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Résumé

Les réseaux sur-paramétrés, où le nombre de paramètres dépasse le nombre de données,
se généralisent bien sur diverses tâches. Cependant, les grands réseaux sont coûteux en
termes d’entraînement et de temps d’inférence. De plus, l’hypothèse du billet de loterie
indique qu’un sous-réseau d’un réseau initialisé de façon aléatoire peut atteindre une perte
marginale après l’entrainement sur une tâche spécifique par rapport au réseau de référence.
Par conséquent, il est nécessaire d’optimiser le temps d’inférence et d’entrainement, ce qui
est possible pour des architectures neurales plus compactes.

Nous introduisons une nouvelle approche “Optimizing ANN Architectures using Mixed-
Integer Programming” (OAMIP) pour trouver ces sous-réseaux en identifiant les neurones
importants et en supprimant les neurones non importants, ce qui permet d’accélérer le temps
d’inférence. L’approche OAMIP proposée fait appel à un programme mixte en nombres
entiers (MIP) pour attribuer des scores d’importance à chaque neurone dans les architectures
de modèles profonds. Notre MIP est guidé par l’impact sur la principale tâche d’apprentissage
du réseau en élaguant simultanément les neurones. En définissant soigneusement la fonction
objective du MIP, le solveur aura une tendance à minimiser le nombre de neurones, à limiter
le réseau aux neurones critiques, c’est-à-dire avec un score d’importance élevé, qui doivent
être conservés pour maintenir la précision globale du réseau neuronal formé. De plus, la
formulation proposée généralise l’hypothèse des billets de loterie récemment envisagée en
identifiant de multiples sous-réseaux “chanceux”. Cela permet d’obtenir des architectures
optimisées qui non seulement fonctionnent bien sur un seul ensemble de données, mais aussi
se généralisent sur des différents ensembles de données lors du recyclage des poids des réseaux.
Enfin, nous présentons une implémentation évolutive de notre méthode en découplant les
scores d’importance entre les couches à l’aide de réseaux auxiliaires et entre les différentes
classes. Nous démontrons la capacité de notre formulation à élaguer les réseaux de neurones
avec une perte marginale de précision et de généralisabilité sur des ensembles de données et
des architectures populaires.
Mots clés : Apprentissage profond, Élagage des réseaux neuronaux, Programmation mixte,
Classement des neurones, Optimisation combinatoire, Optimisation de l’architecture.
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Abstract

Over-parameterized networks, where the number of parameters surpass the number of train-
ing samples, generalize well on various tasks. However, large networks are computationally
expensive in terms of the training and inference time. Furthermore, the lottery ticket hy-
pothesis states that a subnetwork of a randomly initialized network can achieve marginal
loss after training on a specific task compared to the original network. Therefore, there is a
need to optimize the inference and training time, and a potential for more compact neural
architectures.

We introduce a novel approach “Optimizing ANN Architectures using Mixed-Integer
Programming” (OAMIP) to find these subnetworks by identifying critical neurons and re-
moving non-critical ones, resulting in a faster inference time. The proposed OAMIP utilizes a
Mixed-Integer Program (MIP) for assigning importance scores to each neuron in deep neural
network architectures. Our MIP is guided by the impact on the main learning task of the net-
work when simultaneously pruning subsets of neurons. In concrete, the optimization of the
objective function drives the solver to minimize the number of neurons, to limit the network
to critical neurons, i.e., with high importance score, that need to be kept for maintaining the
overall accuracy of the trained neural network. Further, the proposed formulation generalizes
the recently considered lottery ticket hypothesis by identifying multiple “lucky” subnetworks,
resulting in optimized architectures, that not only perform well on a single dataset, but also
generalize across multiple ones upon retraining of network weights. Finally, we present a
scalable implementation of our method by decoupling the importance scores across layers
using auxiliary networks and across different classes. We demonstrate the ability of OAMIP
to prune neural networks with marginal loss in accuracy and generalizability on popular
datasets and architectures.
Keywords : Deep learning, Pruning Neural Networks, Mixed-Integer Programming, Neu-
rons Ranking, Combinatorial Optimization, Architecture Optimization.
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Introduction

Deep learning has proven its ability to solve complex tasks and to achieve state-of-the-art
results in various domains such as image classification, speech recognition, machine trans-
lation, robotics and control (Bengio et al., 2017; LeCun et al., 2015). Over-parameterized
deep neural models with more parameters than the training samples can be used to achieve
state-of-the-art results on various tasks (Zhang et al., 2016; Neyshabur et al., 2018). How-
ever, the large number of parameters comes at the expense of computational cost in terms
of memory footprint, training time and inference time on resource-limited Internet of things
(IOT) devices (Lane et al., 2015; Li et al., 2018).

In this context, pruning neurons from an over-parameterized neural model has been an
active research area (Blalock et al., 2020; Cheng et al., 2017a). This remains a challenging
open problem whose solution has the potential to increase the computational efficiency and
to uncover potential subnetworks that can be trained effectively. Neural Network pruning
techniques (LeCun et al., 1990; Hassibi et al., 1993; Han et al., 2015; Srinivas and Babu,
2015; Dong et al., 2017; Zeng and Urtasun, 2018; Lee et al., 2018; Wang et al., 2019; Salama
et al., 2019; Serra et al., 2020) have been introduced to sparsify the models without loss of
accuracy.

Nevertheless, most existing work focuses on identifying redundant parameters and non-
critical neurons to achieve a lossless sparsification of the neural model. The typical sparsifica-
tion procedure starts with training a neural model, then computing parameters’ importance.
After computing the parameters’ importance, some existing parameters are pruned using cer-
tain criteria, and the neural model is then fine-tuned to regain its lost accuracy. Furthermore,
existing pruning and ranking procedures are computationally expensive, requiring iterations
of fine-tuning on the sparsified model. Moreover, no experiments have been conducted to
check the generalization of sparsified models across different datasets.

We remark that sparse neuron connectivity is often used by modern network architec-
tures, and perhaps, most notably, in convolutional layers used in image processing. In-
deed, the limited size of the parameter space in such cases increases the effectiveness of
network training and enables the learning of meaningful semantic features from the input
images (Goodfellow et al., 2016). Inspired by the benefits of sparsity in such architecture



designs, we aim to leverage the neuron sparsity achieved by our framework, Optimizing ANN
Architectures using Mixed-Integer Programming (OAMIP), to obtain optimized neural ar-
chitectures that can generalize well across different datasets. For this purpose, we create a
sparse subnetwork by optimizing on one dataset and then training the same architecture, i.e.,
masked, on another dataset. Our results indicate a promising direction of future research
into the utilization of combinatorial optimization for effective automatic architecture tuning
to augment handcrafted network architecture design.

Contribution

Fig. I.1. The generic flow of OAMIP used to remove neurons having an importance score
less than a specific threshold.

In OAMIP, illustrated in Figure I.1, we formalize the notation of neuron importance as a
score between 0 and 1 for each neuron in a neural network and the associated dataset. The
neuron importance score reflects how much activity decrease can be inflicted on it, while
controlling the loss on the neural network model accuracy. Concretely, we propose a Mixed-
Integer Programming formulation (MIP) that allows the computation of importance score
for each fully connected/convolutional neuron and takes into account the error propagation
between different layers. The motivation to use such approach comes from the existence of
powerful techniques to solve MIPs efficiently in practice, and consequently, allows the scala-
bility of this procedure to large ReLU1 activated neural models. In addition, we extend the
proposed formulation to support convolutional layers computed as matrices multiplication
using Toeplitz format (Gray, 2000), with an importance score associated with each feature
map (Molchanov et al., 2016).

Once neuron importance scores have been determined, a threshold is established to en-
able the identification of non-critical neurons and their consequent removal from the neural

1Rectified linear units that applies an activation function between layers allowing only positive logits f(x) =
x+ = max(0,x).
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network. Since it is intractable to compute neuron scores using full datasets, in our experi-
ments, we approximate their values by using subsets. In fact, we provide empirical evidence
that our pruning process results in a marginal loss of accuracy (without fine-tuning) when
the scores are approximated by a small balanced subset of data points, or even by paral-
lelizing the scores’ computation per class and averaging the obtained values. Furthermore,
we enhance our approach such that the importance scores computation is also efficient for
very deep neural models, like VGG-16 (Simonyan and Zisserman, 2014). This stresses its
scalability to datasets with many classes and large deep networks. In addition, we show that
the computed neuron importance scores from a specific dataset generalize to other datasets
when the pruned subnetwork is retrained using the same initialization.

The evaluation of our OAMIP includes computing the importance score of each neuron in
the input of the neural network through a MIP. Afterwards, we create different subnetworks,
each with different pruning methods. We compare subnetwork performance between pruning
non-critical neurons, randomly pruned neurons and critical neurons with the reference neural
model. The number of pruned neurons at each layer is the same as the number of pruned
neurons in our framework, so as to perform a fair comparison. Another evaluation concerns
the existence of subnetworks with the same initialization (lottery tickets) that generalize
on different datasets. First, we compute neurons ranking of a neural model on dataset D1.
Then, we take the same neural model initialization and masked neurons computed on dataset
D1 to retrain on dataset D2. These experiments show that the calculated importance score is
giving the right ranking for the neurons and that it can generalize across different datasets.

Outline
This thesis is organized as follows. Chapter 1 provides an overview on the foundations of deep
learning and Mixed-Integer Programming (MIP). In this chapter, we also review relevant
literature on neural networks sparsification, and the use of mixed integer programming to
model them. Chapter 2 provides background on the formulation of Artificial Neural Networks
(ANN) as constraints of a mixed integer program, along with the motivation behind this
representation. We also introduce the computation of variable bounds for the MIP and
discuss its objective function. Chapter 3 introduces the neuron importance score in an
ANN, and its incorporation in the mathematical programming model. In this chapter, we
also discuss the objective function that optimizes the sparsification and balances accuracy of
the ANN. Chapter 4 provides the experimental settings and computational experiments to
validate our proposed approach. Chapter 5 focuses on scaling up our method by decoupling
the computation of neuron importance score per layer, useful for large neural networks.
Furthermore, in the same chapter we introduce the decoupling of neuron importance score
computation per class for datasets with numerous classes. In Chapter 6, we summarize

3



our contribution and possible future research directions, directly benefiting from the work
developed.

Working Paper
Chapters 3, 4 and 5 are based on the working paper (ElAraby et al., 2020). I (the first
author) contributed in all of its scientific stages, namely, literature review, formulation of
the MIP in Chapter 3, design of OAMIP, its implementation, and analysis in Chapter 4, and
speed enhancements to tackle large models in Chapter 5, and paper writing. The standard
rule for the order of authors in the machine learning field follows the level of contribution.
The other co-authors, Margarida Carvalho and Guy Wolf, contributed equally. Our proposed
framework was reviewed and accepted for poster presentation at Montreal AI symposium
2020. The code is publicly available at https://github.com/chair-dsgt/mip-for-ann to
reproduce the major results of this work.
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Chapter 1

Background

In this chapter, we provide the necessary background about deep learning models and mixed-
integer programming (MIP). For the basics and further details of machine learning, neural
networks and backpropagation, we refer the reader to (Goodfellow et al., 2016), and for an
introduction on integer programming we refer the reader to (Nemhauser and Wolsey, 1988).

1.1. Deep Learning
The first deep multilayer perceptron was published by (Ivakhnenko and Lapa, 1967).

Deep learning was introduced to the machine learning community by (Dechter, 1986). The
algorithm behind the training of deep neural networks, the standard backpropagation algo-
rithm, was first proposed by (Werbos, 1982; Rumelhart et al., 1986), and then applied to a
deep neural network with the purpose of recognizing handwritten zip codes on mails (LeCun
et al., 1989). Next, we will explain the concept of deep learning and different model types
that will be represented by our approach using a MIP.

Deep learning refers to the process of training deep neural models to learn a set of
complex hierarchical features. We start by introducing deep learning from the simplest
statistical tool, the linear regression (Gauss, 1809; Plackett, 1972). In linear regression, we
are given a training set consisting of n input data points {x1, . . . , xn} having a target to be
predicted {y1, . . . , yn}. We assume the existence of a linear function, mapping input data
point xi ∈ RQ to the target yi ∈ RD with some possible noise in the training data. In that
case, the linear regression fits a set of parameters to the observed data namely, the weight
matrix W with dimension Q by D and bias vector b ∈ RD, as shown for a single dimension
in Figure 1.1. In this way, the linear function mapping each input observation to the output
targets is f(x) = Wx+ b. The goal is to learn these parameters such that the mean squared
error over the input training data points is minimized:

min
W ,b

1
n

∑
i

(yi − (Wxi + b))2. (1.1.1)



Fig. 1.1. Linear regression in a 1D data points, showing the process of fitting a line.

The relation between input data points and labels is restricted to be a linear relation
in Equation (1.1.1). However, in most of the practical cases, the relation is non-linear.
We can represent this non-linearity (Bishop, 2006) by feeding input data to a fixed scalar
transformation function and composing it with a feature vector having a linear relation with
the target. Finally, we fit the linear regression parameters on the created feature vector.

The simplest deep learning architecture consists of a set of hierarchical linear layers.
Each linear layer is a linear regression. However, to represent non-linearity, instead of using
a transformation function on the input data points, a non-linear transformation function is
added between layers to represent non-linear complex features.

In what follows, we introduce the formal notation for a set of simple neural network
models. Since our experiments are conducted on images, we will show the extension of
these formulations to process image data using hand crafted features representing domain
knowledge of connections’ design.

Feed-forward Artificial Neural Networks (ANNs). Also called multi-layer percep-
trons (MLPs) (Rumelhart et al., 1985), are the first and simplest form of neural networks
devised with directed acyclic connections between its nodes as shown in Figure 1.2. For sim-
plicity, we will introduce the notation for a single ANN layer whose objective is to approxi-
mate some function f ∗. A feed forward network defines a mapping f(x, θ) to approximate f ∗

and learns the parameters θ through the process (Goodfellow et al., 2016). The parameters
of the linear transformation of the first hidden layer is given by the matrix W (1), referred to
as the weight matrix, and b(1) the translation, referred to as the bias. These parameters are
used to linearly transform input data points to an intermediate set of features, and then an
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element wise non-linear function σ(·) is applied. Rectified Linear Units (ReLU) are widely
used as non-linear function: ReLU(x) = max(x, 0). We then apply a linear transformation
to map the hidden’s layer output to our target y using weight matrix W (2) and bias b(2). In
that case, θ = (W (1), b(1),W (2), b(2)). The network’s output is denoted as ŷ,

ŷ = σ(W (1)x+ b(1))W (2) + b(2). (1.1.2)

L(θ) = 1
n

n∑
i=1

l(ŷi, yi). (1.1.3)

Fig. 1.2. Simple fully connected artificial neural network.

Equation (1.1.3) represents the loss function for a dataset having n training examples.
An objective function l is used to determine the distance between the predicted and true
labels. In this setting, learning is performed using empirical risk minimization which involves
finding the optimal parameters θ∗ ∈ arg minθ L(θ). The optimal parameters would hopefully
result in a model that can generalize its knowledge to unseen test data.
Theorem 1.1.1. Universal approximation theorem (Funahashi, 1989). A single hidden layer
neural network with a linear output unit can approximate any continuous function arbitrarily
well, given enough hidden units.

Hence, in order to increase the capacity1 of the network, we can extend this simple
network to have multiple layers and more hidden units per layer as shown in Theorem 1.1.1.

1It can be defined as the complexity of the functions that the network can represent.
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For classification tasks, the output of the network needs to be normalized to the range
[0, 1], representing the predicted class probability. Consequently, a softmax activation func-
tion is applied on the output logit of the network.

softmax(a) =
[

exp (a1)∑
c exp (ac)

, . . . ,
exp (ac)∑
c exp (ac)

]T
. (1.1.4)

Fig. 1.3. Simple LeNet-5 convolutional neural network architecture consisting of convolu-
tional transformation, pooling and fully connected layers.

Convolutional neural networks (CNNs). CNNs (LeCun et al., 1989) are popular neu-
ral networks for image processing, which make use of the 2D topology of images to process
input images with a few shared parameters. The typical CNN consists of recursive application
of convolutional layers with a non-linear activation function, followed by a pooling operation
to reduce its spatial dimensionality, and then a feed-forward layer to convert transformed
features to the target as in Figure 1.3.

Convolutional layers are the core building block of convolutional model architectures. A
convolutional layer consists of a set of kernels exploiting the 2D topology of images. Each
kernel is a tensor having a height, a width and a depth. This latter is the number of input
channels. During a forward pass, we slide (more specifically, convolve) each kernel across the
width and height of the input image and compute the dot product between the kernel and
the input image at any position. The output of each kernel is the sum of the convolution at
each input channel dimension (depth) with its corresponding dimension in that kernel. Each
neuron is locally connected to a patch of the input image, which is called the receptive field
(kernel dimension), see Figure 1.4. The kernel is also known as a feature map, since it is a
mapping of where a specific feature occurs in an image.

We can control the size of the output data from the convolution using a set of hyper-
parameters:
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Fig. 1.4. An example of an input image in red, and an example of a set of neurons in
a kernel in blue. This illustration is showing the local connectivity between neurons of a
convolutional layer. This local connection allows dealing with high dimensional input images.

(1) The depth, which is the number of kernels used in this layer. After convolving an
input image, the number of channels is the same as the number of kernels used in
this layer.

(2) The stride, which is the amount of pixels used to slide the kernel. If we set the stride
to 1, we slide the kernel by 1 pixel at a time. When the stride is 2, the kernel would
slide with 2 pixels at a time resulting in a spatially smaller output.

(3) The padding, which is the amount of zeros padded to each side of the input im-
age, most commonly used to preserve the size of the input image after applying the
convolutions.

The convolutional operation can be equivalently implemented as a large simple matrix
multiplication with the downside of taking more memory.

Pooling layers on multi-input units are used to reduce spatial representation of input
images by applying an arithmetic operation on the output of each kernel of the previous
convolutional layer. Average Pooling layer applies the average operation on the output of
each kernel. Max Pooling takes the maximum value of each kernel of the previous layer.

Accordingly, hand crafted neural connections that use domain knowledge are shown to
give good results while reducing the computational costs, as shown in convolutional lay-
ers (LeCun et al., 1989).

1.2. Mixed-Integer Programming
Linear-programming (LP) was first initiated by the work of (Dantzig, 1948). Dantzig

(1948) introduced the simplex algorithm broadly used nowadays to solve linear programs.
Later, the branch-and-bound algorithm was introduced by (Land and Doig, 1960), and used
in LP/90/94 commercial IBM solver released 1963 on IBM 7094 machine with the ability
to handle up to 1024 constraints. Furthermore, LP/90/94 has the ability to handle mixed-
integer problems initiated by (Beale and Small, 1965) using the algorithm from (Dakin, 1965)
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along with dichotomous branching (Land, 1960). We refer the reader to (Bixby, 2012) for a
detailed history of LPs and MIPs.

Integer programs are combinatorial optimization problems restricted to discrete decision
variables, linear constraints and linear objective function. Integer programs can be expressed
using the canonical form

Maximize cTx

subject to Ax ≤ b

x ≥ 0

x ∈ Zn.

(1.2.1)

These problems are NP-hard, even when the variables are restricted to binary values (Garey
and Johnson, 1979). The difficulty comes from ensuring integer solutions, and thus, the
impossibility of using gradient methods. When continuous variables are included, they are
designated by mixed-integer programming problems.

Mixed-integer programs are solved using linear programming algorithms embedded in
a branch-and-bound scheme. Basic branch-and-bound starts by removing the integrality
restrictions in the MIP variables, resulting in the so-called relaxed linear program LP. We
then solve the relaxed LP. If the solution satisfies the integrality constraints then it is optimal
for the MIP. If not, the method branches on a variable that did not satisfy the integrality
constraint, i.e., two new linear programs are obtained by imposing that the variable is greater
than or equal the ceiling of its fractional value, and another one where it must be less or
equal to its floor value. We then proceed by applying the same branching procedure. Note
that branching on a variable value, creates a search tree and the nodes of the tree are the
LPs generated by the search procedure as in Figure 1.5. The solver iterates over the nodes
of the search tree until the solution of the relaxed LP in a node is integer, or the relaxed LP
is infeasible, or the optimal value of the relaxed LP is inferior to the best feasible solution
encountered so far. We call these nodes fathomed. The leaves of the search tree under
exploration are the LPs that are not yet solved, infeasible or with a feasible solution to the
MIP.

During the search process at the leaf nodes, the node having a MIP feasible solution
with the best objective function value is called the best bound. The difference between the
objective’s value of any node and the best bound’s objective value is called the gap. We can
demonstrate optimality by having a gap with a value of zero.

Before applying the branch-and-bound algorithm, usually, the MIP solvers run a presolve
step to reduce the problem. These reductions aim to reduce the size of the problem and to
tighten the formulation for faster solving time. Presolve step in any MIP solver is a critical
step that may considerably reduce the linear relaxation feasible search space.
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Fig. 1.5. Branch-and-bound algorithm used in solving mixed-integer programs.

Fig. 1.6. Cutting plane method used to refine a feasible set by valid cuts.

Gomory (1969) introduced cutting planes used to tighten the relaxations by removing the
undesired fractional solutions during the solution process without branching, see Figure 1.6.

Heuristic methods are a part of modern solvers with the aim of finding rapidly a good
feasible solution, although with no guarantee of optimality. Examples of heuristic meth-
ods include simple rounding heuristics, feasibility pump (Achterberg, 2009; Fischetti et al.,
2005), meta-heuristics (Glover and Kochenberger, 2006), relaxation induced neighborhood
search (Danna et al., 2005) and local branching (Fischetti and Lodi, 2003).

Advances in combinatorial optimization such as branching techniques, bounds tightening,
valid inequalities, decomposition and heuristics, to name few, have resulted in powerful
solvers that can in practice solve MIPs of large size in seconds.

1.3. Related Work
Pruning neurons from an over-parameterized neural model has been an active research

area and an open challenging problem. Identifying which neurons to remove from a model
requires computing an importance score for each neuron. The importance score can be used
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to prune, interpret and identify the critical features learned by the neural model. Different
objectives have been proposed to decide which neurons are important. Next, we will re-
view the related literature in the neural architecture search, compression, the lottery ticket
hypothesis and use of combinatorial optimization on trained ANNs.

Classical weight pruning methods. LeCun et al. (1990) proposed the optimal brain
damage that theoretically prunes weights having a small “saliency”, i.e., those having minor
effect on the training error. The saliency is predicted by computing the weights’ second
derivatives with respect to the training objective. Hassibi and Stork (1993) introduced
the optimal brain surgeon that aims at removing “non-critical” weights; these are weights
that when pruned, result in a marginal loss of the network’s predictive capacity. The non-
critical weights are determined by approximating the inverse of the Hessian of the network.
Another approach is presented by (Chauvin, 1989; Weigend et al., 1991), where a penalizing
term is added to the loss function during the model training (e.g., L0 or L1 norm) as a
regularizer. The model is sparsified during backpropagation of the loss function. Since
these classical methods depend i) on the scale of the weights, ii) are incorporated during
the learning process, and, iii) some of them; rely on computing the Hessian with respect
to some objective, they turn out to be slow, requiring iterations of pruning and fine-tuning
to avoid loss of accuracy. OAMIP identifies a set of non-critical neurons that when pruned
simultaneously results in a marginal loss of accuracy without the need of fine-tuning or
re-training.

General weight pruning methods. These methods generally prune the network with-
out following any constraint, which is simply pruning entire neurons or specific connections.
Molchanov et al. (2016) devised a greedy criteria-based pruning with fine-tuning by back-
propagation. The criterion devised is given by the absolute difference between dense and
sparse neural model loss (ranker). This cost function ensures that the model will not sig-
nificantly decrease its predictive capacity. The drawback of this approach is in requiring
a retraining after each pruning step. Shrikumar et al. (2017) developed a framework that
computes the neurons’ importance at each layer through a single backward pass with respect
to each output target. This technique compares the activation values among the neurons
and assigns a contribution score to each of them based on the predicted output of each input
data point. Other related techniques, using different objectives and interpretations of neu-
rons importance, have been presented (Berglund et al., 2015; Barros and Weber, 2018; Liu
et al., 2018a; Yu et al., 2018; Hooker et al., 2019). They all demand intensive computation,
while OAMIP aims at efficiently determining the neurons’ importance.

Lee et al. (2018) investigated the pruning of connections, instead of entire neurons. The
connections’ sensitivity is studied through the model’s initialization and a batch of input
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data. Connections sensitivities lower than a certain threshold are removed. This proposed
technique is the current state-of-the-art in deep networks’ compression. The generalization
across different datasets was not studied in their proposed approach and the connections’
sensitivity are computed at the initialization. On the other hand, we show the generalization
of OAMIP and its ability to compute the neuron importance on different convergence levels
of the trained neural network.

Structured weight filter pruning methods. These methods prune the network in a
structured way like placing sparsified parameters at well-defined locations enabling GPUs to
exploit computational savings. Srinivas and Babu (2015) proposed a data free way of pruning
neural models by computing correlation between neurons. This correlation is computed using
a saliency of two weight sets for all possible sets in the model. The saliency set computation
is computationally intensive. Li et al. (2016); Molchanov et al. (2016); Jordao et al. (2018)
focused on methods to prune entire filters in convolutional neural networks which include
pruning and retraining to regain lost accuracy. He et al. (2018) proposed an approach to
rank entire filters in convolutional networks. The ranking method uses the L1 norm of the
weights for each filter. This approach is effective to detect non-critical filters. However, it
involves alternating between pruning the lowest ranking filters and retraining, in order to
avoid a drop in accuracy. Our work focuses on structured weight compression and it has the
ability of being applied to convolutional filters in Toeplitz2 fully connected format.

AutoML. Zoph and Le (2016) were the first to draw attention to automatic architecture
search by using a reinforcement learning technique to search for the best performing architec-
ture of a recurrent neural network. Since then, a set of techniques were proposed specifically
for neural architecture search. Cortes et al. (2017) focused on an adaptive model that learns
both the architecture of the model and its weight using a training policy. This policy works
on minimizing the generalization bound and makes the choice of whether, or not to expand
a subnetwork as the current. This proposed policy is a convex function of w, which makes it
easy to optimize. Optimizing this proposed policy gives a good model achieving high results
on the provided dataset. Weill et al. (2019) proposed a technique based on AdaNet (Cortes
et al., 2017) that learns the structure of a neural network as an ensemble of weak learners.
In the neural architecture search techniques, we do not just learn the weights but also the
features associated to each dataset depending on how important the connection is to that
specific dataset. We refer the reader to (He et al., 2019; Zöller and Huber, 2019) for more
details about AutoML.

2Converting convolutional layers to Toeplitz blocks is explained in depth in Section 2.3
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Lottery ticket. Frankle and Carbin (2018) introduced the lottery ticket conjecture and
empirically showed the existence of a lucky pruned subnetwork, a winning ticket. This
winning ticket can be trained effectively with fewer parameters without loss in accuracy as
formally explained in Conjecture 1.3.1.
Conjecture 1.3.1. The Lottery ticket hypothesis: A randomly-initialized, dense neural
network contains a subnetwork that is initialized such that when trained in isolation it can
match the test accuracy of the original network after training for at most the same number
of iterations.

Morcos et al. (2019) proposed a technique for sparsifying n over-parameterized trained
neural models based on the lottery hypothesis. Their technique involves pruning the model
and disabling some of its subnetworks. The pruned model can be fine-tuned on a different
dataset achieving good results. The lucky subnetwork is found by iteratively pruning the
lowest magnitude weights and retraining. Another phenomenon discovered by (Ramanujan
et al., 2020; Wang et al., 2020a), was the existence of smaller high-accuracy models that re-
sides within larger random networks. This phenomenon is called strong lottery ticket hypoth-
esis and was proved by (Malach et al., 2020) on ReLU fully connected layers. Furthermore,
Wang et al. (2020b) proposed a technique of selecting the winning ticket at initialization
before training the ANN by computing an importance score, based on the gradient flow in
each unit.

Mixed-integer programming. Fischetti and Jo (2018) and Anderson et al. (2019) rep-
resent a ReLU ANN using a MIP. Fischetti and Jo (2018) presented a big-M formulation
to represent trained ReLU neural networks. Later, Anderson et al. (2019) introduced the
strongest possible tightening to the big-M formulation by adding strengthening separation
constraints when needed3, which reduced the solving time by orders of magnitude. All the
proposed formulations, are designed to represent trained ReLU ANNs with fixed parameters.
In OAMIP, we used the formulation from (Fischetti and Jo, 2018) because its performance
was good due to our tight local variable bounds, and its polynomial number of constraints.
On the other hand, Anderson et al. (2019)’s model has an exponential number of constraints).
Representing an ANN as a MIP can be used to evaluate robustness, compress networks and
create adversarial examples for the trained neural network. Tjeng et al. (2019) used a big-M
formulation to evaluate the robustness of neural models against adversarial attacks. In their
proposed technique, they assessed the ANN’s sensitivity to perturbations in input images.
The MIP solver tries to find a perturbed image (adversarial attack) that would get mis-
classified by the ANN. Serra et al. (2020) also used a MIP to maximize the compression
of an existing neural network without any loss of accuracy. Different ways of compressing
(removing neurons, folding layers, etc) are presented. However, the reported computational
3The cut callbacks in Gurobi were used to inject separated inequalities into the cut loop.
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experiments lead only to the removal of inactive neurons. Our method has the capabil-
ity to identify such neurons, as well as to identify other units that would not significantly
compromise accuracy.

Huang et al. (2019) used also mathematical programming models to check neural mod-
els’ robustness in the domain of natural language processing. In their proposed technique,
the bounds computed for each layer would get shifted by an epsilon value for each input
data point for the MIP. This epsilon is the amount of expected perturbation in the input
adversarial data.
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Chapter 2

ANN as a MIP

In this chapter, we explain how to formulate a neural network as a mixed-integer program.
As seen in Section 1.2, a neural network’s architecture consists of a set of affine linear
transformations with non-linear activation functions. Recall that a commonly used non-
linearity is the Rectified Linear Unit (ReLU), whose output is the maximum between the
input and zero. However, we start by introducing the linearly connected layers’ formulations
as a base for the upcoming ReLU formulations. Furthermore, given that convolutional
and pooling layers are crucial for learning tasks involving images, we also introduce them.
Mainly, we model fully connected layers as a mixed-integer program, and then add each
of the aforementioned’s elements to it: ReLU activations, convolutional layers, pooling and
batch norm. Finally, we discuss the computation of bounds for the variables of the MIP
which significantly impacts solving times.

The motivation behind representing neural networks using a MIP results from their suc-
cessful application in 1) deep reinforcement learning with high dimensional action spaces
where the state transition cost is learned by a neural network and the policy is determined
by solving a MIP (Ryu et al., 2019; Mladenov et al., 2017), 2) neural network’s robustness
verification against adversarial examples (Tjeng et al., 2019; Huang et al., 2019), and 3)
compression of neural networks (Serra et al., 2020).

2.1. Linear Fully Connected Layers
We will recover the neural network notation from Chapter 1. In what follows. We assume

that the neural network was trained, i.e., the parameters are known. This is because our
goal is to prune a trained neural network without having to fine-tune or to re-train. For
each input data point x, let hl be a decision vector denoting the output value of layer l, w(l)

i

row i of W (l), and b(l)
i ith element of bias vector b(l), i.e., hl = W (l)hl−1 + b(l) for l > 0 and

h0 = x.



For the sake of simplicity, we describe the formulation for one layer l at neuron i of the
model and one input data point x1.

We start by presenting the constraints used in a MIP formulation for linear fully connected
layers without activation functions. To this end, the following set of constraints completely
mimics the linear fully connected layers:

hli = xi if l = 0, otherwise (2.1.1a)

hli+1 = w
(l)
i h

l
i + b

(l)
i ∀l = 1, . . . , n ∀i = 1, . . . , Nl (2.1.1b)

where the output of layer i is denoted by the decision vector hli+1, and its value is based on
the parameters w(l)

i , and b(l)
i . Without a fixed set of parameters (a trained network), along

with an objective defined by the user depending on their end goal, the problem is extremely
hard due to its non-linearity.

2.2. ReLU Activated Layers
Next, we provide the representation of ReLU neural networks of (Fischetti and Jo, 2018)

called big-M formulation. Although, Anderson et al. (2019) proposed an ideal MIP for-
mulation, where there is an exponential number of facets defining constraints that can be
separated efficiently, we used only the big-M formulation which performed well since we can
compute tight local bounds.

The ReLU activation functions are used to increase the model’s capacity and to introduce
non-linearity between its layers. The ReLU is a piecewise non-linear activation function that
enables positive logits only. For this purpose, we use a gating binary decision variable zli in
addition to the previous variables used in the linear fully connected layers.

Let hl = ReLU(W (l)hl−1 + b(l)), and an additional decision variable zli that takes value
1 if the unit i is active, i.e., w(l)

i h
l−1 + b

(l)
i ≥ 0, and 0 otherwise. Finally, let Lli and U l

i be
constants indicating a valid lower and upper bound for the input of each neuron i in layer
l. We discuss the computation of these bounds in Section 2.6. For now, we assume that Lli
and U l

i are sufficiently small and large numbers, respectively, i.e., the so-called big-M values.
The constraints for a ReLU activation at layer l on neuron i are:

1These constraints must be repeated for each layer and each input data point.
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hli ≥ 0, (2.2.1a)

hli + (1− zli)Lli ≤ wlih
l−1 + bli, (2.2.1b)

hli ≤ zliU
l
i , (2.2.1c)

hli ≥ wlih
l−1 + bli, (2.2.1d)

zli ∈ {0, 1}. (2.2.1e)

We additionally make z0
i = 1, so that constraint (2.1.1a) forces the initial decision vec-

tor h0 to be equal to the input x of the first layer. When zli is 0, constraints (2.2.1a)
and (2.2.1c) force hli to be zero, reflecting a non-active neuron. If an entry of zli is 1, then
constraints (2.2.1b) and (2.2.1d) enforce hli to be equal to wlihl−1 + bli. See (Fischetti and Jo,
2018; Anderson et al., 2019) for details.

Fig. 2.1. Effect of relaxing the gating binary decision variable in the ReLU formulation,
and the effect on the search space of feasible solutions.

After formulating the ReLU, if we relax the binary constraint (2.2.1e) on zli to [0, 1], we
obtain a linear programming problem which is easier and faster to solve. This relaxation
would convert the ReLU function from Figure 2.1 into the convex set in blue. This allows
to see the role of the binary requirement on zli, and the trade-off between an exact MIP
representation of a ReLU activation function and its approximation by relaxing the MIP
in one unit. Furthermore, the quality (tightness) of such relaxation highly depends on the
choice of tight upper and lower bounds, Ui, Li. In fact, the determination of tight bounds
reduces the search space and hence, the solving time (recall from Chapter 1 that MIP solvers
rely on LP relaxations).

2.3. Convolutional Layers
We convert the convolutional feature map to a Toeplitz matrix, and the input image

to a vector. Hence, allowing us to use simple matrix multiplication that can be efficiently
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computed, but with high memory cost. Through this procedure, we can represent the convo-
lutional layer using the same formulation of linear or ReLU activated fully connected layers
presented in Section 2.1 and Section 2.2.

Toeplitz Matrix is a matrix in which each value is along the main diagonal and sub
diagonals are constant. So given a sequence an, we can create a Toeplitz matrix by putting
the sequence in the first column of the matrix and then shifting it by one entry in the
following columns. Figure 2.2 shows the steps of creating a doubly blocked Toeplitz matrix
from an input filter.



a0 a−1 a−2 · · · · · · · · · · · · a−(N−1)

a1 a0 a−1 a−2
...

a2 a1 a0 a−1
. . . ...

... a2
. . . . . . . . . . . . ...

... . . . . . . . . . . . . a−2
...

... . . . a1 a0 a−1 a−2

... a2 a1 a0 a−1

a(N−1) · · · · · · · · · · · · a2 a1 a0



. (2.3.1)

Fig. 2.2. Steps for converting a filter to doubly blocked Toeplitz matrix.

Feature maps or kernels, as discussed in Chapter 1.1, at each input channel are flipped,
and then converted to a matrix. The computed matrix when multiplied by the vectorized
input image will provide the fully convolutional output. For padded convolution, we use only
parts of the output of the full convolution, and for the strided convolutions we use sum of 1
strided convolutions as proposed by (Brosch and Tam, 2015). First, we pad zeros to the top
and right of the input feature map to have same size as the output of the full convolution.
Then, we create a Toeplitz matrix for each row of the zero padded feature map. Finally, we
arrange these small Toeplitz matrices in a large doubly blocked Toeplitz matrix. Each small
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Toeplitz matrix is arranged in the doubly Toeplitz matrix in the same way a Toeplitz matrix
is created from the input sequence, with each small matrix as an element of the sequence,
as shown in Figure 2.2.

The formulation will become ∑N l

d=1 W (l)
d hl−1 + b(l) at each feature map. We then, in-

corporate the same constraints used for the fully connected layer repeated for each feature
map.

2.4. Pooling Layers
Pooling layers are used to reduce the spatial representation of an input image by applying

an arithmetic operation on each feature map of the previous layer, as shown in Figure 2.3.
We model both average and max pooling on multi-input units as constraints of a MIP
formulation with kernel dimensions ph and pw.

Fig. 2.3. Diagram of average pooling in the left, and max pooling in the right.

Avg Pooling layer applies the average operation on each feature map of the previous layer.
This operation is just linear and it can be easily incorporated into our MIP formulation:

x = AvgPool(y1, . . . ,yph∗pw)= 1
ph ∗ pw

ph∗pw∑
i=1

yi. (2.4.1a)

Max Pooling takes the maximum of each feature map of the previous layer.

x = MaxPool(y1, . . . ,yph∗pw)= max{y1, . . . ,yph∗pw}. (2.4.2a)

This operation can be expressed by introducing a set of binary variables m1, . . . ,mph∗pw.
ph∗pw∑
i=1

mi = 1 (2.4.3a)

x ≥ yi,

x ≤ yimi + Ui(1−mi)

mi ∈ {0,1}

 i = 1, . . . , ph ∗ pw. (2.4.3b)
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Fischetti and Jo (2018) devised the max and avg pooling representation using a MIP. The
max pooling representation contains a set of gating binary variables enabled only for the
maximum value yi in the set {y1, . . . , yph∗pw}.

2.5. Batch Norm
Ioffe and Szegedy (2015) introduced a technique to reduce internal covariate shift between

layers using batch normalization. Internal covariate shift can be defined as the change in the
distribution of the network architecture due to the parameters update during the training.
The reduction in internal covariate shift would make the landscape of the corresponding
optimization problem significantly smoother. The smoothness of the optimization space
would allow us to use a larger range of learning rates with faster convergence rate. These
features made the batch norm layers popular; they are thus used in most deep learning
architectures.

The batch norm operation normalizes the input by subtracting the mini batch mean and
dividing it by the variance, then scale and shift are applied using learnable parameters γ and
β. Thus, this operation is linear and can be easily represented in a MIP formulation. Given
the fixed parameters γ and β, along with the running mean and variance computed during
the training on mini-batches µ and σ2, we have a constant ε added during the computation
for numerical stability.

hl+1 = γ
hl − µ√
σ2 + ε

+ β. (2.5.1)

Equation (2.5.1) shows the constraint for a batch norm at layer l+1 based on the output
of the previous layer hl. Its value is saved into the decision variable hl+1.

2.6. Computing Tight Bounds
In the described MIP constraints, we assumed to have a large upper bound U l

i and a
small lower bound Lli. However, using large bounds increases the feasible space of the MIP
relaxation, as shown in Figure 2.1, causing long computational times. In order to overcome
this issue, we compute tight bounds on the input that are tailored to our particular use of
the MIP models. Before describing our bounds computation procedure, we review different
techniques of bounds tightening and the differences between them.

The standard approach computes the bounds for each unit by simply solving its MIP
formulation for two different objective functions. The first, maximizes the decision variable
value, leading to an upper bound. The second, minimizes the decision variable value, leading
to a lower bound. Moreover, we can halt the solver before termination, and yet get useful
bounds, as shown by (Cheng et al., 2017b). Since the ANN is an acyclic graph, the tightened
bounds computed in one unit can be used for subsequent computation of bounds to the
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remaining layers. However, this approach is computationally expensive, it leads to global
tight bounds that do not depend on the input, and can be saved and used for the same
ANN on different input data points. Cheng et al. (2017b); Fischetti and Jo (2018) used this
approach to compute tight bounds. Alternatively, the MIPs used by this bound computation
method can be relaxed (LP bounds tightening), leading to a more efficient way to compute
the bounds, at the expense of weaker bounds.

Interval arithmetic is an efficient technique to compute tight local bounds depending on
input data points x fed to the MIP in Equation (2.1.1a). We tailor these bounds accordingly
with their respective input point x by considering small perturbations on its value:

L0 = x− ε (2.6.1a)

U0 = x+ ε (2.6.1b)

Ll = W (l−)U l−1 + W (l+)Ll−1 (2.6.1c)

U l = W (l+)U l−1 + W (l−)Ll−1 (2.6.1d)

W (l−) , min (W (l), 0) (2.6.1e)

W (l+) , max (W (l), 0). (2.6.1f)

Propagating the initial bounds of the input data points throughout the trained model will
create the desired bound using the arithmetic interval (Moore et al., 2009). The obtained
bounds are tight, narrowing the space of feasible solutions.

Moreover, this procedure is extremely efficient, particularly when compared with the
standard approach which requires solving multiple optimization problems. Therefore, in our
proposed work, we used the interval arithmetic which complied with our usage for input data
points.

2.7. Objective Function
After defining the constraints and bounds, for a complete MIP description, the user needs

to define the problem’s objective to be optimized.
For example, if we want to generate adversarial examples for a classification task of an

ANN function denoted as hθ with perturbation δ upper bounded by ε, our objective would
be to maximize the target class logit ytarg, and minimize all other logits denoted by y′:

Maximize
‖δ‖≤ε

hθ(x+ δ)ytarg −
∑

y′ 6=ytarg

hθ(x+ δ)y′

 . (2.7.1)

We have shown the constraints representing an ANN using a MIP, the computation of
bounds and an example of an objective function. Next, we describe how we build OAMIP
for identifying critical neurons in a trained ANN based on these MIP representations.
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Chapter 3

Neuron Importance Score

In this chapter, we will describe the mathematical programming formulation devised by us
to model the computation of ANN layers with ReLU activation functions, while being able
to evaluate the effect on the predictive task of each neuron. To that end, we introduce a
neuron importance score variable (ElAraby et al., 2020) to the previously introduced MIP
constraints for ANN in Section 2.1, denoting how critical is each neuron for the trained
neural network.

Our main focus is to compute an importance score between 0 and 1 for each neuron in an
ANN. The importance score represents the contribution and the activation of each neuron to
the learning task at hand. Neurons with a score close to 1 are extremely critical to the ANN,
while neurons with a score close 0 are non-critical. With the computed neuron importance
score, we can prune neurons having a low importance score (non-critical) without losing the
model’s predictive capacity. In this way, we can obtain sparse architectures.

3.1. Constraints
Wemodelled ReLU activated layers with the ability to evaluate the effect of decreasing the

neurons’ activation. We keep the previously introduced binary variables zli, and continuous
variables hli defined for each input data point x. Additionally, we create the continuous
decision variables sli ∈ [0,1] representing neuron i importance score in layer l. In this way,
we modified the ReLU constraints (2.2.1) by adding the neuron importance decision variable
sli to constraints (2.2.1b) and (2.2.1d). Remark that sli is the same for all input data points.

hli + (1− zli)Lli ≤ wlih
l−1 + bli − (1− sli) max (U l

i , 0) (3.1.1a)

hli ≥ wlih
l−1 + bli − (1− sli) max (U l

i , 0). (3.1.1b)

In (3.1.1), when neuron i is activated due to the input hl−1, i.e., zli = 1, hli is equal to the
right-hand-side of those constraints. This value can be directly decreased by reducing the



neuron importance sli. When neuron i is non-active, i.e., zli = 0, constraint (3.1.1b) becomes
irrelevant as its right-hand-side is negative. This fact together with constraints (2.2.1a)
and (2.2.1c), imply that hli is zero. Now, we claim that constraint (3.1.1a) allows sli to be zero
if that neuron is indeed non-important, i.e., for all possible input data points, neuron i is not
activated. This claim can be shown through the following observations. Note that decisions
h and z must be replicated for each input data point x as they present the propagation of x
over the neural network. On the other hand, s evaluates the importance of each neuron for
the main learning task and thus, it must be the same for all data input points. Thus, the
key ingredients are the local bounds Lli and U l

i that are computed for each input data point,
as explained in Section 2.6. In this way, if U l

i is non-positive for all considered data points,
sli can be zero without interfering with the constraints (3.1.1). The latter is enforced by
the objective function derived in Section 3.2 which minimizes the neuron importance scores.
If U l

i is positive for some input data point, the decrease on sli will be limited by the fact
that hli must be non-negative for that data point. We remark that the decrease in sli relies
heavily on the coefficient of (1 − sli) in (3.1.1). While our constraints correctly propagate
the computation of some data point x, while allowing some neurons’ activation decrease,
the choice of the coefficient max (U l

i , 0) may be resulting in an over estimation of neurons’
importance score. We apply an element-wise ReLU on the upper bound max (U l

i , 0) in order
to zero out the neurons’ importance score for dead neurons.

In Figure 3.1, we show the new bounds when we add the neuron importance score to the
constraints of the ReLU compared to the previous bounds. Moreover, the correctness of the
computed neuron importance scores relies heavily on the tightness of the bounds. In brief,
the bounds need to be computed locally per each input data point, which explains the choice
of interval arithmetic discussed in Section 2.6.

We note that this MIP formulation can naturally be extended to convolutional layers
converted to matrix multiplication using Toeplitz matrix (Gray, 2000), as explained in Sec-
tion 2.3, and with an importance score associated with each feature map.

3.2. MIP Objective
The aim for the proposed framework is to sparsify the ANN by removing non-critical

neurons without reducing the predictive accuracy of the pruned ANN.
We consider a neuron critical, if once pruned, the ANN’s predictive capacity drops dra-

matically, and non-critical, if once pruned, it causes only a marginal decrease in the ANN’s
predictive capacity. To this end, we combine two optimization objectives.

Our first objective is to maximize the set of neurons sparsified from the trained ANN.
Let n be the number of layers, N l the number of neurons at layer l, and I l = ∑N l

i=1(sli − 2)
be the sum of neuron importance scores at layer l with sli scaled down to the range [−2,−1].
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Fig. 3.1. The bounds changing with the introduced decision variable sli.

Table 3.1. Importance of re-scaling sparsification objective to prune more neurons shown
empirically on LeNet-5 model using threshold 0.05, by comparing accuracy on test set be-
tween reference model (Ref.), and pruned model (Masked).

Dataset Objective Ref. Acc. Masked Acc. Pruning Percentage (%)

MNIST
sli − 2

98.9%± 0.1
98.7% ± 0.1 13.2% ± 2.9

sli − 1 98.8%± 0.1 9.6%± 1.1
sli 98.9%± 0.2 8%± 1.6

Fashion-MNIST
sli − 2

89.9%± 0.2
89.1% ± 0.3 17.1% ± 1.2

sli − 1 89.2%± 0.1 17%± 3.4
sli 89%± 0.4 10.8%± 2.1

In order to create a relation between neurons’ importance score in different layers, our
objective becomes the maximization on the amount of neurons sparsified from the n − 1
layers with higher score I l, which with the re-scaling incorporates the layer size. Hence, we
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denote A = {I l : l = 1, . . . ,n} and formulate the sparsity loss as

sparsity =
max

A′⊂A,|A′ |=(n−1)

∑
I∈A′

I

∑n
l=1 N

l
. (3.2.1)

Here, the objective is to maximize the number of non-critical neurons (small importance
scores) at each layer compared to other layers in the trained neural model. Note that only
the n − 1 layers with the largest importance score will weight in the objective, allowing to
reduce the pruning effort on some layer that will naturally have low scores. The sparsity
quantification is then normalized by the total number of neurons.

In Table 3.1, we compare re-scaling the neuron importance score in the objective function
to [−2,−1], to [−1, 0] and no re-scaling [0, 1] using LeNet-5 (LeCun et al., 1998) trained on
MNIST (LeCun et al., 2010) and Fashion-MNIST (Xiao et al., 2017). This comparison
shows empirically the importance of re-scaling the neuron importance score to optimize
sparsification through neuron pruning.

Our second objective is to minimize the loss of important information due to the sparsi-
fication of the trained neural model. Additionally, we aim for this minimization to be done
without relying on the values of the logits, which are closely correlated with neurons pruned
at each layer. Otherwise, this would drive the MIP to simply give a full score of 1 to all
neurons in order to keep the same output logit value. Instead, we formulate this optimiza-
tion objective using the marginal softmax as proposed in (Gimpel and Smith, 2010). Using
marginal softmax allows the solver to focus on minimizing the misclassification error without
relying on logit values. Marginal softmax loss avoids putting a large weight on logits coming
from the trained neural network and predicted logits from decision vector hn computed by
the MIP. On the other hand, in the proposed marginal softmax loss, the label having the
highest logit value is the one optimized regardless its value. Formally, we write the objective

softmax =
Nn∑
i=1

log
[∑

c

exp(hni,c)
]
−

Nn∑
i=1

∑
c

Yi,ch
n
i,c, (3.2.2)

where index c stands for the class label. The used marginal softmax objective keeps the
correct predictions of the trained model for the input batch of images x having one hot
encoded labels Y without considering the logit value.

Finally, we combine the two objectives to formulate the multi-objective loss

loss = sparsity + λ · softmax, (3.2.3)

as a weighted sum of sparsification regularizer and marginal softmax, as proposed
by (Ehrgott, 2005). Our experiments revealed that λ = 5 generally provides the right
trade-off between our two objectives.
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3.3. Choice of λ

Fig. 3.2. Effect of changing value of λ when pruning LeNet-5 model trained on Fashion-
MNIST.

Note that our objective function (3.2.3) is implicitly using a Lagrangian relaxation, where
λ ≥ 0 is the Lagrange multiplier. In fact, the loss on accuracy versus pruning percentage
needs to be controlled using Equation (3.2.2) by imposing the constraint softmax(h) ≤ ε for a
very small ε, or even to avoid any loss via ε = 0. However, this would introduce a nonlinear
constraint, which would be hard to handle. Thus, for tractability purposes we follow a
Lagrangian relaxation on this constraint, and penalize the objective whenever softmax(h) is
positive. Accordingly, with the weak (Lagrangian) duality theorem, the objective (3.2.3) is
always a lower bound to the problem where we minimize sparsity. A bound on the accuracy
loss is imposed. Furthermore, the problem of finding the best λ for the Lagrangian relaxation,
formulated as

max
λ≥0

min{sparsity + λ · softmax}, (3.3.1)

has the well-known property of being concave, which in our experiments revealed to be
empirically determined1. We note that the value of λ introduces a trade-off between pruning
more neurons and the predictive capacity of the model. For example, increasing the value of
λ would result in pruning fewer neurons, as shown in Figure 3.2, while the accuracy on the
test set would increase.

1We remark that if the trained model contains misclassifications, there is no guarantee that problem (3.3.1)
is concave.
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Chapter 4

Network Pruning Experiments

In this chapter, we demonstrate empirically the robustness and the validity of OAMIP in
identifying non-critical neurons. We start by describing the experimental setting in Sec-
tion 4.1, namely, the neural network architectures to be analyzed, and the full description
of OAMIP, i.e., the usage of neuron importance scores to prune the ANNs. We then show
in Section 4.2 the robustness of our neuron pruning policy to different input data points
used in our MIP formulation and different convergence levels of a neural network. Next, in
Section 4.3, we validate empirically that the computed neuron importance scores are mean-
ingful, i.e., it is crucial to guide the pruning accordingly with the determined scores. In
Section 4.4, we proceed with experiments to show that subnetworks generated by OAMIP
on a specific initialization can be transferred to another dataset with marginal loss in accu-
racy (lottery hypothesis). Finally, in Section 4.5, we compare our pruning methodology to
SNIP (Lee et al., 2018), a framework used to compute connections sensitivity and to create
a sparsified subnetwork based on the input dataset and model initialization. The code can
be found here: https://github.com/chair-dsgt/mip-for-ann.

4.1. Experimental Setting
Architectures and Training. We used a simple fully connected 3-layer ANN (FC-3)
model, with 300+100 hidden units, from (LeCun et al., 1998), and another simple fully
connected 4-layer ANN (FC-4) model, with 200+100+100 hidden units. In addition, we
used convolutional LeNet-5 (LeCun et al., 1998) consisting of two sets of convolutional and
average pooling layers, followed by a flattening convolutional layer, then two fully-connected
layers. The largest architecture investigated was VGG-16 (Simonyan and Zisserman, 2014)
consisting of a stack of convolutional (conv.) layers with a very small receptive field: 3× 3.
The VGG-16 was adapted for CIFAR-10 (Krizhevsky, 2009) having 2 fully connected layers
of size 512 and average pooling instead of max pooling. Each of these models was trained 3
times with different initialization.

https://github.com/chair-dsgt/mip-for-ann


All models were trained for 30 epochs using the RMSprop optimizer (Tieleman and Hin-
ton, 2012) with 1e-3 learning rate for MNIST (LeCun et al., 2010) and Fashion-MNIST (Xiao
et al., 2017). LeNet-5 on CIFAR-10 (Krizhevsky, 2009) was trained using the SGD optimizer
with learning rate 1e-2 and 256 epochs1. VGG-16 on CIFAR-10 was trained using the Adam
optimizer (Kingma and Ba, 2015) with 1e-2 learning rate for 30 epochs. Decoupled greedy
learning (Belilovsky et al., 2019) was applied for training each layer of the VGG-16 network
through a small auxiliary network. The motivation behind this training procedure is the
scalability of our framework (OAMIP), which will be later clarified in Section 5.2. For the
training of all models, the hyper parameters were tuned on the validation set’s accuracy.
All images were resized to 32 by 32 and converted to 3 channels to allow the generalization
verification of the pruned network across different datasets.

Algorithm 4.1.1. OAMIP: Optimizing ANN using a MIP.

Input: Trained ANN, dataset D, threshold.
Output: subnetwork selected from the trained ANN.
Step 1: Select subset of images D′ ⊂ D to be fed into the MIP.
Step 2: Solve MIP restricted to D′ and save neuron importance score s.
Step 3: Remove every neuron i from layer l with sli ≤ threshold from ANN.
Step 4: Return pruned ANN (sub-network).

MIP and Pruning Policy. Using all the training set as input to the MIP solver is
intractable. Hence, we only use a subset of the data points to approximate the neuron
importance score. Representing classes with a subset of the data points would give us an
under estimation of the score, i.e., neurons will look less critical than they really are. To that
extent, the selected subset of data points must be carefully chosen. Whenever we computed
neuron importance scores for a trained model, we had to feed the MIP with a balanced
set of images2, each representing a class of the classification task (step 1). The aim was
to avoid that the determined importance scores lead to pruning neurons (features) critical
to a class represented by fewer images as input to the MIP. In decoupled layer wise, the
neuron importance score was computed independently on each auxiliary network; then we
fine-tuned the generated masks for 1 epoch to propagate the error across them. Decoupled
training of each layer allowed us to represent deep models using the MIP formulation and to
parallelize the computation per layer. We used λ = 5 in the MIP objective function (3.2.3)
as discussed in Section 3.2. The proposed framework, recall Figure I.1 and Algorithm 4.1.1,

1CIFAR-10 dataset is harder than MNIST and Fashion-MNIST, thus requiring different hyperparameters.
2Recall that in all our experiments, the input data points are images.
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computes an estimation of the importance score of each neuron (step 2), and with a small
tuned threshold based on the network’s architecture, we mask (prune) non-critical neurons
with a score lower than the threshold (step 3).

Computational Environment. The experiments were performed in an Intel(R) Xeon(R)
CPU @ 2.30GHz with 12 GB RAM and Tesla k80 using Mosek 9.1.11 (Mosek, 2010) solver on
top of CVXPY (Agrawal et al., 2018; Diamond and Boyd, 2016) and PyTorch 1.3.1 (Paszke
et al., 2019).

4.2. Robustness Verification

Fig. 4.1. Effect of changing validation set of input images.

Fig. 4.2. Evolution of the computed masked subnetwork during model training.

We examine the robustness of OAMIP against different batches of input images fed
into the MIP, on the implementation of step 2 of OAMIP. Namely, we used 25 randomly
sampled balanced images from the validation set. Figure 4.1 shows that changing the input
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images used by the MIP to compute neuron importance scores in step 2 resulted in marginal
changes in the test accuracy between different batches. We remark that the input batches
may contain images that were misclassified by the neural network. In this case, the MIP
tries to use the score s to obtain the true label, which explains the variations in the pruning
percentage. Indeed, as discussed in Section 3.3 for the choice of λ, the marginal fluctuations
of these results depend on the accuracy of the input batch used in the MIP. Furthermore, we
show empirically that OAMIP is robust on different convergence levels of the trained neural
network as shown in Figure 4.2. Hence, we do not need to wait for the ANN to be trained
to identify the target subnetwork (strong lottery ticket hypothesis in Conjecture 1.3.1).

Additionally, we experiment parallelizing per class neuron importance score computation
using a balanced and imbalanced set of images per class. For those experiments, we sampled
a random number of images per class (IMIDP), then we took the average of the computed
neuron importance scores from solving the MIP on each class. The obtained subnetworks
were compared to solving the MIP with 1 image per class (IDP) and to solving the MIP with
balanced images representing all classes (SIM). We achieved comparable results in terms of
test accuracy and pruning percentage.

Table 4.1. Comparing test accuracy of Lenet-5 on imbalanced independent class by class
(IMIDP.), balanced independent (IDP.) and simultaneously all classes (SIM) with 0.01
threshold, and λ = 1.

MNIST Fashion-MNIST
Ref. 98.8%± 0.09 89.5%± 0.3

IDP. 98.6%± 0.15 87.3%± 0.3
Prune (%) 19.8%± 0.18 21.8%± 0.5

IMIDP. 98.6%± 0.1 88%± 0.1
Prune (%) 15%± 0.1 18.1%± 0.3

SIM. 98.4%± 0.3 87.9%± 0.1
Prune (%) 13.2%± 0.42 18.8%± 1.3

To conclude on the robustness of the scores computed based on the input points used
in the MIP, we empirically show in Table 4.1 that our method is scalable, and that class
contribution can be decoupled without deteriorating the approximation of neuron scores and
thus, the performance of our methodology. Moreover, we show that OAMIP is robust even
when an imbalanced number of data points per class (IMIDP) is used in the MIP.
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4.3. Comparison to Random and Critical Pruning
We started by training a reference model (REF.) using the training parameters in Sec-

tion 4.1. After training and evaluating the reference model on the test set, we ran Algo-
rithm 4.1.1. In particular, in step 2, we used as a selection strategy for D′, one data point
per class, and the tuned thresholds of Table 4.2 selected based on the maximum number of
pruned neurons with minimum loss in the ANN’s capacity.

Table 4.2. Pruning results on fully connected (FC-3, FC-4) and convolutional (LeNet-5,
VGG-16) network architectures using three different datasets. We compare the test accuracy
between the reference network (REF.), randomly pruned model (RP.), model pruned based
on critical neurons selected by the MIP (CP.) and our non-critical pruning approach with
(OAMIP + FT) and without (OAMIP) fine-tuning for 1 epoch. The selected thresholds were
tuned to prune the largest number of neurons with marginal loss in accuracy.

Ref. RP. CP. OAMIP OAMIP + ft Prune (%) threshold

MNIST
FC-3 98.1%± 0.1 83.6%± 4.6 44.5%± 7.2 95.9% ± 0.87 97.8 ± 0.2 44.5%± 7.2 0.1
FC-4 97.9%± 0.1 77.1%± 4.8 50%± 15.8 96.6% ± 0.4 97.6% ± 0.01 42.9%± 4.5 0.1

LeNet-5 98.9%± 0.1 56.9%± 36.2 38.6%± 40.8 98.7% ± 0.1 98.9% ± 0.04 17.2%± 2.4 0.2

Fashion-MNIST
FC-3 87.7%± 0.6 35.3%± 6.9 11.7%± 1.2 80% ± 2.7 88.1% ± 0.2 68%± 1.4 0.1
FC-4 88.9%± 0.1 38.3%± 4.7 16.6%± 4.1 86.9% ± 0.7 88% ± 0.03 60.8%± 3.2 0.1

LeNet-5 89.7%± 0.2 33%± 24.3 28.6%± 26.3 87.7% ± 2.2 89.8% ± 0.4 17.8%± 2.1 0.2

CIFAR-10 LeNet-5 72.2%± 0.2 50.1%± 5.6 27.5%± 1.7 67.7% ± 2.2 68.6% ± 1.4 9.9%± 1.4 0.3
VGG-16 83.9%± 0.4 85%± 0.4 83.3%± 0.3 N/A 85.3% ± 0.2 36%± 1.1 0.3

In order to validate our pruning policy guided by the computed importance scores (Algo-
rithm 4.1.1), we created different subnetworks of the reference model, where the same number
of neurons is removed in each layer, therefore allowing a fair comparison among them. These
subnetworks were obtained through different procedures: non-critical (our methodology),
critical and randomly pruned neurons. For the VGG-16 experiments, an extra fine-tuning
step for 1 epoch is performed on all generated subnetworks. Although we pruned the same
number of neurons, which according to (Liu et al., 2018b) should result in similar perfor-
mances, Table 4.2 shows that pruning non-critical neurons results in marginal loss and gives
a better performance.

What happens if we mask critical neurons instead of non-critical neurons? Would
the model’s accuracy on test set drop after masking critical neurons? We test OAMIP by
pruning neurons having top score from each layer, and with the same number of non-critical
neurons selected by our Algorithm 4.1.1. In that case, our experiments of Table 4.2 show a
significant increase in error from the reference model. The significant increase in the error
shows that the selected neurons are critical for the predictive capacity of the model.

What will happen if we fine-tune our pruned model for just 1 epoch? We used this
experiment to show that in some cases after fine-tuning for just 1 epoch the model’s accuracy
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can surpass the reference model. Since the MIP is solving its marginal softmax (3.2.2) on
true labels, the generated subnetwork, after fine-tuning, can outperform the reference model.

Computing neuron scores on the trained FC-3, FC-4 and LeNet5 generally takes around
10 seconds, and VGG16 with our decoupled approach takes 4 hours if we compute the
neurons’ importance score sequentially without parallelizing the per layer computation3.

4.4. Generalization
In this experiment, we train the ANN on a dataset d1, and we create a subnetwork using

OAMIP, i.e., Algorithm 4.1.1, with the thresholds from Table 4.2, and step 2 with 1 image
per class. After creating the masked model, we restart it to its original initialization. Finally,
the new masked model is re-trained on another dataset d2, and its generalization is analyzed.

Table 4.3. Cross-dataset generalization: subnetwork masking is computed on source
dataset (d1) and then applied to target dataset (d2) by retraining with the same early ini-
tialization. Test accuracies are presented for masked and unmasked (REF.) networks on d2,
as well as pruning percentage.

Model Source dataset d1 Target dataset d2 REF. Acc. Masked Acc. Pruning (%)

LeNet-5 Mnist Fashion-MNIST 89.7%± 0.3 89.2%± 0.5 16.2%± 0.2CIFAR-10 72.2%± 0.2 68.1%± 2.5

VGG-16 CIFAR-10 MNIST 99.1%± 0.1 99.4%± 0.1 36%± 1.1Fashion-Mnist 92.3%± 0.4 92.1%± 0.6

Table 4.3 displays our experiments and respective results. When we compare gener-
alization results to pruning using OAMIP on Fashion-MNIST and CIFAR-10, we observe
that computing the critical subnetwork LeNet-5 architecture on MNIST, is creating a more
sparse subnetwork with test accuracy better than zero-shot pruning without fine-tuning us-
ing OAMIP, and comparable accuracy with the original ANN. This behavior occurs because
the solver is optimizing on a batch of images that are classified correctly with high confidence
from the trained model. Furthermore, computing the critical VGG-16 subnetwork architec-
ture on CIFAR-10 using decoupled greedy learning (Belilovsky et al., 2019) with significant
pruning percentage generalizes well to Fashion-MNIST and MNIST.

4.5. Comparison to SNIP
OAMIP can be viewed as a compression technique of over-parameterized neural mod-

els. In what follows, we compare it to the state-of-the-art framework, Single-shot Network
Pruning SNIP (Lee et al., 2018).

3Computational time relies heavily on the network’s architecture.
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SNIP computes connection sensitivities in a data-dependent way before the training. The
sensitivity of a connection represents its importance based on the influence of the connection
on the loss function. After computing the sensitivity, the connections that are below a prede-
fined threshold are pruned before training (single shot). The sensitivity of the connections is
computed using a mini-batch of the data. SNIP computes the magnitude of the derivatives
of the mini-batch with respect to the loss function. If the magnitude of the derivative is
high, then this connection is having an influence on the model’s predictive capacity. Thus,
using connection sensitivity, one can identify the important connections to that specific task.

In our methodology, we exclusively identify the importance of neurons and essentially
prune all the connections of non-important ones. On the other hand, SNIP only focuses
on pruning individual connections. Moreover, we highlight that SNIP can only compute
connection sensitivity on the initialization of an ANN. Indeed, for a trained ANN, the mag-
nitude of the derivatives with respect to the loss function was optimized during the training,
making SNIP more keen to keep all the parameters. On the other hand, OAMIP can work on
different convergence levels as shown in Section 4.2. Furthermore, the connection sensitivity
computed by SNIP is only network and dataset specific, thus the computed connection sensi-
tivity for a single connection does not give a meaningful signal about its general importance
for a given task, but rather, it needs to be compared to the sensitivity of other connections.

In order to bridge the differences between the two methods, and provide a fair comparison
in equivalent settings, we make a slight adjustment to our method. In step 4.1.1 of OAMIP,
we compute neuron importance scores on the model’s initialization4. We note that we used
only 10 images as an input to the MIP corresponding to 10 different classes, and 128 images
as input to SNIP, as in the associated paper (Lee et al., 2018). Our algorithm was able to
prune neurons from fully connected and convolutional layers of LeNet-5. After creating the
sparse network using both SNIP and our methodology, we trained them on Fashion-MNIST
dataset. The difference between SNIP (88.8% ± 0.6) and our approach (88.7% ± 0.5) was
marginal in terms of test accuracy. SNIP pruned 55% of the ANN’s parameters and our
approach 58.4%.

Next, in Table 4.4, we show that OAMIP outperforms SNIP in terms of generalization.
Here we adjusted SNIP to prune entire neurons based on aggregated (i.e., summed) sensitivity
of incoming connections in each neuron, while still applying OAMIP to the initialization of
each ANN before training. We note that when OAMIP is applied to the initialization, more
neurons are pruned, since the marginal softmax part of the objective discussed in Section 3.2
is weighting less (λ = 1), driving the optimization to focus on model sparsification.

Finally, we remark that the adjustments made to SNIP and OAMIP in the previous
experiments are solely for the purpose of comparison, while (unlike SNIP) the main purpose

4Remark: we used λ = 1 and pruning threshold 0.2 and kept ratio 0.45 for SNIP. Training procedures as in
Section 4.1.
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Table 4.4. Cross-dataset generalization comparison between SNIP, with neurons having the
lowest sum of connections’ sensitivity pruned, and OAMIP, both applied on initialization,
see Section 4.4 for the generalization experiment description.

Source dataset d1 Target dataset d2 REF. Acc. Method Masked Acc. Pruning (%)

Mnist
Fashion-MNIST 89.7%± 0.3 SNIP 85.8%± 1.1 53.5%± 1.8

OAMIP 88.5% ± 0.3 59.1% ± 0.8

CIFAR-10 72.2%± 0.2 SNIP 53.5%± 3.3 53.5%± 1.8
OAMIP 63.6% ± 1.4 59.1% ± 0.8

of our method is to allow optimization at any stage – before, during, or after training. In the
specific case of optimizing at initialization and discarding entire neurons based on aggregated
connection sensitivity, the SNIP approach may have some advantages, notably in scalability
for deep architectures. However, it also has some limitations, as previously discussed.

4.6. Summary
Along Section 4.2, we presented the experiments demonstrating the robustness of OAMIP

against different input data points to the MIP, and different convergence levels of the trained
ANN. These results also highlighted the scalability of our approach to datasets with large
number of classes. In Section 4.3, we showed the validity of OAMIP by comparing different
pruning strategies based on the computed neuron importance score. Furthermore, in Sec-
tion 4.4, we empirically showed the generalization capability of our approach by computing
the neuron importance score on one dataset, and applying it on another one. Finally, we con-
ducted a comparison between our approach and SNIP showing comparable results but with
our approach having the ability to generalize across different datasets, and with a computed
neuron importance score as a metric comparable across different architectures.

In summary, we have demonstrated empirically the robustness, validity, scalability, and
generalization of OAMIP on different architectures and datasets.
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Chapter 5

Decoupled Computation

The most time sensitive step of OAMIP’s Algorithm 4.1.1 is the optimization of the MIP.
The number of variables and constraints increases with the number of neurons and input
data points. While for the latter, we have already shown that it suffices to consider one image
per class, the former is intrinsic to the ANN under analysis. In practice, one can mask a
small ANN in a matter of seconds due to the reasonable size of the associated MIP. However,
if we try to represent large and more realistic ANNs, the computation time would become
very large as observed in the problem tackled in (Fischetti and Jo, 2018). To overcome
the computational time issue, we propose in this chapter two techniques to decompose the
computation of the neuron scores discussed in Chapter 3 in smaller MIPs. In Section 5.1, we
decouple the computation of scores per classification class, and then we take the average of
the computed neuron importance scores to use afterwards for pruning non-critical neurons.
In Section 5.2, we decouple the computation of scores per layer independently using auxiliary
networks (Belilovsky et al., 2019).

5.1. Class-wise Decoupling
In this experiment, we show that the neuron importance scores can be approximated by

1) solving for each class the MIP with only one data point from it, and then 2) taking the
average of the computed scores for each neuron as the final score estimation. Such procedure
would speed-up our methodology for problems with numerous classes. We compare the
subnetworks obtained through this balanced independent class by class approach (IDP.) and
by feeding at once the same data points from all the classes to the MIP (SIM.) on MNIST
and Fashion-MNIST using LeNet-51.

Table 5.1 expands the results presented in Section 4.2, where we discussed the comparable
results between IDP, and SIM, with a small threshold 0.01. However, we can notice a
difference between both of them when we use a threshold of 0.1. This difference comes
1Experimental setup in Section 4.1



Table 5.1. Comparing balanced independent class by class (IDP.) and simultaneously all
classes (SIM.) with different thresholds using LeNet-5.

MNIST Fashion-MNIST threshold
Ref. 98.8%± 0.09 89.5%± 0.3

IDP. 96.6%± 2.4 86.81%± 1.2 0.1Prune (%) 28.4%± 1.5% 29.6%± 1.8

SIM. 98.5%± 0.28 88.7%± 0.4 0.1Prune (%) 16.5%± 0.5 18.9%± 1.4

IDP. 98.6%± 0.15 87.3%± 0.3 0.01Prune (%) 19.8%± 0.18 21.8%± 0.5

SIM. 98.4%± 0.3 87.9%± 0.1 0.01Prune (%) 13.2%± 0.42 18.8%± 1.3

from the fact that computing neurons’ importance score on each class independently zeros
out more neurons’ importance score resulting in a computed average with more neurons
to be pruned. Additionally, solving independently for each class allows parallelizing the
computation per class, reducing the solving time needed for datasets with large number of
classes.

5.2. Layer-wise Decoupling

Batch 1

CNN 
Module

CNN 
Module

CNN 
Module

Aux

Batch 2 Batch 3 Batch 1

CNN 
Module

CNN 
Module

CNN 
Module

Batch 2 Batch 3Time

Prediction
Decoupled Greedy Learning Standard Backpropagation

Time

Aux

Aux

Fig. 5.1. Illustration of the auxiliary network atttached to each sub-module along with the
signal backpropagation during training as shown in (Belilovsky et al., 2019)

As mentioned in Section 4.1, we can use decoupled greedy learning (Belilovsky et al.,
2019) to parallelize learning of each layer by computing its gradients and using an auxiliary
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network attached to it as illustrated in Figure 5.1. In decoupled greedy learning, a small
auxiliary network is attached to each convolutional layers, and the backpropagation is applied
on each layer independently throughout the auxiliary network. By using this procedure, we
have auxiliary networks of the deep neural network that represent subsets of layers, thus,
allowing us to formulate the MIP for each sub-representation of the neural network. Without
decoupling the layers, when we tried to formulate VGG-16 (Simonyan and Zisserman, 2014),
the memory footprint was large, and the MIP solver was stuck for hours without giving any
initial result. On the other side, when we decoupled the formulation to become a per layer
computation using an auxiliary network, the optimization process for VGG-16 took around 4
hours to obtain the optimal solution. Next, we explain the training procedure, the auxiliary
network architecture and the MIP’s representation.

Training procedure. We start by constructing auxiliary networks for each convolutional
layer except for the last convolutional layer that will be attached to the classifier part of the
model. During the training, each auxiliary network is optimized with a separate optimizer
and the auxiliary network’s output is used to predict the backpropagated gradients. Each
sub-network’s input is the output of the previous subnetwork and the gradients will flow
through only the current subnetwork. In order to parallelize this operation, a replay buffer
of previous representations should be used to avoid waiting for the output from previous
subnetworks during the training.

Auxiliary Network Architecture. We use a spatial averaging operation to construct a
scalable auxiliary network applied to the output of the trained layer and to reduce the spatial
resolution by a factor of 4, then we apply one 1× 1 convolution with batch norm (Ioffe and
Szegedy, 2015), followed by a reduction to 2 × 2, and a one-layer MLP. The architecture
used for the auxiliary network is smaller than the one mentioned in the paper (Belilovsky
et al., 2019) allowing a speed up in the MIP solving time per layer.

MIP’s representation. After training each subnetwork, we create a separate MIP formu-
lation for each auxiliary network using its trained parameters and taking as input the output
of the previous subnetwork. This operation can be easily parallelized, and each MIP associ-
ated with a subnetwork can be solved independently. Then, we take the computed neuron
importance scores per layer and apply them to the main deep neural network. Since these
layers were solved independently, we fine-tune the network for one epoch to backpropagate
the error across the network. The created subnetwork can be generalized across different
datasets and yields marginal loss, as shown in Section 4.4 on VGG-16.
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Chapter 6

Conclusion and Future Work

We proposed a mixed-integer linear program to compute the importance score of neurons
in an ANN with ReLUs, max/average pooling, batch norm and convolutional layers. The
presented MIP formulation is a first step in understanding which components in an ANN
are critical for its capacity to perform a given task.

We have shown scalable computation of importance scores by decoupling classes and
layers, which allowed us to effectively solve MIP formulations for deep neural architectures.
We presented results showing these scores can be effectively used to prune unimportant
parts of the network without significantly affecting its main task (e.g., showing small or
negligible drop in classification accuracy). Furthermore, our results indicate the automatic
construction of efficient subnetworks created using OAMIP, which can be transferred and
retrained on different datasets. In conclusion, with OAMIP, we are able to prune subsets of
neurons which would make the network more efficient in terms of inference and computation
time.

Our pruning technique based on a mixed-integer programming optimization problem can
be applied to a wide range of neural networks to create smaller efficient architectures. These
architectures can be deployed on resource limited IOT devices to enable a different set of
tasks, including, but not limited to, image classification, speech recognition, robotics and
control. Furthermore, understanding and quantifying which neuron in a given architecture is
contributing to the learning task of the deep neural network will help shed light on internal
processing in deep learning, which is typically considered as a black box. Our work dives
into the black box of neural networks to reveal which subnetworks are contributing more to
the output and to identify the “lottery tickets” that generalize best across different datasets.

Beyond theoretical understanding provided in this thesis, our work may also have an
impact on downstream tasks, specifically on the ability to reduce the network’s size without
losing its predictive accuracy to deploy on IOT devices, as mentioned above. Similar to other
studies in the field, misinterpretation and misuse in such downstream applications may in



time raise ethical concerns regarding privacy, bias in the model’s predictions, etc. However,
this work is computational in nature and addresses the foundations of modern deep learning,
agnostic of specific downstream tasks. As such, by itself, it is not expected to raise ethical
concerns nor to have adverse effects on society.

Several directions on the improvement of OAMIP, and its extensions remain to be ex-
plored. Future work should include an analysis to determine the effect of changing the
conservative coefficients of the neuron importance score on the number of pruned neurons,
shown in Equation (3.1.1). In the current conservative coefficients, we applied a ReLU on the
upper bounds, which guarantees the pruning of dead neurons, but might also be restricting
the freedom of the neuron importance score, i.e., the power of decreasing neuron activation.
Moreover, it would be essential to investigate the sparsity part of the objective function
defined in Equation (3.2.1), namely, its simplification (which could impact the MIP solving
time), and alternative formulations that could potentially result in pruning more neurons.
Finally, devising an objective function that can roughly assess the generalization gap based
on the input model and a subset of the training data would be worth investigating.

Besides further analysis of our MIP model, it remains to explore other ways for approxi-
mating neurons importance score. Instead of taking the average of per class computation of
neurons importance score as discussed in Section 5.1, we could use the Shapley value (Shap-
ley, 1953). In game theory, Shapley value is a method to compute the contribution of each
player in a game to achieve a desired outcome. In our case, the game is solving the MIP
formulation for each class. The desired outcome is the minimization of the neuron impor-
tance scores. The players are the different classes of the dataset we are studying. The
Shapley value allows us to distribute a potentially unequal contribution of each class in the
outputted neuron importance score as some classes might provide better neuron importance
score information than others. The main drawback of using Shapley values is in their com-
putational complexity. Furthermore, instead of computing each neuron importance score,
we could study the generalization of our approach to compute the connections’ importance
score. The connections’ importance score would help us to understand in depth which set of
features are contributing more to the network’s predictive capacity.

In a broader sense, our work contributes for the growing literature on the use of combi-
natorial optimization within machine learning. In this line, we present two immediate lines
of research. One is the use of OAMIP to select which neurons to be trained for newly up-
coming task without catastrophically forgetting previous task in a continual learning setting.
Another future research direction is to determine whether or not we can assess the network’s
uncertainty using a MIP representation.
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