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Sommaire

Le problème “d’apprentissage continu” implique l’entraînement des modèles profonds avec
une capacité limitée qui doivent bien fonctionner sur un nombre inconnu de tâches arrivant
séquentiellement. Cette configuration peut souvent résulter en un système d’apprentissage
qui souffre de “l’oublie catastrophique”, lorsque l’apprentissage d’une nouvelle tâche provoque
des interférences sur la progression de l’apprentissage des anciennes tâches. Les travaux
récents ont montré que les techniques de “méta-apprentissage” ont le potentiel de ré-
duire les interférences entre les anciennes et les nouvelles tâches. Cependant, les procé-
dures d’entraînement ont présentement une tendance à être lente ou hors ligne et sensibles
à de nombreux hyperparamètres. Dans ce travail, nous proposons “Look-ahead MAML
(La-MAML)”, un algorithme de méta-apprentissage rapide basé sur l’optimisation pour
l’apprentissage continu en ligne et aidé par une petite mémoire épisodique. Ceci est réalisé en
utilisant l’équivalence d’un objectif MAML en plusieurs étapes et un objectif d’apprentissage
continu “temps conscient”. L’équivalence résulte au développement d’un algorithme intuitif
que nous appelons Continual-MAML (C-MAML), utilisant un méta-apprentissage continu
pour optimiser un modèle afin qu’il fonctionne bien sur une série de distributions de don-
nées changeantes. En intégrant la modulation des taux d’apprentissage par paramètre dans
La-MAML, notre approche fournit un moyen plus flexible et efficace d’atténuer l’oubli catas-
trophique par rapport aux méthodes classiques basées sur les prieurs. Cette modulation a
également des liens avec des travaux sur la métadescendance, que nous identifions comme
une direction importante de la recherche pour développer de meilleurs optimiser pour un ap-
prentissage continu. Dans des expériences menées sur des repères de classification visuelle du
monde réel, La-MAML atteint des performances supérieures aux autres approches basées sur
la relecture, basées sur les prieurs et basées sur le méta-apprentissage pour un apprentissage
continu. Nous démontrons également qu’elle est robuste et plus évolutive que de nombreuses
approches de pointe.

Mots clés: apprentissage tout au long de la vie, e-learning, méta-apprentissage, modu-
lation du taux d’apprentissage

iii



Summary

The continual learning problem involves training models with limited capacity to perform
well on a set of an unknown number of sequentially arriving tasks. This setup can of-
ten see a learning system undergo catastrophic forgetting, when learning a newly seen task
causes interference on the learning progress of old tasks. While recent work has shown that
meta-learning has the potential to reduce interference between old and new tasks, the current
training procedures tend to be either slow or offline, and sensitive to many hyper-parameters.
In this work, we propose Look-ahead MAML (La-MAML), a fast optimisation-based meta-
learning algorithm for online-continual learning, aided by a small episodic memory. This is
achieved by realising the equivalence of a multi-step MAML objective to a time-aware con-
tinual learning objective adopted in prior work. The equivalence leads to the formulation of
an intuitive algorithm that we call Continual-MAML (C-MAML), employing continual meta-
learning to optimise a model to perform well across a series of changing data distributions.
By additionally incorporating the modulation of per-parameter learning rates in La-MAML,
our approach provides a more flexible and efficient way to mitigate catastrophic forgetting
compared to conventional prior-based methods. This modulation also has connections to
prior work on meta-descent, which we identify as an important direction of research to de-
velop better optimizers for continual learning. In experiments conducted on real-world visual
classification benchmarks, La-MAML achieves performance superior to other replay-based,
prior-based and meta-learning based approaches for continual learning. We also demonstrate
that it is robust, and more scalable than many recent state-of-the-art approaches.

Keywords: Continual Learning, Online Learning, Meta-Learning, Learning Rate Mod-
ulation
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Chapter 1

Introduction

Deep Learning (DL) has stood the test of time as a machine learning solution to reasoning
problems for which massive data and compute can be harnessed. While we have witnessed the
great success of learning-based systems for tasks like recognition and translation, significant
engineering effort goes into the deployment and maintenance of deep models that underlie
these systems. This is partially due to the fact that there is a dissonance between the settings
in which models are trained and the settings in which they are deployed. While models are
trained on independent and identically distributed (i.i.d) data by repeatedly shuffling the
training samples of a stationary dataset, a deployed system often sees data arriving in a
highly temporally correlated fashion. The conditions required by stochastic gradient descent
(SGD) are thus violated in the real-world.

As an example, consider the case of an image tagging system interacting with a user to
recommend tags for recurring people in the images of an album. The user provides sparse
supervision to the system by tagging some people in the initial images. It is expected that
the system should quickly adapt and suggest correct tags for these people if they are present
in later photos. However, it is also implied that in this process of adaptation, it should
not degrade its tagging performance on other people who might also have been present in
some previous albums and for whom this system was already accurate before adaptation.
In other words, intelligent agents must possess the ability to incorporate new concepts on-
the-go from data that naturally arrives sequentially in the real world. While fast adaptation
is desired, we are usually interested in adaptation that retains useful priors and knowledge
learned in the past. This process is referred to as Continual Learning (CL) [34], and is
essential for a learning system to accumulate knowledge and skills over time. Examples of
settings where this style of learning is essential include recommender systems that need to
continually adapt to user browsing patterns, perception models that need to recognise an
open-set of entities in the real-world, home robots that need to learn an ever-increasing set
of behaviours and maneuvers and so on. This applies to most systems deployed and acting



online in a non-stationary environment. In this way, continual learning also brings us a step
closer to correctly addressing the problems of embodied or situated learning agents when
they are deployed in the world.

For an online system to get better over time, it needs to keep updating its model using
data seen at every time-step. At present, gradient-based learning algorithms are not so-
phisticated enough to do this over long time-periods because they experience Catastrophic
Forgetting [13, 29], one of the biggest challenges in this setup. It can be described as the
phenomenon where a model undergoes many correlated gradient updates on an incoming
stream of data, in the process undoing its learning progress on previously seen data. This
degradation is due to the fact that gradient directions on old and new data can clash, i.e.,
there is gradient interference between samples learned at different points in time. In the case
of infinite storage, this might not be a problem since we could store all the data that arrives
and interleave it with any incoming data at a later time for re-training. Since this might
not be a realistic provision, we are interested to develop solutions that can keep learning in
real-time with limited compute and storage. This saves us from having to re-train models
from scratch every time more data comes in, which is often desirable in many real-world
applications for any of the following reasons:

(1) The data seen over the course of deployment of a system may be too large to make
available in one location on a central server for retraining at any intermediate time.

(2) Re-training is both storage and compute-intensive, while it takes a negligible amount
of compute to process data on-the-fly. On edge-devices, even if we could store most of
the data seen by an agent on a remote server, there is still the issue of low bandwidth
of communication being the limiting factor when the agent tries to request old data.

(3) The application in question may require low latency and/or quick adaptation on the
part of the learning system, such that learnt knowledge is expected to be demon-
strated in the immediate future and so there is no time to re-train. Additionally,
there will always be incoming data in online scenarios and we want to make the most
of it to stay up to date in this non-stationary world (as opposed to ignoring it and
waiting for batch training).

(4) In the scenario of the data being of a user-sensitive nature, it might be undesirable to
pool all user-data on a central server to retrain the model due to privacy concerns. It
would be ideal if we could train a common base model from a large common dataset
once and then deploy it on user devices, where it could continually learn and adapt
to the user’s changing behaviours while keeping the data on-device: for example as
is attempted in the domain of federated learning. This way it benefits from the prior
knowledge embedded in a large database, and still gets customised to user preferences
without sacrificing privacy.

3



The problem of continual learning has received considerable attention over the past two
decades with efforts focusing on reducing dependence on previously seen data due to storage
and privacy concerns [19, 37, 26, 10, 49]. Algorithms for continual learning must also
use their limited model capacity efficiently since the number of future tasks is unknown.
Ensuring gradient-alignment across tasks is therefore essential to make shared progress on
their objectives. In this work we look at continual learning through the lens of
optimisation, building on the insight that meta-learning algorithms can incen-
tivise gradient alignment across task-wise objectives [38]. Besides aligning gradients,
meta-learning algorithms show promise for continual learning since they can directly influ-
ence model optimisation to achieve auxiliary objectives like generalisation or transfer. This
avoids having to define heuristic incentives like sparsity [23] to combat catastrophic inter-
ference. The downside is that they can be slow and hard to tune, effectively rendering them
more suitable for offline continual learning [16, 38]. In this work, we overcome these diffi-
culties and develop a gradient-based meta-learning algorithm for efficient, online continual
learning. We summarise our contributions as follows1:

(1) We propose a base algorithm for continual meta-learning referred to as Continual-
MAML (C-MAML) that utilizes a replay-buffer and optimizes a meta-objective that
mitigates forgetting. This objective allows us to integrate continual and meta-learning
into the same loop, as part of a standard meta-learning procedure.

(2) We enhance the capabilities of C-MAML by incorporating a mechanism for the mod-
ulation of per-parameter learning rates (LRs) to pace the learning of a model across
tasks and time. We refer to this as Look-ahead-MAML (La-MAML).

(3) We draw connections to literature on learning rate modulation through meta-descent
and explain how it can be exploited to build more robust algorithms for online learn-
ing.

(4) Finally, we show that the algorithm is scalable, robust and achieves favourable per-
formance on several benchmarks of varying complexity.

We start by describing the problem formulation, notation background concepts, in Chap-
ter 2. We also outline common setups adopted by prior work in Continual Learning and give
a detailed overview of prior work in this domain. In Chapter 3, we describe our proposed
objective and related derivations, and the proposed algorithms. In Chapter 4, the evaluation
setup, experiments and quantitative results are described. This is followed by a qualitative

1This work was submitted under the title La-MAML: Look-Ahead Meta-Learning for Continual Learning to
the Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS 2020) and is currently
under review. Chapters 2, 3 and 4 largely overlap with the submitted work and have been augmented
with explanations of background concepts and a more extensive literature review. The authors of the
submitted paper are Gunshi Gupta, Karmesh Yadav and Prof. Liam Paull. Gunshi Gupta carried out the
literature survey, problem formulation and algorithm development and equally participated in the tasks of
implementation, experimentation, tuning, experimental setup and paper-writing for this work.

4



analysis of the robustness and scalability of the proposed algorithm. Finally, Chapter 5 con-
cludes with a discussion on the future scope of this work, and some interesting directions to
explore to get closer to building scalable and efficient algorithms for continual learning.
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Chapter 2

Background

We start by formalising the problem definition for continual learning that we adopt in this
work in Section 2.1. We also establish notation and review background concepts related
to meta-learning that are essential in order to arrive at our proposed algorithm. We then
describe the commonly used categorisations used to identify different setups in continual
learning in Section 2.2. Finally, we provide an overview of related work in Section 2.3.

2.1. Preliminaries
We consider a setting where a sequence of T tasks [τ1, τ2, ..τT ] is learnt by observing their

training data [D1, D2, ..DT ] sequentially. Let τi be the i-th task we see, then we define X i,Y i

= {(X i
n, Y

i
n)}Ni

n=0 as the set of Ni input-label pairs randomly drawn from it’s data distribution
Di. An any time-step j during learning, we aim to minimize the empirical risk of the model
on all the t tasks seen so far (τ1:t), given limited access to data (X i,Y i) from previous tasks
τi (i < t). We refer to this objective as the cumulative risk, given by:

t∑
i=1

E(Xi,Y i)

[
`i
(
fi
(
X i; θj0

)
, Y i
)]

= E(X1:t,Y 1:t)

[
Lt
(
f
(
X1:t; θj0

)
, Y 1:t

)]
(2.1.1)

where `i is the loss for task τi and fi is a learnt, mapping from inputs to outputs using
parameters θj0.

1 The loss Lt =
∑t

i=1 `i is the sum of all task-wise losses for tasks τ1:t where
t goes up from 1 to T , with T not known beforehand.

Let ` denote some loss objective to be minimised. Then the SGD operator acting on
parameters θj0, denoted by U(θj0), is defined as:

U
(
θj0
)

= θj1 = θj0 − α∇θj0
`(θj0) = θj0 − αg

j
0 (2.1.2)

1We keep the zero subscript for the parameters here since we will later introduce the concept of inner and
outer updates in meta-learning, and then the subscript and superscript will correspond to the index of
the inner and outer updates made to θ respectively, where we will associate each time-step j with one
outer-update .



where gj0 = ∇θj0
`(θj0). U () can be composed for k updates as Uk

(
θj0
)

= U... ◦U ◦U(θj0) = θjk.
α is a scalar or vector learning-rate. U (·, xi) implies gradient updates are computed by
evaluating the loss using data xi:

U
(
θj0, xi

)
= θj1 = θj0 − α∇θj0

`(θj0, xi) (2.1.3)

From here onwards, we will omit the data argument in most places so that `i(·) implies that
the loss `i for task τi is evaluated on some data (x,y) ∼ (X i,Y i) from that task.

2.1.1. Meta-learning

Meta-learning [41], or learning-to-learn [46] has emerged as a popular approach for train-
ing models amenable to fast adaptation on limited data. It works by learning algorithmic
priors or parameters using the data of training tasks, to enable faster learning on related
unseen test tasks. For instance, these priors could be learnt in the form of a parameter ini-
tialisation [11] or in the form of a learning rule encoded in the weights of a recurrent neural
network [36].

The process of meta-learning typically involves two phases:
(1) meta-train phase : In this phase the algorithm gathers useful inductive biases from

training tasks and is analogous to the training phase in standard learning. It involves
splitting the training tasks’ data into training and testing splits so the model can
validate and modulate what it learns on the meta-train-train set, based on how well
it generalises to the meta-train-test set.

(2) meta-test phase : This phase involves adapting and testing the learnt parameters on
the unseen test tasks and it is analogous to the testing phase in standard learning.
The adaptation involves learning from a handful of samples from the unseen task,
starting from the solution learnt in the meta-train phase. This procedure tests the
quality of priors learnt in the meta-train phase, reflected in how well the model is
able to use them to adapt to a new, but related task.

Optimisation or Gradient-based Meta-Learning (GBML) learns a meta-initialization θj0
for a class of parametrized functions f(θ) : X −→ Y such that a small number (k) of stochastic
gradient steps on a new task’s samples suffice to learn good task-specific model parameters θjk.
Therefore gradient-based learning rules like SGD play the role of the adaptation procedure
that happens in the meta-test phase. GBML relies on the differentiability of these learning
rules to adjust the initialisation θj0 at time-step j, to a new initialisation θj+1

0 at time-step
j + 1, based on some application-defined fitness measure of the parameters θjk reached after
few-shot adaptation from θj0.

There is an implicit assumption here that train and test tasks are related enough that
their respective optima lie close by, and are reachable in a few gradient steps from some
common initialisation θj0. If this is not the case, then the few shot adaptation assumption
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at meta-test time is too restrictive to reach optimal parameters for the new task. Next, we
introduce the gradient-based meta-learning algorithms MAML [11] and OML [16], that we
build upon in Chapter 3.

2.1.1.1. Model-Agnostic Meta-Learning (MAML). MAML [11] is one of the simplest
GBML algorithms that optimises model parameters to be good at few-shot generalisation on
a set of related tasks. It does this by repeatedly unrolling a gradient-based optimiser from
an initialisation θj0 on samples from a set of tasks, to obtain a new set of parameters. It
back-propagates the error of these new parameters on held-out samples from these tasks, all
the way through the unrolled updates to obtain a better starting point for the next unrolling.

We review some common terminology used in MAML: 1) at a given time-step j during
training, model parameters θj0 (or θ0 for simplicity), are often referred to as an initialisation,
since the aim is to find an ideal starting point for few-shot gradient-based adaptation on
unseen data. 2) Fast or inner-updates, refer to gradient-based updates made to a copy of θ0,
optimising some inner objective (in this case, `i for some τi). 3) A meta-update involves the
trajectory of fast updates from θ0 to θk, followed by making a permanent gradient update (or
slow-update) to θ0. This slow-update is computed by evaluating an auxiliary objective (or
meta-loss Lmeta) on θk, and differentiating through the trajectory to obtain the meta-gradient
∇θ0Lmeta(θk). MAML thus optimises θj0 at time j, to perform optimally on tasks in {τ1:t}
after undergoing a few gradient updates on their samples. It optimises in every meta-update,
the objective 2 :

min
θj0

Eτ1:t
[
Lmeta

(
Uk(θ

j
0)
)]

= min
θj0

Eτ1:t
[
Lmeta(θ

j
k)
]

(2.1.4)

The MAML objective in Eqn 2.1.4 is often approximated by a first-order version in
practice, which is referred to as First-Order MAML (FOMAML). This is because computing
the hessian for a neural network is expensive and therefore in FOMAML the second-order
information is ignored and the hessians are assumed to be zero. The meta-gradient, which
denotes the gradient of the meta-loss with respect to the initial parameters, is different from
the gradient of the meta-loss at the parameters at the end of the inner loop(θjk). However, the
first-order version of MAML simply treats both of them as equal, since it assumes that the
derivative of the chain of updates in the inner-loop with respect to the initial weights is now
equal to the identity vector. This often leads to very negligible degradation in performance,
since networks with ReLU activations are linear almost everywhere, and already have almost
zero hessians in many parts of the optimisation landscape.

2In this work we will consistently use the following notation for indices: t denotes the number of tasks seen
till any point of time j during training. i denotes the index ranging over these t tasks. We will associate each
time-step j with one full meta-update, where a meta-update is typically compose of multiple inner-updates
followed by a single outer-update. Therefore j also denotes the index iterating over the outer-updates made
during training. k denotes the number of inner updates we do in each meta-update and k′ denotes the index
iterating over the k inner updates.
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The gradient expressions (or meta-gradients) of different meta-learning algorithms
MAML, FOMAML and Reptile are derived in [33]. These terms, denoted as gMAML,
gFOMAML and gReptile (assuming we take k fast-updates before every slow-update), can be
broken down into the following terms:

E [gMAML] = (1)AvgGrad− (2(k − 1)α)AvgGradInner

E [gFOMAML] = (1)AvgGrad− ((k − 1)α)AvgGradInner

E [gReptile] = (k)AvgGrad−
(

1

2
k(k − 1)α

)
AvgGradInner (2.1.5)

where the term AvgGrad is the gradient of the meta-loss at the initialisation parame-
ters, and responsible for its minimisation at the initialisation parameters. The other term
AvgGradInner pushes the initialisation parameters in a direction where the gradients of
the inner and outer loop losses align more. As we mentioned before in Chapter 1, this is
an appealing property to have in a continual learning algorithm as well. This is because
increasing alignment across different objectives can go a long way in mitigating catastrophic
interference between them in the future.

As mentioned before, meta-learning is typically employed for the task of few-shot gener-
alisation, i.e, how to perform better on a new related task having seen a handful of samples
from its training distribution. The key assumption here is that testing and training
distributions are related, and learning priors at meta-train time allows the model
to do efficient few-shot adaptation at test time. In this setup, usually a new set of
tasks is seen at test time, once (there is no repeated addition of new tasks like in contin-
ual learning), and we do not care about the performance on train-time tasks once we have
adapted to new tasks. While few-shot generalisation is an appealing property in continual
learning systems, it is not directly apparent how few-shot meta-learning formulations can be
used here. We will now describe how MER [38] takes a step in this direction.

2.1.2. Equivalence of Meta-Learning and Gradient Alignment Ob-
jectives

Gradient Episodic Memory (GEM) [28] investigated the connection between task-wise
parameter sharing and forgetting in continual learning and developed an algorithm to ex-
plicitly minimise gradient interference between tasks, when learning a new task. This is an
objective that meta-learning algorithms can implicitly optimise for. The first-order gradient-
based meta learning algorithm Reptile was proposed in [33], which derived the gradients of
different meta learning objectives and showed how they incentivise alignment (we stated the
expressions for these gradients in the equations 2.1.5). Meta Experience Replay (MER) [38]
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formalized the transfer-interference trade-off in cotninual learning. It showed that the contin-
ual learning objective of minimising loss on tasks τ1:t seen till time j, while aligning gradients
between them, is equivalent to the meta-learning objective of the Reptile algorithm, i.e.:

min
θj0

(
t∑
i=1

(
`i(θ

j
0)
)
− α

∑
p,q≤t

(
∂`p
(
θj0
)

∂θj0
·
∂`q
(
θj0
)

∂θj0

))
= min

θj0

Eτ1:t
[
Lt
(
Uk(θ

j
0)
)]

(2.1.6)

where the loss Lt =
∑t

i=1 `i indicates the performance on all tasks τ1:t seen till any time-step
j during training.

Given this equivalence, MER proposes a continual learning algorithm that follows the
same training procedure as that of Reptile. It does this by maintaining a replay buffer
to store a random subset of the incoming data through reservoir sampling. This data is
then sampled periodically and interleaved with incoming data to make meta-updates to the
parameters using Reptile. This influences the optimisation to move towards parameters that
decrease the loss on all data samples used in the fast-updates, while aligning their gradients
with each other.

We will similarly show how a different, more data-efficient version of this objective co-
incides with the multi-step MAML algorithm we propose. Note that this implies that the
procedure to learn an initialisation through meta-learning, coincides with the procedure to
learn optimal parameters during continual learning. This means that we can directly treat
the initialisation as the optimal learned parameters without needing to do any test-time
adaptation. Thus we will be employing meta-learning to influence the optimisation of a
continually training model.

2.1.3. Online-aware Meta-Learning (OML)

An offline meta-learning algorithm was proposed in [16] to pre-train a Representation-
Learning Network (RLN) to provide a representation suitable for continual learning to a Task-
Learning Network (TLN). The RLN’s representation is trained using catastrophic forgetting
as the learning signal. This is done by differentiating through the online updates of the
TLN to change the RLN such that its output representation evolves to become suitable
to be input to a network that uses it for online updates. Data from a fixed set of tasks
(τval), is repeatedly used to evaluate the RLN and TLN, to test how well they remember
or perform on τval, after the TLN has undergone temporally correlated updates on some
new task. In every meta-update’s inner loop, the TLN undergoes fast updates on streaming
task data with a frozen RLN. The RLN and updated TLN are then evaluated through a
meta-loss computed on a batch sampled from τval along with the current task’s data. This
loss is then differentiated to make slow updates to the TLN and RLN. This composition
of two losses to simulate online learning in the inner loop and test forgetting in
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the outer loop, is referred to as the OML objective. It carries out many correlated
fast updates to the TLN and relies on the slow updates to the RLN to eventually provide a
better representation to the TLN for continual learning.

The continual learning performance of the method is evaluated at meta-test time. This
is done by fixing the RLN parameters, and continually training a randomly initialised TLN
over sequential tasks to now test how much performance it retains at the end. This work
showed that we could potentially use the meta-objective to achieve the continual learning
behaviour we desire directly. It also empirically showed that by optimising a representation
with the OML objective, the emergent property of sparsity is observed in the representation.
This was appealing since it did not have to be explicitly incentivised like in [23]. While this
work showed good results on a toy dataset, this would not directly work in data streams
with the complexity of the real world since the fixed representation of the RLN would not
be enough to differentiate new concepts.

2.2. Taxonomy
Research in the field of Continual Learning aims to address and bring us closer to the

online learning setting that learnt models are eventually deployed in. Therefore there are
as many settings studied in prior work as there are deployment scenarios, reflecting a broad
range of real-world scenarios with different assumptions and budgets, some more constrained
than others. Continual Learning setups and solutions for them are usually roughly cate-
gorised based on the following questions:

(1) What kinds of concepts are being added incrementally?
(a) Task Incremental : This setup assumes that we want to learn a sequence of mu-

tually exclusive tasks, for example, many separate 5-way classification tasks, and
that the data for each task arrives one after another (with the possibility of re-
visiting tasks seen in the past). This setup is currently simulated by splitting the
classes of a dataset into disjoint sets of classification tasks, and processing the
data associated with each task in a randomly-picked sequential order.

(b) Domain Incremental : In this setup the model learns a series of datasets or do-
mains, all corresponding to the same task. For instance, consider an object
detection system trained to detect a fixed set of classes from crowd sourced im-
agery. Here, differences in user-cameras with unknown calibration parameters
will lead to a non-trivial domain shift problem that is usually not modeled by
simple input perturbations. And therefore each time we get a camera-feed from a
user, the imagery corresponds to a new domain (associated with the same task).

(c) Class Incremental : This setup, specific to the classification problem, aims at
learning a large classifier to which new classes are continually added to construct
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a more difficult classification task with more classes to discriminate amongst.
Often the major issues here are due to bias in the last layer which rapidly overfits
to boost the scores for the classes that were seen most recently.

(2) What auxiliary information do we have about the data coming in?
(a) Task-aware: In this setup, we know when one task ends and when another begins,

i.e, task boundaries are known at both train and test time. This could be possible
when a system knows what high-level regime it is working within, for example,
home-robots could treat different locations or rooms as a new task. This basically
implies that we have knowledge of the context that a system is functioning in.
A recommender system might have different usage or browsing patterns to learn,
conditional on whether it is weekend or weekday, and so this conditional context
variable could decide the task identity.

(b) Task-agnostic: In this setup, the data is seen as one long, continuous stream
without any task segmentation. This might be more realistic for certain learning
setups, as it comes with fewer assumptions about the information available to an
agent in unstructured environments. For instance, a recommender system that
might want to show content according to the different moods of the user does
not actually know what the real labels corresponding to the user’s moods at any
time-step are. Therefore, these approaches often have to do context detection (or
task inference) as part of the algorithm.

(3) What constraints are there on how incoming data can be processed?
(a) Batch-Within-Online or the Multiple-Pass setup: Here, we assume that each

task becomes available to us as an i.i.d. dataset that we can temporarily store.
Therefore we can normally carry out mini-batch training with SGD for many
epochs, since the data is locally stationary and i.i.d. within a task.

(b) Online-Within-Online or the Single-Pass setup: This is the streaming setting
where we assume that the data arrives as a continuous non-stationary stream of
a few samples at a time. Here, we would not be able to go back and re-process
any data even if it belongs to the same task that we are still seeing. This setup is
also sometimes referred by the name Efficient Lifelong Learning (LLL)[8]. As we
move towards developing more data-efficient algorithms, we will want to move to
this fully-online setup.

Although all of the above categorisations represent valid and plausible setups, some setups
like batch-within-online can be adequately handled by algorithms addressing harder setups
like online-within-online, where we are only allowed to look at the data once instead of storing
it for repeated training. In general, algorithms that work for harder, more constrained setups
can usually work across more privileged setups with bigger budgets as well, and therefore
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research is gravitating towards the former. From here on, we will directly refer to these
setups by their names.

2.3. Related work
Most continual learning approaches can be roughly categorized into one of the following:
(1) distillation-based approaches
(2) replay-based approaches
(3) regularisation approaches
(4) meta-learning-based approaches
(5) expansion-based approaches.

They differ in how they choose to respond to changes in the data distribution, their mode
of optimisation, etc. and come with their own trade-offs between forward and backward
transfer, compute, storage overhead and so on. We describe each of these here, and will
subsequently compare against some approaches from each of these categories, as baselines in
Chapter 4.

2.3.1. Distillation-Based Approaches

Distillation or rehearsal-based approaches [26, 37] attempt to distill the knowledge of
older versions of a model into later versions as it undergoes continual training. This is done
by storing snapshots of the model at the end of each task, and using their outputs as pseudo-
labels later to supervise future model outputs while training on new tasks. This is the same
technique as knowledge distillation [15], which is used in model compression research. The
distinction is that in the continual learning setup, distillation is done only on incoming data
instead of old data. This has primarily been studied for supervised classification problems
where new classes or sets of classes are being added to a model. Under this scheme, the model
is trained using an additional loss based on the discrepancies between the logits produced
by the old and new models for the classes from the old tasks. This carries out a form
of hypothesis-matching since we want the logit distribution on old classes to be consistent
between the old and new models, even on new data that is unrelated to the old tasks. Newer
works such as AGEM [8], EWC [19], iCarl [37] are now trying to avoid this procedure of
storing copies of the model since it assumes we have a large storage memory available to us,
which is often not the case.

2.3.2. Replay-Based Approaches

In order to circumvent the issue of catastrophic forgetting, replay-based methods maintain
a small collection of samples from previous tasks in memory. Some approaches utilise an
episodic-buffer or a replay-buffer [7, 37] to sample old data points and interleave them with
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new data to mimic the i.i.d. setup within continual learning. Others like GEM [28] and
A-GEM [8] take replay memory samples into account to determine altered low-interference
gradients for updating parameters while learning new tasks. Some works later studied which
samples to keep in the buffer based on their contribution to the sample diversity within their
task, or how their gradients align with new tasks [4].

Generative-replay [44] trains generative models to be able to replay samples from old
tasks. The motivation to do this is that generative models might yield more diversity in
their replay than is possible by storing just a handful of past samples. However the memory
trade-off is currently not favourable for this approach, since generative models themselves
rack up a large number of parameters, and don’t perform well enough to justify the overhead.
This also currently faces scalability concerns arising from the difficulty of modeling complex
non-stationary distributions, such as those seen in real-world imagery.

For methods aiming to learn on huge dataset sizes, a large number of tasks, or classes
with many samples per class, a replay buffer is often very effective. It is also necessary to
achieve any kind of backward transfer.

2.3.3. Regularisation-Based Approaches

Regularisation-based methods avoid using replay at all by constraining the network
weights according to heuristics intended to ensure good performance in continual learn-
ing scenarios. This involves enforcing weight or representational sparsity [5, 23] to ensure
that only a subset of neurons remain active and receive gradients at any point of time. For
instance, HAT [43] learns a task dependent attention mechanism on the parameters of a
model, concurrently with parameter learning. The attention masks are conditioned on those
of previous tasks so that they can have low overlap amongst them. These mechanisms aim
to reduce the possibility of catastrophic interference across tasks.

Prior-focused approaches are a subset of regularisation-based approaches that try to
preserve the performance on old tasks by either slowing down or penalising the change
of parameters deemed important for performance on these tasks [20]. This includes many
bayesian approaches for continual learning since the bayesian framework lends itself naturally
to the online nature of the problem. For instance Variational Continual Learning (VCL)
[32] simply carries out a bayesian update of the weights by taking the previous time-step’s
posterior as prior and computing the likelihood over the new task’s dataset to get the new
posterior. It also depends on coresets (in other words, a replay memory) to achieve best
results. Bayesian Gradient Descent (BGD) [49] proposed a closed-form update of the weights
of a bayesian neural network (BNN) in which the learning rate of the means is proportional
to the associated variances of the parameters. UCB [10], concurrent to BGD, proposed
training a BNN where the learning rate for the parameters are explicitly modulated based
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on the associated variances of the BNN. The key idea amongst these approaches is that for
parameters which crucially affect the model’s performance on a task, the variances should
be lower and therefore can be used to lower their learning rates.

2.3.4. Meta-Learning-Based Approaches

Meta-Learning-based approaches are fairly recent and have shown impressive results on
small benchmarks like Omniglot and MNIST [24, 22]. MER [38], inspired by GEM[28],
proposes a meta-learning algorithm that utilises replay to incentivise alignment of gradients
between all the tasks. Online-Aware Meta Learning (OML) [16] introduces a meta-objective
for a pre-training algorithm to learn an optimal representation offline, which is subsequently
frozen and used for continual learning. We will review these in more detail in Chapter 2.1.

Orthogonal setups are investigated in [2, 12, 30], where a learning agent uses all previ-
ously seen data to adapt quickly to an incoming stream of data, thereby ignoring the problem
of catastrophic forgetting. This is more commonly referred to as the problem of online learn-
ing and is often confused with continual learning because of inconsistent terminology used in
prior work. Online learning aims to find the best possible initialisation to start from, to learn
a new task by making the best use of old data to find a good initialisation. This is similar to
meta-learning, with the added condition that it is tested over many sequential phases where
unseen tasks are added, as opposed to a single meta-test phase in meta-learning.

Meta learning approaches themselves can be divided into one of two categories:
(1) Meta-Continual learning, where a meta-learning algorithm is used to learn a prior for

the model parameters which are subsequently used for adaptation only (no further
meta-learning) [16, 31].

(2) Continual-Meta Learning, where continual learning happens with meta-learning in
the loop. In other words, there is lifelong meta-learning of the parameters for contin-
ual learning. While [38] falls into this category, it is prohibitively slow and therefore
almost offline. In this work we attempt to develop an online algorithm for
this setting, that can leverage a small replay memory to achieve positive
backward transfer.

2.3.5. Expansion-Based Approaches

Expansion Based approaches [39, 3, 47], orthogonal to the above approaches, avoid for-
getting by freezing a subset of parameters that were trained on earlier tasks while adding
more capacity dynamically to the model during training. While there usually isn’t a possibil-
ity of forward or backward transfer since mutually exclusive parts of a model are responsible
for different tasks or data, there is also no interference.
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Non-parametric Approaches : More recently, some approaches have investigated task-free
continual learning where an ensemble of learnt models is grown over time as needed, in a
task-agnostic setup. These approaches typically start off as one sub-network and rely on
Dirichlet Processes (DP) to add capacity by spawning more sub-networks. The DP prior
helps to decide when to add another component to the ensemble, based on how well a new
sample is explained or fit by the current ensemble members. They maintain a buffer of
samples not explained well by any of the current members and when they reach a threshold,
they are assigned to a new sub-network. This is to prevent the tendency to over-add sub-
networks, which would otherwise lead to explosion of capacity especially in the beginning of
tasks when the losses on most samples are high. This however leads to needing to maintain
many hyper-parameters, like thresholds, to decide when it is time to expand. Even in the
absence of defined task boundaries, each member of the ensemble can be thought to be
responsible for a subset of inter-related samples from the incoming data, i.e, a concept.

To decide which sub-network to use to generate the model output and backpropagate loss
to for a particular input, they train a classifier over the mixture of models. This classifier
essentially does task or concept inference to decide assignment to a member of the ensemble,
similar to the EM procedure. This is an approximation of the actual nested optimisation
since it only optimises over the new data points whereas EM formulations like clustering
optimise over all data in each iteration. Approaches that train a classifier for task inference
are essentially training in a class incremental fashion, as new tasks keep getting added to
the old ones. While there is no forgetting in the sub-networks as they share no parameters
across different tasks, this common classifier itself could face catastrophic forgetting. This
underscores why forgetting is an omnipresent phenomenon across approaches and needs to
be addressed.

CURL [35] follows the framework described above. It uses a shared encoder to map
inputs to a latent representation, which is used to infer the task by modelling a Gaussian
Mixture Model on the latent code. The model dynamically expands its capacity to capture
new tasks, and incorporates generative replay to minimise catastrophic forgetting, since they
have a shared encoder across tasks, which could experience forgetting. CN-DPM [25], similar
to CURL, also uses generative replay, model expansion and a short-term memory to store
unexplained data points. Unlike CURL however, it uses task-wise experts that incorporate
a generative model, so there is no shared capacity that could experience forgetting. Some
approaches like MOLe [31], MOCA [14] [17] use meta-learning to better initialise the weights
of every spawned sub-network so that it is amenable to fast adaptation during continual
learning. In contrast, we aim to formulate an algorithm that continually meta-learns optimal
parameters which become increasingly resistant to forgetting over time.
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Chapter 3

Proposed approach

In the previous sections, we have described the properties we would like to have in our con-
tinual learning algorithm. We reviewed the OML objective and noted that it is able to directly
simulate online behaviour in the inner loop of meta-learning. It modifies the representation
over the course of training by testing whether the model underwent forgetting. It relies on a
MAML-derived algorithm to learn a representation fit to bootstrap continual learning, and
sees desirable emergent properties like sparsity in the representation, that make it suitable
for continual learning.

We also discussed that meta-learning algorithms are able to incentivise learning with
gradient alignment across objectives and how MER exploited the similarity between its
continual learning objective and that of Reptile. Even though its objective is meant to be
optimised online for continual learning, it is prohibitively slow in practice.

We want to develop an online algorithm optimising a principled continual
learning objective that somehow directly regulates continual learning behaviour
like OML, to have similar emergent properties. This naturally leads us to for-
mulate a MAML-based algorithm that optimises the OML objective for all the
parameters of a network online. We derive the equivalence of this objective to a
continual learning objective adopted in prior work. It is important to prove this
equivalence, because it is otherwise unprincipled to use a few-shot meta-learning
formulation like MAML without intending to do any test-time adaptation. This
is because the continual learning problem setting typically does not accommodate any as-
sumption about the availability of small numbers of unseen samples for test-time adaptation.
We will go about modifying the OML objective for an online setting through the following
steps:

(1) We first define a similar OML objective for the online optimisation of all the param-
eters of a model, using k-step MAML. In contrast, the original OML objective [16]
learns a static representation which is fixed at continual learning time.



(2) We replace the data from τval with a replay buffer containing samples from old tasks
to ensure the signal from the meta-loss is now aimed at remembering old tasks.

(3) We show the equivalence of this objective to a well known objective for continual
learning that is time-aware, ie, it aligns the current task gradients with those of the
past tasks. It thus treats the current task in a special manner as opposed to treating
all tasks equally as done in [38].

(4) We will later also incorporate a notion of adaptivity in learning by proposing a
mechanism for the modulation of per-parameter learning rates.

We start by describing Continual-MAML (C-MAML), our proposed base algorithm for
online continual learning along with the associated proof for the validity of its objective in
Sections 3.1. In Section 3.2, we then propose the learning rate modulation scheme which we
augment C-MAML with, and the resulting algorithm is referred to as Look-Ahead MAML
(La-MAML). The derivations corresponding to the learning rate updates is detailed in sub-
section 3.2.1. We then draw connections between our proposed look-ahead updates and prior
work on meta-descent and learning-rate modulation in subsection 3.2.2.

3.1. C-MAML
C-MAML aims to optimise the OML objective online, so that learning on the current

task does not lead to forgetting on previously seen tasks. We define this objective, adapted
to optimise a model’s parameters θj0 instead of a representation at time-step j, as:

min
θj0

OML(θj0, t) = min
θj0

ESjk∼Dt

[
Lt
(
Uk(θ

j
0,S

j
k)
)]

= min
θj0

ESjk∼Dt

[
Lt
(
θjk
)]

(3.1.1)

where

Sjk is a small stream of data tuples (xj:j+k, yj:j+k) ∼ (X t,Y t) from the current task τt that
is being seen by the model at time j. The meta-loss Lt =

∑t
i=1 `i is evaluated on θjk =

Uk(θ
j
0, S

j
k). It evaluates the fitness of θjk for the continual learning prediction task defined

in Eq. 2.1.1 for tasks τ1:t. Note that we omit the implied data argument (x, y) ∼ (X i,Y i)

that is the input to each loss `i in Lt for any task τi. We will show in the next section that
optimising our objective in Eq. 3.1.1 through the k-step MAML update in C-MAML also
coincides with optimising the continual learning objective of AGEM [8]:

min
θj0

ESjk∼Dt

[
Lt
(
Uk(θ

j
0,S

j
k)
)]

= min
θj0

ESjk∼Dt

[
t∑
i=1

(
`i(θ

j
0)− α

∂`i
(
θj0
)

∂θj0
·
∂`t
(
θj0
)

∂θj0

)]
(3.1.2)

This differs from MER’s objective in Eq. 3.1.3 by being asymmetric or time-aware: it
focuses on aligning the gradients of the current task τt and the average gradient of all tasks
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τ1:t instead of aligning all the pair-wise gradients between tasks τ1:t. It can be argued that
the increasing the former kind of alignment also indirectly leads to increase in the latter kind
of alignment, but in a more data-efficient manner. We rewrite the objective from MER here
in the same format for easier comparison:

min
θj0

ES∼τ1:t
[
Lt
(
Uk(θ

j
0,S)

)]
= min

θj0

Eτ1:t

[
t∑
i=1

(
`i(θ

j
0)
)
− α

∑
p,q≤t

(
∂`p
(
θj0
)

∂θj0
·
∂`q
(
θj0
)

∂θj0

)]
(3.1.3)

Here, S is data sampled from a replay buffer containing old tasks’ samples and augmented
with a sample from the current task. Therefore MER uses data samples from all the tasks
seen so far, to take a single gradient step in such a way that the gradient alignment between
all of them is increased (according to a first-order approximation). Later in Section 4.3.1, we
will show empirically that gradient alignment amongst old tasks doesn’t degrade while a new
task is learnt, thus avoiding the need to repeatedly optimise the inter-task alignment between
all of them. This results in a drastic speedup over MER’s objective (Eq. 3.1.3) which tries to
align all τ1:t equally, thus resampling incoming samples s ∼ τt to form a uniformly distributed
batch over τ1:t. Since each s then has 1

t
-th the contribution in gradient updates, it becomes

necessary for MER to take multiple passes over many such uniform batches including s.
During training, a replay-buffer R is populated through reservoir sampling on the incom-

ing data stream as in [38]. At the start of every meta-update, a batch b is sampled from the
current task. Batch b is also combined with a batch sampled from R to form the meta-batch,
bm, which reflects samples from both old and new tasks. θj0 is updated through k SGD-based
inner-updates by seeing the current task’s samples from b one at a time. The outer-loss or
meta-loss Lt(θjk) is evaluated on bm. It indicates the performance of parameters θjk on all
tasks seen till time j. A single meta-update of C-MAML is visually depicted in Figure 3.1
and the complete training procedure is described in Algorithm 1.
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Fig. 3.1. The proposed base C-MAML algorithm: For every batch of data from
the streaming task, the initial weights θj0 undergo a series of k fast updates to obtain
θjk, which is evaluated against a meta-loss to backpropagate gradients with respect
to the weights θj0 to get θj+1

0 . Here, k = 4. The blue boxes indicate fast weights
while the green box indicates the gradient for the slow update. Purple boxes indicate
scalar learning-rates.

Algorithm 1 C-MAML : C-MAML
Input: Network weights θ00, inner objective `, meta objective L, Inner learning rate α,
Outer learning rate β
j ← 0
R← {} . Initialise replay-buffer
for t := 1 to T do

(X t,Y t) ∼ Dt

for ep := 1 to numepochs do
for batch b in (X t,Y t) do

k ← sizeof(b)
bm ← Sample(R) ∪ b . batch of samples from τ1:t for meta-loss
for k′ = 0 to k − 1 do

Push b[k′] to R with some probability based on reservoir sampling
θjk′+1 ← θjk′ − α · ∇θj

k′
`t(θ

j
k′ , b[k

′]) . inner-update on each incoming sample
end for
θj+1
0 ← θj0 − β · ∇θj0

Lt(θ
j
k, bm) . outer-update by differentiating meta-loss

j ← j + 1
end for

end for
end for
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3.1.1. Equivalence of Objectives

When we optimise the OML objective through the k-step MAML update, as proposed
in C-MAML in Eq. 3.1.1:

min
θj0

Eτ1:t
[
Lt
(
Uk(θ

j
0)
)]

(3.1.4)

where the inner-updates are taken using data from the streaming task τt, and the meta-loss
Lt(θ) =

∑t
i=1 `i(θ) is computed on the data from all tasks seen so far, it will correspond to

minimising the following surrogate loss used in continual learning :

min
θj0

t∑
i=1

(
`i(θ

j
0)− α

∂`i
(
θj0
)

∂θj0
·
∂`t
(
θj0
)

∂θj0

)
(3.1.5)

We show the equivalence for the case when k = 1, for higher k the form gets more
complicated but essentially has a similar set of terms. Reptile [33] showed that the k-step
MAML gradient for the weights θj0 at time j, denoted as gMAML(θj0) is of the form:

∂Lmeta(θ
j
k)

∂θj0
= ḡk − α

k−1∑
k′=0

ḡk′H̄k − α
k−1∑
k′=0

H̄k′ ḡk +O
(
α2
)

(α is the inner-loop learning rate)

= ḡ1 − αH̄1ḡ0 − αH̄0ḡ1 +O
(
α2
)

(using k = 1)

Expressing the terms as derivatives, and using
∂

∂θj0
(ḡ0 · ḡ1) = H̄1ḡ0 + H̄0ḡ1, we get:

=
∂Lmeta

(
θj0
)

∂θj0
− ∂

∂θj0
(ḡ0 · ḡ1)

=
∂
(∑t

i=1 `i(θ
j
0)− αḡ1 · ḡ0

)
∂θj0

(substituting Lmeta = Lt =
t∑
i=1

`i)

=
∂
(∑t

i=1 `i(θ
j
0)− α

∂Lmeta(θ
j
0)

∂θj0

∂`t(θ
j
0)

∂θj0

)
∂θj0

=
∂
(∑t

i=1 `i(θ
j
0)− α

∂
∑t

i=1 `i(θ
j
0)

∂θj0

∂`t(θ
j
0)

∂θj0

)
∂θj0

(expanding Lmeta)

=
∂
(∑t

i=1 `i(θ
j
0)− α

∑t
i=1

∂`i(θ
j
0)

∂θj0

∂`t(θ
j
0)

∂θj0

)
∂θj0

which is the same as the gradient of Eq. 3.1.5.

where:
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ḡk =
∂Lmeta

(
θj0
)

∂θj0
(gradient of the meta-loss evaluated at the initialisation)

ḡk′ =
∂

∂θj0
Linner(θ

j
0) (for k′ < k) (gradient of the inner-loss on data seen at step k′,

evaluated at the initialisation)

θjk′+1 = θjk′ − αgk′ (sequence of parameter vectors obtained in the inner-loop)

H̄k = L′′meta
(
θj0
)

(Hessian of the meta-loss evaluated at the initialisation)

H̄k′ = L′′inner
(
θj0
)

(for k′ < k) (Hessian of the inner-loss on data seen at step k′,

evaluated at the initialisation)

Lmeta = Lt =
t∑
i=1

`i

Linner = `t

Bias in the objective: We can see in Eq. 3.1.5 that the gradient alignment term intro-
duces some bias, which means that the parameters don’t exactly converge to the minimiser
of the losses on all tasks. This is acceptable in the regime of continual learning since we
don’t aim to reach the minimiser of some stationary distribution anyway (as also mentioned
in Section 3.2.2). If we did converge to the minimiser of say t tasks at some time j, this
minimiser would no longer be optimal as soon as we see the new task τt+1. Therefore, in the
limit of infinite tasks and time, ensuring low-interference between tasks will pay off much
more as opposed to being able to converge to the exact minima, by allowing us to make
shared progress on both previous and incoming tasks.
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Fig. 3.2. The proposed La-MAML algorithm: For every batch of data, the initial
weights undergo a series of k fast updates to obtain θjk, which is evaluated against
a meta-loss to backpropagate gradients with respect to the weights θj0 and learning
rates αj to get θj+1

0 and αj+1. Here, k = 4. First αj is updated to αj+1 which is then
used to update θj0 to θj+1

0 The blue boxes indicate fast weights while the green boxes
indicate gradients for the slow update. Purple boxes indicate the vector of learnable
learning-rates. Learning rates and weights are updated in an asynchronous manner.

3.2. La-MAML
Despite the fact that meta-learning incentivises the alignment of within-task and across-

task gradients, there can still be some interference between the gradients of old and new
tasks, τ1:t−1 and τt respectively. This would lead to forgetting on τ1:t−1, since its data is no
longer fully available to us. This is especially true at the beginning of training a new task,
when its gradients aren’t necessarily aligned with the old ones. A mechanism is thus needed
to ensure that meta-updates are conservative with respect to τ1:t−1, so as to avoid negative
transfer on them. The magnitude and direction of the meta-update needs to be regulated,
guided by how the loss on τ1:t−1 would be affected by the update.

In La-MAML, we include a set of learnable per-parameter learning rates to be used
in the inner updates, as depicted in Figure 3.2. This is motivated by our observation that
the expression for the gradient of Eq. 3.1.1 with respect to the inner loop’s learning rates
directly reflects the alignment between the old and new tasks. The augmented learning
objective and its gradient with respect to the learning rate vector αj at time-step j during
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training, denoted as gMAML(αj) are then given as:

min
θj0,α

j

∑
Sjk∼Dt

[
Lt
(
Uk
(
αj, θj0,S

j
k

))]
(3.2.1)

gMAML(αj) =
∂

∂αj
Lt
(
θjk
)

=
∂

∂θjk
Lt
(
θjk
)
·

(
−

k−1∑
k′=0

∂

∂θjk′
`t
(
θjk′
))

(3.2.2)

We will present the derivation of gMAML(αj) in the next section, and have simply stated
the expression here for a first-order approximation of gMAML(αj) [11]. Here, the first term
corresponds to the gradient of the meta-loss on batch bm: gmeta. The second term indicates
the cumulative gradient from the inner-update trajectory: gtraj. This expression indicates
that the gradient of the learning rates will be negative when the inner product between
gmeta and gtraj is high, ie. the two are aligned. Similarly, it should be zero when the two
are orthogonal (not interfering) and positive when there is disagreement between the two,
leading to interference. Negative (positive) learning rate gradients would pull up (down) the
learning rate magnitude. We depict this visually in Figure 3.3.

We propose updating the network weights and learning rates asynchronously in the meta-
update. Let αj+1 be the updated learning rate vector obtained by taking an SGD step with
the learning rate gradient from Eq. 3.2.1 at time j. We then update the weights as:

θj+1
0 ← θj0 −max(0, αj+1) · ∇θj0

Lt(θ
j
k) (3.2.3)

where k is the number of steps taken in the inner-loop. The learning rates αj+1 are clipped
to positive values to avoid ascending the gradient, and also to avoid making interfering
parameter-updates, thus mitigating catastrophic forgetting. Concurrently, the weights for
which the gradients align are updated with a higher learning rate. The meta-objective
thus conservatively modulates the pace and direction of learning to achieve quicker learning
progress on a new task while facilitating transfer on old tasks. Algorithm 2 illustrates this
procedure.
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Fig. 3.3. Different scenarios for the alignment of gtraj (blue dashed line) and gmeta,
going from interference (left) to alignment (right). Yellow arrows denote the inner
updates. The learning rates in α increase (decrease) when gradients align (interfere).

Algorithm 2 La-MAML : Look-ahead MAML
Input: Network weights θ00, vector of learning rates α0 (initialised to some positive value
α0), inner objective `, meta objective L, scalar learning rate for α : η
j ← 0
R← {} . Initialise replay-buffer
for t := 1 to T do

(X t,Y t) ∼ Dt

for ep := 1 to numepochs do
for batch b in (X t,Y t) do

k ← sizeof(b)
bm ← Sample(R) ∪ b . batch of samples from τ1:t for meta-loss
for n = 0 to k − 1 do

Push b[k′] to R with some probability based on reservoir sampling
θjk′+1 ← θjk′ − αj · ∇θj

k′
`t(θ

j
k′ , b[k

′])

end for
αj+1 ← αj − η∇αjLt(θ

j
k, bm)

. Update learning rates αj by differentiating the meta-loss
θj+1
0 ← θj0 −max(0, αj+1) · ∇θj0

Lt(θ
j
k, bm)

. async outer-update with clipped αj+1, by differentiating the meta-loss
j ← j + 1

end for
end for

end for
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Our meta-learning based algorithm incorporates concepts from both prior-based and
replay-based approaches. The learning rates modulate the parameter updates in an entirely
data driven manner, guided by the interplay between the gradients of the replay samples
and the streaming task. However, since learning rates evolve with every meta-update, their
decay is temporary. This is unlike many prior-based approaches, where penalties on the
change in parameters gradually become so high that the network capacity saturates [20]. The
learnable learning rates can be modulated to high and low values as tasks arrive, thus being a
simpler, flexible and elegant way to constrain weights. This asynchronous update resembles
trust-region optimisation [48] since the learning rates are evolved in a manner similar to
look-ahead search. Look-ahead search adjusts step-sizes of parameter updates, based on the
fitness of parameters that would be obtained after making the proposed parameter updates.
Our learning rate update is also analogous to the heuristic uncertainty-based learning rate
update schemes of UCB [10] or Bayesian Gradient Descent (BGD) [49], which we compare
to in Section 4.2.3.

In the next section, we provide the derivations of the MAML gradient of the model
weights and learning rates, which we have talked about in this section.
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3.2.1. Hypergradient Derivation for La-MAML

We derive the gradient of the weights θj0 and learning rates αj at time-step j under
the k-step MAML objective, with Lt =

∑t
i=0 `i as the meta-loss and `t as the inner-objective:

gMAML(αj) =
∂

∂αj
Lt
(
θjk
)

=
∂

∂θjk
Lt
(
θjk
)
· ∂

∂αj
(
θjk
)

=
∂

∂θjk
Lt
(
θjk
)
· ∂

∂αj
(
U
(
θjk−1

))
=

∂

∂θjk
Lt
(
θjk
)
· ∂

∂αj

(
θjk−1 − α

j ∂`t(θ
j
k−1)

∂θjk−1

)

=
∂

∂θjk
Lt
(
θjk
)
·

(
∂

∂αj
θjk−1 −

∂

∂αj

(
αj
∂`t(θ

j
k−1)

∂θjk−1

))

=
∂

∂θjk
Lt
(
θjk
)
·

(
∂

∂αj
θjk−1 −

∂`t(θ
j
k−1)

∂θjk−1

)

(Taking
∂`t
(
θjk−1

)
∂θjk−1

as a constant w.r.t αj to get the first-order MAML approximation)

=
∂

∂θjk
Lt
(
θjk
)
·

(
∂

∂αj
U
(
θjk−2

)
−

(
∂`t(θ

j
k−1)

∂θjk−1

))

=
∂

∂θjk
Lt
(
θjk
)
·

(
∂

∂αj
θj0 −

k−1∑
n=0

∂`t(θ
j
n)

∂θjn

)
(a)

=
∂

∂θjk
Lt
(
θjk
)
·

(
−

k−1∑
n=0

∂`t(θ
j
n)

∂θjn

)
(b)

Where (a) is obtained by recursively expanding and differentiating the update function
U() as done in the step before it. (b) is obtained by assuming that the initial weight in the
meta-update at time j : θj0, is constant with respect to αj.
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For completeness, we also similarly derive the MAML gradient for the weights θj0, denoted
as gMAML(θj0) as:

gMAML(θj0) =
∂

∂θj0
Lt(θ

j
k) =

∂

∂θjk
Lt(θ

j
k)
∂θjk
∂θj0

=
∂

∂θjk
Lt(θ

j
k)
∂Uk(θ

j
k−1)

∂θj0

=
∂

∂θjk
Lt(θ

j
k)

∂

∂θjk−1
U(θjk−1) · · ·

∂

∂θj0
U(θj1)

(repeatedly applying chain rule and using θjk = U(θjk−1) )

= L′t(θ
j
k)
(
I − α`′′t (θ

j
k−1)

)
· · ·
(
I − α`′′t (θ

j
0)
)(

using U ′(θjk′) = I − α`′′t (θ
j
k′)
)

(′ implies derivative with respect to argument)

=

(
k−1∏
k′=0

(
I − α`′′t (θ

j
k′)
))

L′t(θ
j
k)

Setting all first-order gradient terms as constants to ignore second-order derivatives, we get
the first order approximation as:

gFOMAML(θj0) =
(∏k−1

k′=0

(
I − α`′′t

(
θjk′
)))

L′t(θ
j
k) = L′t(θ

j
k)

3.2.2. Connection to Work Outside Continual Learning

We outline here the connections of our approach to prior work not pertaining to the field
of continual learning:

Stochastic Meta-Descent (SMD): When learning over a non-stationary data distri-
bution, using decaying learning rate schedules is not common. Strictly diminishing learning
rate schedules aim for closer and faster convergence to a fixed mimima of a stationary distri-
bution, which is at odds with the goal of online and continual learning. In many Continual
Learning scenarios it is impossible to manually tune the schedule since the extent of the data
distribution is unknown. However, adaptivity in learning rates is still highly desired to better
adapt to the optimisation landscape and accelerate learning. Another reason to desire adap-
tivity in continual learning is to modulate the degree of adaptation of certain parameters,
to reduce catastrophic forgetting. Our adaptive learning rates can be connected to work on
meta-descent [6, 42] in standard offline supervised learning (OSL). While several variations
of meta-descent exist, the core idea behind these variations and our approach is the same:
gain adaptation, analogous to gain adjustment in a Kalman Filter (KF). In a KF, the gain is
a quantity that signifies how much trust we place in a proposed belief or parameter update.
While in our case, we want to check the correlation between old and new task gradients
to adapt the gain so that we can make the most shared progress on old and new tasks, in
the case of [6, 42] the correlation between two successive stochastic gradients on the same
data distribution is used to converge faster. Hypergradient Descent [6] proposes analytically,
asynchronously updating learning rates during optimization. This is done by differentiating
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the update rule at any time-step j with respect to the learning rates at time-step j − 1. We
instead rely on the meta-objective’s differentiability with respect to the learning rates, to
obtain these learning rate hypergradients automatically.

Learning learning rates in meta-learning: Meta-SGD [27] first proposed learning
the per-parameter learning rates used within the inner-loop of MAML in the few-shot learning
setting. Some notable differences between their update and ours exist. They synchronously
update the weights and learning rates while our asynchronous update to the learning rates
serves to carry out a more conservative update to the weights. The intuition for our update
stems from the need to mitigate gradient interference and its connection to the transfer-
interference trade-off ubiquitous in continual learning. Similarly, α-MAML [45] proposed
analytically updating the two scalar learning rates used in the inner and outer MAML
update for more adaptive few-shot learning. In contrast, our per-parameter learning rates are
modulated implicitly through back-propagation, to regulate change in parameters based on
their alignment across tasks, providing our model with a more powerful degree of adaptability
in the continual learning domain.
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Chapter 4

Evaluation

In this Chapter, we will first describe our experiments and baselines in Section 4.1, and
present quantitative results in Section 4.2. Additionally, we will present a qualitative anal-
ysis of our algorithm in Section 4.3. This includes an investigation of the robustness and
scalability of our algorithm in subsections 4.3.2 and 4.3.3, along with a study of the varia-
tion in gradient alignment across tasks over time in subsection 4.3.1. We will also provide
a discussion about the merits and demerits of our method against prior work in Section
4.3.4. Finally, we will provide further details about hyper-parameter optimisation and other
experimental details towards the end of the chapter.

4.1. Experimental Setup
We evaluate La-MAML in task incremental settings, where the model learns a set of

sequentially streaming classification tasks. The loss used is the cross-entropy loss over the
logits of the classes within a task.

Benchmarks: Experiments are performed on the MNIST, CIFAR and TinyImagenet
datasets [1, 24, 21]. The large-scale visual classification experiments (on CIFAR and Tiny-
Imagenet) are task-aware and we use a multi-headed network, i.e, the network parameters
are shared across tasks except for the last classification layer which is separate for each task.
The experiments on MNIST are task-agnostic and use a single-headed network, since their
classification space remains the same (classes 0 − 9), but the transformation to the images
changes with each task.

Metrics: Similar to [38], we use the retained accuracy (RA) metric to compare various
approaches. RA is the average accuracy of the model across tasks at the end of training. We
also report the backward-transfer and interference (BTI) values which measure the average
change in the accuracy of each task from when it was learnt to the end of the last task. A
smaller BTI implies lesser forgetting during training.



4.1.1. Baselines

On the MNIST benchmarks, we follow the experimental setup of MER [38], which
evaluates the model in the Single-Pass setting. We compare our algorithm against the
baselines used in MER, which are as follows:

• Online: A simple baseline for the Single-Pass setup, where a single network is trained
one example at a time with SGD.

• EWC [20]: Elastic Weight Consolidation is a prior-based method which constraints
the model’s weights based on how important they are for the previous tasks to avoid
catastrophic forgetting. The importance is measured using a Fisher Information
Matrix for each task.

• GEM [28]: Gradient Episodic Memory uses constrained optimisation to solve a qua-
dratic program on the gradients of new and replay samples, trying to make sure that
these gradients do not interfere with and alter the previous tasks’ gradients.

• MER [38]: Meta Experience Replay samples i.i.d data from a replay memory to
meta-learn model parameters that show increased gradient alignment between old
and current samples. We evaluate against this baseline in the Single-Pass setups of
all benchmarks.

On the real-world visual classification datasets, we carry out experiments on GEM
and MER along with the following additional baselines:

• IID: The model trains on the data from all tasks in an independent and identically
distributed manner, thus bypassing the issue of catastrophic forgetting completely.
Therefore, IID acts as an upper bound for the RA achievable with the network chosen
for these experiments.

• ER: Experience Replay uses a small replay buffer to store old data using reservoir
sampling. This stored data is then replayed again along with the new data samples.

• iCARL [37]: iCarl is a baseline from the family of distillation-based class-incremental
learners, which learns to classify images in the metric space. We modify it to work
in the task-incremental scenario. It prevents catastrophic forgetting by using a small
memory of exemplar samples per class, and store copies of the network to perform
distillation from these old network weights.

• A-GEM [8]: Averaged Gradient Episodic Memory proposed to project gradients of
the new task to a direction such as to avoid interference with respect to the average
gradient of the old samples in the buffer.

• Meta-BGD (modification of C-MAML for the purpose of comparison of learning rate-
modulation): Bayesian Gradient Descent (BGD) [49] proposes training a bayesian
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neural network for continual learning where the learning rates for the parameters (the
means) are derived from their variances, and thus are modulated during training. We
construct this baseline by equipping C-MAML with the above-mentioned bayesian
training mechanism, where each parameter in θj0 is now sampled from a gaussian
distribution with a certain mean and variance. The inner-loop stays the same as
C-MAML (with a constant scalar learning rate α), but the magnitude of the meta-
update to the parameters in θj0 is now influenced by their associated variances. The
variance updates themselves have a closed form expression which depends on m

monte-carlo samples of the meta-loss, thus implying m forward passes of the inner-
and-outer loops (each time with a newly sampled θ) to get m meta-gradients.

Table 4. II. Running times for MER and La-MAML on MNIST benchmarks for
one epoch

Method Rotations Permutations

La-MAML 45.95 ± 0.38 46.13 ± 0.42

MER 218.03 ± 6.44 227.11 ± 12.12

4.2. Quantitative Results
In this section we will first present results on the toy MNIST benchmarks for continual

learning in subsection 4.2.1, and on larger scale visual classification benchmarks in subsection
4.2.2. We will also investigate and ablate the performance our proposed learning rate-
modulation scheme in subsection 4.2.3.

4.2.1. Continual learning benchmarks

First, we carry out experiments on the toy continual learning benchmarks proposed in
prior work on continual learning. MNIST Rotations, introduced in [28], comprises tasks
to classify MNIST digits rotated by a different common angle in [0, 180] degrees in each
task. In MNIST Permutations, tasks are generated by shuffling the image pixels by a

Table 4. I. RA, BTI and their standard deviation on MNIST benchmarks. Each
experiment is run with 5 seeds.

Method Rotations Permutations Many

RA BTI RA BTI RA BTI

Online 53.38 ± 1.53 -5.44 ± 1.70 55.42 ± 0.65 -13.76 ± 1.19 32.62 ± 0.43 -19.06 ± 0.86
EWC 57.96 ± 1.33 -20.42 ± 1.60 62.32 ± 1.34 -13.32 ± 2.24 33.46 ± 0.46 -17.84 ± 1.15
GEM 67.38 ± 1.75 -18.02 ± 1.99 55.42 ± 1.10 -24.42 ± 1.10 32.14 ± 0.50 -23.52 ± 0.87
MER 77.42 ± 0.78 -5.60±0.70 73.46± 0.45 -9.96 ± 0.45 47.40 ± 0.35 -17.78 ± 0.39
C-MAML 77.33 ± 0.29 -7.88 ± 0.05 74.54 ± 0.54 -10.36 ± 0.14 47.29 ± 1.21 -20.86 ± 0.95
Sync-La-MAML 74.07 ± 0.58 -6.66 ± 0.44 70.54 ± 1.54 -14.02 ± 2.14 44.48 ± 0.76 -24.18 ± 0.65
La-MAML 77.42 ± 0.65 -8.64 ± 0.403 74.34 ± 0.67 -7.60 ± 0.51 48.46 ± 0.45 -12.96 ± 0.073
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fixed random permutation. Unlike Rotations, the input distribution of each task is unrelated
here, leading to less positive transfer between tasks. Many Permutations, a more complex
version of Permutations, has five times more tasks (100 tasks) and five times less training
data (200 images per task). We use the same architecture and experimental settings as in
MER [38], allowing us to compare directly with their results. We use the cross-entropy loss
as the inner and outer objectives during meta-training. Similar to [33], we see improved
performance when evaluating and summing the meta-loss at all steps of the inner updates
as opposed to just the last one.

We compare our method in the Single-Pass setup against multiple baselines including
Online, Independent, EWC [20], GEM [28] and MER [38], detailed in Section 4.1.1. In
Table 4. I, we see that La-MAML achieves comparable or better performance than the
baselines on all benchmarks. Table 4. II shows that La-MAML matches the performance
of MER in less than 20% of the training time, owing to its sample-efficient objective which
allows it to make make more learning progress per iteration. This also allows us to scale it
to real-world visual recognition problems as described next.

4.2.2. Real-world classification

While La-MAML fares well on the MNIST benchmarks, we are interested in understand-
ing its capabilities on more complex visual classification benchmarks. We conduct experi-
ments on the CIFAR-100 dataset in a task-incremental manner [28]. 20 tasks comprising of
disjoint 5-way classification problems are streamed. We also evaluate on theTinyImagenet-
200 dataset by partitioning its 200 classes into 40 5-way tasks. Experiments are carried out
in both the Single-Pass and Multiple-Pass settings, where in the latter we allow training for
up to a maximum of 10 epochs. Each method has a replay-buffer containing 200 and 400
samples for CIFAR-100 and TinyImagenet respectively. We provide further details about
the baselines and evaluation setup in Section 4.4.

Table 4. IV reports the results of these experiments. We consistently observe superior
performance of La-MAML as compared to other continual learning baselines on both datasets
across setups. While the iCarl baseline attains lower BTI in some setups, it achieves that
at the cost of lower accuracy during learning. Among the high-performing approaches, La-
MAML has the lowest BTI. Recent work [9, 38] noted that Experience Replay (ER) is often
a very strong baseline that closely matches the performance of the proposed algorithms.
We highlight the fact that meta-learning and learning rate modulation combined show an
improvement of more than 10 and 18% (as the number of tasks increase from CIFAR to
Imagenet) over the ER baseline in our case, with limited replay. Overall, we see that our
method is robust and better-performing under both the Single and Multiple-Pass setups of
continual learning which come with different kinds of challenges. Many continual learning
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methods [10, 43] are suitable for only one of the two setups. As shown in Figure 4.1, our
model evolves to become resistant to forgetting as training progresses. This means that
beyond a point, it can keep taking gradient updates on a small window of incoming samples
without needing to do meta-updates.

4.2.3. Evaluation of La-MAML’s learning rate modulation

To capture the gains from learning the learning rates, we compare La-MAML with our
base algorithm, C-MAML. We ablate our choice of updating learning rates asynchronously
by constructing a version of C-MAML where per-parameter learnable learning rates are
used in the inner updates while the meta-update still uses a constant scalar learning rate

Table 4. III. Results on the Multiple-Pass and Single-Pass setups with CIFAR-100
Dataset. Experiments are run with 3 seeds. * indicates result omitted due to high
instability. MER results for Multiple-Pass omitted due to very high training times.

Method CIFAR-100
Multiple Single

RA BTI RA BTI

IID 85.60 ± 0.40 - -
ER 59.70 ± 0.75 -16.50 ± 1.05 47.88 ± 0.73 -12.46 ± 0.83
iCarl 60.47 ± 1.09 -15.10 ± 1.04 53.55 ± 1.69 -8.03 ± 1.16
GEM 62.80 ± 0.55 -17.00 ± 0.26 48.27 ± 1.10 -13.7 ± 0.70
AGEM 58.37 ± 0.13 -17.03 ± 0.72 46.93 ± 0.31 -13.4 ± 1.44
MER - - 51.38 ± 1.05 -12.83 ± 1.44
Meta-BGD 65.09 ± 0.77 -14.83 ± 0.40 57.44 ± 0.95 -10.6 ± 0.45
C-MAML 65.44 ± 0.99 -13.96 ± 0.86 55.57 ± 0.94 -9.49 ± 0.45
La-ER 67.17 ± 1.14 -12.63 ± 0.60 56.12 ± 0.61 -7.63 ± 0.90
Sync-La-MAML 67.06 ± 0.62 -13.66 ± 0.50 58.99 ± 1.40 -8.76 ± 0.95
La-MAML 70.08 ± 0.66 -9.36 ± 0.47 61.18 ± 1.44 -9.00 ± 0.2

Table 4. IV. Results on the Single-Pass and Multiple-Pass setups with
TinyImagenet-200 Dataset. Experiments are run with 3 seeds. * indicates result
omitted due to high instability. MER results for Multiple-Pass omitted due to very
high training times.

Method TinyImagenet
Multiple Single

RA BTI RA BTI

IID 77.1 ± 1.06 - - -
ER 48.23 ± 1.51 -19.86 ± 0.70 39.38 ± 0.38 -14.33 ± 0.89
iCarl 54.77 ± 0.32 -3.93 ± 0.55 45.79 ± 1.49 -2.73 ± 0.45
GEM 50.57 ± 0.61 -20.50 ± 0.10 40.56 ± 0.79 -13.53 ± 0.65
AGEM 46.38 ± 1.34 -19.96 ± 0.61 38.96 ± 0.47 -13.66 ± 1.73
MER - - 44.87 ± 1.43 -12.53 ± 0.58
Meta-BGD * * 50.64 ± 1.98 -6.60 ± 1.73
C-MAML 61.93 ± 1.55 -11.53 ± 1.11 48.77 ± 1.26 -7.6 ± 0.52
La-ER 54.76 ± 1.94 -15.43 ± 1.36 44.75 ± 1.96 -10.93 ± 1.32
Sync-La-MAML 65.40 ± 1.40 -11.93 ± 0.55 52.84 ± 2.55 -7.3± 1.93
La-MAML 66.99 ± 1.65 -9.13 ± 0.90 52.59 ± 1.35 -3.7 ± 1.22
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Table 4. V. Gradient Alignment on CIFAR-100 and IMAGENET dataset (values
lie in [-1,1], higher is better)

Dataset ER C-MAML SYNC La-MAML

CIFAR-100 0.22× 10−2 ± 0.0017 1.84× 10−2 ± 0.0003 2.28× 10−2 ± 0.0004 1.86× 10−2 ± 0.0027

IMAGENET 0.27× 10−2 ± 0.0005 1.74× 10−2 ± 0.0005 2.17× 10−2 ± 0.0020 2.14× 10−2 ± 0.0023

during training. We refer to it as Sync-La-MAML since it has synchronously updated
learning rates that don’t modulate the meta-update. We also construct an ablation referred
to as La-ER, where the parameter updates are carried out as in ER but the learning rates
are modulated using the La-MAML objective’s first-order version. This tells us what the
gains of learning rate modulation are over ER, when there is no meta-learning to encourage
gradient alignment of the model parameters. While only minor gains are seen on the MNIST
benchmarks from asynchronous learning rate modulation, the performance gap increases as
the tasks get harder. On CIFAR-100 and TinyImagenet, we see a trend in the RA of
our variants with La-MAML performing best followed by Sync-La-MAML. This shows that
optimising the learning rates aids learning and our asynchronous update helps in knowledge
consolidation by enforcing conservative updates to mitigate interference.

To test our learning rate modulation against an alternative bayesian modulation scheme
proposed in BGD [49], we define a baseline called Meta-BGD where per-parameter variances
are modulated instead of learning rates. This is described in further detail in Section 4.1.1.
Meta-BGD emerges as a strong baseline and matches the performance of C-MAML given
enough Monte Carlo iterations m, implying m times more computation than C-MAML.
Additionally, Meta-BGD was found to be sensitive to hyperparameters and required extensive
tuning. We present a discussion of the robustness of our approach in Section 4.3.2, as well
as a discussion of the setups adopted in prior work, in Section 4.3.4.

We also compare the gradient alignment of our three variants along with ER in Table 4.
V by calculating the cosine similarity between the gradients of the replay samples and newly
arriving data samples. As previously stated, the aim of many continual learning algorithms
is to achieve high gradient alignment across tasks to allow parameter-sharing between them.
We see that our variants achieve an order of magnitude higher cosine similarity compared to
ER, verifying that our objective promotes gradient alignment.

4.3. Qualitative Analysis
In this section, we focus on a qualitative analysis of our algorithm and its ablations

to investigate its robustness and scalability. First, we show how the inter-task gradient
alignment varies over time for C-MAML and La-MAML, to provide empirical evidence that
the time-aware objective for continual learning that we optimise is sufficient to incentivise
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Fig. 4.1. Retained Accuracy (RA) for La-MAML plotted every 25 meta-updates up
to Task 5 on CIFAR-100. RA at iteration j (x-axis) denotes accuracy on all tasks
seen uptil then. Red denotes the RA computed during the inner updates (at θjk).
Blue denotes RA computed at θj+1

0 right after a meta-update. We see that in the
beginning, inner updates lead to catastrophic forgetting (CF) since the weights are
not suitable for continual learning yet, but eventually become resistant when trained
to retain old knowledge while learning on a stream of correlated data. We also see
that RA maintains its value even as more tasks are added indicating that the model
is successful at learning new tasks without sacrificing performance on old ones.

alignment across all tasks. We noted previously that this is partially responsible for our
sample-efficiency. Second, we show how the performance of La-MAML, C-MAML and Sync-
La-MAML varies across variations in hyper-parameters like inner and outer learning-rates.
Lastly, we show a timing comparison of our algorithm v/s MER, our main meta-learning
baseline.

4.3.1. Inter-Task Alignment

We now provide empirical evidence that our more sample-efficient objective (compared
to MER) does not come at the cost of any significant gradient interference between old tasks,
when we try to align the gradients between old and new tasks. We assume that at time
j during training, we are seeing samples from the streaming task τt. It is intuitive that
incentivising the alignment of all τ1:t with the common τt indirectly also incentivises the
alignment amongst τ1:t−1 as well. To demonstrate that this happens, we compute the mean
dot product of the gradients amongst the old tasks τ1:t−1 as the new task τt is added, for t
varying from 2 to 11. We do this for La-MAML and La-MAML on CIFAR-100.

As can be seen in Figures 4.2a and 4.2b, the alignment stays positive and roughly constant
even as more tasks are added.
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(a) C-MAML (b) La-MAML

Fig. 4.2. Average dot product amongst gradients as tasks are added, for the C-
MAML and La-MAML algorithms. x-axis shows the streaming task ID t.

4.3.2. Robustness

Learning rate is one of the most crucial hyper-parameters during training and it often
has to be tuned extensively for each experiment. In this section we analyse the robustness
of our proposed variants to their learning rate-related hyper-parameters on the CIFAR-100
dataset. Our three variants have different sets of these hyper-parameters which are specified
as follows:

• C-MAML: Inner and outer update learning rate (scalar) for the weights (α and β)
• Sync-La-MAML: Common initialization value for the vector of inner-loop learning
rates (α0), scalar learning rate for the vector of learning rates (η) and scalar learning
rate for the weights in the outer update (β)
• La-MAML: Scalar initialization value for the vector learning rates (α0) and scalar
learning rate of learning rates (η)

La-MAML is considerably more robust to tuning compared to its variants, as can be seen
in Figure 4.3c. We empirically observe that it only requires tuning of the initial value of the
learning rate, while being relatively insensitive to the learning rate of the learning rate (η).
We see a consistent trend where the increase in η leads to an increase in the final accuracy of
the model. The increase is very gradual, across a wide range of learning rates varying over
2 orders of magnitude (from 0.003 to 0.3), the difference in RA is only 6%. This means that
even without tuning this parameter (η), La-MAML would have outperformed most baselines
at their optimally tuned values.

As seen in Figure 4.3a, C-MAML sees considerable performance variation with the tweak-
ing of both the inner and outer learning rate. We also see that the effects of the variations of
the inner and outer learning rate follow very similar trends and their optimal values finally
selected are also identical. This means that we could potentially tune them by doing just
a 1D search over them together instead of varying both independently through a 2D grid
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search. Sync-La-MAML (Figure 4.3b), while being relatively insensitive to the scalar initial
value α0 and the η, sees considerable performance variation as the outer learning rate for
the weights: β is varied. This variant has the most hyper-parameters and only exists for the
purpose of ablation.

Fig. 4.4 shows the result of 2D grid-searches over sets of the above-mentioned hyper-
parameters for C-MAML and La-MAML for a better overview.

4.3.3. Timing Comparisons

In this figure we compare the wall-clock running times (Retained Accuracy (RA) vs Time)
of MER and La-MAML in the Single-Pass setup, on the same machine. Both methods have
a hyper-parameter glances which indicates the number of meta-updates made on each data-
point, with the performance of the algorithms increasing with the increase in glances up to a
certain point. Note that in the Single-Pass setup, we can only see the data in a single pass,
and therefore seeing each point for a number of glances is essential, since once we move on to

(a) C-MAML: Modulation of α and β (b) Sync-La-MAML: Modulation of α0, η and β

(c) La-MAML: Modulation of α0 and η

Fig. 4.3. Retained Accuracy vs Learning Rates plot for La-MAML and its variants.
Figures are plotted by varying one of the learning rate hyperparameter while keeping
the others fixed at their optimal value. The hyperparameter is varied between [0.001,
0.3].
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(a) C-MAML: Modulation of α and β (b) La-MAML: Modulation of α0 and η

Fig. 4.4. Plots of Retained Accuracy (RA) across hyper-parameter variation for
C-MAML and La-MAML. We show results of the grid search over the learning rate
hyperparameters. RA decreases from red to blue. All the hyperparameters are varied
between [0.001, 0.3], with the axes being in log-scale.

the next data point, we can’t revisit an old data point again. Experiment was conducted by
running our method for one to five glances, and MER for [2,4,6,8,10] glances while recording
the RA and running times of both the methods. The glances are chosen according to how
many are needed to achieve performance comparable to the other method. In the plots we
see that 5 glances of La-MAML take the same time in which MER finishes a single glance
run, making our method suitable for the scale of real world experiments.

4.3.4. Qualitative Comparison with Prior Work

In Table 4. VI, we provide an overview of the limitations and benefits coming from
various continual learning methods to situate our work better in the context of prior work.

Prior-focused methods face model capacity saturation as the number of tasks increase.
These methods freeze weights to defy forgetting, and so penalise changes to the parameters
of the model, even if those changes could potentially improve the model’s performance on
old tasks. They are also not suitable for the Single-Pass setup, since it requires many passes
through the data for every task to learn weights that are optimal enough to be frozen. Ad-
ditionally, the success of weight freezing schemes can be attributed to over-parameterisation
in neural networks, leading to sub-networks with sufficient capacity to learn separate tasks.
However continual-learning setups are often motivated in resource-constrained settings re-
quiring efficiency and scalability. Therefore solutions that allow light-weight continual learn-
ers are desirable. Meta-learning algorithms are able to exploit even small models to learn
a good initialization where gradients are aligned across tasks, enabling shared progress on
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Fig. 4.5. Retained Accuracy vs Running time (seconds) for La-MAML and MER
while varying the number of glances through the data on MNIST Permutations
(left) and Rotations (right). Passes are denoted by the label marked in the plot
corresponding to datapoints.

optimisation of task-wise objectives. Our method additionally allows meta-learning to also
achieve a prior-focusing affect through the asynchronous meta-update, without necessar-
ily needing over-parameterised models. It allows change, as long as those changes lead to
descending the gradient on old tasks.

In terms of resources, meta-learning based methods require smaller replay memories than
traditional methods because they learn to generalise better across and within tasks, thus
being sample-efficient. It should be noted that our learning rate modulation involves clipping
updates for parameters with non-aligning gradients. In this sense, it is related to methods
like GEM and AGEM mentioned before. Where the distinction lies, is that our method takes
some of the burden off of the clipping, by ensuring that gradients are more aligned in the
first place. This means that there should be less interference and therefore less clipping of
updates deemed essential for learning new tasks, on the whole.

Our learnable learning rates incur a memory overhead equal to the parameters of the
network. This is comparable to or less than many prior-based methods that store between
1 to T scalars per parameter depending on the approach (T is the number of tasks). Addi-
tionally, since we use the scalars as per-parameter learning rates, they can be regarded as
non-additional memory since sophisticated optimizers like Adam [18] store per-parameter
statistics anyway. However, we do need to store the computational graph of the derivatives
of the learning rates, which is an added overhead during training.
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4.4. Experimental Details
We will now describe the remaining details of the experimental setup we adopted. Hyper-

parameters and Optimisation: We carry out hyper-parameter tuning for all the approaches
by performing a grid-search over the range [0.0001 - 0.3] for hyper-parameters related to the
learning-rate. Further experiments are carried out to find the optimal number of glances
over each sample in the Single-Pass setup. Tables 4. VII and 4. VIII lists the optimal
hyper-parameters used for all the compared approaches. All setups used the SGD optimiser
since it was found to preform better than Adam [18] (possibly due to reasons stated in
Section 3.2.2 regarding the continual learning setup). To avoid exploding gradients, we clip
the gradient values of all approaches at a norm of 2.0.

Class divisions across different tasks vary with the random seeds with which the exper-
iments were run. Overall, we did not see much variability across different class splits, with
the variation being within 0.5-2% of the mean reported result as can be seen from Table 4.
IV

Batch Sizes : For all our baselines, we use a constant batch-size of 10 samples from the
streaming task. This batch is augmented with 10 samples from the replay buffer for the
replay-based approaches. La-MAML and its variants split the batch from the streaming
task into a sequence of smaller disjoint sets to take k = 5 gradient steps in the inner-loop. In

Table 4. VI. Setups in prior work: We describe the setups and assumptions
adopted by prior work, focusing on approaches relevant to our method. FWT and
BWT refer to forward and backward transfer as defined in [28]. ’-’ refers to no
inductive bias for or against the specific property. Saturation of capacity refers to
reduced network plasticity due to weight change penalties gradually making further
learning impossible. The Single-Pass setup is defined in Section 2.2 and refers to
whether a method can work in the setup where training data is only seen in a single
stream, without repeatedly shuffling data during training per task. < and > under
replay indicate that a method’s replay requirements are lesser or more compared to
other methods in the table. Fishers refers to the Fisher Information Matrix (FIM)
computed per task. Each FIM has storage equal to that of the model parameters.
Approaches using Bayesian Neural Networks require twice as many parameters (as
does La-MAML) to store the mean and variance estimates per parameter.

Approach Transfer Capacity Resources Algorithm
FWT BWT Saturates Single-Pass Storage

Prior-Focused - ×
√

× T Fishers EWC [20]
Prior Focused - ×

√
× T masks HAT [43]

Prior Focused - ×
√ √

2x params BGD/UCB [49] [10]
Replay - - -

√
> replay iCarl [37]

Replay - - -
√

> replay GEM [28]
Meta + Replay

√ √
-

√
replay MER [38]

Meta + Replay
√ √

-
√

< replay Ours
Expansion × × ×

√
N Models CURL

Expansion × × ×
√

N Models MOLE
Expansion × × ×

√
N Models CN-DPM
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MER, each sample from the incoming task is augmented with a batch of 10 replay samples
to form the batch used for the meta-update.

MAML implementation: We found only very small performance gaps between the first
and second-order MAML versions of our proposed algorithms with performance differences
being in the range of 1-2% for RA. This means that we could equivalently use the first-order
versions for continual learning, when the compute budget is lower. This is in line with the
observation cited before, that deep neural networks have near-zero hessians since the ReLU
non-linearity is linear almost everywhere [40].

MNIST Benchmarks : On the MNIST continual learning benchmarks, images of size
28x28 are flattened to create a 1x784 array. This array is passed on to a fully-connected neural
network having two layers with 100 nodes each. Each layer uses ReLU non-linearity. These
experiments use a modest replay buffer of size 200 for MNIST Rotations and Permutation
and size 500 for Many Permutations.

Real-world visual classification: For Cifar and Imagenet we used a CNN having 3 and 4
conv layers respectively with 160 3x3 filters. The output from the final convolution layer is
flattened and is passed through 2 fully connected layers having 320 and 640 units respec-
tively. All the layers are succeeded by ReLU nonlinearity. For CIFAR and Imagenet we
allow a replay buffer of size 200 and 400 respectively which implies that each class in these
dataset gets roughly about 1-2 samples in the buffer. For Tiny-Imagenet, we evenly split the
validation set into val and test splits, since the labels in the actual test set are not released.
We similarly evenly split the CIFAR-100 test data into test and val splits since it doesn’t
contain a validation split in the release. For the training dataset, we randomly subsample
and use 2500 samples from each task for training.
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Table 4. VII. Final hyperparameters for all compared approaches on the CIFAR
and Imagenet benchmarks. LR refers to the learning rate hyper-parameter

Method Parameter CIFAR-100 IMAGENET

Single Multiple Single Multiple

ER LR 0.03 0.03 0.1 0.1
Epochs/Glances 10 10 10 10

IID LR - 0.03 - 0.01
Epochs/Glances - 50 - 50

iCarl LR 0.03 0.03 0.01 0.01
Epochs/Glances 2 10 2 10

GEM LR 0.03 0.03 0.03 0.03
Epochs/Glances 2 10 2 10

AGEM LR 0.03 0.03 0.01 0.01
Epochs/Glances 2 10 2 10

MER LR α 0.1 - 0.1 -
LR β 0.1 - 0.1 -
LR γ 1 - 1 -

Epochs/Glances 10 - 10 -

Meta-BGD η 50 50 50 -
std-init 0.02 0.02 0.02 -
βinner 0.1 0.1 0.1 -

mc-iters 2 2 2 -
Epochs/Glances 3 10 3 -

C-MAML α 0.03 0.03 0.03 0.03
β 0.03 0.03 0.03 0.03

Epochs/Glances 5 10 2 10

Sync-La-MAML α0 0.1 0.1 0.075 0.075
β 0.1 0.1 0.075 0.075
η 0.3 0.3 0.25 0.25

Epochs/Glances 5 10 2 10

La-MAML α0 0.1 0.1 0.1 0.1
η 0.3 0.3 0.3 0.3

Epochs/Glances 10 10 2 10
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Table 4. VIII. Final hyperparameters used for our variants on the MNIST benchmarks

Method Parameter Permutations Rotations Many

C-MAML α 0.03 0.1 0.03
β 0.1 0.1 0.15

Glances 5 5 5

Sync-La-MAML α0 0.15 0.15 0.03
β 0.1 0.3 0.03
η 0.1 0.1 0.1

Glances 5 5 10

La-MAML α0 0.3 0.3 0.1
η 0.15 0.15 0.1

Glances 5 5 10
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Chapter 5

Conclusion

We introduced La-MAML, an efficient meta-learning algorithm that leverages replay to avoid
forgetting while learning new tasks. It favors positive backward transfer by learning the
weights and LRs in an asynchronous manner, guided by the interplay across old and new
tasks. It is capable of learning online on a non-stationary stream of data and scales to larger-
scale vision problems. We conducted experiments on benchmarks of varying complexity and
differently constrained setups. The presented results demonstrate superior performance of
our algorithm against the state-of-the-art across both the Single and Multiple-Pass setups,
which present a unique set of challenges to a continual learning system. We also showed
that our method does not require extensive tuning unlike many meta-learning algorithms
and is relatively robust since it is fairly insensitive of one of the two hyper-parameters in the
algorithm. As mentioned before, this is desirable in continual or non-stationary learning,
since we can’t tune learning rate schedules beforehand.

In the future, more work on analysing and producing good optimizers for continual learn-
ing is needed, since many of our standard go-to optimizers like Adam [18] are primarily aimed
at ensuring faster convergence in stationary supervised learning setups. An interesting di-
rection is to explore how the connections to meta-descent that we described in Section 3.2.2,
can lead to more stable training procedures for meta-learning in non-stationary settings.



References

[1] Tiny-imagenet. https://tiny-imagenet.herokuapp.com/.
[2] Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch, and Pieter Abbeel. Con-

tinuous adaptation via meta-learning in nonstationary and competitive environments. In International
Conference on Learning Representations, 2018.

[3] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with a
network of experts. pages 7120–7129, 07 2017.

[4] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for
online continual learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 11816–11825. Curran
Associates, Inc., 2019.

[5] Rahaf Aljundi, Marcus Rohrbach, and Tinne Tuytelaars. Selfless sequential learning. In International
Conference on Learning Representations, 2019.

[6] Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank Wood. Online
learning rate adaptation with hypergradient descent. In International Conference on Learning Repre-
sentations, 2018.

[7] Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek Alahari. End-
to-end incremental learning. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 233–248, 2018.

[8] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient lifelong
learning with a-GEM. In International Conference on Learning Representations, 2019.

[9] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K. Doka-
nia, Philip H. S. Torr, and Marc’Aurelio Ranzato. On Tiny Episodic Memories in Continual Learning.
arXiv e-prints, page arXiv:1902.10486, February 2019.

[10] Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, and Marcus Rohrbach. Uncertainty-guided con-
tinual learning with bayesian neural networks. In International Conference on Learning Representations,
2020.

[11] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 1126–1135. JMLR. org, 2017.

[12] Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey Levine. Online meta-learning. In Ka-
malika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 1920–1930, Long
Beach, California, USA, 09–15 Jun 2019. PMLR.

https://tiny-imagenet.herokuapp.com/


[13] Robert French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3:128–
135, 05 1999.

[14] James Harrison, Apoorva Sharma, Chelsea Finn, and Marco Pavone. Continuous meta-learning without
tasks, 2020.

[15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. 03 2015.
[16] Khurram Javed and Martha White. Meta-learning representations for continual learning. In Advances

in Neural Information Processing Systems, pages 1818–1828, 2019.
[17] Ghassen Jerfel, Erin Grant, Tom Griffiths, and Katherine A Heller. Reconciling meta-learning and con-

tinual learning with online mixtures of tasks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
9122–9133. Curran Associates, Inc., 2019.

[18] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International Conference
on Learning Representations, 12 2014.

[19] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming cat-
astrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–
3526, 2017.

[20] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in neural net-
works. Proceedings of the National Academy of Sciences, 114(13):3521–3526, 2017.

[21] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.
[22] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning

through probabilistic program induction. Science, 350(6266):1332–1338, 2015.
[23] Lei Le, Raksha Kumaraswamy, and Martha White. Learning sparse representations in reinforcement

learning with sparse coding. In Proceedings of the 26th International Joint Conference on Artificial
Intelligence, IJCAI’17, page 2067–2073. AAAI Press, 2017.

[24] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[25] Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. A neural dirichlet process mixture model
for task-free continual learning. In International Conference on Learning Representations, 2020.

[26] Z. Li and D. Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40(12):2935–2947, 2018.

[27] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for few-shot
learning. arXiv preprint arXiv:1707.09835, 2017.

[28] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In Ad-
vances in Neural Information Processing Systems, pages 6467–6476, 2017.

[29] James Mcclelland, Bruce Mcnaughton, and Randall O’Reilly. Why there are complementary learning
systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist
models of learning and memory. Psychological review, 102:419–57, 08 1995.

[30] Anusha Nagabandi, Chelsea Finn, and Sergey Levine. Deep online learning via meta-learning: Continual
adaptation for model-based RL. In International Conference on Learning Representations, 2019.

[31] Anusha Nagabandi, Chelsea Finn, and Sergey Levine. Deep online learning via meta-learning: Continual
adaptation for model-based rl. ArXiv, abs/1812.07671, 2019.

47



[32] Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual learning.
In International Conference on Learning Representations, 2018.

[33] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

[34] German Parisi, Ronald Kemker, Jose Part, Christopher Kanan, and Stefan Wermter. Continual lifelong
learning with neural networks: A review. Neural Networks, 02 2018.

[35] Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Hadsell. Con-
tinual unsupervised representation learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
7647–7657. Curran Associates, Inc., 2019.

[36] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In ICLR, 2017.
[37] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incre-

mental classifier and representation learning. In Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, pages 2001–2010, 2017.

[38] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, , and Gerald Tesauro.
Learning to learn without forgetting by maximizing transfer and minimizing interference. In Interna-
tional Conference on Learning Representations, 2019.

[39] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. ArXiv, abs/1606.04671,
2016.

[40] Levent Sagun, Utku Evci, V. Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical Analysis of the
Hessian of Over-Parametrized Neural Networks. arXiv e-prints, page arXiv:1706.04454, June 2017.

[41] Jürgen Schmidhuber. Evolutionary principles in self-referential learning. 1987.
[42] Nicol Schraudolph. Local gain adaptation in stochastic gradient descent. 06 1999.
[43] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic forget-

ting with hard attention to the task. In Jennifer Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 4548–4557, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[44] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages 2990–2999. Curran Associates,
Inc., 2017.

[45] Harkirat Singh Behl, Atılım Günes, Baydin, and Philip H. S. Torr. Alpha MAML: Adaptive Model-
Agnostic Meta-Learning. arXiv e-prints, page arXiv:1905.07435, May 2019.

[46] Sebastian Thrun and Lorien Pratt, editors. Learning to Learn. Kluwer Academic Publishers, USA, 1998.
[47] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong Learning with Dynamically

Expandable Networks. arXiv e-prints, page arXiv:1708.01547, August 2017.
[48] Ya-xiang Yuan. A review of trust region algorithms for optimization. ICM99: Proceedings of the Fourth

International Congress on Industrial and Applied Mathematics, 09 1999.
[49] Chen Zeno, Itay Golan, Elad Hoffer, and Daniel Soudry. Task Agnostic Continual Learning Using Online

Variational Bayes. arXiv e-prints, page arXiv:1803.10123, Mar 2018.

48


	Sommaire
	Summary
	Contents
	List of tables
	List of figures
	Dédicaces
	Chapter 1. Introduction
	Chapter 2. Background
	2.1. Preliminaries
	2.1.1. Meta-learning
	2.1.1.1. Model-Agnostic Meta-Learning (MAML)

	2.1.2. Equivalence of Meta-Learning and Gradient Alignment Objectives
	2.1.3. Online-aware Meta-Learning (OML)

	2.2. Taxonomy
	2.3. Related work
	2.3.1. Distillation-Based Approaches
	2.3.2. Replay-Based Approaches
	2.3.3. Regularisation-Based Approaches
	2.3.4. Meta-Learning-Based Approaches
	2.3.5. Expansion-Based Approaches


	Chapter 3. Proposed approach
	3.1. C-MAML
	3.1.1. Equivalence of Objectives

	3.2. La-MAML
	3.2.1. Hypergradient Derivation for La-MAML
	3.2.2. Connection to Work Outside Continual Learning


	Chapter 4. Evaluation
	4.1. Experimental Setup
	4.1.1. Baselines

	4.2. Quantitative Results
	4.2.1. Continual learning benchmarks
	4.2.2. Real-world classification
	4.2.3. Evaluation of La-MAML's learning rate modulation

	4.3. Qualitative Analysis
	4.3.1. Inter-Task Alignment
	4.3.2. Robustness
	4.3.3. Timing Comparisons
	4.3.4. Qualitative Comparison with Prior Work

	4.4. Experimental Details

	Chapter 5. Conclusion
	References

