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Résumé

Les arbres phylogénétiques sont des instruments de biologie évolutive offrant de formidables
moyens d’étude pour la génomique comparative. Ils fournissent des moyens de représenter
des mécanismes permettant de modéliser les relations de parenté entre les espèces ou
les membres de familles de gènes en fonction de la diversité taxonomique, ainsi que des
observations et des renseignements sur l’histoire évolutive, la structure et la variation des
processus biologiques. Cependant, les méthodes traditionnelles d’inférence phylogénétique
ont la réputation d’être sensibles aux erreurs. Il est donc indispensable de comparer les
arbres phylogénétiques et de les analyser pour obtenir la meilleure interprétation des données
biologiques qu’ils peuvent fournir. Nous commençons par aborder les travaux connexes
existants pour déduire, comparer et analyser les arbres phylogénétiques, en évaluant leurs
bonnes caractéristiques ainsi que leurs défauts, et discuter des pistes d’améliorations
futures. La deuxième partie de cette thèse se concentre sur le développement de mesures
efficaces et précises pour analyser et comparer des paires d’arbres génétiques avec des nœuds
internes étiquetés. Nous montrons que notre extension de la métrique bien connue de
Robinson-Foulds donne lieu à une bonne métrique pour la comparaison d’arbres génétiques
étiquetés sous divers modèles évolutifs, et qui peuvent impliquer divers événements évolutifs.

Mots clés : évolution ; distance d’édition ; arbre génétique ; arbre étiqueté ;
Robinson-Foulds ; métrique d’arbre; histoire de l’évolution
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Abstract

Phylogenetic trees are instruments of evolutionary biology offering great insight for compar-
ative genomics. They provide mechanisms to model the kinship relations between species or
members of gene families as a function of taxonomic diversity. They also provide evidence
and insights into the evolutionary history, structure, and variation of biological processes.
However, traditional phylogenetic inference methods have the reputation to be prone to
errors. Therefore, comparing and analysing phylogenetic trees is indispensable for obtaining
the best interpretation of the biological information they can provide. We start by assessing
existing related work to infer, compare, and analyse phylogenetic trees, evaluating their
advantageous traits and flaws, and discussing avenues for future improvements. The second
part of this thesis focuses on the development of efficient and accurate metrics to analyse
and compare pairs of gene trees with labeled internal nodes. We show that our attempt
in extending the popular Robinson-Foulds metric is useful for the preliminary analysis
and comparison of labeled gene trees under various evolutionary models that may involve
various evolutionary events.

Keywords: evolution; edit distance; gene tree; labeled tree; Robinson-Foulds;
tree metric; evolutionary history
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Chapter 1

Introduction

In the study of biological entities (molecular sequences, genomes, or species), phylogenetics
focuses on the inquiry of the evolutionary history and relationships among those entities.
Phylogenetic trees are commonly used, in the context of the study of species, to provide a
mechanism to model the kinship relations between species or taxa as a function of taxonomic
diversity. Regarding the study of genes, they provide evidence or insight on the evolutionary
history of gene families or groups of genes. A tree enables a representation of the degree of
morphological or genetic divergence by branching from points of connection (internal nodes).
The growing application of phylogenetic trees led to an increasing need to devise techniques
to compare them. Most particularly, the ability to analyze the differences, similarities,
and distance between phylogenetic trees is key in the field of computational phylogenetics
to be able to perform certain tasks. These include, for example, the study of tree space,
the evaluation of phylogenetic reconstruction, and the appraisal of consistency from tree
topologies inferred by reconciliation, a method for inferring the evolutionary scenario for a
gene family by embedding an inferred gene tree into a known species tree.

The need for rigorous comparisons entails the ability to measure phylogenetic trees and
thus the development of tools relying on metrics. Mathematically speaking, a metric is a
function that defines a distance between a pair of elements in a set. A metric gives structure
and shape to a set of objects [42] and enables various analyses such as automated clustering.
A measure of distance is said to be a metric if it satisfies the non-negative, symmetric,
identity, and triangular inequality conditions.

A distance, when addressing evolutionary trees is, to a certain extent, a particular rep-
resentation of the differences and similarities between compared trees. There exist many
distance measures to compare phylogenetic trees but not all of them satisfy the conditions
of a metric. In other words, not all of them induce a metric on the phylogenetic tree space.
Further, all existing metrics have weaknesses and limitations, such as high computational
complexities or poor statistical distributions (e.g., high skewness, low variance), which limit



their applicability. It is why, in practice, using an appropriate metric for a given task is a
key decision.

The research community’s endeavor to develop new metrics, in their attempt to increase
the scope and applicability of comparisons between phylogenetic trees, has been growing
over the last 30 years. This thesis is part of the wider initiative to broaden the applicability
of phylogenetic tree comparisons.

The work that we are presenting lies in the general area of phylogenetic tree dissimi-
larity measurement. We have developed appropriate methods and metrics to measure the
distance between labeled phylogenetic trees, which in this thesis specifically refers to trees
with internal nodes labeled with qualitative information.

Though this work is not the first initiative to develop a distance to compare labeled
phylogenetic trees (e.g., Tree Edit Distance [80, 78]), it is an attempt at broadening the
applicability of the type of labeling that can be used for comparing phylogenetic trees.

Our objective is to develop an appropriate distance metric to compare labeled trees with
labeling that is applicable in the context of genetic data comparisons. This is motivated by
the importance of being able to compare gene trees, and in particular those labeled through
reconciliation, a classical method allowing to infer the evolutionary event at the source of
the gene tree branch bifurcation by embedding the gene tree in the known species tree.

We provide two new distance metrics for node-labeled phylogenetic trees, along with
their computation algorithms and their analysis. Both are extensions of the well-known
Robinson-Foulds distance (RF ) [58].

The first metric is an edit distance that counts the total number of edit operations to
transform one tree into the other. It is a costly algorithm in terms of computation time
as it requires to actually modify the compared trees to obtain a result. This algorithm is
not exact but guarantees an approximation ratio of 2. A python package was developed to
implement the algorithm and perform experiments. Experimental results have shown that
the proposed metric better reflects differences among labeled trees than RF . However, it
shares the same skewed and low-variance distributions as the RF distance.

The second metric is an attempt at addressing some of the weaknesses of the first one. It
is also an edit distance that computes the total number of edit operations to transform one
tree into another. However, it is an exact, more efficient algorithm in terms of computational
complexity. In fact, this distance between two trees can be computed in linear time, without
requiring the actual transformations to change one tree into the other. This algorithm was
also implemented in Python. Experimental results show that this metric is much faster to
compute than the first one. Still, it shares the same skewed and low-variance distributions.

The general structure of the memoir is depicted hereafter. Chapter 2 contextualises the
subject at hand. Chapter 3 reviews related work and provides motivations for our work.
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Chapters 4 and 5 present our contributions, in the form of articles. Chapter 6 concludes the
thesis.

Chapter 2 introduces the basic concepts in biology required for a proper understanding
of the thesis, with motivations for the application of phylogenetic trees. In this chapter,
we also present the basic notions related to phylogenetic trees, and introduce the concept
of tree reconstruction and some of its well-known issues. Finally, we discuss the role of
reconciliation, and its relation to our motivation to develop new metrics.

In chapter 3, we first present representative tree metrics and how they are used on
different types of phylogenetic trees. We then review their strengths and weaknesses, and
compare them to determine the situations where they are most applicable.

Chapter 4 contains the article titled "A Generalized Robinson-Foulds Distance for Labeled
Trees" accepted for publication in BMC Genomics. We introduce a new metric which ac-
counts for the labels of internal nodes in compared phylogenetic trees when computing their
dissimilarity. This new metric is an extension of an edit distance, the well-known RF dis-
tance. This extension adds an edit operation to the set of operations of the RF distance that
alters internal node labels, which indirectly enables us to account for them in the distance
computation.

Chapter 5 introduces another attempt at computing distances for labeled phylogenetic
trees, in the article titled"A Linear Time Solution to the Labeled Robinson-Foulds Distance
Problem". The goal is to improve efficiency and accuracy of distance measurement over the
solution presented in Chapter 4. This new metric is a less constrained version of the previous
extension of the RF distance as its edit operations have fewer applicability requirements,
and as it allows for an arbitrary number of potential labels.

The last chapter will summarize the strengths and limitations of the newly introduced
metrics and will then outline new directions for future work.
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Chapter 2

Phylogenetic Trees: Background and
Applications

The study of evolution has, since its outset as a branch of biology, led to the development of
a wide array of tools and methods to analyze and understand the mechanisms of evolution,
that have induced the diversity of life on our planet. In this chapter, we present the concepts
needed to understand the following chapters of this thesis.

In section 2.1 we introduce the concepts related to phylogenetic trees and briefly discuss
common types of trees used in phylogenetics.

Section 2.3 introduces the concept of a gene tree, describes the events leading to the
creation of gene families over time, and explains the importance of inferring relationships
between genes.

Section 2.4 presents the notion of phylogenetic tree inference and goes over popular
methods of tree reconstruction. Additionally, it discusses the challenges due to errors and
inconsistencies between the evolutionary trees inferred by different methods.

Finally, section 2.5 focuses on reconciliation between species trees and gene trees. First,
we explain the incentives behind reconciliation and how reconciliation can be used to infer
evolutionary events from gene families’ and species trees. Moreover, we clarify how tree
building errors in species trees or gene trees affect reconciled trees.

2.1. Phylogenetic Trees
While the first concepts of phylogenetic trees date back to the early 19th century with the

notion of tree of life, phylogenetic trees were popularized with the notion of evolutionary tree
by Darwin [18]. Evolutionary trees are now tools that have been used to illustrate kinship
relations between biological entities for more than a century.

Formerly, due to technological limitations, only a limited set of observed heritable traits
could be used to depict phylogeny, such as morphological traits, as illustrated by a simple



Fig. 2.1. An example of a simple species tree depicting the phylogeny of the taxa A, B, C,
D, and E based on the presence/absence of three morphological traits: jaws, lungs, and hair.

example in figure 2.1. Even though the resulting species trees using these methods were a
step in the right direction, since a morphological trait may be a defining aspect of a taxon,
i.e., an evolutionary grade, they could also lead to erroneous conclusions, as similar looking
morphological traits may have different origins in evolutionary history, e.g., "wings" in birds
and bats, called homoplasies.

One of the great breakthroughs in phylogenetics is the discovery of the Deoxyribonucleic
acid (DNA) during the 20th century. This led to a significant change in phylogenetics, as
genes became much more than discrete inheritable units. DNA sequences became observable
heritable traits for phylogenetic inference. Today we can compute a species tree from genetic
data. Moreover, we can compute gene trees, which infer the phylogeny of genes, with data
from alleles of one or a few genes. Gene trees can help infer scenarios of species evolution
and are commonly used to infer species trees. As the focus of this thesis is on gene trees, we
further discuss the topic in section 2.3.

2.2. Notations and Concepts
A tree T is defined as an undirected acyclic connected graph. We define as V (T ) the set

of nodes of T , E(T ) as the set of edges of T , and L(T ) ⊂ V (T ) as the set of leaves of T . For
an arbitrary node x ∈ V (T ), we define the degree of x as the number of edges incident to x.
The leaves of T are all of degree one as each leaf is only incident to a single edge. The set
of leaves L(T ) represents a set of biological entities L, i.e., L(T ) = L. The size of a tree T

is defined by the size of its set of nodes V (T ), i.e., |V (T )|. Moreover we define as internal
nodes the set of nodes of T excluding leaves, i.e., I(T ) = V (T )\L(T ).

We define an edge of T which connects two nodes x and y by e = (x,y). If x,y ∈ I(T )
then e is an internal edge, otherwise it is a terminal edge. We say that a tree T is rooted if
T contains a specific node r(T ) called the root. The root of a tree represents the ancestral
lineage of the biological entities represented by the tree and, further, indicates the direction
of evolution. When a tree T is rooted, given two nodes x and y in V (T ), if x is on the
unique path connecting r(T ) and y, then we say that y is a descendant of x, and that x is
an ancestor of y. Additionally, if x and y further form an edge e = (x,y), then we say that
y is a child of x, written y ∈ Ch(x), and that x is the parent of y, written p(y). When x
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Fig. 2.2. The trees T1, T2, and T3 all have the same set of leaves L = {A, B, C, D, E}.
T1 is an unrooted binary tree. T2 is a rooted non-binary tree. T3 is a rooted binary tree.
It can be observed that T1 and T3 both satisfy the requirements of binary trees as their
internal nodes, terminal nodes, and root (x ∈ T3) conform to the expected degrees 3, 1,
and 2, respectively. Additionally, T2 and T3 may look similar but they indicate significant
evolutionary differences, e.g., suppose N = {C, E}, then lcaT2(N ) �= lcaT3(N ).

is an ancestor of y, we denote it x ≥ y, and conversely x ≤ y when x is a descendant of y.
In the case where x is neither the ancestor nor the descendant of y, we say that they are
incomparable.

For a tree T , we define by Tx the subtree of T rooted at x such that V (Tx) ⊆ V (T ),
E(Tx) ⊆ E(T ), and L(Tx) ⊆ L(T ). Tx contains all descendants of x. In a rooted tree T , the
lowest common ancestor (LCA) of a set of nodes N in V (T ) is the ancestor of all the nodes
in N furthest from the root r(T ). We denote the LCA of a set of nodes N by lcaT (N ).
We describe a tree T as binary if each internal node is of degree 3 (except r(T ), if T is
rooted, which is of degree 2). Figure 2.2 depicts observable differences between binary and
non-binary trees and illustrates some of the introduced concepts.

2.3. Gene Trees
Gene trees are the result of the inference of the evolution of one or more genes. They

are an important tool for the inference of species trees. Though the evolution of species and
the evolution of their genes are not identical, gene evolution is one of the important factors
that determines the structure and variation of biological processes within organisms, that
are being passed on from one generation to the next.

2.3.1. Gene Evolution

When a gene is being passed on by an organism to its direct descendent, the gene is
replicated. During that time, replication errors, i.e., mutations, can occur and modify its
DNA sequence. There are multiple kinds of mutations, most of which can be classified into
two categories: point mutations and chromosomal rearrangements.

Point mutations are mutations that affect one or multiple nucleotides of the sequence
of a gene. This kind of mutation can modify a sequence in different ways. They include
insertions, which add a new nucleotide within the sequence, or inversely deletions, which
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remove a nucleotide from the sequence, as well as substitutions which replace a nucleotide
with another. Point mutations can have different effects on the amino acid sequence being
produced. They can be synonymous and not affect the protein being expressed or they
can be non-synonymous and affect protein production and function, resulting in biological
change in a organism.

Chromosomal rearrangements involve changes in the structure of an entire chromosome,
its content and the location of genes. There exist multiple types of events that cause these
rearrangements. Such events may be gene duplication, gene loss, or horizontal gene transfer.
Gene duplication consist in the creation of a new locus, and gene loss in the degeneration of
a locus [22]. Horizontal gene transfer (HGT) is the movement of genetic material opposite to
vertical genetic data transfer, where genetic information is inherited from parents to offspring
through reproduction. More specifically HGT is the transmission of genetic material from a
source organism to a target organism that is not its offspring [22].

Another important factor in the evolution of many organisms is speciation. A speciation
is an event that leads to the creation of two new species. This may occur when the population
of a species is the target of a large number of mutations over numerous generations. The
accumulation of mutations can lead a species’ population to form two groups that differ too
much to reproduce with one another. This is usually due to a geographical barrier that has
split the population. A speciation event can also affect a gene at a molecular level. When
speciation event leads an ancestral specie to form two new species it also leads an ancestral
gene to form two new genes, that will from that point on undergo distinct molecular changes
as they are passed on from one generation to the next in different populations.

2.3.2. Gene Family

A gene family is a set of genes that all descend from one common ancestor. Two genes
belonging to the same family are described as homologous genes. Moreover, genes within a
family may differ in terms of their relationship with one another. The relationship between
two homologous genes is determined by their LCA:

• Orthologs: A gene pair that diverged due to a speciation.
• Paralogs: A gene pair that diverged due to a duplication.
• Xenologs: A gene pair that diverged due to horizontal gene transfer.

Gene trees can provide evidence for gene evolutionary events, such as duplication events
and speciation events, leading to illustrating the relationships of the members of a gene
family. They represent the transmission history of a gene from an ancestral specie to existing
ones. Figure 2.3 depicts the concept of a gene tree in a simple example.
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G

c1 c2a1 b1

Fig. 2.3. The depicted gene tree G is constructed from one gene family. Its leaves represent
genes within three species, and its internal nodes are labelled with evolutionary events. Each
leaf is labelled with a gene copy in the corresponding species (e.g., gene a1 is in species a).
Speciation and duplication events are depicted with red circles and squares, respectively.

Inferring the relationships between members of a gene family is only one of the building
blocks for the important endeavour to better understand the evolution of biological functions.

2.4. Phylogenetic Tree Inference and Errors
The objective of phylogenetic tree inference is to reconstruct a tree based on a hypothesis

about the evolutionary relationships of a set of biological entities. However, building a
phylogenetic tree that fully and perfectly represents the historical relationships between
biological entities is unlikely. Tree inference may rely on morphological data but, for the
purpose of this thesis, we will focus on the branch of computational phylogenetics that relies
on sequence alignment.

2.4.1. Phylogenetic Tree Inference Methods

When reconstructing a phylogenetic tree to depict the evolution of a set of taxa, methods
of inference may rely on the alignment of obtained DNA, RNA, or protein sequences to
classify correlating sections that may be resulting from evolutionary relationships between
the sequences. Molecular sequence analyses have been shown to be especially convenient
to infer the relationships between species with a high degree of morphological similarity
[47]. Additionally, sequences obtained from an organism are usually not as affected by the
environment in which it lived as its morphological traits. Nonetheless, sequence analyses are
not perfect, for example when dealing with recently diverged taxa, that have accumulated
fewer substitutions since divergence, or with very old divergences, where the phylogenetic
signal is obscured by homoplasy (gained or lost independently in separate lineages).

There exists a diverse array of methods for phylogenetic tree reconstruction or inference
from molecular data. Popular methods of tree inference are usually grouped into two
main classes: character-based methods and distance methods [20]. Each of these classes
have their defining traits and properties as do the methods themselves. As the purpose of
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this thesis is not tree inference, we will not enter into too many details and just briefly
discuss the above-mentioned two inference classes and a few popular methods in each of them.

Character-based methods

Character-based methods are named after the fact that they use discrete phylogenetic
characters directly, such as a DNA sequence, during tree reconstruction. The input is usually
a multiple sequence alignment, and the output is a tree best representing this input.

• Maximum likelihood method:
Maximum likelihood (ML) is a statistical method with the objective of estimating
the parameters of a statistical model. This method was first developed by Fisher [2]
and became popular in the early 1900s leading its application in multiple fields of
biology, such as population genetics. However, the maximum likelihood method was
only popularized in the field of phylogenetics with its use in the work of Felsenstein
[24, 26]. The likelihood is the probability of obtaining the data at hand S with a
model, given the parameters of the model, denoted P (S|θ). Maximal likelihood is,
as its name points out, the scenario where P (S|θ) is maximized by finding optimal
model parameters θ. The principle, when applying this method for phylogenetics,
is using aligned molecular sequence data as input to estimate a phylogenetic tree
(e.g., topology, branch lengths) and a substitution model’s parameters (or model of
sequence evolution), i.e., nucleotide substitution rates and nucleotide frequencies.
However, finding the parameters that maximize the likelihood for phylogenetic
tree inference is an NP-hard problem [14]. For this reason, the model of sequence
evolution is often chosen, e.g., the Jukes and Cantor model or the Felsenstein model
[26, 40], and heuristics have been developed that reduce the tree search space
[30, 62].

• Maximum Parsimony method:
The objective of this method is to find the phylogeny that requires the fewest
necessary changes to explain the differences among the observed sequences. The
maximum parsimony method consists in calculating a score for each tree on the
set of leaves determined by the input aligned molecular sequence data, and then
selecting the tree with minimal score. There are multiple ways to compute the score
representing the evolutionary variation of a tree, such as the well-know Fitch and
Sankoff algorithms [28, 61]. However, attempting to infer the most parsimonious
tree can result in multiple equally parsimonious trees [20]. A way to deal with
such cases is to make a combined tree that includes all the equally parsimonious
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trees, called a consensus tree. There exist different types of consensus trees, and
one popular type is called a strict-consensus tree [20, 52]. To construct it, for all
equally parsimonious trees for a given aligned sequence data set, all the trees with
any inconsistent branching patterns for a set of leaves are resolved by forming a
multifurcating branching pattern [20, 52]. Nevertheless, the maximum parsimony
method, unlike the maximum likelihood method, has the troublesome trait of
being statistically inconsistent, which entails that the probability of converging
towards a correct tree does not tend towards 1 with infinitely increasing input
data [25]. Moreover, the tree search space increases drastically as the number of
aligned sequences in the input data increases, making search over the entire space
unpractical. Hence, branch and bound methods or heuristics are used [34, 70].

• Bayesian inference method:
The Bayesian inference method is based on maximum likelihood methods but incor-
porates prior probability. More precisely, it is a probabilistic method based on Bayes’
theorem which defines P (θ|S) = P (S|θ)P (θ)

P (S) . In our case, P (θ) refers to the prior prob-
ability of the parameters of our model, such as the tree topology and branch length,
P (S|θ) refers to the likelihood of the input data if our hypothesized parameters are
true, and P (S) is the probability of our input data (normalization constant). P (θ|S)
corresponds to the probability that the chosen model, with its parameters, generated
the input data. In other words, the posterior probability of a tree will indicate the
probability of the tree to be correct. However, the normalization constant P (S) is
too expensive to compute. As a result, the Bayesian inference method produces a
posterior probability distribution on trees, meaning it infers a set of trees and not
a single tree. Moreover, inferring such a distribution is possible by using Markov
Chain Monte Carlo methods (MCMC), e.g., Metropolis-Hasting [32]. Those meth-
ods generate a sample from the posterior P (θ|S), which can be used to estimate the
posterior distribution. Finally, to infer a single tree, a consensus tree can be built
from the obtained set of trees.

Distance-based methods

Distance-based methods take a matrix of distances of taxa as input during tree infer-
ence. To do so, the molecular sequence data is transformed into pairwise distances, which is
achieved by calculating the genetic distances between each pair of sequences [71]. Distance-
based methods usually output a weighted tree that realizes the distances between the taxa.
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• UPGMA method:
UPGMA stands for Unweighted Pair Group Method with Arithmetic Mean [66, 67].
This method is an agglomerative hierarchical clustering method, which is a type of
cluster analysis method to build a hierarchy of clusters by merging them in a step-
wise manner. UPGMA starts by grouping pairs of sequences (leaves) with minimal
distance in the input distance matrix to form a subtree (at least once) and then goes
on by iteratively grouping pairs of subtrees (or a subtree with a leaf) with minimal
mean distance between their leaves. The UPGMA method takes O(n3) to construct
a tree.

• Neighbor-Joining method:
The Neighbor-Joining method is an agglomerative hierarchical clustering method pro-
posed by Naruya Saitou and Masatoshi Nei [60]. Similarly to the UPGMA method,
the Neighbor-Joining method iteratively groups subtrees (and starts by grouping
leaves) until a tree with fully resolved topology is obtained. However, their selection
criteria differ, the Neighbor-Joining method pairs subtrees (or leaves) that are closest
to one another and that are the furthest from the rest of the subtrees (and leaves).
The Neighbor-Joining method takes O(n3) to construct a tree.

It is important to realize that every method has strengths and weaknesses and that no
method is perfect. For example, the distance-based methods introduced above are much
more time-efficient compared to the other tree inference methods previously presented, but
they are less accurate and tend to lack the qualitative information that may be obtained from
within input alignments, due to the conversion to a pairwise-distance matrix [27, 53, 68].

2.4.2. Tree Inference Errors

Phylogenetic tree inference methods, whether they are distance-based or character-based,
are not without flaws. A known issue with the maximum parsimony method is called long
branch attraction, where related taxa are inaccurately inferred to be closely related, i.e.,
taxa with long branches may be grouped because of their branch length rather than because
they are related by ancestry [5, 25]. There exist many different sources of error that may
negatively affect the inference of a phylogeny [9]. As mentioned, some sources of error
originate from the methods for tree inference, but errors may also be due to observed datasets,
whether they are molecular datasets or morphological datasets, e.g., affected by homoplasy.
Nonetheless, there has been a tremendous effort from the research community to deal with
the causes of erroneous tree reconstruction. However, the mechanisms of evolution are so
intricate that there will always be a lack of robust correlation between models and biological
processes. For the purpose of this thesis, and understanding our motivation to develop
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methods to analyse and compare gene trees, we outline some well-know sources of error
affecting the inference of gene trees.

• Erroneous molecular data: The use of aligned sequences as input to phylogenetic
inference means that, no matter the inference method, an inferred tree may suffer
from errors introduced by the equipment or methods (e.g., sequencing methods, or
alignment methods) used to produce it [55].

• Lacking data: The lack of data, due to genomes being partially sequenced for exam-
ple, has been shown to drastically impact inference methods [59, 75, 76]. Moreover,
even if there is a significant amount of data available, the lack of homologous genes
in input data is still possible and may produce similar errors to those due to lack of
data [59, 75, 76]. Additionally, the lack of sites for a single gene entails limited data
which may result in poor inference quality [56].

• Models of evolution: Phylogenetic tree inference methods function under a certain
set of assumptions which, if they are not met, may make these methods unfit for
use and yield erroneous results. A parameter with great impact on inference is the
chosen model of evolution. Variations in models of evolution have shown to affect tree
reconstruction outputs [37, 43]. Unfortunately, a model may be chosen arbitrarily
when a suitable model is not established. Therefore, it is important, based on a
thorough analysis of the parameters, the inference method employed, and the quality
of the molecular data, to select adequate models of evolution if the setting of the
study allows it.

• Heuristics: Phylogenetic inference methods, as mentioned in section 2.4.1, cannot
always search the entire tree space containing the optimal tree they seek to infer (they
often correspond to NP-complete problems). Those methods often rely on heuristics
to restrict the tree search space and, by doing so, the reconstructed trees can only be
guaranteed to be optimal within the restricted space. Therefore, an optimal solution
is not guaranteed.

2.5. Reconciliation
Reconciliation is a method for inferring the evolution of a gene family. However, it is well

known that a species tree does not necessarily concur with a gene tree inferred from DNA
sequences for a gene locus involved with said species. For example, a common reason for
this difference is genetic polymorphism in ancestral species. In other words, reconciliation
is also an approach for analyzing the inconsistencies between the evolutionary histories of
genes, and the species through which they have evolved [29]. More specifically, reconciliation
takes as input a species tree and gene tree(s), and then reconciles these trees to infer the
minimum number of evolutionary events (e.g. gene duplication, gene loss, and speciation).
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Fig. 2.4. Top left: A species tree S = ((a,b),(c,d)); Bottom left: A gene tree G for the
gene family F = {a1,a2,b1,c1,d1,d2}, where the leaves are genes belonging to the species in S;
Bottom: A reconciled tree R(S,G), resulting from the embedding of G into S, with depicted
speciation events, duplication events, and loss.

To reconcile a gene tree with a species tree means embedding the gene tree into the species
tree to produce a new tree. Figure 2.4 illustrates this concept with a simple example.

There are different reconciliation models, such as the Duplication(D), Duplication-
Loss(DL), and Duplication-Transfer-Loss(DTL) models, which have different attributes, de-
pending on the array of evolutionary events they cover. We do not go over specific models of
reconciliation but we recommend the work of El-Mabrouk and Noutahi [22, 74] as a good
starting source for more information on the subject.

The information that can be obtained from phylogenetic reconciliation is only as good
as its building blocks and, therefore, the quality of inference for the species tree and gene
tree(s) is critical. Furthermore, it has been shown that reconciliation methods are biased
when the inferred gene tree is not correct [31]. This raises the need for methods to analyse
and compare phylogenetic trees, especially gene trees, since we know that sources of error
in tree inference are common. There is a wide array of tools used to analyse and compare
phylogenetic trees, but for the purpose of this thesis we focus on the development of distance
metrics in the next chapter.
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Chapter 3

Distance metrics: Background and related
work

Over the last three decades, many new metrics have been developed and have extended the
scope of applications of phylogenetic tree comparisons. Though the definition of these metrics
was driven by different motivations and goals, they nevertheless share common principles.

A distance or a metric is a function defined on pairs of elements A and B of a space that
satisfies the four following conditions: 1) The non-negative condition, as its name indicates,
stating that a distance is always positive or equal to zero; 2) The symmetric condition stating
that a distance from an element A to an element B is equal to the distance from B to A
(d(A,B) = d(B,A)); 3) The identity condition stating that the distance is zero if and only
if the elements are the same (d(A,B) = 0 ⇔ A = B); 4) The triangle inequality condition
stating that the distance from an element A to an element B is lower or equal to the sum of
the distances from A to C and C to B, for any C (d(A,B) ≤ d(A,C) + d(C,B)).

Metrics designed for tree comparison are specific to some types of trees: some target
binary trees, while others can handle polytomies, and certain metrics assume unrooted trees
while others compare rooted trees; some metrics account for branch length or other tree
properties. The challenge is to account for these specificities while preserving the conditions
of a metric.

Another important aspect of a metric is its time complexity. In this field of study, the
computing time of a metric is crucial because we may have to deal with very large trees.
Metrics are also characterized by their theoretical maximum distance between two trees
(diameter). This property relates to the accuracy of comparisons, as a larger diameter tends
to enable more refined comparisons [49]. In addition, a common objective when developing
a metric is to have a bell shaped, symmetric frequency distribution with significant variance.
This property renders a metric more robust to errors in trees and increases its capacity to
distinguish trees with small differences.



In this chapter we will introduce four different tree metric in the first four sections, where
we report on theses metrics’ properties, mechanisms, strengths, and weaknesses. In the fifth
section we compare their properties, and the last section is the conclusion of this chapter.

The four metrics we are presenting are representative metrics covering two categories.
The first category consists of cluster-similarity metrics. These metrics are denoted as such
because they rely on information provided by tree clusters (or clades) and their attributes,
such as their topology or leaves, to compute distances between compared trees. We refer to
metrics belonging to the other category as edge-based metrics. As the name suggests, these
metrics use the information provided by tree edges and their attributes to compute distances
between compared trees.

The cluster matching distance discussed in section 3.2 and the hierarchy-preserving dis-
tance discussed in section 3.3 belong to the category of cluster-similarity metrics, while the
euclidean distance discussed in section 3.4 belongs to edge-based metrics. These metrics
were selected because they have interesting properties discussed in subsection 3.5.

We also describe the Robinson-Foulds distance which covers both categories in the fol-
lowing section (the version for unrooted trees is an edge-based metric while the one for
rooted trees is an cluster-similarity metric). It was retained not because of its properties but
because we extend it in the next chapters.

3.1. Robinson-Foulds Distance
3.1.1. Motivation

The RF distance is a popular distance measure, which has been used for a couple of
decades now. Recently developed metrics are still based on the RF distance. Its original
objective [58] was to devise a comparison method suitable for trees with internal nodes
having an arbitrary number of edges (degree) i.e., binary and non-binary trees.

3.1.2. Detailed Description

The RF distance metric dRF is a measure used to compare phylogenetic trees on the
same set of leaves L of size n. Note, however, that dRF is defined on a tree space where
trees are unweighted and unlabeled. The RF distance remains widely used since it can be
computed in linear time on rooted or unrooted trees. This makes the RF distance very
practical, though it has limitations discussed below.

There are two methods to calculate dRF (T1,T2) between two trees T1 and T2. The first
method is based on the number of tree edit operations between two trees. It quantifies the
distance between two trees by calculating the minimum number of internal branch "contrac-
tions" (Cont) and "extensions" (Ext) needed to transform one tree into the other [58].
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Fig. 3.1. Transforming T1 into T2, or T2 into T1 with a minimal number of edit operations,
resulting in dRF (T1,T2) = 4.

An edge contraction is an operation that takes in an edge e = (x,y) and a tree T as input,
then proceeds in transforming the tree T into the tree T ′ obtained from T by removing the
edge e of T and identifying x and y i.e., T ′ is obtained by adding the edge (x, z) for each
z ∈ Ch(y) \ {x}, and then removing y and its incident edges (including (x,y)).

An edge extension is and operation that takes in an internal non-binary node x, X =
{y1, · · · , yt} � Ch(x) a subset of Ch(x) such that |X| ≥ 2, and a tree T as input, the
proceeds in transforming the tree T into the tree T ′ obtained from T by removing the edges
(x,yi), for 1 ≤ i ≤ t, creating a node y and a new edge e = (x,y) adjacent to x, and creating
new edges (y, yi), for 1 ≤ i ≤ t. We provide an example for unrooted trees in Figure 3.1.

The second method is referred to as the symmetric difference. In contrast to the previous
method it does not transform trees, but assesses elements forming them, more specifically,
tree clades or bipartitions. A clade is a group of lineages that includes a common ancestor and
all the descendants of that ancestor i.e., the leaf set of a subtree rooted at a node x: L(Tx).
The bipartition of a tree T corresponding to an internal edge e = (x,y) is the unordered pair
of clades L(Tx) and L(Ty) where Tx and Ty are the two subtrees rooted respectively at x and
y obtained by removing e from T . A bipartition is non-trivial if it corresponds to an internal
edge of T , and trivial otherwise. We denote by B(T ) the set of non-trivial bipartitions of T .

For unrooted trees, it consists in counting the number of different bipartitions resulting
from the internal branches of both trees. More precisely, for an unrooted tree T with the
non-trivial bipartition set B(T ), we define:

dRF (T1,T2) = |(B(T1) \ B(T2)) ∪ (B(T2) \ B(T1))|
As for rooted trees, the symmetric difference refers to the number of different clades in

both trees. More precisely, for a rooted tree T R with the non-trivial clade set C(T R), we
define:
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Fig. 3.2. dRF (T1,T2) computed as the symmetric difference between the trees’ bipartitions.

dRF (T R
1 ,T R

2 ) = |(C(T R
1 ) \ C(T R

2 )) ∪ (C(T R
2 ) \ C(T R

1 ))|
Since a binary unrooted tree with n leaves has n−3 internal branches, which corresponds

to the number of non-trivial bipartitions of the tree, the maximum RF distance between two
binary trees is 2(n − 3). This maximum is reached when the trees being compared have an
entirely different set of non-trivial bipartitions.

Similarly, since a binary rooted tree with n leaves has n − 2 internal branches, which
corresponds to the number of non-trivial clades of the tree, the maximum RF distance
between two binary trees is 2(n − 2). This maximum is reached when the trees being
compared have an entirely different set of non-trivial clades.

We provide an example for unrooted trees in Figure 3.2. The two methods above used for
computing the RF distance are mathematically equivalent since the number of bipartitions
and the number of internal branches in a tree are the same.

3.1.3. Discussion

Distances between random pairs of binary trees tend to be near the maximum. This limits
our ability to meaningfully distinguish pairs of arbitrary binary trees. Even small differences
quickly lead to near maximum distances. As a result, the RF distance shows low robustness
(high sensitivity) to errors in trees, as even a single error can maximize the distance between
the compared trees [58]. For a number of reasons, such as limited data on past biological
entities, the use of various evolutionary models and reconstruction algorithms, errors are
common in the construction of phylogenetic trees. On account of that, we want to ensure
that distances are not significantly distorted by such errors. This limitation is addressed by
the distance measure presented next, the cluster matching distance. Nonetheless, the RF

distance remains a widely used and intuitive method with efficient time complexity O(n),
that has led to multiple extensions such as the bipartition matching distance [46].
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3.2. Cluster Matching Distance
3.2.1. Motivation

The cluster matching (CM) distance is a recent distance metric on rooted trees that can
be seen as a weighted version of the rooted RF distance. The objective was to address the
main weaknesses of the RF distance, as discussed in the previous section, while focusing on
rooted trees.
3.2.2. Detailed Description

The CM distance metric dCM is a measure that compares binary phylogenetic trees
on the same set of leaves L of size n. The cluster of an internal node x is defined as
CT (x) = L(T (x)), where T (x) is the subtree rooted in x. The set of all clusters of T is
defined as H(T ) = ⋃

y∈V (T ) CT (y). Recall that dCM is defined on a tree space where trees are
rooted and unlabeled.

dCM is computed based on a bipartite graph. A bipartite graph is a means to illustrate a
set of graph vertices separated into two disjoint sets, such that no two graph vertices within
the same set are directly connected. In this context, we use a specific kind of bipartite graph,
a complete weighted bipartite graph, where all the vertices of one set are connected to the
other set and edges are weighted.

The CM distance between two trees, dCM(T1,T2), is defined as the resulting weight of
the minimum weight perfect matching in the bipartite graph between those trees [49]. A
bipartite graph is formed by defining two sets, each set containing the internal vertices of
each of the compared trees T1 and T2. Edges are then drawn between each element of a set
to all the elements of the other set. The weight of an edge (v1,v2) in the bipartite graph
B(T1,T2), is the cardinality of the symmetric difference (
) between the elements of CT (v1)
and CT (v2). Given that for a tree T , r(T ) denotes its root, Vint(T ) are internal vertices,
and E is the set of edges between the internal vertices of T1 and those of T2 in the bipartite
graph, the complete weighted bipartite graph is formalized as follows:

B(T1,T2) := ((Vint(T1) \ {r(T1)}) ∪ (Vint(T2) \ {r(T2)}), E)

Where the weight of each edge {u,v} is:

W (u,v) := |CT1(v1) 
 CT2(v)| = |(CT1(u) \ CT2(v)) ∪ ((CT2(v) \ CT1(u))|

We provide an example for this metric in Figure 3.3.

3.2.3. Discussion

The CM distance, as mentioned in the previous section, has multiple advantageous prop-
erties compared to the rooted RF distance. The CM distance yields much better distribution
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Fig. 3.3. Example of computation for the CM distance between two trees (dCM(T1,T2)).

properties in terms of symmetry and variance. The CM distance is much more robust to
errors and less sensitive to large differences between trees. The CM distance also has a
larger diameter (θ(n2)) than the rooted RF distance, enabling more subtle comparisons that
can distinguish differences between trees with a higher resolution [49]. Computing the CM

distance has, however, a higher time complexity (O(n2.5 log n)) compared to the rooted RF

distance, though it is still considered to be sufficiently efficient to compute in many practical
situations [49].

3.3. Hierarchy-Preserving Distance
3.3.1. Motivation

This distance is another cluster-similarity based metric, like the CM distance. This kind
of metric has shown to not be prone to skewed distribution of distances between most pairs
of binary trees (e.g. [6]), a weaknesses of the RF distance where the majority of distances
between a random pair of trees are comparatively very large. This is an attractive trait
for the authors who’s objective is precise and accurate discrimination between sets of trees.
More specifically this distance is based on the concept of a hierarchy-preserving map, which
relates trees that have similar hierarchies [33]. Another objective, stated by the authors,
was the increase of accuracy of phylogenetic reconstruction using Markov Chain Monte Carlo
methods [33].
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Fig. 3.4. Two trees T1 and T2 with a hierarchy-preserving map from H(T1) to H(T2) that
maps AB to ABC, maps ABC to ABCDEFG, maps DE and FG to DEFG, and maps
DEFG to ABCDEFG.

3.3.2. Detailed Description

The hierarchy-preserving (HP) distance metric dHP is a measure that compares rooted
phylogenetic trees on the same set of taxa L of size n. A hierarchy H on a set L is the
collection of all the subsets of L, which contains both L and all singleton sets {l} for l ∈ L
[33]. Additionally, assuming H1,H2 ∈ H, then H1

⋂
H2 = ∅, H1 ⊆ H2, or H2 ⊆ H1 [33].

We will referred to the elements of a hierarchy H hereafter as sub-hierarchies.
A hierarchy-preserving map is a depiction indicating the relationships of the elements of

the hierarchies of the compared trees. Let T1 and T2 be two trees on L with hierarchies H(T1)
and H(T2). Then the hierarchy-preserving map that maps H(T1) to H(T2) indicates, for each
sub-hierarchy of H(T1), which sub-hierarchy of H(T2) they are a subset of. Figure 3.4 depicts
such scenario. The authors specify two main properties of a hierarchy-preserving map [33].
For all A,B ∈ H(T1) and δ being the identity on singletons for the map δ : H(T1) → H(T2):

(1) Enveloping: A ⊆ δ(A)
(2) Subset-Preserving: A ⊂ B implies δ(A) ⊂ δ(B)
The authors show that there is a partial order ≤HP on the set of trees on L, denoted as

F . They do so by associating it to the concept of hierarchy-preserving maps, and convey
that if there is a hierarchy-preserving map from H(T1) to H(T2) then we declare T1 ≤HP T2.

Let H(L) denote the Hasse diagram of the set of trees F under ≤HP . [33]. This Hasse
diagram is the graphical representation of the partially ordered set F . Figure 3.5 depicts a
relatively simple example of H(L) with a small number of leaves n.

The distance denoted dHP (T1,T2) is defined to be the geodesic distance from T1 to T2 in
H(L). The geodesic distance corresponds to the number of edges forming the shortest path
between two vertices in a graph, in this case H(L). To calculate dHP the authors decided
to focus on the movement around H(L). To do so they defined two "movement" operations,
one called an Up-move, and the other Down-move. An up-move corresponds the transition
from a tree T1 to a T2 in H(L) if T1 ≤HP T2, but if T2 ≤HP T1 then the operation performed

21



Fig. 3.5. The Hasse diagram of the set F under ≤HP with n=4. Note that the ≤HP -minimal
element of H(L) is the star tree, and that the ≤HP -maximal elements are the binary trees.

is a down-move. The authors describe the up-move as the deletion of some distinct pair
of clusters X,Y ∈ H(T ) that are inclusion-maximal in a third cluster Z, with X ∪ Y � Z

and then the addition of X ∪ Y . A down-move is describe as the reverse of this[33]. To be
precise, an inclusion-maximal cluster that is an element of a parent cluster, is a cluster that
is not a sub-cluster of some other cluster also part of said parent cluster. Figure 3.6 depicts
these movement operations. For more examples, see Figure 3 and 4 in[33]. This means the
distance dHP (T1,T2) therefore behaves so that if an up-move or down-move on one of the
compared trees turns it into the other, then their distance would be 1.

To simplify the calculation of the distance between certain trees the authors introduce the
notion of rank of T , f(T ). Let P (T ) be the set of proper clusters, which exclude singletons
and L:

f(T ) =
⎛
⎝ ∑

A∈P (T )
|A|

⎞
⎠ − |P (T )| =

∑
A∈P (T )

(|A| − 1)

Note the maximum rank of a tree with n leaves is (n−1)(n−2)
2 .

If one tree is above the other in H(L) when two trees are compared then we can use the
authors’ shortcut[33]:

Suppose T1 ≤HP T2, then:

dHP (T1,T2) = f(T2) − f(T1)

22



a) Up-move with a singleton and a cluster

b) Down-move with two singletons

Fig. 3.6. Examples of each operation used to traverse H(L), a) showing an up-move target-
ing cluster C,D and singleton B, and b) showing a down-move where both targeted clusters,
A and B, are singletons.

If that is not the case then:

|f(T1) − f(T2)| ≤ dHP (T1,T2) ≤ f(T1) + f(T2)

The authors state that exact calculations of the distance dHP are computationally ex-
pensive because there is no algorithm enabling subexponential runtime. In response to that,
they developed an upper bound eHP , and show that their algorithm to determine it is poly-
nomial. The upper bound is shown to often be equal to the true distance (i.e., over 80% on
trees with n = 9 [33]). Note that the upper bound is not a metric as it does not satisfy the
triangle inequality condition. The method to find the upper bound can be described in two
main steps:

(1) Find ≤HP -maximal trees that have a hierarchy-preserving map into both T1 and T2

(2) Then find a minimum path between T1 and T2 that goes through a ≤HP -maximal
tree.

In other words, let max ≤HP (T1,T2) be the set of trees Ti in F that are ≤HP -maximal and
satisfy Ti ≤HP T1 and Ti ≤HP T2, then eHP = min(f(T1) + f(T2) − 2f(Ti)).

The algorithms needed to compute the upper bound eHP and the metric dHP were im-
plemented and the authors have reported computational results on their distance. Those
results suggest that the larger the upper bound, the less accurate the distances [33].They
also point out that the true metric and the upper bound both share the same desirable
statistical properties as other cluster-similarity metrics [49, 46]. The experimental results

23



show that they avoid the skewness that affects other easily computable metrics, like the RF

distance [33].

3.3.3. Discussion

The HP distance features some compelling traits. It can meaningfully distinguish com-
pared rooted trees thanks to its cluster-similarity properties. The authors also claim that
these properties, paired with the operations used to move around the tree space, are expected
to improve Markov Chain Monte Carlo searches of the tree-space around trees of similar hi-
erarchies [33]. Nonetheless, the authors acknowledge significant weaknesses of their metric
and upper bound, which is why their main objective remains to find a way to improve the
runtime of dHP and accuracy of eHP .

3.4. Euclidean Distance
3.4.1. Motivation

Kendall and Colijn [42] defined an Euclidean distance metric to compare rooted phy-
logenetic trees. The authors’ motivation was to create a method that would help cluster
groups of trees, a requirement to address their objective of capturing and visualizing distinct
patterns of evolution.

3.4.2. Detailed Description

As for previous metrics, the euclidean distance measure compares rooted trees defined
on the same set of leaves. This metric can handle trees with internal vertices of any degree,
and can optionally account for branch length in its comparisons. Branch length can be used
to capture different types of evolutionary data such as the number of mutations or the time
span between the species in two branch nodes. This new metric compares the positions of
the most recent (i.e., closest in the tree) common ancestors of all pairs of leaves across trees
[42]. This is a mechanism to evaluate the similarity of the shape of compared trees. Those
shapes, or topologies, can then be analyzed to potentially determine patterns of evolution.
To do that, the metric relies on combining and comparing two vectors, m(T ) and M(T ), of
identical size. For a tree T , M(T ) captures the tree topology by including the distance Mi,j,
in terms of path length, between the most recent common ancestors of every possible pair
of leaves (i,j) in the leaf set of size n, appended with the length pi of each pendant edge to
every leaf i. The pendant edge of a leaf is the edge between the leaf and its direct ancestor.
The vector M(T ) is represented as follows:

M(T ) = (M1,2,M1,3,...,Mn−1,n, p1,...,pn)
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Second, m(T ) has a similar structure to M(T ), except that the distance mi,j is measured
in terms of number of edges, as opposed to path length, and all its pendant edge length
values equal 1 (the immediate ancestor is always one edge away). In other words, m(T )
does not consider branch length but only tree topology. The vector m(T ) is represented as
follows, with 1s for its last n components:

m(T ) = (m1,2,m1,3,...,mn−1,n, 1,...,1)

The next step in computing the Euclidean distance is to form a convex combination
of these two vectors by parameterizing them with λ ∈ [0,1]. λ enables the analyst to
determine to what extent the branch lengths of a tree, versus its topology, contribute to the
tree distance [42]. The convex combination allows us to compute the relative mean of the
Euclidean distance on the ["topology", "topology and branch length"] interval. We combine
the two distances defined above as follows:

vλ(T ) = (1 − λ)m(T ) + λM(T )

An appropriate value for λ depends on the targeted application, and the meaning of branch
length. Finally, the Euclidean distance can be defined as follows:

dλ(T1,T2) = ||vλ(T1) − vλ(T2)||

where || · || stands for the classic Euclidean distance between two vectors (L2norm). We
provide an example to illustrate this metric in Figure 3.7. We can estimate the impact of
accounting for branch length since we are able to compare the results of distance calculations
with different weights attributed to the tree topology only vector (m(T )) and the vector
accounting for branch length (M(T )). This can help determine if the information provided
by branch length is an advantage or a disturbance for the tree comparisons, and consequently
to the establishment of patterns of evolution.

3.4.3. Discussion

The Euclidean distance is a metric that compares rooted phylogenetic trees and can
account for branch length. It provides a mechanism, through a parameter (λ ∈ [0,1]), to
control the extent to which branch length affects distance computations and therefore tree
comparisons. Though the Euclidean distance metric was developed for rooted trees, the
authors suggest that it could also be used for unrooted trees. Compared unrooted trees
would first have to be re-rooted to their equivalent pendant edge of a given leaf i, and then
the Euclidean distance metric would be applied as suggested for rooted trees. If the two
unrooted trees have the same topology, then rooting them on the same pendant edge of leaf
i should give them the same rooted topology.

25



Fig. 3.7. The Euclidean distance (dλ(T1,T2)) of the two trees T1 and T2.

Furthermore, we know that this metric accounts for all pairs of leaves. Since for n leaves,
there are n∗(n−1) pairs, we can infer that the time complexity for computing the Euclidean
distance is quadratic: O(n2). Additionally, experimental results in [42] suggest that the
Euclidean distance follows a symmetric distribution with significant variance. This results
into a certain robustness to tree errors. High robustness entails limited effects of small
changes in a tree, such as leaf regrafting. Indeed, a particular leaf is involved in a small
percentage of computations for large trees. Nonetheless, the authors point out its sensitivity
to deep branching structural differences (differences relatively close to the root) [42], meaning
that errors leading to such differences would have great impact on the distance computation.
However, this characteristic also renders this metric suitable to identify differences in deep
tree structures within a set of trees.

3.5. Comparisons of Metrics
Table 3.1 provides a systematic comparison of the four metrics we covered in this section,

according to the criteria that were discussed at the beginning of this chapter.
In general, what can be concluded from Table 3.1 is that the suitability of these metrics

depends on their intended application. More specifically, the Euclidean distance seems to
be the most versatile of the four metrics considered. Moreover, it can be noticed that it is
the only metric that does not have a diameter, which is due to the metric allowing arbitrary
branch lengths. However, its versatility does not entail that this metric is always the most
suitable since it has a high time complexity. The RF distance, in contrast, has by far the
lowest time complexity, and even though it is prone to distortions by tree errors and does
not account for branch length, it is the most suitable when one requires a fast computations.
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Table 3.1. Metrics Comparison Table

Properties / RF CM Euclidean HP
Metrics (dRF ) (dCM) (dλ) (dHP )
Satisfies the
conditions of a
metric

+ + + +

Accepts nonbi-
nary trees

+ + + +

Rooted / Un-
rooted trees

Both Rooted Both Rooted

Diameter on
trees with n
leaves

2(n − 3) θ(n2) N/A (n − 1)(n − 2)

Use of branch
length

− − + −

Time complex-
ity on trees
with n leaves

O(n) O(n2.5 log n) O(n2) O(2poly(n))

Relatively
robust to tree
errors

− ++ + ++

The CM distance is the most robust to tree errors along with the HP distance but, when
applicable, it is only suitable when one can afford to trade lower efficiency for gains in
accuracy and resolution. The HP distance is the most computationally intensive of the four
presented metrics and seems to be the least practical for general use.

3.6. Conclusion
As discussed in the previous sections, all presented metrics have weaknesses and appli-

cations contexts for which they are suited. However, it is important to note that, in this
chapter, we selected a representative subset of metrics across the two presented metric cat-
egories, with interesting and diverse properties, and that there are many more metrics for
phylogenetic trees that could be considered here. The RF distance has been identified as a
fast, and relatively small tree distance calculator. This makes it ideal to compare a tree with
other similar trees and determine their relative degree of similarity [58]. The CM distance,
being highly precise even when comparing very different trees, is ideal when comparing a
topologically diverse set of phylogenetic trees [49]. The Euclidean distance is relevant to
many types of trees and comparisons [42], but experimental results show that its most use-
ful application is in deep tree structure analysis, by emphasizing differences among trees
that are located near the root rather than the ones near the leaves [42]. This is consistent
with the authors’ objective of detecting distinct patterns of evolution. Concerning the HP
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distance, some of its properties are favorable are favorable for some target applications, such
as phylogenetic reconstruction using Markov Chain Monte Carlo methods [33] though it
seems to have room for improvement, both in terms of accuracy and time complexity.

There is no perfect metric and we do not know if there will ever be one. All existing
metrics function under a certain set of assumptions which, if they are not met, make these
metrics unfit for use. It is therefore important, based on a thorough analysis of the current
needs in phylogenetic tree analysis, to devise new metrics that are suited for the various
applications where current metrics are inadequate. Most particularly, there is no distance
metric that can handle internally labeled trees, which are important in the context of the
comparison of gene trees. This topic will be addressed in the next chapters.
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Chapter 4

A Generalized Robinson-Foulds Distance for
Labeled Trees

The article presented in this chapter was accepted for publication in the BMC Genomics
journal. It describes a "labeled Robinson-Foulds" distance, a metric that accounts for internal
node labels for the comparison of labeled gene trees. The supplementary material of this
article is available in the appendix.

Comparing trees is an essential task for many purposes, and especially in phylogeny
where different reconstruction tools may lead to different trees, likely representing contradic-
tory evolutionary information. There is a large variety of pairwise measures of dissimilarity
that have been developed for comparing trees with no information on internal nodes, such
as the Robinson-Foulds distance. Unfortunately very few measures have been designed for
node-labeled trees. For instance, this is required for the case of reconciled gene trees that
may be labeled with evolutionary events such as speciation, duplication, or horizontal gene
transfer. In this chapter, we present a simple and natural extension of the RF distance
to node labeled trees. Our RF extension’s characteristics make it useful for comparing
gene trees under various evolutionary models that may involve speciation, duplication, loss,
HGT, and other potential evolutionary events. We also implemented an accurate heuristic
useful for preliminary analysis and comparison of labeled reconciled gene trees.

Contributions: Samuel Briand, Christophe Dessimoz, Nadia El-Mabrouk, and Manuel La-
fond participated collectively in the development of the proofs and algorithms included in
the article, and wrote the manuscript. Christophe Dessimoz and Gabriela Lobinska imple-
mented the distance software presented in the manuscript. Christophe Dessimoz designed
and performed the experiments discussed in the article. All authors have read and approved
the final manuscript.



A Generalized Robinson-Foulds Distance for Labeled
Trees

Samuel Briand1, Christophe Dessimoz2,4,5,6,7, Nadia El-Mabrouk1, Manuel
Lafond3, and Gabriela Lobinska4

1. DIRO, Université de Montréal
2. Department of Computational Biology, University of Lausanne

3. Computer Science Department, Université de Sherbrooke
4. Department of Genetics Evolution and Environment, University College London

5. Center for Integrative Genomics, University of Lausanne
6. Swiss Institute of Bioinformatics

7. Department of Computer Science, University College London

4.1. Abstract
Background: The Robinson-Foulds (RF ) distance is a well-established measure between
phylogenetic trees. Despite a lack of biological justification, it has the advantages of being a
proper metric and being computable in linear time. For phylogenetic applications involving
genes, however, a crucial aspect of the trees ignored by the RF metric is the type of the
branching event (e.g. speciation, duplication, transfer, etc).
Results: We extend RF to trees with labeled internal nodes by including a node flip
operation, alongside edge contractions and extensions. We explore properties of this extended
RF distance in the case of a binary labeling. In particular, we show that contrary to the
unlabeled case, an optimal edit path may require contracting “good” edges, i.e. edges shared
between the two trees.
Conclusions: We provide a 2-approximation algorithm which is shown to perform well
empirically. Looking ahead, computing distances between labeled trees opens up a variety
of new algorithmic directions.
Availibility and implementation: The software written in Python is available in the
pylabeledrf repository at https://github.com/DessimozLab/pylabeledrf.
Keywords: edit distance, labeled trees, Robinson-Foulds, tree metric

4.2. Background
Phylogenic trees represent the evolutionary relationship between sets of genetic elements

or taxa, where the elements of a set are in one-to-one relationship with the leaves of the
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corresponding tree [65]. Different phylogenetic inference methods may lead to different
trees, and each method, typically exploring a large space of trees, can also result in multiple
equally likely solutions for the same dataset. It follows that comparing trees is an essential
task for finding out how inferred trees are far from one another, or how an inferred tree is
far from a simulated tree or from a gold standard tree for the same datasets.

Designing appropriate tree metrics is a widely explored branch of research. A variety of
measures have been designed for different types of trees, rooted or unrooted, some restricted
to comparing tree shapes [15], others considering multilabeled trees, i.e. trees with repeated
leaf labels [44] and yet others considering information on edge length [10]. In particular,
a large number of pairwise measures of similarity or dissimilarity have been developed for
comparing two topologies on the same leafset. Among them are the methods based on
counting the structural differences between the two trees in terms of path length, bipartitions
or quartets for unrooted trees, clades or triplets for rooted trees [12, 23, 16], or those
based on minimizing a number of rearrangements that disconnect and reconnect subpieces
of a tree, such as nearest neighbour interchange (NNI), subtree-pruning-regrafting (SPR)
or Tree-Bisection-Reconnection (TBR) moves [39, 36, 3]. While the latter methods are
NP-hard [46], the former are typically computable in polynomial time. In particular, the
Robinson-Foulds (RF ) distance, defined in terms of bipartition dissimilarity for unrooted
trees, and clade dissimilarity for rooted trees [48], can be computed in linear [19], and even
sublinear time [54].

Despite several drawbacks such as lack of robustness (a small change in a tree may cause
a disproportional change in the distance), skewed distribution [69, 11, 13], and a lack of
biological rationale, RF remains the most widely used measure, not only in phylogenetics,
but also in other fields such as in linguistics. To increase robustness, improved versions of
the RF distance have also been developed [46, 49].

In addition of being efficiently computable, RF has the merit of being a true metric. It
was originally defined on unrooted trees, in terms of edit operations on the tree edges: the
minimum number of edge contraction and extension needed to transform one tree into the
other [58]. Interestingly, the same metric, expressed in terms of node deletion and insertion,
has been widely used in the context of data featuring hierarchical dependencies, modeled as
trees with labeled nodes. In this case, the standard Tree Edit Distance (TED) is defined in
terms of a minimum cost path of node deletion, node insertion and node relabeling (label
substitution) transforming one tree to the other, for two trees sharing the same set of node
labels (i.e. each label is present exactly once in each tree). While the less constrained version
of the problem on unordered labeled trees is NP-complete [80], most variants are solvable in
polynomial time [78, 79, 64].

Even though this kind of hierarchical node labeling has limited applicability for phylo-
genetic trees, other types of labeling can be used in the context of genetic data comparison.
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In the case of gene trees, it is important to identify the evolutionary event (duplication,
speciation, transfer, etc) that has led to a given bifurcation. For example, information on
duplication and speciation node labeling is provided for the trees of the Ensembl Compara
database [73] (reconciled with TreeBest [63]). Therefore, being able to compare labeled
phylogenies is important in the context of gene tree reconstruction and analysis.

This paper is the first effort towards extending the RF distance to labeled trees involving,
in addition to edge contraction and extension (operations that can alternatively be defined
as node insertion and deletion), a node substitution or “relabeling” operation. Importantly,
our extended RF remains a metric in the mathematical sense.

While the formulation of the RF distance in terms of edit operations is known, the
bipartition and clade formulations are often those that are used in the literature. Though
similar, the three formulations present some differences depending on whether the trees
are rooted or unrooted. We begin by making these differences explicit. We then explore
some properties of the extended RF distance in the case of two labels (e.g. speciation and
duplication). In particular, we show that, in contrast to the RF distance for unlabeled
trees, an optimal edit path for labeled trees may involve contracting good edges, i.e. edges
representing common bipartitions of the two compared trees, which makes the extended RF

much harder to compute than the basic RF . We then explore various avenues for computing
the extended RF . We give an exact algorithm for contracting “mixed subtrees”, i.e. subtrees
with alternating labels, and a bounded heuristic for general trees that achieves a factor 2
approximation. In the following section, the heuristic is shown, on simulated datasets, to be
efficient, by plotting the number of tree edits against the computed RF distance. Finally,
we explore some avenues for improvement. All proofs are given in the appendix.

4.3. Notations and Concepts
Let T be a tree with a node set V (T ) and an edge set E(T ). Given a node x of T ,

the degree of x is the number of edges incident to x. We denote by L(T ) ⊆ V (T ) the set
of leaves of T , i.e. the set of nodes of T of degree one. A node of V (T ) \ L(T ) is called an
internal node. A tree with a single internal node is called a star tree. An edge connecting
two internal nodes is called an internal edge; otherwise, it is a terminal edge. Moreover, a
rooted tree admits a single internal node r(T ) considered as the root.

Let x and y be two nodes of a rooted tree T ; y is an ancestor of x if y is on the path
from x to the root (possibly y itself); y is a descendant of x if y is on the path from x to a
leaf (possibly y itself) of T . For a rooted tree, we may write (x,y) for an edge between x and
y where x is closer to the root. We say that y is a child of x. If T is unrooted, we call the
set {y : {x,y} ∈ E(T )} the set of children of x (this is an unusual definition, but defining a
notion of children for both rooted and unrooted trees will be useful later). For a rooted or
an unrooted tree T , we denote by Ch(x) the set of children of an internal node x of T .
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A tree T representing the evolution of a set L of entities (usually taxa or genes) is a tree
with a one-to-one mapping between L(T ) and L. We simply write L = L(T ) and say that T

is a tree for L. An internal node represents an ancestral event (classically a speciation or a
duplication) leading from one to many different entities. Moreover rooting a tree amounts to
determining the common ancestor of all entities, i.e. determining the direction of evolution.
Accordingly, internal nodes of an evolutionary tree (which are the trees considered in this
paper) should be of degree at least 3, except the root which is of degree at least 2. An
internal node x �= r(T ) of a tree T is binary if and only if x is of degree 3 and r(T ) is binary
if and only if r(T ) is of degree 2. A tree T is said binary if and only if all its internal nodes
are binary.

A subtree S of T is a tree such that V (S) ⊆ V (T ), E(S) ⊆ E(T ) and any edge of E(S)
connects two nodes of V (S). A chain of T is a subtree C with a node set V (C) = {x1, · · · , xk}
and an edge set E(C) = {e1, · · · , ek−1} such that for each 1 ≤ i ≤ k, ei is incident to xi and
xi+1.

If T is an unrooted tree, rooting T requires choosing an internal node as the root, or
creating a new node r(T ) on an edge e = {x,y} of T , namely removing e and adding two
edges {r(T ), x} and {r(T ),y}. If T is a rooted tree then the unrooted version of T is simply
T (ignoring the description of r(T ) as the root) if r(T ) is non-binary; otherwise it is the tree
obtained from T by removing r(T ) and its two incident edges going to its neighbors u and
v, and adding an edge between u and v.

For a rooted tree T , we denote by Tx the subtree of T rooted at x ∈ V (T ), i.e. the subtree
of T containing all the descendants of x. We call L(Tx) the clade of x. A clade is non-trivial
if it corresponds to an internal node of T . We denote by C(T ) the set of non-trivial clades
of T . It can be seen as a subset of the power set of L.

The bipartition of an unrooted tree T corresponding to an internal edge e = {x,y} is
the unordered pair of clades L(Tx) and L(Ty) where Tx and Ty are the two subtrees rooted
respectively at x and y obtained by removing e from T . A bipartition is non-trivial if it
corresponds to an internal edge of T , and trivial otherwise. We denote by B(T ) the set
of non-trivial bipartitions of T . Note that bipartitions are sometimes called splits in the
literature.

4.3.1. The Robinson-Foulds Distance

Definition 4.3.1 (edit operations). Two edit operations on the edges of a tree T (rooted or
unrooted) are defined as follows:

• Let e = {x,y} be an internal edge of E(T ). An edge contraction Cont(T,e) is an
operation transforming the tree T into the tree T ′ obtained from T by removing the
edge e of T and identifying x and y; in other words, T ′ is obtained by adding the
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edge {x, z} for each z ∈ Ch(y) \ {x}, and then removing y and its incident edges
(including {x,y}).

• Let x be a non-binary internal node of V (T ) and X = {y1, · · · , yt} � Ch(x) be a
subset of Ch(x) such that |X| ≥ 2. A node extension Ext(T,x,X) is an operation
transforming the tree T into the tree T ′ obtained from T by removing the edges {x,yi},
for 1 ≤ i ≤ t, creating a node y and a new edge e = {x,y} adjacent to x, and creating
new edges {y, yi}, for 1 ≤ i ≤ t.

The function δ(T1,T2) assigning to each pair of rooted or each pair of unrooted trees the
length of a minimum sequence of edit operations transforming T1 into T2 has been shown to
be a metric, called the Edit distance or Robinson-Foulds distance between T1 and T2 [58].

For unrooted trees T1 and T2, this distance corresponds to the symmetric difference
between the bipartitions of the two trees. More precisely, δ(T1,T2) = |B(T1) \ B(T2)| +
|B(T2) \ B(T1)|. In fact, to transform T1 into T2, edit operations are needed on bad edges
representing bipartitions which are not shared by the two trees, i.e. edges of T1 (respec. T2)
defining bipartitions in T1 (respec. T2) which are not in B(T2) (respec. in B(T1)). An edge
which is not bad is said to be good. Terminal edges are always good.

In the case of rooted trees T1 and T2, the Robinson-Foulds distance, that we denote in
this case δR(T1,T2), is usually defined in the literature as the symmetric difference between
the clades of the two trees. More precisely, for two rooted trees T1 and T2, δR(T1,T2) =
|C(T1) \ C(T2)| + |C(T2) \ C(T1)|.

The only thing that can make bipartitions and clades differ in number is rooting into
a bad edge. In this case, the same bipartition, corresponding to the two edges adjacent to
the root, would be counted twice. The link between this distance, defined in terms of clades
(that we write δR) and the edit distance (that we write δ), has been established through the
defined relation between the bipartition system (or split system) and the clade system (or
cluster system) [21].

Although our extended distance is more likely useful for rooted trees, algorithmic analyses
are simpler for unrooted trees, as in this case all internal nodes can be treated in the same
way. Here, we make the link between the rooted and unrooted case, and then focus, for the
rest of the paper, on unrooted trees.

Let T r be a rooted version of an unrooted tree T , with a binary root. Denote by e1, e2

the two edges adjacent to r(T r). As e1 and e2 define the same bipartition of B(T ), these
edges are either both good or both bad. These notations are used in the following lemma.
Lemma 4.3.2 (Link between rooted and unrooted trees). Let T1 and T2 be two unrooted
trees, and T ′

1, respectively T ′
2, be a rooting of T1, respectively T2.

• If T ′
1 and T ′

2 are both rooted into existing nodes of T1 and T2 or both rooted into good
edges of T1 and T2, then δR(T ′

1,T ′
2) = δ(T1,T2);
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• If T ′
1 and T ′

2 are both rooted into bad edges of T1 and T2, then δR(T ′
1,T ′

2) = δ(T1,T2)+2;
• If exactly one among T ′

1 and T ′
2 is rooted into a bad edge of T1 or T2, then δR(T ′

1,T ′
2) =

δ(T1,T2) + 1.
The edit distance between two trees (rooted or unrooted) can be computed in linear time

with the algorithm proposed by Day [19] in 1984. Our goal is to extend this distance to
labeled trees.

4.3.2. Labeled Trees

Given a finite set of labels Λ, T is labeled if and only if each internal node x of T has a
unique label λ(x) ∈ Λ.

Contraction and extension operations are generalized to labeled trees as follows: The
node y created from an edge extension Ext(T,x,X) is such that λ(y) = λ(x); an edge
contraction is only defined on edges {x, y} for which λ(x) = λ(y). It follows that a third edit
operation should be introduced for labeled trees. Let x be a node of a labeled tree T with
label λ = λ(x). A node flip Flip(x, λ′) is an operation assigning a new label λ′ to x, i.e. a
label λ′ ∈ Λ such that λ′ �= λ. Those operations are depicted in Figure 4.1.

A node flip is required before contracting a mixed edge, i.e. an edge with its two extrem-
ities being differently labeled. A tree is said to be a mixed tree if all its edges are mixed
edges.

Fig. 4.1. The three edit operations defined for labeled trees. From left to right:
Flip, Contraction and Extension.

Let T be the set of trees on L, all trees being of the same type, i.e. all rooted or
unrooted, all labeled or unlabeled. The following lemma (holding for all these cases) shows
that introducing the flip operation does not prevent δ from being a distance.
Lemma 4.3.3 (Edit distance). The function δ(T1, T2) assigning to each pair (T1, T2) ∈ T 2

the minimum length of a sequence of edit operations transforming T1 into T2 defines a distance
on T .

In this paper, Λ is restricted to two labels. They are illustrated by a circle and a square
in Figure 4.2. The two labels can, for example, represent speciation and duplication events.
Notice however that labeling is not constrained to be consistent with a species tree [35, 45].
In other words, the intermediate trees in an optimal path transforming a tree to another are
not required to be feasible according the the speciation/duplication labeling. Algorithmic
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analyses are made independently of the nature of the two node labels. However, for notation
purpose, we write Λ = {Spe, Dup}.

Fig. 4.2. Two unrooted and labeled trees T and T ′ on L = {A, B, C, D, E, F, G}.
The square and circle symbols represent the two possible labels for an internal node.
Bad edges are red and good ones are black. {S1, S2} are the maximal bad subtrees
of T and {S ′

1, S ′
2} the corresponding subtrees of T ′.

4.4. Results on Labeled Trees
We focus now on unrooted trees. Using Lemma 4.3.2, our results can then be easily

extrapolated to rooted trees. Consider T as the set of unrooted and labeled trees on L.
The goal is to compute the edit distance δ(T,T ′) for any pair T, T ′ of trees of T , that is the
number of operations in an optimal sequence, i.e a sequence of edit operations of minimum
length transforming T into T ′.

4.4.1. Reduction to Maximal Bad Subtrees

Let S be a subtree of T . Let {ei = {xi,yi}, for 1 ≤ i ≤ k} be the set of terminal edges
of S, with each yi being a leaf of S, and {Xi, Yi} being the bipartition corresponding to ei.
Each leaf yi of S is said to be mapped to Yi. Notice that ∪1≤i≤kYi = L.

We say that S is a bad subtree of T if and only if S contains only bad edges, except
the terminal edges of S which are all good edges of T . In other words, S is maximal in the
sense that no more bad internal edges can be added into it. Intuitively, S can be obtained by
taking a subtree with only bad edges, and adding edges adjacent to bad edges of S iteratively
until the process stops. As a result, every terminal edge ei of S will be good, i.e. there is an
edge e′

i = {x′
i, y′

i} in T ′ corresponding to ei = {xi,yi}, that determine the same bipartition
{Xi, Yi}. Note that a maximal bad subtree may contain no bad edge at all (i.e. it is a star
tree centered on good edges).
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Lemma 4.4.1 (Pairs of maximal bad subtrees). Let S be a maximal bad subtree of T with
the set {ei}1≤i≤k of terminal edges, and let {e′

i}1≤i≤k be the corresponding set of edges in T ′.
Then the subtree S ′ of T ′, containing all e′

i edges as terminal edges, is unique. Moreover, it
is a maximal bad subtree of T ′.

Let {S1, S2, · · · , Sk} be the set of maximal bad subtrees of T and {S ′
1, S ′

2, · · · , S ′
k} be

the corresponding subtrees of T ′ (see Figure 4.2 for an example). For 1 ≤ i ≤ m, let Pi be
an optimal sequence transforming Si into S ′

i. Then the sequence P obtained by performing
consecutively P1, P2, · · · , Pm transforms T into T ′.

Although the traditional RF distance can be deduced from the above observation, in our
case such a sequence is not necessarily optimal. In fact, in contrast with unlabeled trees,
optimal sequences for labeled trees may involve contracting good edges, as illustrated in
Figure 4.3.

Fig. 4.3. Example where the minimal edit path requires contracting a good edge:
if we contract the internal good edge of T (the bold one), then the 3 subtrees of T
can be handled together, requiring 6 node flips and 18 edge contractions to reduce T
into a star tree, and then 18 edge extensions to reach T ′, leading to 42 operations in
total. By contrast, if we do not contract the good edge of T , then the two subtrees
of T separated by this edge should be handled separately, requiring 9 flips, 17 edge
contractions and 17 edge extensions to reach T ′, leading to 43 operations in total.
The first scenario is the better one.

4.4.2. Reduction to Mixed Bad Subtrees

In the next section, we will describe an exact algorithm for optimally contracting a mixed
tree. Before reaching this step, the question is how to obtain such a tree. The next lemma
shows that non-mixed bad edges can be contracted first. The idea of the proof is that any
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optimal solution must eventually contract a non-mixed bad edge {x,y}. We can thus contract
{x,y} first into a single node z, and “reproduce” all the events of the optimal solution by
treating z as either x or y.
Lemma 4.4.2 (Contract non-mixed bad edges). Let e be any non-mixed bad edge of T , and
let Tc be the tree obtained from T by contracting e. Then δ(Tc,T

′) = δ(T,T ′) − 1.
According to this lemma, we can safely start by contracting all non-mixed bad edges of T

and T ′ first, since there is always an optimal sequence of edit operations that also does this.
The resulting trees Tc and T ′

c can then be subdivided into pairs of maximal bad subtrees, all
such bad subtrees being mixed subtrees.

4.5. Algorithms
We first consider a general framework which entails performing all required edge contrac-

tions first, and then all node extensions.

Methodology 1 ( T , T ′)
Contract non-mixed bad edges of T and T ′, leading to Tc and T ′

c;
for each pair S,S ′ of maximal bad subtrees of Tc,T

′
c do

Perform a sequence of flip and contraction operations leading from S to a star tree S∗;
Perform a sequence of flip and extension operations leading from S∗ to S ′;

end for

This general framework leads to the following upper bound for δ(T,T ′).
Lemma 4.5.1 (Upper bound δ). Let T and T ′ be two unrooted and labeled trees with n

internal nodes each and let e (resp. e′) be the number of internal bad edges of T (resp. T ′).
Then δ(T,T ′) ≤ e + e′ + n.

Notice that if both T and T ′ are binary, then e = e′. Moreover, in this this case 2e + n

is a tight bound as it can be reached in some cases (see an example in Figure 4.4).
The first step of Methodology 1 leads to a star tree T∗. Instead of then extending nodes

to reach T ′, a symmetric way would be to transform T ′ into a star tree T ′
∗. The difference

between T∗ and T ′
∗ may be in the label of the single node of each of these trees, which would

then need an additional flip operation to reconstruct a corresponding path from T to T ′.
This second methodology is given below, where Contract-Tree(T ,T∗) takes as input a tree
T and returns a sequence of operations contracting a tree T , i.e. transforming T into a star
tree, and the star tree T∗ resulting from this optimal contraction.

Methodology 2 is clearly simpler to handle and will be explored in the next section. The
next lemma shows that it may overestimate an optimal sequence returned by Methodology 1
by at most one operation for each pair of maximal bad subtrees.
Lemma 4.5.2 (Compare Meth.1 and Meth.2). Let S and S ′ be a pair of maximal bad subtrees
of Tc and T ′

c, obtained similarly by Methodology 1 and Methodology 2. Let M1(S,S ′) (respec.
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Fig. 4.4. A pair of unrooted mixed trees (T,T ′), both with eight internal edges
and nine internal nodes. All their internal edges are bad edges (red edges). Here
δ(T,T ′) = 25 = 2 · 8 + 9 = 2 · e + n.

Methodology 2 ( T , T ′)
Contract non-mixed bad edges of T and T ′, leading to Tc and T ′

c;
for each pair S,S ′ of maximal bad subtrees of Tc,T

′
c do

Contract-Tree(S, S∗);
Contract-Tree(S ′, S ′

∗);
Perform a final flip if required;

end for

M2(S,S ′)) be the number of operations performed by the for loop of Methodology 1 (respec.
Methodology 2). Moreover, let S∗ (respec. S ′

∗) be the star tree returned by Contract-Tree on
S (respec. on S ′).

(1) If S∗ = S ′
∗ (same node label), then M2(S,S ′) = M1(S,S ′);

(2) Otherwise, M1(S,S ′) ≤ M2(S,S ′) ≤ M1(S,S ′) + 1

4.5.1. An Optimal Algorithm for Contracting a Tree

The remaining problem is the one of finding an optimal sequence of contraction and flip
operations contracting a mixed tree T . For any such sequence, the number of contraction
operations is just the number of internal edges of T . Therefore, the problem reduces to
finding the minimum number of flip operations φ(T ) in such an optimal sequence. Notice
that the problem does not reduce to performing the minimum number of flips leading to the
same label for all nodes, which would just be min{nbspe, nbdup} with nbspe (respec. nbdup)
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being the number of Spe (respec. Dup) nodes of T . For example, for the tree T of Fig-
ure 4.3, min{nbspe, nbdup} = 9. However, proceeding by an alternating sequence of flip and
contraction operations (the top node flipped to Dup, then the three top edges contracted,
then the next top node flipped to a Spe node, then the three top edges contracted, etc.)
leads to a total of 6 flips rather than 9.

We will proceed iteratively by starting a sequence of contraction operations from the
center of a tree T , i.e. the midpoint of the longest mixed chain of T . The diameter, denoted
diam(T ), of a tree T is the length of its longest chain (determined in terms of the number of
edges). Note that any longest chain in a tree has two leaves at its extremities, as otherwise we
could extend the chain. Assume that T has at least two terminal edges, so that diam(T ) ≥ 2.
We show that φ(T ) is equal to diam(T )/2� − 1. For a node v, let eccT (v) denote the
maximum distance from v to a leaf of T (this is known as the eccentricity of v) 1.
Lemma 4.5.3 (Optimal path contracting a mixed tree). The minimum number of flips in an
optimal sequence of operations transforming a mixed tree T into a star tree is diam(T )/2�−
1.

Algorithm Contract-Tree(T ) (where T is a mixed tree)
Let P = (w1, w2, . . . , wk) be a longest chain of T ;
Let w = w�k/2� be a midpoint of P ; (w has minimum eccentricity)
while w has a non-leaf neighbor do

Flip w;
Contract the internal edges incident to w;

end while

Lemma 4.5.3 immediately lead to Algorithm Contract-Tree. The fact that the algorithm
contracts T into a star tree using φ(T ) flips follows from the proof of Lemma 4.5.3.
Theorem 4.5.4. For T being a mixed tree, Algorithm Contract-Tree returns the length of
an optimal sequence of operations contracting T .

One should note that if T has even diameter, then there are two possible midpoints, i.e.
two nodes with minimum eccentricity. This means that it is possible to choose the label of
the internal node of the resulting star tree. This guarantees that when contracting a pair
of bad subtrees T and T ′, we can always avoid a final flip by choosing the appropriate final
label if either T or T ′ has even diameter. We cannot guarantee that this final flip is avoidable
if both subtrees have odd diameter.

We now show that Methodology 2 has a guaranteed approximation ratio of 2 when using
Algorithm Contract-Tree as a subroutine. The idea behind the approximation is to show
that any optimal solution must contract all the bad edges and perform at least one flip or
good edge contraction per bad subtree. Our algorithm only contracts bad edges, and we can
1The radius of T is a well-known graph parameter and is defined as the minimum eccentricity of a node of
T . In a tree, the radius turns out to be diam(T )/2�.
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show that the number of flips performed is at most the number of bad edges plus twice the
number of bad subtrees.
Theorem 4.5.5 (Upper bound Meth.2). Let d be the number of operations performed by
Methodology 2 when tree contractions are done by Algorithm Contract-Tree. Then d ≤
2δ(T, T ′).

4.6. Experimental Results

Fig. 4.5. Empirical comparison of the distance inferred for an increasing number
of random edit operations (contraction, extensions, and flips), using the classical
Robinson-Foulds distance (left) and Contract-Tree algorithm (right). Because the
former ignores node labels, it grossly underestimates the actual number of edits.
Our algorithm tracks more closely the actual number of edits.

We implemented a heuristic following Methodology 2, using the Contract-Tree algorithm.
To test it on simulated data, we retrieved the TP53 gene family from Ensembl release 96 (542
genes), including the speciation and duplication labels, and introduced an increasing number
of random edit operations, on 30 replicates. A random edit was introduced as follows: with
probability 0.3, the label of one random internal node was flipped; the rest of the probability
mass function was evenly distributed among all internal edges connecting nodes of the same
type (which could be potentially contracted) and all nodes of degree > 3 (in which a new
edge could potentially be expanded).

After each edit, we computed the classical RF distance and its extension to labeled trees
using our heuristic (Fig. 4.5). Because it accounts for labels, the latter tracked more closely
the true number of edits. At the same time, the estimated distances were never higher than
the actual number of edits, which suggests that the heuristic can identify a minimum edit
path when the total number of edit operations is relatively low. The implementation, includ-
ing the function to mutate labeled trees, is available as an open source Python library (PyPI
package pylabeledrf, also available at https://github.com/DessimozLab/pylabeledrf).
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4.7. Discussion
In this paper, we have considered what we thought was the simplest and most natural

extension of the Robinson-Foulds distance to labeled trees. Although its theoretical com-
plexity is unknown and remains an open problem, this extension appears to be much harder
to compute than the classical RF distance for unlabeled trees.

Despite the optimality of Algorithm Contract-Tree for contracting a mixed tree, neither
Methodology 1, nor Methodology 2 are guaranteed to lead to an optimal solution. This is
due to two main reasons. The first one is that, as shown in Figure 4.3, an optimal path
contracting a tree T may require contracting good edges, i.e. edges common to both trees,
which is not the case for unlabeled trees. The second reason is that an optimal path from
a tree T to a tree T ′ may not be one with all edge contraction events preceding all edge
extension. An example, given in Figure 4.6, shows that it may be better to convert a given
bad edge into a good edge rather than contracting all bad edges. It can be observed from
this example that going from T to T ′ following the red path entails performing a nearest-
neighbour interchange (NNI) operation on the edge e of T . A future direction for improving
the algorithm will be to consider such “safe” edges, i.e. edges admitting an NNI leading to
a bipartition of the target tree.

Fig. 4.6. An optimal path from T to T ′ following Methodology 1 is depicted by
black arrows and involves 6 operations. It is not optimal as another path, depicted
by red arrows, involves only five operations. The path of length 3 from T to Ts acts
on the safe edge, represented in orange. This path involves an edge contraction, an
edge extension and a flip, leading to the good edge (red edge) in Ts.

Still, we have implemented a heuristic which constitutes a better baseline solution to
quantifying differences between labeled tree topologies than the conventional RF measure,
which is blind to labels. For instance, this implementation could be useful in the context of
orthology benchmarking, to compare inferred labeled trees with reference curated ones [4].

Looking ahead, we envision several potential future directions. We see potential in iden-
tifying the good edges that should be contracted and characterizing classes of trees that may
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be resolved optimally. In particular, it would be interesting to restrict the study to the class
of labeled trees consistent with a species tree (which is not the case of the trees of Figure 4.3).

Another direction would be to consider an alternative extension of the RF distance. In
this paper, edge contraction and edge extension, the two edit operations defining the classi-
cal RF , were re-defined in the context of labeled nodes, by constraining them to occur on
edges with the same labels on their extremities. Another direction would be to consider edit
operations on nodes, as for the Tree Edit Distance (TED) for hierarchical trees, i.e. node
deletion, insertion and relabeling. In addition to the theoretical complexity and computa-
tional efficiency, it would be important to evaluate the robustness of these two RF extensions
with respect to small changes in the topology or tree labeling. Although we do not expect
robustness to be much better than the classical RF , knowing which extension is better can
orient the study towards future improvements. Finally another direction would be to extend
the study to an arbitrary set of possible labels.

More generally, we think that computing the distance between labeled trees conceals
many new problems and opens a variety of new algorithmic directions.
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Chapter 5

A Linear Time Solution to the Labeled
Robinson-Foulds Distance Problem

The article presented in this chapter is in preparation for submission. This chapter is in the
continuity of our work presented in the previous chapter. It describes the "Labeled Robinson-
Foulds" distance, a new metric to account for internal node labels for the comparison of
labeled gene trees.

We previously extended the Robinson-Foulds distance to trees with labeled internal
nodes by extending the Robinson-Foulds edit operations on tree edges. The extension was
an initiative to widen the applicability of pairwise measures of dissimilarity for comparing
trees with information on internal nodes, as very few measures have been designed for
such purpose. Unfortunately, the Robinson-Foulds’ most attractive trait, which is to be
computable in linear time, was lost in the process. In this chapter, we study a different
approach based on edit operations on nodes, in an attempt to address some of the
weaknesses of the algorithm presented in the previous chapter, more specifically, in terms
of precision and time-efficiency. We also implemented an exact linear time algorithm useful
for preliminary analysis and comparison of labeled reconciled gene trees.

Contributions: Samuel Briand, Christophe Dessimoz, and Nadia El-Mabrouk partici-
pated collectively in the development of the proofs and algorithms included in the article.
Samuel Briand, Christophe Dessimoz, Nadia El-Mabrouk, and Yannis Nevers wrote the man-
uscript. Samuel Briand designed and implemented the first version of the distance software.
Christophe Dessimoz and Yannis Nevers implemented the final version of the distance soft-
ware, and performed the experiments presented in the manuscript. All authors have read
and approved the final manuscript.
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5.1. Abstract
Motivation: Comparing trees is a basic task for many purposes, and especially in phylogeny
where different tree reconstruction tools may lead to different trees, likely representing
contradictory evolutionary information. While a large variety of pairwise measures of
similarity or dissimilarity have been developed for comparing trees with no information
on internal nodes, very few measures have been designed for node labeled trees, which is
for instance the case of reconciled gene trees. Recently, we proposed a formulation of the
Labeled Robinson Foulds edit distance with edge extensions, edge contractions between
identically labeled nodes, and node label flips. However, this distance proved difficult to
compute, in particular because shortest edit paths can require contracting “good” edges,
i.e. edges present in the two trees.

Results: Here, we report on a different formulation of the Labeled Robinson Foulds edit
distance — based on node insertion, deletion and label substitution — which we show can
be computed in linear time. The new formulation also maintains other desirable properties:
being a metric, reducing to Robinson Foulds for unlabeled trees and maintaining an intuitive
interpretation. The new distance is computable for an arbitrary number of label types, thus
making it useful for applications involving not only speciations and duplications, but also
horizontal gene transfers and further events associated with the internal nodes of the tree.
To illustrate the utility of the new distance, we use it to study the impact of taxon sampling
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on labeled gene tree inference, and conclude that denser taxon sampling yields better trees.

Availibility and implementation: The software written in Python is available in the
pylabeledrf repository at https://github.com/DessimozLab/pylabeledrf.

5.2. Introduction
Gene trees are extensively used, not only for inferring phylogenetic relationships between

corresponding taxa, but also for inferring the most plausible scenario of evolutionary events
leading to the observed gene family from a single ancestral gene copy. This has important
implications towards elucidating the functional relationship between gene copies. For this
purpose, reconciliation methods (reviewed in Boussau and Scornavacca, 2020) [7] embed a
given gene tree into a known species tree. This process results in the labeling of the internal
nodes of the gene tree with the type of events which gave rise to them, typically speciations
and duplications, but also horizontal gene transfers or possibly other events (whole genome
duplication, gene convergence, etc). For example, information on duplication and speciation
node labeling is provided for the trees of the Ensembl Compara database [73].

The existence of a variety of different phylogenetic inference methods, leading to different,
potentially inconsistent trees for the same dataset, brings forward the need for appropriate
tools for comparing them. Although comparing labeled gene trees remains a largely un-
explored field, a large variety of pairwise measures of similarity or dissimilarity have been
developed for comparing unlabeled evolutionary trees. Among them are the methods based
on counting the structural differences between the two trees in terms of path length, biparti-
tions or quartets for unrooted trees, clades or triplets for rooted trees [12, 23, 16], or those
based on minimizing a number of rearrangements that disconnect and reconnect subpieces
of a tree, such as nearest neighbour interchange (NNI), subtree-pruning-regrafting (SPR)
or Tree-Bisection-Reconnection (TBR) moves [39, 36, 3]. While the latter methods are
NP-hard [46], the former are typically computable in polynomial time. In particular, the
Robinson-Foulds (RF ) distance, defined in terms of bipartition dissimilarity for unrooted
trees, and clade dissimilarity for rooted trees [48], can be computed in linear [19], and even
sublinear time [54].

On the other hand, metrics have also been developed for node labeled trees (rooted, and
sometimes with an order on nodes) arising from many different applications in various fields
(parsing, RNA structure comparison, computer vision, genealogical studies, etc), where node
labels in a given tree are pairwise different. The standard Tree Edit Distance (TED), defined
in terms of a minimum cost path of node deletion, node insertion and node relabeling (label
substitution) transforming one tree to another, has been widely used in this context for
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comparing two trees sharing the same set of node labels (i.e. each label present exactly once
in each tree). While the less constrained version of the problem on unordered labeled trees
is NP-complete [80], most variants are solvable in polynomial time [78, 79, 64].

The metric we developed in Briand et al.(2020) [8], referred to as ELRF , is the first effort
towards comparing labeled gene trees, expressed in terms of trees with a binary node labeling
(typically speciation and duplication). ELRF is an extension of the RF distance, one of
the most widely used tree distance, not only in phylogenetics, but also in other fields such
as in linguistics, for its computational efficiency, intuitive interpretation and the fact that it
is a true metric. Improved versions of the RF distance have also been developed [46, 49] to
address the distance drawbacks, which are lack of robustness (a small change in a tree may
cause a disproportional change in the distance) and skewed distribution. Classically defined
in terms of bipartition or clade dissimilarity, the RF distance can similarly be defined in terms
of edit operations on tree edges: the minimum number of edge contraction and extension
needed to transform one tree into the other [58]. In Briand et al.(2020) [8], this definition
of the RF distance was extended to node labeled trees by including a node flip operation,
alongside edge contractions and extensions. While remaining a metric, ELRF turned out
to be much more challenging to compute, even for binary node labels. As a result, only a
heuristic could be proposed to compute it.

In this paper, we explore a different extension of RF to node labeled trees, directly derived
from TED, which is a reformulation of the RF distance in terms of edit operations on tree
nodes rather than on tree edges. We show that this distance is computable in linear time for
an arbitrary number of label types, thus making it useful for applications involving not only
speciations and duplications, but also horizontal gene transfers and further events associated
with the internal nodes of the tree. We show that the new distance compares favourably to
RF and ELRF by performing simulations on labeled gene trees of 182 leaves. Finally, we
use our new distance in the purpose of measuring the impact of taxon sampling on labeled
gene tree inference, and conclude that denser taxon sampling yields better predictions.

5.3. Notation and Concepts
Let T be a tree with node set V (T ) and edge set E(T ). Given a node x of T , the degree

of x is the number of edges incident to x. We denote by L(T ) ⊆ V (T ) the set of leaves of
T , i.e. the set of nodes of T of degree one. In particular, given a set L (let us say taxa or
genetic elements), a tree T on L is a tree with leafset L(T ) = L.

A node of V (T ) \ L(T ) is called an internal node. A tree with a single internal node x

is called a star tree, and x is called a star node. An edge connecting two internal nodes is
called an internal edge; otherwise, it is a terminal edge. Moreover, a rooted tree admits a
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single internal node r(T ) considered as the root. Now an internal node x is binary if x is of
degree 3 and r(T ) is binary if r(T ) is of degree 2.

Let x and y be two nodes of a rooted tree T ; y is a descendant of x if y is on the path
from x to a leaf (possibly y itself) of T . If T is rooted, we say that y is a child of x if
e = {x,y} is an edge of E(T ) with y being a descendant of x. If T is unrooted, we call the
set {y : {x,y} ∈ E(T )} the set of children of x. For a rooted or an unrooted tree T , we
denote by Ch(x) the set of children of an internal node x of T .

A subtree S of T is a tree such that V (S) ⊆ V (T ), E(S) ⊆ E(T ) and any edge of E(S)
connects two nodes of V (S). For a rooted tree T , we denote by Tx the subtree of T rooted
at x ∈ V (T ), i.e. the subtree of T containing all the descendants of x. We call L(Tx) the
clade of x.

The bipartition of a tree T corresponding to an edge e = {x,y} is the unordered pair of
clades L(Tx) and L(Ty) where Tx and Ty are the two subtrees rooted respectively at x and
y obtained by removing e from T . We denote by B(T ) the set of non-trivial bipartitions of
T , i.e. those corresponding to internal edges of T .

5.3.1. The Robinson-Foulds Distance

Given two unrooted trees T and T ′ on the leafset L, the Robinson-Foulds (RF ) distance
between T and T ′ is the symmetric difference between the bipartitions of the two trees. More
precisely,

RF (T,T ′) = |B(T ) \ B(T ′)| + |B(T ′) \ B(T )|
In the case of rooted trees, the RF distance is defined as the symmetric difference between
the clades of the two trees.

As recalled in Briand et al.(2020) [8], the RF distance is equivalently defined in terms of
an edit distance on edges. However, as for labeled trees an additional substitution operation
on node labels will be required, for the sake of standardization, we reformulate the edit
operations to operate on nodes rather than on edges.
Definition 5.3.1 (node edit operations). Two edit operations on the nodes of a tree T

(rooted or unrooted) are defined as follows:

• Node deletion: Let x be an internal node of T which is neither the root nor a star
node, and let y be the parent of x if T is rooted, or y be a given child of x which is
not a leaf if T is unrooted (such an y exists from the fact that x is not a star node).
Deleting x means making the children of x become the children of y. More precisely,
Del(T,x,y) is an operation transforming the tree T into the tree T ′ obtained from
T by removing the edge {x,z} for each z ∈ Ch(x), creating the edge {y,z} for each
z ∈ Ch(x) \ {y}, and then removing node x.
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• Node insertion: Let y be a non-binary internal node of V (T ). Inserting x as a
child of y entails making x the parent of a subset Z � Ch(y) such that |Z| ≥ 2.
More precisely, Ins(T,x,y,Z) is an operation transforming the tree T into the tree T ′

obtained from T by removing the edges {y,zi}, for all zi ∈ Z, creating a node x and
a new edge e = {x,y}, and creating new edges {x, zi}, for all zi ∈ Z.

Notice the one-to-one correspondence between operations on nodes and operations on
edges. In fact, deleting a node x by an operation Del(T,x,y) results in deleting the edge
{x,y}, while inserting a node x by an operation Ins(T,x,y,Z) results in inserting the edge
{x,y}. Here, we define the RF distance in terms of edit operations on nodes. This definition
is equivalent to the more classical formulation in terms of edit operations on edges. Formally,
let T and T ′ be two trees on the same leafset L. The Robinson-Foulds or Edit distance [58]
RF (T,T ′) between T and T ′ is the length of a shortest path of node edit operations trans-
forming T into T ′. This distance measure, equivalently defined as the symmetrical difference
between the bipartitions of the two trees in case of unrooted trees, or the symmetrical dif-
ference between the clades of the two trees in case of rooted trees, has been shown to be a
metric.

Call a bad edge of T with respect to T ′ (or similarly of T ′ with respect to T ; if there is
no ambiguity, we will omit the “with respect to” precision) an edge representing bipartitions
which are not shared by the two trees, i.e. an edge of T (respec. T ′) defining a bipartition of
B(T ) (respec. B(T ′)) which is not in B(T ′) (respec. in B(T )). An edge which is not bad is
said to be good. Terminal edges are always good. The only thing that can make bipartitions
and clades differ in number is rooting into a bad edge. In that case, the same bipartition,
corresponding to the two edges adjacent to the root, would be counted twice. Given two
rooted trees, their RF distance can then be deduced from the RF distance of the “unrooted
version” of the two trees by applying Lemma 1 in Briand et al.(2020) [8].

In this paper, we focus on unrooted trees, thus avoiding the special case of the root.
Therefore, for now on, all trees are considered unrooted.

5.4. Generalizing the Robinson-Foulds Distance to La-
beled Trees

A tree T is labeled if and only if each internal node x of T has a label λ(x) ∈ Λ, Λ being
a finite set of labels. For gene trees, labels usually represent the type of event leading to the
bifurcation, typically duplications and speciations, although other events, such as horizontal
gene transfers, may be considered. The metric defined in this paper works for an arbitrary
number of labels. We generalize the RF distance to labeled trees by generalizing the edit
operations defined above. This is simply done by introducing a third operation for node
labels editing.
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Definition 5.4.1 (Labeled node edit operations). Three edit operations on internal nodes
of a labeled tree T are defined as follows:

• Node deletion: Del(T,x,y) is an operation deleting an internal node x of T with
respect to a child y of x which is not a leaf, defined as in Definition 5.3.1.

• Node insertion: Ins(T,x,y,Z,λ) is an operation inserting an internal node x as a
new child of a non-binary node y, and moving Z � Ch(y) such that |Z| ≥ 2, to be the
children of x, as defined in Definition 5.3.1. In addition, the inserted node x receives
a label λ ∈ Λ.

• Node label substitution: Sub(T,x,λ) is an operation substituting the label of the
internal node x of T with λ ∈ Λ.

These operations are illustrated in Figure 5.1.

Fig. 5.1. The transformation of a tree T into a tree T ′ depicting the three edit operations
on nodes. From top to bottom: node label substitution (leading to the red label), node
deletion (the parent of D and E) and node insertion (the parent of D and C).

Let TL be the set of unrooted and labeled trees on the leafset L. For two trees T , T ′ of
TL, we call the Labeled Robinson Foulds distance between T and T ′ and denote LRF (T,T ′)
the length of a shortest path of labeled node edit operations transforming T into T ′ (or
vice versa). The two following lemma state that, similarly to RF , LRF is a true metric.
Moreover, LRF is exactly RF for unlabeled trees (or similarly labeled with a single label).

In the following the unlabeled version of a tree T ∈ TL is simply T ignoring its node
labels.
Lemma 5.4.2. The function LRF (T,T ′) assigning to each pair (T,T ′) ∈ T 2

L the length of a
shortest path of node edit operations transforming T into T ′ defines a distance on TL.

Proof. The non-negative and identity conditions are obvious. For the symmetric condition,
notice that we can reverse every edit operation in a path from T to T ′ to obtain a path
from T ′ to T with the same number of events, and vice versa (insertions and deletions are
symmetrical operations, and any substitution can be reversed by a substitution). We thus
have LRF (T ′, T ) ≤ LRF (T, T ′) and LRF (T, T ′) ≤ LRF (T ′, T ), and equality follows.
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Finally, we prove the triangular inequality condition: for three trees T , T ′ and T ′′, to
transform T into T ′, we may take any path of edit operations from T to T ′′, followed by
any path of edit operations from T ′′ to T ′. It follows that LRF (T, T ′) ≤ LRF (T, T ′′) +
LRF (T ′′, T ′). �

Lemma 5.4.3. If Λ is restricted to a single label, then for each pair (T,T ′) ∈ T 2
L ,

LRF (T,T ′) = RF (T,T ′).

Proof. Let l be the only label of Λ. Let P be a path of node edit operations transforming
the unlabeled version of T into the unlabeled version of T ′, such that |P| = RF (T,T ′).
Labeling by l each inserted node leads to a corresponding path of labeled node edit operations
transforming T into T ′, and thus LRF (T,T ′) ≤ RF (T,T ′).

Conversely, Let P be a path labeled node edit operations transforming T into T ′, such that
|P| = LRF (T,T ′). As a single label exists, node substitutions are not defined, and thus P is
restricted to a set of node insertion and deletion transforming T into T ′, and thus a fortiori
the unlabeled version of T into the unlabeled version of T ′. Thus RF (T,T ′) ≤ LRF (T,T ′),
which completes the proof. �

A previous extension of RF to labeled trees, based on edit operations on edges rather
than on nodes, was introduced in Briand et al.(2020) [8]. This distance, which we call ELRF ,
was defined on three operations:

• Edge extension Ext(T,x,X) creating an edge {x,y} and defined as a node insertion
Ins(T,y,x,X,λ(x)) inserting a node y as a child of x and assigning to y the label of
x;

• Edge contraction Cont(T,{x,y}) similar to a node deletion Del(T,y,x) deleting y, but
only defined if λ(x) = λ(y);

• Node flip Flip(x,λ) assigning the label λ to x.
Given two labeled trees T and T ′ of TL, ELRF (T,T ′) is the length of the shortest path

of edge extension, edge contraction and label flip required to transform T to T ′.
The following lemma makes the link between LRF and ELRF .

Lemma 5.4.4. For any pair (T,T ′) ∈ T 2
L ,

LRF (T,T ′) ≤ ELRF (T,T ′)

Proof. Let P be a path of edge edit operations and label flip transforming T into T ′ such
that |P| = ELRF (T,T ′). Then the sequence P ′ obtained from P by replacing each edge
extension by the corresponding node insertion, each edge contraction by the corresponding
node deletion and each node flip by the corresponding node substitution is clearly a path of
node edit operations of length |P ′| = |P| = ELRF (T,T ′) transforming T into T ′. And thus
LRF (T,T ′) ≤ ELRF (T,T ′). �
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The rest of this paper is dedicated to computing the edit distance LRF (T,T ′) for any pair
(T, T ′) of trees of TL.

5.4.1. Reduction to Islands

In this section, we define a partition of the two trees into pairs of maximum subtrees that
can be treated separately.

While a good edge e of T has a corresponding good edge e′ in T ′ (the one defining the
same bipartition), a bad edge in T has no corresponding edge in T ′. However, these edges
may be grouped into pairs of corresponding islands (called maximum bad subtrees in Briand
et al.(2020) [8]), as defined bellow.
Definition 5.4.5 (Islands). An island of T is a maximum subtree (i.e. a subtree with a
maximum number of edges) I of T such that I contains no internal edge which is a good
edge of T , and all terminal edges of I are good edges of T . The size of I, denoted ε(I), is its
number of internal edges.

In other words, an island of T is a maximum subtree with all internal edges (if any) being
bad edges of T , and all terminal edges being good edges of T . Notice that an island I of T

may have no internal edge at all, i.e. it may be a start tree (if ε(I) = 0). Moreover, a tree T

is “partitioned” into its set {I1, I2, · · · In} of islands in the sense that {V (I1),V (I2), · · · V (In)}
is a partition of V (T ). Notice also that each bad edge of T belongs to a single island, while
each good edge belongs to exactly two islands of T if it is an internal edge of T , or to a single
island if it is a terminal edge of T .

Finally, the following lemma from Briand et al.(2020) [8] shows that there is a one-to-one
correspondence between the islands of T and those of T ′.
Lemma 5.4.6. Let I be an island of T with the set {ei}1≤i≤k of terminal edges, and let
{e′

i}1≤i≤k be the corresponding set of edges in T ′. Then the subtree I ′ of T ′, containing all e′
i

edges as terminal edges, is unique. Moreover, it is an island of T ′.
For any island I of T , let I ′ be the corresponding island of T ′. We call (I,I ′) an island

pair of (T,T ′). See Figure 5.2 for an example.

Now, let I(T,T ′) = {(I1,I ′
1), (I2,I ′

2), · · · , (In,I ′
n)} be the set of island pairs of (T,T ′). For

1 ≤ i ≤ n, let Pi be a shortest path of labeled node edit operations transforming Ii into I ′
i.

Then the path P obtained by performing consecutively P1, P2, · · · , Pn (that we represent
later as P1.P2. · · · .Pn) clearly transforms T into T ′. Therefore we have

LRF (T,T ′) ≤
n∑

i=1
LRF (Ii, I ′

i)

As described in Briand et al.(2020)[8], one major issue with ELRF is that good edge
contractions may not be avoided in a shortest path of edit operations transforming T into T ′,
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Fig. 5.2. Two trees T and T ′ on TL for L = {A,B,C,D,E,F,I,J}, with a binary labeling
of internal nodes (squares and circles). Dotted lines represent good internal edges, solid
lines represent bad edges and thin lines represent terminal edges (which are good edges).
This representation highlights the partition of the two trees into the island pairs I(T,T ′) =
{(I1,I ′

1), (I2,I ′
2), (I3,I ′

3), (I4,I ′
4)}. Notice that each dotted line belongs to its two adjacent

islands

resulting in island merging. In other words, treating island pairs separately may not result
in an optimal scenario of edit operations under ELRF , preventing the above inequality from
being an equality. Interestingly, the equality holds for the LRF distance, as we show in the
next section.

Fig. 5.3. An optimal sequence of edit operations for the island pair (I,I ′).
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5.4.2. Computing the LRF Distance on Islands

We require an additional definition. Two trees I and I ′ of an island pair are said to share
a common label l ∈ Λ if there exist x ∈ V (I) and x′ ∈ V (I ′) such that λ(x) = λ(x′) = l. If I

and I ′ do not share any common label, then (I,I ′) is called a label disjoint island pair. For
example, the pair (I3, I ′

3) in Figure 5.2 or the pair (I, I ′) in Figure 5.3 are label disjoint.
Now let (I,I ′) be an island pair. Transforming I into I ′ can be done by reducing I into

a star tree by performing a sequence of node deletions (if any, i.e. if I is not already a
star tree), and then raising the star tree by inserting the required nodes to reach I ′. Only
the unique node not deleted during the first step might require a label substitution; for all
inserted nodes, the label can be chosen to match that of I ′. However, if I and I ′ share a
common label l among their internal nodes, then the deletions can be done in a way such
that the surviving node x of I is one with label λ(x) = l, thus avoiding the need for any
substitution. The number of required operations is thus ε(I) deletions, followed by zero
or one substitution, followed by ε(I ′) insertions. Alternatively, the problem can be seen as
one of reducing the two trees into star trees by performing ε(I) + ε(I ′) deletions, in a way
reducing the two islands into two star trees sharing the same label, if possible. Figure 5.3
depicts an example of such tree editing for a label disjoint island pair.

The following lemma shows that the sequential way of doing described above is optimal.
Lemma 5.4.7. Let (I,I ′) be an element of I(T,T ′). Then:

• If I and I ′ share a common label, then LRF (I,I ′) = ε(I) + ε(I ′).
• Otherwise LRF (I,I ′) = ε(I) + ε(I ′) + 1.

Proof. The scenario depicted above for transforming I into I ′ clearly requires ε(I) + ε(I ′)
node insertions and deletions, and an additional node label substitution in case I ans I ′ are
label-disjoint. We can conclude that LRF (I,I ′) ≤ ε(I) + ε(I ′) if I and I ′ share a common
label and LRF (I,I ′) ≤ ε(I) + ε(I ′) + 1, if I and I ′ are label-disjoint.

On the other hand, since an edit operation can remove or insert at most one edge, and
the only operations removing an edge are node removal or node insertion, we clearly require
at least ε(I) + ε(I ′) node removals and insertions to transform the unlabeled form of the
tree I into the unlabeled form of I ′. Furthermore, as deletions do not affect star nodes,
at least one node in I should survive (i.e. not be affected by a node deletion). Thus, if
the two trees are label-disjoint, then at least one node label substitution is required. We
can then conclude that LRF (I,I ′) ≥ ε(I) + ε(I ′) if I and I ′ share a common label and
LRF (I,I ′) ≥ ε(I) + ε(I ′) + 1, if I and I ′ are label-disjoint, which concludes the proof. �

The following lemma shows that good edge deletions can be avoided in a minimal edit
path. Consequently island merging can also be avoided, which will then allow us considering
each pair of islands separately.
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Fig. 5.4. A path P transforming T into T ′ of the form P1.P2.P3.P4, each Pi being a shortest
path for the island pair (Ii, I ′

i). Here |P1| = 6, |P2| = 0, |P3| = 1, and |P4| = 0.

Lemma 5.4.8. Let T and T ′ be two trees of TL. There exists a shortest path of edit operations
transforming T into T ′ involving no deletion of a good edge of T .

Proof. Let P = (o1, o2, · · · op) be a path transforming T into T ′. Let oi be the leftmost
operation of the form oi = Del(T,x,y) were e = {x,y} is a good edge of T . We denote
by {Bx, By} with B1 = L(Tx) and B2 = L(Ty) the bipartition of L corresponding to e. As
{B1, B2} is also a bipartition in T ′, there should exist a smallest j > i such that the operation
oj is a node insertion operation recreating this bipartition. Let Ti−1 be the tree obtained
after performing the sequence of operations (o1, · · · , oi−1) on T , and Tj be the tree obtained
from Ti−1 after performing the sequence of operations P [i,j] = (oi, oi+1, · · · , oj−1,oj). Now
let P ′[i,j] = (o′

i+1, · · · , o′
j−1) be the sequence of operations obtained from P [i,j] as follows:

(1) Remove the two operations oi and oj; (2) For each k, i + 1 ≤ k ≤ j − 1, if ok does not
affect node y or if it is a node substitution, o′

k is simply ok; (3) if ok = Del(T,z,y), then
replace it by the operation o′

k = Del(T,z,x) if z ∈ B1, or by the operation o′
k = Del(T,z,y) if

z ∈ B2; (4) if ok = Del(T,y,z), then replace it by the operation o′
k = Del(T,x,z) if z ∈ B1 and

rename z as x, or replace it by the operation o′
k = Del(T,y,z) if z ∈ B2 and rename z as y.

This sequence of operations then leads to the tree T ′
j , which is the same as Tj except possibly

the two labels of x and y, which can be corrected by at most two additional substitutions.
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Therefore, we can substitute the subpath P [i,j] by a subpath of at most the same number
of operations that do not involve deleting the good edge e.

It suffices then to proceed in the same way with the next leftmost good edge deletion of
P , and so on, until no good edge deletion remains. �

We are now ready to prove the equality leading to the efficient computation of the LRF

distance of two trees (see Figure 5.4 for an example).
Theorem 5.4.9. Let I(T,T ′) = {(I1,I ′

1), (I2,I ′
2), · · · , (In,I ′

n)} be the island pairs of T and T ′.
Then

LRF (T,T ′) =
n∑

i=1
LRF (Ii, I ′

i)

Proof. Let P a shortest path transforming T into T ′ verifying the condition of Lemma 5.4.8,
i.e. not involving any deletion of good edges. As islands can only share good edges, and good
edges are never deleted by any operation of P , islands are never merged during the process
of transforming T into T ′, and thus P can be reordered in the form P1.P2. · · · .Pn where
each Pi, 1 ≤ i ≤ n, is a path of edit operations transforming Ii into I ′

i. Each Pi should be a
shortest path from Ii to I ′

i as otherwise it can be replaced by a shortest path, contradicting
the fact that P is a shortest path. �

The next result directly follows from Lemma 5.4.7 and Theorem 5.4.9.
Corollary 5.4.10. Let I(T,T ′) = {(I1, I ′

1), (I2, I ′
2), · · · , (In,I ′

n)} be the island pairs of T and
T ′ and δ be the number of label-disjoint pairs. Then

LRF (T,T ′) =
n∑

i=1
(ε(Ii) + ε(I ′

i)) + δ

5.5. Algorithm
We present our algorithm for computing the LRF distance at a logical level (Algorithm 1).

The input is a pair of trees T1, T2 of TL. We show that LRF (T1,T2) can be computed in
time O(n), where n = |L|.

We start with the identification of good edges. Lines 1 and 2 of Algorithm 1 retrieve the
non-trivial bipartitions for each input tree and Line 3 intersects the obtained bipartitions of
T1 and T2 to generate the set of good edges shared by the two input trees. This can be done
in time O(n) [19].

Next the algorithm identifies and characterises the islands of T1 and T2 (lines 4 and 5).
This is performed by a traversal of each tree in pre-order and in doing so identifying the
islands, which are separated by good edges, keeping track of the number of internal nodes,
the labels of the internal nodes of the islands, and the nodes associated with each island.
Each tree traversal is done in time O(n).
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The next stem require pairing islands of T1 and T2 by iterating over the good edges
(O(n)). Line 8 first retrieves, for both input trees, the islands delimited by the current good
edge, then it proceeds by pairing one island from T1 to its matching island from T2, and
then by pairing the two remaining islands from each tree. Using the node-to-island map
computed earlier, the retrieval of the two island pairs associated with a good edge can be
done in constant time.

For each of the matching island pairs, at lines 9 and 14, the algorithm checks whether
each island pair has already been visited in a previous iteration of the loop (the same island
can be visited from multiple good edges). If not, the current distance is implemented by
adding ε(I1) + ε(I2).

Algorithm 1 LRF (T1,T2)
1: bipartitions1 = getBiparitions(T1);
2: bipartitions2 = getBiparitions(T2);
3: goodEdges = bipartitions1 ∩ bipartitions2;
4: islands1 = getIslands(T1, goodEdges);
5: islands2 = getIslands(T2, goodEdges);
6: distance = 0;
7: for i ∈ goodEdges:
8: ((x1,y1),(x2,y2)) = islandPair(i, islands1, islands2);
9: if x1.visited == False:

10: distance += x1.ε + y1.ε;
11: if x1.labels ∩ y1.labels == ∅:
12: distance += 1;
13: x1.visited = True
14: if x2.visited == False:
15: distance += x2.ε + y2.ε;
16: if x2.labels ∩ y2.labels == ∅:
17: distance += 1;
18: x2.visited = True
19: if goodEdges == ∅ :
20: distance += islands1[0].ε + islands2[0].ε
21: if islands1[0].labels ∩ islands2[0].labels == ∅:
22: distance += 1;
23: return distance;

The for-loop ends with lines 11-12 and 16-17 account for a potentially required single
substitution between corresponding islands, in case they have no label in common (i.e. they
form a label-disjoint island pair). These operations can also be performed in constant time,
giving an overall O(n) runtime for the for-loop.

Finally, lines 19-22 are needed to handle the special case where there is no good edge
between T1 and T2, for instance if T1 or T2 is a star. In such a case, there is only one island
per tree, which is matching.
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Fig. 5.5. Empirical comparisons of the distance inferred for an increasing number of random
edit operations (node insertion, deletion, substitution) on the NOX4 gene tree (182 leaves),
using the classical RF distance (top), the ELRF approximation ([8]; middle), and the LRF
exact distance (bottom).

We provide an open source implementation of LRF in Python as part of the pyLabeledRF
package (https://github.com/DessimozLab/pylabeledrf).

5.6. Experimental Results
To illustrate the usefulness of LRF , we performed two experiments. First, we compared

LRF with RF and ELRF on a labeled gene tree with random edits. Second, we used LRF

to tackle an open question in orthology inference: does labeled gene tree inference benefits
from denser taxon sampling?

5.6.1. Empirical Comparison of LRF with RF and ELRF

We retrieved the labeled tree associated with human gene NOX4 from Ensembl release 99
[77], containing 182 genes, including speciation and duplication nodes. Next, we introduced
a varying number of random edits, with 10 replicates, as follows: with probability 0.3, the
label of one random internal node was substituted (from a speciation label into a duplication
one or vice versa); the rest of the probability mass function was evenly distributed among
all internal edges (each implying a potential node deletion) and all nodes of degree > 3
(each providing the opportunity of a potential node insertion). For ELRF , consistent with
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Fig. 5.6. Denser taxon sampling decreases labeled tree estimation error: labeled gene trees
reconstructed with an increasing number of auxiliary genomes (i.e. obtained by including the
additional genomes during tree inference and labeling, followed by pruning) have a smaller
LRF distance to the true trees. Error bars depict 95% confidence intervals around the mean.

its underlying model, we added the requirement that edge deletion only affect edges with
adjacent nodes with the same label.

For each of RF , LRF and ELRF , we provide the distance as a function of the number
of random edits (Fig. 5.5). As expected, the conventional RF distance returns the small-
est values because it ignores labels. The two labeled RF alternatives performed similarly,
but the heuristic for ELRF occasionally exceeded the true number of edit operations — a
shortcoming that we do not have with LRF , as we have an exact algorithm for this distance.
Both labeled RF variants tracked better the actual number of changes, until around 13 edits
for LRF or ELRF , after which the minimum edit path starts to be often shorter than the
actual sequence of random edits.

5.6.2. The Effect of Denser Taxon Sampling on Labeled Gene Tree
Inference

We used LRF to assess the effect of species sampling for the purpose of labeled gene
tree reconstruction. Consider the problem of reconstructing a labeled tree corresponding to
homologous genes from 10 species. Our question is: is it better to infer and label the tree
using these 10 species alone, or is it better to use more species to infer and label the tree,
and then prune the resulting tree to only contain the leaves corresponding to the original 10
species? While denser taxon sampling is known to improve unlabeled phylogenetic inference
[51], we are not aware of any previous study on labeled gene tree inference.

First, using ALF [17], we simulated the evolution of the genomes of 100 extant species
from a common ancestor genome containing 100 genes (Parameters: root genome with 100
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genes of 432 nucleic acids each; species tree sampled from a birth-death model with default
parameters; sequences evolved using the WAG model, with Zipfian gap distribution; dupli-
cation and loss events rate of 0.001). In the simulation, genes can mutate, be duplicated
or lost. All the genes in the extant species can thus be traced back to one of these 100
ancestral genes and be assigned to the corresponding gene family. The 100 true gene trees,
including speciation and duplication labels, are known from the simulation. However, in our
run, one tree ended up containing only two genes (due to losses on early branches) and was
thus excluded from the rest of the analysis.

To evaluate the inference process, among the 100 species, we randomly selected nested
groups of 10, 20, 30, 40, 50, 60, 70, 80 and 90 species. We considered the 10 species in
the first group as the species of interest. All other species were used to potentially improve
the reconstruction of the gene trees for the first 10 genomes. Then, for each group, we
aligned protein sequences translated from homologous genes using MAFFT L-INS-i [41],
inferred phylogenetic trees from the alignments using FastTree [57], and annotated their
nodes using the species overlap algorithm [72] as implemented in the ETE3 python library
[38]. Finally, we pruned both the inferred gene trees and the true trees to include only
proteins corresponding to the 10 species of interest.

We used LRF to assess the distance between the estimated and true labeled trees, for the
various number of auxiliary genomes considered. For each scenario, we computed the mean
LRF distance over all gene trees (Fig. 5.6). The mean error (expressed in LRF distance)
decreases as the number of auxiliary species increases. This simple simulation study suggests
that denser species sampling improves labeled gene tree inference.

5.7. Discussion and Conclusion
The LRF distance introduced here overcomes the major drawback of ELRF namely the

lack of an exact polynomial algorithm for the latter. Indeed, with ELRF , minimal edit
paths can require contracting “good” edges, i.e., edges present in the two trees [8].

By contrast, with LRF , we demonstrated that there is always a minimal path which
does not contracts good edges. Better yet, we proved that LRF can be computed exactly in
linear time. The new formulation also maintains other desirable properties: being a metric
and reducing to the conventional Robinson Foulds distance in the presence of trees with only
one type of label. Finally, we showed that the new distance is computable for an arbitrary
number of label types.

Our experimental results illustrate the utility of computing tree distances taking labels
into account, as the conventional RF distance is blind to label changes. At first sight, it may
seem surprising that in a tree of 182 leaves, the minimum edit path under LRF or ELRF

already starts underestimating the actual number of random edit operations after around

61



13 operations. However, this can be explained by the “birthday paradox” [1]: to be able to
reconstruct the actual edit path, no two random edits should affect the same node. Yet the
odds of having, among 13 random edits, at least two edits affecting the same internal node
(among 179) is in fact substantial — approximately 36% in our case — just like the odds of
having two people with the same birthday in a given group is higher than what most people
intuit.

Like RF and ELRF , the main limitation of LRF is the lack of biological realism. For
one thing, there is no justification to assign equal weight to the three kinds of edits in all
circumstances. For instance, it is typically highly implausible to introduce a speciation node
at the root of a subtree containing multiple copies of a gene in the same species.

However, LRF complement analyses performed using more realistic models are either
unavailable or too onerous to compute. In particular, the ability of LRF to support an arbi-
trary number of labels makes it applicable to gene trees containing more than just speciations
and duplications, such as horizontal gene transfers or gene conversion events.

Finally, LRF constitutes a clear improvement over RF in the context of gene tree bench-
marking, where trees inferred by various reconciliation models are compared using a distance
measure [4, 50]. Such an application was illustrated in the simulation study of the previous
section, in which we observed that denser taxon sampling improved labeled tree inference
computed using the widely used species overlap method. More work will be needed to assess
the generality of this result.
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Chapter 6

Conclusion

In the context of the study of biological entities, phylogenetics focuses on the investigation of
the evolutionary history and relationships among those entities. Inferring phylogenies does
indeed require a proper understanding of genetic variation, heredity in organisms, and evolu-
tionary processes. The importance of grasping these concepts for us stems from how they can
be used to infer gene families. A gene family represents the relationships between genes that
descend from one common ancestor. Additionally, gene trees are an important tools for the
inference of species trees. Overall, phylogenetic trees are important instruments that help
determine the structure and variation of biological processes within organisms. Nonetheless,
the biological information that can be obtained from phylogenetic tree reconstruction should
not be completely relied on as species trees or gene trees that fully and perfectly represents
the historical relationships between biological entities are unlikely because tree inference
methods are not without flaws. This is why being able to analyse them and compare them
can lead to a better understanding of biological mechanisms and thus benefit a number of
important applications that depend on it, such as the design of appropriate gene therapies
[22].

Comparing trees is therefore an essential task for many purposes, and especially in phy-
logeny where different reconstruction tools may lead to different trees, likely representing
contradictory evolutionary information. The research community has made many attempts
to increase the scope and applicability of comparisons between phylogenetic trees. To do
so, a number of articles have proposed several metrics across two general categories that we
referred to as cluster-similarity metrics and edge-based metrics. There exists a variety of
types of phylogenetic trees with a wide range of features. This diversity makes it impossible
to have a perfect metric that suits all needs and accounts for all potential features. This
is why the continuous development of diverse metrics is important to the progress of the
field of phylogenetics. While a large variety of pairwise measures of dissimilarity have been
developed for comparing trees with no information on internal nodes, very few measures have



been designed for node-labeled trees, which is for instance the case of reconciled gene trees
that may be labeled with evolutionary events such as speciation, duplication, or horizontal
gene transfer. The inability to perform such comparisons with an adequate metric was the
motivation for this thesis.

The core contributions of this thesis is the proposal two natural extensions of the RF

distance to node labeled trees. We first defined and evaluated ELRF , which appears to have
worse computational efficiency than the RF distance, but which can be applied to labeled
trees with a limit of two node label types. We then proposed and evaluated LRF , which
features the same efficiency as the classical RF distance, and which can be applied with
an arbitrary number of node label types. These characteristics are making it very useful
for comparing gene trees under various evolutionary models that may involve speciation,
duplication, loss, HGT, and other potential evolutionary events. To illustrate the usefulness
of the presented extensions of RF , we performed experiments where we compared them with
RF on labeled gene trees. We observed that the conventional RF distance did not perform as
well because it could not account for internal node labels. The two labeled RF alternatives
performed similarly, but the heuristic for ELRF occasionally lacked precision at estimating
the true number of edit operations, unlike LRF , as we developed an exact algorithm for this
distance. Overall both labeled RF variants were better at estimating the actual number of
changes than their predecessor. This thesis thus contributes useful solutions and tools for
the preliminary analysis and comparison of labeled gene trees under various evolutionary
models that may involve various evolutionary events.

Nonetheless, it is important to remember that our extensions still inherited some of
RF disadvantages, such as a lack of biological realism as there no rationale to assign equal
weight to all types of edit operations in all cases, as well as a limited ability to meaningfully
distinguish pairs of arbitrary trees as a result of low robustness (high sensitivity) to errors
in trees. However, the strengths of our extensions are traits that more realistic models lack,
and this is why we claim that our extensions complement them by enabling preliminary
analysis and comparisons of phylogenetic trees. Finally, as other extensions of the original
RF distance have successfully addressed some of its weaknesses for non-labeled trees, we are
hopeful that future research could lead to further improved metrics for labeled gene trees.
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Appendix

Proof of Lemma 4.3.2 (Link between Rooted and Unrooted Trees):

There is a one-to-one relationship between the set of non-trivial bipartitions and the set
of internal edges of an unrooted tree T . Similarly, for a rooted tree T ′, there is a one-to-one
relationship between the set of internal edges of T ′ and its set of non-trivial clades, excluding
the clade L(T ′). However, the number of edges may differ between a tree T and a rooting
T ′ of T .

• If T1 and T2 are both rooted into existing nodes, then T1 and T ′
1 (respec. T2 and

T ′
2) have exactly the same edge sets, and we conclude from what precedes that there

is a one-to-one relationship between the set of non-trivial bipartitions of T1 (respec.
T2) and the set of non-trivial clades excluding L(T1) (respec. L(T2)) of T ′

1 (respec.
T ′

2). As L(T1) = L(T2), this clade does not contribute to the symmetric difference
computation of δR(T ′

1,T ′
2), and thus δR(T ′

1,T ′
2) = δ(T1,T2).

• If both T1 and T2 are rooted into good edges, then T ′
1 (respec. T ′

2) has one edge
more than T1 (respec. T2). But these new edges are good edges and therefore do
not contribute to the symmetric difference computation of the δR distance, and thus
δR(T ′

1,T ′
2) = δ(T1,T2).

• If both T1 and T2 are rooted into bad edges, then T ′
1 (respec. T ′

2) has one edge more
than T1 (respec. T2). These two new edges are bad edges, and thus contribute to the
symmetric difference computation of the δR distance by adding two clades, and thus
δR(T ′

1,T ′
2) = δ(T1,T2) + 2.

• If exactly one among T1 and T2 is rooted into a bad edge, than only one new edge
contributes to the symmetric difference computation of the δR distance by adding
one clade, thus δR(T ′

1,T ′
2) = δ(T1,T2) + 1.

Proof of Lemma 4.3.3 (Edit Distance):

The non-negative and identity conditions are obvious. For the symmetric condition,
notice that we can reverse every edit operation in an optimal sequence from T1 to T2 to



obtain a sequence from T2 to T1 with the same number of events, and vice-versa (extensions
and contractions are inverses of each other, and any flip can be reversed by a flip). We thus
have δ(T2, T1) ≤ δ(T1, T2) and δ(T1, T2) ≤ δ(T2, T1), and equality follows.

Finally, we prove the triangular inequality condition: for 3 trees T1, T2 and T3, to trans-
form T1 into T2, we may take any edit sequence from T1 to T3, followed by any edit sequence
from T3 to T2. It follows that δ(T1, T2) ≤ δ(T1, T3) + δ(T3, T2).

Proof of Lemma 4.4.1 (Pairs of Maximal Bad Subtrees):

As ∪iYi = L, {e′
i}1≤i≤k are the only terminal edges of any subtree S ′ of T ′ containing

the set {e′
i}1≤i≤k as terminal edges. As T ′ is a tree, for any 1 ≤ i �= j ≤ k, there is only one

possible path from x′
i to x′

j. Uniqueness follows.
Suppose that such a subtree S ′ is not a bad subtree. Then it contains an internal good

edge e′ = (x′,y′). In other words, there is a non-trivial bipartition of {Yi}1≤i≤k which is also
a bipartition in S. This contradicts the fact that S is a bad subtree of T . Finally, as all
terminal edges of S ′ are good edges of T ′, it follows that S ′ is a maximal bad subtree of T ′.

Proof of Lemma 4.4.2 (Contract Non-Mixed Bad Edges):

We first introduce a definition that will be of use later in the proof. For two rooted trees
S1 and S2, define the union of S1 and S2 as the tree obtained by identifying their roots, i.e.
by removing the root of S2 and making all its children now children of the root of S1.

Let e = {u,v} be a non-mixed bad edge and assume, without loss of generality, that
both u and v have the label Spe (recall that Λ = {Spe, Dup}). Notice that any sequence
of operations turning T into T ′, at some point, must contract the {u,v} edge, as otherwise,
the (bad) bipartition corresponding to {u,v} would remain in the transformed tree and we
would not obtain T ′ (noting that extensions cannot remove bipartitions). We now prove the
Lemma by induction over δ(T, T ′). As a base case, suppose that δ(T, T ′) = 1. Then {u,v}
must be the only bad edge of T and the single operation is to contract it, proving the base
case.

Now assume that for any tree T̃ satisfying δ(T̃ , T ′) < δ(T, T ′), contracting any non-mixed
bad edge of T̃ reduces its distance to T ′ by 1. Let Q = (q1, . . . , ql) be an optimal sequence
of operations transforming T into T ′ (here each qi denotes either a contraction, extension
or flip). Let qj be the event that contracts {u,v}. If q1 = qj, then we are done, so assume
otherwise. We make the assumption that whenever there is a contraction involving u prior
to qj, the contracted node is still called u. Furthermore, we assume that if an extension prior
to qj splits the neighbors of u, the node v is still a neighbor of u after the operation. All the
same assumptions hold for v. This just changes the names we give to nodes and does not
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alter the scenario, but observe that this means that {u,v} is in every tree obtained before
the first j operations.

For each i ∈ {1, . . . , l}, let Ti be the tree obtained after applying q1, . . . , qi on T , and
define T0 = T . Furthermore, for i ∈ {0,1, . . . , j − 1}, denote by T u

i and T v
i the two trees

obtained from Ti by removing the edge {u, v}, where u is in T u
i and v is in T v

i . Define
T u = T u

0 and T v = T v
0 . We will assign u and v as the respective roots of each T u

i and
T v

i . Notice that for each i ∈ {1, . . . , j − 1}, qi only modifies either the subtree T u
i−1 or T v

i−1.
Therefore, if events qi and qi+1 modify T u

i−1 and T v
i , respectively, we could apply qi+1 before

qi and Ti+1 would still be the same tree. This lets us assume that we may reorder events
such that all events affecting T u (prior to qj) occur before those affecting T v. That is, there
is some h such that q1, . . . , qh only affects the T u subtree, qh+1, . . . , qj−1 only affects the T v

subtree, so that T u
h = T u

h+1 = . . . = T u
j−1 and T v = T v

1 = . . . = T v
h .

Suppose first that u is labeled Spe in Th, and thus also in Tj−1. Then v is also labeled
Spe in Tj−1 (and also in Th since v was untouched until qh+1). Let T̂ be the tree obtained
after contracting {u,v} in T , and let z be the resulting node. Observe that if we interpret
z as u, then we may apply the events q1, . . . , qh on T̂ , since these events only affected the
T u subtrees. To be formal, we “reproduce” q1 through qh on T̂ by applying the events
Q′ = (q′

1, . . . , q′
h) on T̂ , defining T̂i as the tree obtained after the i-th event of Q′, where each

q′
i in Q′ is defined as follows:

• if qi contracts {x, y} in Ti−1, then q′
i contracts {x, y} in T̂i−1 if x, y �= u, otherwise if,

say, x = u, then q′
i contracts {z, y} (and calls the resulting node z);

• if qi flips x in Ti−1, then q′
i flips x in T̂i−1 if x �= u, or flips z otherwise;

• if qi is an extension and splits the neighborhood of x, then q′
i does the same if x �= u

(replacing u by z if needed). If x = u, then let X be the set of neighbors of v in Ti−1,
excluding u. If Ch(u) is split into A and B by qi, where v ∈ B, then q′

i splits the
neighbors A ∪ (B \ {v}) ∪ X of z into A and (B \ {v}) ∪ X (and z is the neighbor of
(B \ {v}) ∪ X and the newly created node).

One can verify the following that the following invariant holds on each T̂i, i ∈ {1, . . . , h}:
if we take Ti and contract the edge {u, v}, ignoring the labels and keeping the label of u,
then we obtain T̂i (the invariant is also true for T and T̂ ).

The resulting tree T̂h obtained from applying q′
1, . . . , q′

h on T̂ will therefore contain z as
a Spe node, and will be the union of T u

h and T v
0 . From this point, in a similar fashion, we

may interpret z as v and apply qh+1, . . . , qj−1 on T̂h, resulting a tree that is the union of
T u

h = T u
j−1 and T v

j−1. The corresponding events are the same as above, we omit the formal
details. Since Tj is obtained from Tj−1 by contracting {u, v}, this means that T̂j−1 = Tj,
which we have attained with j events but contracting {u, v} first, which proves this case.
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Suppose instead that u is labeled Dup in Th. Then v is a Dup node in Tj−1. We
may further assume that v is a Spe node in Th+1, . . . , Tj−2, since whenever we flip v into a
Dup, we may assume by induction that {u, v} gets contracted. Therefore, qj−1 flips v from
Spe to Dup, and for the first time. We may then do the following: first apply the events
qh+1, . . . , qj−2 on T̂ , interpreting z as v. The resulting tree T̂ ′ contains z as a Spe node,
and is the union of T v

j−2 and T u
0 . We may now apply q1, . . . , qh on T̂ ′ by interpreting u as

z, resulting in a tree T̂ ′′ that contains z as a Dup node and is the union of T u
h = T u

j−1 and
T v

j−1. We have thus attained Tj, but this time without the qj−1 flip on v, contradicting the
optimality of Q. This concludes the proof.

Proof of Lemma 4.5.1 (Upper Bound δ ):

Methodology 1 performs e contractions and e′ extensions. As for the number of flips,
we have to flip at most all the nodes belonging to the smallest label group, which means at
most half the nodes in each tree, and thus at most n flips in total.

Proof of Lemma 4.5.2 (Compare Meth.1 and Meth.2):

Fig. 6.1. Notations for the Proof of Lemma 4.5.2

We denote by Cont(T ) the minimum length of a sequence of operations contracting T ,
and by l(P) the length of a sequence P of edit operations.

Let P2 be an optimal sequence contracting S to S∗ and P ′
2 be an optimal sequence

contracting S ′ to S ′
∗. As each operation is reversible, P ′

2 leads to a corresponding sequence
P ′′

2 of the same length between S ′
∗ and S ′. Thus, P2, concatenated with a possible flip

operation transforming S∗ to S ′
∗, concatenated with P ′′

2 is a sequence from S to S ′ following
Methodology 1, and thus M1(S,S ′) ≤ M2(S,S ′) (R1).

Conversely, let P be an optimal sequence following Methodology 1. Then this sequence
can be subdivided into a sequence P1 from S to a star tree S1, and P ′

1 from S1 to S ′. As each
operation is reversible, P ′

1 leads to a corresponding sequence P ′′
1 of the same length between

S ′ and S1. In other words, M1(S,S ′) = l(P1) + l(P ′
1) = l(P1) + l(P ′′

1 ) ≥ Cont(S) + Cont(S ′).
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(1) If S∗ = S ′
∗, then M2(S,S ′) = Cont(S) + Cont(S ′) and thus M1(S,S ′) ≥ M2(S,S ′),

and the result follows from (R1).
(2) Otherwise, S∗ and S ′

∗ are different and M2(S,S ′) = Cont(S) + Cont(S ′) + 1. Thus
M1(S,S ′) ≥ Cont(S) + Cont(S ′) = M2(S,S ′) − 1, and thus M2(S,S ′) ≤ M1(S,S ′) + 1.

Proof of Lemma 4.5.3 (Optimal Path Contracting a Mixed Tree):

We first show that at least diam(T )/2� − 1 flips are needed, by induction over the
diameter of T . When diam(T ) = 2, T is a star tree and 0 = diam(T )/2 − 1 flips are needed.
For the induction step, we assume that any tree T ′ with diam(T ′) < diam(T ) requires at
least diam(T ′)/2� − 1 flips. Take any optimal sequence of events S, and observe that in
S, when we flip a node v of T , by Lemma 4.4.2 we may assume that S contracts all the
incident edges to v until we obtain another mixed tree. Let T1, T2, . . . , Tk be the sequence
of mixed trees encountered when applying S, i.e. each Ti is obtained after flipping a node
and contracting its incident edges. Define T0 = T . Let i be the smallest index such that
diam(Ti) < diam(T ). Then in Ti−1, there was a longest chain P = (u1, . . . , ul) of length
diam(T ). The flip-and-contract operations from Ti−1 to Ti can reduce the length of P by at
most 2 since we flip one node and only its incident edges, of which there are at most two on
P . Hence diam(Ti) ≥ diam(T ) − 2. We deduce by induction that the number of required
flips is at least 1 + (diam(T ) − 2)/2� − 1 = diam(T )/2� − 1.

We now turn to the converse bound φ(T ) ≤ diam(T )/2� − 1. Fix any node v of T ,
and suppose that we run the following procedure: as long as T is not a star tree, flip v and
contract its incident internal edges. Since each flip-and-contraction iteration reduces the
length from v to any leaf by 1 (except its neighbors), eccT (v) is reduced by 1 each round.
We stop when eccT (v) = 1, in which case only terminal edges remain, and in the end, this
means that eccT (v) − 1 flips are needed.

To see why this proves our bound, we show that there always exists a node with eccen-
tricity diam(T )/2�. Consider a longest chain P of T with nodes w1, . . . , wk. Observe that
diam(T ) = k − 1 (recall that distances are counted in terms of edges). Consider a midpoint
node w := w�k/2� on P . We claim that eccT (w) = diam(T )/2�. It is easy to check that w

has distance at most diam(T )/2� and at least �diam(T )/2� to the leaves w1 and wk on P .
Assume for contradiction that w is at distance at least diam(T )/2�+1 from some leaf l of T

not in P . Then either we can form a chain from w1 to w and then to l, or a chain from wk to
w and then to l. This chain has length at least �diam(T )/2� + diam(T )/2� + 1 > diam(T ),
a contradiction. This shows that eccT (w) = diam(T )/2� and concludes the proof.
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Proof of Theorem 4.5.5 (Upper Bound Meth.2):

Consider a given instance (T, T ′). Take any leaf of T and assign it as the root, and do
the same for T ′. Although we have assumed roots of degree at least two so far, we use this
rooting only for our analysis in order fix a parent-child relationship between nodes. Let Q be
an optimal sequence of operations turning T into T ′. We may assume that Q first contracts
every non-mixed edge, and our algorithm does the same. Therefore, we suppose that T and
T ′ contain no non-mixed edges. Assume for our purposes that whenever a contraction takes
place in Q between a node u and a child v, the u node stays in the tree and v gets removed
(here the notion of a child is in the rooted sense with respect to our rooting above). Also
assume that when there is an extension splitting a node u, then the newly created node
becomes a child of u and u retains the same parent. It is easily checked that this only alters
the name of nodes and not the sequence itself.

Call an internal node v of T a good child if the edge between v and its parent is good.
Note that v has a unique corresponding node in T ′ which we denote v′ (i.e. v′ is the root of
the same clade as the subtree rooted at v). Further, call v a bad-good child if v is a good
child, but either the label of v differs from that of v′, or v is incident to at least one bad edge.
Note that every maximal bad subtree of T has a (good) terminal edge with one endpoint
being a bad-good child. Also note that a bad-good child v that is incident to only good
edges is a particular case of a maximal bad subtree (i.e. v just has the wrong label).

We already know that δ(T, T ′) is at least the number of bad edges in T and T ′. Let Q′

be the set of operations of Q that are either flips, or contraction of good edges. We argue
that |Q′| is at least the number of bad-good children in T . To see this, let v be a bad-good
child. Assume first that v is not incident to any bad edge. If we never flip v nor remove it by
contracting its parent edge, then Q cannot transform T into T ′, as v and its underlying clade
remain present in every tree from T to T ′, but with the wrong label (because a contraction
not removing v cannot remove the v clade, and extensions can create clades but not remove
them). So we may assume that v gets flipped or that its parent edge gets contracted. A
flip must be in Q′ and, observing that at any point the parent edge of v must be good, a
contraction removing v must also be in Q′. Assume instead that v is incident to at least
one bad edge {v, w}, with w a child of v. If v is never flipped nor removed owing to a
contraction of its parent edge, then at some point w must be flipped so that the {v, w} edge
gets contracted. Otherwise, if v gets removed, then its parent edge was contracted, again
implying the contraction of a good edge. Either case implies an operation in Q′. Importantly,
observe that the operations in Q′ identified above are all distinct, since each one implies a
flip or a the removal of a node in a different bad subtree of T .

Now, let T1, . . . , Tk be the maximal bad subtrees of T and T ′, and for each i ∈ {1, . . . , k},
let ti be the number of bad edges in Ti. Further denote b = ∑k

i=1 ti. Since bad subtrees form
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pairs, our arguments above imply that Q′ has at least k/2 operations (because |Q′| is at
least the number of maximal bad trees in T , which is half the number of bad subtrees). The
contraction of bad edges plus the operations of Q′ show that Q has at least ∑k

i=1 ti + k/2 =
b + k/2 operations. Our algorithm contracts b edges in total. To count the number of flips,
take any bad subtree Ti. Then ti ≥ diam(Ti) − 2 and the number of flips we perform is at
most diam(Ti)/2� − 1 = (diam(Ti) − 2)/2� ≤ ti/2 + 1. Note that this also holds when
Ti contains no bad edge. Therefore, the number of operations that we perform is at most
b + ∑k

i=1(ti/2 + 1) = 3b/2 + k. Our approximation ratio is therefore 3b/2+k
b+k/2 ≤ 2b+k

b+k/2 = 2.
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