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Abstract

The work in this thesis is separated into two parts. The first part deals with the load planning
and sequencing problem for double-stack intermodal railcars, an operational problem found
at many rail container terminals. In this problem, containers must be assigned to a platform
on which the container will be loaded, and the loading order must be determined. These
decisions are made with the objective of minimizing the costs associated with handling the
containers, as well as minimizing the cost of containers left behind. The deterministic version
of the problem can be cast as a shortest path problem on an ordered graph. This problem is
challenging to solve because of the large size of the graph. We propose a two-stage heuristic
based on the Iterative Deepening A* algorithm to compute solutions to the load planning
and sequencing problem within a five-minute time budget. Next, we also illustrate how a
Deep Q-learning algorithm can be used to heuristically solve the same problem.

The second part of this thesis considers sequential models in deep learning. A recent
strategy to circumvent the exploding and vanishing gradient problem in recurrent neural
networks (RNNs) is to enforce recurrent weight matrices to be orthogonal or unitary. While
this ensures stable dynamics during training, it comes at the cost of reduced expressivity
due to the limited variety of orthogonal transformations. We propose a parameterization
of RNNs, based on the Schur decomposition, that mitigates the exploding and vanishing
gradient problem, while allowing for non-orthogonal recurrent weight matrices in the model.

Key words: Intermodal rail terminal, containers, rail, train, double-stack, load planning
and sequencing, dynamic programming, deep reinforcement learning, sequential modelling,
recurrent neural networks, exploding and vanishing gradient problem
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Sommaire

Le travail de cette thèse est divisé en deux parties. La première partie traite du problème de
planification et de séquencement des chargements de conteneurs sur des wagons, un prob-
lème opérationnel rencontré dans de nombreux terminaux ferroviaires intermodaux. Dans
ce problème, les conteneurs doivent être affectés à une plate-forme sur laquelle un ou deux
conteneurs seront chargés et l’ordre de chargement doit être déterminé. Ces décisions sont
prises dans le but de minimiser les coûts associés à la manutention des conteneurs, ainsi
que de minimiser le coût des conteneurs non chargés. La version déterministe du problème
peut être formulé comme un problème de plus court chemin sur un graphe ordonné. Ce
problème est difficile à résoudre en raison de la grande taille du graphe. Nous proposons
une heuristique en deux étapes basée sur l’algorithme Iterative Deepening A* pour calculer
des solutions au problème de planification et de séquencement de la charge dans un budget
de cinq minutes. Ensuite, nous illustrons également comment un algorithme d’apprentissage
Deep Q peut être utilisé pour résoudre heuristiquement le même problème.

La deuxième partie de cette thèse examine les modèles séquentiels en apprentissage pro-
fond. Une stratégie récente pour contourner le problème de gradient qui explose et disparaît
dans les réseaux de neurones récurrents (RNN) consiste à imposer des matrices de poids
récurrentes orthogonales ou unitaires. Bien que cela assure une dynamique stable pendant
l’entraînement, cela se fait au prix d’une expressivité réduite en raison de la variété limitée
des transformations orthogonales. Nous proposons une paramétrisation des RNN, basée sur
la décomposition de Schur, qui atténue les problèmes de gradient, tout en permettant des
matrices de poids récurrentes non orthogonales dans le modèle.

Mots-clés: Transport ferroviaire intermodal, conteneurs, planification et séquencement des
chargements, programmation dynamique, apprentissage par renforcement profond, modéli-
sation séquentielle, réseaux de neurones récurrents
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Part 1

The Load Planning and Sequencing Problem



Chapter 1

Introduction: The Load Planning and Sequencing
Problem

Rail transportation of containerized cargo is a sustainable mode, being both environmentally
friendly and cost effective, for long-distance ground transportation of containers inland for
the North American market. The number of containers shipped via rail has been growing
consistently since 2016, to more than 30 million containers in 2018. Double-stack railcars,
introduced in 1984 in North America, allow for twice as many containers to be shipped,
making rail an efficient mode of long-distance ground container transportation. Crucial to
the continued growth of rail transportation is the efficient operation of rail terminals, wherein
containers are loaded and offloaded from railcars.

The load planning and sequencing problem (LPSP) is the focal point of this work. It
jointly considers the assignment of containers to platforms and the sequence of operations
to place containers on platforms such that the value of containers loaded onto the plat-
forms is maximized, and the cost of handling containers is minimized. The selection of
containers must meet constraints defined by the railcar specifications and weight distribu-
tion requirements defined by guides from the Association of American Railroads (AAR).
This combinatorial optimization problem was first introduced by [67] and modeled as an
integer linear program (ILP) and solved with a commercial solver.

In this part of the thesis, our objective is to cast the problem as a shortest path problem
and solve it through dynamic programming. We aim to achieve a solution within a limited
time budget of 5 minutes, which is much shorter than the time it takes to solve the ILP
formulation. The problem is challenging due to the large size of the state and action spaces.
We propose several heuristics based on the Iterative Deepening A* (IDA*) algorithm and
we derive a lower bound (LB). We also illustrate how deep reinforcement learning (DRL)
techniques can be used to solve the LPSP.

Context on the LPSP is presented in Section 1.1, and Section 1.2 provides a high-level
background on the methodologies we use. Chapter 2 contains the article reporting on the
proposed heuristics and Chapter 3 presents the DRL algorithm.



1.1. Rail Transportation of Containerized Cargo

We present several aspects that are important to rail transportation of containers. We
begin by discussing the containers themselves, and follow up with discussion of railcars,
platforms and the rules constraining the placement of containers on platforms. Finally, the
terminal and handling equipment are discussed.

1.1.1. Containers

Containers are critical to the growth of rail transportation world wide. They are defined
by several characteristics, namely height, length, weight and type. When considering the
type of container, there exist dry containers, meaning those that are closed, non-refrigerated,
and carrying dry materials. Additionally, there are containers which carry liquids, danger-
ous goods and those that require power sources to refrigerate their contents. Among dry
containers, which are most common, there are 6 distinct sizes:

• 20-foot standard (20’ - 8’ - 8’6"),
• 40-foot standard (40’ - 8’ - 8’6"),
• 40-foot high cube (40’ - 8’ - 9’6"),
• 45-foot high cube (45’ - 8’ - 9’6"),
• 48-foot high cube (48’- 8’ - 9’6"),
• 53-foot high cube (53’- 8’ - 9’6").

The 48-foot and 53-foot containers are only present in the domestic North American market.
Most of these containers can be stacked on top of each other, on ships, in terminals and
on railcars. However there do exist some containers with soft walls, or rules regulating
how a container carrying dangerous goods can be handled which limit the ability to stack
containers.

1.1.2. Railcars, Platforms and Slots

The double-stack intermodal railcar allows for roughly twice as many containers to be
carried on a single railcar than a single-stack railcar. This doubling of load is critical to the
efficient transportation of containers, and the growth of transportation via rail in the North
American market. A train is comprised of several railcars, which are in turn comprised of
platforms. Each railcar is characterized by the number and length of its platforms and by
the loading patterns that determine the lengths of the containers that can be placed on each
platform. A double-stack railcar has platforms on which containers can be placed on the
bottom slot, and on the top slot. Platforms are defined by their length, weight, carrying
capacity, as well as position in a railcar. An example of a double-stack train, loaded with
containers is shown in Figure 1.1.
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Figure 1.1. A double-stack train composed of several railcars, loaded with containers

1.1.3. Intermodal Container Terminals

Container terminals exist at the interface of two modes of transportation. At these
locations, containers are removed from one mode of transportation, then stored or loaded
directly onto another mode of transportation. The two most common types of terminals are
maritime terminals, where ships interface with ground transportation, and inland terminals
where containers are shifted from one mode of ground transportation to another, for example
from truck to rail.

When a container is stored, it is placed in a storage yard, an area of the terminal where
containers are often stacked, to some maximum height, for short term storage. A row of
stacked containers is called a lot, which are generally organized by container length, such
that each lot is comprised of uniform stacks. The containers in the storage area are typically
organized by container destination, such that each zone of the storage area has containers
going to the same destination, and as such can be loaded onto the same group of railcars.
Along with the storage area, terminals have designated areas for both unloading and loading
of transportation vehicles.

1.1.4. Handling Equipment

Moving containers within a terminal is done by one of two types of equipment: the gantry
crane or the reach stacker, shown in Figure 1.2 and Figure 1.3 respectively. Each of these
types of handling equipment is characterized by the maximum weight they can carry, as well
as which containers can be reached at any given time in the storage area. Briefly, the gantry
crane can lift any container off the top of any stack, while the reach stacker can only lift
the top container of a stack if it is visible from the side of the storage area from which the
container is being reached, and within three rows from the foremost container in that lot.
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The gantry crane offers many more options for which containers can be lifted at any time.
Indeed, any container that can be lifted by the reach stacker can also be lifted by a gantry
crane.

Figure 1.2. A gantry crane loading a container onto a railcar

Figure 1.3. A reach stacker holding a container

1.1.5. The Load Planning and Sequencing Problem

Central to the viability of rail transportation are efficient operations at the terminals.
The LPSP, first introduced by [67], is important to the operations, seeking the exact sequence
and positions in which the containers will be loaded. The LPSP considers the fine details of
the operations, as it addresses the handling cost, accounting for each container movement
as well as wear and tear on the equipment. Generally, the objective of the LPSP is to load
at minimum cost, for a given destination, as many containers as possible onto a sequence
of railcars, until no more containers remain in the storage yard, or there are no more slots
available on the railcars. As such, the best solutions to the LPSP are either to leave no
slot unfilled while having containers remaining in the storage area, or to have no containers
remaining in the storage area. The problem is defined by the layout of containers in the
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storage area, the railcars available to be loaded as well as the handling equipment available
to perform the loading actions.

One can consider the deterministic LPSP or the stochastic LPSP. In the deterministic
case, changes to the layout of the storage area are perfectly known. Here, either containers
do not arrive during the loading procedure, or containers do arrive, but the exact time of
arrival and placement are known. In the stochastic case, containers can arrive during the
loading procedure, and the exact time and placement of the arriving containers in the storage
area are not known with certainty when the loading starts. We consider the deterministic
LPSP and exclude the arrival of additional containers during loading.

1.2. Methodologies

In this section, we provide high-level background on the methodologies presented in
Chapters 2 and 3 to solve the LPSP. We recall that our objective is to reformulate the LPSP
that was introduced by [67] as a shortest path problem on an ordered graph. Hence, we
change the solution approach from integer programming to dynamic programming. We open
with an introduction to dynamic programming and follow with a brief discussion on heuristic
solution methods.

1.2.1. Introduction to Dynamic Programming

We define a general deterministic sequential decision-making problem, which corresponds
to a shortest path problem [7]. Time is discretized into time intervals or stages indexed by
t = 1, . . . , T . At each t, the state of the system st ∈ St is observed and an action at ∈ A(st) is
taken, incurring a cost/negative reward Gt(st,at). The terminal cost is denoted GT (sT ). The
state transitions from st to st+1 according to the transition function through st+1 = ft(st,at).
For a given initial state s0, the sequential decision-making problem is defined by

min
a0,...,aT−1

GT (sT ) +
T−1∑
t=0

Gt(st,at)

subject to at ∈ A(st), st+1 = ft(st,at), for t = 1, . . . , T − 1. We denote an admissible policy
with π = {a0, a1, . . . , aT−1}. Further, we can define the recursive dynamic programming
equation (also called the Bellman equation) as

vt(s) = min
a∈A(s)

{Gt(s,a) + vt+1(ft(s,a))} , ∀s ∈ St, t = T − 1,T − 2, . . . ,0 (1.1)

with vT (s) = GT (s), ∀s ∈ ST . We also define the state-action value, the so-called Q-factor,
for a given state st and an action at following a policy π as

qt,π(st,at) = Gt(st,at) + vt+1,π(ft(st,at)). (1.2)
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Due to the curse of dimensionality, it is only possible to solve (1.1) exactly for fairly small
size problems. Therefore, there exist a wide range of heuristics that have been proposed
in the optimal control (e.g., [7]) and reinforcement learning (e.g., [77]) literatures. While
these two fields use different vocabularies, their methods have deep commonalities and a
recent textbook is devoted to this topic [8]. Chapter 2 proposes algorithms rooted in the
optimal control literature whereas Chapter 3 illustrates the application of an algorithm
stemming from the reinforcement learning literature. In the following section, we present
background on the latter. We note that we use the reinforcement learning vocabulary, but
that similar techniques are described using a slightly different vocabulary in the contexts of
approximate dynamic programming [64] or neuro-dynamic programming [9]. Reference [8]
provides translations between reinforcement learning and optimal control vocabulary.

1.2.2. Artificial Neural Networks and Deep Reinforcement Learning

We begin by presenting a brief and high-level overview of function approximation in
reinforcement learning. Next, we discuss artificial neural networks (ANNs) which are used
as function approximators in DRL. Finally, we present some common techniques used in
DRL.

ANNs are a common form of nonlinear function approximators. They have the property
of being universal function approximators [26], which allows them to approximate any func-
tion. We leverage this to have an ANN approximate the action-value function. An ANN is
comprised of several interconnected units which are modelled to have properties similar to
neurons, a component of the nervous system. These units are organized into layers, which
have linear weights, describing the strength of their connections. Additionally, each unit
comprises a nonlinear activation function generating its final output. The output of unit i
in layer l is defined as

ai(xl−1) = f(W l
i,:x

l−1 + bli) (1.3)

where W l
i,: is a row of the connection weight matrix, bli is the ith bias value in the current

layer, xl−1 is the input into layer l, and f is the nonlinear activation function. This can be
repeated for each unit in the lth layer, which can act as the input into the (l + 1)th layer.

The outputs of the ANN are compared with the observed labels via a loss function which
measures the difference between the predicted and the target outputs. The loss function
is selected depending on the type of problem being solved. For example, mean squared
error loss is often used when working with scalar regression models, while cross-entropy
loss is frequently used for classification models. The choice of loss function is up to the
designer of the model, but it is necessary for the loss function to be differentiable, to allow
for updates to be made to the weights and biases of the network. We define a loss function,
L(g(xj; θ), yj), where g(xj; θ) is the output of the network, based on input xj and current
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weights and biases, θ, and yj is the target output label for input xj. Consider a dataset
D = {(x1,y1), (x2, y2),..., (xn, yn)}, drawn from some distribution generated by pdata. We
would like to minimize the expected loss over the underlying distribution, a value called
risk:

J∗(θ) = E(x,y)∼pdata
L(f(x; θ),y), (1.4)

with respect to θ.
However, since we do not have the data generating probability distribution, pdata, the true

risk cannot be minimized, as we only have the sample D, whose empirical distribution is
p̂data. Thus, we minimize the expected loss over the available dataset known as the empirical
risk:

Ĵ(θ) = E(x,y)∼p̂data
L(f(x; θ),y). (1.5)

In order to minimize the loss over the dataset, we update the weights and biases of each
layer via backpropagation. In backpropagation, the derivative of the empirical risk over the
dataset is computed with respect to each weight and bias of the ANN and these derivatives
are used to update the values of the weights and biases using gradient descent as shown in
(1.6).

θt+1 ← θt − ηOĴ(θt) (1.6)

Generally, this updating procedure is performed over minibatches of the dataset rather
than the full dataset, leading to stochastic gradient descent (SGD).

Convolutional neural networks (CNNs) are specialized for working with higher-
dimensional data arranged spatially, such as images [41]. While CNNs were initially
designed for visible images, they have been extended to handle higher-dimensional data,
for instance that generated by magnetic resonance and by computational topography in
medicine, with networks based on 3-D convolutional layers. We make use of CNNs in this
work to attend to the 3-D aspects of the LPSP.

Having discussed ANNs and their ability to be universal function approximators, we
move on to their application in the realm of DRL. They differ in what exactly they are used
to approximate, either the value function or the action-value function or both of them. In
DRL, the agent interacts with the environment, creating a dataset on which the agent is
trained, based on its behaviour. The objective in DRL is learning which actions an agent
should take in an environment to maximize rewards. The labels in DRL are not the correct
output but a model’s approximation to the actual output based on its own experience and
parameters. Moreover, the algorithms in DRL aim to improve the reward attained by the
agent, rather than just better approximate the value functions. This fundamental difference
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leads to algorithms designed to maximize the expected reward that an agent will attain
during the training procedure.

Learning policies in DRL can be broken into two distinct types: on-policy and off-policy
learning. As described by [77], on-policy learning occurs in methods which attempt to
evaluate or improve the policy which makes decisions, whereas off-policy learning occurs in
methods which attempt to evaluate or improve a policy which is different from the one used
to generate the data. Learning in off-policy based methods allows for the use of trajectories
and data that were created following a different policy than the current one. An important
characteristic of off-policy learning is sample-efficiency, since it can make use of experiences
generated using a different policy from the one currently defined by the network.

In Chapter 3, we consider deep Q-learning, which uses a deep Q-network (DQN) to esti-
mate the action-value function for the LPSP. The DQN is trained using an algorithm called
deep Q-learning with experience replay. The idea behind the deep Q-learning algorithm is to
estimate the action-value function using the Bellman equation (1.2) as an iterative update
(over iterations indexed by i). In the vocabulary and notation of reinforcement learning, this
is expressed as follows:

Qi+1(s,a) = E[r(s,a) + γ max
a′∈A(s′)

Qi(s′,a′)|s,a], i = iterative update (1.7)

where Qi(s, a), r(s,a) and γ are respectively the Q-factor at iterate i, the observed reward
from taking action a in state s and the discount factor. Moreover, s′ and a′ are the next
stage state and actions. The discount factor controls the importance of future rewards to
the model. While the LPSP itself is best represented in an undiscounted environment, the
discount factor can help to improve stability during training. We use r and max here rather
than the previous notation to match the notation found in DRL, where the outcome from
taking an action in an environment is typically called the reward, which one aims to maximize
rather than minimize, in contrast to costs. Here, the action-value function is updated each
step taken in the environment. Thus, the action-value function Qi+1 uses the previous
iterations action-value function, Qi, to estimate of the following state s′ and actions, A(s′).
After each step and action taken in the environment, the action-value function is updated.

To do this, we sample experiences through an experience replay. Experience replay is
a technique which makes use of a memory of past states, actions and rewards. Those are
sampled randomly to train the network and update the parameters, thereby decorrelating
the data used to train the network, and smoothing the training distribution over many past
behaviours. The experience replay also discards the need to develop a probabilistic model
of the system, but can lead to ovefitting to the history of the agent. Since experiences are
sampled from a memory, they are likely to be generated using a model defining a different
policy than the current model. As such, this method is an example of off-policy learning.
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As a high-level description, we use the Q-network, Q(s,a; θ), with parameter vector θ,
and calculate the loss as follows

L(θ) = Es,a∼p[(y −Q(s,a; θ))2] (1.8)

where p is a probability distribution over the behaviours saved in the experience memory.
We draw from the experience memory st, at, rt, st+1, recall that st+1 = f(st, at), and define
the label using (1.7) and (1.9)

y =

rt if st+1 is terminal
rt + γmaxa′ Q(st+1,a

′; θ) otherwise.
(1.9)

The following specific challenges must be met in an application of DRL: ensuring adequate
exploration of the environment, managing instability during the training process, for example
stemming from bootstrapping.
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2.1. Introduction

Rail transportation is a critical component of intermodal transportation in North Amer-
ica, providing an efficient yet flexible means to transport goods. In the U.S., intermodal
rail volume has grown from 9 million containers in 2000 to 13.7 million containers in 2017.
Containers accounted for 92 percent of intermodal transportation volume in 2017 according
to [4], partly due to the fact that they can be double-stacked, which increases efficiency
of transporting goods. While these large increases in volumes have been gained, efficient
terminal operation is an important factor for this growth.

Central to intermodal rail transportation is the loading of containers onto railcars. This
paper is devoted to this problem. As defined by [67], given a set of containers in a rail
terminal, and a set of railcars to be loaded, one must jointly determine the assignment
of containers to railcar platforms as well as a sequence of handling operations placing the
containers such that the commercial value of the train is maximized and the cost of handling
the containers is minimized.

Typically, the problem is divided into two separate problems, the load planning problem
(LPP) and the load sequencing problem (LSP), which are solved sequentially as shown in
[63]. In the LPP, a set of containers is chosen to maximize the commercial value of a train
and the output is the load plan which indicates the position of each container on the train.
The LSP then uses the load plan to determine a sequence of operations which minimizes
the costs of handling operations when loading the containers. When solved sequentially, the
solution to the joint problem can be poor. This can be alleviated by taking into account
that there can be many optimal solutions to the LPP.

Double-stack intermodal railcars have only recently become a focus of research. Reference
[53] proposed a model with several container and railcar types which include double-stacking
railcars but specifically focus on the LPP. Reference [67] extend this work by introducing the
LPSP. They solve the problem using a commercial integer linear programming (ILP) solver,
but this solution approach does not scale well to large problem instances, or to problems
considering the distance travelled by the handling equipment. They show that solution
quality can be improved compared to a sequential solution approach.
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In this work we adopt a different solution approach. We cast the LPSP as a shortest path
problem on a directed graph with the aim to propose heuristics that can provide high-quality
solutions to the real-size LPSP in short computing time.

The contributions of this paper are as follows:
• The deterministic LPSP for double-stack intermodal railcars is formulated as a se-
quential decision-making problem.
• We propose a two-stage heuristic that combines beam search with depth-first search.
It produces high-quality solutions in less than 5 minutes.
• We prove that a lower bound (LB) can be computed by solving a relaxation of
the problem following a greedy policy. We leverage the LB in the proposed search
heuristics.
• We compare the quality of different distance functions at approximating the true cost.
The results show that considering the distance travelled in one direction provides a
good approximation to the total cost.

The paper is structured as follows: the next section describes the LPSP problem. Sec-
tion 2.3 provides an overview of related work. We present the formulation in Section 2.4.
The proposed heuristics are outlined in Section 2.5. An extensive numerical study is reported
in Section 2.6. Finally, Section 2.7 provides concluding remarks and outlines some directions
for further research.

2.2. The Load Planning and Sequencing Problem for Double-Stack
Intermodal Trains

The LPSP is found at many container terminals and arises when one must load containers
onto a vehicle. Here we focus on the LPSP found at rail terminals as described by [67]. In
this problem containers are loaded onto a train and we do not explore additional complexities
such as having containers off-loaded from trains or trucks during the same time period. The
problem considers the handling equipment used at the terminal, the layout of the container
storage in the terminal as well as the loading constraints related to the vehicle and container
characteristics. In the problem, a sequence of T − 1 container movements by a single given
handling equipment is selected. At each time step t < T a container is paired with a slot on
a platform, or a container is double touched, which removes the container from the storage
area but does not place it onto a platform.

Intermodal rail terminals are divided into several distinct areas based on their activities.
An overview of the areas in a railroad container terminal is shown in Figure 2.1. Containers
can arrive by truck, vessel or rail to the unloading operation area and are transferred to
the storage area. Handling equipment then organizes all containers in the storage area into
stacks with some maximum height. We denote the set of all containers in a problem as
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C = {c1, . . . ,c|C|}. A train is composed of several railcars, R = {r1, . . . , r|R|}, which are
in turn composed of one to five platforms. We define the sequence of all platforms in the
problem as P = {p1, . . . , p|P |}. Each platform has 2 slots, thus we define the set of all slots
as Q = {q1

b , q
1
t , . . . , q

|P |
b , q

|P |
t }, where b refers to the bottom slot, and t to the top slot, and

the numerical index refers to the platform number. When a train is ready to be loaded,
containers are taken from the storage area, one at a time, by the handling equipment, h,
and placed in their assigned location on the train. In the context of this paper, the side of
the storage area closest to the unloading operation area is considered the back side of the
storage area, while the side closest to the train operation area is considered the front side.

Figure 2.1. An overhead view of the railroad container terminal considered (taken from
[67])

The retrieval of containers from the storage area is generally governed by the layout of
the storage area and the handling equipment. Container placement is constrained by the
placement of previous containers, the rules of placement for a given railcar, and the rules of
placement for specific container types.

We consider the deterministic form of the LPSP, where the location of all containers is
known, and additional containers are not placed in the storage area during the sequence of
operations.

2.2.1. Retrieving Containers from the Storage Area

The storage area is a structured environment with each container’s position indicated by
x, y and z coordinates. The area is organized into lots, where each contains several stacks of
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containers, represented by the x coordinate in Figure 2.1. The y coordinate indicates which
row the container is in, where y = 1 indicates the first row next to the train. The z coordinate
indicates the vertical position of a container. Stacks in a lot are limited to a certain height,
in our application three containers. We also assume that containers are sorted by their
destinations into separate sections of the storage area. Hence, all containers in a single
problem instance can be loaded onto the same sequence of railcars which are also assumed
to be going to the same destination. We define the position of a container c as (xc, yc, zc).
We define the position of platform p as (xp, yp,0). We also define the position of platform p’s
bottom slot qb as (xqb

, yqb
, zqb

) = (xp, yp, 1) and top slot qt as (xqt , yqt , zqt) = (xp, yp,2).
In order for a container to be retrieved, it must be accessible by the handling equipment

available in the terminal. Handling equipment in railroad container terminals is generally
one of two types, a gantry crane or reach stacker, both shown in Figure 2.2. Each type has
its own set of rules determining which containers can be reached given a layout of containers
in a storage area. For a gantry crane, the rule is simple, if the container is the top container
on any given stack, it can be retrieved. However, the rules for a reach stacker are somewhat
more involved.

Figure 2.2. Schematic designs of gantry cranes and reach stackers
A reach stacker retrieves containers from the storage area by lifting a container from

the top while facing the container longest side. There are several rules determining when a
container can be reached by a reach stacker. It is capable of lifting only a subset of the top
containers and a summary of the forbidden loading operations can be found in Figure 2.3.
In this figure, the blocking container must be moved prior to the selected container. Case a)
is the only relevant case for the gantry crane, while cases a) through e) apply to the reach
stacker. As such, the top containers of stacks closest to the back or front side of the storage
area are reachable and the reach stacker is only capable of retrieving containers which are
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visible from either the front or back side of the storage area. Formally, for a container c with
position (xc, yc, zc) there cannot be a container c′ with xc′ = xc and zc′ = zc where yc < yc′

for the container to be reached from the front side of the storage area, or yc′ > yc to be
reached from the back side of the storage area.

The reach stacker is capable of reaching over one or two rows of containers to access
a container, so long as the desired container does not exceed the maximum weight which
depends on the number of rows being reached over by the reach stacker. We denote by mc

the weight of container c, θ1 the maximum container weight when reaching over one row of
containers, and θ2 the maximum container weight when reaching over two rows of containers.

Figure 2.3. Summary of forbidden loading operations for a reach stacker (adapted from
[67])

Given the layout of the storage area, it may be that one would like to retrieve a container
that cannot be accessed without first moving another container. Moving a container without
placing it onto a train is referred to as double touching and is often called reshuffling in the
literature. The container that is double touched can be placed onto a platform at a later time,
or left at the terminal. Since double touches entail additional costs and represent inefficiency,
they should be avoided whenever possible. However, double touches are sometimes necessary,
and with an appropriate allocation of cost, can be necessary to minimize the overall cost of
operations at a railroad terminal.

Handling containers is a source of cost in a container terminal. One of the objectives to
be minimized is the cost of handling the containers while loading a train. Handling costs
account for the number of containers handled, and the distance the handling equipment must
travel. As discussed previously, containers can be accessed from both the front and the back
side of the storage area. When accessing containers from the back of the storage area, a
reach stacker must perform a detour. In this case, the reach stacker must travel to the sides
of the storage region to both lift the container, and place it on a railcar platform.
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1-48’ 1-48’ 1-48’ 1-48’ 1-48’
1-53’1 1-53’1 1-53’1

Table 2.1. Example of an AAR Guide loading pattern

2.2.2. Assignment of Containers to Railcars

There are several factors determining which platform slots can receive containers in the
solution to the LPSP. The railcar platform one may place a container onto can be restricted
due to center of gravity constraints, maximum weight capacity of the platform, or load-
ing patterns associated with the railcar as described in [53]. Additionally, the restrictions
considered are the same as those considered in [67].

The containers found within the railroad terminal, C, are standardized containers. Each
container, c ∈ C, is characterized by its length, Lc (there are five distinct lengths used in
the North American market (20-foot, 40-foot, 45-foot, 48-foot, and 53-foot), by its height,
hc and by its weight, mc. There are six types of containers defined by [53] which can restrict
where a container can be placed. However, we only consider two types here, high-cube dry
containers, having a height of 9 feet 6 inches and low-cube dry containers, having a height of
8 feet 6 inches, both of which are standard six-sided containers. Finally, it is also assumed
that each container has a cost associated with not being loaded on the railcar, π. Note that
we do not handle 20-foot containers in our problem instances.

Intermodal trains are made up of a sequence of railcars. Each railcar r has an associated
cost of use τr. An intermodal railcar is in turn made up of a number of platforms, where the
set of all platforms associated with r are denoted Pr. Each platform p ∈ P , is characterized
by its length, Lp, weight capacity, gp and tare weight, mp. A railcar is also characterized
by a set of loading patterns, which each define the lengths of possible containers that can be
placed in each slot (top or bottom) for each platform on the railcar. A loading pattern can
also indicate that a container of a certain length can be placed in a position, if the positions
adjacent to that position are filled with containers beneath a certain length. For example,
Table 2.1 shows the loading patterns for a 5-platform railcar. The railcar can accept two

153 ft container in top slot of first, third and fifth platform only when maximum 40 ft container is loaded
in the top slots of second and fourth platform.
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20-foot containers, or a 40-foot container on the bottom slots of each platform. The top slot
of each platform can be filled with any container length up to 53 feet, but a 53-foot container
can only be placed on the first, third and fifth platform and still can only be placed there if
the adjacent top slots have a container with maximum length of 40 feet. Loading patterns
restrict where a container can be placed, and in doing so make the placement of containers
interconnected.

The placement of containers is also restricted by center-of-gravity (COG) restrictions
imposed on the set of double-stacked containers. As regulated by the AAR, the COG of
a fully loaded platform cannot exceed 98 inches at top of rail. Reference [53] provide a
formulation for the maximum weight of the container occupying the top slot of a double-
stacked platform, knowing the weight and height of the bottom container and the weight of
the platform. The COG restriction creates another manner in which the placement of future
containers is dependent on the placement of previous containers. Finally, each platform of a
railcar has a maximum weight capacity, which cannot be exceeded by the sum of the weights
of all containers loaded onto the platform.

In summary, the LPSP for double-stack intermodal railcars is defined with the objective
of minimizing the cost of unloaded containers, unused railcars and handling of containers at
the terminal. The loading depends on the location of the containers in the terminal and on
restrictions governing the assignment of containers to slots on railcars (e.g., COG constraints,
weight capacity of platforms and loading patterns of railcars). The solution to the problem
is defined as a sequence of handling operations wherein a container is moved either directly
to a given slot or is placed aside.

2.3. Related Literature

We begin by discussing the relevant literature to the LPSP for double-stack intermodal
railcars and outline the differences between existing works and what is considered in this
paper. The literature related to container handling problems in intermodal terminals is
abundant. Here, we focus on work closely related to our problem. For a detailed overview of
the related work we refer to [76, 75, 12, 13, 67]. Following this, we consider problems similar
to the LPSP which are solved through dynamic programming (DP). Next, we discuss the
literature addressing stochastic problems similar to the LPSP. Finally, we present studies
relevant to the heuristics described in this work.

Closest to our work is that of [67] who introduce the LPSP for double-stack intermodal
railcars. They compute solutions with an ILP solver with different distance functions. These
distance functions approximate the cost of travel as a constant, consider the distance covered
between the container and its target location, and the distance travelled in both directions,
from the handling equipments current position to the container, and from the container back
to the selected platform. We use the same distance functions here and these are introduced in
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Section 2.4.2. As opposed to their exact solution approach, we focus on designing heuristics
to solve larger instances in shorter time. Where possible, we compare our solutions with
their results.

There is a rich body of literature focused on solving different kinds of operational terminal
optimization problems through dynamic programming. Beam search is used by [38] to find
the joint solution to the placement and load sequencing of outbound containers at port ter-
minals. They focus on maximizing operational efficiency while satisfying loading constraints.
The researchers propose a method using filtered beam search to determine the number of
containers to select from each yard-bay and standard beam search to determine the loading
sequence of the containers. Their problem differs from ours in that the representation of the
ocean terminal is different from that of inland terminals which we consider.

The container load sequencing problem in ocean terminals is approached using a hybrid
DP algorithm by [10]. They define the container load sequencing problem as follows: given
an initial yard layout as well as a final layout of containers once loaded onto a ship, one must
determine the sequence of loading operations which minimizes container relocations. Sim-
ilarly, [71] consider the same problem as [10]. However they add an additional constraint,
based on the crane operator’s ability to see where they are placing a container based on
previously loaded containers. They propose an alternative solution using a greedy random-
ized adaptive search procedure. This differs from the problem here in that the cost only
considers container relocations and the final layout is given, making the problem closer to
the sequential solution of the LPP and the LSP.

The container marshalling problem is formulated as a sequential decision-making problem
in [31] and [32]. In this problem, a sequence of crane operations is created which selects
containers and moves them to their desired location within a storage area of a container
terminal. The problem aims to minimize the cost of moving containers from their initial
positions in a storage area of a terminal, to one of many given desired container layouts
for the storage area. Both the container load sequencing and the container marshalling
problem share similarities with the LPSP: Both must determine an ordering of container
movements while minimizing some handling cost and both problems are solved assuming
perfect information. However, they differ fundamentally from the LPSP in that in both
cases the desired location of containers is known before sequencing operations are selected.
As such, they are more similar to solving the LPP and LSP sequentially as in [63].

The Ship Stowage Planning Problem (SSPP) is formulated as a sequential decision-
making problem in [72]. The problem consists in optimizing the container loading sequence
and assignment of containers to slots on a vessel, while respecting weight constraints. As
in our problem, containers can be reshuffled (referred to as a double touch in this work).
Additionally, in both the LPSP and the SSPP weight constraints can impact where containers
can be placed based on previous container placement. Also, similar to the LPSP proposed
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here, the problem is purely deterministic, as the layout of the containers is known, and
unchanging throughout the solution. However, the two problems differ in many ways. First,
the SSPP focuses purely on minimizing handling costs, which are defined by the number of
times a crane must shift from yard to yard and the number of reshuffles required. In the
SSPP, contraints are only dictated by the container weights.

Since some heuristics proposed in this paper rely on beam search to find solutions to the
LPSP, we discuss beam search and its uses in considering container-terminal problems here.
Beam search was first described by [66]. It is now often used in combinatorial optimization
problems [85]. Moreover, it has been further expanded to focus specifically on combinatorial
optimization problems as in [17].

State space planning is a well-explored topic in optimization and DP, wherein a search
algorithm searches among states for solutions. Most state space planning methods are known
as heuristic search [77]. Heuristic search allows one to better explore very large state spaces by
focusing the search in regions where one expects to find a high-quality solution. Our work is
an example of heuristic search, which aims to handle larger search spaces in shorter amounts
of time, while dropping guarantees of optimality. Learning depth-first search (LDFS) [11],
combines DFS with learning a value function. Learning is used in this sense as the defini-
tion from [40] and [5], where state values are updated to make them consistent with their
successors. Reference [11] presents a unified approach for heuristic search mechanisms in
both deterministic and non-deterministic settings and constructs piecewise policies that be-
have optimally over distinct regions of the state space. In the deterministic setting, LDFS
corresponds to a variant of the A* algorithm, IDA*.

Although a number of problems related to container terminal operations have been for-
mulated as sequential decision-making problems, none attend to the LPSP for double-stack
intermodal railcars. We focus on this gap.

2.4. Mathematical Formulation

We begin by presenting the LPSP problem as a sequential decision-making problem
that can be solved through dynamic programming. We define the states, actions and state
transitions of the system. The time horizon T is discretized into a finite number of container
movements indexed by t = 1, . . . , T . Next, we present three cost functions. Finally, we
introduce a LB for the LPSP problem.

2.4.1. States and Actions of the LPSP

The state of the LPSP can defined as a vector s = (scpos, sd, sl, shpos) where
• scpos is a vector defined by the position of each container,
scpos = [(xc, yc, zc) ∀c ∈ C].
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• sd is a vector indicating whether each container has been double touched,
sd = [dc ∀c ∈ C]
• sl is a vector defined by whether each container has been loaded onto a platform,
sl = [lc ∀c ∈ C].
• shpos is a vector defined by the positions of the handling equipment, shpos = [(xh, yh)].

The number of states grows quickly with the number of containers and platforms in the
problem instance, as the number of dimensions which define the problem increase. Of course,
the number of states also grows when considering the position of the handling equipment.

At each time step t of the problem, an action at can be selected from A(st), which includes
either moving any reachable container onto any platform that does not violate constraints,
or double touching any reachable container. To represent these two types of actions, we
consider an action at = (c, p) to indicate moving a container c onto a platform p, and
at = (c, ∅) to indicate moving a container aside. Each of these leads to deterministic state
transition functions st+1 = f(st, at). We sometimes refer to st+1 as s′.

First, let us discuss how the state transitions when a container c is placed onto a platform
p. The state here is updated by having the container position updated to that of the platform
slot, which is the same as the platform, that is: (xc,yc, zc) = (xp,yp, z). We set z = 1 when
occupying the bottom slot, and z = 2 when occupying the top slot of the platform. The slot
occupied by the container is determined by the current occupancy of the platform. If the
bottom slot is unoccupied, the bottom slot is filled, whereas if the bottom slot is occupied,
the top slot is filled. When placing a container on a platform, all containers in the storage
area previously blocked by this container become reachable by the handling equipment.

Next, let us discuss how the state transitions when a container c is double touched,
defined as at = (c, ∅). Double touching a container updates the position of the container to
(xc, yc, zc) = (xc,0,0), and allows all containers previously unreachable due to container c to
be reached. Additionally, we set the double touched indicator for the container, dc = 1. Now
that the container has been double touched, it is reachable by the handling equipment from
this point onward, until such point that it is placed on a platform.

2.4.2. Cost

The objective of the LPSP is to find a policy {a0, a1, . . . , aT−1) that minimizes the total
cost for a given initial state s0 defined as

G∗ = min
a1,...,aT−1

T−1∑
t=1

Gt(st,at) +GT (sT ), (2.1)

where GT (sT ) = ∑
c∈C π(1− scl ) the terminal cost incurred by unloaded containers (scl equals

1 if c is loaded) and π is the cost per container. Moreover, the general form of the immediate

39



cost Gt(st,at) is

Gt(st,at) = ν + γ(at)η + w(at)τr + d(at)κ

+ [ζxDx(st, at) + ζyDy(st, at)]

+ [φxFx(st, at) + φyFy(st,at)] (2.2)

where:
• ν is the fixed cost of lifting a container.
• κ is the fixed cost of double touching a container.
• w(at) is an indicator function which takes the value 1 if a first slot is used on a railcar,
and 0 otherwise.
• τr is the cost of using railcar r.
• d(at) ∈ {0,1} is an indicator function which takes the value 1 if at time step t a
container is double touched, and 0 otherwise.
• η is the the cost of a detour to the back side of the storage area for the reach stacker.
• γ(at) is an indicator variable which takes the value 1 if at time step t a detour is
taken by the reach stacker to retrieve a container from the backside of the storage
area, and 0 otherwise.
• ζx and ζy are the costs of travelling with a container in the x and y direction respec-
tively.
• φx and φy are the costs of travelling without a container in the x and y direction
respectively.
• Dx(st, at) and Dy(st, at) are functions which determine the minimal Manhattan dis-
tance travelled between the container and its placement location while respecting the
ability of the handling equipment to travel through the storage area.
• Fx(st, at) and Fy(st, at) are functions which determine the minimal Manhattan dis-
tance travelled between handling equipment and the container to be lifted while
respecting the ability of the handling equipment to travel through the storage area.

It is important to note that the difficulty of the problem depends on how we incorporate
distance in the cost function. Consistent with [67], we therefore define three different cost
functions which model the distance cost with increasing levels of accuracy. We present the
0-way distance function, 1-way distance function and 2-way distance function which are
all special cases of (2.2). The 0-way distance function ignores distance cost, but has fixed
values for double touches and detours. The 1-way distance function considers the Manhattan
distance travelled from the container to its placement location, as well as adding a fixed cost
for detours. Finally, the 2-way distance function considers the Manhatten distance travelled
from the handling equipment’s starting position, to the container and from the container to
its placement location, but does not include a fixed cost for detours. The 1-way and 2-way
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Cost Function ν κ η ζx ζy φx φy
0-way distance 1 > 0 > 0 0 0 0 0
1-way distance 1 > 0 > 0 > 0 > 0 0 0
2-way distance 1 > 0 0 > 0 > 0 > 0 > 0

Table 2.2. Handling cost definition values for different distance functions

distance functions grow linearly with the distance the handling equipment must travel, while
0-way distance is a constant value depending on the container and placement location for
the container. The values for travelling costs of the handling equipment and names of the
cost functions are shown in Table 2.2.

The cost of leaving a container behind, π, is larger than the railcar usage cost, τr, and
is larger than the maximum handling cost when taking any action wherein a container is
placed onto a platform slot.

Due to the curse of dimensionality, only small problem instances can be solved with an
exact dynamic programming algorithm. We therefore propose heuristics which aim to find
good solutions to the LPSP in a reasonable time frame, while sacrificing the guarantee of
optimality.

2.5. Heuristics

We begin by introducing the LB for the LPSP in Section 2.5.1. In Section 2.5.2, we
propose a two-stage heuristic, using beam search in the first stage to find a good initial
solution. A second stage DFS improves this solution. Additionally, we present different
variants of the heuristic. The search space can also be limited to a preferred action space
defined using the problem structure, detailed in Section 2.5.3.

2.5.1. Calculation of a Lower Bound

The algorithms terminate once a maximum running time is reached, the space has been
fully searched, or when they find a solution which meets a LB. Additionally, we compare
solution values to the LB to assess their quality.

In order to compute a LB we consider a relaxed version of the LPSP that ignores both
weight and length constraints of containers and railcars. In other words, any container can
be placed onto any slot on any platform, so long as that slot is not occupied.

The minimum cost for the relaxed problem is achieved by minimizing handling costs
while loading as many containers as possible. In short, it never reduces the total cost to
leave a slot open when a container can be placed in that slot.

We demonstrate that a greedy algorithm, as shown in Algorithm 1, produces an optimal
solution for all distance functions to the relaxed problem, in cases where the first lot is
aligned with the first platform and lots are filled in order from the first lot along the train.
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Algorithm 1 Greedy Algorithm for Calculating LB
Greedy(σ(S,A))

1: G = 0
2: while σ(S,A) is not terminal do
3: gmin =∞

% C(s) is the set of all reachable containers in state s
% P (s) is the set of all unfilled platforms in state s

4: for all c ∈ C(s) do
5: for all p ∈ P (s) do
6: g = φx|xh − xc|+ φy|yh − yc|+ ζx|xp − xc|+ ζy|yp − yc|
7: if g <= gmin then
8: gmin = g
9: amin = (c,p)
10: end if
11: end for
12: end for
13: Take action amin and observe s′,r
14: G = G+ r
15: s = s′

16: end while
17: return G

Proposition 1. Let GR denote the cost of a relaxed LPSP ignoring constraints related to
container and railcar properties. The cost of greedy solution πG to the relaxed problem com-
puted by Algorithm 1 is a LB on the cost G∗ (2.1), GR(πG) ≤ G∗.

The proof can be found in Appendix 2.8.1.

2.5.2. A Two-stage Heuristic

We propose a two-stage hybrid heuristic search method. The first phase searches greedily
among A(s) using beam search and a heuristic cost for each action. The second phase
attempts to improve the solution by performing a DFS.

2.5.2.1. Phase 1: Beam Search

One can develop an order of actions to search based on the cost of retrieving and placing
a container on a platform. This idea naturally leads to an implementation of beam search,
wherein the cost heuristic is the immediate cost for retrieving and placing a container, and
all actions that do not involve a double touch are selected with higher priority than actions
wherein a container is double touched. Hence the heuristic cost used in the beam search
algorithm is:

Gheuristic =

Gt + ∆ if involves a double touch
Gt otherwise,

(2.3)
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where ∆ is a large positive value such that double touches are avoided, even if the cost of
a double touch is less than the cost of placing a container on a platform. This is done to
prevent cases wherein containers could be placed onto a platform, but the total handling
cost is greater than that of simply performing a double touch on a nearby container. The
beam search algorithm is shown in Algorithm 2. Note that we refer to the cost to reach state
s as costs, corresponding to the labels in a label correction algorithm.
Algorithm 2 Beam search BS

Beam search(StartState σ (S,A,T,R),β)
1: B ← StartState
2: R← ∅
3: while B 6= ∅ do
4: for all s ∈ B do
5: for all a ∈ A(s) do
6: cs,a = Heuristic(a) + costs
7: C ← C ∪ {cs,a}
8: end for
9: end for
10: T ← β state-action pairs from C with lowest heuristic cost
11: for all (s,a) ∈ T do
12: Take action a from state s, observe r, s′
13: B ← B ∪ {s′}
14: end for
15: for all s ∈ B do
16: if s is terminal then
17: R← R ∪ {costs}
18: B ← B \ {s}
19: end if
20: end for
21: end while
22: return min(R)

2.5.2.2. Phase 2: IDA* DFS State Space Search

In the second phase of the heuristic, we attempt to improve the first phase solution by
DFS. Performing DFS can be considered a form of A*, as discussed in [25] and [46], IDA*
[39]. In this variant of A*, the next nodes to search are stored in a stack, leading to an A*
algorithm wherein the nodes are searched in a DFS manner. One can leverage the LB when
searching with IDA* to discard all states which could not achieve better performance than
the current best solution.

The search over the state space to tabulate the state-action value function is an idea
adopted from [11], and corresponds to label correction algorithms (e.g., [7]). We show a
small example of how the minimum cost is updated in Figure 2.4. Briefly, one can store
the states, actions and costs to reach a given state. Once a terminal state is reached, the
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state-action value function for all states and actions in the trajectory can be updated with
the costs following that state and action. The search can then continue at the state prior
to the terminal state for other solutions. One only needs to update the trajectory as long
as the current branch of the trajectory performs better than previous branches. Moreover,
once a state has been visited and all children explored, the value for that state is known and
that part of the graph does not need to be explored again. This property is useful since the
LPSP has many different paths to reach the same state. This is the idea behind the IDA*
Algorithm 3. Importantly, this algorithm can receive a sequence of actions, which can be
used to begin the search from the output state of the beam search algorithm.

Figure 2.4. IDA* update algorithm
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Algorithm 3 IDA* P-IDA*
1. IDA* Driver(σ(S,A,T,R),s,Bound,Presearched Moves)

1: Q← HashMap, N ← HashMap
2: root ← Node(s,a← ∅,Parent← ∅,Cost← 0,Moves← ∅)
3: node ← root
4: for all a ∈ Presearched Moves do
5: Take action a observe s′,r
6: child ← Node(s′,a,parent← node,Cost← node.cost+ r,Moves← node.moves+ a)

7: node ← child
8: end for
9: root ← node
10: IDA*(root)
11: return Tabulated State-Action Value Function Q

2. IDA*(node)
12: if node.s is Terminal then
13: BackUp(node.s)
14: end if
15: if AP (S) 6= ∅ then
16: actions = AP (node.s)
17: sort actions based on Q(node.s,action) for action in actions
18: for all a ∈ actions do
19: Take action a observe s′, r
20: if s′ /∈ N and node.cost + r < Bound then
21: child ← Node(s′,a,parent ← node,Cost ← node.cost + r,Moves ←

node.moves + a)
22: N [s′]← child
23: IDA*(child)
24: else if s′ ∈ N and r + node.cost > N [s′].cost then
25: BackupVisited(s’,s)
26: end if
27: end for
28: else
29: actions = A(node.s)
30: sort actions based on Q(node.s,action) for action in actions
31: for all a ∈ actions do
32: Take action a observe s′, r
33: if s′ /∈ N and node.cost + r < Bound then
34: child ← Node(s′,a,parent ← node,Cost ← node.cost + r,Moves ←

node.moves + a)
35: N [s′]← child
36: IDA*(child)
37: else if s′ ∈ N and r + node.cost > N [s′].cost then
38: BackupVisited(s’,s)
39: end if
40: end for
41: end if

45



3. Backup(s)
42: node ← N [s]
43: Caccum ←node.cost - node.parent.cost
44: Q[node.s,node.a]← Caccum
45: while node.parent 6= ∅ do
46: node = node.parent
47: Caccum ← Caccum + (node.cost− node.parent.cost)
48: if Caccum > Q[node.s,node.a] then
49: Q[node.s,node.a]← Caccum
50: else
51: return
52: end if
53: end while
54: if node.s =root then
55: Bound ← min

a
Q(node.s,a)

56: end if

4. BackupVisited(s’,s)
57: node ← N [s′]
58: newParent ← N [s]
59: Caccum ← Q(node.s,node.a)
60: node.parent ← newParent
61: while node.parent 6= ∅ do
62: if Caccum > Q(node.parent.s, node.a) then
63: Q(s,a)← Caccum
64: Caccum ← Caccum + (node.cost− node.parent.cost)
65: else
66: return
67: end if
68: end while
69: if node = root then
70: Bound ← max

a
Q(node.s,a)

71: end if

2.5.3. Leveraging Problem Structure to Reduce the Search Space

The LSP naturally provides an order of action quality based on the costs incurred for
each action. This is easily seen in the 0-way distance function, where retrieving a container
from the front of the storage area and placing it directly on a platform incurs less cost than
retrieving from the back of the storage area, or placing the container aside. As such, we can
create two groups of actions, preferred actions and the set of all actions. The set of preferred
actions does not include the option to double touch a container. Furthermore, in the case of
the reach stacker, preferred actions also avoid selecting containers reachable from the back
side of the container terminal, while in the case of the gantry crane preferred actions only
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consider containers in the three stacks closest to the front side of the storage area for each
lot. We define the set of all actions for a given state s as A(s). Similarly, we define the set
of preferred actions for a given state s as AP (s).

2.6. Numerical Study

In this section, we present an extensive numerical study designed to assess the perfor-
mance of the proposed two-stage heuristic. For this purpose we use problem instances with
different characteristics (described in Section 2.6.1) and three cost functions (0-way, 1-way
and 2-way distance) as well as two sets of experimental cost values, one giving more and
one giving less importance to distance. We compare the performance of different versions
of the two-stage heuristic and compare to the baselines that we describe in Section 2.6.3, in
addition to LBs computed as detailed in Section 2.5.1.

2.6.1. Problem Instances

The instances used here are the same as those described in [67] and [53]. As reported in
Table 2.3, we divide them in four categories depending on their size. The table reports the
configuration of the stacks in the yard. There are 50 instances in each category corresponding
to a combination of 10 containers and 5 railcar scenarios. For the containers, there are 5
instances with only 40 ft containers and 5 with a mix of all different lengths (40 ft, 45 ft, 48 ft,
and 53 ft). Container weights are drawn at random. The 5 railcar scenarios are generated by
drawing railcar types at random, conditional on the length of each instance size. Common to
the 5 scenarios are the positions of the platforms on the track. More precisely, each platform
occupies a single unit of distance in the system and themth platform occupies position (m,0)
on the track.

A note about comparisons to the ILP formulation: there are small discrepancies between
the instances in [67] and those presented here. First, platforms here begin at position (1,0)
and extend to (|P |,0) while platforms there begin at (0,0) and extend to (|P | − 1, 0). This
difference should only lead to very small changes, and ILP solutions have been tested using
their designed platform layout. Second, there are slight differences between the loading
patterns, specifically in 3 known cases, wherein ILP formulations allow for loading patterns
that are not accepted by our constraints. It is unknown if there are cases here which violate
the loading patterns designated by the ILP system. Finally, the heights of containers here
are all considered to be HC containers.

2.6.2. Model Parameters

Two sets of experiments were performed, one with lower and equal distance costs in
the x and y directions, identical to those in [67], and one with larger costs for travelling in
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Instance Size
Number of
Instances

Number of
Containers

Number
of Lots

Maximum
Depth

Toy: 200 ft 50 15 2 3
Small: 667 ft 50 50 6 3

Medium: 1000 ft 50 75 3 9
Large: 1500 ft 50 115 5 9

Very Large: 2000 ft 50 150 6 9
Table 2.3. Characteristics of problem instances

the x and y directions, to assess if the algorithms are sensitive to parameter values in the
cost function. These experiments have scaled up container leave behind costs, π, double
touch costs, κ, and detour costs, η, as well. The second set of tests considers an imbalance
in required distance travelled in the x and y directions. The cost values which vary over
distance functions are reported in Table 2.4. We additionally present cost parameter values
and environment values which remain constant across distance functions in Table 2.5.

Small Cost Values
Distance Function ν η κ ζx ζy φx φy

0-way distance 1 60 80 0 0 0 0
1-way distance 1 60 80 1 1 0 0
2-way distance 1 0 80 1 1 1 1

Large Cost Values
Distance Function ν η κ ζx ζy φx φy

1-way distance 1 3180 4240 53 8 0 0
2-way distance 1 0 4240 53 8 53 8

Table 2.4. Cost parameters for each distance function in all experiments

Parameter Description
Small Cost
Test Values

Large Cost
Test Values

π Cost if container remains unloaded 100 5300
τ Cost of using a railcar 1 1

θ1
Reach stacker weight limit when reaching
over one row of containers 20,000 20,000

θ2
Reach stacker weight limit when reaching
over two rows of containers 15,000 15,000

Table 2.5. Cost parameters and environment variables which remain constant across dis-
tance functions

2.6.3. Baselines

In order to show the impact of leveraging the problem structure using the preferred
action space, the effect of leveraging the LB during the IDA* search and that the two-stage
hybrid heuristic is beneficial, we compare our two-stage algorithm to algorithms which are

48



components of the full algorithm as baselines. We compare to standard IDA*, bounded by
the accrued cost to a state, called IDA*. We compare to the same IDA* method leveraging
the preferred action space as P-IDA*. Note, in further cases, the presence of the P indicates
leveraging the preferred action space. We also compare to the IDA* and P-IDA* methods
which search greedily first (GF) based on the heuristic formulation proposed in Equation 2.3
as GF-IDA* and GF-P-IDA*. Note that this is identical to using a beam width of size
1 in our two-stage algorithm. Additionally, we compare to IDA* methods which leverage
the LB to prevent searching nodes which could not outperform the current best solution as
B-IDA*, BP-IDA*, GF-B-IDA* and GF-BP-IDA*. Finally, we compare our two-stage
heuristic to beam search without additional IDA* searching, as Beam search β = 5.

2.6.4. Results

We begin by presenting results for the two-stage hybrid heuristic, as well as for the
aforementioned baselines that are outlined in Table 2.6. Sections 2.6.4.1, 2.6.4.2 and 2.6.4.3
present results, in order of decreasing difficulty, for the 2-way distance function, 1-way dis-
tance function and 0-way distance function with small cost values respectively. Where pos-
sible we compare to the results produced by [67]. Numerical results are shown for medium,
large and very large size problems, for each of the distance functions discussed in 2.4.2.
Additionally, small size problems are shown for the 1-way distance function to compare to
ILP results while toy size problems are shown for the 2-way distance function to compare
to ILP results. Sections 2.6.4.4 and 2.6.4.5 present the results of the 2-way distance cost
function and 1-way distance cost function for larger cost values for medium to very large size
problems.
Abbreviation Description
IDA* IDA*
P-IDA* IDA* leveraging preferred action space
B-IDA* IDA* leveraging LB
BP-IDA* IDA* leveraging preferred action space and LB
GF-IDA* IDA* searching greedily
GF-P-IDA* IDA* searching greedily leveraging preferred action space
GF-B-IDA* IDA* searching greedily leveraging LB
GF-BP-IDA* IDA* searching greedily leveraging preferred action space and LB
Beam search β = 5 beam search using beam width of 5

BS-B-IDA*
2-stage heuristic beam search, with beam width 5, followed by IDA*
leveraging the LB

BS-BP-IDA*
2-stage heuristic: beam search, with beam width 5, followed by IDA*
leveraging preferred action space and LB

Table 2.6. Heuristics abbreviations and descriptions

The time limit was set to 5 minutes for each instance. When using hybrid methods we
limit the IDA* time to 240 seconds, leading to a total search time well below 5 minutes,
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as the beam search time is well under a minute. After testing different beam width values,
we report results for a width of 5, since this was found to have good performance while
producing solutions fast.

For each of the settings we analyze the same performance measures:
• the percentage of instances that was solved to the LB,
• average, minimum and maximum gap to LB,
• average, minimum and maximum of the CPU time for each heuristic,
• average, minimum and maximum CPU time to best found solution,
• the percentage of instances with incomplete loads which did not fill all slots,
• the percentage of instances which had at least one double touch,
• when considering the reach stacker, the percentage of instances which had at least
one detour.

Each result is presented with the results for the gantry crane in the upper half of the
table, and the reach stacker in the lower half of the table.

2.6.4.1. Small Costs: 2-way Distance Function

We begin by presenting results for tests using the 2-way distance function. We show
results for toy size problems and compare to our baselines and the ILP solutions. For larger
sizes the ILP formulation was unable to converge to a reasonable gap even in hours of
computing time.

We present the results to toy size problems in Table 2.7, which we show to compare
performance with ILP methods for the reach stacker, as they are are the only ILP results
available for the 2-way distance function. We see that a number of instances are solved
to meet the LB by all algorithms. No instances are left with an incomplete load by the
heuristics, and the average CPU time is around 1.5 minute. Beam search is improved by
the addition of IDA*. The best performing heuristic is a simple combination of IDA* while
leveraging the preferred action space for both the gantry crane and reach stacker. Large
maximum gaps are notable here, this is because as the LB is quite small a single double
touch, or inefficient action leads to a notably large gap to the LB. Moreover, since many of
these cases have very few slots and containers, double-touches are more often necessary to
fill all slots on a platform.

Examining Table 2.8, we see that for medium size instances, beam search coupled with
IDA* offers the best performance, with a mean gap to the LB of 0.2%, and are able to
solve 34% of instances to meet the LB for the reach stacker. Similar findings emerge when
considering the gantry crane, with better results, with 50% of instances solved to meet the LB
and a mean gap to the lower bound of 0.1%. GF heuristics are able to solve more instances
to meet the LB, but also fail to fill all slots on the railcars for 4% of instances. Moreover, we
see that leveraging the LB to bound the search offers slight improvement over the IDA* and
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Gantry Crane

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 78 3.9 0.0 53.5 70.7 0.0 300 18.1 0.0 285.7 0 8
P-IDA* 78 0.8 0.0 32.3 69.8 0.0 300 12.0 0.0 281.8 0 2
B-IDA* 78 3.9 0.0 53.5 70.3 0.0 300 14.0 0.0 222.2 0 8
BP-IDA* 74 3.9 0.0 52.8 79.5 0.1 300 8.0 0.0 126.3 0 8
GF-IDA* 74 6.0 0.0 53.3 79.0 0.0 300 7.0 0.0 289.8 0 12
GF-P-IDA* 78 0.8 0.0 32.1 74.7 0.0 300 10.7 0.0 116.5 0 2
GF-B-IDA* 74 6.0 0.0 53.7 79.0 0.0 300 1.6 0.0 13.8 0 12
GF-BP-IDA* 70 6.0 0.0 52.8 90.5 0.0 300 4.2 0.0 108.8 0 12
Beam search β = 5 38 9.3 0.0 54.0 0.1 0.0 0.1 0.1 0.0 0.1 0 22
BS-B-IDA* 74 6.0 0.0 52.8 76.5 0.1 240.1 15.2 0.1 217.9 0 12
BS-BP-IDA* 66 6.0 0.0 52.8 83.2 0.1 240.1 2.0 0.1 19.0 0 12

Reach Stacker

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max Avg. Min Max
ILP 14 4.6 0.0 57.2 553 - - - - - 26 2 0
IDA* 74 4.0 0.0 53.5 85.4 0.0 300 19.2 0.0 255.1 0 8 12
P-IDA* 78 0.9 0.0 32.1 70.3 0.0 300 12.2 0.0 290.0 0 2 10
B-IDA* 74 3.9 0.0 53.5 82.4 0.0 300 14.5 0.0 227.5 0 8 12
BP-IDA* 74 4.0 0.0 53.1 79.5 0.1 300 7.4 0.0 218.4 0 8 12
GF-IDA* 70 6.1 0.0 53.3 91.3 0.0 300 7.4 0.0 246.0 0 12 18
GF-P-IDA* 78 0.8 0.0 32.1 74.7 0.0 300 11.5 0.0 114.9 0 2 8
GF-B-IDA* 70 6.1 0.0 53.7 91.0 0.0 300 7.9 0.0 135.9 0 12 18
GF-BP-IDA* 70 6.1 0.0 52.8 90.6 0.0 300 2.5 0.0 68.4 0 12 16
Beam search β = 5 42 9.3 0.0 54.0 0.1 0.0 0.1 0.1 0.0 0.1 0 22 16
BS-B-IDA* 70 6.0 0.0 52.8 75.3 0.1 240.1 7.6 0.1 133.8 0 12 18
BS-BP-IDA* 70 6.1 0.0 52.8 73.8 0.1 240.1 2.1 0.1 25.2 0 12 16

Table 2.7. 2-way results for 50 200-ft instances

P-IDA* methods, but does not improve performance when compared to GF methods, where
it offers no improvement for the gantry crane and increases the gap to the LB for the reach
stacker. Leveraging the preferred action space leads to slightly better performance, except
when considering the reach stacker and GF methods where it finds many more solutions
meeting the LB but increases the average gap to the LB.

When considering the larger instances in Table 2.9, we see that the greedy first depth-first
search offers the best performance, finding solutions meeting the LB in 42 % of cases for the
reach stacker and 40% for the gantry crane, which compares favorably to the BS-B-IDA*
methods which find 22% of instances to meet the LB for both the reach stacker and gantry
crane. Leveraging the LB to bound the search improves results when considering non GF
and non BS methods for the gantry crane, but can be detrimental when used in conjunction
with GF, BS, or leveraging the preferred action space for the reach stacker. Leveraging the
preferred action space consistently improves results for the gantry crane, and never degrades
results for the reach stacker. The average runtime is higher than that of the medium size
instances, which is sensible since fewer instances were solved to meet the LB.

Considering the largest instances in Table 2.10, we see that the BS-B-IDA* and BS-BP-
IDA* methods perform the best on average, except when considering the gantry crane where
GF-IDA* heuristics, both leveraging and not leveraging the LB, perform best. Additionally,
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Gantry Crane

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 4.2 2.2 56.6 300 300 300 77.6 0.3 296.3 2 2
P-IDA* 0 4.1 2.2 56.8 300 300 300 45.7 0.2 289.4 2 2
B-IDA* 0 4.0 2.2 56.8 300 300 300 90 6.4 258.3 2 2
BP-IDA* 0 4.0 2.2 56.8 300 300 300 61.9 6.0 283.6 2 2
GF-IDA* 56 2.3 0.0 56.4 132.2 0.1 300 1.7 0.1 18.4 4 4
GF-P-IDA* 58 2.3 0.0 56.4 126.1 0.1 300 10.2 0.1 270.1 4 4
GF-B-IDA* 56 2.3 0.0 56.4 133.6 1.4 300 4.7 1.4 43.4 4 4
GF-BP-IDA* 58 2.3 0.0 56.6 129.3 2.7 300 7 2.7 37.5 4 4
Beam search β = 5 46 0.1 0.0 0.7 2.1 1.1 3.6 2.1 1.1 3.6 0 0
BS-B-IDA* 50 0.1 0.0 0.7 123.5 2.4 243.6 5.5 2.4 10.5 0 0
BS-BP-IDA* 50 0.1 0.0 0.7 123.5 2.4 243.6 5.5 2.4 10.6 0 0

Reach Stacker

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 4.6 2.2 56.7 300 300 300 58.2 0.1 293.2 2 10 26
P-IDA* 0 4.5 2.2 56.8 300 300 300 34.2 0.1 292.6 2 10 24
B-IDA* 0 4.5 2.2 56.8 300 300 300 66.9 1.7 292.1 2 10 24
BP-IDA* 0 4.5 2.2 56.8 300 300 300 60.8 3.4 300 2 10 24
GF-IDA* 38 2.4 0.0 56.4 186.1 0.1 300 1.0 0.1 15.4 4 4 6
GF-P-IDA* 58 2.4 0.0 56.4 126.1 0.1 300 20.2 0.1 287.9 4 4 6
GF-B-IDA* 38 2.4 0.0 56.4 186.7 0.9 300 3.6 0.9 39.0 4 4 6
GF-BP-IDA* 58 2.5 0.0 56.6 128.1 1.7 300 4.2 1.7 12.3 4 8 2
Beam search β = 5 34 0.3 0.0 4.3 1.4 0.8 2.5 1.4 0.8 2.5 0 4 10
BS-B-IDA* 34 0.2 0.0 1.8 160.4 1.6 242.5 3.5 1.6 6.9 0 0 10
BS-BP-IDA* 34 0.2 0.0 1.8 160.4 1.6 242.5 3.4 1.6 6.8 0 0 10

Table 2.8. 2-way results for 50 1000-ft instances
Gantry Crane

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 4.1 3.4 4.4 300 300 300 122.4 0.3 257.2 0 0
P-IDA* 0 3.8 2.7 4.1 300 300 300 125.0 0.3 296.1 0 0
B-IDA* 0 3.9 3.0 4.4 300 300 300 168.7 12.7 299.4 0 0
BP-IDA* 0 3.8 2.7 4.0 300 300 300 151.4 64.1 295.9 0 0
GF-IDA* 36 0.1 0.0 0.2 192.2 0.4 300 2.8 0.3 48.3 0 0
GF-P-IDA* 40 0.1 0.0 0.3 180.2 0.3 300 7.3 0.3 277.7 0 0
GF-B-IDA* 36 0.1 0.0 0.2 197.2 11.2 300 16.5 11.2 28.9 0 0
GF-BP-IDA* 40 0.1 0.0 0.3 191.4 22.3 300 31.3 22.3 56.0 0 0
Beam search β = 5 22 0.1 0.0 0.3 6.0 4.3 7.5 6.0 4.3 7.5 0 0
BS-B-IDA* 22 0.1 0.0 0.3 196.6 16.3 247.5 21.8 16.3 27.8 0 0
BS-BP-IDA* 22 0.1 0.0 0.3 196.6 16.3 247.5 21.7 15.4 27.4 0 0

Reach Stacker

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 4.2 3.6 6.4 300 300 300 77.5 0.2 241.7 0 4 6
P-IDA* 0 3.8 3.0 4.7 300 300 300 92.3 4.7 291.9 0 0 6
B-IDA* 0 4.0 3.4 6.4 300 300 300 163.8 6.3 295.4 0 6 4
BP-IDA* 0 3.9 3.0 9.8 300 300 300 151.3 28.8 299.2 0 2 8
GF-IDA* 36 0.1 0.0 0.3 192.1 0.2 300 8.5 0.2 206.2 0 0 4
GF-P-IDA* 42 0.1 0.0 0.3 179.8 0.2 300 12.1 0.2 287.4 0 0 0
GF-B-IDA* 36 0.1 0.0 0.3 194.5 6.2 300 11.4 6.2 66.1 0 0 4
GF-BP-IDA* 40 0.1 0.0 0.3 185.5 12.1 300 25.7 12.1 226.4 0 0 0
Beam search β = 5 22 0.7 0.0 15.6 3.6 2.7 4.4 3.6 2.7 4.4 0 4 10
BS-B-IDA* 22 0.1 0.0 0.4 192.6 10.8 244.4 14.4 8.6 77.5 0 0 14
BS-BP-IDA* 22 0.1 0.0 0.4 192.6 10.8 244.4 14.4 9.0 80.2 0 0 10

Table 2.9. 2-way results for 50 1500-ft instances
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GF methods find the most solutions meeting the LB, but perform worse on average when
considering the reach stacker. Leveraging the preferred action space seems to be detrimental
when considering GF and BS methods. Overall, all GF and BS methods are able to find
an average gap to the LB under 0.5%. We see that beam search paired IDA* is able to
find solutions to every problem without a single double touch across all instances and all
sizes. Runtimes continue to rise, which correlates with the decreasing percentage of instances
solved to meet the LB.

Gantry Crane

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 5.4 5.1 5.6 300 300 300 31.3 10.2 169.9 0 0
P-IDA* 0 5.1 4.9 5.3 300 300 300 144.1 29.1 299.7 0 0
B-IDA* 0 5.3 5.1 5.5 300 300 300 165.3 85.7 283.2 0 0
BP-IDA* 0 5.1 4.9 5.2 300 300 300 213.4 119.6 299.4 0 0
GF-IDA* 48 0.0 0.0 0.2 156.9 0.7 300 7.1 0.7 73.2 0 0
GF-P-IDA* 44 0.1 0.0 1.0 168.5 0.7 300 13.5 0.7 191.8 0 8
GF-B-IDA* 48 0.0 0.0 0.1 176.4 34.2 300 54.9 34.2 182.2 0 0
GF-BP-IDA* 44 0.1 0.0 1.0 205.1 67.2 300 94.2 67.2 207.0 0 8
Beam search β = 5 16 0.1 0.0 0.2 11.1 8.1 13.7 11.1 8.1 13.7 0 0
BS-B-IDA* 16 0.1 0.0 0.2 218.5 39.0 253.7 51.3 39.0 61.6 0 0
BS-BP-IDA* 16 0.1 0.0 0.2 218.5 39.0 253.7 50.8 39.0 61.7 0 0

Reach Stacker

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 5.3 5.1 5.7 300 300 300 113.9 20.0 299.8 0 0 4
P-IDA* 0 5.1 4.9 5.2 300 300 300 139.1 14.0 296.2 0 0 0
B-IDA* 0 5.1 4.9 5.2 300 300 300 168.8 50.0 297.0 0 0 0
BP-IDA* 0 5.0 4.9 5.2 300 300 300 198.6 49.9 299.6 0 0 0
GF-IDA* 38 0.4 0.0 4.2 186.3 0.4 300 25.4 0.4 274.1 0 8 12
GF-P-IDA* 44 0.3 0.0 3.8 168.2 0.3 300 22.6 0.3 298.4 0 8 8
GF-B-IDA* 38 0.4 0.0 4.3 193.2 14.8 300 36.7 14.8 271.0 0 8 12
GF-BP-IDA* 44 0.4 0.0 4.3 184.5 29.4 300 53.3 29.4 243.3 0 8 8
Beam search β = 5 14 0.2 0.0 3.6 6.3 4.1 7.8 6.3 4.1 7.8 0 4 4
BS-B-IDA* 14 0.1 0.0 0.3 215.3 21.2 247.8 29.7 17.1 121.0 0 0 8
BS-BP-IDA* 14 0.1 0.0 1.2 215.3 21.2 247.8 36.1 17.3 245.8 0 4 4

Table 2.10. 2-way results for 50 2000-ft instances

2.6.4.2. Small Costs: 1-way Distance Function

We present the results for the 1-way distance function for all tests. We begin with small
size problems in Table 2.11. The ILP formulation exhibits the best overall performance
on the gantry crane, and finds the highest percentage of instances to meet the LB for the
reach stacker, but has a higher average gap to the LB than GF methods which leverage the
LB to reduce the search space. Among the heuristics, the combination of beam search with
IDA* methods perform best on the gantry crane, while GF-BP-IDA* performs best when
using the reach stacker. Leveraging the preferred action space is detrimental when applied
with GF methods and BS methods using the gantry crane, but beneficial in all cases for the
reach stacker. GF methods improve upon non GF heuristics when considering the gantry
crane. However, when considering the reach stacker GF methods leveraging the preferred
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action space outperform GF methods which do not. Leveraging the LB to reduce the search
space has a slight positive effect for all methods. The ILP formulation requires the longest
CPU time, with all heuristics running on average for less than a quarter of the time spent
on the ILP.

Gantry Crane

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max Avg. Min Max
ILP 70 0.0 0.0 0.2 1423.0 - - - - - 0 100
IDA* 0 2.4 1.7 2.6 300 300 300 141.7 2.6 299.5 0 0
P-IDA* 0 2.1 1.7 2.5 300 300 300 152.8 0.5 276.4 0 0
B-IDA* 0 2.3 1.7 2.5 300 300 300 174.5 3.4 298.4 0 0
BP-IDA* 0 2.1 1.7 2.5 300 300 300 161.2 3.0 295.1 0 0
GF-IDA* 34 0.1 0.0 0.8 198.4 0.0 300 9.8 0.0 223.0 0 0
GF-P-IDA* 12 0.3 0.0 1.0 264.0 0.0 300 8.8 0.0 186.7 0 0
GF-B-IDA* 34 0.1 0.0 0.8 198.6 0.6 300 14.6 0.6 220.2 0 0
GF-BP-IDA* 16 0.3 0.0 1.0 257.9 1.3 300 12.7 1.2 161.8 0 0
Beam search β = 5 34 1.3 0.0 18.5 0.8 0.6 1.1 0.8 0.6 1.1 0 8
BS-B-IDA* 34 0.1 0.0 0.3 159.5 1.1 241.0 6.0 1.1 59.5 0 0
BS-BP-IDA* 34 0.1 0.0 0.4 159.4 1.1 241.0 6.2 1.1 159.6 0 0

Reach Stacker

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max Avg. Min Max
ILP 28 1.5 0.0 46.2 1388 - - - - - 0 4 4
IDA* 0 2.3 1.8 2.7 300 300 300 141.4 0.1 299.0 0 0 0
P-IDA* 0 2.1 1.8 2.7 300 300 300 150.9 0.1 286.1 0 0 0
B-IDA* 0 2.2 1.8 2.7 300 300 300 193.6 1.3 297.8 0 0 0
BP-IDA* 0 2.1 1.8 2.7 300 300 300 194.6 2.3 299.7 0 0 0
GF-IDA* 8 3.0 0.0 16.8 276.0 0.0 300 11.0 0.0 195.5 0 0 36
GF-P-IDA* 12 1.4 0.0 19.6 264.0 0.0 300 10.5 0.0 194.7 0 0 10
GF-B-IDA* 8 2.8 0.0 16.8 276.1 0.7 300 15.5 0.7 247.6 0 0 34
GF-BP-IDA* 16 1.4 0.0 19.6 258.8 1.4 300 13.7 1.3 185.9 0 0 10
Beam search β = 5 8 3.4 0.0 17.2 0.8 0.6 1.1 0.8 0.6 1.1 0 8 44
BS-B-IDA* 8 2.2 0.0 10.6 221.6 1.7 241.1 6.1 1.2 78.3 0 0 40
BS-BP-IDA* 8 2.0 0.0 10.6 221.7 1.7 241.1 5.5 1.2 87.5 0 0 38

Table 2.11. 1-way results for 50 667-ft instances

Examining the medium size problems in Table 2.12, we see that GF methods which do
not leverage the preferred action space perform best overall for the gantry crane. Meanwhile,
beam search, BS-B-IDA* and and BS-BP-IDA* perform best for the reach stacker, as other
methods are prone to failing to fill all slots on the railcars for at least 4% of instances. GF
methods solve most instances to meet the LB for both the reach stacker and gantry crane,
but BS methods solve a large percentage to the LB for both types of handling equipment
as well. The use of the LB to reduce the search space is beneficial to IDA* and P-IDA*
methods, but not GF or BS based methods, wherein there is no change in result. Average
runtimes fall well under the 300 seconds time limit, as a high fraction of cases are solved to
meet the LB. BS heuristics are the only algorithms able to find solutions which fill all slots
across all instances for both gantry crane and reach stacker.
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Gantry Crane

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 3.0 1.4 59.0 300 300 300 79.4 0.3 298.5 2 2
P-IDA* 0 2.9 1.5 59.0 300 300 300 39.3 0.2 293.8 2 2
B-IDA* 0 3.0 1.4 59.0 300 300 300 88.5 5.4 240.5 2 2
BP-IDA* 0 2.9 1.5 59.0 300 300 300 53.4 5.9 298.3 2 2
GF-IDA* 68 0.0 0.0 0.3 96.2 0.1 300 0.2 0.1 2.0 0 0
GF-P-IDA* 56 2.4 0.0 58.9 132.1 0.1 300 0.2 0.1 1.2 4 4
GF-B-IDA* 68 0.0 0.0 0.3 98.1 1.3 300 3.3 1.3 7.9 0 0
GF-BP-IDA* 56 2.4 0.0 58.9 135.1 2.6 300 6.4 2.6 16.2 4 4
Beam search β = 5 54 0.1 0.0 0.3 2.1 1.1 3.6 2.1 1.1 3.6 0 0
BS-B-IDA* 58 0.1 0.0 0.3 104.6 2.4 243.3 5.4 2.4 10.1 0 0
BS-BP-IDA* 58 0.1 0.0 0.3 106.6 2.4 243.3 7.4 2.4 54.7 0 0

Reach Stacker

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 5.3 1.6 59.0 300 300 300 49.1 0.1 251.1 2 10 24
P-IDA* 0 5.3 1.5 59.0 300 300 300 28.4 0.1 166.3 2 10 24
B-IDA* 0 5.2 1.5 59.0 300 300 300 55.7 1.8 270.6 2 10 24
BP-IDA* 0 5.3 1.5 59.0 300 300 300 37.6 3.5 240.8 2 10 24
GF-IDA* 34 5.1 0.0 58.9 198 0.1 300 7.5 0.1 154.7 6 6 12
GF-P-IDA* 56 3.4 0.0 58.9 132.1 0.1 300 0.1 0.1 0.7 4 4 10
GF-B-IDA* 34 5.1 0.0 58.9 198.6 0.9 300 15.7 0.9 286.5 6 6 12
GF-BP-IDA* 56 3.4 0.0 58.9 134 1.8 300 4.1 1.8 9.7 4 4 10
Beam search β = 5 48 1.5 0.0 16.2 1.4 0.7 2.6 1.4 0.7 2.6 0 4 10
BS-B-IDA* 52 1.3 0.0 14.2 117.7 1.5 242.6 3.5 1.5 7.1 0 0 10
BS-BP-IDA* 52 1.3 0.0 14.2 117.7 1.5 242.6 3.5 1.5 7.1 0 0 10

Table 2.12. 1-way results for 50 1000-ft instances

Large instances are considered in Table 2.13 and the best overall performance is found
in the coupling of beam search with IDA* methods for the gantry crane, and using GF
methods with the preferred action space for the reach stacker. Leveraging the preferred
action space has positive effects when using the reach stacker. However, GF methods reduce
the percentage of instances that are optimally solved when using the gantry crane. Leveraging
the LB to reduce the search space has little impact, only reducing the mean gap to the LB
for the IDA* algorithms. Runtimes continue to rise as the percentage of cases solved to meet
the LB decreases.

Finally, when we examine the largest size instances, with 150 containers in Table 2.14, we
find that GF methods improve drastically over non GF search methods. BS methods have
the smallest average gap to the LB when considering the gantry crane, while GF-P-IDA* and
GF-BP-IDA* have the smallest average gap to the LB when considering the reach stacker.
Interestingy, IDA* provides no benefit to beam search here. Leveraging the preferred action
space is beneficial when not searching GF. Finally, bounding search using the LB is beneficial
only for non GF methods, and increases the gap to the LB when considering GF methods
for the reach stacker.
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Gantry Crane

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 2.5 2.0 2.6 300 300 300 95.4 0.4 284.2 0 0
P-IDA* 0 2.4 1.7 2.5 300 300 300 121.1 0.4 255.4 0 0
B-IDA* 0 2.5 1.9 2.7 300 300 300 150.7 15.2 280.7 0 0
BP-IDA* 0 2.3 1.7 2.5 300 300 300 153.6 30.6 296.7 0 0
GF-IDA* 40 0.0 0.0 0.2 180.2 0.4 300 0.6 0.3 3.1 0 0
GF-P-IDA* 32 0.1 0.0 0.4 204.6 0.4 300 8.1 0.3 169.1 0 0
GF-B-IDA* 40 0.0 0.0 0.2 186.1 12.4 300 24.6 10.9 237.8 0 0
GF-BP-IDA* 32 0.1 0.0 0.4 214.5 23.9 300 33.2 21.9 70.1 0 0
Beam search β = 5 44 0.0 0.0 0.1 5.8 4.3 7.4 5.8 4.3 7.4 0 0
BS-B-IDA* 44 0.0 0.0 0.1 146.6 16.4 247.4 21.0 15.3 26.7 0 0
BS-BP-IDA* 44 0.0 0.0 0.1 146.6 16.4 247.4 20.9 16.2 26.4 0 0

Reach Stacker

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 2.7 2.2 8.9 300 300 300 117.3 0.3 289.8 0 4 6
P-IDA* 0 2.5 2.2 8.9 300 300 300 83.2 1.2 291.9 0 0 6
B-IDA* 0 2.6 2.2 8.9 300 300 300 146.7 6.6 293.9 0 4 6
BP-IDA* 0 2.5 2.2 8.9 300 300 300 120.9 17.6 298.7 0 0 6
GF-IDA* 26 1.1 0.0 12.3 227.2 0.2 300 17.9 0.2 277.8 0 0 16
GF-P-IDA* 32 0.2 0.0 1.9 205.4 0.2 300 3.8 0.2 35.6 0 6 0
GF-B-IDA* 28 1.0 0.0 12.3 225.3 5.4 300 20.9 5.4 219.9 0 0 14
GF-BP-IDA* 32 0.2 0.0 1.9 212.0 10.5 300 24.6 10.4 124.0 0 6 0
Beam search β = 5 20 1.1 0.0 15.0 3.6 2.6 4.4 3.6 2.6 4.4 0 4 10
BS-B-IDA* 20 0.5 0.0 8.4 197.0 9.0 244.4 13.1 8.7 48.0 0 0 10
BS-BP-IDA* 20 0.5 0.0 8.4 197.0 8.9 244.4 13.0 8.7 49.6 0 0 10

Table 2.13. 1-way results for 50 1500-ft instances

Gantry Crane

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 3.3 3.2 3.4 300 300 300 181.4 1.8 299.0 0 0
P-IDA* 0 3.2 3.0 3.3 300 300 300 150.6 19.1 299.7 0 0
B-IDA* 0 3.3 3.2 3.4 300 300 300 183.6 42.8 298.8 0 0
BP-IDA* 0 3.2 3.0 3.3 300 300 300 195.4 103.2 299.1 0 0
GF-IDA* 44 0.0 0.0 0.1 169.4 0.9 300 11.3 0.9 128.6 0 0
GF-P-IDA* 30 0.1 0.0 0.3 210.3 0.8 300 2.8 0.7 14.6 0 0
GF-B-IDA* 48 0.1 0.0 2.0 179.7 35.6 300 77.0 34.6 289.3 0 2
GF-BP-IDA* 30 0.1 0.0 0.3 235.3 71.9 300 88.4 62.6 116.7 0 0
Beam search β = 5 48 0.0 0.0 0.0 10.9 8.1 13.5 10.9 8.1 13.5 0 0
BS-B-IDA* 48 0.0 0.0 0.0 154.2 37.6 252.7 49.7 37.6 60.2 0 0
BS-BP-IDA* 48 0.0 0.0 0.0 154.3 37.4 252.7 49.8 37.4 60.1 0 0

Reach Stacker

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 3.3 3.1 3.3 300 300 300 107.5 34.7 280.0 0 0 0
P-IDA* 0 3.1 2.9 3.2 300 300 300 153.1 12.4 292.3 0 0 0
B-IDA* 0 3.2 3.0 3.3 300 300 300 178.0 47.0 272.7 0 0 0
BP-IDA* 0 3.2 3.0 3.2 300 300 300 191.0 68.4 294.9 0 0 0
GF-IDA* 24 0.4 0.0 3.7 228.2 0.4 300 22.7 0.4 289.9 0 0 20
GF-P-IDA* 30 0.1 0.0 0.3 210.1 0.4 300 21.9 0.4 235.1 0 0 0
GF-B-IDA* 24 0.4 0.0 3.7 232.5 14.9 300 29.8 14.9 235.5 0 0 20
GF-BP-IDA* 30 0.1 0.0 1.1 221.0 30.3 300 62.9 29.4 282.8 0 4 0
Beam search β = 5 32 0.2 0.0 2.9 6.5 4.9 7.7 6.5 4.9 7.7 0 0 8
BS-B-IDA* 32 0.2 0.0 2.9 176.1 21.0 247.7 27.0 20.9 32.0 0 0 8
BS-BP-IDA* 32 0.2 0.0 2.9 176.0 20.6 247.7 26.9 20.6 31.7 0 0 8

Table 2.14. 1-way distance functions for 50 2000-ft instances
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2.6.4.3. Small Costs: 0-way Distance Function

We present 0-way distance function results for small, medium, large and very large size
problems. We begin with small instances in Table 2.15. We see that nearly all heuristics
are able to achieve performances meeting the LB on all instances, in most cases with low
average computing time. Unlike when we considered the 1-way distance function, the ILP
no longer outperforms all heuristics.

Gantry Crane

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max Avg. Min Max
ILP 100 0.0 0.0 0.0 651.0 - - - - - - -
IDA* 100 0.0 0.0 0.0 0.1 0.0 0.2 0.1 0.0 0.2 0 0
P-IDA* 100 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.1 0 0
B-IDA* 100 0.0 0.0 0.0 0.1 0.0 0.2 0.1 0.0 0.2 0 0
BP-IDA* 100 0.0 0.0 0.0 0.1 0.0 0.2 0.1 0.0 0.2 0 0
GF-IDA* 100 0.0 0.0 0.0 0.1 0.0 0.4 0.1 0.0 0.4 0 0
GF-P-IDA* 100 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.1 0 0
GF-B-IDA* 100 0.0 0.0 0.0 0.1 0.0 0.4 0.1 0.0 0.4 0 0
GF-BP-IDA* 100 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0 0
Beam search β = 5 100 0.0 0.0 0.0 0.7 0.6 1.0 0.7 0.6 1.0 0 0
BS-B-IDA* 100 0.0 0.0 0.0 0.8 0.6 1.1 0.8 0.6 1.1 0 0
BS-BP-IDA* 100 0.0 0.0 0.0 0.8 0.6 1.1 0.8 0.6 1.1 0 0

Reach Stacker

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max Avg. Min Max
ILP 100 0.0 0.0 0.0 1210.0 - - - - - - - -
IDA* 92 0.0 0.0 0.0 24.0 0.0 300 0.0 0.0 0.2 0 0 0
P-IDA* 100 0.0 0.0 0.0 0.1 0.0 0.2 0.1 0.0 0.2 0 0 0
B-IDA* 92 0.0 0.0 0.0 24.0 0.0 300 0.0 0.0 0.2 0 0 0
BP-IDA* 100 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0 0 0
GF-IDA* 100 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0 0 0
GF-P-IDA* 100 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0 0 0
GF-B-IDA* 98 0.0 0.0 0.0 6.0 0.0 300 0.0 0.0 0.1 0 0 0
GF-BP-IDA* 98 0.0 0.0 0.0 6.0 0.0 300 0.0 0.0 0.1 0 0 0
Beam search β = 5 100 0.0 0.0 0.0 0.9 0.5 10.8 0.9 0.5 10.8 0 0 0
BS-B-IDA* 100 0.0 0.0 0.0 0.9 0.6 10.8 0.9 0.6 10.8 0 0 0
BS-BP-IDA* 100 0.0 0.0 0.0 0.9 0.6 10.8 0.9 0.6 10.8 0 0 0

Table 2.15. 0-way results for 50 667-ft instances

Next, we consider the medium size instances in Table 2.16. When considering the gantry
crane, the ILP formulation outperforms all heuristics. However, this is not the case for the
reach stacker. We see that almost all heuristics have instances with double touch actions, as
well as incomplete loads. It is interesting that the beam search combined with depth-first
search methods do not manage to find a solution without double touching here, but can do
so on both the 1-way and 2-way distance function. We believe the relatively similar quality
across most algorithms is related to the symmetry amongst costs for most actions, paired
with the few number of lots available in this instance size. That is, all algorithms search in
a similar order.

Next, we consider the large instances in Table 2.17. We see a return to most heuristics
finding solutions which meet the LB on all instances for the gantry crane. However, some

57



Gantry Crane

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max Avg. Min Max
ILP 100 0.0 0.0 0.0 2688.0 - - - - - 0 0
IDA* 98 1.3 0.0 65.9 6.1 0.1 300 0.1 0.1 0.2 2 2
P-IDA* 98 1.3 0.0 65.9 6.2 0.1 300 0.2 0.1 1.0 2 2
B-IDA* 98 1.3 0.0 65.9 6.1 0.1 300 0.1 0.1 0.2 2 2
BP-IDA* 98 1.3 0.0 65.9 6.2 0.1 300 0.2 0.1 1.0 2 2
GF-IDA* 96 2.6 0.0 65.9 12.1 0.1 300 0.1 0.1 0.3 4 4
GF-P-IDA* 96 2.6 0.0 65.9 12.1 0.1 300 0.1 0.1 0.3 4 4
GF-B-IDA* 96 2.6 0.0 65.9 12.1 0.1 300 0.1 0.1 0.3 4 4
GF-BP-IDA* 96 2.6 0.0 65.9 12.1 0.1 300 0.1 0.1 0.3 4 4
Beam search β = 5 98 2.0 0.0 100.0 1.9 1.1 3.5 1.9 1.1 3.5 2 2
BS-B-IDA* 98 1.3 0.0 65.0 6.8 1.1 242.6 2.0 1.1 3.8 2 2
BS-BP-IDA* 98 1.3 0.0 65.0 6.8 1.1 242.6 2.0 1.1 3.8 2 2

Reach Stacker

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max Avg. Min Max
ILP 14 5.9 0.0 49.7 17450.0 - - - - - 0 14 22
IDA* 70 3.8 0.0 65.9 90.1 0.0 300 14.1 0.0 203.8 2 16 18
P-IDA* 70 3.8 0.0 65.9 90.1 0.0 300 4.9 0.0 60.6 2 16 18
B-IDA* 70 3.8 0.0 65.9 90.1 0.0 300 14.2 0.0 205.0 2 16 18
BP-IDA* 70 3.8 0.0 65.9 90.1 0.0 300 4.9 0.0 59.1 2 16 18
GF-IDA* 90 3.3 0.0 65.9 30.1 0.1 300 9.5 0.1 255.5 4 8 2
GF-P-IDA* 92 2.0 0.0 65.9 27.7 0.1 300 8.8 0.1 181.7 2 6 2
GF-B-IDA* 90 3.3 0.0 65.9 30.1 0.0 300 5.7 0.0 151.0 4 8 2
GF-BP-IDA* 92 2.0 0.0 65.9 27.7 0.0 300 7.0 0.0 181.8 2 6 2
Beam search β = 5 88 3.0 0.0 100.0 1.5 0.8 11.0 1.5 0.8 11.0 2 2 10
BS-B-IDA* 88 2.2 0.0 65.0 30.3 0.8 242.3 3.0 0.8 41.5 2 6 6
BS-BP-IDA* 92 1.7 0.0 65.0 26 0.8 242.3 12.4 0.8 149.5 2 6 2

Table 2.16. 0-way results for 50 1000-ft instances

double touches occur with several heuristics when considering the reach stacker. The pre-
ferred action space is beneficial to the beam search coupled with IDA* algorithms, as well as
GF algorithms for the reach stacker, but the opposite is seen for the gantry crane. Overall,
heuristics now outperform the ILP formulation in a fraction of the time allocated.

Finally, we present the very large size problems in Table 2.18. Here, all IDA* methods
are able to find optimal solutions in all cases, as are almost all methods, except beam search,
which fails to find optimal solutions to 2 % of cases.

2.6.4.4. Large Costs: 2-way Distance Function

We begin by presenting results for the 2-way distance function. First, examining Ta-
ble 2.19 we see that for medium size instances, BS coupled with IDA* offer the best per-
formance. Moreover, BS-B-IDA* is able to solve 50% of instances to meet the LB for the
gantry crane. GF methods fail critically on 4% of instances, leaving slots open in these
cases for both the gantry crane and the reach stacker. Leveraging the preferred action space
is detrimental when comparing P-IDA* and BP-IDA*, and is not consistently beneficial or
detrimental otherwise.

When considering the larger instances in Table 2.20, performance is better on average
than that achieved over the medium size instances. Here, the GF methods which do not
leverage the preferred action space outperform BS methods for the gantry crane. BS methods
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Gantry Crane

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max Avg. Min Max
ILP 30 14.6 0.0 44.2 22777.0 - - - - - 0 70
IDA* 100 0.0 0.0 0.0 1.1 0.3 12.9 1.1 0.3 12.9 0 0
P-IDA* 100 0.0 0.0 0.0 1.2 0.3 14.4 1.2 0.3 14.4 0 0
B-IDA* 100 0.0 0.0 0.0 1.1 0.3 12.9 1.1 0.3 12.9 0 0
BP-IDA* 100 0.0 0.0 0.0 1.2 0.3 14.5 1.2 0.3 14.5 0 0
GF-IDA* 100 0.0 0.0 0.0 1.5 0.3 9.1 1.5 0.3 9.1 0 0
GF-P-IDA* 96 0.1 0.0 2.0 13.6 0.4 300 2.0 0.4 19.7 0 4
GF-B-IDA* 100 0.0 0.0 0.0 1.5 0.3 9.0 1.5 0.3 9.0 0 0
GF-BP-IDA* 96 0.1 0.0 2.0 13.6 0.3 300 1.9 0.3 19.4 0 4
Beam search β = 5 94 0.6 0.0 13.5 5.4 3.9 7.2 5.4 3.9 7.2 0 6
BS-B-IDA* 100 0.0 0.0 0.0 6.0 4.2 10.4 6.0 4.2 10.4 0 0
BS-BP-IDA* 100 0.0 0.0 0.0 6.0 4.2 10.5 6.0 4.2 10.5 0 0

Reach Stacker

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max Avg. Min Max
ILP 0 68.5 60.7 73.2 35910.0 - - - - - 0 98 100
IDA* 78 0.1 0.0 2.0 67.0 0.2 300 3.9 0.2 42.8 0 6 0
P-IDA* 96 0.0 0.0 2.0 13.5 0.2 300 1.9 0.2 30.0 0 2 0
B-IDA* 78 0.1 0.0 2.0 67.0 0.2 300 3.9 0.2 42.4 0 6 0
BP-IDA* 96 0.0 0.0 2.0 13.5 0.2 300 1.8 0.2 28.9 0 2 0
GF-IDA* 96 0.1 0.0 2.0 23.5 0.2 300 18.4 0.2 281.6 0 4 0
GF-P-IDA* 100 0.0 0.0 0.0 15.7 0.2 299.0 15.7 0.2 299.0 0 0 0
GF-B-IDA* 96 0.1 0.0 2.0 19.0 0.2 300 11.1 0.2 167.6 0 4 0
GF-BP-IDA* 100 0.0 0.0 0.0 8.0 0.2 136.1 8.0 0.2 136.1 0 0 0
Beam search β = 5 94 2.1 0.0 100.0 2.7 2.3 3.7 2.7 2.3 3.7 2 6 0
BS-B-IDA* 94 0.5 0.0 11.9 17.3 2.5 242.7 11.2 2.5 228.9 0 4 4
BS-BP-IDA* 100 0.0 0.0 0.0 2.9 2.5 4.4 2.9 2.5 4.4 0 0 0

Table 2.17. 0-way results for 50 1500-ft instances

are able to solve 26% of cases to meet LB and GF-B-IDA* solves 52% of cases to meet the
LB. Leveraging the preferred action space is inconsistently beneficial, reducing the gap to
the LB for IDA* heuristics and B-IDA* when considering the gantry crane, but having a
detrimental effect on almost all other heuristics. The best overall performance for the gantry
crane is achieved by GF-B-IDA* when considering the mean gap to the LB and the number
of instances solved to meet the LB, while for the reach stacker the best performance in
terms of the mean gap to the LB is achieved by BS-BP-IDA* whereas GF-BP-IDA* and
GF-B-IDA* find more examples to meet the LB.

Considering the largest instances in Table 2.21 we see that beam search methods generally
perform the best on average in terms of the range of the gaps to the LB. It is notable that
the performances of BS-B-IDA* and BS-BP-IDA* are better on average than those of GF-B-
IDA* and GF-IDA*, despite finding fewer solutions meeting the LB. Leveraging the preferred
action space is beneficial across all heuristics for the reach stacker, but not for GF heuristics
for the gantry crane. Additionally, leveraging the LB is beneficial for the gantry crane, but
detrimental for the reach stacker.
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Gantry Crane

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max Avg. Min Max
ILP 0 32.7 23.7 39.9 35995.0 - - - - - 0 100
IDA* 100 0.0 0.0 0.0 0.9 0.7 1.9 0.9 0.7 1.9 0 0
P-IDA* 100 0.0 0.0 0.0 0.9 0.7 1.7 0.9 0.7 1.7 0 0
B-IDA* 100 0.0 0.0 0.0 0.9 0.6 1.9 0.9 0.6 1.9 0 0
BP-IDA* 100 0.0 0.0 0.0 0.9 0.6 1.8 0.9 0.6 1.8 0 0
GF-IDA* 100 0.0 0.0 0.0 1.0 0.7 7.3 1.0 0.7 7.3 0 0
GF-P-IDA* 100 0.0 0.0 0.0 1.0 0.7 7.3 1.0 0.7 7.3 0 0
GF-B-IDA* 100 0.0 0.0 0.0 1.0 0.7 7.2 1.0 0.7 7.2 0 0
GF-BP-IDA* 100 0.0 0.0 0.0 1.0 0.7 7.3 1.0 0.7 7.3 0 0
Beam search β = 5 98 0.0 0.0 1.2 10.7 8.1 14.1 10.7 8.1 14.1 0 2
BS-B-IDA* 100 0.0 0.0 0.0 11.6 8.8 15.2 11.6 8.8 15.2 0 0
BS-BP-IDA* 100 0.0 0.0 0.0 11.6 8.8 15.2 11.6 8.8 15.2 0 0

Reach Stacker

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max Avg. Min Max
ILP 0 67.8 62.3 70.1 35891.0 - - - - - 0 100 100
IDA* 96 0.0 0.0 0.0 13.2 0.3 300 1.2 0.3 19.6 0 0 0
P-IDA* 100 0.0 0.0 0.0 0.6 0.3 3.9 0.6 0.3 3.9 0 0 0
B-IDA* 96 0.0 0.0 0.0 13.2 0.3 300 1.3 0.3 20.1 0 0 0
BP-IDA* 100 0.0 0.0 0.0 0.6 0.3 3.9 0.6 0.3 3.9 0 0 0
GF-IDA* 100 0.0 0.0 0.0 0.6 0.3 9.1 0.6 0.3 9.1 0 0 0
GF-P-IDA* 100 0.0 0.0 0.0 0.5 0.3 3.1 0.5 0.3 3.1 0 0 0
GF-B-IDA* 100 0.0 0.0 0.0 0.5 0.3 3.5 0.5 0.3 3.5 0 0 0
GF-BP-IDA* 100 0.0 0.0 0.0 0.5 0.3 2.1 0.5 0.3 2.1 0 0 0
Beam search β = 5 98 0.0 0.0 2.4 5.6 4.1 6.9 5.6 4.1 6.9 0 2 0
BS-B-IDA* 100 0.0 0.0 0.0 6.0 4.4 11.0 6.0 4.4 11.0 0 0 0
BS-BP-IDA* 100 0.0 0.0 0.0 6.0 4.4 8.4 6.0 4.4 8.4 0 0 0

Table 2.18. 0-way results for 50 2000-ft instances

2.6.4.5. Large Costs: 1-way Distance Function

First, we report the results for medium size problems using the 1-way distance function in
Table 2.22. Overall, BS-B-IDA* and BS-BP-IDA* have the best performances. We see that
leveraging the preferred action space is detrimental, except for the methods based on beam
search. Leveraging the LB to reduce the search space shows inconsistent results, sometimes
helping and sometimes producing very poor results, as is the case of BP-IDA* when compared
with P-IDA*. However, bounding helps very little when it does. Greedy first methods do
not consistently outperform their corresponding baselines, having a negative impact for the
gantry crane, and a positive impact for the reach stacker, only when not leveraging the
preferred action space.

Next, we consider Table 2.23, where the BS-B-IDA* and BS-BP-IDA* methods perform
best overall for both reach stacker and gantry crane. BS-B-IDA* is able to find 50 % of
cases to meet the LB for the gantry crane while maintaining a mean gap to the LB of less
than 0.1%. The BS-B-IDA* and BS-BP-IDA* methods are unable to solve any instances to
meet the LB for the reach stacker, but maintain a mean gap to the LB of 0.7%. Leveraging
the preferred action space is beneficial for most non GF methods, except when leveraging
the LB when using the reach stacker. Leveraging the LB is beneficial for GF methods when
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Gantry Crane

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 3.0 1.4 56.8 300 300 300 76.1 0.2 295.0 2 2
P-IDA* 0 2.9 1.4 57.0 300 300 300 78.3 0.2 273.4 2 2
B-IDA* 0 2.9 1.4 57.0 300 300 300 122.0 4.9 293.5 2 2
BP-IDA* 0 12.1 0.1 57.4 300 300 300 156.7 4.6 300 20 0
GF-IDA* 52 2.3 0.0 56.5 147.6 0.1 300 19.5 0.1 207.5 4 4
GF-P-IDA* 18 2.5 0.0 56.7 253.4 0.1 300 19.0 0.1 208.8 4 8
GF-B-IDA* 58 2.3 0.0 56.5 131.4 1.5 300 19.6 1.5 112.7 4 4
GF-BP-IDA* 18 2.2 0.0 50.4 252.8 2.9 300 37.8 2.9 300 4 4
Beam search β = 5 42 0.1 0.0 0.4 2.0 1.0 5.6 2.0 1.0 5.6 0 0
BS-B-IDA* 50 0.1 0.0 0.4 124.5 2.4 244.5 7.5 2.3 35.1 0 0
BS-BP-IDA* 46 0.1 0.0 0.4 135.1 2.4 244.5 9.9 2.3 89.5 0 0

Reach Stacker

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 3.3 1.4 56.8 300 300 300 67.2 0.1 259.2 2 10 44
P-IDA* 0 3.2 1.4 57.0 300 300 300 60.2 0.1 295.3 2 10 26
B-IDA* 0 3.2 1.4 57.0 300 300 300 91.3 1.9 296.8 2 10 30
BP-IDA* 0 15.2 1.4 57.1 300 300 300 172.6 4.9 300 26 0 0
GF-IDA* 14 2.9 0.0 56.5 258.0 0.1 300 23.4 0.1 145.9 4 16 52
GF-P-IDA* 18 2.8 0.0 56.7 251.7 0.1 300 35.2 0.1 265.2 4 20 32
GF-B-IDA* 14 2.8 0.0 56.5 258.2 0.8 300 25.8 0.8 213.9 4 14 44
GF-BP-IDA* 18 3.1 0.0 56.7 251.0 1.5 300 30.7 1.5 218.9 4 26 34
Beam search β = 5 0 0.9 0.0 5.8 1.3 0.7 2.4 1.3 0.7 2.4 0 16 58
BS-B-IDA* 0 0.5 0.0 4.8 241.3 240.7 242.4 39.1 1.7 167.0 0 8 38
BS-BP-IDA* 0 0.5 0.0 4.9 241.3 240.7 242.4 34.7 1.7 210.9 0 10 34

Table 2.19. 2-way results for 50 1000-ft instances using large cost values

Gantry Crane

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 3.0 2.6 3.1 300 300 300 179.1 0.8 289.5 0 0
P-IDA* 0 2.8 2.4 3.0 300 300 300 126.7 0.8 296.8 0 0
B-IDA* 0 2.9 2.5 3.0 300 300 300 186.1 17.1 296.7 0 0
BP-IDA* 0 2.8 2.4 3.0 300 300 300 133.2 33.1 286.9 0 0
GF-IDA* 28 0.0 0.0 0.1 221.3 0.3 300 28.1 0.3 143.4 0 0
GF-P-IDA* 24 0.1 0.0 0.4 230.7 0.3 300 19.1 0.3 298.5 0 0
GF-B-IDA* 52 0.0 0.0 0.1 172.4 10.5 300 49.0 10.5 172.3 0 0
GF-BP-IDA* 30 0.1 0.0 0.4 223.7 20.7 300 53.3 20.6 294.6 0 0
Beam search β = 5 26 0.0 0.0 0.2 6.0 3.5 14.2 6.0 3.5 14.2 0 0
BS-B-IDA* 26 0.0 0.0 0.2 188.3 13.7 253.4 22.4 13.7 52.7 0 0
BS-BP-IDA* 26 0.0 0.0 0.2 188.4 13.6 253.4 22.4 13.4 53.8 0 0

Reach Stacker

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 3.0 2.7 4.5 300 300 300 166.6 0.4 296.7 0 4 18
P-IDA* 0 2.8 2.5 3.1 300 300 300 104.2 6.1 249.6 0 0 8
B-IDA* 0 2.9 2.7 4.5 300 300 300 163.0 7.5 299.0 0 4 20
BP-IDA* 0 3.7 2.7 51.2 300 300 300 156.9 14.2 300 2 0 0
GF-IDA* 12 0.6 0.0 8.2 264.1 0.2 300 40.6 0.2 261.9 0 12 82
GF-P-IDA* 30 0.6 0.0 8.6 215.6 0.2 300 33.2 0.2 287.9 0 12 18
GF-B-IDA* 14 0.6 0.0 8.2 261.1 6.8 300 49.6 5.8 265.2 0 12 82
GF-BP-IDA* 30 0.8 0.0 10.1 216.4 13.1 300 58.9 11.5 293.2 0 16 20
Beam search β = 5 0 0.5 0.0 9.8 3.6 2.3 8.5 3.6 2.3 8.5 0 4 62
BS-B-IDA* 0 0.4 0.0 8.7 243.6 242.3 248.5 30.8 6.7 186.6 0 4 68
BS-BP-IDA* 0 0.4 0.0 7.3 243.6 242.3 248.5 36.2 6.8 225.0 0 4 60

Table 2.20. 2-way results for 50 1500-ft instances using large cost values
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Gantry Crane

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 4.0 3.9 4.0 300 300 300 35.2 10.2 182.0 0 0
P-IDA* 0 3.8 3.7 3.9 300 300 300 163.9 29.1 297.3 0 0
B-IDA* 0 3.9 3.8 4.0 300 300 300 224.1 99.0 299.9 0 0
BP-IDA* 0 3.7 3.7 3.8 300 300 300 255.7 119.6 299.9 0 0
GF-IDA* 22 0.0 0.0 0.1 234.2 0.7 300 23.4 0.7 297.0 0 0
GF-P-IDA* 24 0.1 0.0 0.2 229.1 0.7 300 5.7 0.7 140.3 0 0
GF-B-IDA* 34 0.0 0.0 0.1 217.0 28.9 300 53.0 28.9 267.9 0 0
GF-BP-IDA* 24 0.1 0.0 0.2 247.4 56.9 300 94.6 56.9 287.8 0 0
Beam search β = 5 16 0.0 0.0 0.1 11.5 7.4 27.6 11.5 7.4 27.6 0 0
BS-B-IDA* 16 0.0 0.0 0.1 219.1 37.8 267.6 59.2 36.1 226.1 0 0
BS-BP-IDA* 16 0.0 0.0 0.1 219.1 38.1 267.6 55.5 36.2 183.4 0 0

Reach Stacker

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 4 0.5 0.0 11.4 288.8 20.3 300 65.1 0.3 293.8 0 4 66
P-IDA* 24 0.3 0.0 10.2 228.7 0.4 300 10.1 0.3 264.3 0 4 4
B-IDA* 4 0.5 0.0 12.7 288.5 12.8 300 46.8 12.8 292.6 0 4 66
BP-IDA* 24 0.3 0.0 11.6 235.3 23.1 300 41.3 23.1 298.9 0 4 4
GF-IDA* 4 0.5 0.0 12.1 288.9 22.0 300 64.2 0.4 274.2 0 4 66
GF-P-IDA* 24 0.3 0.0 10.2 228.8 0.4 300 9.8 0.4 231.3 0 4 4
GF-B-IDA* 4 0.6 0.0 13.4 288.7 15.0 300 41.7 14.0 281.9 0 4 66
GF-BP-IDA* 24 0.3 0.0 11.6 236.3 27.3 300 43.8 27.3 298.7 0 4 4
Beam search β = 5 0 0.3 0.0 9.6 6.4 3.9 15.7 6.4 3.9 15.7 0 4 68
BS-B-IDA* 0 0.3 0.0 9.6 246.4 243.9 255.7 64.3 18.5 253.5 0 2 64
BS-BP-IDA* 0 0.3 0.0 9.6 246.4 243.9 255.7 58.2 18.7 249.1 0 2 64

Table 2.21. 2-way results for 50 2000-ft instances using large cost values

Gantry Crane

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 2.3 0.9 59.6 300 300 300 74.4 0.2 280.9 2 2
P-IDA* 0 2.3 0.9 59.6 300 300 300 74.4 0.2 289 2 2
B-IDA* 0 2.3 0.9 59.6 300 300 300 103.5 5.0 297.1 2 2
BP-IDA* 0 12.2 0.1 61.2 300 300 300 155.3 12.2 300 20 0
GF-IDA* 50 2.4 0.0 59.3 152.6 0.1 300 10.9 0.1 282.8 4 4
GF-P-IDA* 22 2.5 0.0 60.6 238.1 0.1 300 17.0 0.1 111.6 4 4
GF-B-IDA* 60 2.4 0.0 59.3 135.6 1.4 300 18.6 1.4 283.8 4 4
GF-BP-IDA* 28 2.3 0.0 54.9 230.5 3.6 300 34.4 2.6 300 4 0
Beam search β = 5 60 0.0 0.0 0.2 1.7 1.0 3.2 1.7 1.0 3.2 0 0
BS-B-IDA* 68 0.0 0.0 0.2 80.9 2.2 243.1 5.0 2.2 15.8 0 0
BS-BP-IDA* 72 0.0 0.0 0.2 72.2 2.2 243.1 5.9 2.2 26.6 0 0

Reach Stacker

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 3.0 1.0 65.4 300 300 300 80.1 0.1 220.6 2 10 30
P-IDA* 0 3.0 1.0 65.4 300 300 300 64.3 0.1 286.9 2 10 24
B-IDA* 0 3.0 1.0 65.4 300 300 300 121.1 1.9 295.0 2 10 26
BP-IDA* 0 13 1.0 60.1 300 300 300 159.1 4.5 300 22 0 0
GF-IDA* 0 0.7 0.0 10.4 300 300 300 40.2 0.1 276.3 0 6 56
GF-P-IDA* 28 3.9 0.0 66.6 230.5 0.1 300 32.5 0.1 288.2 4 18 22
GF-B-IDA* 0 0.7 0.0 10.4 300 300 300 31.0 0.8 293.6 0 6 54
GF-BP-IDA* 24 3.7 0.0 54.9 235.1 1.5 300 41.2 1.4 300 4 14 18
Beam search β = 5 4 1.8 0.0 26.5 1.2 0.8 2.2 1.2 0.8 2.2 0 12 54
BS-B-IDA* 4 0.5 0.0 10.1 231.7 2.6 242.2 24.2 1.5 105.0 0 4 32
BS-BP-IDA* 4 0.5 0.0 10.2 231.7 2.5 242.2 37.1 1.5 237.7 0 4 28

Table 2.22. 1-way results for 50 1000-ft instances using large cost values
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considering the gantry crane, but not the reach stacker. Leveraging the LB is beneficial for
most non GF methods, except when paired with the preferred action space for the reach
stacker as mentioned before. GF methods outperform their non greedy counterparts for the
gantry crane, but can lead to relatively poor solutions when considering the reach stacker.

Gantry Crane

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 1.8 1.6 1.9 300 300 300 125.2 0.7 297.0 0 0
P-IDA* 0 1.7 1.5 1.8 300 300 300 129.5 0.7 297.9 0 0
B-IDA* 0 1.7 1.5 1.8 300 300 300 204.7 14.4 295.2 0 0
BP-IDA* 0 1.7 1.5 1.8 300 300 300 142.8 28.6 298.2 0 0
GF-IDA* 20 0.0 0.0 0.1 240.4 0.4 300 13.5 0.3 269.5 0 0
GF-P-IDA* 0 0.1 0.0 0.3 300 300 300 27.0 0.3 263.5 0 0
GF-B-IDA* 32 0.0 0.0 0.1 216.2 12.4 300 49.9 10.3 264.6 0 0
GF-BP-IDA* 0 0.1 0.0 0.3 300 300 300 56.3 20.0 297.1 0 0
Beam search β = 5 44 0.0 0.0 0.1 5.5 3.5 14.2 5.5 3.5 14.2 0 0
BS-B-IDA* 50 0.0 0.0 0.1 137.8 14.3 254.2 25.3 13.1 130.8 0 0
BS-BP-IDA* 46 0.0 0.0 0.1 141.5 14.4 254.2 19.9 13.1 56.7 0 0

Reach Stacker

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 1.9 1.6 4.6 300 300 300 150.3 0.3 288.4 0 4 12
P-IDA* 0 1.7 1.5 1.9 300 300 300 78.7 4.0 295.7 0 0 8
B-IDA* 0 1.8 1.6 4.6 300 300 300 153.4 5.9 286.4 0 4 12
BP-IDA* 0 2.7 1.6 51.4 300 300 300 127.6 12.1 300 2 0 0
GF-IDA* 0 1.3 0.0 19.1 300 300 300 31.7 0.2 295.8 0 12 90
GF-P-IDA* 0 0.9 0.0 17.2 300 300 300 29.1 0.2 280.4 0 8 10
GF-B-IDA* 0 1.3 0.0 19.1 300 300 300 45.5 4.7 285.5 0 10 90
GF-BP-IDA* 2 1.0 0.0 21.0 299.2 258.5 300 44.1 9.6 258.5 0 8 10
Beam search β = 5 0 0.9 0.0 20.6 3.4 2.2 8.5 3.4 2.2 8.5 0 6 60
BS-B-IDA* 0 0.7 0.0 15.7 243.4 242.2 248.5 24.8 6.5 110.6 0 6 64
BS-BP-IDA* 0 0.7 0.0 14.8 243.4 242.2 248.5 27.1 6.6 161.5 0 6 60

Table 2.23. 1-way results for 50 1500-ft instances using large cost values

Finally, we consider the largest problem instances in Table 2.24. The best performing
heuristics for both the reach stacker and gantry crane is BS-BP-IDA*, which solves 22 % of
cases to meet the LB when considering the gantry crane. Moreover, this method maintains
a gap to the LB of 0.1% for the reach stacker and less than 0.1 % for the gantry crane. GF
methods outperform their non GF counterparts on average, but can lead to a small number
of poor solutions for the reach stacker. Leveraging the preferred action space is beneficial
when considering non GF methods, but leads to worse performance overall when considering
GF methods. Using the LB during search is beneficial for non GF methods, but has no
impact when used in conjunction with GF search for the gantry crane, and is detrimental
when paired with GF search for the reach stacker.

2.6.5. Comparison of Results for Different Distance Functions

We are interested in judging the relative accuracy of the 1-way distance function and 0-
way distance function. We compare solutions which meet the LB on their respective distance
function to the gap to the LB when that solution is tested with the 2-way distance function.
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Gantry Crane

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 2.4 2.4 2.4 300 300 300 217.8 18.4 299.1 0 0
P-IDA* 0 2.3 2.3 2.4 300 300 300 165.8 30.9 299.7 0 0
B-IDA* 0 2.4 2.3 2.4 300 300 300 230.0 134.8 299.2 0 0
BP-IDA* 0 2.3 2.2 2.4 300 300 300 243.6 100.3 298.0 0 0
GF-IDA* 12 0.0 0.0 0.0 264.1 0.7 300 7.7 0.7 135.1 0 0
GF-P-IDA* 2 0.1 0.0 0.2 294.0 0.9 300 3.6 0.6 58.2 0 0
GF-B-IDA* 14 0.0 0.0 0.0 263.8 31.5 300 43.6 29.9 75.6 0 0
GF-BP-IDA* 2 0.1 0.0 0.2 295.5 75.5 300 92.7 56.5 296.9 0 0
Beam search β = 5 22 0.0 0.0 0.0 11.4 7.1 29.8 11.4 7.1 29.8 0 0
BS-B-IDA* 22 0.0 0.0 0.0 207.5 34.1 269.8 51.9 33.9 138.8 0 0
BS-BP-IDA* 22 0.0 0.0 0.0 207.5 34.1 269.8 59.7 34.1 159.4 0 0

Reach Stacker

Algorithm Solved to
LB [%]

Gap to
LB [%] CPU [s]

Time
to Solution[s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max Avg. Min Max
IDA* 0 2.4 2.3 2.4 300 300 300 155.0 46.2 300 0 0 0
P-IDA* 0 2.3 2.3 2.4 300 300 300 171.9 16.5 298.6 0 0 0
B-IDA* 0 2.3 2.3 2.4 300 300 300 241.5 71.5 299.9 0 0 0
BP-IDA* 0 2.3 2.2 2.4 300 300 300 237.4 57.6 299.3 0 0 0
GF-IDA* 2 0.5 0.0 15.9 294.0 0.5 300 28.1 0.3 256.0 0 4 98
GF-P-IDA* 2 1.0 0.0 15.6 294.0 0.5 300 19.4 0.3 295.0 0 6 2
GF-B-IDA* 2 0.5 0.0 15.9 294.4 19.4 300 49.3 11.6 265.6 0 4 98
GF-BP-IDA* 2 1.0 0.0 15.8 294.8 38.3 300 56.3 22.7 288.1 0 6 0
Beam search β = 5 0 0.2 0.0 4.0 6.2 4.0 16.0 6.2 4.0 16.0 0 4 64
BS-B-IDA* 0 0.1 0.0 2.1 246.2 244.0 256.0 49.9 18.4 188.2 0 2 60
BS-BP-IDA* 0 0.1 0.0 0.2 246.2 244.0 256.0 59.8 18.0 199.2 0 0 60

Table 2.24. 1-way results for 50 2000-ft instances using large cost values

We present these results in Tables 2.25 and 2.26. The gaps presented in Table 2.25 do not
include container cost, while Table 2.26 reports the gap to the LB including container cost.

Notably, solutions which meet the LB on the 0-way distance function perform poorly
when considered in a 2-way distance setting, having average gaps between 9.4% and 20.9%
for the gantry crane and between 4.0% and 18.5 % for the gantry crane. Meanwhile, the
1-way distance function offers a much better approximation to the 2-way distance function,
leading to a much smaller gap. Nonetheless, this gap exists and is larger than the gap to the
LB for several heuristics applied to the 2-way distance function.

We make the same comparison with solutions which meet the LB on the 1-way distance
function when using large values. We present these results in Tables 2.27 and 2.28. Notably,
the distance gap shrinks for the 1-way distance function, for both the reach stacker and the
gantry crane. Neither large nor very large size instances results are available for the reach
stacker, since none of these instances were solved to reach the LB by the BS algorithms.

2.6.6. Discussion

The results presented above indicate that beam search paired with state space depth-first
search (BS-B-IDA*) is capable of consistently providing high-quality solutions up to very
large sizes of LPSP problems in less than 5 minutes, while considering costs associated with
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Gantry Crane
Length 0-Way Distance Function 1-Way Distance Function

Avg. Min Max Avg. Min Max
667 20.9 10.4 29.6 6.5 4.0 8.9
1000 13.8 3.7 22.2 0.7 0.2 1.4
1500 9.4 6.7 12.4 0.8 0.5 1.2
2000 10.6 9.0 13.1 0.7 0.4 1.0

Reach Stacker
Length 0-Way Distance Function 1-Way Distance Function

Avg. Min Max Avg. Min Max
667 18.5 8.0 23.9 5.7 5.4 6.0
1000 3.9 0.8 8.6 0.7 0.2 1.0
1500 4.0 1.9 7.5 0.9 0.5 1.1
2000 4.2 1.9 6.6 0.8 0.5 1.0

Table 2.25. Gap to LB of distance travelled using solutions meeting LB from each distance
function on the 2-way distance function for small cost values

Gantry Crane
Length 0-way Distance Function 1-way Distance Function

Avg. Min Max Avg. Min Max
667 4.6 3.4 6.4 1.3 0.8 1.6
1000 4.2 2.8 5.3 0.2 0.0 0.4
1500 3.7 3.0 4.7 0.3 0.2 0.5
2000 4.2 3.6 5.0 0.3 0.2 0.4

Reach Stacker
Length 0-way Distance Function 1-way Distance Function

Avg. Min Max Avg. Min Max
667 4.0 2.3 5.8 0.9 0.8 0.9
1000 1.1 0.3 2.7 0.2 0.1 0.3
1500 1.5 0.7 2.7 0.3 0.2 0.4
2000 1.6 0.8 2.5 0.3 0.2 0.4

Table 2.26. Gap to LB using solutions meeting LB from each distance function on the
2-way distance function for small cost values

Gantry Crane Reach Stacker
Length 1-way Distance Function 1-way Distance Function

Avg. Min Max Avg. Min Max
1000 0.9 0.4 1.5 1.0 1.0 1.0
1500 1.0 0.6 1.2 N/A N/A N/A
2000 0.7 0.6 0.9 N/A N/A N/A

Table 2.27. Gap to LB of distance travelled using solutions meeting LB from each distance
function on the 2-way distance function for small cost values
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Gantry Crane Reach Stacker
Length 1-way Distance Function 1-way Distance Function

Avg. Min Max Avg. Min Max
1000 0.2 0.1 0.3 0.3 0.3 0.3
1500 0.3 0.2 0.4 N/A N/A N/A
2000 0.2 0.2 0.3 N/A N/A N/A

Table 2.28. Gap to LB using solutions meeting LB from each distance function on the
2-way distance function for large cost values

both handling and container loading. The heuristics proposed here are able to find solutions
meeting the LB when using the 0-way cost function for all instance sizes, as well as solutions
meeting the LB for both the 1-way distance function and 2-way distance function. While
depth-first search methods employing a greedy search in the first stage are sometimes able to
outperform the combination of beam search and depth-first search, finding more instances
whose solutions meet the LB, it was found that depth-first search alone is susceptible to
poorer performance on average than beam search coupled with IDA*. We also note that
beam search alone, while very fast, can lead to poor solutions.

The LB can be used in conjunction with search to discard nodes which are not promising,
by calculating the cost of the optimal solution from the current state before choosing to
explore the node further. This led to mixed results throughout testing, yielding sometimes
better and sometimes worse solutions within the time limit. The primary drawback of using
the bound is the time to calculate the LB from each state. Indeed, as frequently seen in
relation with the GF methods, using the LB to bound the search requires more time to find
the same quality of solution. This is especially true when considering larger instances. The
time to calculate the LB is longer on larger instances, which leads to poorer performance
within the time budget. Finding a faster method of determining the LB could lead to
improvements.

Since optimal solutions were not known for all of the problems presented here, we com-
pared to the LB. We found that as the problem size is increased, except when compared
to medium size problems, the gap between the best found solution and the LB grows, but
remains less than 1% for even the largest instances.

The IDA* heuristic performs quite well in spite of its simplicity. Though it shows the
largest gap on average, it maintains an average gap to the LB of 5.4% on the largest problem
sizes using small cost values, and an average gap of 4% using larger cost values. Notably, it
performs better on average on the reach stacker than on the gantry crane. Any solution for
the reach stacker is valid for the gantry crane. The reach stacker has a smaller state space
than the gantry crane whence a larger fraction can be searched within the time limit, leading
to cases where the IDA* method performs better on the reach stacker than on the gantry
crane.
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Switching to large cost values deteriorates the quality of the reach stacker solutions for
all heuristics using a greedy first search method, including the beam search methods. The
large distance cost values induce a greedy behaviour where containers are selected lot by lot.
Improving those results is a topic for future research.

Among all instances, the instances of medium size consistently show the largest gap to
the LB for the reach stacker. This can be attributed to the layout of the containers in the
storage area, instances of this size having fewer lots, which leads to a smaller number of
containers being reachable during the loading procedure, and to worse overall performance.

2.7. Conclusion

In this paper we proposed a two-stage heuristic based on a formulation of the LPSP as
a sequential decision-making problem that can be solved through dynamic programming.
We extensively analyzed different heuristics, comparing to an exact solution method (ILP
formulation) whenever possible.

When comparing the accuracy of the 0-way and 1-way distance functions, we see that the
solutions according to the 0-way distance function lead to an average gap to the LB of up to
4.6% when evaluated in a 2-way distance function environment, while solutions to the 1-way
distance function lead to a gap up to 1.3%. It is obvious that the 1-way distance function is
a better approximation of the true distance cost, but notable that these gaps are larger than
the gaps found using the heuristics equipped with the 2-way distance function. We conclude
that the 2-way distance function is beneficial and that approximating the distance without
the return distance, while close, can lead to worse solutions to the LPSP.

We leave for future work explorations into the impact of different cost values within
the LPSP system, including exploration of heuristics that work with the large cost values
presented here that do not induce a lot by lot selection when paired with greedy search.
Additionally, we leave for future work explorations into stochastic systems, for example
examination of the stochastic LPSP or of systems with uncertainty in container weights.
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2.8. Appendix

2.8.1. Proof of Propostion 1

2.8.1.1. Notation and Introduction

Let us adopt the notation where q = (qx,qy) designates the position of a slot, and
c = (cx,cy) designates the position of a container. More than one slot can occupy the same
x,y position. C is the set of all positions of containers and Q the set of all positions of slots.

A policy π consists of a sequence {(ct,qt)}T−1
t=0 where T − 1 it the time such that no

additional containers can be loaded, whether there are no containers left to place, no more
slots in which to place containers or none of the remaining containers can be placed in the
remaining slots. We denote Ct and Qt the set of positions of containers and slots still to be
selected at time t, respectively.

We define the greedy policy πG as follows:

(ct+1,qt+1) = argminc∈Ct+1,p∈Qt+1 [d(qt,c) + d(c,q)]

where
d(a,b) = ζx|ax − bx|+ ζy|ay − by|

is the scaled distance. Moreover, we assume that the initial position of the handling
equipment is (0,0), the position of the first lot is aligned with the first platform and lots are
filled in order, moving along the train.

Our goal is to minimize the total immediate costs GT−1(π) as a function of the policy π,
where

GT−1(π) =
T−1∑
t=0

[d(qt,ct+1) + d(ct+1,qt+1)] .

Proposition 2. Let GT−1(π) be the total immediate costs as a function of the policy π and
πG be the greedy policy.

πG = argminπGT−1(π).

2.8.1.2. Proof for Fixed q

Let us for now assume that the sequence {qt}T−1
t=0 is fixed, and define π̃G to be the greedy

policy with respect to c for {qt}T−1
t=0 fixed.
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Since {qt}T−1
t=0 is given, we are optimizing directly for {ct}T−1

t=0 , and we define

Ft(π) = d(qt,c(π)
t+1) + d(c(π)

t+1,qt+1)

and hence for all t ≥ 0, we get the recursive expression:

Gt+1(π) = Gt(π) + Ft+1(π)

and thus if we define

π?t+1 = argminπGt+1(π) = argminπ [Gt(π) + Ft+1(π)] .

We get
Gt(π?t+1) + Ft+1(π?t+1) ≤ Gt(π̃G) + Ft+1(π̃G)

We will now prove by induction that π̃G = argminπGT−1(π) with the induction hypothesis

Ht :

π
?
t = π̃G

π̃G = argminπFt(π)

Let us first verify the induction hypothesis H0 for t = 0. Let us observe that

G0(π) = d(q0,c
(π)
1 ) + d(c(π)

1 ,q1) = F0(π)

and thus by definition of πG, we have that c(π̃G)
1 = c

(π?
0)

1 , and thus

πG = argminπG0(π) = argminπF0(π).

Hence the proposition H0 is true.

Let us now assume that Hk is true for all k ≤ t. Assuming π?t = π̃G, we have

Gt(π?t+1)−Gt(π?t )︸ ︷︷ ︸
≥0

≤ Ft+1(πG)− Ft+1(π?t+1)

Further assuming that π̃G = argminπFt(π), then we must have (by the definition of π̃G) that

π̃G = argminπFt+1(π)

Thus
0 ≤ Gt(π?t+1)−Gt(π̃G) ≤ Ft+1(π̃G)− Ft+1(π?t+1) ≤ 0

or in other words
π̃G = argminπGt+1(π),

completing the proof by induction. Thus Proposition 2 is holds true.

N.B.: Note this result holds for any fixed sequence {qt}T−1
t=0 .
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2.8.1.3. Final Step of the Proof

Let us now reconsider the the initial greedy policy πG. We would like to prove that

πG = argminπGT−1(π).

Note that πG induces a sequence {q′t}T−1
t=0 . Now observe that πG is indeed the same policy

as π̃G over {q′t}T−1
t=0 .

Now we just need to prove that {q′t}T−1
t=0 is indeed optimal. Note that once we have

{qt}T−1
t=0 fixed, we know which {ct}T−1

t=0 is optimal namely the one of the greedy policy. More
precisely, once we have chosen qt, we know which ct+1 to pick for optimality, thus we can
assume that it is fixed once pt is chosen. Thus let us define:

Ft(π) = d(qt,ct+1) + d(ct+1,q
(π)
t+1)

where we assume that at time t, qt and ct+1 are already fixed, and we are to optimize the
choice of qt+1.

Recalling the recursive expression:

Gt+1(π) = Gt(π) + Ft+1(π)

let us now prove by induction that {q′t}Tt=0 is indeed optimal, with the induction hypothesis
H′t that πG at time t consisting of the sequence {q0,c1,q1, . . . , ct+1,pt+1} corresponds to π?t .

Let us first verify the induction hypothesis H′0 for t = 0. Let us observe that

G0(π) = d(q0,c1) + d(c1,q
(π)
1 ) = F0(π)

and thus by definition of πG, we have that q(πG)
1 = q

(π?
0)

1 , and thus

πG = argminπG0(π) = argminπF0(π).

Hence the proposition H′0 is true.

Let us now assume that H′k is true for all k ≤ t. Then we have Gt(πG) ≤ Gt(π) for all
π by the induction hypothesis, while and Ft(πG) ≤ Ft(π) for all π, by the definition of πG.
Thus

Gt+1(πG) = Gt(πG) + Ft+1(πG) ≤ Gt(π) + Ft+1(π) = Gt+1(π)

for all π. Hence πG = π?t+1, completing the proof by induction.
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• hyperparameter search for all networks and cost settings,
• detailed analysis of results as well as writing of the paper.

3.1. Introduction

Rail transportation is a crucial component of supply chains in North America and world
wide. The number of transported intermodal units has been rising steadily since 2016,
reaching 30 million units in 2018. Double-stack intermodal railcars are efficient means of
transporting goods over rails, doubling the amount of containers which can be shipped over
single stack railcars. Central to the performance of rail transportation are efficient operations
of intermodal rail terminals where containers are sorted, temporarily stored and loaded onto
railcars.

Deep reinforcement learning (DRL) and reinforcement learning (RL) have seen a surge in
research and successful applications since the seminal contribution of [56], which introduced
deep Q-networks (DQN). More recently, DRL algorithms have been able to rise to the per-
formance of the world’s top chess players [73], and beat the world’s best Go players [74]. Due
to the sequential nature of loading containers onto railcars, DRL may be a good candidate
for solving this problem. If successful, DRL models would be able to provide solutions in
very short computing time which could potentially be leveraged in future work to solve a
dynamic and stochastic version of the problem.

The load planning and sequencing problem (LPSP) for double-stack railcars is a problem
found at North American rail container terminals. The objective is to maximize the value of
containers loaded onto a sequence of railcars, while minimizing the handling costs associated
with placing these containers. Here, we approach the problem for double-stack intermodal
railcars. The loading of such railcars must respect a variety of constraints, e.g., pertaining to
the center of gravity (COG), maximum carrying weight and the loading patterns associated
with a railcar [53]. We refer to Section 2.2 for more details. It is notable that in this chapter
we mostly use an optimal control vocabulary [8], despite the solution method lying closer to
reinforcement learning.

The objective of this work is to illustrate how the LPSP can be approached using DRL
techniques, that an agent is able to learn how to perform well in the environment, and
propose acceptable solutions to the LPSP in short computing time. Challenging in this
context is the representation of the state of the system and constraints on the action space
at each state. For this purpose we use a deep neural network.

The contributions of this paper are as follows:
• We present a representation of the LPSP state that accounts for the LPSP’s several
modalities and 3-dimensional structure.
• At test time, we pair the trained model with a beam search in order to improve the
solutions.
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• We measure the performance of the model by comparing the performance to a lower
bound (LB).
• We compare the performance of the model to the two-stage heuristic proposed in Sec-
tion 2.5. While the proposed RL model does not outperform the two-stage heuristic
on average, it reaches similar performance for one type of handling equipment (gantry
crane).

The remainder of the paper is structured as follows: In Section 3.2 we discuss work rele-
vant to the LPSP and the methods we use to approach the LPSP. Section 3.3 briefly presents
the LPSP, how the LPSP is modified for deep reinforcement training, the representation of
the LPSP for the model and the model architecture. Section 3.4 outlines our experimental
study and its results and in Section 3.5 we provide a detailed discussion of the latter. Finally,
Section 3.6 concludes and defines directions for further research.

3.2. Literature Review

In this section we begin by presenting the literature related to the LPSP for double-
stack intermodal railcars. Next, we present applications of deep reinforcement learning to
problems closely related to the LPSP, focusing on problems wherein container movements
in terminals are considered. We then discuss common methods of solving combinatorial
optimization problems using deep reinforcement learning. Finally, we present the literature
related to deep Q-learning Networks, as our model, and training procedure, are based upon
the DQN algorithm.

The load planning problem (LPP) for double-stack intermodal railcars is introduced by
[53], and addresses the pairing between containers and platform slots. They present loading
constraints that occur in practice along with an integer linear programming (ILP) formulation
that can be solved by a commercial solver. The load sequencing problem (LSP) defines the
sequence of actions taken to place containers onto their respective platform slots. Typically,
the LPP and LSP are solved sequentially, with the result of the load planning problem
being used to define the containers to be loaded in the load sequencing problem as in [63].
Reference [67] introduces the LPSP which integrates the solution of the two problems and
also introduce distance functions which we present here. They solve the problem by means
of integer programming. In Chapter 2 we proposed to formulate the LPSP as a shortest path
problem on an ordered graph and to solve it through dynamic programming.

In the literature, the operational decision problems that occur at container terminals have
been approached by dynamic programming (see Section 2.3) as well as reinforcement learning.
Reference [72] uses a DQN to to find solutions to the ship stowage planning problem. In
that problem, containers are loaded from the loading bay onto a ship, the slots to be filled
have a relative loading sequence such that the furthest slots must be loaded first. Moreover,
the problem considers weight limits for each slot as well as placing heavier containers on the
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bottom layers of the ship. They construct a feature vector using the statistics and positions
of the containers in the yard. Reference [69] uses a deep reinforcement learning algorithm as
well as evolutionary strategies to approach the container loading problem at a ship terminal.
The objective is to place containers on the ship while limiting the number of reshuffles
required. They do not consider the distance travelled by the handling equipment, nor is
their problem 3-dimensional, because they only consider one plane of containers running
alongside a ship. This would be most similar to solving the problem using the 0-way distance
formulation as presented by [67] and Section 2.4.2. Reference [79] compares reinforcement
and evolutionary algorithms for the container loading problem, defined as a space utilization
problem, which considers maximizing the number of containers that can be loaded into a
yard block. They approach the problem using the tabular reinforcement learning technique
Q-learning. There are currently no studies that use DRL to approach the LPSP when
considering the costs associated with the distance travelled by the handling equipment in a
3-dimensional environment. Moreover, we could not find any studies using DRL to approach
the LPSP for double-stack intermodal railcars. We fill these gaps here.

We train the model using an algorithm called deep Q-learning as proposed by [56], wherein
a model is trained to play Atari games. Deep Q-learning trains a model through interaction
with the environment, using a technique called experience replay [50], which keeps previous
states, actions, rewards and transitions in a memory to be sampled randomly. The purpose
of the random sampling is to smooth the training distribution over past behaviours. During
training, the model takes actions in the environment, and at each step a mini-batch is drawn
from the replay memory to update the network. Additionally, there is a second network, the
target network, which is only updated infrequently, improving the stability of the model. In
order to improve stability further we scale the rewards, as used in [18] and [23], and discussed
in [29], by a constant factor to compress the space of expected returns which the DQN must
output. This leads to smaller gradients and more stability during training. Another method
of stabilizing training is gradient clipping [60, 22].

DQNs have been employed in deterministic settings since their inception as explained in
[24], as many of the Atari games are deterministic except for the initial hidden state. They
have also been employed in molecular optimization, a deterministic setting with an accurate
model of the environment in [86]. DQN was also used successfully in the deterministic maze
environment in [47]. Finally, DRL methods have been employed to solve a deterministic bin
packing problem [43].

3.3. Methodology

In this section, we present the components which define the DRL agent we will use to
approach the LPSP. The problem is defined using negative rewards, referred to as costs in
the context of this paper (see Section 3.3.1). An episode is defined as the sequence of states,
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actions and rewards between the initial state, at t = 0, to the terminal state, at t = T .
For the LPSP, this involves the loading of containers onto railcar platforms until no more
containers can be loaded. During each episode, states are represented to the model through
a state representation vector, which describes the state of the LPSP in a manner that can be
fed into a feed-forward deep neural network, as we show in Section 3.3.2. The representation
of actions is presented in Section 3.3.3. The neural network architecture is presented in
Section 3.3.4. We outline how the network is trained in Section 3.3.5 and how the trained
network can be integrated with beam search to improve results in Section 3.3.6.

3.3.1. The Load Planning and Sequencing Problem

For a detailed description of the LPSP we refer the reader to Section 2.2. Here we consider
the same problem and notation, however we make one modification: During training we
modify the terminal cost for the LPSP. We introduce the indicator variable fq ∈ {0,1} that
equals 1 if the slot is occupied and 0 otherwise. We modify the cost function at the end of
an episode to add a penalty to the model only if at least one slot remain open, as shown
below

GT (sT ) =

π
∑
c∈C(1− lc) if ∑q∈Q(1− fq) > 0

0 otherwise.
(3.1)

This modification improves the system by removing the large terminal penalty when a solu-
tion is found. Instead, the agent is penalized for leaving slots empty while having unloaded
containers. Since all the containers have identical leave-behind cost, π, during a successful
sequence of loading operations, wherein all slots are occupied, or all containers are placed,
the modification does not lead to a change to the overall cost which we aim to be minimize.

3.3.2. State Representation

We define a feature representation which indicates container and platform information
to the neural network. The state representation has been defined such that it can represent
any problem instance within the distribution we consider. We propose a representation for
each of the components of the LPSP. Section 3.3.2.1 presents the feature representation of
the containers in the storage area. Section 3.3.2.2 presents the feature representation for the
containers which have been double touched and placed aside, and Section 3.3.2.3 presents the
representation for the railcar platforms to be loaded, the containers that have been loaded
onto each platform, as well as the position of the handling equipment.

First, we introduce two statistics calculated over the instance being represented. We
determine the maximum weight of a container in an instance, mmax = maxc∈Cmc. Further-
more, we define the average container weight as the average weight of all containers in the
instance, m̄C =

∑
c∈C

mc

|C| , and the standard deviation of container weights as σ̂mC
. We use
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these values to determine the normalized weight of each container as follows:

m̃c = mc − m̄C

σ̂mC

. (3.2)

3.3.2.1. Storage Area

We represent the storage area to the DQN as a 4-D tensor of shape
(k,max(xSA),max(ySA),max(zSA)) where max (xSA),max (ySA),max (zSA) are the maxi-
mum x, y and z positions of containers in the storage area among all problems we consider.
We refer to the first dimension of the representation as the channels, where each channel
k = 1, . . . ,11 holds information ψk about the containers in the storage yard,

ψ1
SA(x,y,z) =

1 if (xc, yc, zc) = (x,y,z) ∃c ∈ C

0 otherwise,
(3.3)

ψ2
SA(x,y,z) =


mc

mmax
if (xc, yc, zc) = (x,y,z) ∃c ∈ C

0 otherwise,
(3.4)

ψ3
SA(x,y,z) =

m̃c if (xc, yc, zc) = (x,y,z) ∃c ∈ C

0 otherwise.
(3.5)

The first channel (3.3) represents the occupancy of the position (x,y,z). The second channel
(3.4) represents the weight of the container at (x,y,z), divided by the maximum weight of
all containers in the instance. The third channel (3.5) represents the normalized weight of
the container at position (x,y,z).

Next, we consider the length of each container. This is done by category, since lengths
are discrete values. We show these in (3.6) which indicates the length of a container at each
location in the storage area. Container length, Lc, can be 40 ft, 45 ft, 48 ft or 53 ft. Defining
L̄1 = 40, . . . ,L̄4 = 53, we have

ψkSA(x,y,z) =

1 if (xc, yc, zc) = (x,y,z) and Lc = L̄k−3 ∃c ∈ C

0 otherwise.
k = 4, . . . ,7. (3.6)

We next consider the container height. Containers can be either low-cube (LC), having
height 8 feet 6 inches, or high-cube (HC), having height 9 feet 6 inches. We define the set
of all LC containers as CLC and the set of all HC containers as CHC Since the height is a
discrete variable, we represent it using 2 one-hot inputs, one for each height. Both are 0 if a
container is not present. The first (3.7) indicates the container at (x,y,z) is a LC container,
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while the second (3.8) indicates the container at (x,y,z) is a HC container:

ψ8
SA(x,y,z) =

1 if (xc, yc, zc) = (x,y,z) and c ∈ CLC ∃c ∈ C

0 otherwise,
(3.7)

ψ9
SA(x,y,z) =

1 if (xc, yc, zc) = (x,y,z) and c ∈ CHC ∃c ∈ C

0 otherwise.
(3.8)

We next indicate whether a container is reachable by the handling equipment:

ψ10
SA(x,y,z) =

1 if (xc, yc, zc) = (x,y,z) is reachable ∃c ∈ C

0 otherwise.
(3.9)

Finally, we introduce an additional channel for the reach stacker, to identify whether the
container requires a detour to retrieve:

ψ11
SA(x,y,z) =

1 if (xc, yc, zc) = (x,y,z) and c requires a detour ∃c ∈ C

0 otherwise.
(3.10)

3.3.2.2. Double-touched Containers

We define the feature tensor for containers which have already been double touched
similarly to those in the storage area. Features ψ1

SA through ψ10
SA are defined to represent

containers that have been double touched but these features do not include tensors indicating
reachability, since all containers that have been double touched are reachable. Moreover, the
double touched containers feature tensor maintains the initial position of the container in
the storage area to define the containers location. We do this so that there is no limit to the
number of containers which can be placed aside, and if several containers are double touched
they do not interfere with the feature representation.

3.3.2.3. Platforms

Platforms are represented with a 1-D vector containing information about all individual
platform weights, carrying capacities, lengths, sets of loading patterns, and loaded containers.
Let NP denote the maximum number of platforms over all instances. The vector is of size
w ∗ |NP | where w = 32, as there are 32 channels of information to be represented for each
platform, such that each w block of the input vector describes one platform. Platforms are
always considered in order of increasing x to give the system a consistent input relative to
the positions of the platforms. In instances where there are fewer than |Np| platforms the
remaining blocks are populated by zeros. We define each of the state features for p ∈ P

below:
ψ1
P (p) = mp

mmax
(3.11)
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ψ2
P (p) = gp

mmax
(3.12)

where (3.11) represents the mass of the platform, p divided by the maximum mass of con-
tainers. The weight capacity of the platform p divided by the maximum mass of containers
is represented by (3.12).

We consider a total of 9 different sets of loading patterns o ∈ O across all instances, these
are represented categorically, as shown in (3.13).

ψkP (p) =

1 if p belongs to a railcar with (k-2)th set of loading patterns
0 otherwise.

k = 3, . . . , 11

(3.13)
Next, we consider the position of the platform on the railcar. There are 1, 3 or 5 platforms

on any railcar and loading pattern definitions lead to symmetry between platforms in the
first, third and fifth positions, as well as between the second and fourth. Thus we indicate
whether a platform belongs in either of these 2 groups in (3.14).

ψ12
P (p) =

1 if p is the first, third or fifth platform in the railcar
0 otherwise.

(3.14)

Next, we consider the information regarding the containers loaded onto the platform. We
first consider whether a container can be placed in each platform bottom or top slots, shown
in (3.15) and (3.16) respectively. Next, we indicate whether each platform’s bottom or top
slot is occupied in (3.17) and (3.18) respectively.

ψ13
P (p) =

1 if a container can be placed on p’s bottom slot
0 otherwise.

(3.15)

ψ14
P (p) =

1 if a container can be placed on p’s top slot
0 otherwise.

(3.16)

ψ15
P (p) =

1 if a container occupies p’s bottom slot
0 otherwise.

(3.17)

ψ16
P (p) =

1 if a container occupies p’s top slot
0 otherwise.

(3.18)

Next, we consider the length of each container loaded onto the platform top and bottom
slots. This is done identically to the storage area as shown in (3.6) above. (3.19) indicates
the length of the container occupying the bottom slot of a platform and (3.20) indicates the
same information for the top slot.
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ψkP (p) =

1 if container c occupying p’s bottom slot has Lc = L̄k−16

0 otherwise.
k = 17, . . . ,20

(3.19)

ψkP (p) =

1 if container c occupying p’s top slot has Lc = L̄k−20

0 otherwise.
k = 21, . . . ,24 (3.20)

Next, we consider the height of each container loaded onto the railcar, again using cate-
gorical values. First, (3.21) and (3.22) indicate whether the container occupying the bottom
slot of the platform is LC or HC respectively. Second, (3.23) and (3.24) indicate the height
of the container occupying the platform’s top slot.

ψ25
P (p) =

1 if container occupying p’s bottom slot ∈ CLC

0 otherwise.
(3.21)

ψ26
P (p) =

1 if container occupying p’s bottom slot ∈ CHC

0 otherwise.
(3.22)

ψ27
P (p) =

1 if container occupying p’s top slot ∈ CLC

0 otherwise.
(3.23)

ψ28
P (p) =

1 if container occupying p’s top slot ∈ CHC

0 otherwise.
(3.24)

Next, (3.25) indicates the maximum weight which can be loaded onto the platform while
respecting the platform’s capacity constraints. We define the set of containers placed on a
platform p as pC .

ψ29
P (p) =


gp−
∑

c∈pC
mc

mmax
if p does not have top and bottom slots occupied

0 otherwise.
(3.25)

Next, (3.26) and (3.27) indicate the maximum weight of containers which could be placed
on the platform while respecting COG constraints for LC and HC containers respectively.
We introduce the notation of the maximum weight of a container which could be placed
while respecting COG constraints, mLC COG and mHC COG.

ψ30
P (p) =


1 if p has no container in bottom slot
0 if p has containers in both top and bottom slot
mLC COG if p has a container in the bottom slot.

(3.26)
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ψ31
P (p) =


1 if p has no container in bottom slot
0 if p has containers in both top and bottom slot
mHC COG if p has a container in the bottom slot.

(3.27)

Finally, we represent the position of the handling equipment in (3.28)

ψ32
P (p) =

1 if (xh, yh) = (xp, yp)
0 otherwise.

(3.28)

3.3.3. Action Representation

We represent the actions in the LPSP using a 4-D tensor of shape (2 ∗ NP +
1,max (xSA),max (ySA),max (zSA)) where, as before, NP is the maximum number of plat-
forms among all problems in the distribution we consider. We refer to the first dimension of
the tensor as the channel, while the other dimensions refer to the 3-D space of the storage
area.

The first channel of the tensor is used to indicate double touching a container, the fol-
lowing NP channels are used to indicate moving a container from the storage area onto a
platform. For example, channel k is associated with actions placing containers onto the
(k − 1)th platform. The remaining channels are used to indicate placing a container that
has been double touched onto a platform.

The 3-D space maps the (x,y,z) positions of each container in the storage area. In this
manner, to select a container from position (x,y,z) and place it on the kth platform, the
resulting action index is (k − 1,x,y,z). Notably, we use the same 3-D space when selecting
containers which have been double touched. Here, we indicate the original (x,y,z) position of
the container rather than the position in which the container was placed when it was double
touched.

3.3.4. Neural Network Architecture

Here, we present the architecture of the neural network used as an agent in the LPSP.
The design of the network required identifying the so-called feature representation modes of
the LPSP, and finding an effective manner of combining and extracting their information.
Additionally, special care was needed in the design to account for the 3-D shape of the prob-
lem. The architecture has three main inputs, one for each mode. These modes are created
through concatenation of the problem features. They are then mixed through addition and
the results are fed into more abstract layers of the network where the information is supposed
to be usefully combined. We discuss how inputs are passed into the network, the specialized
network layers which transform each of the different data types, how different feature modes
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Figure 3.1. Overview of architecture of neural network model

are combined and finally the output of the network. An overview of the architecture can be
seen in Figure 3.1.

The neural network receives as initial inputs each of the features defined in Section 3.3.2
as well as the mapping of feasible actions. The mapping of feasible actions is the 4-D mapping
given in Section 3.3.3 where indices associated with feasible actions have values of 1, and all
other indices have values of 0.

To begin, the mapping of feasible actions is split into actions moving a container from
the storage and actions moving a container which has been double touched. Each of these
actions is concatenated with its respective feature representation. We will continue to refer
to the concatenated representations as storage area features and aside features.

Storage area features, and aside features are each fed through two 3-D convolu-
tional layers, with rectified linear units (ReLU) as nonlinearities outputting a shape
of (k,max(xSA),max(ySA),max(zSA)). Meanwhile, the platform features are passed
through a two-layer fully connected feed-forward neural network, with output size equal to
NP ∗ max(xSA) ∗ max(ySA), which is then reshaped to be size (NP ,max(xSA),max(ySA))
and finally repeated along an expanded last dimension such that the final shape is
(NP ,max(xSA),max(ySA),max(zSA)). This new feature representation is fed through two
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more 3-D convolutional layers. We thus create three distinct representations, one for the
storage area, one for the aside area and one for the platforms. These representations are
more abstract than the initial layers, and can be more usefully mixed as mentioned in [42].
We represent each of these abstract spaces as ψ̃SA, ψ̃A, and ψ̃P for the storage area features,
aside features and platform features respectively.

Next, the platform representation is added to the storage area and aside representations
separately as follows:

ψ̃SA−P = ψ̃SA + ψ̃P (3.29)

ψ̃A−P = ψ̃A + ψ̃P . (3.30)

Afterwards, each combined representation is further fed through five 3-D convolutional
layers separately.

Notice that we use a 3-D output shape which allows for any number of containers to be
placed aside while not creating a very large fully connected output layer. With a 3-D output
shape, the number of containers which could be placed aside did not need to be artificially
limited to have a fixed output size of the network.

3.3.5. Training

Due to the different characteristics of the reach stacker and the gantry crane, we train a
different model for each of these two types of handling equipment.

The models were trained following the standard DQN algorithm as presented by [56].
Since the costs at each time step can be quite large, it was found that scaling the cost,
multiplying it by a constant α, improved the networks performance. Furthermore, we replace
the mean squared error loss used in the DQN paper with the Huber loss (sometimes referred
to as smooth-L1 loss). This reduces the size of the gradient, and leads to further numerical
stability. Training is performed using the look ahead optimization as presented in [84], using
the rectified adam (RAdam) [51] as the optimizer.

Instances are split into training, validation and test for each problem size. Once every
20 episodes, the current network is tested against the set of the largest validation instances.
We use the model with the best overall performance on the validation set to produce our
final results. We present the resulting performance curves in Section 3.4.3.

3.3.6. Beam Search with DQN

At test time, we apply beam search to the trained model. We denote beam width with
β. Beam search paired with a DQN model is performed by expanding the β nodes with
the best accumulated score as predicted by the DQN. During the first time step, the top β
state-action values predicted by the DQN are selected, actions associated with these values
are taken, and the predicted state-action values are each retained in a cumulant to be used
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in later time steps. Next, each of the new β states are input into the DQN, and outputs
are added with the state’s associated cumulant. From these values, the top β values are
selected, and actions associated with these values are expanded for the next stage. This
process continues until each trajectory created by the search reaches a terminal state. This
algorithm is shown in Algorithm 4. We indicate the total cost incurred to reach a state, s,
as costs. Furthermore, we define the transition function s′ = g(s,a) where s′ is the state
resulting from taking action a in state s.

Algorithm 4 Beam-search Rollout Policy with DQN
DRL Beam-Search(Q, σ(S,A), s)

1: B ← s
2: R← ∅
3: while B 6= ∅ do
4: for all s ∈ B do
5: cs,a ← Q(s,a)
6: C ← C ∪ {cs,a}
7: end for
8: T ← β best (s,a) pairs from C
9: B ← ∅
10: for all (s,a) ∈ T do
11: Take action a from s, observe s′
12: B ← B ∪ {s′}
13: end for
14: for all s ∈ B do
15: if s is terminal then
16: R← costs
17: B ← B \ {s}
18: end if
19: end for
20: end while
21: return min(R)

3.4. Experiments

3.4.1. Instance Generation and Environment Cost Values

We use the same instances as in Section 2.6.1 and [67]. We test two sets of cost values,
a small set of cost values and a set of large cost values as presented in Section 2.6.2. The
small cost values are also identical to those presented in [67]. Values describing each of these
environment costs are indicated in Table 3.1. Notably, we use a different set of costs for
training and testing in the large distance cost test values. This was done as it was found to
be more stable than increasing the scaling value to account for higher distance costs.
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Parameter
Small Distance Cost
Train and Test Values

Large Distance
Cost Train Values

Large Distance
Cost Test Values

πc 100 100 5300
τr 1 1 1
η 0 0 0
κ 80 80 4240
ζx 1 1 53
ζy 1 0.15 8
φx 1 1 53
φy 1 0.15 8

Table 3.1. Environment costs

As stated in Section 2.6.1, we neglect 20-foot containers, and all containers are considered
high-cube (HC) containers.

3.4.2. Hyperparameters

During training and testing, there are several hyperparameters for the model, as well as
values used to describe the environment. The hyperparameters for training are presented
in Table 3.2. Note that the hyperparameters remain unchanged between the two networks,
and across sets of environment cost values.

Hyperparameter Gantry Crane Reach Stacker
γ 0.8 0.9

Learning Rate 0.0001 0.0001
Grad Clipping Value 1 1

εstart 0.95 0.95
εend 0.05 0.05

εdecay rate 500 500
Cost scale α 0.02 0.02

Target Net Update Frequency 100 100
Batch size 16 16
RAdam β1 0.95 0.95
RAdam β2 0.999 0.999

Lookahead Synchronization Period 5 5
Table 3.2. Training hyperparameters

Models were trained for two days on Compute Canada Beluga cluster. Each model was
trained with 8 GB of memory, on nodes using one Nvidia V100SXM2 GPU and on two cores
of an Intel Gold 6148 Skylake CPU.
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3.4.3. Numerical Results

We begin by presenting numerical results for the problems using the small cost test
values. Next, we explore the performance of large cost test values. In each set of results, we
report the evolution of the performance on the validation set during training, as well as the
performance of a trained network with different beam widths on the train, validation and
test set. For each one of test settings we analyze the following performance measures:

• percentage of instances solved to the LB,
• average, minimum and maximum values of the gap to the LB,
• average, minimum and maximum computing time,
• percentage of instances which fail to fill all slots while having containers unloaded,
• percentage of instances with double touches,
• for the instances with a reach stacker only, the percentage of instances with detours.

We present the results of experiments using the small distance costs in Section 3.4.3.1.
Section 3.4.3.2 presents the results to experiments using the large value distance costs, which
are more challenging.

3.4.3.1. Small Distance Cost Results

We show the performance curves for both the gantry crane and reach stacker when trained
on the small distance cost values in Figure 3.2. Next, we show how the models perform on
the training, validation and test instances for small, medium, large, and largest size problem
instances.

The performance curves on the training set in Figure 3.2 indicate that both networks
improve during training, but that the improvement is noisy, especially in the case of the
reach stacker. Nonetheless, both models improve as training continues, reaching new higher
peaks than previously seen. The maximum performance for the gantry crane occurs after
episode 3600, and for the reach stacker performance peaks at around 4000.

Tables 3.3, 3.4 and 3.5 show the performance on the train, validation and test sets
respectively for medium size problem instances. Interestingly, increasing beam size does not
consistently improve performance for both the gantry crane and the reach stacker on both
the validation and test sets. The model performs similarly to BS-B-IDA* (from Chapter 2)
in terms of average gap to LB on the training set for the gantry crane, but this is rarely
seen in the validation or test sets. The model performs poorly with the reach stacker, being
unable to successfully fill all slots on the railcar for any beam size on the test set. Overall,
the average computing time is lower than BS-B-IDA*, but it is unclear if increasing beam
size to match the average computing time would improve results.
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Figure 3.2. Performance of model on training set when training on small cost values
Gantry Crane

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 25 0.1 0.0 0.2 184.0 6.0 243.6 0 0
DRL β 1 0 0.2 0.1 0.3 1.2 0.9 1.8 0 0
DRL β 5 0 0.1 0.0 0.2 6.1 4.6 9.2 0 0
DRL β 10 0 0.1 0.0 0.2 12.1 9.0 18.0 0 0
DRL β 15 12.5 0.1 0.0 0.2 18.9 14.0 28.0 0 0

Reach Stacker

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 12.5 0.2 0.0 0.4 212.3 6.7 242.5 0 0 25
DRL β 1 0 5.2 1.4 14.2 0.7 0.5 1.0 0 25 100
DRL β 5 0 2.5 1.3 3.0 3.1 2.3 4.6 0 0 100
DRL β 10 0 2.0 1.3 2.9 6.2 4.6 9.3 0 0 100
DRL β 15 0 1.6 0.9 2.5 15.4 11.5 22.4 0 0 100

Table 3.3. Medium size training problems
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Gantry Crane

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 60 0.1 0.0 0.7 96.2 2.4 242.6 0 0
DRL β 1 0 4.2 0.0 16.5 1.2 0.9 1.8 0 26.7
DRL β 5 6.7 0.2 0.0 1.7 6.1 4.6 9.2 0 0
DRL β 10 33.3 0.2 0.0 1.1 12.1 9.0 18.0 0 0
DRL β 15 6.7 2.0 0.0 13.6 18.9 14.0 28.0 0 13.3

Reach Stacker

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 53.3 0.2 0.0 1.8 121.8 1.6 241.8 0 0 6.7
DRL β 1 0 1.9 0.8 3.9 0.7 0.5 1.0 0 0 100
DRL β 5 0 1.5 0.1 4.0 3.1 2.3 4.6 0 0 86.7
DRL β 10 0 4.8 0.0 54.0 6.2 4.6 9.3 6.7 6.7 80
DRL β 15 0 1.2 0.0 3.2 15.4 11.5 22.4 0 0 93.3

Table 3.4. Medium size validation problems

Gantry Crane

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 50 0.1 0.0 0.5 123.9 2.8 243.5 0 0
DRL β 1 0 2.3 0.0 20.4 1.2 0.9 1.8 0 12.6
DRL β 5 4.2 0.1 0.0 0.5 6.1 4.6 9.2 0 0
DRL β 10 4.2 0.2 0.0 0.5 12.1 9.0 18.0 0 0
DRL β 15 4.2 0.3 0.0 1.9 18.9 14.0 28.0 0 0

Reach Stacker

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 29.2 0.2 0.0 1.2 172.1 2.1 242.5 0 0 8.3
DRL β 1 0 6.8 0.5 53.7 0.7 0.5 1.0 9.1 13.6 100
DRL β 5 0 7.0 0.5 55.5 3.1 2.3 4.6 9.1 18.2 100
DRL β 10 0 7.2 0.0 56.0 6.2 4.6 9.3 9.1 18.2 95.8
DRL β 15 0 7.7 0.0 54.5 15.4 11.5 22.4 9.1 27.3 95.8

Table 3.5. Medium size test problems

We present the results for the large size training problem instances in Table 3.6, and the
results of the validation and test instances in Tables 3.7 and 3.8 respectively. Here we see an
improvement in performance for both reach stacker and gantry crane over the medium size
instances. As expected, the results on test and validation sets are worse than the training
set for the gantry crane, but the validation set has the best performance with the largest
beam size for the reach stacker. Increasing beam size consistently improves the performance
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across all sets, except when considering beam sizes of 1 and 5 for the reach stacker on the
test set. Nonetheless, further increasing the beam size closes the gap to the LB. Overall, the
results are quite good, with gaps to the LB being less than 1% for the largest beam size, and
for the gantry crane, the LB is achieved in 4.5% of the test cases. The trained model is able
to achieve a smaller average gap to the LB than the BS-B-IDA*, but only on the training
set and for the gantry crane.

Gantry Crane

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 0 0.1 0.0 0.1 245.9 245.0 246.4 0 0
DRL β 1 0 1.3 0.0 4.9 2.6 2.4 2.9 0 25
DRL β 5 12.5 0.1 0.0 0.1 13.0 12.0 14.8 0 0
DRL β 10 25 0.0 0.0 0.1 25.8 23.6 29.5 0 0
DRL β 15 12.5 0.0 0.0 0.1 40.1 36.6 45.7 0 0

Reach Stacker

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 0 0.1 0.0 0.1 243.4 242.7 243.9 0 0 0
DRL β 1 0 1.4 1.2 1.8 1.4 1.3 1.6 0 0 100
DRL β 5 0 1.0 0.7 1.4 6.2 5.7 7.3 0 0 100
DRL β 10 0 0.8 0.5 1.5 12.3 11.5 14.5 0 0 100
DRL β 15 0 0.7 0.6 1.1 32.4 30.4 36.4 0 0 100

Table 3.6. Large size training problems

Gantry Crane

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 33.3 0.1 0.0 0.2 171.5 21.9 247.4 0 0
DRL β 1 33.3 1.9 0.0 13.8 2.6 2.4 2.9 0 13.3
DRL β 5 6.7 0.1 0.0 0.3 13.0 12.0 14.8 0 0
DRL β 10 20 0.1 0.0 0.4 25.8 23.6 29.5 0 0
DRL β 15 6.7 0.1 0.0 0.2 40.1 36.6 45.7 0 0

Reach Stacker

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 20 0.1 0.0 0.3 192.2 11.0 244.4 0 0 20
DRL β 1 0 8.8 1.3 54.4 1.4 1.3 1.6 13.3 20 100
DRL β 5 0 1.9 0.6 6.2 6.2 5.7 7.3 0 13.3 100
DRL β 10 0 2.0 0.6 7.4 12.3 11.5 14.5 0 13.3 100
DRL β 15 0 0.7 0.3 1.0 32.4 30.4 36.4 0 0 100

Table 3.7. Large size validation problems

Finally, Tables 3.9, 3.10 and 3.11 show the performance on the train, validation and
test sets respectively for the largest-sized problem instances. Once again, larger beam sizes
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Gantry Crane

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 9.1 0.1 0.0 0.2 234.1 41.9 253.7 0 0
DRL β 1 0 0.2 0.0 0.6 4.3 4.0 4.6 0 0
DRL β 5 0 0.1 0.0 0.4 21.7 20.5 23.7 0 0
DRL β 10 0 0.1 0.0 0.3 42.7 39.7 46.4 0 0
DRL β 15 4.5 0.1 0.0 0.3 67.2 63.0 72.6 0 0

Reach Stacker

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 13.6 0.1 0.0 0.2 218.6 21.5 247.8 0 0 8.3
DRL β 1 0 1.8 0.9 6.9 2.1 1.9 2.3 0 9.1 90.9
DRL β 5 0 1.9 0.6 11.8 9.7 9.3 10.8 0 9.1 100
DRL β 10 0 0.9 0.4 1.6 19.2 18.1 20.7 0 0 90.9
DRL β 15 0 0.9 0.2 1.5 53.5 50.8 58.4 0 0 81.8

Table 3.8. Large size test problems

generally improve the results, but increase the computing times noticeably. The model
outperforms BS-B-IDA* on the training set and meets its performance on the test set when
using the gantry crane, but does not meet the performance in other cases. The average
computing time is much lower for the DRL model than BS-B-IDA*, but it remains unclear
if larger beam sizes could meet the performance of the heuristic. The DRL model is able to
solve 37.5% of training instances and 4.5% of test instances to meet the LB for the gantry
crane, but none are found to meet the LB for the reach stacker.

Gantry Crane

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 0 0.1 0.0 0.1 250.9 249.4 253.4 0 0
DRL β 1 12.5 0.0 0.0 0.1 4.3 4.0 4.6 0 0
DRL β 5 0 0.1 0.0 0.3 21.7 20.5 23.7 0 0
DRL β 10 0 0.0 0.0 0.0 42.7 39.7 46.4 0 0
DRL β 15 37.5 0.0 0.0 0.1 67.2 63.0 72.6 0 0

Reach Stacker

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 0 0.1 0.0 0.1 246.4 245.0 247.0 0 0 25
DRL β 1 0 1.4 1.0 1.9 2.1 1.9 2.3 0 0 100
DRL β 5 0 1.0 0.7 1.6 9.7 9.3 10.8 0 0 100
DRL β 10 0 0.9 0.7 1.6 19.2 18.1 20.7 0 0 100
DRL β 15 0 0.9 0.6 1.4 53.5 50.8 58.4 0 0 100

Table 3.9. Largest size training problems
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Gantry Crane

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 33.3 0.0 0.0 0.2 183.2 39.0 253.0 0 0
DRL β 1 0 0.2 0.0 0.4 4.3 4.0 4.6 0 0
DRL β 5 0 0.2 0.0 0.5 21.7 20.5 23.7 0 0
DRL β 10 0 0.2 0.0 0.4 42.7 39.7 46.4 0 0
DRL β 15 0 0.1 0.0 0.4 67.2 63.0 72.6 0 0

Reach Stacker

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 20 0.1 0.0 0.3 197.0 21.2 247.6 0 0 0
DRL β 1 0 1.4 0.7 2.1 2.1 1.9 2.3 0 0 100
DRL β 5 0 1.2 0.7 1.8 9.7 9.3 10.8 0 13.3 100
DRL β 10 0 0.8 0.5 1.3 19.2 18.1 20.7 0 0 86.7
DRL β 15 0 0.7 0.3 1.1 53.5 50.8 58.4 0 0 86.7

Table 3.10. Largest size validation problems

Gantry Crane

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 9.1 0.1 0.0 0.2 234.1 41.9 253.7 0 0
DRL β 1 0 0.2 0.0 0.6 4.3 4.0 4.6 0 0
DRL β 5 0 0.1 0.0 0.4 21.7 20.5 23.7 0 0
DRL β 10 0 0.1 0.0 0.3 42.7 39.7 46.4 0 0
DRL β 15 4.5 0.1 0.0 0.3 67.2 63.0 72.6 0 0

Reach Stacker

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 13.6 0.1 0.0 0.2 218.6 21.5 247.8 0 0 8.3
DRL β 1 0 1.8 0.9 6.9 2.1 1.9 2.3 0 9.1 90.9
DRL β 5 0 1.9 0.6 11.8 9.7 9.3 10.8 0 9.1 100
DRL β 10 0 0.9 0.4 1.6 19.2 18.1 20.7 0 0 90.9
DRL β 15 0 0.9 0.2 1.5 53.5 50.8 58.4 0 0 81.8

Table 3.11. Largest size test problems

3.4.3.2. Large Cost Value Results

In this section we present the results of the large cost values. We begin by reporting the
performance curves, showing that the model improves with training. Next, we report results
between all instances, the training, validation and testing sets for the medium, large and
largest problem sizes.

90



First, consider the performance curves in Figure 3.3. We see that both training curves are
noisier, as well as reaching lower peak values than their small cost counterparts. Nonetheless,
both curves improve as training continues, reaching peak values after the 3000th training
episode.

Figure 3.3. Performance of model on training set when training on uneven small cost values
We present the results of medium size training problems in Table 3.12, and compare with

the results on the validation and test sets in Table 3.13 and Table 3.14. The validation set
has better results with the gantry crane than both the training and testing set. Increasing
beam size does not consistently improve results, especially for the reach stacker. In fact,
the largest beam size has the worst result for the reach stacker on the test set. This could
be due to the beam search algorithm finding overly optimistic solutions for a given state
that remains unexplored with smaller beam sizes. In that case, the search would tend to
discard trajectories that would have provided a better solution. This could also be due to the
nonlinearities introduced by the neural network. Overall, performance is unable to approach
that found by BS-B-IDA*, but the average computing time is only a fraction of the heuristic
for even the largest beam sizes.
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Gantry Crane

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 37.5 0.0 0.0 0.1 155.9 6.5 243.2 0 0
DRL β 1 0 0.2 0.1 0.3 1.2 0.9 1.9 0 0
DRL β 5 0 0.2 0.1 0.4 6.0 4.4 8.9 0 0
DRL β 10 0 0.2 0.1 0.3 12.0 8.8 18.3 0 0
DRL β 15 0 0.2 0.1 0.4 17.6 13.0 26.6 0 0

Reach Stacker

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 0 0.2 0.1 0.3 241.5 240.9 242.4 0 0 50
DRL β 1 0 0.4 0.2 0.5 1.0 0.7 1.5 0 0 100
DRL β 5 0 13.7 0.2 52.3 4.7 3.4 6.8 25 37.5 100
DRL β 10 0 2.3 0.1 6.8 9.5 7.1 14.3 0 37.5 100
DRL β 15 0 0.7 0.2 3.5 14.6 11.0 21.6 0 12.5 100

Table 3.12. Medium size training problems using large cost values

Gantry Crane

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 66.7 0.0 0.0 0.3 83.3 2.4 242.1 0 0
DRL β 1 0 0.7 0.1 2.0 1.2 0.9 1.9 0 26.7
DRL β 5 6.7 0.1 0.0 0.4 6.0 4.4 8.9 0 0
DRL β 10 6.7 0.1 0.0 0.3 12.0 8.8 18.3 0 0
DRL β 15 0 0.1 0.0 0.3 17.6 13.0 26.6 0 0

Reach Stacker

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 0 0.5 0.0 3.2 241.1 240.7 241.7 0 13.3 33.3
DRL β 1 0 1.3 0.1 6.1 1.0 0.7 1.5 0 26.7 86.7
DRL β 5 0 0.7 0.1 3.2 4.7 3.4 6.8 0 20 73.3
DRL β 10 0 0.5 0.1 3.2 9.5 7.1 14.3 0 6.7 86.7
DRL β 15 0 4.1 0.1 51.6 14.6 11.0 21.6 6.7 20 100

Table 3.13. Medium size validation problems using large cost values

Next, we present the results on large instance sizes. Results on training instances are
shown in Table 3.15, while validation and test set results are shown in Tables 3.16 and 3.17
respectively. The model performs well on all sets when using the gantry crane. However,
when using the reach stacker the model performs well on the training set but poorly on both
the validation and test sets, with average gaps to the LB in the order of 7% for the validation
set and 5% for the test set. Several validation and test set instances fail to fill all slots on
the train for the reach stacker, leading to large gaps to the LB. Once again, increasing beam
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Gantry Crane

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 40.9 0.1 0.0 0.4 144.8 2.4 244.5 0 0
DRL β 1 0 5.2 0.1 54.6 1.2 0.9 1.9 9.1 9.1
DRL β 5 4.5 7.5 0.0 54.6 6.0 4.4 8.9 13.6 13.6
DRL β 10 9.1 5.1 0.0 54.6 12.0 8.8 18.3 9.1 9.1
DRL β 15 4.5 5.1 0.0 54.6 17.6 13.0 26.6 9.1 9.1

Reach Stacker

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 0 0.5 0.0 4.8 241.4 240.7 242.4 0 9.1 36.3
DRL β 1 0 3.9 0.1 54.8 1.0 0.7 1.5 4.5 36.4 100
DRL β 5 0 1.1 0.1 6.2 4.7 3.4 6.8 0 18.2 100
DRL β 10 0 3.7 0.1 53.7 9.5 7.1 14.3 4.5 22.7 100
DRL β 15 0 8.6 0.1 54.1 14.6 11.0 21.6 13.6 27.3 100

Table 3.14. Medium size test problems using large cost values

size does not consistently improve results, though a beam size of one tends to have the worst
performance for the reach stacker. The model fails to fill all slots when considering the reach
stacker for both the validation and test sets. Notably, the gantry crane performs well across
all sets, and increasing beam size leads to better results. Performance does not meet that
of BS-B-IDA*, but comes substantially closer for the gantry crane. Once again, the average
computing time is lower than BS-B-IDA*, but it remains unclear whether increasing beam
size would further improve the performance of the DRL model.

Gantry Crane

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 0 0.0 0.0 0.0 246.1 243.5 252.5 0 0
DRL β 1 0 0.1 0.0 0.1 2.7 2.4 3.1 0 0
DRL β 5 0 0.1 0.0 0.2 12.9 11.9 14.9 0 0
DRL β 10 0 0.1 0.0 0.1 26.4 24.2 30.4 0 0
DRL β 15 0 0.1 0.0 0.1 38.4 35.3 44.2 0 0

Reach Stacker

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 0 0.1 0.0 0.1 243.1 242.5 243.6 0 0 50
DRL β 1 0 0.4 0.1 0.6 1.8 1.7 2.0 0 0 100
DRL β 5 0 0.4 0.1 0.7 9.0 8.5 10.1 0 0 100
DRL β 10 0 0.4 0.1 0.7 18.2 17.1 21.4 0 0 100
DRL β 15 0 0.4 0.1 0.8 27.3 25.7 30.6 0 0 100

Table 3.15. Large size training problems using large cost values
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Gantry Crane

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 26.7 0.0 0.0 0.1 183.3 17.6 253.4 0 0
DRL β 1 0 0.1 0.0 0.2 2.7 2.4 3.1 0 0
DRL β 5 0 0.1 0.0 0.2 12.9 11.9 14.9 0 0
DRL β 10 0 0.1 0.0 0.1 26.4 24.2 30.4 0 0
DRL β 15 0 0.1 0.0 0.2 38.4 35.3 44.2 0 0

Reach Stacker

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 0 0.6 0.0 8.7 243.9 242.3 248.5 0 6.7 80
DRL β 1 0 7.6 0.1 52.3 1.8 1.7 2.0 13.3 33.3 100
DRL β 5 0 7.3 0.1 53.3 9.0 8.5 10.1 13.3 13.3 100
DRL β 10 0 7.2 0.1 53.3 18.2 17.1 21.4 13.3 13.3 100
DRL β 15 0 7.2 0.1 52.5 27.3 25.7 30.6 13.3 13.3 100

Table 3.16. Large size validation problems using large cost values

Gantry Crane

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 31.8 0.0 0.0 0.2 172.8 13.7 247.0 0 0
DRL β 1 0 0.1 0.0 0.3 2.7 2.4 3.1 0 0
DRL β 5 0 0.1 0.0 0.2 12.9 11.9 14.9 0 0
DRL β 10 0 0.1 0.0 0.2 26.4 24.2 30.4 0 0
DRL β 15 0 0.1 0.0 0.2 38.4 35.3 44.2 0 0

Reach Stacker

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 0 0.4 0.0 7.3 243.5 242.3 248.4 0 4.5 68.2
DRL β 1 0 5.3 0.1 52.9 1.8 1.7 2.0 9.1 18.2 100.0
DRL β 5 0 2.8 0.1 53.2 9.0 8.5 10.1 4.5 4.5 100
DRL β 10 0 3.0 0.1 51.4 18.2 17.1 21.4 4.5 13.6 100
DRL β 15 0 5.0 0.0 53.9 27.3 25.7 30.6 9.1 9.1 100

Table 3.17. Large size test problems using large cost values

Finally, we present the results for the problems of largest size. Table 3.18 shows the
results for the training instances, Table 3.19 shows the results for the validation instances
and Table 3.20 shows the results for the test instances. Here, we see that increasing beam
size generally leads to better performance, but not in all cases. In fact, when considering
the validation set for the reach stacker a beam size of 10 leads to incomplete loads on 13.3%
of instances, whereas a beam size of 5 achieves complete loads on all instances. However,
increasing beam size to 15 did remove all cases wherein all slots were not filled for the reach
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stacker. Overall, both the reach stacker and gantry crane are able to maintain gaps to the
LB of less than 1% across all instances provided beam size is sufficiently large. Performance
once again does not approach that of BS-B-IDA* but computing times remain smaller.

Gantry Crane

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 0 0.0 0.0 0.0 250.6 247.8 252.2 0 0
DRL β 1 0 0.3 0.3 0.4 4.6 4.3 4.9 0 0
DRL β 5 0 0.3 0.2 0.3 22.2 20.5 24.7 0 0
DRL β 10 0 0.3 0.2 0.3 44.8 41.7 49.0 0 0
DRL β 15 0 0.3 0.2 0.4 64.9 60.9 70.6 0 0

Reach Stacker

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 0 0.1 0.0 0.1 245.7 244.3 246.6 0 0 75
DRL β 1 0 0.8 0.4 1.0 2.8 2.7 3.1 0 0 100
DRL β 5 0.0 1.0 0.7 1.7 13.3 12.2 14.5 0 25 100
DRL β 10 0 0.8 0.7 0.9 27.2 25.4 30.0 0 0 100
DRL β 15 0 0.7 0.7 0.9 40.7 38.4 43.3 0 0 100

Table 3.18. Largest size training problems using large cost values

Gantry Crane

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 26.7 0.0 0.0 0.0 206.5 37.8 266.9 0 0
DRL β 1 0 0.4 0.2 0.6 4.6 4.3 4.9 0 0
DRL β 5 0 0.3 0.2 0.5 22.2 20.5 24.7 0 0
DRL β 10 0 0.3 0.2 0.4 44.8 41.7 49.0 0 0
DRL β 15 0 0.3 0.2 0.5 64.9 60.9 70.6 0 0

Reach Stacker

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 0 0.6 0.0 9.6 246.6 244.1 255.7 0 6.7 66.7
DRL β 1 0 4.2 0.5 53.2 2.8 2.7 3.1 6.7 6.7 100
DRL β 5 0 0.9 0.5 2.5 13.3 12.2 14.5 0 6.7 100
DRL β 10 0 7.8 0.6 53.6 27.2 25.4 30.0 13.3 13.3 100
DRL β 15 0 0.9 0.6 1.2 40.7 38.4 43.3 0 0 100

Table 3.19. Largest size validation problems using large cost values

3.5. Discussion

This section offers a discussion of the previously reported results. We start by discussing
the noisy training curves, and a hypothesis for their cause. Next, we discuss the benefit of
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Gantry Crane

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 18.2 0.0 0.0 0.1 218.2 47.5 267.6 0 0
DRL β 1 0 1.7 0.2 15.7 4.6 4.3 4.9 0 9.1
DRL β 5 0 2.3 0.2 22.1 22.2 20.5 24.7 0 9.1
DRL β 10 0 0.3 0.2 0.5 44.8 41.7 49.0 0 0
DRL β 15 0 0.3 0.2 0.5 64.9 60.9 70.6 0 0

Reach Stacker

Model Solved
to LB [%]

Gap to
Lower Bound [%] CPU [s] Incomplete

Load [%]
Double

Touches [%] Detours [%]Avg. Min Max Avg. Min Max
BS-B-IDA* 0 0.1 0.0 0.2 246.6 243.9 255.6 0 0 68.2
DRL β 1 0 3.2 0.4 52.3 2.8 2.7 3.1 4.5 4.5 100
DRL β 5 0 5.6 0.5 52.8 13.3 12.2 14.5 9.1 9.1 100
DRL β 10 0 0.9 0.5 1.7 27.2 25.4 30.0 0 0 100
DRL β 15 0 0.8 0.5 1.6 40.7 38.4 43.3 0 0 100

Table 3.20. Largest size test problems using large cost values

beam search in this environment and follow with remarks on the difference in performance
between the two distance cost values. Finally, we discuss the challenges faced in our work.

First, consider the performance curves in Figures 3.2 and 3.3. Both curves vary wildly
over episodes leading to unpredictable behaviour. We hypothesize that this behaviour is
exhibited as the model becomes more greedy, placing nearer containers as it is rewarded for
minimizing travel cost, until such time that the model neglects the constraints imposed by
the problem, and begins finding it difficult to fill all slots of the railcars. Deep reinforcement
learning does not yet have a strong set of tools for dealing with hard constraints such as
the COG constraint, or loading pattern constraints seen here. It is hoped that these con-
straints will be learned, but hard constraints such as these produce a challenging learning
environment.

We believe that beam search allows for an alternative mechanism for dealing with hard
constraints. The beam search allows the model to expand several options at each time, so
should it select an action which leads to poor solutions, the model has other trajectories to
choose from. Reference [57] presents an algorithm wherein DQNs learn to use beam search
during training via imitation learning. We believe this would be a good candidate here.

There is an important difference in performance between the sets of values used to define
the environment costs for the reach stacker. In the large values set, travel in the x direction
is heavily penalized relative to the y direction. This promotes the model selecting containers
lot by lot, leaving fewer and fewer reachable containers for the reach stacker as more lots are
removed. The model currently does not appear to learn to avoid this behaviour, and it can
lead to poor performance as a result.
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There were many obstacles for designing a reinforcement learning agent for this environ-
ment. The system has an extremely large action space, which is constantly changing based
on the state, several input modalities, and, as discussed, hard constraints which are difficult
to impose while training a model. While we have succeeded in training a network which
performs well when considering the gantry crane, we have had less success with the reach
stacker.

3.6. Conclusion

We showed that a neural network trained using deep Q-learning is able to learn to move
containers effectively in the LPSP environment. While the DQN did not perform at the same
level as the dynamic programming heuristic, there exist many opportunities for improvement
not presented here. First, deep Q-learning is typically used in environments with relatively
small action spaces, for example in Atari games, but existing research results could help
improve the ability of deep Q-learning to be applied to large action spaces, as described in
[19]. Moreover, DQNs can use beam search during training rather than only at test time as
was performed here, as discussed here [57]. We leave exploration of these alternatives for
future work.
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Part 2

Learning Long-term Dependencies While
Increasing Expressivity in Sequential Models



Chapter 4

Introduction: Recurrent Neural Networks and the
Exploding and Vanishing Gradient Problem

Problems involving sequential data arise when working with natural language processing
(NLP), speech recognition and predictive analytics, for example with stock prices. Recurrent
neural networks (RNNs) are a common and powerful tool for working with these types of
data, having the ability to store information in their state, to use this information at later
time steps, as well as being able to handle input sequences of variable length.

It is a well-known phenomenon that RNNs suffer from the exploding and vanishing gra-
dient problem (EVGP) during training, which leads to challenges in training long-term de-
pendencies that are robust to noise. The EVGP stems from applying the backpropagation
algorithm over long sequences (>150), and causes the gradient in these sequences to explode
or vanish, depending on the eigenvalues of the recurrent weight matrix. A common method
for dealing with the EVGP is to enforce normality onto the recurrent weight matrix, but this
comes at the cost of reduced expressivity of the model. We propose a non-normal recurrent
neural network (nnRNN) architecture which is able to control the EVGP, while allowing
short-term complex interactions, that increases expressivity of the model over imposing nor-
mality on the recurrent neural network, through the Schur decomposition [34].

This chapter will provide an overview of the RNNs, the EVGP and the methods used
to approach the EVGP problem for RNNs. Furthermore, it will introduce required math-
ematical background for the nnRNN presented in Chapter 5. Section 4.1 outlines RNNs,
their architecture, and the backpropagation algorithm for RNNs. Section 4.2 outlines the
root cause of the EVGP. Section 4.3 presents the real Schur decomposition which is used to
define the nnRNN.

4.1. Recurrent Neural Networks

RNNs, introduced by [68], are neural networks designed to process sequential data, often
with variable length. These models use parameter sharing, wherein the same parameters are



used across different time steps, which improves generalization to sequence lengths not seen
during training. RNNs also form a discrete dynamical system, as hidden states are iterated
forward in time according to the parametrized connectivity.

Consider the sequence of inputs x1, x2, ..., xn where xi ∈ Rn, and the output sequence
y1, y2, ..., yn with yi ∈ Rk (both deterministic). The RNN model applies the equations:

ht = f(Uxt + V ht−1 + b) (4.1)

ot = Wht + c (4.2)

ŷt = g(ot) (4.3)

where:
• U ∈ Rnxm contains the connections from input to the hidden state.
• xt ∈ Rn is the input at time t.
• V ∈ Rmxm is called the recurrent weight matrix and contains the weights from hidden
state to hidden state.
• ht ∈ Rm is the hidden state at time t.
• b ∈ Rm and c ∈ Rk are biases.
• W ∈ Rmxk contains the connections from hidden state to the output.
• f is a differentiable nonlinear activation function.
• ot is the output at time t.
• g is some differentiable function, converting the output of the RNN to a format
directly comparable to the target, for example a softmax function.

4.2. The Exploding and Vanishing Gradient Problem

Backpropagation in RNNs is performed with an algorithm called back propagation through
time (BPTT), which propagates errors from each time step to all previous time steps. For
brevity, we will not derive the gradient calculation here. However, it can be shown that the
gradient of the loss function, L, with respect to the hidden state ht, through an output of
time τ is proportional to the product of the transposed recurrent weight matrix V T times
the diagonal matrix Ds (containing derivatives of the activation functions of each hidden
unit):

OhtL ∝
τ∏

s=t+1
(V T ·Ds). (4.4)

If we consider a linear RNN, wherein the activation functions have derivative 1, and
Ds = I, then the gradient is proportional to the self-product of the transposed recurrent
weight matrix V T . We can factorize V with the eigendecomposition V = QΛQT , where Q is
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the orthogonal matrix whose columns are eigenvectors of V and Λ is a diagonal matrix whose
elements are the eigenvalues of V . From this factorization we can see that the gradient with
respect to ht is proportional to the diagonal eigenvalue matrix Λ raised to the power of τ − t:

OhtL ∝ QTΛτ−tQ. (4.5)

Thus, for τ − t sufficiently large, one of three cases can occur. For eigenvalues greater than
one, Λτ−t will explode, for eigenvalues less than one, Λτ−t will decay to zero, and with
eigenvalues equal to one, Λτ−t will neither vanish nor explode. Several mechanisms have
been suggested to control this behaviour, including gating mechanisms, and controlling the
eigenspectrum of the recurrent weight matrix.

4.3. The Real Schur Decomposition

The real Schur decomposition is used to decompose any real matrix A into an orthogonal
matrix Q, and a block upper triangular matrix T , with diagonal block sizes of at most two,
as

A = QTQT .

Here, T can be further decomposed into a block diagonal matrix R, and an upper triangular
matrix U as

A = Q(R + U)QT

where each two-by-two block on the diagonal of R contains a complex conjugate pair of
eigenvalues for the matrix A. These complex conjugate eigenvalues can be expressed with
real numbers as follows:

R =


r1 0 . . . 0
0 r2 . . . 0
... ... . . . ...
0 0 . . . rN/2


rk = γi

cos θi − sin θi
sin θi cos θi


where γi represents the norm of the complex conjugate pair of eigenvalue i, and θi represents
the angle in the complex plane. One can see that if γi is maintained at 1, the eigenvalue has
norm of 1.

This decomposition is central to the idea of the nnRNN, and is used to mitigate the
EVGP, while allowing for non-normal matrices to be exploited as recurrent weight matrices.
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My contributions to this paper are as follows:
• involvement in discussion of the use of the Schur Decomposition to solve the EVGP,
• selection of regularization methods for lower triangular matrix,
• implementation of the nnRNN, as well as all large scale experiments used to bench-
mark the quality of the nnRNN,
• hyperparameter search and analysis of results, presentation of results which lead to
deeper understanding of the nnRNN,
• writing parts of the published paper related to experimental results and experimental
setup.

5.1. Introduction
Training recurrent neural networks (RNN) to process temporal inputs over long timescales

is notoriously difficult. A central factor is the exploding and vanishing gradient prob-
lem (EVGP) [33, 6, 61], which stems from the compounding effects of propagating signals
over many iterates of recurrent interactions. Several approaches have been developed to
mitigate this issue, including the introduction of gating mechanisms (e.g. [36, 33]), pur-
posely using non-saturating activation functions [14], and manipulating the propagation
path of gradients [3]. Another way is to constrain connectivity matrices to be orthogo-
nal (and more generally, unitary) leading to a class of models we refer to as orthogonal
RNNs [55, 52, 48, 81, 37, 80, 27, 2]. Orthogonal RNNs have eigen- and singular-spectra with
unit norm, therefore helping to prevent exponential growth or decay in long products of
Jacobians associated with EVGP. They perform exceptionally well on tasks requiring mem-
orization of inputs over long timescales [28] (outperforming gated networks) but struggle on
tasks involving continued computations across timescales. A contributing factor to this lim-
itation is the mutually orthogonal nature of connectivity eigendirections which substantially
limits the space of solutions available to orthogonal RNNs.

In this paper, we propose a first step toward a solution to this expressivity problem in or-
thogonal RNNs by allowing non-orthogonal eigenbases while retaining control of eigenvalues
norms. We achieve this by leveraging the Schur decomposition of the connectivity matrix,
though we avoid the need to compute this costly factorization explicitly. This provides a
separation into "diagonal" and "feed-forward" parts, with their own optimization constraints.
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Mathematically, our contribution amounts to adding "non-normal" connectivity, and we call
our novel architecture non-normal RNN (nnRNN). In linear algebra, a matrix is called nor-
mal if its eigenbasis is orthogonal, and non-normal if not. Orthogonal matrices are normal,
with eigenvalues of norm 1 (i.e. on the unit circle). In recurrent networks, normal con-
nectivity produces dynamics solely characterized by the eigenspectrum while non-normal
connectivity allows transient expansion and compression. Transient dynamics have known
computational advantages [30, 20, 21], but orthogonal RNNs cannot produce them. The
added flexiblity in nnRNN allows such transients, and we show analytically how they afford
additional expressivity to better encode complex inputs, while at the same time retaining
efficient signal propagation to learn long-term dependencies. Through a series of numerical
experiments, we show that the nnRNN provides two main advantages:

(1) On tasks well-suited for orthogonal RNNs, nnRNN learns orthogonal (normal) con-
nectivity and matches state-of-the art performance while training as fast as orthog-
onal RNNs.

(2) On tasks requiring additional expressivity, non-normal connectivity emerges from
training and nnRNN outperforms orthogonal RNNs.

From a parametric standpoint, this advantage can be attributed to the fact that the nnRNN
has access to all matrices with unit-norm eigenspectra, of which orthogonal ones are only a
subset.

5.2. Background
5.2.1. Unitary RNNs and constrained optimization

First outlined in [2] and inspired by [70, 82, 45], RNNs whose recurrent connectivity
is determined by an orthogonal, or unitary matrix are a direct answer to the EVGP since
their eigenspectra and singular spectra exactly lie on the complex unit circle. The same
mechanism was invoked in a series of theoretical studies for deep and recurrent networks
in the large size limit, showing that ideal regimes for effective network performance are
those initialized with such spectral attributes [65, 62, 16]. By construction, orthogonal
matrices and their complex-valued counterparts, unitary matrices, are isometric operators
and do not expand or contract space, which helps to mitigate the EVGP. A central challenge
to train unitary RNNs is to ensure that parameter updates are restricted to the manifolds
satisfying orthogonality constraints known as Stiefel manifolds (see review in [35]). This is an
active area of optimization research, and several techniques have been used for orthogonal or
unitary RNN training. In [2], the authors construct connectivity matrices with long products
of rotation matrices leveraging fast Fourier transforms. In [81, 80, 27], the Cayley transform
is used, which parametrizes weight matrices using skew-symmetric matrices that need to
be inverted (cf. [15] for an RNN implementation directly using skew-symmetric matrices).
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Another approach uses Householder reflections [55]. Recent studies also adapt some of these
methods to the quaternion domain [59]. The methods listed above have their advantages
by either being fast, or memory efficient, but suffer from only parametrizing a subset of all
orthogonal (unitary) matrices. A novel approach considering the group of unitary matrices
as a Lie group and leveraging a parametrization via the exponential map applied to its
Lie algebra addresses this problem and currently outperforms the rest on many tasks [48].
Still, of all matrices with unit-norm eigenvalues, unitary matrices are only a small subset and
remain limited in their expressivity since they are restricted to isometric transformations [28].
This is why orthogonal RNNs, while performing better than a conventional RNN or LSTM
at some tasks (e.g. copy task [33], or sequential MNIST [45]), struggle at more complex tasks
requiring computations across multiple timescales.

5.2.2. Non-normal connectivity

Any diagonalizable matrix V can be expressed as V = PΘP−1 where P ’s columns are V ’s
eigenvectors and Θ is a diagonal matrix containing its eigenvalues. V is said to be normal
if its eigenbasis is orthogonal and thus, P−1 = P> and V = PΘP>. Orthogonal matrices
are normal matrices with eigenvalues on the unit circle. When a matrix is non-normal, it is
diagonalized with a non-orthogonal basis. However, it is still possible to express it using an
orthogonal basis at the cost of adding (lower) triangular structure to Θ. This is known as
the Schur decomposition: for any matrix V , we have V = P (Λ+T )P> with P an orthogonal
matrix, Λ a diagonal matrix containing the eigenvalues, and T a strictly lower triangular
matrix.1 In short, T contains the interactions between the orthogonal column vectors of
P (called Schur modes). P and T are obtained from orthogonalizing the non-orthogonal
eigenbasis of V , and do not affect the eigenspectrum. As a recurrent connectivity matrix, T
represents a purely feed-forward structure that produces strictly transient dynamics impos-
sible to produce in normal (orthogonal) matrices. In other words, if normal and non-normal
matrices share exactly the same eigenspectrum, the iterative propagation of an input will be
equivalent in the long-term, but can differ greatly in the short-term. We revisit this distinc-
tion in §5.3. This was exploited by [21, 30] to analyze the decomposition of the activity of
recurrent networks (in continuous time) into a normal part responsible for slow fluctuations,
and a non-normal part producing fast, transient ones. How this mechanism propagates in-
formation was studied in [20] for stochastic linear dynamics. The authors show analytically
that non-normal dynamics can lead to extensive memory traces, as measured by the Fisher
information of the distribution of hidden state trajectories parametrized by the input signal.
To the best of our knowledge, an explicit demonstration and explanation of the benefits of
1When eigenvalues and eigenvectors are complex, P is unitary and P> corresponds to conjugate transposition.
However for any real V , it is possible to find an orthogonal (real) P with Λ being block-diagonal with 2× 2
blocks instead of complex-conjugate eigenvalues.
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Figure 5.1. Benefits of non-normal dynamics

non-normal dynamics for learning in RNNs is lacking, though see [58] for similar ideas used
for initialization.

5.3. Non-normal matrices are more expressive and propagate in-
formation more robustly than orthogonal matrices

We now outline the role of non-normal connectivity we exploit for recurrent network
parametrization. To provide mathematically grounded intuition for the benefit it provides
for learning, we first consider generic RNN dynamics,

ht+1 = φ(V ht + Uxt+1 + b)

V = PΘP>, Θ = Λ + T
(5.1)

where ht ∈ RN is the time-varying hidden state vector, φ is a nonlinear function, xt is the
input sequence projected into the dynamics via matrix U , and b is a bias (we omit the output
for brevity). V is the matrix of recurrent weights, which in line with §5.2.2 we decompose
into its lower triangular Schur form Θ in Eq. (5.1), with P orthogonal and Θ lower triangular.
Θ has two parts: a (block) diagonal part Λ, and a strictly lower triangular part T .2 The
Schur decomposition maps the hard problem of controlling the directions of a non-orthogonal
basis to the easier problem of specifying interactions between fixed orthogonal modes. It is
important to highlight the fact that an orthonormalization of the eigenbasis is just a change in
representation and thus has no effect on the spectrum of V , which still lies on the diagonal of
Λ. The triangular part T can thus be modified independently from the constraint (employed
in orthogonal RNN approaches) that the spectrum have norms equal or near 1.

The ability to encode complex signals and then selectively recall past inputs is a basic
requirement needed to solve many sequence-based tasks. Intuitively, the two features that
allow systems to perform well in such tasks are:

(1) High-dimensional activity to better encode complex input,
(2) Efficient signal propagation, to better learn long-term dependencies.

2We use the real Schur decomposition but a similar treatment can be derived for the complex case.
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To illustrate how non-normal dynamics controlled by the entries in the lower triangle of T
contribute to these two features, we consider a simplified linear case where φ(ht) = ht and
Θ is parametrized as follows and illustrated in Fig. 5.1(a)):

(Θ)i,j = dδi,j + αδi,j+1 + β
∑

2≤k≤i
δi,j+k . (5.2)

Fig. 5.1(a) shows that the Schur decomposition provides the lower triangular Schur form.
A feed-forward interaction coupling among Schur modes underlies non-normal dynamics.

Here, diagonal entries are set to d, sub-diagonal entries to α, and the remaining entries
in the lower triangle to β. By varying α and β we will show how the lower triangle in T

enhances expressivity and information propagation.

5.3.1. Non-normality drives expressive transients

RNNs can be made more expressive with stronger fluctuations of hidden state dynamics.
The dependence of hidden state variance on the values of Θ was studied in depth in [30].
Here, we present experiments where the RNN parametrized by Eqs. (5.1), (5.2) exemplifies
some of those results. We numerically compute a set of trajectories over a sampled ensemble
of inputs with xt > 0 for t = 0 and 0 otherwise. Without loss of generality we assume a
form of U and distribution of x0 that leads to input-dependent initial conditions on the unit
hypersphere in the space of ht. For α = 0.95,1.0,1.05, β = 0, 0.005 and d = 0, we see that
trajectories of single units exhibit increasing large transients with increasing α and β, that
abruptly end at t = N (Fig. 5.1(b)). Fig. 5.1 shows that the lower triangle generates stronger
transients. Trajectories of standard deviation across hidden units (top) and norm of hidden
state vector (bottom) are obtained from the dynamics of Eq. (5.1). Lines and shading are
average and standard deviation, respectively, over 103 initial conditions uniformly distributed
on the unit hypersphere. The latter is a result of the nilpotent property of a strictly triangular
matrix: each iteration removes the top entries in each column until ΘN = 0. Computing
ensemble statistics, we find that α contributes significantly to the strength of the exponential
amplification, while β structures the shape of the transient. This ability of T to both exhibit
amplification, and to control its shape, is what endows the Schur form Θ with expressivity
(see §5.5.3 for empirical evidence in trained nnRNNs).

5.3.2. Non-normality allows for efficient information propagation

Propagation of information in a network requires feed-forward interactions. Perhaps the
most simple example of a feed-forward structure is the local feed-forward chain (also called
delay-line [20]), where each mode feeds its signal only to the next mode in the chain (α > 0,
β = 0, d = 0; see Fig. 5.1(a)). In this case, we denote Θ by Θdelay. As a consequence, signals
feeding the first entry of Θdelay propagate down the chain and are amplified or attenuated
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according to the values of these non-zero entries. Moreover, inputs from different time steps
do not interact with each other thanks to this ordered propagation down the line. In contrast,
the signal is not propagated across modes for dynamics given by a purely (block) diagonal
Θ. It instead simply decays within the mode into which it was injected on the timescale
intrinsic to that mode, which can be much less than the O(N) timescale of the chain.

To quantify the efficiency with which a RNN can store inputs, we follow and extend the
approach of [20]. For a given scalar-valued input sequence, xt = st + ξt, t ∈ N, composed
of signal st and injected noise ξt, the noise ensemble induces the conditional distribution,
P (h:t|s:t), over trajectories of hidden states, h:t, given the received input, s:t, where the : t
subscript is short hand for (k : k ≤ t). Taking the signal sequence s:t as a set of parameters
of a model, and P (h:t|s:t) as this model’s likelihood, provided that the information identity
property holds, the corresponding Fisher information matrix that captures how P (h:t|s:t)
changes with the input s:t is,

Jk,l(s:t) =
〈
− ∂2

∂sk∂sl
logP (h:t|s:t)

〉
P (h:t|s:t)

k,l ≤ t . (5.3)

The diagonal of this matrix, J(t) := Jt,t is called the Fisher memory curve (FMC) and has
a simple interpretation: if a single signal s0 is injected into the network at time 0, then J(t)
is the Fisher information that ht retains about this single signal.

In [20], the authors proved that the delay line Θdelay achieves the highest possible values
for the FMC when k ≤ N : J(k) = αk α−1

αk+1−1 . However, we show (proof in SM§5.7.2) that
any strictly lower triangular matrix may approach the performance of a delay line:
Proposition 3. Let Θ ∈ RN×N be any strictly lower triangular matrix with

√
α on the lower

diagonal and let TGram ∈ RN×N be the triangular matrix associated with the Gram–Schmidt
orthogonalization process of the columns of Θ (thus with only 1 on the diagonal). Then,

J(k) ≥ αk

σ
2(N−1)
max

α− 1
αk+1 − 1 , (5.4)

where σmax is the maximum singular value of TGram.
Note that σmax ≥ 1 and is equal to 1 for a delay line and close to 1 when Θ is close to

a delay line. In Fig. 5.1(a) we present a class of matrices providing feed-forward interaction
and compute the FMC of some matrices of this class in Fig. 5.1(c) which shows the Fisher
memory curves across α and β. The delay line from [20] with α > 1 (shown to be optimal
for t ≤ N) retains the most Fisher information across time up to time step N , when the
nilpotency of Θ erases all information. As expected from Prop. 3, non-zero β, which endows
the dynamics with expressivity (Fig. 5.1(b)), does not significantly degrade the information
propagation of the delay line. Interestingly, the addition of diagonal terms (d > 0), i.e. Λ
non-zero, helps to maintain almost optimal values of the FMC for t < N , while extending
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the memory beyond t = N , and thus outperforming the delay line with regard to the area
under the FMC (see Table 5.3 in the supplemental materials (SM)).

Together with the last section, these results demonstrate that non-normal dynamics,
as parametrized through the entries in the lower triangle of Θ, provide significant benefits
to expressivity and information propagation. What remains to show is how these benefits
translate into enhanced performance of our nnRNN on actual tasks.

5.3.3. Non-normal matrix spectra and gradient propagation

While eigenvalues control the exponential growth and decay of matrix iterates, the spec-
tral norm of these iterates may behave differently [6]. This norm is dominated by the modulus
of the largest singular value of the matrix, and can thus differ from the eigenvalues’ mod-
uli. This is a subtle difference influencing gradient growth rates, and is explicitly revealed
by different spectral constraints on RNNs. For comparison, a singular value decomposition
(SVD) is presented in [83] with the same motivation as our Schur-decomposition: to main-
tain expressivity, whilst controlling a sprectrum (both using regularization). First note that,
while constraining the eigenspectrum to the unit circle, non-normality implies having the
largest singular value (and thus the spectral norm of the Jacobian) greater than 1. Hence,
our approach mitigates gradient vanishing, but not necessarily gradient explosion. In this
case however, gradients explode polynomially in time rather than exponentially [61, 2]. We
provide a theorem (proof in SM§5.7.3) to establish this for triangular matrices.
Proposition 4. Let A ∈ Rn×n be a matrix such that Aii = 1, Aij = x for i < j, and Aij = 0
otherwise. Then for all integer t ≥ 1 and j > i, we have (At)ij = p

(t)
j−i(x) is polynomial in x

of degree at most j − i, where the coefficient of x0 is zero and the coefficient of xl is O(
(
t
l

)
)

for l = 1,2, . . . ,j − i (which is polynomial in t of degree at most l).
This reveals that gradient explosion in nnRNN with unit-norm eigenspectrum, if present,

is polynomial and thus not as severe as the case where eigenvalues are larger than one (in
which case the gradient explosion is exponential). In §5.5.3, we illustrate that relaxing
unit-norm requirements for eigenvalues using regularization allows the optimizer to find a
task-dependent trade-off, thus balancing control over exponential vanishing and polynomial
exploding gradients respectively. See also SM§5.7.6 for gradient propagation measurements.
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5.4. Implementing a non-normal RNN

The nnRNN is a standard RNN model where we parametrize the recurrent connectivity
matrix V using its real Schur decomposition3 as in Eq. (5.1), yielding the form:

V = P




R1 0 . . . 0
0 R2 . . . 0
... ... . . . ...
0 0 . . . RN/2

+


0 0 . . . 0
t2,1 0 . . . 0
... ... . . . ...
tN,1 tN,2 . . . 0



P
> (5.5)

with

Ri(γi,θi) def= γi

cos θi − sin θi
sin θi cos θi

 ,
where P is constrained to be an N×N orthogonal matrix. Each parameter above (including
entries in P ) is subject to optimization, as well as specific constraints outlined below. We
note that although this parametrization uses the Schur form, we never explicitly compute
Schur decompositions, which would be expensive and has stability issues.4 Note that Eq. 5.5
can express any matrix V with a set of complex-conjugate pairs of eigenvalues.

During training, the orthogonal matrix P is optimized using the expRNN algorithm [48],
a Riemannian gradient descent-like algorithm operating inside the Stiefel manifold of or-
thogonal matrices. We note that other suitable orthogonality-preserving algorithms could
be used here (see §5.2) but we found expRNN to be the fastest and most stable. Instead of
rigidly enforcing that eigenvalues be of unit norm, we found relaxing this constraint to be
helpful. We therefore allow γi to be optimized but add a strong L2 regularization constraint
δ‖|1−γi‖|22 to encourage them to be to close to 1. The hyperparameter δ is tuned differently
for each task (see SM§5.7.1) but remains high overall, indicating only mild departure from
unit-norm eigenvalues. Both θi and tij are freely optimized via automatic differentiation.
The non-linearity we use is modReLU, as defined in [2, 27]. We initialize P as in [48] using
Henaff or Cayley initialization scheme [28], θi from a uniform distribution between 0 and 2π,
and γi’s are initialized at 1.

We reiterate that the set of orthogonal matrices is a subset of all the connectivity matrices
covered by nnRNN, by setting all γ’s to 1, and T = 0. Consequently, the connectivity matrix
in nnRNN has more parameters than an orthogonal matrix: N(N − 1)/2 for T , and N/2
γi’s, which in total gives roughly N2/2 more parameters than orthogonal RNNs.

The forward pass of the nnRNN has the same complexity as that of a vanilla RNN,
that is O(Tn2 ), for a hidden state of size n and a sequence of length T . The backward
pass is similarly O(Tn2 ) plus the update cost of P , in addition to a once-per-update cost
of O(n3 ) to combine the Schur parametrization via matrix multiplication. Importantly, the
3See discussion for more details about complex-valued implementations.
4See SM§5.7.4 for a discussion.
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nnRNN leverages any orthogonal/unitary optimizer for P which have complexities ranging
from O(n log n) to O(n3 ) at each update, with their own advantages and caveats (see §5.2.1).
We chose the expRNN scheme, which is O(n3 ) in the worst case, but has fast run-time in
practice.

5.5. Numerical experiments

In this section, we test the performance of our nnRNN on various sequential processing
tasks. We have two goals:

(1) Establish the nnRNN’s ability to perform as well as orthogonal RNNs on tasks with
pathologically long-term dependencies: the copy task and the permuted sequential
MNIST task.

(2) Demonstrate improved performance over orthogonal RNNs on a more realistic task
requiring ongoing computation and output: the Penn Treebank character-level bench-
mark.

We compare our nnRNN model to the following architectures: vanilla RNN (RNN), the or-
thogonally initialized RNN (RNN-orth) [28], the Efficient Unitary RNN (EURNN) [55], and
the Exponential RNN (expRNN) [48]. Our goal is to establish performance for non-gated
models, but we include LSTM [33] for reference. For comparison, models are separately
matched in the number of hidden units and number of parameters. Every training run was
tuned with a thorough optimization hyperparameter search. Model training and task setup
are detailed in SM§5.7.1.
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5.5.1. Copy task & permuted sequential MNIST

The copy task, introduced in [33], requires that a model reads a sequence of inputs, waits
for some delay T (here we use T = 200), and then outputs the same sequence. Fig. 5.2
shows the cross entropy of each tested with N = 128 hidden units. Holding the number
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N of hidden units constant, model performance is plotted for the copy task (T=200, left;
cross-entropy loss; N ∼ 128) and for the permuted sequential MNIST task (right; accuracy;
N ∼ 512). Shading indicates one standard error of the mean. We see little difference if we
match the number of parameters with ∼ 18.9K (see Fig. 5.4 in SM§5.7.1.2). For reference,
a model that simply predicts a constant set of output tokens for every input sequence is
expected to achieve a baseline loss of 0.095. As shown in [28], an orthogonal RNN is an
optimal solution for the copy task. Indeed, the LSTM struggled to solve the task and RNN
failed completely, unlike all orthogonal RNNs who learn to solve at very high performance
very quickly. The proposed nnRNN matched the performance of orthogonal RNNs, as well
as best training timescales.

Sequential MNIST [45] requires a model to classify an MNIST digit after reading the
digit image one pixel at a time. The pixels are permuted in order to increase the time delay
between inter-dependent pixels, making the task harder. Fig. 5.2 shows mean validation
accuracy of each tested model with with N = 512 hidden units (see Fig. 5.4 in SM§5.7.1.2
for parameter match). As with the copy task, the nnRNN matches orthogonal RNNs in
performance, whereas RNN and LSTM show lesser performances.

5.5.2. Penn Treebank (PTB) character-level prediction

Character level language modelling with the Penn Treebank corpus (PTB) [54] consists
of predicting the next character at each character in a sequence of text (see SM§5.7.1.3 for
test accuracy). We compare the performance of different models on this task in Table 5.1 in
terms of test mean bits per character (BPC), where lower BPC indicates better performance.
We compare truncated backpropagation through time over 150 time steps and over 300 time
steps. The table shows two comparisons across models. Left a fixed number of parameters,
and right fixed number of hidden units. Error range indicates standard error of the mean.

Test Bit per Character (BPC)
Fixed # params (∼1.32M) Fixed # hidden units (N = 1024)

Model TPTB = 150 TPTB = 300 TPTB = 150 TPTB = 300
RNN 2.89 ± 0.002 2.90 ± 0.0016 2.89 ± 0.002 2.90 ± 0.002

RNN-orth 1.62 ± 0.004 1.66 ± 0.006 1.62 ± 0.004 1.66 ± 0.006
EURNN 1.61 ± 0.001 1.62 ± 0.001 1.69 ± 0.001 1.68 ± 0.001
expRNN 1.49 ± 0.008 1.52 ± 0.001 1.51 ± 0.005 1.55 ± 0.001
nnRNN 1.47 ± 0.003 1.49 ± 0.002 1.47 ± 0.003 1.49 ± 0.002

Table 5.1. PTB test performance bit per character (BPC) for sequence lengths TPTB =
150, 300

In contrast to the copy and psMNIST tasks (see §5.5.1), the PTB task requires online
computation across several inputs received in the past. Furthermore, it is a task that de-
mands an output from the network at each time step, as opposed to a prompted one. These
ingredients are not particularly well-suited for orthogonal transformations since it is not
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enough to simply keep inputs in memory or integrate input paths to a classification out-
come, the network must transform past inputs to compute a probability distribution. Gated
networks are well-suited for such tasks, and we could get an LSTM with N = 1024 hidden
units to achieve 1.37 ± 0.003 BPC (see §5.6 for a discussion).

Importantly, without the use of gating mechanisms, our nnRNN outperformed all other
models we tested. To our knowledge, it also surpasses all reported performances for other
non-gated models of comparable size (see also [49]). While the performance gap to expRNN
(the state-of-the-art orthogonal RNN) is modest for equal number of parameters and shorter
time scale (TPTB = 150), it significantly improves for TPTB = 300. Where the nnRNN
shines is for equal numbers of hidden units, where the performance gap to expRNN is much
greater. This suggests two things: (i) the nnRNN improves propagation of meaningful signals
over longer time scales, and (ii) its connectivity structure provides superior expressivity for
a fixed number of neurons, a desirable feature for efficient model deployment. In the next
section, we explore the structure of trained nnRNN weights to illustrate that the mechanisms
responsible for this performance gain are consistent with the arguments presented in §5.3.

5.5.3. Analysis of learned connectivity structure

To validate the theoretical arguments in favor of non-normal dynamics presented
in §5.3, we take a look at the connectivity structure that emerges from our training
procedure (see §5.4). Fig. 5.3 (and 5.5 in SM§5.7.5) shows the triangular Schur form
Θ = Λ + T of the recurrent connectivity matrix V = PΘP>, at the end of training.
Fig. 5.3 shows the elements of learned Θ matrix entries for copy task in (a) are con-
centrated on the diagonal, and distributed in the lower triangle for the PTB task in
(b). Insets in (a) and (b) show the distribution of eigenvalues angles θi (cf. Eq. 5.4).
(c) The mean magnitude of entries along the kth sub-diagonal of the lower triangle in
(b) shows both a delay-line and lower triangle component. Inset: the distribution of
entry magnitudes along the delay line is bimodal from its two contributions: the cosine of
uniformily distributed angles, and the relatively small, but significant pure delay line entries.

For the copy task, Θ is practically composed of 2 × 2 rotation blocks along its diagonal
(i.e. T = 0). This indicates that the learned dynamics are normal, and orthogonal. In
contrast, for the PTB task we find that the lower triangular part T shows a lot of structure,
indicating that non-normal transient dynamics are used to solve the prediction task. The
distributions of elements of T away from the diagonal highlights the nature of the tasks.
The network distributes the angles roughly uniformly in the case of the copy task, consistent
with the explicit optimal solution that involves such a distribution of rotations [28]. For the
PTB task however, the angles strongly align, promoting the delay-line motif in Θ, shown in
§5.3 to be optimal for the information propagation useful for character prediction. This is
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Figure 5.3. Learned Θs show decomposition into Λ and T

more clearly demonstrated by the mean absolute value of entries away from the diagonal,
shown in Fig. 5.3. The rest of the triangle also shows structure, consistent with our proof
that the lower triangle and delay line can jointly contribute to information propagation.

In summary, these findings indicate that when tasks are well-suited for isometric transfor-
mations (e.g. storing things in memory for later recall) the nnRNN easily learns to eliminate
non-normal dynamics and restricts itself to the set of orthogonal matrices. Moreover, it does
so without any penalty on learning speed, as shown in Fig. 5.2. However, when tasks require
online computations, non-normal dynamics come into play and enable transient activity to
be shaped for computations.

Lastly, as already discussed in §5.3.3, the expressivity afforded by non-normality must
come with a trade-off between maintaining the eigen and singular spectra "close" to the
unit circle, balancing control over exponential vanishing and polynomial exploding gradi-
ents respectively. This fact remains true for any parametrization of non-normal matrices,
including the SVD used in spectral RNN [83]. The nnRNN is naturally suited to target this
balance by explicitly allowing regularization over normal and non-normal parts of a matrix,
and enabling the optimizer to find that trade-off. This explains why we find that allowing
eigenvalues to deviate slightly from the unit circle throughout training (regularization on γ),
along with weight decay for the non-normal part, yields the best results with most stable
training. Further evidence of this balancing mechanism is found in trained matrices (see
Fig. 5.3). For the PTB task, non-normal structure emerges and the mean eigenvalue norm is
balanced at γ̄ ∼ 0.958. In contrast for the copy task, matrices remain normal and γ̄ ∼ 1. See
SM§5.7.6 for additional experiments with fixed γ further outlining their role in this trade-off.

5.6. Discussion
With the nnRNN, we showed that augmenting orthogonal recurrent connectivity matrices

with non-normal terms increases the flexibility of a recurrent network. We compared the
nnRNN’s performance to several other recurrent models on distinct tasks; some that are
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well-suited for orthogonal RNNs, and another that targets their limitations. We find that
the non-normal structure affords two distinct improvements for nnRNNs:

(1) Preservation of advantages from purely orthogonal RNNs (long-term gradient propa-
gation; fast learning on tasks involving long-term memory),

(2) Compared to orthogonal RNNs, increased expressivity on tasks requiring online com-
putations thanks to transient dynamics.

To better understand why this is, we derived analytical expressions that outline the role of
non-normal dynamics that were corroborated by an analysis of nnRNN connectivity struc-
ture after training. Importantly, the nnRNN leverages existing optimization algorithms for
orthogonal matrices with increased scope, all the while retaining learning speed.

The principal contribution of this paper is not to report major gains in performance
as measured by tests, but rather to convincingly outline a promising novel direction for
spectrally constrained RNNs. This spans the expressivity and ability to handle long-term
dependencies of orthogonal RNNs on one hand, and completely unconstrained RNNs on the
other. The nnRNN is a first step toward a trainable RNN parametrization where regulariza-
tion over the eigenspectrum is readily available while conserving the flexibility of arbitrary
eigenbases. This allows explicit control over quantities with direct impact on gradient prop-
agation and expressivity, providing a promising RNN toolbox. Unlike the orthogonal RNNs
present in our tests, which have benefited over the years from a series of algorithmic im-
provements, our nnRNN is basic in its implementation, and presents a number of areas for
direct improvement. These include (i) using a complex-valued parametrization as in [2], (ii)
exploring better initializations, and (iii) identifying helpful regularization schemes for the
non-normal part. Beyond these, we should mention that the Schur decomposition presents
implicit instabilities which can jeopardize training when eigenbases become degenerate (see
SM§5.7.4). Simple perturbation schemes to prevent this should greatly improve performance.

Finally, we acknowledge that on a number of time-dependent tasks, gated recurrent
networks such as the LSTM or the GRU [36] have clear advantages (see also [78] for a
derivation of gated dynamics from first principles). Building on these, there is promising
evidence that combining orthogonal connectivity with gates can greatly help learning [36].
This further motivates the development of spectrally constrained recurrent architectures
to be combined with gating, thereby optimizing the efficiency of gradient propagation and
expressivity with both explicit mechanisms, and implicit structure. Ongoing work in this
direction is under way, leveraging our nnRNN findings.
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5.7. Appendix

5.7.1. Task setup and training details

Please refer to https://github.com/nnRNN/nnRNN_release for available code and on-
going work.

5.7.1.1. Copy task

For the copy task, networks are presented with an input sequence xt of length 10 + Tc.
For t = 1, . . . , 10, xt can take one of 8 distinct values {ai}8

i=1. For the following Tc − 1 time
steps, xt takes the same value a9. At t = Tc, a cue symbol xt = a10 prompts the model
to recall the first 10 symbols and output them sequentially in the same order they were
presented. Models are trained to minimize the average cross entropy loss of symbol recalls.
A model that simply predicts a constant set of output tokens for every input sequence
would achieve a baseline loss of 10 log(8)

T+20 . All models were trained using a mini batch size of
10. All non-gated models except "RNN" were initialized such that the recurrent network
was orthogonal. The non-normal RNN had it’s orthogonal weight matrix initialized as
in expRNN with the log weights initialized using Henaff intialization. Importantly, all
non-gated models used the modReLU activation function for state-to-state transitions. This
is critical for the copy task since a nonlinearity makes the task very difficult to solve [80] and
modReLU acts as identity at initialization. There were 6 evaluation runs for each model.
Fig. 5.4 (left) shows cross entropy loss for all models throughout training when the number
of parameters is held constant. Model and training hyperparameters are summarized in
Table 5.2. Here, "hid" is hidden state size, "LR" is learning rate, "LR orth" is the learning
rate of the orthogonal transition matrix (its skew symmetric matrix), α is the smoothing
parameter of RMSprop, δ is the weight of L2 penalty applied to the rotation blocks’
moduli γi defined in equation 5.5, T decay is the weight of the L2 penalty applied on T in
equation 5.5, and "V init" is the initialization scheme for the state transition matrix.

Model hid LR LR orth α δ T decay V init
nnRNN 128 0.0005 10−6 0.99 0.0001 10−6 Henaff
expRNN 128 0.001 0.0001 0.99 Henaff
expRNN 176 0.001 0.0001 0.99 Henaff
LSTM 128 0.0005 0.99 Glorot Normal
LSTM 63 0.001 0.99 Glorot Normal

RNN Orth 128 0.0002 0.99 Random orth
EURNN 128 0.001 0.5
EURNN 256 0.001 0.5
RNN 128 0.001 0.9 Glorot Normal

Table 5.2. Hyperparameters for the copy task
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5.7.1.2. Sequential MNIST classification task

The sequential MNIST task [45] measures the ability of an RNN to model complex
long-term dependencies. In this task, each pixel is fed into the network one at a time,
after which the network must classify the digit. Permutation increases the difficulty of
the problem by applying a fixed permutation to the sequence of the pixels, which creates
longer term dependencies between the pixels. We train this task for all networks using mini
batch sizes of 128. All non-gated networks except "RNN" were initialized with orthogonal
recurrent weight matrices using Cayley initialization[27]. The non-normal RNN has its
orthogonal weight matrix initialized as in [48] with the log weights initialized using Cayley
initialization. Fig. 5.4 (right) shows validation accuracy for all models throughout training
when the number of parameters is held constant. There were 3 evaluation runs for each
model. Model and training hyperparameters are summarized in Table 5.3. Here, "hid" is
hidden state size, "LR" is learning rate, "LR orth" is the learning rate of the orthogonal
transition matrix (its skew symmetric matrix), α is the smoothing parameter of RMSprop, δ
is the weight of L2 penalty applied to the rotation blocks’ moduli γi defined in equation 5.5,
T decay is the weight of the L2 penalty applied on T in equation 5.5, and "V init" is the
initialization scheme for the state transition matrix.
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Figure 5.4. Model performance on copy task (left) and permuted sequential MNIST (right)
with same number of trainable parameters

5.7.1.3. Penn Treebank character prediction task

The Penn Treebank character prediction task is that of predicting the next character
in a text corpus at every character position, given all previous text. We trained all
models sequentially on the entire corpus, splitting it into sequences of length 150 or 300
for truncated backpropagation through time. Consequently, the initial hidden state for a
sequence is the last hidden state produced from its preceding sequence. All models were
trained for 100 epochs with a mini batch size of 128. Following training, for each model,
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Model hid LR LR orth α δ T decay V init
nnRNN 512 0.0002 2 ∗ 10−5 0.99 0.1 0.0001 Cayley
expRNN 512 0.0005 5 ∗ 10−5 0.99 Cayley
expRNN 722 0.0005 5 ∗ 10−5 0.99 Cayley
LSTM 512 0.0005 0.9 Glorot Normal
LSTM 257 0.0005 0.9 Glorot Normal

RNN Orth 512 5 ∗ 10−5 0.99 Random orth
EURNN 512 0.0001 0.9
EURNN 1024 0.0001 0.9
RNN 512 0.0001 0.9 Glorot Normal
Table 5.3. Hyperparameters for the permuted sequential MNIST task

the state which yielded the best performance on the validation data was evaluated on the
test data. Table 2 reports the same performance for the same model states as in Table 1 in
the main text but presents test accuracy instead of BPC. There were 5 evaluation runs for
each model. Model and training hyperparameters are summarized in Table 5.5. Here, "hid"
is hidden state size, "LR" is learning rate, "LR orth" is the learning rate of the orthogonal
transition matrix (its skew symmetric matrix), α is the smoothing parameter of RMSprop, δ
is the weight of L2 penalty applied to the rotation blocks’ moduli γi defined in equation 5.5,
T decay is the weight of the L2 penalty applied on T in equation 5.5, and "V init" is the
initialization scheme for the state transition matrix.

Test Accuracy
Fixed # params (∼1.32M) Fixed # hidden units (N = 1024)

Model TPTB = 150 TPTB = 300 TPTB = 150 TPTB = 300
RNN 40.01 ± 0.026 39.97 ± 0.025 40.01 ± 0.026 39.97 ± 0.025

RNN-orth 66.29 ± 0.07 65.53 ± 0.09 66.29 ± 0.07 65.53 ± 0.09
EURNN 65.68 ± 0.002 65.55 ± 0.002 64.01 ± 0.002 64.20 ± 0.003
expRNN 68.07 ± 0.15 67.58 ± 0.04 67.51 ± 0.11 66.89 ± 0.024
nnRNN 68.78 ± 0.0006 68.52 ± 0.0004 68.78 ± 0.0006 68.52 ± 0.0004

Table 5.4. PTB test performance: Test Accuracy

5.7.1.4. Hyperparameter search

For all models with a state transition matrix that is initialized as orthogonal (nnRNN,
expRNN, RNN-orth), three orthogonal initialization schemes were tested: (1) random, (2)
Cayley, and (3) Henaff. Random initialization is achieved by sampling a random matrix
whose QR decomposition yields an orthogonal matrix with positive determinant 1 and then
mapping this orthogonal matrix via a matrix logarithm to the skew symmetric parameter
matrix used in expRNN. Cayley and Henaff initializations initialize this skew symmetric ma-
trix as described in [48]. The vanilla RNN is also tested with a Glorot Normal initialization,
with the model then referred to as simply "RNN".
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Model hid LR LR orth α δ T decay V init
Length 150

nnRNN 1024 0.0008 8 ∗ 10−5 0.9 1 0.0001 Cayley
expRNN 1024 0.005 0.0001 0.9 Cayley
expRNN 1386 0.005 0.0001 0.9 Cayley
LSTM 1024 0.008 0.9 Glorot Normal
LSTM 475 0.001 0.99 Glorot Normal

RNN Orth 1024 0.0001 0.9 Random orth
EURNN 1024 0.001 0.9
EURNN 2048 0.001 0.9
RNN 1024 10−5 0.9 Glorot Normal

Length 300
nnRNN 1024 0.0008 6 ∗ 10−5 0.9 0.0001 0.0001 Cayley
expRNN 1024 0.005 0.0001 0.9 Cayley
expRNN 1386 0.005 0.0001 0.9 Cayley
LSTM 1024 0.008 0.9 Glorot Normal
LSTM 475 0.003 0.9 Glorot Normal

RNN Orth 1024 0.0001 0.9 Cayley
EURNN 1024 0.001 0.9
EURNN 2048 0.001 0.9
RNN 1024 1 ∗ 10−5 0.9 Glorot Normal

Table 5.5. Hyperparameters for the Penn Treebank task (at 150 and 300 time step trun-
cation for gradient backpropagation)

For training, learning rates were searched between 0.005 and 10−5 in increments of 0.0001
and 0.0002 or either 5× or 10×; the learning rate for the orthogonal matrix tested between
10−5 and 10−4; and RMSprop was used as the optimizer with smoothing parameter α as 0.5,
0.9, or 0.99. In Equation 5.5, δ was searched in 0, 0.0001, 0.001, 0.01, 0.1, 0.15, 1.0, 10; the
L2 decay on the strictly lower triangular part of the transition matrix T was searched in 0,
10−6, 10−5, 10−4.

5.7.2. Fisher memory curves for strictly lower triangular matrices

Let, Θ be a strictly lower triangular matrix such that [Θ]i+1,i =
√
α for 1 ≤ i ≤ N − 1

and A be the associated lower triangular Gram-Schmidt orthogonalization matrix. We have
that,

Θ = DA (5.6)

where D is the delay line, Di+1,i =
√
α and Ai,i = 1 for 1 ≤ i ≤ N . Let us recall the

expression of J(k) for independent Gaussian noise derived by [20, Eq. 3],

J(k) = UT (Θk)>C−1
n ΘkU , where Cn = ε

∞∑
k=0

Θk(Θk)> , (5.7)
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and U = [1,0, . . . ,0] is the source. We have that for any vector u,

u>Cnu = ε
∞∑
k=0

((Dk)>u)>AAT ((Dk)>u) (5.8)

= ε
N−1∑
k=0

((Dk)>u)>AAT ((Dk)>u) (5.9)

≤ εσ2(N−1)
max (A)

N−1∑
k=0

u>Dk(Dk)>u (5.10)

where for the first equality we used the fact that Θ is nilpotent and for the last inequality
the fact that σmax(A) ≥ 1. Recall that for two symmetric matrices we define: A � B if and
only if B − A is positive semidefinite. By definition we have,

Cn � εσ2(N−1)
max (A)

∞∑
k=0

Dk(Dk)> = εσ2
max(A)

(
diag(1,1−α2

1−α , . . . ,
1−αN

1−α )
)

(5.11)

where the last equality is due to [Dk(Dk)>]i,j = αk if i = j ≥ k + 1 and 0 otherwise. Thus
using [44, Theorem 2 P. 146] we can take the inverse to get

C−1
n �

1
εσ

2(N−1)
max (A)

(
diag(1,1−α2

1−α , . . . ,
1−αN

1−α )
)−1

= 1
εσ

2(N−1)
max (A)

diag(1, 1−α
1−α2 , . . . ,

1−α
1−αN ).

Finally, using that ΘkU = [0, . . . ,0︸ ︷︷ ︸
k

,
√
α
k
, ∗ , . . . ,∗], we have that for 0 ≤ k ≤ N − 1,

J(k) = UT (Θk)>C−1
n ΘkU (5.12)

≥ 1
εσ

2(N−1)
max (A)

αk
α− 1

αk+1 − 1 . (5.13)

α β d Jtot =
∑∞
t=0 J(t)

0.95 0.0 0.0 3.03
1.00 0.0 0.0 5.19
1.05 0.0 0.0 12.1
0.95 0.005 0.0 3.18
1.00 0.005 0.0 5.30
1.05 0.005 0.0 12.1
0.95 0.0 0.2 12.0
1.00 0.0 0.2 16.2
1.05 0.0 0.2 20.5
0.95 0.005 0.2 12.1
1.00 0.005 0.2 16.3
1.05 0.005 0.2 20.4

Table 5.6. Fisher memory curve performance: Shown is the sum of the FMC for the models
considered in section 5.3.
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5.7.3. Proof of proposition 4

Let us prove this claim by induction on t. The case t = 1 is trivial, so let us assume the
claim to be true for t = r, then for each k = 1, . . . n− 1, we expand Ar+1 as Ar · A and get

p
(r+1)
k (x) = x ·

[
1 +

k−1∑
s=1

p(r)
s (x)

]
+ p

(r)
k (x)

which again is a polynomial of degree at most k, where the coefficient of x0 in p(r+1)
k is zero

and the coefficient of xl in p
(r+1)
k is O

((
r
l−1

))
+ O

((
r
l

))
= O

((
r+1
l

))
for all l = 1,2, . . . ,k,

concluding the induction.

5.7.4. Numerical instabilities of the Schur decomposition

The Schur decomposition is computed via multiple iterations of the QR algorithm. The
QR algorithm is known to be backward stable, which gives accurate answers as long as the
eigenvalues of the matrix at hand are well-conditioned, as is explained in [1].

Eigenvalue sensitivity is measured by the angle formed between the left and right eigen-
vectors of the same eigenvalues. Normal matrices have coinciding left and right eigenvectors
but non-normal matrices do not, and thus certain non-normal matrices such as the Grcar
matrix have very high eigenvalue sensitivity, and thus gives rise to inaccuracies in the Schur
decomposition.

This motivates training the connectivity matrix in the Schur decomposition directly in-
stead of applying the Schur decomposition in a separate step.

5.7.5. Learned connectivity structure on psMNIST

For completeness, let us take a look at the Schur matrix after training on psMNIST in
Fig. 5.5. We can see that the distribution of learned angles in the rotation blocks is rather
flat, and thus is very different from the distribution learned in the PTB task, as can be seen
in Fig. 5.3. The flatness in distribution comes somewhat close to the flatness of the learned
angle distribution in the copy task. In other words, the angle distribution in the PTB task is
highly structured, while in the copy task and psMNIST task, it seems to be close to uniform.

Furthermore, we can also observe that the connectivity structure learned in the lower
triangle is significantly weaker in the psMNIST task than in the PTB task, while not being
completely absent as in the copy task.

Thus it seems that we can spot a spectrum of connectivity structure:
• The copy task has no connectivity structure in the lower triangle, close to uniform
angle distribution and the absence of a delay line, on the one end.
• The PTB task has a lot of connectivity structure in the lower triangle, a very narrow
angle distribution and the presence of a delay line, on the other end.
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Figure 5.5. Learned Θ on psMNIST task. Inset: angles θi distribution of block diagonal
rotations. (cf. Eq.5.4).

For the psMNIST task, it appears that we are located somewhere in the middle of that
spectrum.

5.7.6. Gradient propagation analysis

In the results from the main text, the parameter γ (scaling factor for eigenvalues) is
allowed to be changed by the optimizer, but is heavily regularized to force it to stay close to
one. As argued, a mean value of γ̄ ∼ 0.958 found for the best solutions on the PTB task is
indicative of a trade-off between eigenvalues and singular values to allow stable propagation
and good expressivity. To further elucidate the effect, we train nnRNNs with clamped values
of γ at 1, and at 0.958.

Results are found in Table 5.4 and complement those of Table 5.1 in the main text
(∼1.32M params, N = 1024 units). As expected for γ = 1, some run did not converge
(asterisks indicate number out of 5) as the emergence of non-normal structure pushes singular
values above one. Despite this, on runs that did converge we found the best performance
out of all methods (including regularized γ nnRNN), strongly indicating that non-normality
does indeed provide more expressivity. For γ clamped at 0.958 the performance was virtually
identical to that of nnRNN with regularized γ, indicating non-normal connectivity learning
appears robust and independent of γ learning.

Table 5.7 shows the performance of each model on the PTB task. The bits per character
(BPC), for sequence lengths TPTB = 150, 300 are both shown. Three version of nnRNN
shown: nnRNN (reproduced from main text), γ clamped at 1, γ clamped at 0.958. All
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Model TPTB = 150 TPTB = 300
nnRNN 1.47 ± 0.003 1.49 ± 0.002

nnRNN-γ = 1 1.46 ± 0.005* 1.49 ± 0.022**
nnRNN-γ = 0.958 1.47 ± 0.005 1.49 ± 0.008

Table 5.7. PTB test performance: bits per character (BPC)

models have ∼1.32M parameters and N = 1024. Error range indicates standard error of the
mean. Asterisks indicate number of failed runs out of 5.

Fig. 5.6 shows example gradient norms for nnRNN on PTB task, with eigenvalues
clamped or regularized. The plot on the left shows the gradient magnitude while back-
propagating from time step to time step (growing polynomially). The plot on the right
shows the gradient magnitude during training. In this example, all runs converged, and
we can observe that gradient norms behave nicely during backpropagation and throughout
training. This is indicative that although γ plays an important stabilizing role, gradient
explosion leading to diverging training runs appears to be an all-or-nothing event.

Figure 5.6. Gradient propagation for each model across time steps
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Part 3

Concluding Remarks



Chapter 6

Conclusion

This thesis presented several methods addressing the LPSP for double-stack intermodal rail-
cars, as well as a model capable of learning long-term dependencies in non-normal recurrent
neural networks, while maintaining expressivity in sequential models. We begin by present-
ing concluding remarks to Part 1. Here we discuss the objectives of the papers, conclusions
from the work performed and future research opportunities. Next, we present concluding re-
marks about Part 2, discussing the objectives, conclusions and future research opportunities
for the nnRNN.

6.1. The Load Planning and Sequencing Problem

The objective of Part 1 of the thesis was to solve the LPSP through dynamic program-
ming. It corresponds to a shortest path problem on an ordered graph and the proposed
heuristics are rooted in the well-known A* algorithm. Chapter 2 shows that the LPSP is
a challenging problem but it can be solved using carefully constructed heuristics. The defi-
nition of a lower bound computed by greedily solving a relaxation of the problem provides
a consistent metric with which one can compare the quality of the solutions. The results
indicate that greedy depth-first search approaches frequently provide high-quality solutions,
and that they can however be prone to finding poor solutions, by for example leaving slots
empty. The combination of beam search and depth-first search was found to be best on
average over all proposed heuristics, for all distance functions considered. The difference in
initial container storage area layouts between the medium size, and other sizes indicates that
overall performance is coupled closely with the initial layout of the containers. Moreover,
the heuristics are sensitive to the distance costs. Overall, heuristics are capable of providing
high-quality solutions to the LPSP, and scaling to practical sizes with minimal degradation
of solution quality.

Chapter 3 aimed to explore the LPSP using DRL techniques in an effort to show that
presenting the problem to a learning model can lead to high-quality solutions as well. The
results indicate that DRL models are capable of learning the LPSP environment through



the use of deep Q-learning with feature representations which can be quickly constructed to
represent the environment. The primary focus of the chapter relates to a representation of
the problem, including modalities of the storage area, platforms and containers which have
been double touched, in the model. The results show that while the model is generally able
to learn to perform well, it is prone to failure, leaving some slots open. However, this can
be mitigated by using beam search, increasing the set of actions explored, and reducing the
number of failed searches. The paper shows that the model is prone to overfitting, as it
performed better on the training set than on the test set, which could be mitigated through
a more thorough hyperparameter search involving higher weight decay values.

There are several directions for further research which can be followed to handle the
LPSP. The most significant opportunities are listed below:

• Improve the heuristic methods per se. For example, beam search could provide
a learned tabular action-state value function to depth-first search methods, which
would lead to better exploration of the underlying problem.
• Have heuristics consider container weights, and platform flexibility when considering
the cost of placing a container in a platform slot.
• Explore the stochastic and dynamic LPSP, wherein containers arrive during the load-
ing procedure. In this context, one could leverage the proposed heuristics as base
policies in a rollout algorithm [8].
• Consider a multi-agent problem, wherein there is more than one piece of handling
equipment performing loading operations.
• Apply more complex DRL techniques for solving the LPSP. As of now we have only
tried deep Q-learning successfully, but the problem lends itself to improvements such
as applying techniques to handle the large action space.

6.2. Learning Long-term Dependencies While Increasing Expres-
sivity in Sequential Models

The objective of Part 2 was to improve expressivity of models, while eliminating the
EVGP. Chapter 5 indicates that the nnRNN provides two major advantages over conventional
RNNs. First, it preserves the advantages of purely orthogonal RNNs that are characterized
by stability of long-term gradient propagation and fast learning on tasks involving long-term
memory. Second, the nnRNN has improved expressivity over orthogonal RNNs in tasks
which require short-term complex interactions.

While the numerical results presented do not show major gains over orthogonal networks,
the hope is to identify a new set of architectures capable of handling the EVGP. The paper
aims to propose a novel research direction for RNNs with constrained eigenspectrums. These
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new models could be capable of improving the RNN architecture’s ability to learn long-term
sequences while maintaining the ability to model short-term interactions between states.

We consider several directions for further research:
• Using a complex Schur decomposition for the recurrent weight matrix which would
no longer impose that eigenvalues come in complex conjugate pairs.
• Pairing the nnRNN parametrization with gated models like the LSTM and GRU.
• Improving regularization schemes for the non-normal part of the nnRNN recurrent
weight matrix.
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