4! = 1 repetition.
• (3,1) = S3 · ω(1)− S4 with

(
4

3,1

)
= 4!

3!·1! = 4 repetitions.
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• (2,2) = S2
2 − S4 with

(
4

2,2

)
= 4!

2!·2! = 6 repetitions.
• (2,1,1) = S2 · ω(2) − (3,1) = S2 · ω(2) − S3 · ω(1) + S4 with

(
4

2,1,1

)
= 4!

2!·1!·1! = 12
repetitions.

Hence we get

ω(4) = 1
4! [S

4
1 − S4 − 4 · (S3 · ω(1)− S4)− 6 · (S2

2 − S4) (8.139)

− 12 · (S2 · ω(2)− S3 · ω(1) + S4)] (8.140)

= 1
4! [S

4
1 − 4 · S3 · ω(1) + 4 · S4 − 6 · S2

2 + 6 · S4 − 12 · S2ω(2) (8.141)

+ 12 · S3 · ω(1)− 12 · S4 − S4] (8.142)

= 1
4!
[
S4

1 − 12 · S2 · ω(2) + 8 · S3 · ω(1)− 3 · (S4 + S2
2)
]

(8.143)

= S4
1

4! −
S2

2 ω(2) + S3

3 ω(1)− (S4 + 2 · S2
2)

8 (8.144)

Notice how, as we progress with higher values of s, we build a recursive formula in ω(s′) with
s′ ≤ s.
Intuition. Note that the coefficient of ω(2) for s = 4, is the same as the coefficient for ω(1)
for s = 3, and is the same as the ’constant term’ for s = 2. Similarly, the coefficient of
ω(1) for s = 4 is the same as the ’constant term’ for s = 3. (By convention here, we don’t
consider the terms Ss1

s! to not be part of the ’constant term’.)
Hence, in the recursive formula for ω(s), we would expect the coefficient of ω(s′) with

s′ < s to be equal to the ’constant term’ in the formula for ω(s− s′).
Notation. For all s > l ≥ 0, let us denote δs,l to be the coefficient of the term ω(l) in the
recursive formula for ω(s). By convention, we denote δs,0 for the ’constant term’ in the
recursive formula for ω(s). Hence for all s ≥ 1, we have

ω(s) = Ss1
s! + δs,s−1 · ω(s− 1) + δs,s−2 · ω(s− 2) + . . .+ δs,1 · ω(1) + δs,0 (8.145)

Hypothesis. The hypothesis will thus rewrite as

δs,l = δs−l,0 (8.146)

for all s > l ≥ 0, which will prove by induction on s in the next lemma.

Lemma 10. Let s ≥ 1. Then

ω(s) = Ss1
s! + δ1,0 · ω(s− 1) + δ2,0 · ω(s− 2) + . . .+ δs−1,0 · ω(1) + δs,0 (8.147)
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Proof. Let us prove by induction on s that for all s > l ≥ 0, we have

δs,l = δs−l,0 (8.148)

. We already verified the cases s = 1,2,3,4 in the previous remark. Thus let us suppose the
induction hypothesis is true for s, and consider the mapping

Υ : (j1,j2, . . . ,jk) 7→ (j1,j2, . . . ,jk,1) (8.149)

where j1 ≥ j2 ≥ . . . ≥ jk ≥ 1 and s = j1 + j2 + . . . + jk, mapping a partition of s onto a
partition of s+ 1.

If we suppose that (j1,j2, . . . ,jk) consists of exactly r 1’s, then we can write

(j1,j2, . . . ,jk) = cr · ω(r) + cr−1 · ω(r − 1) + . . .+ c1 · ω(1) + c0 (8.150)

for some coefficients cr,cr−1, . . . ,c1,c0, and with(
s

j1,j2, . . . ,jk

)
= s!
j1! · j2 · . . . · jk!

(8.151)

repetitions in the expansion of Ss1.
The contribution of (j1,j2, . . . ,jk) to the coefficient δs,r′ of ω(r′) with r′ ≤ r < s, in the

final recursive formula of ω(s) will be
cr′

j1! · j2! · . . . · jk!
(8.152)

(keeping in mind that we are dividing by s! after having done all the substractions from Ss1).
Meanwhile,

(j1,j2, . . . ,jk,1) = cr · ω(r + 1) + cr−1 · ω(r) + . . .+ c1 · ω(2) + c0 · ω(1) + c̃0 (8.153)

for some coefficient c̃0, with (
s+ 1

j1,j2, . . . ,jk,1

)
= (s+ 1)!
j1! · j2 · . . . · jk!

(8.154)

repetitions in the expansion of Ss+1
1 .

The contribution of (j1,j2, . . . ,jk,1) to the coefficient δs+1,r′+1 of ω(r′+1) with r′ ≤ r < s,
in the final recursive formula of ω(s+ 1) will be

cr′

j1! · j2! · . . . · jk!
(8.155)

(keeping in mind that we are dividing by (s+1)! after having done all the substractions from
Ss+1

1 ).
Conversely, the coefficient δs+1,r′+1 only receives contributions from partitions of (s+ 1)

having at least (r′+1) 1’s, which correspond exactly to the contributions from the partitions
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of s having at least r′ 1’s. Hence

δs+1,r′+1 = δs,r′ (8.156)

Then by the induction hypothesis, we have δs,r′ = δs−r′,0. In other words

δs+1,r′+1 = δs−r′,0 (8.157)

which completes the proof by induction.
�

Remark 12. Note that all the coefficients δs,l consist of linear combination of products with
factors equal to Sj with j ≥ 2, which are known to converge as T → ∞. Thus those can be
considered constants when doing an asymptotic analysis in the subsequent sub-subsections.
Also note that δs,s−1 = δ1,0 = 0.

Proposition 4. For all s ≥ 1, we have

ω(s) =
s∑
r=0

ψs−r
Sr1
r! (8.158)

where for l ≥ 2

ψl =
l−1∑
k=1

∑
(j1,j2,...,jk)∈Ψl,k

δj1,0 · . . . · δjk,0 (8.159)

with

Ψl,k = {(j1,j2, . . . ,jk) with j1 ≥ . . . ≥ jk > 1 and j1 + . . .+ jk = l} (8.160)

and where we define ψ0 = 1 and ψ1 = 0.

84



Proof. For l ≥ 2, we have

ψl =
l−1∑
k=1

∑
(j1,j2,...,jk)∈Ψl,k

δj1,0 · . . . · δjk,0 (8.161)

= δl,0 +
l−1∑
k=1

l−2∑
j=2

∑
(j2,...,jk)∈Ψl−j,k−1

δj,0 · δj2,0 · . . . · δjk,0

 (8.162)

= δl,0 +
l−2∑
j=2

 l−j∑
k=1

∑
(j2,...,jk)∈Ψl−j,k−1

δj,0 · δj2,0 · . . . · δjk,0

 (8.163)

= δl,0 +
l−2∑
j=2

δj,0 ·

 l−j∑
k=1

∑
(j2,...,jk)∈Ψl−j,k−1

δj2,0 · . . . · δjk,0

 (8.164)

= δl,0 +
l−2∑
j=2

δj,0 · ψl−j (8.165)

=
l∑

j=1
δj,0 · ψl−j (8.166)

(8.167)

In other words, we have shown that for all l ≥ 2,

ψl =
l−1∑
j=0

δl−jψj (8.168)

Let us now prove the proposition by induction on s.
The case s = 1 is trivial by the definition of ψ0 and ψ1.
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Let us now assume the formula is true for s, and let us prove it for s+1. By the previous
lemma 4, we know that

ω(s+ 1) = Ss+1
1

(s+ 1)! +
s∑
l=1

δs+1−l,0 · ω(l) + δs+1,0 (8.169)

= Ss+1
1

(s+ 1)! +
s∑
l=1

δs+1−l,0 ·
(

l∑
r=0

ψl−r ·
Sr1
r!

)
+ δs+1,0 (8.170)

= Ss+1
1

(s+ 1)! +
s∑
l=1

l∑
r=0

δs+1−l,0 · ψl−r ·
Sr1
r! + δs+1,0 (8.171)

= Ss+1
1

(s+ 1)! +
s∑
l=0

l∑
r=0

δs+1−l,0 · ψl−r ·
Sr1
r! (8.172)

= Ss+1
1

(s+ 1)! +
s∑
r=0

s∑
l=r

δs+1−l,0 · ψl−r ·
Sr1
r! (8.173)

= Ss+1
1

(s+ 1)! +
s∑
r=0

s−r∑
l′=0

δs+1−r−l′,0 · ψl′ ·
Sr1
r! (8.174)

= Ss+1
1

(s+ 1)! +
s∑
r=0

ψs+1−r ·
Sr1
r! (8.175)

=
s+1∑
r=0

ψs+1−r ·
Sr1
r! (8.176)

completing the proof by induction. �

Remark 13. Hence we have shown that for all s ≥ 1

ω(s) =
s∑
r=0

ψs−r
Sr1
r! = Ss1

s! +
s−2∑
r=0

ψs−r
Sr1
r! (8.177)

or in other words

ω(s) = (ln βt−1,t+k−1)s
s! +

s−2∑
r=0

ψs−r
(ln βt−1,t+k−1)r

r! ∼ (lnT )s
s! +

s−2∑
r=0

ψs−r
(lnT )r
r! (8.178)

as t+ k = T →∞, which is roughly the polynomial in lnT of degree s we were anticipating.

8.3.3. Estimating θ.
Remark 14. Let us now recall the definition for all s ≥ 1,

θ
(t)
l:k(s) =

∑
l≤i1<...<is<k

( 1
t+ is

+ 1is−is−1=1

)
·
(

1
t+ is−1

+ 1is−1−is−2=1

)
· . . . (8.179)

. . . ·
( 1
t+ i2

+ 1i2−i1=1

)
·
( 1
t+ i1

+ 1i1=0

)
(8.180)

which we would like to estimate using ω(t)
l:k(s).

In order to build a first intuition, let us look at how it plays out for small values for s.
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Notation. In this subsection we omit the superscript (t) notation because there is no ambi-
guity. We will also occasionally do the abuse of notation and assume ωl:k(0) = 1 for all
l < k.

For s = 1, we get

θ0:k(1) = 1 + ω0:k(1) (8.181)

For s = 2, we get

θ0:k(2) = 1 + ω1:k(1) + ω0:k−1(1) + ω0:k(2) (8.182)

In what follows, we will use the following recursive formula quite frequently

θ0:k(s+ 1) = θ0:k−1(s) +
k−1∑
j=s

1
t+ j

θ0:j(s) (8.183)

Hence for s = 3, we get

θ0:k(3) = 1 + ω1:k−1(1) + ω0:k−2(1) + ω2:k(1) + ω0:k−1(2) (8.184)

+ ω1:k(2) +
k−1∑
j=2

ω0:j−1(1)
t+ j

+ ω0:k(3) (8.185)

Now let us further observe that for all s ≥ 1 and 0 ≤ r ≤ l, we have

ωl+r:k+r(s) ≤ ωl:k(s) ≤ ωl−r:k−r(s) (8.186)

This implies that

1 + 2 · ω1:k(1) + ω0:k(2) ≤ θ0:k(2) ≤ 1 + 2 · ω0:k−1(1) + ω0:k(2) (8.187)

and, similarly,

1 + 3 · ω2:k(1) + 3 · ω1:k(2) + ω0:k(3) ≤ θ0:k(3) ≤ 1 + 3 · ω0:k−2(1) + 3 · ω0:k−1(2) + ω0:k(3)
(8.188)

Hypothesis. We can thus see the binomial coefficients arising, and we would expect that in
general, we have

s∑
r=0

(
s

r

)
· ω0:k−s+r(r) ≥ θ0:k(s) ≥

s∑
r=0

(
s

r

)
· ωs−r:k(r) (8.189)

Lemma 11. For all k ≥ s ≥ 1, we have
s∑
r=0

(
s

r

)
· ω(t)

0:k−s+r(r) ≥ θ
(t)
0:k(s) ≥

s∑
r=0

(
s

r

)
· ω(t)

s−r:k(r) (8.190)

Proof. Let us prove this lemma by induction on s. The cases s = 1,2,3 have already been
treated in the previous remark.
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Let us now assume that the claim holds for s, and prove it for s + 1 using the recursive
formula

θ0:k(s+ 1) = θ0:k−1(s) +
k−1∑
j=s

1
t+ j

θ0:j(s) (8.191)

For the lower bound, using the induction hypothesis, we get

θ0:k(s+ 1) ≥
s∑
r=0

(
s

r

)
· ωs−r:k−1(r) +

k−1∑
j=s

1
t+ j

s∑
r=0

(
s

r

)
· ωs−r:j(r) (8.192)

=
s∑
r=0

(
s

r

)
· ωs−r:k−1(r) +

s∑
r=0

(
s

r

)
·
k−1∑
j=s

1
t+ j

· ωs−r:j(r) (8.193)

=
s∑
r=0

(
s

r

)
· ωs−r:k−1(r) +

s∑
r=0

(
s

r

)
· ωs−r:k(r + 1) (8.194)

=
s∑
r=0

(
s

r

)
· ωs−r:k−1(r) +

s+1∑
r=1

(
s

r − 1

)
· ωs−r+1:k(r) (8.195)

= 1 + ω0:k(s+ 1) +
s∑
r=1

[(
s

r

)
+
(

s

r − 1

)]
· ωs−r+1:k(r) (8.196)

= 1 + ω0:k(s+ 1) +
s∑
r=1

(
s+ 1
r

)
· ωs−r+1:k(r) (8.197)

=
s+1∑
r=0

(
s+ 1
r

)
· ωs−r+1:k(r) (8.198)

(8.199)
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For the upper bound, using the induction hypothesis, we get

θ0:k(s+ 1) ≤
s∑
r=0

(
s

r

)
· ω0:k−1−(s−r)(r) +

k−1∑
j=s

1
t+ j

s∑
r=0

(
s

r

)
· ω0:j−(s−r)(r) (8.200)

=
s∑
r=0

(
s

r

)
· ω0:k−1−(s−r)(r) +

s∑
r=0

(
s

r

)
·
k−1∑
j=s

1
t+ j

· ω0:j−(s−r)(r) (8.201)

≤
s∑
r=0

(
s

r

)
· ω0:k−1−(s−r)(r) +

s∑
r=0

(
s

r

)
·
k−1∑
j=s

1
t+ j − (s− r) · ω0:j−(s−r)(r) (8.202)

=
s∑
r=0

(
s

r

)
· ω0:k−1−(s−r)(r) +

s∑
r=0

(
s

r

)
·
k−1−(s−r)∑

j′=r

1
t+ j′

· ω0:j′(r) (8.203)

=
s∑
r=0

(
s

r

)
· ω0:k−1−(s−r)(r) +

s∑
r=0

(
s

r

)
· ω0:k−(s−r)(r + 1) (8.204)

=
s∑
r=0

(
s

r

)
· ω0:k−1−(s−r)(r) +

s+1∑
r=1

(
s

r − 1

)
· ω0:k−(s+1−r)(r) (8.205)

= 1 + ω0:k(s+ 1) +
s∑
r=1

[(
s

r

)
+
(

s

r − 1

)]
· ω0:k−(s+1−r)(r) (8.206)

= 1 + ω0:k(s+ 1) +
s∑
r=1

(
s+ 1
r

)
· ω0:k−(s+1−r)(r) (8.207)

=
s+1∑
r=0

(
s+ 1
r

)
· ω0:k−(s+1−r)(r) (8.208)

(8.209)

completing the proof by induction. �

Remark 15. Let us recall that

ωl:k(r) =
r∑
q=0

ψr−q
(ln βt+l−1,t+k−1)q

q! (8.210)

Thus the difference between the upper-bound and the lower-bound becomes
s∑
r=0

(
s

r

) [
ωo:k−(s−r)(r)− ωs−r:k(r)

]
=

s∑
r=0

(
s

r

)
·

 r∑
q=0

ψr−q
(ln βt−1,t+k−(s−r)−1)q − (ln βt+s−r−1,t+k−1)q

q!


(8.211)

which converges to zero as T = t+ k →∞.

8.3.4. Putting it all together.
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Remark 16. Now it is time to turn to χ(t)
0:k(s) and finally put it all together, so that we can

finally estimate

dst+k
dht

=
k∑
s=0

V s · χ(t)
0:k(s) (8.212)

and get the asymptotic estimate when T = t+ k →∞.
Let us recall that

χ
(t)
0:k(s) = 1

t+ k
· θ(t)

0:k(s) + 1
t+ k − 1 · θ

(t)
0:k−1(s− 1) + . . . (8.213)

. . .+ 1
t+ k − s+ 1 · θ

(t)
0:k−s+1(1) + 1

t+ k − s
+ 1k=s (8.214)

Using the abuse of notation θl:k(0) = 1 for l < k, we can rewrite it as follows

χ
(t)
0:k(s) = 1k=s +

s∑
i=0

1
t+ k − i

· θ0:k−i(s− i) (8.215)

The idea is to use the inequality from lemma 11, and get a similar result for χ(t)
0:k(s), then

show that the lower and upper bound are no more than Θ(1/T ) apart, thus enabling us to
eventually get an asymptotic estimate for dst+k

dht
.

We are also omitting the superscript (t) notation here because of lack of ambiguity.
Lemma 12. For all s ≥ 0 and k ≥ 1, we have

1k=s + 1
t+ k

·
s∑
r=0

(
s+ 1
r + 1

)
· ωs−r:k(r) ≤ χ0:k(s) ≤ 1k=s + 1

t+ k − s
·

s∑
r=0

(
s+ 1
r + 1

)
· ω0:k−(s−r)(r)

(8.216)

Proof. Using the upper-bound of lemma 11, we get

χ0:k(s) = 1k=s +
s∑
i=0

1
t+ k − i

· θ0:k−i(s− i) (8.217)

≤ 1k=s +
s∑
i=0

1
t+ k − i

·
s−i∑
r=0

(
s− i
r

)
· ω0:k−s+r(r) (8.218)

≤ 1k=s + 1
t+ k − s

·
s∑
i=0

s−i∑
r=0

(
s− i
r

)
· ω0:k−s+r(r) (8.219)

= 1k=s + 1
t+ k − s

·
s∑
r=0

[
s−r∑
i=0

(
s− i
r

)]
· ω0:k−s+r(r) (8.220)

= 1k=s + 1
t+ k − s

·
s∑
r=0

(
s+ 1
r + 1

)
· ω0:k−s+r(r) (8.221)
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Similarly, using the lower-bound of lemma 11, we get

χ0:k(s) = 1k=s +
s∑
i=0

1
t+ k − i

· θ0:k−i(s− i) (8.222)

≥ 1k=s +
s∑
i=0

1
t+ k − i

·
s−i∑
r=0

(
s− i
r

)
· ωs−r:k(r) (8.223)

≥ 1k=s + 1
t+ k

·
s∑
i=0

s−i∑
r=0

(
s− i
r

)
· ωs−r:k(r) (8.224)

= 1k=s + 1
t+ k

·
s∑
r=0

[
s−r∑
i=0

(
s− i
r

)]
· ωs−r:k(r) (8.225)

= 1k=s + 1
t+ k

·
s∑
r=0

(
s+ 1
r + 1

)
· ωs−r:k(r) (8.226)

�

Lemma 13. For all s ≥ 0, we have

χ0:k(s) = 1k=s + 1
t+ k

[
s∑
r=0

(
s+ 1
r + 1

)
· ωs−r:k(r)

]
+ Θ

( 1
t+ k

)
(8.227)

for all large enough k > 1, and where the implicit constants from the Θ(.) notation are
dependent on s.

Proof. Building on the previous lemma 12, and substracting the lower bound from the
upper bound, we get
s∑
r=0

(
s+ 1
r + 1

)
·
[
ω0:k−s+r(r)
t+ k − s

− ωs−r:k(r)
t+ k

]
=

s∑
r=0

r∑
q=0

(
s+ 1
r + 1

)
ψr−q
q! ·

[
(ln βt−1,t+k−s+r−1)q

t+ k − s
− (ln βt+s−r−1,t+k−1)q

t+ k

]
(8.228)

When assuming that for large k, we have

(ln βt−1,t+k−s+r−1)q ≈ (ln βt+s−r−1,t+k−1)q (8.229)

then
(ln βt−1,t+k−s+r−1)q

t+ k − s
− (ln βt+s−r−1,t+k−1)q

t+ k
≈ 1
t+ k

·
[

s

t+ k − s
· (ln βt−1,t+k−s+r−1)q

]
(8.230)

≤ 1
t+ k

·
[

s

t+ k − s
· (ln βt−1,t+k−s+r−1)s

]
(8.231)

≤ τs
t+ k

(8.232)

for some τs > 0 depending on s, for all sufficiently large k.
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In other words, we have
s∑
r=0

(
s+ 1
r + 1

)
·
[
ω0:k−s+r(r)
t+ k − s

− ωs−r:k(r)
t+ k

]
≤ τ̃s
t+ k

(8.233)

for for some τ̃s > 0 depending on s, for all sufficiently large k.
Meanwhile, for all large enough k, we have

s∑
r=0

(
s+ 1
r + 1

)
·
[
ω0:k−s+r(r)
t+ k − s

− ωs−r:k(r)
t+ k

]
≈ s

(t+ k)(t+ k − s) ·
s∑
r=0

r∑
q=0

(
s+ 1
r + 1

)
ψr−q
q! · (ln βt−1,t+k−s+r−1)q

(8.234)

≥ τ ′s
(t+ k)2 ·

s∑
r=0

r∑
q=0

(
s+ 1
r + 1

)
ψr−q
q! · (ln βt−1,t+k−s+r−1)q

(8.235)

≥ τ ′s
(t+ k)2 ·

s∑
r=0

r∑
q=0

ψr−q
q! · (ln βt−1,t+k−s+r−1)q

(8.236)

= τ ′s
(t+ k)2 ·

s∑
q=0

s−q∑
r′=0

ψr′

q! · (ln βt−1,t+k−s+r′+q−1)q

(8.237)

≈ τ ′s
(t+ k)2 ·

s∑
q=0

( s−q∑
r′=0

ψr′

)
· (ln (t+ k))q

q! (8.238)

≥ τ ′′s
(t+ k)2 ·

s∑
q=0

(ln (t+ k))q
q! (8.239)

≈ τ ′′s · exp [ln (t+ k)]
(t+ k)2 (8.240)

= τ ′′s
t+ k

(8.241)

for some τ ′s, τ ′′s > 0 depending on s. �

Proposition 5. If V is a normal matrix with eigenvalues λ1,λ2, . . . ,λn of modulus smaller
than 1, then

dsT
dht

= PΛTP
∗ (8.242)

where P ∗ is the conjugate transpose of the unitary matrix P (independent of T ) and where
ΛT is a diagonal matrix satisfying

(ΛT )ii ∼ T−1 · c+ T λi−1 · c′ (8.243)

for some positive real constants c,c′, as T →∞.
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Proof. Let V = PΛP ∗ be the Schur decomposition of V , with Λ = diag(λ1,λ2, . . . ,λn).
Note that since we supposed that V is normal, we thus have that the Schur matrix Λ is
indeed diagonal and is composed of the eigenvalues on the diagonal.

Based on lemma 13, one can show that there exists a function g : N→ R+
0 such that

χ0:k(s) = 1k=s + 1
t+ k

[
s∑
r=0

(
s+ 1
r + 1

)
· ωs−r:k(r) + g(s)

]
(8.244)

Thus
dst+k
dht

=
k∑
s=0

V s · χ0:k(s) (8.245)

= V k + 1
t+ k

[
k∑
s=0

g(s) · V s +
k∑
s=0

s∑
r=0

(
s+ 1
r + 1

)
· ωs−r:k(r) · V s

]
(8.246)

= V k + 1
t+ k

 k∑
s=0

g(s) · V s +
k∑
s=0

s∑
r=0

r∑
q=0

(
s+ 1
r + 1

)
· ψr−q

(ln βt+s−r−1,t+k−1)q
q! · V s


(8.247)

(8.248)

Since the eigenvalues of V are of modulus smaller than 1, we can assume that there exists
a constant d > 0 (dependent on the choice of eigenvalues of V ) such that for all k > d we
have V k ≈ 0.

93



Furthermore since V m = (PΛP ∗)m = PΛmP ∗ for all m ∈ N0, while keeping in mind that
we pick T = t+ k, we can write

ΛT = 1
T

 d∑
s=0

g(s) · Λs +
d∑
s=0

s∑
r=0

r∑
q=0

(
s+ 1
r + 1

)
· ψr−q

(ln βt+s−r−1,T−1)q
q! · Λs

 (8.249)

= 1
T

 d∑
s=0

g(s) · Λs +
d∑
s=0

s∑
q=0

s∑
r=q

(
s+ 1
r + 1

)
· ψr−q

(ln βt+s−r−1,T−1)q
q! · Λs

 (8.250)

= 1
T

 d∑
s=0

g(s) · Λs +
d∑
q=0

d∑
s=q

s∑
r=q

(
s+ 1
r + 1

)
· ψr−q

(ln βt+s−r−1,T−1)q
q! · Λs

 (8.251)

= 1
T

 d∑
s=0

g(s) · Λs +
d∑
q=0

d∑
s=q

s∑
r=q

(
s+ 1
r + 1

)
· ψr−q

(Λ · ln βt+s−r−1,T−1)q
q! · Λs−q

 (8.252)

= 1
T

 d∑
s=0

g(s) · Λs +
d∑
q=0

d−q∑
s′=0

s′∑
r′=0

(
s′ + q + 1
r′ + q + 1

)
· ψr′

(Λ · ln βt+s′−r′−1,T−1)q
q! · Λs′

 (8.253)

∼ 1
T

 d∑
s=0

g(s) · Λs +
d∑
q=0

d−q∑
s′=0

s′∑
r′=0

(
s′ + q + 1
r′ + q + 1

)
· ψr′

(Λ · lnT )q
q! · Λs′

 (8.254)

= 1
T

[
d∑
s=0

g(s) · Λs

]
+ 1
T

 d∑
q=0

(Λ · lnT )q
q! ·

d−q∑
s′=0

s′∑
r′=0

(
s′ + q + 1
r′ + q + 1

)
· ψr′ · Λs′

 (8.255)

≈ 1
T

[
d∑
s=0

g(s) · Λs

]
+ 1
T

exp (Λ · lnT ) · (c0 + c1 · Λ + . . .+ cd · Λd) (8.256)

∼ c

T
+ c′

T
exp (Λ · lnT ) (8.257)

for some positive constants c′,c,c0,c1, . . . ,cd.
Hence

(ΛT )ii ∼ c · T−1 + c′ · T λi−1 (8.258)

�

Theorem 6. If V is a normal matrix with eigenvalues of modulus smaller than 1, then

‖dsT
dht
‖ = Ω(1/T ) (8.259)

as T →∞. (here ‖.‖ is the Frobenius norm.)

Proof. Let us start off with the observation that

T−1 · c+ T λi−1 · c′ = Ω
(
T−min (1,1−Re(λi))

)
(8.260)
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as T →∞. And thus, by using proposition 5, we get

‖dsT
dht
‖ = Ω(T−η) (8.261)

where

η = min
i=1,...,n

{min (1,1−Re(λi))} ≤ 1 (8.262)

�

Remark 17. Note that V being normal is not a necessary condition for the generality of
the theorem to hold. We simply chose V to be normal in order to make the calculations less
cumbersome.

In case V is non-normal, its Schur matrix Λ becomes triangular instead of diagonal. In
fact, if ti,j are the off-diagonal elements of Schur matrix of V (with i < j), then

‖V ‖ =
√
Tr(V ∗V ) =

√
Tr(Λ∗Λ) =

√√√√ n∑
i=1
|λi|2 +

∑
i<j

|ti,j|2 ≥

√√√√ n∑
i=1
|λi|2 (8.263)

Thus every lower bound on
√∑n

i=1 |λi|2 induces a lower bound on ‖V ‖, and in particular an
asymptotic lower bound on the modulus of one of the eigenvalues of dsT

dht
induces an asymptotic

lower bound on ‖dsT
dht
‖.

8.4. Sparse relevance case with bounded dependency depth

Remark 18. Similarly to remark 7, we are going to assume for this subsection:
• no non-linearity in the hidden-to-hidden connection: Jt = V for all t.
• all assumptions from Remark 3.
• κ-sparse attention: for each t ≥ 1, there are at most κ ≤ t values for i such that
αi,t 6= 0. (Let us define κt = |{i such that αi,t 6= 0}|)
• uniform attention across attended states: for all t ≥ 1, and all i ≤ t such that
αi,t 6= 0, we have αi,t = 1/κt ≥ 1/κ.

Remark 19. Similarly to remark 8, let us recall that

Xi,t =
hi − t∑

j=1
αj,thj

 · ∂ei,t
∂hi

(8.264)

and that
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t∑
i=1

αi,tYi,t =
t∑
i=1

αi,t · hi ·

 ∂ei,t
∂st−1

−
t∑

j=1
αj,t ·

∂ej,t
∂st−1

 (8.265)

=
t∑
i=1

αi,t · hi ·
∂ei,t
∂st−1

−
t∑
i=1

αi,t

 t∑
j=1

αj,t · hj

 · ∂ei,t
∂st−1

(8.266)

=
t∑
i=1

αi,t ·

hi − t∑
j=1

αj,thj

 · ∂ei,t
∂st−1

(8.267)

Thus we can see that both expressions have the common factor
(
hi −

∑t
j=1 αj,thj

)
.

By defining

At = {i such that αi,t 6= 0} (8.268)

we see that

hi −
t∑

j=1
αj,thj = hi −

1
κt

∑
j∈At

hj (8.269)

and we are going to assume for the sake of simplicity that

hi ≈
1
κt

∑
j∈At

hj (8.270)

and thus Xi,t ≈ 0 and ∑t
i=1 αi,tYi,t ≈ 0.

Recalling the expression from corollary 6 and that f(ht,ct) = ht + ct by remark 3, and
that Jt = V for all t, this will give for all k′ ≥ 0

E
(t)
k′ =

(1t∈At+k′
κt+k′

+ 1k′=0

)
· I (8.271)

and for all k ≥ j, we get

F
(t)
k+1,j =

(
1t+j+1∈At+k+1

κt+k+1
+ 1k=j

)
· V (8.272)

Hence by recalling proposition 2, the main expression of interest becomes

dst+k
dht

=
k∑
s=0

ξ̄
(t)
0:k(s) =

k∑
s=0

V s · χ(t)
0:k(s) (8.273)

where

χ
(t)
0:k(s) =

∑
0≤i1<...<is<k

(
1t+is+1∈At+k

κt+k
+ 1k−is=1

)
·
(

1t+is−1+1∈At+is
κt+is

+ 1is−is−1=1

)
· (8.274)

. . . ·
(1t+i1+1∈At+i2

κt+i2
+ 1i2−i1=1

)
·
(1t∈At+i1

κt+i1
+ 1i1=0

)
(8.275)
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Remark 20. Let us now have a look at how we could potentially simplify the analysis of
χ

(t)
0:k(s).
If we further assume V to be normal we can write

V = PΛP ∗ (8.276)

where Λ = diag(λ1,λ2, . . . , λn) is the diagonal matrix consisting of the eigenvalues of V , and
P ∗ is the conjugate transpose of P .

Hence, we can rewrite

dst+k
dht

=
k∑
s=0

V s · χ(t)
0:k(s) = P ·

(
k∑
s=0

Λs · χ(t)
0:k(s)

)
· P ∗ (8.277)

We can therefore see that the asymptotic behaviour of dst+k
dht

depends largely on the asymp-
totic behaviour of the modulus of the complex-valued polynomial

p0:k(λ) =
k∑
s=0

λs · χ(t)
0:k(s) (8.278)

and thus

‖dst+k
dht
‖ =

√√√√ n∑
i=1
|p0:k(λi)|2 (8.279)

where ‖.‖ is the Frobenius norm. Hence in order to prove that

‖dst+k
dht
‖ = Ω(1/κd) (8.280)

for all large enough k (note that k and κ here are two different symbols), it would suffice to
show that there exists λ ∈ {λ1, . . . ,λn} such that, for all large enough k, we have

|p0:k(λ)| = Ω(1/κd) (8.281)

For simplicity we are going to assume that for all t, we have κt = κ.
Let us further define for all s ≥ 1,

f
(s)
0:k(i1, . . . ,is) =

(
1t+is+1∈At+k

κt+k
+ 1k−is=1

)
·
(

1t+is−1+1∈At+is
κt+is

+ 1is−is−1=1

)
· . . . (8.282)

. . . ·
(1t+i1+1∈At+i2

κt+i2
+ 1i2−i1=1

)
·
(1t∈At+i1

κt+i1
+ 1i1=0

)
(8.283)

97



whenever (i1, . . . ,in) satisfies 0 ≤ i1 < i2 < . . . < is < k, and

f
(s)
0:k(i1, . . . ,is) = 0 (8.284)

otherwise.

Theorem 7. Given the κ-sparsity assumption and the dependency depth d, we have that if
V is normal and has one positive real eigenvalue, then

‖dst+k
dht
‖ = Ω(1/κd) (8.285)

for all large enough k.

Proof. By the hypothesis on the dependency depth d, we know that for each k, there exists
s′ ≤ d and (i1,i2, . . . ,is′) such that

f
(s′)
0:k (i1, . . . ,is′) ≥

(1
κ

)s′+1
≥
(1
κ

)d+1
(8.286)

Hence if λ is real and positive, then for all large enough k, we have

|p0:k(λ)| = Ω(1/κd) (8.287)

Let us recall that, since V is normal we can write

‖dst+k
dht
‖ =

√√√√ n∑
i=1
|p0:k(λi)|2 (8.288)

where λ1, . . . ,λn are the eigenvalues of V .
Hence, if V has at least one positive real eigenvalue then

‖dst+k
dht
‖ = Ω(1/κd) (8.289)

for all large enough k. �

Remark 21. As already mentioned, since κ and d are assumed to be constant, the theorem
states that

‖dst+k
dht
‖ = Ω(1) (8.290)

The dependence on κ and d was simply given in order to get an intuition on how κ and d
are influencing the lower bound, and that d has more leverage on the lower bound than κ.

Regarding the normality of V , the same remark can be made as in remark 17.
Then note that if V is a (real) n × n matrix, with n odd, then we have at least one real

eigenvalue. Thus the restriction of having at least one positive real eigenvalue is not that
severe.
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Further, one can show that the theorem holds in a slightly more general setting where one
might not have at least one positive real eigenvalue.

Let us consider the case where κ = 1, |λ| < 1 such that we could consider λc ≈ 0 for
some large enough positive integer c, and that all states between T and T−c have dependency
depth of exactly d (where T = t+ k), then

p0:k(λ) = λd

κd
· (1 + λ+ . . .+ λc−d) = λd

κd
·
(

1− λc−d+1

1− λ

)
(8.291)

Hence we can see that if we can show that
∣∣∣1−λc−d+1

1−λ

∣∣∣ is lower bounded asymptotically by
a constant, independent of d and κ, (which it is in this case), then we have

|p0:k(λ)| = Ω(1/κd) (8.292)

We also see that we would like λ to be sufficiently bounded away from a small set of critical
values such as the (c− d)-th roots of unity.

In a more general setting, we can rewrite

p0:k(λ) = λd

κd
· q0:k(λ) (8.293)

for some polynomial q0:k with positive real coefficients, and we would like λ to be such that
|q0:k(λ)| = Ω(1) for all sufficiently large k.

Our hypothesis is that the theorem holds as long as λ is sufficiently bounded away from
a small set of critical values in C \ R+, or in other words, we would need only at least one
eigenvalue to satisfy this condition. This set of critical values is a dependent on κ, d and the
overall configuration of the attention weights.

8.5. Tradeoff analysis between sparsity and gradient propagation

As already discussed in Section 4, the sparsity coefficient κ verifies κ = ν+ρ ≥ |St|+ |Rt|
for all time step t, where we denote ν for the size of the short-term buffer, and ρ for the
maximal size of the relevant sets Rt. In this section we would like to see how gradient prop-
agation varies when changing sparsity. As already discussed at the end of Section 3 as well
as at the end of Section 4, decreasing κ, would increasingly force gradients to backpropagate
through the recurrent connections, thus degrading gradient stability. Meanwhile, increasing
κ would increase the size of the computational graph. Thus we would like to find the optimal
trade-off between sparsity and gradient propagation. This trade-off is clearly task-specific
and needs to be determined experimentally. The only way to do so is by either changing ν
or changing ρ (or both). Hence we are going to analyze the effects on gradient propagation
by separately changing ν and ρ.

99



Fig. 14. Both sides show gradient norm plots of ‖∇htL‖ in log scale after training for
Denoise Task with t ranging from 0 (latest time step) to 1000 (furthest time step). (Left)
We took four MemLSTM models for ρ = 3,8,18,25 while keeping ν = 15 fixed. (Right) We
took four MemLSTM models for ν = 3,8,18,25 while keeping ρ = 15 fixed. (Note that the
y-axis of the two plots have different scales, as indicated in the plots.)

T LSTM orth-RNN expRNN MemRNN SAB RelRNN RelLSTM
100 100% 100% 100% 100% 100% 100% 100%
200 100% 100% 100% 100% 100% 100% 100%
300 100% 100% 100% 100% 100% 100% 100%
500 12% 100% 100% 100% 100% 100% 100%
1000 12% 80% 100% 100% 100% 100% 100%
2000 12% 11% 100% OOM 100% 100% 100%

Table 8. Results for Copy Task

For Figure 14 (left), we can see that when choosing ρ too small (here for instance ρ = 3),
gradient propagation becomes unstable, while larger values for ρ all show stable gradient
propagation. This confirms our initial intuition that we can decrease ρ until a task-specific
treshold and maintain stable gradient propagation, while decreasing ρ beyond this treshold
would cause gradient propagation to become unstable.

For Figure 14 (right), we can see that changing ν has much less leverage on gradient
propagation than changing ρ. Gradient propagation stays relatively stable regardless of
the values for ν. The only difference is that for the extreme value of ν = 3, we can see
that gradient propagation became slightly less stable, because with smaller ν predictions for
future relevancy might become less accurate.

8.6. Additional Results
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Fig. 15. Cross-entropy vs training updates for Copy (top) and Denoise (bottom) tasks for
T = {100, 200, 300, 500, 1000, 2000}. 1 unit of the x-axis is equal to 100 iterations of training
with the exception of expRNN where 1 unit on the x-axis is 10 iterations of training.

Model lr optimizer non-linearity ν ρ

orthRNN 0.0002 RMSprop modrelu - -
expRNN 0.0002 RMSprop modrelu - -
LSTM 0.0002 Adam - - -
RelRNN 0.0002 Adam tanh 10 10
Table 9. Hyperparameters used for Copy task

Model lr optimizer non-linearity ν ρ

orthRNN 0.0002 RMSprop modrelu - -
expRNN 0.0002 RMSprop modrelu - -
LSTM 0.0002 Adam - - -
GORU 0.001 RMSprop - - -
RelRNN 0.0002 RMSprop modrelu 10 10
Table 10. Hyperparameters used for Denoise task

Model lr (lr orth) optimizer non-linearity ν ρ

orthRNN 0.0001 Adam modrelu - -
expRNN 0.0001(0.00001) Adam modrelu - -
LSTM 0.0002 - - -
GORU - -
RelRNN 0.0003 Adam modrelu 10 10
Table 11. Hyperparameters used for sequential MNIST
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Fig. 16. Training curves for LSTM on Denoise task

Fig. 17. Training curves for GORU on Denoise task

Model lr (lr orth) optimizer non-linearity ν ρ

orthRNN 0.001 Adam tanh - -
expRNN 0.003(0.0003) Adam tanh - -
LSTM 0.0002 - - -
GORU - -
RelRNN 0.0003 Adam tanh 10 5

Table 12. Hyperparameters used for PTB
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Concluding Remarks

In the two articles presented in this thesis we have gained a better understanding of gradient
propagation in parametric and semi-parametric, self-attentive RNNs. More precisely, we
looked into the components of the gradient that leads to EVGP and prevents the RNN from
learning long term dependencies. The first article presented is specific to LSTMs and the
proposed algorithm showed significant improvements in its ability to learn tasks of longer
sequences and in terms of generalization of the solution learned. The second article presented
an algorithm that allows scaling of recurrence and self-attention to larger sequences while, the
theorems derived ensure good gradient propagation for the proposed screening mechanism
to learn any given task while mitigating EVGP.

The problem of learning long term dependencies in RNN is a difficult one and is yet to be
solved. Most proposed solutions only mitigate this problem or solve it for only a particular
subset of tasks. Since humans can effortlessly make associations with events across several
timescales short and long, solving this problem is an essential step towards reaching the level
of human intelligence.

Some of my future work will include testing h-detach on other RNN models like GRUs or
self-attentive models. One interesting way to validate the hypothesis presented in the paper
would be to explicitly change the backward pass of the algorithm to prevent the suppression
of gradients through the cell state. This experiment although not trivial to implement would
confirm our hypothesis. Regularizing the recurrent weight matrix norm is also another easy
way to to enforce this.

In the second article a possible line of future work is looking into different ways of defining
the relevancy screening function in RelLSTM. One could also think of having an additional
neural network module that learns to screen for the relevant states. The two articles give
rise to several promising directions of future research that could help us take further steps
towards solving this problem of long term dependencies in recurrent networks.
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