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Résumé 

Le glaucome est la première cause de cécité irréversible dans le monde. Bien que sa pathogenèse 

demeure encore nébuleuse, les propriétés biomécaniques de l’œil sembleraient jouer un rôle 

important dans le développement et la progression de cette maladie. Il est stipulé que la rigidité 

oculaire (RO) est altérée au travers les divers stades de la maladie et qu’elle serait le facteur le 

plus influent sur la réponse du nerf optique aux variations de la pression intraoculaire (PIO) au 

sein du glaucome. Pour permettre l’investigation du rôle de la RO dans le glaucome primaire à 

angle ouvert (GPAO), la capacité de quantifier la RO in vivo par l’entremise d’une méthode fiable 

et non-invasive est essentielle. Une telle méthode n’est disponible que depuis 2015. Basée sur 

l'équation de Friedenwald, cette approche combine l'imagerie par tomographie par cohérence 

optique (TCO) et la segmentation choroïdienne automatisée afin de mesurer le changement de 

volume choroïdien pulsatile (ΔV), ainsi que la tonométrie dynamique de contour Pascal pour 

mesurer le changement de pression pulsatile correspondant. 

L’objectif de cette thèse est d’évaluer la validité de cette méthode, et d’en faire usage afin 

d’investiguer le rôle de la RO dans les maladies oculaires, particulièrement le GPAO. Plus 

spécifiquement, cette thèse vise à : 1) améliorer la méthode proposée et évaluer sa validité ainsi 

que sa répétabilité, 2) investiguer l’association entre la RO et le dommage neuro-rétinien chez les 

patients glaucomateux, et ceux atteints d’un syndrome de vasospasticité, 3) évaluer l’association 

entre la RO et les paramètres biomécaniques de la cornée, 4) évaluer l’association entre la RO et 

les pics de PIO survenant suite aux thérapies par injections intravitréennes (IIV), afin de les prédire 

et de les prévenir chez les patients à haut risque, et 5) confirmer que la RO est réduite dans les 

yeux myopes.  

D’abord, nous avons amélioré le modèle mathématique de l’œil utilisé pour dériver ΔV en le 

rendant plus précis anatomiquement et en tenant compte de la choroïde périphérique. Nous 

avons démontré la validité et la bonne répétabilité de cette méthodologie. Puis, nous avons 

effectué la mesure des coefficients de RO sur un large éventail de sujets sains et glaucomateux 

en utilisant notre méthode non-invasive, et avons démontré, pour la première fois, qu'une RO 
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basse est corrélée aux dommages glaucomateux. Les corrélations observées étaient comparables 

à celles obtenues avec des facteurs de risque reconnus tels que la PIO maximale. Une forte 

corrélation entre la RO et les dommages neuro-rétiniens a été observée chez les patients 

vasospastiques, mais pas chez ceux atteints d'une maladie vasculaire ischémique. Cela pourrait 

potentiellement indiquer une plus grande susceptibilité au glaucome due à la biomécanique 

oculaire chez les patients vasospastiques. Bien que les paramètres biomécaniques cornéens aient 

été largement adoptés dans la pratique clinique en tant que substitut pour la RO, propriété 

biomécanique globale de l'œil, nous avons démontré une association limitée entre la RO et ces 

paramètres, offrant une nouvelle perspective sur la relation entre les propriétés biomécaniques 

cornéennes et globales de l’œil. Seule une faible corrélation entre le facteur de résistance 

cornéenne et la RO demeure après ajustement pour les facteurs de confusion dans le groupe des 

patients glaucomateux. Ensuite, nous avons présenté un modèle pour prédire l'amplitude des pics 

de PIO après IIV à partir de la mesure non-invasive de la RO. Ceci est particulièrement utile pour 

les patients à haut risque atteints de maladies rétiniennes exsudatives et de glaucome qui 

nécessiteraient des IIV thérapeutiques, et pourrait permettre aux cliniciens d'ajuster ou de 

personnaliser le traitement pour éviter toute perte de vision additionnelle. Enfin, nous avons 

étudié les différences de RO entre les yeux myopes et les non-myopes en utilisant cette 

technique, et avons démontré une RO inférieure dans la myopie axiale, facteur de risque du 

GPAO. Dans l'ensemble, ces résultats contribuent à l’avancement des connaissances sur la 

physiopathologie du GPAO. Le développement de notre méthode permettra non seulement de 

mieux explorer le rôle de la RO dans les maladies oculaires, mais contribuera également à élucider 

les mécanismes et développer de nouveaux traitements ciblant la RO pour contrer la déficience 

visuelle liée à ces maladies. 

 

Mots-clés : Rigidité oculaire, Biomécanique oculaire, Choroïde, Sclère, Pression intraoculaire, 

Glaucome, Myopie, OCT, Pulsatilité, Mécanismes physiopathologiques. 

 



 

Abstract 

Glaucoma is the leading cause of irreversible blindness worldwide. While its pathogenesis is yet 

to be fully understood, the biomechanical properties of the eye are thought to be involved in the 

development and progression of this disease. Ocular rigidity (OR) is thought to be altered through 

disease processes and has been suggested to be the most influential factor on the optic nerve 

head’s response to variations in intraocular pressure (IOP) in glaucoma. To further investigate the 

role of OR in open-angle glaucoma (OAG) and other ocular diseases such as myopia, the ability to 

quantify OR in living human eyes using a reliable and non-invasive method is essential. Such a 

method has only become available in 2015. Based on the Friedenwald equation, the method uses 

time-lapse optical coherence tomography (OCT) imaging and automated choroidal segmentation 

to measure the pulsatile choroidal volume change (ΔV), and Pascal dynamic contour tonometry 

to measure the corresponding pulsatile pressure change. 

The purpose of this thesis work was to assess the validity of the methodology, then use it to 

investigate the role of OR in ocular diseases, particularly in OAG. More specifically, the objectives 

were: 1) To improve the extrapolation of ΔV and evaluate the method’s validity and repeatability, 

2) To investigate the association between OR and neuro-retinal damage in glaucomatous 

patients, as well as those with concomitant vasospasticity, 3) To evaluate the association between 

OR and corneal biomechanical parameters, 4) To assess the association between OR and IOP 

spikes following therapeutic intravitreal injections (IVIs), to predict and prevent them in high-risk 

patients, and 5) To confirm that OR is lower in myopia.  

First, we improved the mathematical model of the eye used to derive ΔV by rendering it more 

anatomically accurate and accounting for the peripheral choroid. We also confirmed the validity 

and good repeatability of the method. We carried out the measurement of OR coefficients on a 

wide range of healthy and glaucomatous subjects using this non-invasive method, and were able 

to show, for the first time, that lower OR is correlated with more glaucomatous damage. The 

correlations observed were comparable to those obtained with recognized risk factors such as 

maximum IOP. A strong correlation between OR and neuro-retinal damage was found in patients 
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with concurrent vasospastic syndrome, but not in those with ischemic vascular disease. This could 

perhaps indicate a greater susceptibility to glaucoma due to ocular biomechanics in vasospastic 

patients. While corneal biomechanical parameters have been widely adopted in clinical practice 

as surrogate measurements for the eye’s overall biomechanical properties represented by OR, 

we have shown a limited association between these parameters, bringing new insight unto the 

relationship between corneal and global biomechanical properties. Only a weak correlation 

between the corneal resistance factor and OR remained in glaucomatous eyes after adjusting for 

confounding factors. In addition, we presented a model to predict the magnitude of IOP spikes 

following IVIs from the non-invasive measurement of OR. This is particularly useful for high-risk 

patients with exudative retinal diseases and glaucoma that require therapeutic IVIs, and could 

provide the clinician an opportunity to adjust or customize treatment to prevent further vision 

loss. Finally, we investigated OR differences between non-myopic and myopic eyes using this 

technique, and demonstrated lower OR in axial myopia, a risk factor for OAG. Overall, these 

findings provide new insights unto the pathophysiology of glaucomatous optic neuropathy. The 

development of our method will permit further investigation of the role of OR in ocular diseases, 

contributing to elucidate mechanisms and provide novel management options to counter vision 

impairment caused by these diseases. 

 

Keywords : Ocular rigidity, Ocular biomechanics, Choroid, Sclera, Intraocular pressure, Glaucoma, 

Myopia, OCT, Pulsatility, Pathophysiological mechanisms. 
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Chapter 1 – Introduction 

Glaucoma is the leading cause of irreversible blindness in the world (1). An insidious and 

unpredictable disease, glaucoma causes damage to the retinal ganglion cells (RGCs) that form the 

optic nerve and can remain asymptomatic until major irreversible visual loss has occurred. The 

clinical hallmark of this disease includes the progressive deformation and excavation of the 

tissues of the optic nerve head (2), as seen in Figure 1. Once detected, the disease’s progression 

rate cannot be anticipated. Furthermore, the pathogenesis of open-angle glaucoma (OAG), the 

main form of glaucoma, is poorly understood. 

While the development of OAG was traditionally attributed to elevated intraocular pressure (IOP), 

the susceptibility of individual eyes to glaucomatous damage is variable. Nearly half of OAG 

patients have IOP within the normal range (3), going up to almost 90% of patients in some 

populations (4). In contrast, most patients with elevated IOP do not develop glaucoma (5). This 

suggests that factors other than IOP must also underlie the susceptibility of the optic nerve head 

(ONH) to glaucomatous injury.  

The realization that a given IOP can result in very different strains at the ONH in different eyes led 

to an entire field of research known as ocular biomechanics. Central to this theory is the fact that 

the retinal axons that unite at the ONH to form the optic nerve leave the eye through the lamina 

cribrosa. The lamina is the major load-bearing tissue of the ONH and is accepted as both a site of 

discontinuity and weakness in the corneoscleral shell of the eye and as the most likely site of 

damage to ONH axons (6-10). Two main hypotheses have been proposed to explain the 

development of glaucomatous optic neuropathy, namely the mechanical and vascular theories 

(11). The mechanical theory postulates that elevated mechanical stresses and strain lead to 

axonal damage and loss of retinal ganglion cells (12-14). The ONH’s response to these 

biomechanical stimuli has been found to depend on eye-specific geometrical and material 

properties (Figure 2) (15). This is thought to determine an individual’s predisposition to develop 

OAG.  
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There is mounting evidence that the stiffness of the sclera, major contributor to the rigidity of the 

corneoscleral shell, is an important risk factor in the development and progression of 

glaucomatous optic neuropathy, perhaps more so than IOP (16). Despite numerous studies on 

the association between ocular rigidity (OR) and OAG in the last eighty years (17-23), this remains 

unclear, and competing hypotheses are highly debated (24). On one side, OR is thought to be 

higher in glaucomatous eyes, producing higher IOP fluctuations due to rigid ocular walls, and 

hence more deformation at the ONH. On the other side, OR is thought to be lower in early 

glaucoma, engendering axonal stretching and damage. According to this theory, increased OR 

would occur at later stages of the disease. 

Challenges that researchers face when studying OR range from a plethora of confounding factors, 

both ocular and systemic, including ocular volume and shape, scleral thickness, choroidal blood 

volume, age and ethnicity, which can have an effect on OR (25). The difficulty in diagnosing 

glaucoma at the earliest phase of the disease is another obstacle. The lack of longitudinal studies 

to show whether OR contributes primarily to glaucoma or is altered due to the disease hinders 

our knowledge of this parameter. More importantly, the ability to quantify OR in living human 

eyes using a reliable and non-invasive method is essential to investigate the role of OR in OAG. 

Such a method has only recently become available thanks to developments in our laboratory. 

Based on the Friedenwald equation (26), the method uses video-rate optical coherence 

tomography (OCT) imaging and automated choroidal segmentation to measure the pulsatile 

choroidal volume change (ΔV), and Pascal dynamic contour tonometry to measure the 

corresponding pulsatile pressure change (27). It will be described in more detail in Chapter 3. 

The objectives of this thesis work were thus to validate the method developed to measure OR in 

vivo, and to investigate the relevance of OR in ocular diseases, particularly in OAG. More 

specifically, we sought to 1) To improve the extrapolation of ΔV and evaluate the method’s 

validity and repeatability, 2) To investigate the association between OR and neuro-retinal damage 

in glaucomatous patients, as well as those with concomitant vasospasticity, 3) To evaluate the 

association between OR and corneal biomechanical parameters, 4) To assess the association 

between OR and IOP spikes following therapeutic intravitreal injections, to predict and prevent 

them in high-risk patients, and 5) To confirm that OR is lower in myopia.  
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Before addressing this, the following chapter will briefly review ocular hydrodynamics (IOP and 

aqueous humor dynamics) and hemodynamics (blood flow), as these elements are involved in OR 

measurement. This will be followed by a review of the most prominent findings pertaining to 

ocular biomechanics, and will present the current evidence on the link between OR and OAG. 

 

Figure 1. –  Glaucomatous optic neuropathy is characterized by the progressive deformation and 

excavation of tissues at the optic nerve head. Thinning of the neuroretinal rim due to axonal 

loss, increased cupping and bowing of the lamina cribrosa are clinical hallmarks of this 

disease. (Courtesy of Dr Lesk and Dr Sayah.) 
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Figure 2. –  Representation scheme of the biomechanical paradigm of glaucoma. IOP-induced 

deformation, stress and strain produce alterations in physiological processes which 

ultimately lead to axonal loss and glaucomatous damage. (Reprinted from Sigal et al. (15) 

with permission from Elsevier.) 

 

 

 





 

Chapter 2 – Literature Review 

2.1 Aqueous Humor Dynamics and Intraocular Pressure 

The eye is a pressurized shell, filled with a colorless fluid of similar composition to plasma – the 

aqueous humor (AH). AH circulates in the anterior part of the eye, while the vitreous humor, or 

vitreous body, a gelatinous mass composed primarily of water (98-99.7%) and hyaluronic acid, is 

found in the retrolental space, with little moving fluid (28). In the eye, AH plays an important role 

in the nourishment and homeostasis of the cornea and lens, transparent and avascular structures 

that permit light transmission to the retina.  

2.1.1 Aqueous Humor Production and Drainage 

AH is continually produced and evacuated. The production of AH occurs in the ciliary processes 

(Figure 3). From the fenestrated capillaries, through the ciliary process stroma and a double-

layered epithelium, it is in the non-pigmented epithelial cells of this double-layer that almost 90% 

of AH is formed through active secretion (29). AH is secreted into the posterior chamber, traverses 

the pupil and circulates in the anterior chamber (AC), following a convective flow pattern. This 

pattern is caused by the temperature difference between the iris (higher temperature) and the 

cornea (lower temperature) in the AC, producing an upward flow near the iris and a downward 

flow near the cornea (30).  

The evacuation of AH occurs through two routes, the trabecular and uveoscleral pathways. The 

trabecular or conventional pathway is responsible for 85% of AH outflow from the eye. Its primary 

constituent is the trabecular meshwork (TM), composed of the uveal meshwork, corneoscleral 

meshwork and juxtacanalicular tissue, the latter providing the most resistance to AH outflow (31). 

Driven by the pressure gradient, AH flows out through the TM, across the inner wall of Schlemm’s 

canal, and drains in the collector channels, aqueous veins and episcleral veins (32, 33). When 

traveling through the uveoscleral pathway, AH flows through the uveal meshwork and anterior 

face of the ciliary muscle, and drains into the suprachoroidal space and the sclera (29).  
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Figure 3. –  Schematic representation of the anterior segment of the human eye. Arrows indicate 

aqueous humor flow pathways. Aqueous humor is formed by the ciliary processes, enters 

the posterior chamber, flows through the pupil into the anterior chamber, and exits at the 

chamber angle via the trabecular and uveoscleral routes. (Reprinted from Kaufman, 

Wiedman (34), with permission from Springer.) 

2.1.2 Intraocular Pressure 

At steady-state IOP, which is approximately 15 mmHg, the rate of AH production and evacuation 

are equal (35). In a healthy adult eye, this corresponds to an AH turnover rate of 2.75±0.63μl/min 

during daytime (36), or about 1-1.5% of the AC volume per minute (37). This state of equilibrium 

is essential in maintaining physiological processes as well as the shape of the eye.  

Many factors are known to affect IOP. These include the circadian rhythm, heartbeat, respiration, 

exercise, posture, fluid intake, alcohol and cannabis use, as well as topical and systemic 

medications (38). Age and disease can also affect IOP. This is particularly true for glaucoma, in 
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which IOP holds an important role both as a risk factor and in its management. Increased 

resistance of aqueous outflow through the TM is a known risk factor for glaucoma and can cause 

ocular hypertension (5, 39, 40). From a biomechanical perspective, the stiffness of the TM is 

thought to increase in glaucoma (41, 42), although the mechanism through which this occurs is 

not well understood. However, in vivo measurement of TM stiffness can be challenging and their 

interpretation can be problematic as many agents, including topical glaucoma medications, can 

alter TM function and potentially TM stiffness (43). Currently, the only evidence-based treatment 

for OAG is to lower IOP, regardless of baseline IOP (44-48). IOP reduction can be carried out using 

pharmaceuticals, laser trabeculoplasty, surgical procedures, or a combination of these methods. 

In general, these methods reduce IOP by reducing AH production and/or increasing its 

evacuation. Some surgical procedures, such as trabeculectomy and drainage devices, create a 

new exit route to drain the AH and bring the IOP to lower levels.  

2.1.3 Tonometry 

Tonometry is a crucial part of an eye examination, especially for accurate measurement and 

management of IOP in glaucoma. Numerous methods have been developed to measure IOP in 

vivo. The main tonometry techniques used in this thesis work, and those historically involved in 

biomechanical measurements such as the rigidity of the eye, will be briefly described in this 

section.  

One of the first and most commonly used modern device to measure IOP in the world was the 

Schiötz tonometer (49). As an indentation tonometer, it is based on the principle that a force or 

weight would produce less indentation in a harder object, or eye. Thus, the amount of indentation 

would enable IOP estimation, providing that less indentation would be indicative of elevated IOP. 

To measure IOP, the Schiötz’s curved footplate is set on the anesthetized cornea. Different 

weights, between 5 to 15 g, can be added to the plunger and used to indent the cornea. A table 

is then used to convert the scale reading to the IOP value in mmHg. One major caveat of the 

Schiötz is that it is highly dependent on ocular rigidity, leading to underestimation of IOP in eyes 

with lower rigidity and vice versa (50). Despite the development of updated conversion tables by 

Friedenwald to correct for OR (51, 52), this method was replaced by Goldmann applanation 
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tonometry (GAT) in the last quarter of the 20th century, rendering GAT the most used tonometer 

worldwide.  

Applanation tonometry is based on the Imbert-Fick principle, which states that the pressure (P) 

inside a thin-walled sphere filled with liquid equals the force (F) necessary to flatten its surface 

divided by the flattened area (A), such that P=F/A (53). In GAT, the anesthetized cornea is 

flattened by a prism of 3.06 mm diameter (7.35 mm2). Using fluorescein dye to highlight the tear 

film, the IOP is determined by varying the applanation force to properly align the superior and 

inferior mires produced by the prism. Since the Imbert-Fick principles assumes a thin-walled 

sphere, it does not account for thickness and rigidity. This tends to lead to underestimation of the 

measured IOP using GAT in thin corneas, and vice versa (54-58). However, no accurate adjustment 

of GAT-IOP readings for CCT currently exists for individual eyes, as “true” IOP also depends on 

other biomechanical factors of the cornea which current nomograms do not account for (59, 60). 

Other applanation tonometers include non-contact tonometry (NCT), pneumotonometry and the 

Tono-Pen. NCT uses an air pulse of increasing intensity to applanate the cornea. The Ocular 

Response Analyzer (ORA), a newer type of NCT, measures the biomechanical response of the eye 

to the rapid air jet-induced deformation at the cornea (61). It yields the Goldmann-correlated IOP 

(IOPg) and the corneal-compensated IOP (IOPcc), which is less dependent on biomechanical 

properties, as well as the corneal hysteresis (CH) and corneal resistance factor (CRF). CH and CRF 

provide information on the viscoelasticity of the cornea and will be described in more detail in 

the upcoming section on the mechanics of the cornea. Another device based on NCT is the 

Corneal Visualization Scheimpflug Technology tonometer (Corvis ST). Using a high-speed 

Scheimpflug camera to visualize and measure corneal deformation in response to an air impulse, 

the biomechanical corrected IOP (bIOP) is measured, along with various other parameters that 

describe the viscoelastic properties of the cornea (62). Pneumotonometry uses a 5mm diameter 

piston with silicone tip and air pressure to flatten the cornea. When the tip and the cornea are 

both flattened, this corresponds to the IOP (49, 63). The Tono-Pen is a portable tonometer, with 

an applanating surface and a small plunger protruding slightly from its center. A strain gauge 

creates an electrical signal that provides an IOP reading when both the plunger and the 

surrounding surface applanate the anesthetized cornea (63). Each IOP measurement obtained 
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with this tonometer is an average of multiple IOP readings, and is recorded along with a reliability 

index ranging from ≤5% to >20%, with the lowest number indicating the highest reliability.  

Finally, dynamic contour tonometry (DCT) is a more recent technique that enables the 

measurement of IOP using the principle of contour matching or Pascal principle. By matching the 

contour of the cornea, the pressure inside and outside a sphere should be equal. A piezoresistive 

sensor at the center of the concave tip measures the IOP dynamically when in contact with the 

cornea (64). When force is exerted on the sensor as it comes in contact with the cornea, the 

silicon, of which it is composed, becomes more resistant to the small current passing through it. 

The alteration in resistance is detected and amplified by a wheatstone bridge and is converted to 

a change in pressure, according to a linear relationship. The three output variables from the Pascal 

DCT are a quality signal (Q=1 to 5; lower Q is better), the diastolic IOP and the ocular pulse 

amplitude (OPA), which corresponds to the difference in IOP between the systole and diastole. 

The IOP measurement from the Pascal DCT, as well as the IOPcc obtained using the ORA, were 

shown to be independent of central corneal thickness (CCT) and corneal biomechanical properties 

(65, 66). 

2.2 Ocular Hemodynamics 

In the human body, the eye is the only place where a direct view to the fundus and blood vessels 

is possible; it is thus a privileged site for the study of blood flow and its regulatory mechanisms. 

It is also the organ with the highest metabolism and as such requires a high but regulated blood 

supply (67, 68). While the measurement of blood flow can contribute to a better understanding 

of the vasogenic theory of glaucoma (69), it can also bring some insight unto the mechanical 

theory of this optic neuropathy. In this thesis work, this is relevant for two reasons: 1) the method 

we developed to estimate the ocular rigidity coefficient involves the measurement of pulsatile 

choroidal blood flow (as will be described in Chapter 3), and 2) pathological conditions and 

medications can alter ocular blood flow (70). A review of blood flow and its regulatory 

mechanisms is thus relevant as it can have an impact on the measurement of OR. The following 

subsections will focus on the effects of glaucoma, vasospastic disorders and medications on 

ocular blood flow.  
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2.2.1 Anatomy of the Ocular Vascular System 

Two main vascular systems, retinal and uveal, irrigate the eye, as seen in Figure 4. All blood supply 

to the eye originates from the ophthalmic artery, which proceeds from the internal carotid artery. 

The ophthalmic artery is divided into multiple branches, including the central retinal artery (CRA), 

the anterior ciliary arteries and the short and long posterior ciliary arteries (71). The blood flows 

out of the eye primarily via the central retinal vein and vortex veins which then drain into the 

cavernous sinus (71).  

The CRA supplies nourishment to the inner retinal layers, from the retinal nerve fiber layer (RNFL) 

to the outer plexiform layer through two non-fenestrated capillary networks located in the inner 

nuclear and inner plexiform layers of the retina. The presence of tight junctions between the 

endothelial cells of these arterioles contributes to the inner part of the blood-retinal barrier. The 

outer part of this barrier is found at the retinal pigment epithelium cells layer (71).  

The retinal arterioles do not supply the foveal avascular zone (FAZ); the absence of superficial 

blood vessels in this region allows for optimal visual acuity. Rather, the blood input to the FAZ 

and the outer third of the retina comes from the choroid which proceeds from the short posterior 

ciliary arteries (SPCA) (72). The choroid represents 80-90% of the total ocular blood volume and 

flow (73). This characteristic of the choroid is important in the methodology we developed to 

estimate ocular rigidity.  The choroid is essential in maintaining nourishment to the retina, one of 

the highest oxygen-consuming tissue in the human body (67). It is composed of five layers: Bruch's 

membrane (BM), the choriocapillaris, Haller's and Sattler's vascular layers, and the 

suprachoroidea (74). It is also thought to be involved in disease processes such as glaucoma, 

thermoregulation, secretion of growth factors, and emmetropization (eye growth) (75).  

In addition to supplying the choroid, the SPCA form a circular ring called the circle of Zinn and 

Haller which supplies blood to the prelaminar and laminar portion of the optic nerve head (ONH). 

The SPCA may also give rise to cilioretinal arteries in about 27% of optic disks, especially in large 

disks (76). The anterior and long posterior ciliary arteries anastomose to form the major and 

minor arterial arcades in the anterior part of the eye, supplying nutrients and oxygen to the ciliary 

body and the iris, and playing a role in AH production (71). 
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Figure 4. –  Anatomy of the ocular vascular system. A) Cutaway drawing of the human eye showing 

the major blood vessels supplying the retina, choroid and anterior segment. B) Cutaway 

drawing along the superior–inferior axis of the human eye through the optic nerve, showing 

the vascular supply in this location. C) Drawing showing the vasculature of the retina and 

choroid. (Drawings by Dave Schumick. Reprinted from Anand-Apte and Hollyfield (77), with 

permission from Elsevier.) 
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2.2.2 Blood Flow and Regulation 

Proper homeostasis requires a continuous flow of blood through the capillaries of the body. This 

flow is governed by the pressure gradient, or perfusion pressure (PP; in mmHg), between the 

vessel ends, and the resistance (R), or friction, of the circulating blood on the vessel walls. Blood 

flow (BF) is a measurement of volume in function of time, is described by the following equation 

(78, 79):   

𝐵𝐹 = 	
𝑃𝑃
𝑅  

In the eye, the mean PP corresponds to the difference between the mean blood pressure (BP) in 

the ophthalmic artery and the venous pressure as the blood exits the eye. Since IOP is considered 

to be almost equal to the venous pressure, the PP at the eye level is defined as follows: 

𝑃𝑃 = 	
2
3	)𝐷𝐵𝑃 +	

1
3	
(𝑆𝐵𝑃 − 𝐷𝐵𝑃)1 − 𝐼𝑂𝑃 

where DBP and SBP are the diastolic and systolic blood pressures respectively (79). This shows 

that ocular blood flow can be strongly influenced by IOP (80).  

Knowing that the resistance to flow in a cylindrical pipe, such as blood vessels, depends on its 

radius (r), its length (L), the blood’s viscosity (h) and the inherent resistance to flow, these 

elements can be included in the Hagen-Poiseuille law, as follows (78, 79):    

𝐵𝐹 = 	
𝑃𝑃	𝜋	𝑟!

8	𝐿	h	  

An alternative equation, Murray’s law (81) may be more adequate for microvascular beds (79):  

𝐵𝐹 = 𝑘	(
𝑟"

9𝜂
) 

where k is a constant that depends on the vessel’s length and the blood’s viscosity.  

Another important element of homeostasis is the ability of the vascular system to regulate. 

Regulation is usually achieved with the influence of the autonomic nervous system and circulating 

hormones, as well as local autoregulation (82, 83). Autoregulation is the ability of local tissue to 
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maintain a constant blood flow despite perturbations such as variations in metabolic demand or 

in PP (84). In the first condition, the aim is to regulate oxygen and carbon dioxide concentration 

as well as adenosine, nitric oxide and endothelin-1 (ET-1) levels (82, 83). The second mechanism 

of autoregulation pertains to mechanical, or myogenic, influences (85, 86), such as changes in PP 

(or systemic BP or IOP), which can alter vessel diameter to modify the vascular resistance 

accordingly as shown by the Hagen-Poiseuille and Murray equations (79, 82).  

In the eye, the retinal and choroidal systems possess various intrinsic differences (82, 87). Unlike 

the retinal vasculature, where the lack of autonomic innervation (88) and the blood-retinal barrier 

(87, 89) limits the effect, the choroid’s blood vessels are fenestrated and innervated, and can thus 

be affected by the body’s chemical messengers as well as the autonomic nervous system (82, 87). 

Another difference is their ability to autoregulate. The retinal vasculature possesses contractile 

elements, including several layers of smooth muscle cells and a high density of pericytes (82, 90, 

91). Retinal blood flow can thus be maintained constant through autoregulation up to an IOP of 

about 30 mmHg (73, 92). At elevated IOP, retinal blood flow decreases. This may be relevant to 

glaucoma, considering that retinal circulation provides the inner retina and inner parts of the ONH 

(73). This ability to autoregulate is widely recognized for the retina, optic nerve, retrobulbar 

vessels (83, 87, 93-95), and the anterior uveal circulation (73). However it remains nebulous for 

the choroid, as it was thought not to be autoregulated (73) until recent evidence pointing to the 

contrary (96, 97). 

Many experimental methods have been developed and have enabled the study of autoregulative 

responses. These methods often involve the alteration of OPP by inducing a significant change in 

systemic BP, a change in IOP, positional change, or through exercise, and measuring blood flow 

following perturbation (83). Experiments using flickering light stimuli were also designed to 

evaluate autoregulative responses of the ocular vasculature by increasing the neuronal activity of 

the eye, which increases the metabolic demand, and should ultimately lead to increased blood 

flow (98, 99).  

Various studies investigating choroidal blood flow have shown that it remains somewhat constant 

with PP changes. Riva et al. developed a method based on laser doppler flowmetry to measure 
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the relative choroidal blood flow subfoveally (100). They found evidence of autoregulation in the 

choroid in response to acute PP changes due to isometric exercise (101). In their study, when PP 

increased by up to 67%, an elevation in vascular resistance in the choroid was suggested as the 

main mechanism for this autoregulation. Other studies showed similar findings by altering IOP or 

BP through exercise or different means, both in human and rabbit eyes (96, 102-105). 

2.2.3 Blood Flow and Glaucoma 

Blood flow dysregulation is an independent risk factor to various pathological conditions (70). In 

glaucoma, impaired autoregulation is thought to be present at all levels of the vascular system 

(83). While OAG is a multifactorial disease leading to RGC death and visual field loss, it is believed 

that autoregulative ability as well as OPP play an important role in the development of this 

condition (106-109).  

Some examples of dysregulation include impaired response to posture-induced changes in OPP 

in the retinal vasculature in OAG patients compared to controls (110), and less retinal vessel 

reactivity (diameter change) to short-term IOP elevation in OAG than OHT eyes (111). Hafez et al. 

found markedly improved blood flow in the neuro-retinal rim following therapeutic IOP reduction 

in OAG eyes, as opposed to eyes with OHT (112). This may indicate that OAG patients have 

impaired autoregulation in the neuro-retinal rim, whereas OHT patients do not. Studies have also 

shown impaired autoregulation in the choroidal (113-116) as well as in the retrobulbar 

vasculature (117-119) in OAG. For example, improvement of choroidal blood flow was 

demonstrated following trabeculectomy, an IOP-lowering surgery, suggesting impaired choroidal 

autoregulation in glaucoma (115). A higher susceptibility to IOP-induced glaucomatous damage 

was also shown to occur in patients with vascular dysregulation, with visual field progression at 

lower levels of IOP (114). Numerous studies also show an association between reduced blood 

flow and glaucomatous damage or visual field loss (120-129), and disease progression (130). 

While the exact cause of vascular dysregulation in glaucoma is unknown, it could result from an 

inconsistent supply of oxygen to ocular tissue, or in other words, from alternating periods of 

hypoxia and reperfusion (131). This phenomenon causes oxidative damage to cells, and 

mitochondria, which are numerous in the optic nerve head (132) and also present in the 
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trabecular meshwork (133). Mechanical and ischemic stress is also thought to activate astrocytes, 

which can lead to reduced trophic functions, tissue remodeling and subsequent ONH excavation 

(134). The major causes of unstable blood flow and oxidative stress are elevated IOP which exceed 

the autoregulative capacities, or vasospastic disorders.  

2.2.4 Blood Flow and Vasospastic Disorders 

Vasospastic disorders are characterized by vascular dysregulation in the extremities, leading to 

vasospasm, an abnormal constriction of arteries (135). Common examples of vasospastic 

disorders include Raynaud’s disease and migraines. However vasospastic disorders can include a 

range of signs and symptoms, and may not all result in Raynaud-like manifestations. They can be 

secondary to a systemic disease or can present in otherwise healthy patients.  

Primary vascular dysregulation (PVD) is characterized by the body’s abnormal response to stimuli 

such as temperature and emotional stress, leading to cold hands and/or feet. These symptoms 

are usually present after puberty but may improve with menopause, suggesting hormonal 

involvement in PVD. The use of certain medications such as calcium channel blockers which have 

vasodilatory properties, as well as gingko biloba supplements can have beneficial effects in 

vasospastic subjects (136, 137).  

PVD is thought to be more common in thin women with type-A personalities (138). Several 

characteristics of PVD have been identified including a reduced feeling of thirst, low blood 

pressure, and increased ET-1 plasma levels (139). In terms of ocular manifestations, PVD can be 

associated with splinter hemorrhages, focal rim loss, dense central scotomas, as well as a 

dysregulation of blood flow to perfusion pressure changes (138, 140, 141). Vasospasticity is thus 

associated with glaucoma, particularly normal-tension glaucoma (NTG) (142-144).  

While testing for ET-1 may be one way to test for vasospasticity, other objective tests exist. The 

most common include finger laser doppler flowmetry and nailfold capillaroscopy to evaluate the 

peripheral vascular response to temperature change (138).  

There is some evidence that biomechanical stimuli may bring forth abnormal vascular response 

in vasospastic patients, which renders this condition particularly interesting in the context of this 
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thesis work. In a previous study, our group showed a greater improvement in rim blood flow 

following IOP reduction in vasospastic patients compared to non-vasospastic patients, indicating 

defective autoregulation in patients with vasospasm (145). Another study by Schulzer et al. (144) 

also demonstrated differences between vasospastic and non-vasospastic patients. More 

specifically, they showed that within a glaucomatous population, two distinct populations could 

be identified and each exhibited different characteristics. Interestingly, the group with 

vasospasticity had a high positive correlation between the mean defect (MD) index of visual field 

and the maximum IOP (Tmax), while the group with vascular disease, akin to atherosclerosis, 

showed no correlation between these variables.  

2.2.5 Blood Flow and Medication 

As discussed previously, reduced blood flow in glaucoma may have adverse effects on the 

progression of the disease (130, 146). While treatment aimed at lowering IOP is thought to 

improve OPP and blood flow, the effect of some medication, particularly some systemic 

hypertensive drugs, can lower the diastolic blood pressure, which in turn lowers the OPP. This can 

have a significant impact on blood flow regulation, and have a negative effect on glaucoma 

progression (147-149).  

2.2.5.1 Blood Flow and Ocular Hypotensive Medication 

Various IOP-lowering agents are commonly used to treat glaucoma. We will focus on the most 

common and current ones.  

Prostaglandin analogues use generally shows an improved ocular blood flow. Most studies on 

latanoprost showed improved pulsatile ocular blood flow (150-156) as well as beneficial effects 

on the ONH circulation (157-159), including increased OPP at the optic disc (160). Unoprostone 

improved ONH circulation (161-165), although no improvement was found in vasospastic subjects 

(166). Unoprostone also exhibited an antagonistic effect of ET-1 by improving impaired choroidal 

blood flow (167, 168). Bimatoprost was shown to cause vasoconstriction of the ciliary arteries in-

vitro at high concentrations (169), tafluprost exhibited a vasodilatory effect in-vitro (170) and 

travoprost did neither (171). Numerous studies with bimatoprost showed no effect on 

retrobulbar hemodynamics in glaucomatous eyes (172-176), whereas one study found a positive 
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effect in healthy eyes (177). However, travoprost mostly showed a positive effect on the 

retrobulbar vasculature (173, 177), as well as a sustained ONH circulation improvement (162). 

Topical clonidine, an alpha-2 receptor agonist, demonstrated a reduction in OPP in OAG patients 

(178), and brimonidine showed an increased ocular blood flow in glaucoma patients (179, 180). 

However, brimonidine has also been associated with decreased nocturnal OPP due to its lowering 

effect on BP overnight (181). Non-selective b-blockers, particularly timolol, have been associated 

with unchanged (182-186) or decreased (187-190) ocular blood flow as measured using various 

techniques. Betaxolol, a b1-selective adrenoceptor antagonist with a probable calcium-channel 

blocker action, has demonstrated a beneficial effect on blood flow at multiple levels in the eye, 

including the choroid and ONH circulation (191-194). Topical carbonic anhydrase inhibitors (CAI), 

dorzolamide and brinzolamide, have both shown enhancing effects on ocular blood flow and its 

regulation (148, 186, 195, 196). Pilocarpine, a parasympathomimetic vasodilator, displays no 

effect on ocular blood flow in most studies (197-200). A new class of IOP-lowering drug, rho kinase 

inhibitors, have been shown to have vasodilatory effects on the conjunctiva (201) and increase 

ocular blood flow (202). 

2.2.5.2 Blood Flow and Systemic Medication 

Few studies have been carried out to investigate the role of systemic medications on ocular blood 

flow. Even fewer have looked at the ocular effects of systemic drugs in glaucoma subjects (137). 

This section will present the effects of the most common and relevant medications on the eye, as 

found in the literature.   

Systemic CAIs, namely acetazolamide and dorzolamide, have generally been shown to exert a 

vasodilatory effect on both the brain and the eye, showing increased retinal arterioles’ diameter 

and increased retinal, choroidal and ONH blood flow in the latter (203-206). The dilation of retinal 

capillaries in an animal model has been linked to decreased extracellular pH (207). 

Calcium channel blockers, or antagonists, are among the most prescribed medications to lower 

blood pressure in hypertensive patients (208). Their mechanism of action involves the inhibition 

of calcium ions’ entry into cells which leads to smooth muscle relaxation and vasodilation. 

Centrally acting calcium channel blockers appear to increase blood flow in the eye, whereas 
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peripherally acting calcium channel blockers do not (137). This was shown in multiple reports 

demonstrating increased blood flow in the ONH and juxtapapillary retina, as well as in other 

ocular structures including the choroid (209-228). As mentioned previously, calcium channel 

blockers can also have positive effects on blood flow in vasospastic subjects compared with non-

vasospastic subjects (229).  

The renin-angiotensin system plays a key role in vasoconstriction, leading to high systemic BP 

(230). Two classes of medications act on this system to lower BP, namely the angiotensin-

converting enzyme (ACE) inhibitors and the angiotensin II receptor blockers (ARB). In the eye, an 

increase in the velocity of blood flow in the CRA as well as in the posterior ciliary arteries in 

subjects suffering from essential hypertension treated with an ACE inhibitor was reported (231). 

The effect of losartan, an ARB, in normal subjects shows some effects on the retrobulbar and 

choroidal blood flow that can lead to an increased fundus pulse amplitude (232, 233).      

Nitric oxide (NO) can lower IOP and increase blood flow through its vasodilatory role on smooth 

muscle cells, as well a potential autoregulatory effect on the retinal vasculature (234-236). 

Simvastatin, a drug used to treat dyslipidemia, leads to increased blood velocity and blood flow 

in the retinal vasculature (237). These effects may be due to increased plasma levels of NO 

triggered by the drug.  

Cannabinoids have IOP-lowering effects as well as vasodilating properties which may be able to 

increase blood flow in the eye in theory (238, 239). However, they can also cause systemic BP 

reduction and tachycardia at the same dose required to effectively lower IOP, which may hinder 

the therapeutic effect of the drug on glaucoma by thus lowering the ocular blood flow (238, 240). 

Ginkgo biloba extract is thought to have numerous beneficial properties for the treatment of 

glaucoma. There is evidence for reduced blood viscosity and vasospasms (137), increased ocular 

blood flow (241, 242) and neuroprotective properties with ginkgo biloba leading to improved RGC 

survival (243, 244). Improved visual function was also demonstrated in some patients with NTG 

(245, 246).  
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Finally, estrogens and hormonal replacement therapy are thought to have neuroprotective 

properties (247) and were shown to improve ocular blood flow in both the retrobulbar and retinal 

circulation (137).  

2.2.6 Blood Flow and Systemic Factors 

Numerous other factors, including dietary and lifestyle choices as well as overall health can 

influence ocular blood flow. Some common factors, especially those which can be relevant to 

glaucoma, will be briefly reviewed in this section.  

Caffeine increases blood pressure, decreases heart rate and causes vasoconstriction (248, 249). 

It was shown to decrease blood flow in the eye in healthy eyes (250-252) and increase IOP slightly, 

by about 1 mmHg, in glaucoma patients (253-255). The Blue Mountains Eye Study found that 

glaucoma patients who reported regular caffeine consumption had a higher average IOP (256), 

which may be explained by an increased AH production due to caffeine (257, 258). However, 

coffee consumption was not associated with POAG (259, 260).   

Alcohol is a vasodilator and was shown to increase blood flow at the ONH level (261), but not in 

the retrobulbar circulation (262). Its acute consumption was also shown to lower IOP (261-263), 

and was not found to be a risk factor for POAG (264).  

Interestingly, while cigarette smoking is thought to induce vasospasm and increase blood viscosity 

(265), some studies have instead shown increased cerebral and ocular blood flow in response to 

nicotine (266-269). This may be due to increased cerebral oxygen consumption in smokers (270). 

Cigarette smoking however was not found to be an important risk factor for POAG in a large 

prospective study (271). 

Obesity has been associated with elevated IOP and reduced retrobulbar blood flow (272, 273), as 

well as reduced ocular pulse amplitude (274). Epidemiological studies have shown conflicting 

results regarding the risk of POAG in obese subjects, with some showing increased risk (275), 

while others decreased risk (276-278) or no associated risk (279, 280).   

Obstructive sleep apnea syndrome (OSAS) is a disorder in which breathing can be interrupted 

multiple times during sleep. It is characterized by a relaxing of the muscles in the throat, which in 
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turn cause the upper airway to collapse (281). While the typical OSAS patient is thought to be a 

middle-aged, obese man who snores loudly, this is not always the case and should be considered 

when screening for this sleep disorder (282-284). OSAS was found to be associated with POAG, 

particularly NTG, (285-295). It is thought that a dysregulation of blood flow caused by repetitive 

hypoxic events as well as insufficient ONH perfusion and increased vascular resistance is probably 

at play in both of these conditions (285). Systemically, impaired coronary endothelial 

vasoreactivity (296) and decreased cerebral blood flow (297-302) was found in patients with sleep 

apnea. However, in the eye, blood flow was found to be unaltered in OSAS subjects compared 

with controls in most studies (303-306), except in one study where impaired autoregulation in 

the retrobulbar vasculature of OSAS subjects was reported (307).  

Both low and high BP have been found to be associated with glaucoma. Numerous studies have 

reported an association between low DBP and low OPP and a higher prevalence and/or incidence 

of OAG (308-311). The Baltimore Eye Survey reported a six-fold increase in the prevalence of OAG 

in patients with the lowest OPP, suggesting altered ocular blood flow and autoregulation (311). 

The combination of nocturnal hypotension in patients with low systemic BP, or those with treated 

hypertension (HTN), and elevated IOP is a risk factor for glaucoma, leading to reduced OPP and 

ONH ischemia (106, 311-315). An association between HTN and OAG, as well as a correlation 

between SBP and IOP were also consistently found in several clinical studies, suggesting that 

chronic HTN may impair blood flow to the ONH (309, 316-321). However, this association was 

later attributed to the correlation between age and HTN (4). In the context of biomechanics which 

will be discussed in the following section, altering BP was suggested to have an effect on the 

pressure-volume relationship in rabbit eyes, by altering blood volume and choroidal blood flow 

(322). These findings were not corroborated in human studies in the range of clinically 

encountered BP (23, 323). 

Diabetes mellitus is known to damage the endothelium and pericytes of blood vessels, leading to 

dysfunctional regulation of ocular blood flow in the early stages of the disease, followed by 

ischemia and vascular proliferation in the later stages of diabetic retinopathy (324). Findings 

regarding choroidal blood flow in diabetes using subfoveal laser Doppler flowmetry generally 

indicate a reduction (325, 326) and dysregulation (327) of choroidal blood flow in eyes with 
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diabetic retinopathy. Although diabetes was initially thought to be a risk factor for glaucoma (328-

332), conflicting data suggests that diabetes may not be associated with glaucoma (278, 333-338).   

2.3 Ocular Biomechanics 

Biomechanics is a rapidly developing field, joining physics and biology, and bringing new insights 

into physiological and pathophysiological mechanisms. In a normal eye, various forces are 

constantly being exerted on its walls by surrounding or internal structures, including the 

extraocular muscles and ciliary muscle, during accommodation for example, as well as by fluids 

such as the AH and the vascular system during the cardiac cycle (80). Throughout these processes, 

the shape of the eye and position of its optical components is maintained to ensure optimal 

vision. In other cases, the mechanical properties of the eye can dictate its behaviour in response 

to different factors, including IOP, and lead to adverse morphological and functional changes. This 

is thought to be particularly true in diseases such as OAG, age-related macular degeneration 

(AMD) and myopia. Hence, understanding the structural and material properties of the eye could 

help elucidate the mechanisms underlying these potentially-blinding diseases, and in turn have a 

significant impact on clinical practice.  

The following sections will present the main findings pertaining to the biomechanical properties 

of the eye in OAG, from the most anterior to the most posterior structures. They are adapted 

from a textbook chapter on Glaucoma and Ocular Rigidity that I co-authored (339). The outer coat 

of the eye is formed by the cornea and the sclera, two tough connective tissues that make up the 

corneoscleral shell. Posteriorly, the corneoscleral shell is pierced by the scleral canal through 

which the retinal ganglion cells’ (RGC) axons exit the eye on their way to the brain. The lamina 

cribrosa (LC), a specialized region of the sclera, spans the scleral canal. It is clear that remodeling 

of these tissues occurs in glaucoma (14, 340, 341), thus altering the mechanical environment of 

the optic nerve head (ONH). The properties of these structures will be reviewed with an emphasis 

on their relevance in glaucoma.  
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2.3.1 Mechanics of the Cornea 

The cornea is the anterior extension of the sclera, and its viscoelastic properties and thickness 

contribute to the overall rigidity of the eye. The main biomechanical properties of the cornea 

which can be currently measured and studied in glaucoma are the central corneal thickness (CCT), 

corneal hysteresis (CH), corneal resistance factor (CRF), and many others, including the ORA 

waveform parameters and the Corvis ST parameters, that have been studied less extensively. 

2.3.1.1 Central Corneal Thickness 

CCT is most frequently measured using ultrasound pachymetry, optical pachymetry, Scheimpflug 

imaging or anterior segment optical coherence tomography (OCT) (342). Initially, CCT was used 

in the clinical management of glaucoma to correct IOP readings (343). This correction was later 

shown to be inadequate due to the absence of algorithm to accurately predict the true IOP 

corrected for CCT (344). The Ocular Hypertension Treatment Study (OHTS) was the first to 

demonstrate the importance of CCT as a predictor for the development of OAG (5). In this study, 

a CCT of 555 µm or less was associated with a three-fold increased risk of developing OAG. Further 

investigation has confirmed CCT to be an independent predictor for the development of POAG (5, 

345) as well as a risk factor for the development of visual field (VF) loss in glaucoma patients (346).  

Several experiments were carried out to better understand the link between CCT and posterior 

structures of the eye in glaucoma. While this association remains unclear, due to the absence of 

correlation between CCT and laminar and scleral thicknesses (347, 348), a thinner cornea was 

suggested to be associated with a more compliant lamina cribrosa due to larger displacement of 

the LC with IOP reduction in eyes with lower CCT (349). Furthermore, an inverse relationship was 

found between CCT and optic disc size or area, perhaps indicating larger and more deformable 

optic discs with lower CCT (350). In a study involving non-invasive measurement of OR, a positive 

albeit weak correlation was also found between OR and CCT, indicating that subjects with a 

thinner cornea may have a more compliant sclera (23). In a similar clinical study, no relationship 

between OR and CCT was found, arguably due to low statistical power (351).  

In subjects with no corneal pathology, CCT remains relatively stable. CCT was reportedly lower in 

subjects from African descent (AD) and Hispanics compared to Caucasians (352-355), although 
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this difference was later shown to be dependent upon corneal hysteresis (356). While CCT also 

decreases with age, and can be altered with some topical treatments (357-359), it is not known 

to change over time in glaucoma patients as their disease advances (360).  

2.3.1.2 Corneal Viscoelastic Properties 

The corneal hysteresis (CH) and corneal resistance factor (CRF) can be measured in vivo using the 

Ocular Response Analyzer (ORA; Reichert Ophthalmic Instruments, Inc., Buffalo, NY, USA), a non-

contact tonometer that measures the biomechanical response of the eye to a rapid air jet-induced 

deformation at the cornea (61). The Corneal Visualization Scheimpflug Technology tonometer 

(Corvis ST: CST; Oculus, Wetzlar, Germany), a more recent device, visualizes and measures corneal 

deformation also in response to an air impulse using a high-speed Scheimpflug camera (62). It 

measures numerous parameters, many of which have been shown to be correlated, albeit weakly, 

with CH and CRF (361). However, these two devices yield different parameters which are not 

interchangeable.  

CH and CRF are considered to be analogous to the viscous and elastic properties of the cornea 

respectively. As such, CH represents the cornea’s ability to absorb and dissipate energy, and is 

defined as the difference between the inward applanation pressure (P1) and the outward 

applanation pressure (P2) as seen in Figure 5. CRF provides information about the elastic 

properties of corneal tissue or their resistance to stress, and is defined as P1-kP2 where k is a 

constant derived empirically from central corneal thickness (CCT) (362). Both CH and CRF have 

been shown to be relevant to glaucoma. Typically, average CH and CRF values in non-diseased 

eyes are around 10.5 mmHg (363, 364). CH was found to be significantly lower in POAG (365-368) 

compared to controls, while both CH and CRF were found to be higher in OHT eyes than in 

glaucomatous eyes (369, 370).  Numerous studies also associated a lower CH with an increased 

risk of glaucoma progression (371-374). Furthermore, in a study investigating CH in asymmetric 

glaucoma progression, worse eyes had significantly lower CH than the less damaged eyes (8.2 ± 

1.9 vs 8.9 ± 1.9 mm Hg; p < 0.001), while CCT and IOP did not significantly differ between eyes. 

CH was thus the most discriminative index for predicting the eye with worse VF in asymmetric 

OAG (375). Moreover, when comparing corneal biomechanical factors, reported findings showed 

lower CH values to be predictive of glaucoma progression, more so than CCT (371, 372).  
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How these corneal properties are linked to optic nerve susceptibility and glaucomatous damage 

remains unclear. Some speculate that the viscoelasticity of the corneal extracellular matrix (ECM) 

could be related to the properties of the ECM in the LC and peripapillary sclera. This would mean 

that an eye with a more deformable cornea (low CH) may also be more vulnerable to IOP-induced 

ONH damage. Some studies on the relationship between CH and ONH morphology have found 

lower CH to be associated with larger cup-to-disc ratio (376, 377), deeper cup in untreated POAG 

(376) and small rim area (377). However, another study did not find such correlations in a large, 

non-glaucomatous cohort (378). When subjected to an acute but transient IOP elevation, 

glaucomatous eyes have shown a correlation between CH and optic nerve surface displacement, 

whereas controls did not (366). When IOP was reduced in POAG subjects, greater change in ONH 

cup area occurred in POAG eyes with lower CH when controlling for baseline IOP and IOP change, 

but this was not significant when all factors were included in the multivariate model (379). 

Similarly, no significant association was found between CH and RNFL thickness in glaucomatous 

subjects when multivariate analyses were carried out (380, 381).  

CH is a dynamic property. While it has been shown to decrease only slightly with age (382), it has 

been shown to have a mild inverse relationship with IOP (383, 384). Consequently, CH can be 

altered following IOP-lowering therapies such as with topical prostaglandin analogues (PGA) 

(358). Other surgical IOP-lowering strategies also showed increased CH post-operatively (384, 

385), while maintaining a lower CH in the treated eye compared to the contralateral healthy eye 

in some cases (384). Furthermore, low-baseline CH, but not CCT, can be predictive of a greater 

magnitude of IOP reduction following treatments such as PGA (29% vs 7.6% IOP reduction with 

mean CH 7.0 mmHg vs 11.9 mmHg respectively, p=0.006) (386) and selective laser trabeculoplasty 

(SLT) (387). Ethnic differences point to lower CH in subjects of African Descent (AD) (356), in both 

healthy and glaucomatous eyes (388). Whether this could be linked to the higher predilection of 

AD subjects of developing glaucoma remains unknown. 

In summary, CH may be more relevant to glaucoma than CCT by its stronger association with 

disease severity, risk of progression, and effectiveness of glaucoma treatments (389). How these 

findings can be related to ONH biomechanics remains to be elucidated. 
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Figure 5. –  Ocular Response Analyzer signal showing the cornea’s response to deformation by a 

rapid 30 ms air jet pulse. Infrared light (red signal) is emitted and detected by a 

photodetector after reflecting on the corneal surface. Following the air jet pulse, the cornea 

is applanated (green signal) and flattened; this corresponds to the inward applanation 

pressure (P1). It continues to move inward, becomes concave, then rebounds to reach a 

second flattened state at an outward applanation pressure (P2), and return to its original 

shape. Corneal hysteresis is defined as P1-P2. CRF corresponds to P1-kP2 where k is a 

constant derived empirically from central corneal thickness. 

2.3.2 Mechanics of the Globe, or Ocular Rigidity 

2.3.2.1 Ocular Rigidity 

Seeking to improve the accuracy of tonometry readings and investigate differences between 

normal and diseased eyes, a prominent ophthalmologist and scientist, Jonas S. Friedenwald, 

investigated the relationship between the change in intraocular pressure (IOP) and ocular volume 

(V). This led, in 1937, to his proposal of the “ocular rigidity function”:  

ln #$%
#$%!

= 𝐾	(𝑉 −	𝑉&), 

where K is the ocular rigidity coefficient (26). Friedenwald’s equation was obtained empirically 

using experimental data on the distensibility of the eyeball recorded previously in enucleated 
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eyes. The application of this equation is limited to IOP values above 5 mmHg, as at lower IOPs, it 

suggests that an infinite volume of fluid must be removed from the eye to result in a null IOP (26). 

Since the sclera, the fibrous envelope of the eye, is responsible for the majority of the ocular 

globe’s rigidity, it is not surprising that the Friedenwald equation can be derived from the 

mechanical properties (stress-strain relationship) of its primary constituent, collagen (80, 390).  

In biomechanics, stress (σ) is the force per unit cross-sectional area (in N/m2 or Pa) that is exerted 

on a body. Strain (ε) is the deformation in the direction of the applied force divided by the initial 

length of the material (ε = ∆l/l0). The stress/strain behaviour of the corneoscleral envelope is 

described as (391-393):  

     𝜎 = 𝐴[𝑒'( − 1], 

where A and α are material constants. At low strains, Aα corresponds to the Young’s modulus of 

the material (80). Young’s modulus, or the elastic modulus, is a material property describing its 

resistance to being deformed when a force is applied to it. The sclera has a high elastic modulus, 

5-13 MPa on average according to experiments led on inflated human eyes (394-396), and a very 

high rupture strength (80). When we evoke ocular rigidity, it refers to a property of both the 

material and shape of the object. The rigidity of the corneoscleral shell, or ocular rigidity (OR), is 

thus a measure of the resistance that the eye exerts to distending forces and corresponds to the 

pressure-volume relationship in the eye as represented in Friedenwald’s equation (26). In this 

equation, a greater K value corresponds to a more rigid eye. A good analogy for this is to think of 

a rigid eye (high K, or OR) as a soccer ball and of a compliant eye (low K, or OR) as a birthday 

balloon. Alternative and more accurate formulae were developed, however the Friedenwald 

function remains the most commonly used to calculate the OR coefficient (25).      

OR is considered an important biomechanical property of the eye and is thought to play a key role 

in the pathogenesis of open-angle glaucoma (OAG) (11, 13, 14, 16, 340, 397), myopia (14) and 

age-related macular degeneration (AMD) (398, 399). OR has been shown to be altered in these 

diseases (17, 23, 399, 400). More recently, numerical modeling has provided insight into the 

profound effect of biomechanical properties of the corneoscleral shell on the level of stress 

exerted on the ONH (13, 14, 16, 401). These models have shown that forces at the ONH are 
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considerably higher than the IOP (402). Furthermore, finite element modeling suggested that 

scleral stiffness could be the most important biomechanical factor in determining strain at the 

ONH (16). However, its role in their pathogenesis remains to be fully understood and requires 

further investigation. 

The ability to quantify the structural and material properties of the corneoscleral shell could help 

elucidate the pathophysiological mechanisms of these diseases, and thus improve their diagnosis 

and treatment. Until now, reported outcomes on the association between OR and glaucoma 

remain mitigated. Inflation studies in cadaver eyes, and in vivo studies using indirect 

measurements showed higher OR in eyes with established glaucoma (17, 19-21). More recent 

studies reported low OR in OAG (18, 23), and highest OR in ocular hypertensives (OHT) with no 

glaucomatous damage (23). Finally, using intraoperative cannulation, one experiment showed no 

difference between diseased and healthy eyes (22). How can these results be reconciled? The 

idea that perhaps OR is altered during the course of the disease is an interesting one, although 

this has not been assessed yet. As early as 1960, Drance postulated that while OR seems to be 

increased in long-standing glaucoma, decreased OR in untreated glaucoma patients was possible 

(17). Discrepancies may also be due to confounding factors which can influence OR values. We 

will hereby address some of these factors.  

2.3.2.2 Ocular Rigidity Measurement Methods 

Different approaches, both invasive and non-invasive, have been used in the last decades to 

estimate OR. Each has advantages and limitations. This meant that interpretation of results with 

non-invasive techniques had to be done carefully, and invasive methods were not suitable for 

large scale testing.  

Historically, OR measurements were performed in cadaver eyes (12, 403-405) or in vivo by means 

of Schiotz tonometry, either paired readings or differential tonometry. This technique consisted 

of comparing Schiötz and Goldmann tonometry results, but was later considered inaccurate 

primarily due to the dependence of both indentation and applanation tonometry on the 

biomechanical properties of the eye (406-409). The most significant source of this variability in 

OR coefficients originates from the use of weights in Schiötz tonometry, which compress the 
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ocular wall and displace a significant amount of intraocular fluid (406, 409), but also through the 

erroneous assumption that the OR of all eyes is standard in the applicability of the conversion 

table which provides the IOP reading in mmHg (39, 51, 406). Other non-invasive methods were 

developed to measure OR based on Friedenwald’s equation. The first method estimated the 

ocular volume change (DV) by measuring the movement between the cornea and inner retina in 

response to the cardiac pulse, also known as the fundus pulse amplitude (FPA) (19). Another 

group measured the change in axial length (AL) following pharmacological IOP reduction to 

estimate OR (20). Both methods consisted of measuring the anterior to posterior expansion of 

the corneoscleral shell, which is itself dependent on OR (410). Instead of measuring the response 

of ocular coats to an increase in volume, choroidal laser Doppler flowmetry was used to estimate 

the amount of blood injected in the eye with each cardiac pulse as an indicator of DV to estimate 

OR. However this gave only relative values because choroidal blood flow was measured in 

arbitrary units (23). 

Due to the difficulties of quantifying DV with other methods, anterior chamber manometry 

remained the main technique to directly calculate OR in vivo (351, 411-413). This technique is 

used at the outset of surgery and involves injecting small increments of fluid into the anterior 

chamber while measuring the resultant change in IOP. It could be considered the “gold standard” 

for clinical OR measurements, however its invasive nature limited its applicability in clinical use. 

Instead of injecting known volumes of fluid in the eye and measuring resulting IOP changes to 

estimate OR, our group has recently developed a non-invasive, clinical method to directly 

measure OR in living human eyes (27). This method will be described in detail in Chapter 3.  

2.3.2.3 Ocular Rigidity and Post-Mortem Changes 

Experiments using enucleated eyes often yield higher values of OR when compared to in vivo 

measurements. This is thought to result from the influence of the vasculature and extraocular 

muscles in living eyes, and of edema in postmortem eyes (351, 413-415). While comparison of 

glaucomatous and non-glaucomatous eyes remains possible, limited knowledge as to the prior 

state of the eyes and the history of the disease is known when using human cadaver eyes. 

Furthermore, dynamic behavior cannot be easily assessed using cadaver eyes.  
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2.3.2.4 Ocular Rigidity and Glaucoma Severity 

In most studies, glaucomatous patients are chosen following diagnostic criteria including signs of 

axonal and VF damage (19, 20). Since VF defects are detected only after a substantial proportion, 

up to 57% of RGCs are lost (416-418), these subjects have established glaucoma. Therefore, OR is 

not often measured near the initiation of glaucoma, and changes may have occurred that modify 

the initial OR.  As well, these cross-sectional experiments do not permit the assessment of how 

OR changes during the course of glaucoma. Perhaps longitudinal studies will help establish 

whether OR could be low in early stages and increases with advanced disease, as proposed by 

Drance (17).  

2.3.2.5 Ocular Rigidity and IOP-lowering therapy 

In several studies investigating OR in glaucoma, recruited patients are on IOP-lowering therapy. 

Due to the dependence of OR on IOP, results thus need to be interpreted with caution (25). 

Furthermore, commonly used IOP-lowering medications may have an effect on OR possibly 

through alterations of the sclera’s composition (18, 419, 420). Some medications, including 

losartan, an angiotensin II receptor blocker prescribed to lower systemic blood pressure, has been 

shown to alter scleral remodeling in experimental glaucoma in mice, and exhibit a 

neuroprotective effect on RGCs (421). Ocular surgical procedures, especially those intending to 

lower IOP, may also alter OR.  

2.3.2.6 Ocular Rigidity and Ocular Volume 

The relationship between OR and the diameter or volume of the eye is well known. OR is thought 

to be lower in longer eyes (23, 422). Previous findings report thinner peripapillary sclera and 

lamina cribrosa (423), as well as scleral remodeling in elongated eyes (424). Axial myopia is also a 

known risk factor for glaucoma, with a two- to three-fold increased risk of glaucoma compared 

to non-myopes (425, 426). Theoretically, this would be due to greater IOP-induced strain in larger 

eyes (427), and needs to be controlled for in clinical studies investigating OR. This would suggest 

that the association between axial myopia and glaucoma could be due, at least in part, to the 

increased compliance of the sclera, leading to increased ONH deformation and susceptibility to 

axonal damage.    
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2.3.2.7 Ocular Rigidity and Age 

There is evidence for the association between aging and increased OR (351, 419, 428). Induced 

crosslinking from the accumulation of advanced glycation end products in tissues with aging could 

be at fault (429, 430). These age-related changes in the composition and thickness of the sclera 

and optic nerve head would increase lamina cribrosa (LC) and peripapillary sclera (PPS) stiffness 

(431, 432). Since aging is also a risk factor for glaucoma, a high OR would then be thought to be 

associated with glaucoma. However, this may not be the case as demonstrated by more recent 

clinical and computational studies (16, 23) and needs to be further investigated.      

2.3.2.8 Ocular Rigidity and Ethnic differences 

Through inflation studies and ONH reconstructions from cadaver eyes, ethnic differences were 

observed between eyes from African descent (AD) and those from European descent (ED). PPS 

stiffness was reported to be higher in aging AD eyes compared to ED eyes (433). Similarly, AD eyes 

showed an increase in scleral thickness and LC depth with age, whereas ED eyes did not (432).  

2.3.2.9 Ocular Rigidity and Other Factors 

While OR may be altered through the course of ocular diseases, choroidal and ocular blood flow 

can alter OR (323, 428, 434). These have been reviewed in some detail in the previous sections. 

Pseudoexfoliation syndrome is associated with increased stiffness of the iris (435, 436), and 

perhaps of the scleral shell. Furthermore, the impact of collagen diseases on OR is not to be 

neglected, as subjects with osteogenesis imperfecta were found to have lower OR (437) and other 

collagen or connective tissue disorders have been associated with corneal conditions such as 

keratoconus, which is characterized by increased compliance of the cornea (438).  

 

The mechanism by which the sclera is altered in glaucoma has not been established, and in vivo 

studies indicating OR alterations in glaucoma remain sparse. Changes in the content and 

composition of collagen fibers in glaucomatous eyes and in suspected glaucomatous eyes were 

found (439). However, while increased OR in established glaucoma may be related to stiffness or 

thickness of the sclera, no relationship was found between OR and scleral thickness (440). This 

reinforces that to better understand the fundamental biomechanical paradigm and the forces 
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that lead to ONH damage, it is perhaps necessary to evaluate OR in conjunction with other factors 

such as the biomechanical properties of the PPS and the LC, which make major contributions to 

the stresses and strains in the ONH.   

2.3.3 Mechanics of the Lamina Cribrosa  

An extension of the sclera, the lamina cribrosa (LC) is a porous disc at the base of the optic nerve 

head through which the axons composing the optic nerve leave the eye. It features a complex 

three-dimensional structure composed of a network of flexible beams of connective tissue. As it 

spans the scleral canal, this fenestrated and vascularized tissue provides mechanical as well as 

metabolic support to the retinal ganglion cells’ axons as they leave the eye (341). 

Biomechanically, the LC is a structure of great interest and is thought to be the principal site of 

axonal damage in glaucoma (6, 9, 441). The LC is significantly more compliant and thinner 

compared to the surrounding sclera. It corresponds to about one-tenth of the sclera’s stiffness 

and one-third of the peripapillary scleral (PPS) thickness (341). It is thus considered a ‘weak spot’ 

in the corneoscleral shell (402). Its vulnerability is further exacerbated by its surroundings. On 

one side the intraocular space and on the other the retrobulbar space represent high (IOP) and 

low (cerebrospinal fluid pressure, or CSFP) pressure environments respectively, creating a 

translaminar pressure gradient (TLPG) across this barrier (442). The TLPG, estimated as the 

difference between IOP and CSFP divided by the laminar thickness (443, 444), would generally 

produce an outward bowing of the LC. IOP-induced circumferential stress can also act on the ONH 

via the corneoscleral shell and PPS to expand the scleral canal. Both these elements can give rise 

to considerable stress and strain, even at normal levels of IOP (402, 445). In turn, this can induce 

morphological changes within these structures (134, 446-449), but also disrupt axoplasmic flow 

within the RGC axons at the LC level (7, 441, 450-453) and impinge on the delicate ONH 

vasculature leading to reduced blood flow (454). LC deformation is thus mediated by IOP, CSFP, 

as well as the geometrical and material properties of the sclera and LC of the individual eye (341). 

Eye-specific characteristics thus mediate the susceptibility to glaucoma in individuals at any given 

IOP.  
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Chronic IOP elevation and transient IOP elevations were found to produce tissue remodeling in 

the ONH through various pathways, including through the activation of astrocytes and LC cells 

(134, 455-457). Stretching induces remodeling of the extracellular matrix in the LC (447-449). This 

remodeling can alter the stiffness of the LC and in turn, play a role in the development of OAG. 

Laminar stiffness is shown to increase with age (405, 429, 458), more so in patients of African 

origin (432, 459, 460). A plethora of studies have investigated LC mobility in ex vivo (12, 403-405, 

461) and histological studies (12, 462-465) as well as in monkey eyes (462, 466, 467)  and living 

human eyes (468-472), and more recently through engineering modeling (16, 401, 473). Some 

have suggested an initial hypercompliance in early glaucoma (462, 467) and most have 

documented increased rigidity later in the course of the disease (12, 403-405, 461, 462, 466, 468, 

474). Morphologically, glaucomatous changes to the laminar structure have been shown to 

manifest as posteriorizing of the LC insertion into the sclera, increased cupping and focal laminar 

defects (341). Focal defects such as laminar holes and disinsertions were found to be linked with 

disk hemorrhages (475-478) and RNFL defects (479, 480). Enlargement of the laminar pores were 

also found, particularly in the superior and inferior quadrants where early glaucomatous RNFL 

defects and VF loss are most common (463). Laminar posteriorizing was greater in glaucomatous 

eyes compared to controls (481), and greater LC depth was found in high-tension glaucoma 

compared to NTG (482). Posteriorizing of the LC insertion and peripheral LC were shown in OAG 

eyes compared with age-matched controls, the latter being more displaced in the vertical 

meridian (483). This was consistent with the findings in asymmetric glaucoma where prelaminar 

tissue was thinner and the LC was more posterior in the eye with VF loss compared to the 

contralateral eye with no VF defect (484).  

In experiments involving significant IOP reduction or elevation, LC displacement was shown to 

bend in either direction (ie. inward or outward) (485, 486). This can be dependent on its initial 

position and the stiffness of the surrounding tissue. When OAG subjects were divided in three 

groups according to disease severity, and anterior LC depth (ALD) was imaged using optical 

coherence tomography (OCT) prior to and after significant IOP reduction, the results showed 

posterior displacement of the LC in the group with lesser VF damage, anterior displacement in 

the group with moderate damage and close to no displacement in subjects with greater glaucoma 



57 

damage (485). Perhaps these results suggest that the LC is stiffer in advanced glaucoma, and that 

the group with less VF damage has a more compliant sclera. In other words, while a compliant 

PPS would expand with high IOP, producing a taut pulling of the lamina and an expansion of the 

scleral canal, IOP reduction would reverse this expansion. The LC would hence move outward, 

back to its original position as the IOP is reduced, as illustrated in Figure 6. However, this remains 

to be verified. As more imaging tools are developed to study the biomechanical behavior of the 

LC, a small and relatively inaccessible structure of the eye, it will become possible to assess 

glaucomatous changes over time.  

 

Figure 6. –  Behavior of the lamina cribrosa when subjected to low or high IOP. When the sclera is 

compliant, increased IOP pulls the LC taut due to the expansion of the sclera and scleral 

canal. When the sclera is stiff, minimal scleral deformation occurs. Instead, the LC deforms 

posteriorly under the effect of IOP. 

 





 

Chapter 3 – Method Developed to Measure Ocular Rigidity 

Our group has developed the first non-invasive and direct method to measure ocular rigidity (OR) 

in living human eyes (27). Based on Friedenwald’s equation, this approach involves video-rate 

optical coherence tomography (OCT) imaging coupled with automated choroidal segmentation 

to measure the pulsatile ocular volume change, as well as Pascal dynamic contour tonometry 

(DCT) to measure the pulsatile intraocular pressure (IOP) change. The novelty of this method 

consists mainly in its ability to measure the pulsatile ocular volume change from OCT videos. Every 

step of the method is described in detail in this chapter.  

3.1 Pulsatile Ocular Volume Change 

OCT is a medical imaging technique that uses low coherence interferometry to produce high-

resolution cross-sectional images (487). Since the eye is transparent, it is a privileged site for OCT 

imaging. The basic principles behind this technology are similar to the Michelson interferometer, 

as seen in Figure 7.  

 

Figure 7. –  Michelson interferometer. A laser light is shone and passes through a beam splitter. One 

beam travels to the sample (Mirror 1) and another to the reference arm (Mirror 2). Both 

light beams then travel to a photodetector. If they are detected simultaneously (ie. if the 

distance traveled by both beams is the same), an interference pattern forms. 
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By shining a polychromatic laser light into the eye, an image of its structures can be reconstructed 

based on their reflectivity and the detection of the reflected light’s interference patterns.  

Using dynamic video-rate OCT imaging, the first step of our method requires the measurement 

of the pulsatile ocular volume change, or volumetric changes of the eye due to choroidal filling. 

In other words, it detects the amount of blood pumped into the eye with each heartbeat. In each 

frame of the video, automated segmentation is carried out to measure choroidal thickness (CT). 

In the time-series, the change in CT associated with the cardiac cycle, or ΔCT, is measured. 

Considering that the choroid represents close to 90% of the total ocular blood flow, a simple 

mathematical model is used to extrapolate the pulsatile ocular volume change (ΔV) from ΔCT.  

To capture the pulsatility of the choroid, OCT imaging is carried out at 8 Hz, corresponding to an 

averaging of 5 b-scans per frame, with an axial and lateral resolution of 3.9 μm and 11 μm 

respectively. Using the Spectralis Spectral-Domain OCT (Heidelberg Engineering GmbH, 

Heidelberg, Germany) and a custom software enabling video-rate imaging, a single 30° wide b-

scan is acquired centered at the fovea. To optimize the visualization of the choroid-sclera 

interface (CSI), the azimuthal angle of the b-scan is chosen accordingly, and enhanced depth 

imaging (EDI) mode is used. Once acquisition starts, four hundred images are acquired per video 

in less than a minute. The heart rate is measured simultaneously using a finger oximeter. 

In order to process all images, measure ΔCT, and ultimately compute OR, a fully automated 

algorithm was developed using Matlab (The MathWorks, Natick, MA). Preprocessing begins by 

trimming unwanted a-scans from the time-series, for example to remove a-scans near the optic 

disk where no choroid is present (Fig. 8A). Low quality images (Spectralis Quality metric <20) are 

excluded from the time-series. All remaining images are registered, or aligned to the first one, 

without further transformation. Segmentation of the retina-vitreous interface (RVI) and the 

anterior and posterior interfaces of the retinal pigmented epithelium (RPE) is carried out (Fig. 8B). 

The RVI is found using Canny Edge Detector. The RPE corresponds to the dark-to-bright transition 

below the retina, while Bruch’s membrane (BM) corresponds to the steepest light-to-dark 

transition below the RPE. The b-scans are then flattened with respect to the RPE to facilitate CSI 

segmentation (Fig. 8C).  
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Precise detection of the CSI is based on graph search using an edge-probability weighting scheme. 

This numerical approach has been shown to be more robust in detecting the CSI compared with 

existing algorithms (27, 488). This strategy detects potential nodes and minimizes the path across 

the nodes based on weights assigned to each connection. Nodes are pixels that could potentially 

be a part of the CSI interface. They are located at regions of high local contrast. Nodes are found 

using the smoothed first and second gradient (derivative) of image intensity along each A-scan. 

Connections link the nodes to each other, based on horizontal and vertical distance thresholds. A 

depth of 585 μm, or 150 pixels, from the BM is also established to limit the location of the CSI 

(Fig. 9). In other words, graph search is similar to Google Maps, where nodes are the street 

corners and connections are the streets, and a combination of these determines the shortest and 

best path that will make up the choroidal boundary. In this way, the algorithm measures the BM-

CSI distance, or CT, in each frame as well as ΔCT through the time-series (Fig. 10A). 

To ensure that CT fluctuations in the time-series are due to the pulsatile blood flow, frequency 

components from the spectral analysis must coincide with the first and second harmonics of the 

heart rate frequency which is measured simultaneously using an oximeter. A frequency spectrum 

analysis is carried out. Similar to a Fourier transform, a Lomb-Scargle periodogram is used intead 

since the imaging is sampled unevenly due to the OCT’s eye-tracker (Fig. 10B).  

Once we measure the fluctuations in submacular CT associated with the heart rate, we use a 

simple spherical model of the eye to extrapolate ΔV from ΔCT. The choroid is modeled as the 

volume between two equal spheres shifted by ΔCT. The radius (R) of each sphere is set as half of 

the ocular axial length (AL), the distance between the anterior surface of the cornea and the RPE, 

measured using optical biometry (IOL Master 500, Carl Zeiss Meditec AG, Dublin, USA). In this 

model, the pulsatile ocular volume change is thus estimated as:  

∆𝑉 = 	𝜋	𝑅)	∆𝐶𝑇 . 
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Figure 8. –  Automated segmentation of retinal layers of interest from OCT images. The image in A is 

a typical frame from the video series. A) A-scans where the choroid is absent (highlighted in 

green) are discarded from all frames. B) Segmentation of the outmost layers of the retina: 

RVI is indicated in green, anterior RPE in red, and posterior RPE in blue. C) The A-scans are 

shifted so that the blue layer appears flattened. (Reprinted from Beaton et al. (27) with 

permission from The Optical Society.)  

 

Figure 9. –  Top) Heatmap showing pixels which are very likely to lie on a boundary, including node 

locations (yellow) and the CSI (red line). The b-scan is flattened and the green dashed line 

shows the limit of 585 µm below the Bruch’s beyond which nodes are discarded. Bottom) 

The original b-scan overlaid with the RPE (blue), CSI (yellow) and the mean CT (red dotted 

line). (Reprinted from Beaton et al. (27) with permission from The Optical Society.)   
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Figure 10. –  A) Frequency spectrum analysis of CT fluctuations in time, showing the oximeter signal, 

raw fluctuations of CT versus time (black) and band-pass filtered CT signal (red). B) 

Frequency spectrum of the oximeter signal (top), and CT signal (bottom), where the offset 

component has been omitted. The filtered frequency band for the CT spectrum is shown in 

red. The dashed blue lines indicate the two first harmonics of the measured heart rate which 

are observed in both signals. (Reprinted from Beaton et al. (27) with permission from The 

Optical Society.) 

  

3.2 Pulsatile Intraocular Pressure Change 

The pulsatile IOP change can be obtained using the Pascal DCT (Ziemer Ophthalmic Systems AG, 

Port, Switzerland), a tonometer which is independent of the properties of the cornea (65, 489-

491). The Pascal DCT provides two outputs: the diastolic IOP (492) and the ocular pulse amplitude 

(OPA). The OPA corresponds to the difference between the systolic and diastolic IOP. Only 

measurements with a quality index above 3 were considered. An alternative way to present the 

expression IOP/IOP0 from the Friedenwald equation would be Systolic IOP/Diastolic IOP, where 

Systolic IOP = Diastolic IOP + OPA. Correspondingly, ΔV, or V-V0, as measured using our algorithm 

is defined as the ocular volume change with the cardiac cycle. These volumetric and pressure 
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changes thus permit the calculation of the OR coefficient using Friedenwald's equation (26). We 

obtain a single value for the overall OR of the corneoscleral shell.  

The possibility of using other methods such as pneumatonometry to measure the ocular pulse 

amplitude is not excluded. However, we speculate that the Pascal DCT may be more adequate to 

measure OPA and estimate OR due to less sensitivity to corneal biomechanical properties (65, 

493). 



 

Chapter 4 – Method Improvement, Validation and 

Repeatability Assessment 

We have improved the method to measure OR using a more anatomically accurate mathematical 

model of choroidal thickness, and have also assessed the validity and repeatability of the method. 

This work titled “Non-invasive in vivo measurement of ocular rigidity: Clinical validation, 

repeatability and method improvement” has been published in 2019 in Experimental Eye 

Research (494).  

This chapter presents the text as it was published. The authors are Diane N. Sayah, Javier 

Mazzaferri, Pierre Ghesquière, Renaud Duval, Flavio Rezende, Santiago Costantino and Mark R. 

Lesk.  
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A B S T R A C T

Ocular rigidity (OR) is thought to play a role in the pathogenesis of glaucoma, but the lack of reliable non-
invasive measurements has been a major technical challenge. We recently developed a clinical method using
optical coherence tomography time-lapse imaging and automated choroidal segmentation to measure the pul-
satile choroidal volume change (ΔV) and calculate OR using Friedenwald's equation. Here we assess the validity
and repeatability of this non-invasive technique. We also propose an improved mathematical model of choroidal
thickness to extrapolate ΔV from the pulsatile submacular choroidal thickness change more accurately. The new
mathematical model uses anatomical data accounting for the choroid thickness near the equator. The validity of
the technique was tested by comparing OR coefficients obtained using our non-invasive method (OROCT) and
those obtained with an invasive procedure involving intravitreal injections of Bevacizumab (ORIVI) in 12 eyes.
Intrasession and intersession repeatability was assessed for 72 and 8 eyes respectively with two consecutive
measurements of OR. Using the new mathematical model, we obtained OR values which are closer to those
obtained using the invasive procedure and previously reported techniques. A regression line was calculated to
predict the ORIVI based on OROCT, such that ORIVI= 0.655×OROCT. A strong correlation between OROCT and
ORIVI was found, with a Spearman coefficient of 0.853 (p < 0.001). The intraclass correlation coefficient for
intrasession and intersession repeatability was 0.925, 95% CI [0.881, 0.953] and 0.950, 95% CI [0.763, 0.990]
respectively. This confirms the validity and good repeatability of OR measurements using our non-invasive
clinical method.

1. Introduction

The stiffness of the corneoscleral shell is an important biomecha-
nical property of the eye and plays a key role in elucidating the pa-
thophysiology of various ocular diseases, particularly open-angle
glaucoma (Burgoyne et al., 2005; Downs et al., 2008; Fechtner and
Weinreb, 1994; Sigal and Ethier, 2009; Sigal et al., 2005, 2009), age-
related macular degeneration (Friedman, 1997; Friedman et al., 1989)
and myopia (Burgoyne et al., 2005). Ocular rigidity (OR) has been
shown to be altered in these diseases (Drance, 1960; Friedman et al.,
1989; Pallikaris et al., 2006; Wang et al., 2013), and finite element
modelling suggests that the stiffness of the sclera is the most influential

factor on the optic nerve head's response to variations in intraocular
pressure (IOP) in glaucoma (Sigal et al., 2005, 2009). However, its role
in their pathogenesis remains to be fully understood and requires fur-
ther investigation.

To achieve this, the ability to quantify OR in living human eyes
using a reliable and non-invasive method is essential. Such a method
has only recently become available (Beaton et al., 2015).

Historically, a comparison of Schiötz and Goldmann tonometry re-
sults in living eyes was considered a non-invasive but indirect method
to measure OR. This technique was later considered inaccurate pri-
marily due to the dependence of both indentation and applanation to-
nometry on the biomechanical properties of the eye (Gloster and
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Perkins, 1957; Jackson, 1965; Moses and Grodzki, 1969; Perkins and
Gloster, 1957). The most significant source of this variability in OR
coefficients originates from the use of weights in Schiötz tonometry,
which compress the ocular wall and displace a significant amount of
intraocular fluid (Jackson, 1965; Moses and Grodzki, 1969), but also
through the erroneous assumption that the OR of all eyes is standard in
the applicability of the conversion table which provides the IOP reading
in mmHg (Friedenwald, 1957; Grant, 1951; Jackson, 1965).

A recently developed non-invasive technique to measure OR, based
on choroidal laser Doppler flowmetry gave only relative values because
choroidal blood flow was measured in arbitrary units (Wang et al.,
2013).

Anterior chamber manometry is the main technique used to directly
calculate OR in vivo (Eisenlohr et al., 1962; Pallikaris et al., 2005;
Ytteborg, 1960a, 1960b). It is done by injecting known volumes of fluid
into the eye, measuring the resultant IOP changes, and estimating OR
using the Friedenwald pressure-volume relationship (Friedenwald,
1937):

=IOP

IOP
K V Vln ( )

0
0 (1)

However this technique involves the intraoperative cannulation of
the anterior chamber (Pallikaris et al., 2005). Its invasive nature limits
the technique's applicability to consenting participants who require an
intraocular surgical procedure, preventing the investigation of OR in a
wider selection of subjects as well as follow-up measurements.

Our group has developed the first non-invasive and direct clinical
method to measure OR in living human eyes (Beaton et al., 2015). The
approach is based on video-rate Spectral Domain optical coherence
tomography (OCT) and Pascal Dynamic Contour Tonometry (DCT). The
novelty of the method consists mainly in its ability to measure the
pulsatile ocular volume change directly from OCT videos. In other
words, the amount of blood pumped into the eye with each heartbeat is
detected through the automated segmentation of the choroid. The
segmentation algorithm is based on graph theory using an edge-prob-
ability weighting scheme that enables the precise detection of the
choroid's boundaries. The algorithm measures choroidal thickness (CT)
in each frame, and also the pulsatile choroidal thickness change (ΔCT)
throughout the time-series. This numerical approach is described in
detail in our previous paper (Beaton et al., 2015) and was shown to be
more robust in detecting the choroid-sclera interface (CSI) than other
existing algorithms (Beaton et al., 2015; Mazzaferri et al., 2017). To
ensure that CT fluctuations in the time-series are due to the pulsatile
blood flow, frequency components from the spectral analysis must co-
incide with the first and second harmonics of the heart rate frequency
which is measured simultaneously using an oximeter.

Considering that the choroid represents approximately 90% of the
blood flow in the eye (Alm and Bill, 1973), we estimate the pulsatile
ocular volume change (ΔV) from the measured ΔCT. More specifically,
we measure the fluctuations in submacular CT associated with the heart
rate and use the axial length and a mathematical two-spheres model of
the eye to extrapolate the choroidal volume from choroidal thickness.
The ocular pulse amplitude (OPA), corresponding to the change in IOP
between the systole and diastole, is measured with a tonometer which is
independent of the properties of the cornea (Andreanos et al., 2016;
Mangouritsas et al., 2011; Ozcura et al., 2017). These volumetric and
pressure changes thus permit the calculation of the OR coefficient using
Friedenwald's equation (Friedenwald, 1937). We obtain a single value
for the overall OR of the corneoscleral shell.

The purpose of this study is to assess the validity and repeatability
of this non-invasive method. To do so, we also proposed a new and
more anatomically accurate mathematical model of choroidal thickness
to derive the pulsatile ocular volume change (ΔV) from the measured
pulsatile choroidal thickness change (ΔCT). Comparison of OR coeffi-
cients with those obtained using an invasive procedure involving in-
travitreal injections was performed. Repeated measurements using the
non-invasive method were compared.

2. Material and methods

This study followed the tenets of the Declaration of Helsinki and was
approved by the Maisonneuve-Rosemont Hospital institutional review
board. Informed consent was obtained from all participants prior to
testing.

2.1. Validity assessment

2.1.1. Proposal of a new mathematical model of choroidal thickness
A two-sphere mathematical model was previously proposed by our

group to derive the pulsatile ocular volume change (ΔV) from the
submacular pulsatile change in choroidal thickness (ΔCT) corre-
sponding to choroidal filling (Beaton et al., 2015). Since our OCT
measurements are made over an 8mm length under the macula, an
extrapolation must be used to account for the entire choroid. In this
model, ΔV was estimated as:=V R CT2 (2)

A first order approximation of a spherical eye model was used, in
which the choroid was modeled as the volume between two spheres
shifted by ΔCT. The radius (R) of each sphere was set as half of the axial
length as measured using optical biometry. OR coefficients were ulti-
mately computed using Friedenwald's ocular rigidity function

Abbreviations

ACD Anterior chamber depth
AL Ocular axial length
ALadj Adjusted axial length
CI Confidence interval
CSI Choroid-sclera interface
CT Choroidal thickness
D Diopters
DCT Dynamic Contour Tonometry
EDI Enhanced depth imaging
ICC Intraclass correlation coefficient
IOP Intraocular pressure
I-T Inferior-temporal
IVI Intravitreal injection
LSO Line-scanning ophthalmoscope
OCT Optical coherence tomography

OPA Ocular pulse amplitude
OR Ocular rigidity
OR1 First measurement of ocular rigidity
OR2 Second measurement of ocular rigidity
ORIVI Ocular rigidity coefficients obtained using an invasive

procedure involving intravitreal injections
OROCT Ocular rigidity coefficients obtained using our non-in-

vasive, OCT-based method
OROCT-newOROCT values evaluated with the newly proposed mathe-

matical model
OROCT-old OROCT values evaluated with the old mathematical model
SD-OCT Spectral domain optical coherence tomography
SE Spherical equivalent
S-T Superior-temporal
VEGF Vascular endothelial growth factor
ΔCT Pulsatile choroidal thickness change
ΔV Pulsatile choroidal volume change
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(Equation (1)), whereV V0 is equal to ΔV, as obtained from video-rate
choroidal imaging with enhanced depth imaging (EDI) mode (Spectralis
SD-OCT, Heidelberg Engineering GmbH, Heidelberg, Germany) using
automated segmentation, and where IOP

IOP0
is equal to Systolic IOP

Diastolic IOP
or+IOP OPA

IOP
as measured using the Pascal DCT (Ziemer Ophthalmic Systems

AG, Port, Switzerland). Of note, the IOP reading obtained using this
tonometer corresponds to the diastolic IOP, whereas the OPA is the
difference between the systolic and diastolic IOP (Ziemer Group
Company, 2012).

While it is known that the choroid extends anteriorly until the ora
serrata, this simple model did not account for the choroid in the per-
iphery of the eye and underestimated choroidal filling by exhibiting a
negligible (null) choroidal thickness change at the equator and beyond
(see Fig. 1A).

The new mathematical model we hereby propose accounts for the
equatorial choroid and its thickness change according to anatomical

data provided both by the literature and our experiments as will be
described below.

The model now includes two spheres of different diameters over-
lapping each other at the center of the pupil (see Fig. 1A). The inner
sphere spans anteriorly from the limbus to the submacular retinal
pigmented epithelium. Since the anterior chamber depth (ACD) is not
considered within the diameter of these spheres, an adjusted axial
length (ALadj) was considered. As the old model did not require ACD
measurements, this parameter is not available for subjects in this study.
For this reason, an average ACD-to-AL ratio was calculated from the
literature in a similar population to be 13% (Foster et al., 2010; Jivrajka
et al., 2008). Thus, in our model, ALadj will be defined as 87% of the
biometry measured AL. The radius r of the inner sphere is equal to half
of the adjusted axial length. The outer sphere is larger, spanning from
the limbus to the submacular choroid-sclera boundary. The thickness of
the sclera is not accounted for in this model as it is not relevant in the
extrapolation of the ΔV from ΔCT, and the subsequent computation of
OR using Friedenwald's equation. The average radius R of the outer
sphere accounts for half of the adjusted AL plus the average measured
CT at the macula. We define ΔCT as the peak-to-peak amplitude of CT
change between the diastole (minimum thickness) and systole (max-
imum thickness) as measured by our segmentation algorithm in the
time-series (Beaton et al., 2015). This sphere's average diameter thus
increases by ΔCT/2 at systole due to choroidal filling, and decreases by
ΔCT/2 at diastole. The net movement of the larger sphere's diameter at
each heartbeat is thus equal to ΔCT.

In this model, the pulsatile ocular volume change is represented by
the following equation:

=V R R4
3

( )systole diastole
3 3

(3)
where = + +Rsystole

AL CT CT( / 2)
2

adj and = +Rdiastole
AL CT CT( / 2)

2
adj .

This equation was further simplified to first order, assuming ΔCT is
relatively very small:

+AL CT CTV
2
( )adj 2

(4)
Of note, equal OR coefficients were obtained using Equations (3)

and (4). This last equation was used to derive the pulsatile ocular vo-
lume change from the pulsatile choroidal thickness change in our new
mathematical model. OR coefficients were calculated using Frie-
denwald's equation.

2.1.2. Ratio of the choroidal thickness measurements near the equator and
subfoveally

Choroidal imaging was performed using the PLEX Elite 9000 Swept
Source OCT (Carl Zeiss Meditec, Dublin, CA). The montage feature was
used to acquire scans at the macula, in the superior-temporal (S-T) and
inferior-temporal (I-T) quadrants in six eyes of six participants (4M, 2F;
31 ± 9 years of age). Refractive error differed between participants:
one was a hyperope (spherical equivalent (SE) +3.00 diopters(D)), two
were myopes (SE -6.00 and -10.00 D) and three were emmetropes (SE
plano). All participants were healthy and had negative ocular and
systemic history.

Choroidal thickness measurements were carried out manually at
three locations: subfoveally, as well as in the S-T and I-T quadrants, at
~13.2mm from the fovea, as shown in Fig. 1B. This distance was
chosen for practical reasons, as it is the furthest distance from the fovea,
and nearest to the equator where both the line-scanning ophthalmo-
scope (LSO) fundus image and the choroid layer were visible in all
participants.

The ratio between the thickness of the choroid near the equator and
at the macula was calculated. This ratio was compared to the theore-
tical ratio computed from our new mathematical model of choroidal
thickness.

To compute this ratio from the mathematical model, we assumed an

Fig. 1. A) Left: Original mathematical model used to extrapolate the pulsatile
ocular volume change (ΔV). This model describes ΔV as two spheres with
diameter equal to the axial length (AL), shifted by the pulsatile choroidal
thickness change (ΔCT). Right: New mathematical model of choroidal thickness
featuring a smaller sphere with diameter equal to ALadj (corresponding to the
measured AL, excluding the anterior chamber depth), fixed to a larger sphere
with diameter of (ALadj+CT) at the center of the pupil. The diameter of the
larger sphere increases by ½ ΔCT at systole and decreases by the same amount
at diastole, equivalent to a net expansion of ΔCT at each heartbeat. Note that
figures are not to scale. B) B-scans acquired with the PLEX Elite 9000 OCT
showing the measurement of the subfoveal CT (top-left) and of the equatorial
CT (bottom-left) using the built-in caliper. To the right, an example of a su-
perior-temporal fundus image is shown with the measured distance between the
fovea and the location nearest the equator using the built-in caliper. C) Left:
Mathematical model displaying the radius r of the small sphere, the distance d
between the fovea and the closest location to the equator, and the angle α
opposite to d. Right: Geometrical arrangement showing the same angle α, the
radius R of the larger sphere, as well as CTequator, the CT measurement to be
solved to calculate the theoretical ratio (CTequator/CTsubfovea).
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eye with dimensions (AL, CT and ΔCT) corresponding to the average
measurements obtained from a database of 260 eyes, both healthy and
diseased (115M, 145F; 68 ± 12 years of age) with OR measurements
using our technique. Baseline characteristics of the subjects included in
the database are presented in Table 1. These dimensions include an AL
of 24.21mm (ALadj of 21.06mm); a CT of 185 μm; and ΔCT of 10.5 μm.
We solved for the choroidal thickness near the equator (at ~13.2mm
from the fovea) using geometry, and calculated the ratio using the
average macular CT as measured using our custom automated seg-
mentation algorithm (Fig. 1C).

To calculate CT at the equator (CTeq), the following equation was
derived, where is defined in Fig. 1C:

= +CT CT R CT r1
2

cos 1
2

sineq 2
2

(5)
Similar calculations were carried out to find the theoretical ΔCT

near the equator as well according to:

= +
( )

CT CT
R CT sin

R CT sin
cos1

2
( )

eq

1
2

2

2 1
2

2

(6)
The equator-to-macula ΔCT ratio was computed to allow adequate

comparison between the old and new mathematical models.

2.1.3. Evaluation of ΔV and OR values using the new mathematical model
Comparison of ΔV and OR was carried out between the old values

obtained using the two-spheres model described previously in Beaton
et al. (2015) and the new values obtained using this more anatomically
accurate mathematical model of choroidal thickness. The ratio between
the old and new values was derived from Equations (2) and (4) to
evaluate the effect of our more detailed model on these parameters.

2.1.4. Comparison of the non-invasive and invasive measurements of ocular
rigidity

The optical technique we developed to measure OR non-invasively
was compared to an invasive procedure in order to assess its validity.
An in-office alternative approach to the anterior chamber manometry
technique was adopted in our protocol to measure OR invasively.
Twelve subjects who require intravitreal injections (IVIs) of
Bevacizumab, an anti-vascular endothelial growth factor (VEGF) agent,

as treatment for a pre-existing retinal condition were enrolled in our
study.

Participants were required to have clear media, steady fixation, and
the ability to fixate a target light with the study or contralateral eye.
Patients with surgically treated glaucoma (trabeculectomy or tube
shunt) were excluded because of the rapid outflow of aqueous.

The OR coefficient was measured in the affected eye using our OCT-
based technique as previously described, followed by the invasive
procedure, on the same day, rendering each subject its own control. The
latter, which is also based on Friedenwald's ocular rigidity function,
consists of the IVI of a known volume of fluid, 50 μL, in the affected eye
and the measurement of the resulting IOP spike.

Immediately prior to asepsis and eyelid speculum placement but
with the patient in the semi-supine position, the IOP was measured
once in the test eye using the Tono-Pen XL (Reichert Technologies), a
portable tonometer. Within 10–15 s of the injection (30-gauge needle)
by the retina specialist following standard clinical procedures, with the
patient still semi-supine, the speculum was removed and the IOP re-
measured once again by the same examiner. The final averaged IOP
measurement using the Tono-Pen XL was completed within 30 s fol-
lowing the IVI. Each IOP measurement obtained with this tonometer
was an average of four valid IOP readings, and had a statistical relia-
bility index of ≤5%.

The correlation between OR coefficients obtained for the same eye
using both the OCT-based method and the invasive procedure was
calculated with SPSS. This was done with the OR values obtained using
the new mathematical model.

2.2. Repeatability assessment

To assess the intrasession repeatability of our novel method, se-
venty-two participants (35M, 37F; 66 ± 13 years of age) were re-
cruited, and one eye was examined per participant.

Two consecutive measurements of OR were obtained and compared.
For fourteen participants, OR repeatability was assessed by carrying

out all measurements twice on the examined eye within the same ses-
sion, including video-rate OCT imaging as well as IOP measurements
using the Pascal DCT and ocular axial length (AL) measurements using
the IOL Master 500 (Carl Zeiss Meditec AG, Dublin, USA). For fifty-eight
other participants, only video-rate OCT imaging using the Spectralis SD-
OCT was carried out twice on the examined eye within the same ses-
sion, and OR was computed. Each data set was then analyzed and OR
measurements were calculated using the newly proposed mathematical
model.

Intersession (between-visits) repeatability of our method was also
assessed in eight participants (2M, 6F; 42 ± 16 years of age at initial
visit). At two visits one week apart, IOP measurements, biometry and
video-rate OCT imaging were carried out. Two OR measurements were
thus obtained using the new mathematical model.

Repeatability was assessed by means of paired t-test, Bland-Altman
plot and the intraclass correlation coefficient (ICC) based on an absolute
agreement, 2-way mixed-effects model using SPSS (SPSS Inc, Chicago,
IL).

3. Results

3.1. Validity assessment

3.1.1. New mathematical model of choroidal thickness
The new mathematical model is composed of one small and one

larger sphere overlapping at the center of the pupil and accounts for the
choroid, as illustrated in Fig. 1A. Considering the previously mentioned
database of 260 subjects, this model yields values of ΔV which are 1.55
larger than the ones obtained with the previous model, and values of

Table 1
Patients’ characteristics at baseline.
Gender (Female/Male) 145/115
Age (years)a 68 ± 12
Ethnicity African Descent 21

Caucasian 231
Other (Hispanic, Asian, …) 8

Ocular Conditions Healthy 121
Glaucoma 120
Retinal disease (Exudative macular
degeneration, venous occlusion,
diabetic retinopathy, …)

19

Pascal DCT Intraocular Pressure (mmHg)a 18.3 ± 5.2
Ocular Pulse Amplitude (OPA) (mmHg)a 3.0 ± 1.3
Ocular Axial Length (mm)a 24.21 ± 1.35
Choroidal Thickness (CT) (μm)a 185 ± 58
Pulsatile CT Change (ΔCT) (μm)a 10.5 ± 5.4
Old Model – Pulsatile Ocular Volume Change (ΔV) (μL)a 4.8 ± 2.3
New Model – Pulsatile Ocular Volume Change (ΔV) (μL)a 7.3 ± 3.6
Old Model - Ocular Rigidity Coefficient (1/μL)a 0.0382 ± 0.0193
New Model – Ocular Rigidity Coefficient (1/μL)a 0.0248 ± 0.0125
Systemic Blood

Pressure
Systolic (mmHg)a 135 ± 19
Diastolic (mmHg)a 78 ± 9

a Data is presented as: mean ± standard deviation.
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OR which are 0.65 times smaller than the old ones. The average of
newly calculated values of ΔV and OR is 7.3 ± 3.6 μL and
0.0248 ± 0.013 μL−1 respectively. Hence, the old model under-
estimated ΔV and overestimated OR values compared to the newly
proposed one.

3.1.2. Ratio of the choroidal thickness measurements near the equator and
subfoveally

The choroidal thickness was measured subfoveally, as well as in the
S-T and I-T quadrants. Table 2 features the average CT measurements
under the fovea and near the equator, along with the ratio of the CT
near the equator over the macular CT in six participants. The equator-
to-macula CT ratio from this experimental data is 49% for emmetropic
eyes, and 50% for all eyes regardless of refractive error.

Theoretical and experimental data were also compared by solving
for CT near the equator in the mathematical model, as shown in Fig. 1C.
The equator-to-macula CT ratio was 60%, in the theoretical eye model.
The theoretical equator-to-macula ΔCT ratio in the new model was also
60%, whereas it was 0% in the previous model. The higher value seems
more realistic, but has not been tested experimentally for comparison,
since the quality required for video-rate OCT imaging and precise ΔCT
measurement is not adequate near the equatorial choroid despite ex-
treme gaze positioning and stable fixation (as opposed to less challen-
ging static images).

3.1.3. Comparison of the non-invasive and invasive measurements of ocular
rigidity

Twelve subjects (7M, 5F; 66 ± 10 years of age) were included in
the validity study. Medical indications for IVIs included branch retinal
vein occlusions (n= 4), diabetic macular edema (n= 3), exudative
age-related macular degeneration (n=2), chronic central serous
chorioretinopathy (n= 2) and idiopathic juxtapapillary choroidal
neovascular membrane (n= 1). Initial mean IOP was 17 ± 5mmHg
and the mean IOP change following IVI was 20 ± 11mmHg as mea-
sured using the Tono-Pen XL. Systolic and diastolic blood pressures
were 148 ± 26 and 79 ± 10mmHg respectively. The mean IOP and
OPA measured using Pascal DCT tonometry were 20.3 ± 3.3mmHg
and 3.3 ± 0.7mmHg respectively, whereas the mean axial length was
23.31 ± 0.80mm and measured ΔCT was 12.8 ± 5.0 μm.

OR coefficients obtained for a same eye using our non-invasive
imaging technique (OROCT) and the invasive procedure involving IVIs
(ORIVI) were compared. The Spearman correlation coefficient between
ORIVI and OROCT is 0.853 (p < 0.001). For a same eye, a strong cor-
relation was thus obtained between the techniques, although the in-
vasive procedure yielded smaller values of OR compared to the OR
coefficients obtained non-invasively. A simple regression line was cal-
culated to predict the ORIVI based on OROCT. A significant regression
equation was found using the new mathematical model, with an R2 of
0.74. The equation of the line is ORIVI= 0.655×OROCT, as shown in
Fig. 2.

Average OROCT values were evaluated for the newly proposed
mathematical model (OROCT-new), as well as for the previously used
model (OROCT-old). As such, the average values of OROCT-new and OROCT-
old are 0.022 ± 0.011/μL and 0.034 ± 0.018/μL respectively,
whereas the average value of ORIVI is 0.015 ± 0.007/μL, indicating

that the fine-tuning of the mathematical model of choroidal thickness
led to reduced OR value differences between the non-invasive optical
technique and the invasive procedure.

3.2. Repeatability assessment

Intrasession repeatability was assessed for seventy-two participants
(35M, 37F; 66 ± 13 years of age), including 38 with healthy eyes, 33
with glaucomatous eyes and one with exudative AMD. Mean Pascal-IOP
was 18.5 ± 3.7mmHg, OPA was 3.0 ± 1.0mmHg, AL was
24.47 ± 1.50mm and systolic and diastolic blood pressures were
138 ± 23 and 79 ± 10mmHg respectively.

Out of these 72 subjects, a first group (n= 14) underwent repeated
OCT imaging, Pascal DCT and biometry twice in order to obtain two
repeated OR values. In the second group (n=58), only OCT video
acquisitions were carried out twice to obtain repeated OR values. In
both groups, no statistically significant difference was found among
repeated OR measurements (p > 0.05).

For both groups, the Bland-Altman plot shows good agreement be-
tween the first (OR1) and the second (OR2) non-invasive OR mea-
surements obtained in each examined eye (Fig. 3A and C) (Bland and
Altman, 1986; Giavarina, 2015).

For the first group with all repeated measurements, the Pearson
correlation coefficient between OR1 and OR2 was 0.887, demonstrating
a strong direct correlation between both measurements, as can also be
seen in the linear correlation plot of OR1 and OR2 in Fig. 3B. The single
measures ICC for the repeated measurements of the OR coefficient was
0.891 with a 95 percent confidence interval (CI) of [0.694, 0.964],
showing good test-retest reliability. The average measures ICC was
0.942 with a 95% CI of [0.820, 0.982], indicating excellent reliability.

Table 2
Experimental data featuring choroidal thickness (CT) measurements in μm at various locations (subfoveally, superior-temporal (S-T) quadrant and inferior-temporal
(I-T) quadrant) as well as the average distance away from the fovea, in μm, where CT measurements were performed in 6 healthy eyes with various refractive errors.
The ratio between CT near the equator and subfoveally is indicated in %.

Average Subfoveal CT Average S-T CT Average I-T CT Average distance to the fovea Average ratio (%): equator/fovea

Emmetropes only (n= 3) 415.7 212.3 194.3 13172.8 48.9
All subjects (n= 6) 369.0 189.7 175.8 13201.3 49.5

All thickness and distance measurements are in micrometers.

Fig. 2. Linear regression plot showing a strong positive correlation (ρ=0.853,
p < 0.001) between OR coefficients (in μL−1) obtained non-invasively
(OROCT) and invasively (ORIVI) in 12 eyes from 12 subjects with pre-existing
retinal conditions requiring an intravitreal injection (IVI) of Bevacizumab. A
significant regression equation (dotted line) was found with an R2 of 0.74. The
equation of the regression line is ORIVI = 0.655×OROCT. The OROCT coeffi-
cients were computed using the improved mathematical model proposed in this
paper.
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For the second group, the Pearson correlation coefficient between
OR1 and OR2 was 0.850, also indicating a strong direct correlation
between intra-session repeated OR measurements (Fig. 3D). The single
measures ICC for the repeated measurements of the OR coefficient was
0.851 with a 95% CI of [0.761, 0.909]. Similarly, the average measures
ICC was 0.920 with a 95% CI of [0.865, 0.952] for the second group,
indicating excellent reliability.

When combining all 72 subjects, the Pearson correlation was 0.860
(p < 0.001), and the single and average measures ICC were 0.861,
95% CI [0.787, 0.911] and 0.925, 95% CI [0.881, 0.953] respectively.
The repeatability parameters were thus comparable whether all mea-
surements, including OCT, DCT and AL were repeated or whether only
OCT measurements were repeated.

The OR coefficient of eight healthy eyes from 8 subjects (2M, 6F;
42 ± 16 years of age) was measured at two separate visits one week
apart. Initial mean Pascal-IOP was 15.3 ± 1.2mmHg, OPA was
2.5 ± 0.7mmHg and AL was 24.25 ± 1.52mm. At the second visit,
mean Pascal-IOP was 15.5 ± 1.1mmHg, OPA was 2.7 ± 1.0mmHg
and AL was 24.25 ± 1.52mm. No statistically significant difference
was found in any parameter among the two visits (p > 0.05).

The Bland-Altman plot showed good agreement between both OR
measurements (Fig. 4A). The mean differences were small, as was the
range of 95% confidence intervals. The Pearson correlation coefficient
between OR1 and OR2 is 0.924 (p=0.001), demonstrating a strong
direct correlation between both measurements, as seen also in Fig. 4B.
The single measures ICC for the repeated measurements of the OR
coefficient was 0.905 with a 95 percent confidence interval (CI) of
[0.617, 0.980], showing good test-retest reliability. The average mea-
sures ICC was 0.950 with a 95% CI of [0.763, 0.990], indicating ex-
cellent reliability.

4. Discussion

We have developed a non-invasive and direct clinical method to
measure OR in living human eyes (Beaton et al., 2015). This technique
is based on the measurements of the pulsatile ocular volume change
from video-rate OCT imaging and automated choroidal segmentation,
and the pulsatile IOP change using Pascal tonometry, to compute the
OR coefficient using Friedenwald's equation.

In assessing the validity of our technique, we considered our

Fig. 3. Intrasession Repeatability. A) Bland-Altman plot showing agreement between two intrasession repeated measurements of ocular rigidity coefficients (in μL−1)
as measured using our novel method in 14 eyes from 14 subjects. Pascal DCT, biometry and OCT imaging were carried out twice. The horizontal axis represents the
average of the two OR measurements ((OR1 + OR2)/2). The vertical axis represents the difference between the first and second OR coefficients measured (OR1 -
OR2). The central horizontal black line corresponds to the mean of the difference. The upper and lower horizontal gray lines correspond to the upper and lower
bounds of the 95% confidence interval of the difference between OR1 and OR2. B) Linear correlation plot showing a good correlation (r = 0.887, p < 0.001)
between the first and second measurements of the ocular rigidity coefficient in these same 14 eyes using our non-invasive OR measurement method. C) Bland-Altman
plot showing agreement between two repeated OR measurements in 58 eyes from 58 other subjects, where only OCT video acquisition was carried out twice. D)
Linear correlation plot showing a good correlation (r = 0.850, p < 0.001) between OR1 and OR2 in these 58 eyes.
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previous model for extrapolating the pulsatile ocular volume change
from the CT change under the macula to be oversimplified since it does
not appropriately consider the peripheral shape of the choroid. The
mathematical model we propose here accounts for anatomical char-
acteristics of the choroid. Despite the significant improvements to the
model, it considers the globe to be spherical and as such, should not be
applied for eyes that present with a staphyloma or other shape irre-
gularities. Furthermore, in future iterations, measurement of both AL
and ACD will be performed in individual eyes instead of using a fixed
ratio such as was done in this study.

To compare the new mathematical model with experimental data,
we estimated the experimental ratio of equator/subfoveal CT to ~50%
(Table 2). The calculated theoretical ratio was 60%, displaying a slight
overestimation of the CT near the equator compared with our experi-
mental data, but corresponding well with the range found in the lit-
erature (~48%–67%) (Kubota et al., 1993; Shen et al., 2016; Spraul
et al., 2002). These values remain global estimations within a simple
model and were not calculated for every individual eye according to
axial length differences.

Compared to the previous mathematical model, the new OR values
are 0.65 times lower and are thus closer to values obtained using in-
vasive techniques, as shown in this paper and as previously reported in
manometric studies. More precisely, mean OR values obtained with our
improved method compared with manometric studies led in subjects
within the same age group are 0.025/μL and about 0.022/μL respec-
tively (Dastiridou et al., 2009, 2013a, 2013b; Panagiotoglou et al.,
2015), rendering them similar although not identical.

Moreover, this model remains simple enough to be used in clinical
settings as it requires easily measurable properties of the eye. To further
facilitate this method's implementation in clinic, we do not exclude the
possibility of using other methods such as pneumatonometry to mea-
sure the ocular pulse amplitude. However, we speculate that the Pascal
DCT may be more adequate to measure OPA and estimate OR due to
less sensitivity to corneal biomechanical properties (Boehm et al., 2008;
De Moraes et al., 2008).

Of course, both the emergence of wide-field OCT and the ability to
carry out video-rate imaging with a wider scan could provide useful
information about the shape and thickness of the peripheral choroid
and further improve the extrapolation of ΔV from the submacular CT
change. While the model we propose provides significant improvements
compared to the old model, the capacity to image and compute the

actual ora to ora pulsatile CT change would be ideal. This is currently
being explored by our group.

Additional evaluation of this technique's validity was carried out,
including comparing it to an invasive procedure. While anterior
chamber manometry has been used to measure OR by another group,
intravitreal injections of Bevacizumab were a more practical com-
parator because there was no extra procedure or prolongation of a
procedure involved. Furthermore, since each participant underwent
both techniques to compare the obtained OR coefficients, the effect of
ocular diseases and other parameters known to influence OR were
controlled for in this study.

As our non-invasive technique yielded consistently higher values
than OR values obtained invasively (although the new mathematical
model significantly reduced this gap), the invasive procedure used in
our study has potential limitations which one must acknowledge. These
include lens status, the possibility of reflux following IVIs and in-
accurate IOP spike measurement due to time constraints. The first could
provide facilitated passage of the injected drug from the vitreal cavity
to the anterior chamber, potentially influencing IOP measurement post-
IVI. While 3 out of 12 eyes in this study were pseudophakic and 9 were
phakic, larger scale studies have not shown significant differences in
IOP spikes following IVI in phakic and pseudophakic eyes (Fuest et al.,
2014; Lemos-Reis et al., 2014). The second would result in an over-
estimation of the injected volume of fluid, and consequently an un-
derestimation of ORIVI. The third considers the 20–30 s delay between
the IVI and the completion of the post-IVI IOP measurement as a pos-
sibility to underestimate the IOP spike and, consequently, the OR
coefficient. In other words, if simultaneous IOP measurement to the IVI
was possible, the measured IOP spike would be larger, thus resulting in
a higher ORIVI value. We speculate that this value would be closer to
OROCT obtained in the same eye using our optical method, and also
closer to OR values obtained in manometric studies. Our results showed
however that OROCT and ORIVI are strongly correlated (Fig. 2), further
confirming the validity of our non-invasive method for measuring OR in
vivo. The validity of our technique is also substantiated by the good
correlation previously observed between OR and axial length, as well as
the correlation showing increased OR with age (Beaton et al., 2015;
Sayah et al., 2016).

As invasive procedures are not suited for large scale studies, these
results imply that our non-invasive optical method for measuring OR in
vivo could be applied in clinical research to reliably estimate OR and

Fig. 4. Intersession Repeatability. A) Bland-Altman plot showing agreement between two intersession repeated measurements of ocular rigidity (in μL−1) as
measured using our non-invasive optical method. Measurement of OR was carried out in 8 eyes from 8 subjects at two visits, one week apart. The horizontal axis
represents the average of the two OR measurements ((OR1 + OR2)/2). The vertical axis represents the difference between OR coefficients measured at the first and
second visit (OR1 - OR2). The central horizontal black line corresponds to the mean of the difference. The upper and lower horizontal gray lines correspond to the
upper and lower bounds of the 95% confidence interval of the difference between OR1 and OR2. B) Linear correlation plot showing a good correlation (r = 0.924,
p = 0.001) between OR1 and OR2 in these 8 eyes.
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investigate its role in diseases of the eye.
To further validate our technique, we assessed its intrasession and

between-visits repeatability in 72 and 8 subjects respectively. The
Bland-Altman plot and the correlation coefficients showed good
agreement and correlation respectively (Bland and Altman, 1999;
Giavarina, 2015; Koo and Li, 2016). According to the guidelines pro-
vided by Koo and Li (2016), the ICC also demonstrated good to ex-
cellent test-retest reliability. This shows that in vivo OR measurements
obtained within the same session and between two sessions using our
non-invasive method are indeed repeatable. Clinically, the large range
of OR values present in the general population (0.0044–0.0607/μL in
our database of 260 subjects) should signify an ability to accurately
discriminate rigid from compliant eyes.

A limitation of the intrasession repeatability study is the absence of
repeated IOP and AL measurements in 58 eyes evaluated. This means
that true intersession repeatability has been assessed on 14 eyes.
However, despite the smaller number of eyes having repeated mea-
surements of all parameters, good repeatability was obtained for both
groups. Similarly, the evaluation of intersession repeatability has been
carried out in a small number of eyes, however good repeatability was
also found, confirming negligible change in OR between sessions in
healthy eyes.

Recent technological advances in OCT could further improve the
repeatability of our technique by improving the quality of the acquired
images and thus the ability to detect the CSI. Swept-source OCT was
introduced and is thought to provide better visualization of the choroid
than SD-OCT, due to higher image acquisition speed and the use of a
tunable laser with longer wavelengths which allows for enhanced pe-
netration into ocular tissue (Copete et al., 2014; Lavinsky and Lavinsky,
2016). Studies have shown that increased light scattering in deeper
tissues can hinder proper visualization of the CSI, particularly in a
thicker choroid (Copete et al., 2014; Tan et al., 2015). This is minimized
with swept-source OCT where CT could be measured in 100% of cases,
and with greater accuracy, according to a comparative study by Copete
et al. (2014).

Finally, implications for the development and validation of our non-
invasive method are significant, as its application in research and
clinics will help elucidate the role of OR in the pathogenesis of ocular
diseases. We speculate that ultimately this method could become a new
diagnostic tool for assessing and predicting the progression of glauco-
matous optic neuropathy and other diseases.
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Supplementary Findings  

While the following data was not published along with the article presented in this chapter, it is 

interesting to include it here as food for thought.   

Analysis of the data from the 260 subjects included in the previous study showed a relatively 

strong correlation between OR and ΔV as seen in Figure 11. The Spearman correlation coefficient 

was -0.764 (p<0.001).  

 
 

Figure 11. –  Scatterplot showing the relationship between ocular rigidity and the pulsatile ocular 

volume change in 260 subjects. 

 
The most obvious explanation for this strong inverse correlation could be the use of Friedenwald’s 

equation to calculate OR from ΔV. However, one may also question whether OR could perhaps 

influence choroidal filling by exerting some resistance on the bolus of blood. This would mean 

that a more rigid eye would exert more resistance and therefore limit the amount of blood 

entering the choroid. This hypothesis could be consistent with pathological processes 

documented elsewhere in the body, where reduced blood flow was found with increased arterial 

stiffness (495, 496). However, this remains to be verified. Furthermore, the potential effects of 

central hemodynamics changes on ΔV will need to be investigated.  

 

 





 

Chapter 5 – Lower Ocular Rigidity is Associated with 

Glaucomatous Neuro-Retinal Damage 

In an effort to better understand the link between OR and glaucoma, we investigated the 

association between OR and quantitative parameters of neuro-retinal damage. This work titled 

“Ocular Rigidity as a Risk Factor for Neuro-Retinal Damage in Glaucoma” has been submitted to 

a peer-reviewed journal.  

The authors of this work are Diane N. Sayah, Javier Mazzaferri, Denise Descovich, Santiago 

Costantino and Mark R. Lesk. 

Abstract 

Purpose: Ocular rigidity (OR) is an important biomechanical property, thought to be relevant to 

the pathophysiology of open-angle glaucoma (OAG). This study aims to evaluate the relationship 

between OR and neuro-retinal damage caused by glaucoma. 

Methods: One hundred eighteen eyes from 118 subjects (25 with healthy eyes, 26 with suspect 

discs and 67 with OAG) were included in this study. OR was measured using a non-invasive clinical 

method developed by our group. We also measured central corneal thickness (CCT), corneal 

hysteresis (CH) and corneal resistance factor (CRF). Pearson and partial correlations were 

performed to evaluate the relationship between OR and glaucomatous damage represented by 

ganglion cell complex (GCC) and retinal nerve fiber layer (RNFL) thicknesses. 

Results: Significant positive correlations were found between OR and minimum GCC thickness 

(r=0.304, p=0.002), average GCC thickness (r=0.285, p=0.004 respectively), rim area (r=0.287, 

p=0.002), and RNFL thickness in the inferior quadrant (r=0.255, p=0.007). After adjusting for age, 

sex and ethnicity, significant correlations were found between OR and minimum and average GCC 

thickness (r=0.322, p=0.001 and r=0.298, p=0.003 respectively), rim area (r=0.257, p=0.007), 

average RNFL thickness (r=0.278, p=0.003) and RNFL thickness in the inferior (r=0.287, p=0.002) 

and superior (r=0.239, p=0.012) quadrants.   
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Conclusion: In this study, we found a positive correlation between structural OCT-based 

parameters and OR, perhaps indicating more neuro-retinal damage in less rigid eyes. These 

findings could provide insight into the pathophysiology of OAG.  

Introduction 

Glaucoma is the leading cause of irreversible blindness in the world, resulting in damage to the 

retinal ganglion cells (RGC) that form the optic nerve, and in visual field loss. Elevated intraocular 

pressure (IOP) was traditionally associated with the pathogenesis of open-angle glaucoma (OAG), 

the main form of glaucoma. Evidence has since shown that factors other than IOP must underlie 

the susceptibility of the optic nerve head (ONH) to glaucomatous injury. This is corroborated by 

the occurrence of OAG with IOP in the normal range, and the absence of OAG in most patients 

with elevated IOP (5). Recent biomechanical modelling has suggested that scleral stiffness, the 

main contributor to ocular rigidity (OR), is the greatest factor to influence strain (deformation) at 

the optic nerve head in glaucoma, perhaps more so than IOP. A more compliant sclera would lead 

to increased ONH strain levels (16, 397) and more neuronal damage. 

Over the last eighty years, the role of OR in the pathophysiology of glaucoma has been studied 

(17, 26). Despite this, the association between OR and glaucoma is not well established, and 

competing hypotheses are highly debated. On one side, OR is thought to be higher in 

glaucomatous eyes, producing higher IOP fluctuations due to rigid ocular walls, and hence more 

deformation at the ONH and lamina cribrosa levels. Inflation studies in cadaver eyes, and in vivo 

studies using indirect measurements showed higher OR in eyes with established glaucoma (17, 

19-21). On the other side, OR is thought to be lower in early glaucoma, leading to axonal 

stretching and damage. According to this theory, increased OR would occur at later stages of the 

disease. Studies have reported low OR in OAG (17, 18, 23), and highest OR in ocular hypertensives 

with no glaucomatous damage (23). However, another study using intraoperative cannulation 

showed no difference in OR between diseased and healthy eyes (22). A plethora of challenges 

and confounding factors have made this question difficult to resolve (25), including the ability to 

quantify OR in living human eyes using a reliable, direct and non-invasive method. Such a method 

has only recently become available (27, 494). It estimates the OR coefficient using Friedenwald’s 
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equation (26), where the pulsatile ocular volume change is measured from video-rate OCT 

imaging coupled with automated choroidal segmentation, and the pulsatile IOP change is 

measured using Pascal dynamic contour tonometry. 

To test the hypothesis that low OR is a risk factor for glaucomatous damage, this study will 

evaluate the relationship between OR and glaucomatous structural damage such as the ganglion 

cell complex (GCC) and retinal nerve fiber layer (RNFL) thicknesses.  

Methods 

This study followed the tenets of the Declaration of Helsinki and was approved by the 

Maisonneuve-Rosemont Hospital institutional review board. Informed consent was obtained 

from all participants prior to testing.   

Adult subjects with healthy eyes, suspect discs or primary open-angle glaucoma were recruited 

in this study. A complete ocular examination was performed for all participants. Normal subjects 

had intraocular pressure (IOP) less than 21 mmHg, normal optic nerve appearance on fundus 

exam, normal visual fields and no other ocular disease. Subjects with suspect discs had increased 

cup-to-disc ratio or asymmetry of optic nerve appearance, with no detectable functional or 

structural damage. IOP in this group could be within normal range or elevated, and if there was a 

history of elevated IOP, could be treated with topical IOP-lowering agents. Subjects with OAG had 

open (non-occludable) angles on gonioscopy, a glaucomatous optic nerve appearance, as well as 

repeatable structural and/or functional findings with optical coherence tomography (OCT) 

imaging and Humphrey visual field (VF; Zeiss Humphrey Systems, Dublin, California, USA) testing 

(SITA standard threshold 24–2 strategy). According to this definition, pre-perimetric glaucoma 

patients were also included in the glaucoma group. Participants were required to have clear 

media, steady fixation, and the ability to fixate a target light with the study or contralateral eye. 

Patients with a previous history of intraocular surgery (except cataract extraction) including 

trabeculectomy, tube shunt, and refractive surgery were excluded. Other exclusion criteria 

included secondary glaucoma, non-glaucomatous optic neuropathy, any retinopathy, and 

documented systemic collagen disease.  



80 

Ocular rigidity (OR) was measured using a non-invasive method involving video-rate OCT imaging 

and Pascal dynamic contour tonometry (DCT) (27, 494). This method is based on Friedenwald’s 

equation (419, 494), which permits the ocular rigidity coefficient to be estimated as the following 

pressure-volume relationship: 

𝑙𝑛 #$%
#$%!

= 𝑂𝑅	 ×	(𝑉 − 𝑉&). 

The OR coefficient thus obtained is a single value for the overall OR of the corneoscleral shell.  

Through dynamic OCT imaging (Spectralis SD-OCT, Heidelberg Engineering GmbH, Heidelberg, 

Germany) with enhanced depth imaging (EDI) coupled with automated choroidal segmentation, 

we obtain a direct measurement of the volume of blood pumped into the choroid with each 

heartbeat – the pulsatile ocular volume change (ΔV, or 𝑉 − 𝑉&). The method is described in detail 

in our previous papers (27, 494). Briefly, the choroidal segmentation algorithm is based on graph 

theory using an edge-probability weighting scheme that enables the precise detection of the 

choroid's boundaries, and has been shown to be more robust in detecting the choroid-sclera 

interface compared with existing algorithms (27, 488). It measures the choroidal thickness change 

(ΔCT) associated with the cardiac cycle through the time-series. To ensure that CT fluctuations in 

the time-series are due to the pulsatile blood flow, high frequency components from the spectral 

analysis must coincide with the first and second harmonics of the heart rate frequency which was 

measured simultaneously using an oximeter. 

Since the choroid represents approximately 90% of the blood flow in the eye (82), ΔV can be 

estimated from the measured ΔCT. The ΔV is calculated according to the following equation : 

∆𝑉 = 	 (𝜋 2⁄ )(𝐴𝐿*+, + 𝐶𝑇))	∆𝐶𝑇, where 𝐴𝐿*+,  is the ocular axial length (AL) measured using the 

IOL Master 500 (Carl Zeiss Meditec AG, Dublin, USA) and adjusted for the anterior chamber depth 

(ACD) (494). The pulsatile pressure change was measured using the Pascal DCT (Ziemer 

Ophthalmic Systems AG, Port, Switzerland). This tonometer provides an IOP reading 

corresponding to the diastolic IOP, as well as the ocular pulse amplitude (OPA) which is the change 

in IOP between the systole and diastole. This non-invasive methodology has been previously 

validated and was also shown to have good repeatability (494).  
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Structural OCT-based parameters such as ganglion cell complex (GCC) and retinal nerve fiber layer 

(RNFL) thicknesses were acquired using the Cirrus 5000 OCT (Carl Zeiss Meditec AG, Dublin, USA). 

These parameters characterize and quantify the retinal layers that contain neuronal structures 

that form the optic nerve. The GCC corresponds to the ganglion cell layer and inner plexiform 

layer thicknesses combined. These structural parameters can be presented as average, minimum 

and sectoral thicknesses. The neuro-retinal rim area, average and minimum GCC thicknesses, 

average RNFL thickness and RNFL thickness in the superior, temporal and inferior quadrants were 

considered. 

Additional measurements were acquired including IOP by Goldmann applanation (GAT-IOP), 

central corneal thickness (CCT) using optical pachymetry, corneal hysteresis (CH) and corneal 

resistance factor (CRF) using the Ocular Response Analyzer (ORA; Reichert Technologies, Depew, 

NY). Maximum historic IOP (Tmax) and glaucoma medications were also recorded for each 

participant.  

Statistical analyses were performed using SPSS statistical software (version 23; SPSS, Inc., Chicago, 

IL). Descriptive statistical analysis of baseline demographics was carried out and presented as the 

mean ± standard deviation. Pearson correlations between OR and neuro-retinal damage in all 

eyes were assessed. Correlation coefficients were compared between OR and known risk factors 

such as CCT, CH, CRF and Tmax. Partial correlations were also calculated to adjust for potential 

covariates. For all statistical tests, a p-value inferior to 0.05 was considered significant.  

Results 

One hundred eighteen subjects (25 with healthy eyes, 26 with suspect discs and 67 with early to 

advanced OAG) were recruited. One eye per subject was included in the study; 64 (54%) were 

right eyes. Of the 118 participants, 57 (48%) were male, 100 (85%) were Caucasian, 11 (9%) were 

from African origins, 4 (3%) were Hispanic and 3 (3%) were from another ethnic origin. A 

description of their baseline characteristics is presented in Table 1. In the OAG group the average 

visual field mean defect (MD) was -3.85 ± 5.01 dB. Comparison of OR with other known risk factors 

for glaucoma, namely CCT, CH, CRF and Tmax, and their correlation with glaucomatous damage 

is shown in Table 2. Significant positive correlations were found between OR and the minimum 
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and average GCC thicknesses (r=0.304, p=0.002 and r=0.285, p=0.004 respectively). Direct 

correlations were also found between OR and rim area (r=0.287, p=0.002), as well as OR and the 

RNFL thickness in the inferior quadrant (r=0.255, p=0.007). These correlations were generally 

greater than those found for CH, CRF and CCT, albeit usually lower than those found for Tmax. To 

illustrate the association between OR and some of these parameters, Figure 12 displays the 

scatter plots for OR and the rim area, the minimum GCC thickness, the average RNFL thickness, 

and the RNFL thickness in the inferior quadrant. After adjusting for age, sex and ethnicity, Pearson 

correlation coefficients between OR and each OCT-based parameter are shown in Table 3. Rim 

area was also adjusted for disc area. Significant correlations were found between OR and 

minimum and average GCC thickness (r=0.322, p=0.001 and r=0.298, p=0.003 respectively), rim 

area (r=0.257, p=0.007), average RNFL thickness (r=0.278, p=0.003) and RNFL thickness in the 

inferior (r=0.287, p=0.002) and superior (r=0.239, p=0.012) quadrants.   

Age (years)  65 ± 11 
Axial length (mm)   24.43 ± 1.41 
GAT-IOP (mmHg)   17 ± 5 
DCT-IOP (mmHg)   18.8 ± 4.0 
Ocular Pulse Amplitude (mmHg)   3.1 ± 1.2 
Tmax (mmHg)   22 ± 6 
Central Corneal Thickness (μm)   536 ± 41 
Corneal Hysteresis (mmHg)  9.0 ± 2.0 
Corneal Resistance Factor (mmHg)   9.6 ± 1.9 
Ocular Rigidity (μL-1)  0.0254 ± 0.0127 
Rim area (mm2)  1.01 ± 0.28 
Minimum GCC Thickness (μm)  68 ± 11 
Average GCC Thickness (μm)  72 ± 8 
Average RNFL Thickness (μm)  79 ± 12 
Superior Quadrant RNFL Thickness (μm)  96 ± 18 
Temporal Quadrant RNFL Thickness (μm)  58 ± 13 
Inferior Quadrant RNFL Thickness (μm)  99 ± 20 
Data is presented as the mean ± standard deviation. GAT-IOP = IOP measured by Goldmann 
applanation tonometry; DCT-IOP = IOP measured using Pascal dynamic contour tonometry; 
OPA = Ocular pulse amplitude; Tmax = Maximum IOP; GCC = Ganglion cell complex; RNFL = 
Retinal nerve fiber layer. 

 Baseline characteristics of participants. 
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 Ocular 
Rigidity 

Central 
Corneal 

Thickness 
(CCT) 

Corneal 
Hysteresis 

(CH) 

Corneal 
Resistance 

Factor 
(CRF) 

Intraocular 
Pressure 
(Tmax) 

Rim area 0.287 
(0.002) 

0.208 
(0.034) 

0.312 
(0.002) 

0.245 
(0.014) 

-0.257 
(0.012) 

Minimum GCC 
Thickness 

0.304 
(0.002) 

0.133 
(0.212) 

0.271 
(0.012) 

0.168 
(0.124) 

-0.505 
(<0.001) 

Average GCC 
Thickness 

0.285 
(0.004) 

0.141 
(0.185) 

0.179 
(0.101) 

0.069 
(0.531) 

-0.392 
(<0.001) 

Average RNFL 
Thickness 

0.220 
(0.017) 

0.200 
(0.039) 

0.182 
(0.066) 

0.154 
(0.120) 

-0.389 
(<0.001) 

Superior Quadrant 
RNFL Thickness 

0.177 
(0.062) 

0.071 
(0.469) 

0.089 
(0.385) 

0.000 
(0.999) 

-0.308 
(0.003) 

Temporal Quadrant 
RNFL Thickness 

0.041 
(0.668) 

0.243 
(0.014) 

0.148 
(0.148) 

0.204 
(0.046) 

-0.226 
(0.029) 

Inferior Quadrant 
RNFL Thickness 

0.255 
(0.007) 

0.115 
(0.250) 

0.204 
(0.045) 

0.133 
(0.193) 

-0.470 
(<0.001) 

 Comparison of the association between parameters of structural damage in glaucoma 

and ocular rigidity, as well as with other known risk factors. Pearson correlation coefficients 

and significance values are shown (in bold, if p < 0.05). 

 Correlation with Ocular Rigidity 

Rim Area 0.257 
(0.007) 

Minimum GCC Thickness 0.322 
(0.001) 

Average GCC Thickness 0.298 
(0.003) 

Average RNFL Thickness 0.278 
(0.003) 

Superior Quadrant RNFL Thickness 0.239 
(0.012) 

Temporal Quadrant RNFL Thickness 0.045 
(0.642) 

Inferior Quadrant RNFL Thickness 0.287 
(0.002) 

 Partial correlation between ocular rigidity, rim area, GCC and RNFL thicknesses in the 

superior, temporal and inferior quadrants. Pearson correlation coefficients adjusted for age, 

sex and ethnicity (and disc area for the correlation with the rim area) and significance values 

are shown (in bold, if p < 0.05). 
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Figure 12. –  Scatter plots showing significant correlations between ocular rigidity coefficients and the 

A) neuro-retinal rim area (r=0.287, p=0.002; Rim Area=0.85+6.33*OR); B) minimum ganglion 

cell complex (GCC) thickness (r=0.304, p=0.002; GCC=60.92+262*OR); C) average retinal 

nerve fiber layer (RNFL) thickness (r=0.220, p=0.017; Average RNFL=74.36+202*OR); D) RNFL 

thickness in the inferior quadrant (r=0.255, p=0.007; Inferior Quadrant 

RNFL=88.05+420*OR).  

 

Discussion 

In this study, we found modest but positive correlations between OR and structural OCT-based 

parameters. This suggests that neuro-retinal damage due to glaucoma, reflected by a thinner GCC 

or RNFL, is associated with less rigid eyes. 

The strength of the correlations obtained with OR are comparable to or greater than the ones 

obtained with CCT, CH and CRF, parameters that have been extensively investigated and are 
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recognized as important risk factors for the development and progression of glaucoma (5, 345, 

346, 371-375). Various studies have found associations between these parameters and optic 

nerve parameters including rim area (349, 350, 366, 372, 497-500). However, limited evidence of 

a relationship between corneal biomechanical parameters and RNFL has been shown (380, 381, 

501). Since elevated IOP leads to glaucomatous damage, an inverse correlation exists between 

Tmax and the thickness of the structural parameters whereas a direct correlation is found with 

CCT, CH and CRF, since their values are lower in glaucomatous eyes compared to controls (365-

368). Subjective assessment of our correlations suggests better correlations between OR and OCT 

parameters than between CCT, CH or CRF and the same parameters, although we did not test this 

statistically.  These findings imply that OR is an important risk factor for glaucoma, at least as 

important as these widely-recognized corneal biomechanical parameters. 

In our study population, which includes healthy eyes and others over the glaucoma spectrum, 

there was a correlation between Rim Area and OR that was similar to that obtained with Tmax. 

This could be further verified by assessing the strength of correlations between OR and Bruch’s 

membrane opening-minimum rim width (BMO-MRW) in future studies, as this parameter was 

found to have improved diagnostic capacity for early glaucoma (502). However, correlations with 

GCC and RNFL parameters were lower (although often significant) for OR than for Tmax. These 

parameters are usually considered to be affected earlier in glaucoma than rim area. Further 

studies will be required to confirm and clarify the cause of this observation. 

Unlike the recorded Tmax, which is most commonly the initial untreated IOP, OR evolves over the 

course of the disease, and this evolution may impact the strength of our correlations. If low OR 

contributes to the initiation of glaucomatous damage but subsequently the sclera becomes more 

rigid during the course of the disease and with aging (17, 21, 23, 26, 351, 428), correlations would 

be hard to observe except in the earliest glaucoma patients. In this study we attempted to include 

only relatively early glaucoma patients as evidenced by the OCT parameters shown in Table 1, but 

in general we recruited few patients (n=9) with visual field mean defect worse than -6dB. Since 

approximately half of the ONH axons are damaged before the standard visual field is affected, it 

is possible that stronger correlations between OCT parameters and OR would have been found if 

recruitment in the glaucoma group had been limited to patients with even earlier damage. 
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Comparatively, Tmax may reflect the highest stress imposed on the ONH during the disease 

history at a given period prior to treatment (14) . It often does not change during the course of 

the disease but if it does it is because it increases, further strengthening correlations as the 

disease progresses. 

To our knowledge, this study shows, for the first time, that across the spectrum of glaucoma the 

rigidity of the corneo-scleral shell is correlated with OCT-based parameters that quantify neuro-

retinal damage. More specifically, a more compliant eye is found to be associated with thinner 

GCC, RNFL, and neuroretinal rim. We could speculate that this association may be due to 

increased deformation (strain) of the load-bearing tissues of the ONH and peripapillary retina in 

eyes with lower OR. This deformation would occur with pulsatile, diurnal, or episodic changes in 

IOP and would lead to axonal deformation and stretching as well as to connective tissue changes, 

contributing to glaucomatous optic neuropathy. Early glaucomatous damage is thought to 

manifest in the macular region, where over 30% of the RGCs are located (503), as well as in the 

inferior peripapillary region (504, 505). Perhaps our findings, which included stronger correlations 

in the macular GCC and inferior RNFL, could thus signify that OR may play a greater role in the 

early stages of glaucoma. Our analysis is complicated by the fact that OR changes with age  as the 

sclera becomes more rigid, but also because it is possible that glaucoma itself eventually causes 

the sclera to become stiffer  thereby erasing the relationship to low OR found early in the disease 

(17, 21, 23, 26, 351, 428). To show to what degree OR contributes primarily to glaucoma and is 

altered by the disease process would require longitudinal assessment of OR at all stages of the 

disease, but especially in very early disease. While further investigation is warranted to confirm 

the role of OR in glaucoma, and to explore its value in detecting early glaucoma, our findings 

provide insight into the pathophysiology of OAG. 



 

Chapter 6 – Ocular Rigidity and Neuro-Retinal Damage in 

Vasospastic Patients: A Pilot Study 

As a continuity to the previous study, our aim was to investigate whether OR could play a greater 

role in certain subgroups of glaucoma patients. We had reasonable evidence to suggest that 

patients with concurrent vasospasticity could be more susceptible to glaucoma in response to 

biomechanical stimuli. (Manuscript in preparation) 

Abstract 

Purpose: Evidence suggests that ocular blood flow dysregulation in vasospastic patients could 

occur in response to biomechanical stimuli. This may contribute to the optic nerve head’s 

susceptibility in glaucoma. As a continuity of the previous study (Chapter 5), we aimed to evaluate 

the role of vasospasticity in the association between ocular rigidity (OR), and neuro-retinal 

damage, expecting OR to play a greater role in the pathophysiology of glaucoma in subjects with 

vasospasm.  

Methods: OR was measured non-invasively using the method developed by our group. Structural 

OCT-based parameters including retinal nerve fiber layer (RNFL) and macular ganglion cell 

complex (GCC) thicknesses were acquired using the Cirrus 5000 SD-OCT. Vasospasticity was 

assessed by a standardized questionnaire based on existing validated questionnaires and adapted 

to our requirements, and atherosclerosis was evaluated based on Broadway and Drance’s (1998) 

“overall cardiovascular disease score”. Correlations between OR and structural parameters were 

assessed in patients with concurrent vasospasticity, as well as those with atherosclerosis and no 

vasospasticity.  

Results: In the vasospastic group, significant correlations were found between OR and the 

minimum GCC thickness (rs=0.681, p=0.030), the average RNFL thickness (rs=0.745, p=0.013) and 

the RNFL in the temporal quadrant (rs=0.772, p=0.009), indicating more damage with lower OR. 

In contrast, no similar correlation was found in the atherosclerotic group (rs=0.219, p=0.282; 

rs=0.190, p=0.261; and rs=0.179, p=0.319 respectively). 
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Conclusion: These results may indicate more structural damage in less rigid eyes of vasospastic 

patients, and also that OR may play a greater role in glaucoma in vasospastic patients than in 

atherosclerotic patients, providing insight unto the pathophysiology of OAG.  

Introduction 

Glaucoma is an ocular disease characterized by structural damage to retinal ganglion cells (RGC) 

and axons that compose the optic nerve, resulting in visual field loss and leading to blindness too 

often. This disease is known to be multifactorial. The main mechanisms thought to explain the 

pathogenesis of this blinding disease include the mechanical and vascular theories. The first 

postulates that elevated mechanical stress and strain lead to axonal damage and RGC loss (12-

14). An individual’s predisposition to develop glaucoma may depend on eye-specific geometrical 

and material properties, such as ocular rigidity (OR). The second proposes reduced perfusion 

pressure and vascular dysregulation as the main culprits leading to the optic neuropathy (506, 

507). This means that the balance between intraocular pressure (IOP) and blood pressure (BP) in 

the ocular circulation is disturbed, affecting the optic nerve and resulting in pathological changes 

(508). However, these mechanisms are most probably not mutually exclusive, but rather 

intertwined. It is hypothesized that ocular biomechanics can mediate blood flow along with other 

processes in the eye (15).  

Vasospasticity, or primary vascular dysregulation (PVD), is characterized by the body’s abnormal 

response to stimuli such as temperature and emotional stress, leading to cold extremities (509). 

Vasospasticity is a risk factor for glaucoma (143, 510-512), and renders the eye more susceptible 

to damage in response to IOP or OPP changes due to defective autoregulation (509). An example 

of this is shown by Hafez et al. (145) who reported that following therapeutic IOP reduction in 

OAG patients,  there were significantly greater increases in neuroretinal rim blood flow in patients  

with vasospastic disease compared to non-vasospastic patients, indicating defective 

autoregulation in these patients. Furthermore, evidence suggests that patients with PVD could 

present ocular blood flow dysregulation in response to biomechanical stimuli, contributing to the 

optic nerve head’s susceptibility in glaucoma (142-144). 



89 

 It was previously shown that low OR is correlated with neuro-retinal damage in glaucoma 

(Chapter 5). In the current study, the aim is to evaluate the role of vasospasticity in the association 

between ocular rigidity (OR), an important biomechanical property of the globe, and neuro-

retinal damage. OR is expected to play a greater role in the pathophysiology of glaucoma in 

subjects with a concurrent vasospastic syndrome.  

Methods 

This study followed the tenets of the Declaration of Helsinki and was approved by the 

Maisonneuve-Rosemont Hospital institutional review board. Informed consent was obtained 

from all participants prior to testing.   

OR was measured using a non-invasive optical method described previously (27, 494). Briefly, this 

method involves the measurement of the pulsatile ocular volume change using dynamic optical 

coherence tomography (OCT) imaging, and a custom segmentation algorithm, as well as the 

pulsatile IOP change using the Pascal tonometer (27). This non-invasive methodology has been 

previously validated and was also shown to have good repeatability (494). The OR coefficient is 

then computed using Friedenwald’s equation (26). Structural OCT-based parameters including 

macular ganglion cell complex (GCC) and retinal nerve fiber layer (RNFL) thicknesses were 

acquired using the Cirrus 5000 OCT (Carl Zeiss Meditec AG, Dublin, USA).  

Adults with healthy eyes, suspect discs or open-angle glaucoma (OAG) were recruited in this 

study. Participants were questioned about their systemic health, and medical records were 

reviewed. Vasospasticity, atherosclerosis and other vascular risk factors were assessed by a 

questionnaire, based on similar studies (140, 513-516). An “overall cardiovascular disease score” 

was calculated for each patient, where the five elements considered were: hypertension, 

ischemic heart disease, cerebral ischemic disease, diabetes and/or hemodynamic crisis (140). A 

score superior or equal to 1/5 indicated the presence of vascular disease or atherosclerosis. 

Participants were divided into a vasospastic group and a vascular disease group, according to the 

collected data. The questionnaire developed and used in this study is shown in Figure 13. 
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Statistical analyses were performed using SPSS statistical software (version 23; SPSS, Inc., Chicago, 

IL). Descriptive analysis of baseline demographics was carried out and presented as the mean ± 

standard deviation. To compare the vasospastic and atherosclerotic groups, a t-test, or equivalent 

based on distribution and equality of variances assessment, or chi-square test was used where 

applicable. Correlations between OR and structural parameters were assessed in the two groups 

of participants for comparison. For all statistical tests, a p-value inferior to 0.05 was considered 

significant.  

Results 

Out of the 118 subjects included in our previous study, forty-seven were considered for this study, 

as 10 were only vasospastic (without atherosclerosis), and 37 were only atherosclerotic (without 

vasospasm and/or migraine). Subjects who were neither vasospastic nor atherosclerotic were not 

analyzed in the present study. Of the 47 subjects included in this study, twenty-six (55%) were 

male, 39 (83%) were Caucasian, 7 (15%) were from African origins and 1 (2%) was Hispanic. One 

eye per subject was included; 25 (53%) were right eyes, 8 were healthy, 11 had suspect discs and 

28 had early to advanced OAG. The baseline characteristics of all included participants are shown 

in Table 4. The assumption of homogeneity of variance was respected for all variables following 

Levene’s Test for Equality of Variances (p>0.05). Due to unequal sample size and non-normal 

distribution, a Mann-Whitney U test and chi-square test were carried out. The Spearman 

correlations between OR and parameters of neuro-retinal damage in the vasospastic group and 

atherosclerotic group are shown in Table 5. In the vasospastic group, significant correlations were 

found between OR and the minimum GCC thickness (rs=0.681, p=0.030), average RNFL thickness 

(rs=0.745, p=0.013) and the RNFL in the temporal quadrant (rs=0.772, p=0.009), indicating more 

damage with lower OR. In contrast, no similar correlation was found in the atherosclerotic group 

(rs=0.219, p=0.282; rs=0.190, p=0.261; and rs=0.179, p=0.319 respectively). Figures 14 and 15 

display the relationship between OR coefficients and neuro-retinal damage parameters in the 

vasospastic group and the atherosclerotic group respectively. 
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Figure 13. –  Questionnaire developed to establish the presence of vasospasticity, cardiovascular 

diseases, and other vascular risk factors.  
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Vasospastic 

Group 
(n=10) 

Atherosclerotic 
Group (n=37) p-value 

Eye (OD / OS) 4 / 6 21 / 16 0.279 

Sex (M / F) 3 / 7 23 / 14 0.073 

Ethnicity (Caucasian / Other) 8 / 2 31 / 6 0.550 

Diagnosis (Healthy / Suspect / OAG) 2 / 1 / 7 6 / 10 / 21 0.591 

History of Migraines 3 0 0.009 

Age (years) 63±12 66±9 0.929 

Axial length (mm)  24.74±1.27 24.33±1.22 0.419 

GAT-IOP (mmHg)  16±4 17±4 0.476 

DCT-IOP (mmHg)  18.8±4.0 18.7±3.7 1.000 

Ocular Pulse Amplitude (mmHg)  2.9±1.3 3.0±1.3 0.692 

Ocular Rigidity (μL-1) 0.026±0.015 0.023±0.013 0.711 

Average GCC Thickness (μm) 71±10 69±9 0.768 

Minimum GCC Thickness (μm) 68±12 66±11 0.689 

Average RNFL Thickness (μm) 80±15 79±13 0.828 

Inferior Quadrant RNFL Thickness (μm) 96±26 101±20 0.600 

Temporal Quadrant RNFL Thickness (μm) 57±18 58±12 0.356 

Superior Quadrant RNFL Thickness (μm) 97±23 97±19 0.966 

6th Clock Hour RNFL Thickness (μm) 103±36 108±29 0.487 

7th Clock Hour RNFL Thickness (μm) 106±28 108±28 0.810 

8th Clock Hour RNFL Thickness (μm) 62±27 58±14 0.524 

9th Clock Hour RNFL Thickness (μm) 46±9 48±10 0.452 

10th Clock Hour RNFL Thickness (μm) 64±19 67±17 0.435 

11th Clock Hour RNFL Thickness (μm) 108±27 106±28 0.944 

12th Clock Hour RNFL Thickness (μm) 97±31 96±25 0.788 

Data is presented as the mean ± standard deviation where applicable. 
 Baseline characteristics of participants in the vasospastic and atherosclerotic groups. 
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 Vasospastic Group Atherosclerotic Group 

Average GCC Thickness 0.479 
(0.162) 

0.128 
(0.532) 

Minimum GCC Thickness 0.681 
(0.030) 

0.219 
(0.282) 

Average RNFL Thickness 0.745 
(0.013) 

0.190 
(0.261) 

Inferior Quadrant RNFL Thickness 0.418 
(0.229) 

0.148 
(0.412) 

Temporal Quadrant RNFL Thickness 0.772 
(0.009) 

0.179 
(0.319) 

Superior Quadrant RNFL Thickness 0.450 
0.192 

-0.001 
(0.994) 

6th Clock Hour RNFL Thickness 0.596 
(0.069) 

0.114 
(0.528) 

7th Clock Hour RNFL Thickness 0.661 
(0.038) 

0.001 
(0.998) 

8th Clock Hour RNFL Thickness 0.875 
(0.001) 

0.027 
(0.883) 

9th Clock Hour RNFL Thickness 0.628 
(0.052) 

0.244 
(0.171) 

10th Clock Hour RNFL Thickness 0.648 
(0.043) 

0.350 
(0.046) 

11th Clock Hour RNFL Thickness 0.552 
(0.098) 

0.164 
(0.362) 

12th Clock Hour RNFL Thickness 0.389 
(0.266) 

-0.230 
(0.197) 

 Comparison of the association between ocular rigidity and structural damage in 

glaucoma in the vasospastic group and atherosclerotic group. Spearman correlation 

coefficients and significance values are shown (in bold, if p < 0.05). 
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Figure 14. –  Relationship between ocular rigidity coefficients and neuro-retinal damage parameters 

in the vasospastic group. Scatter plots showing significant correlations between ocular 

rigidity coefficients and the A) minimum ganglion cell complex (GCC) thickness (r=0.681, 

p=0.030; GCC=56.51+440*OR); B) average retinal nerve fiber layer (RNFL) thickness (r=0.745, 

p=0.013; Average RNFL=61.42+729*OR); C) RNFL thickness in the temporal quadrant 

(r=0.772, p=0.009; Temporal Quadrant RNFL=46.23+432*OR).  

 

    
 

Figure 15. –  Relationship between ocular rigidity coefficients and neuro-retinal damage parameters 

in the atherosclerotic group. Scatter plots showing significant correlations between ocular 

rigidity coefficients and the A) minimum ganglion cell complex (GCC) thickness (r=0.219, 

p=0.282; GCC=60.81+206*OR); B) average retinal nerve fiber layer (RNFL) thickness (r=0.190, 

p=0.261; Average RNFL=74.77+182*OR); C) RNFL thickness in the temporal quadrant 

(r=0.179, p=0.319; Temporal Quadrant RNFL=52.62+212*OR). 
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Discussion 

In this pilot study, we found a strong correlation between OR and OCT-based parameters of 

neuro-retinal damage in the vasospastic group, indicating more damage in eyes with lower OR 

(Table 5). This confirms OR as a risk factor for neuro-retinal damage in glaucoma, perhaps more 

so in subjects with concurrent vasospasticity. In comparison, the atherosclerotic group showed 

no correlation between OR and these parameters, except for a weak positive correlation with 

RNFL in the 10th clock hour. Despite the small number of subjects which limits statistical power, 

the results clearly suggest two distinct sub-populations with distinct characteristics within the 

initial heterogeneous population. This corroborates the findings by Schulzer et al. (144) who 

previously reported two distinct and statistically significantly different subgroups within a 

population of subjects with low and high-tension glaucoma. In their study, the group with 

vasospasticity showed a positive correlation between the visual field mean defect and the 

maximum historic IOP (Tmax), indices of glaucomatous functional damage and biomechanics 

respectively. In contrast, the group with vascular disease, akin to atherosclerosis, showed no 

correlation between these variables. The authors argued that this finding may indicate the 

presence of different pathogenic mechanisms leading to glaucoma. As such, they showed that 

the first group, although smaller (n=15), may be more sensitive to the biomechanical environment 

in the eye, whereas the second, larger group (n=45) may present disturbed coagulation and 

biochemical measurements suggestive of ischemic vascular disease.  

The positive correlation found between OR and the OCT-based parameters reflecting 

glaucomatous neuro-retinal damage is consistent with our previous findings in a non-

homogeneous population (Chapter 5).  

We recognize some limitations of our study and that these should be addressed in future studies. 

First, the small size of the groups, particularly the vasospastic group, must be increased to permit 

additional statistical testing (including adjusting for potential covariates), increase the statistical 

power and to strengthen our conclusions. It is interesting to note, however, that the proportion 

of vasospastic to atherosclerotic subjects reported in the previous study (15 and 45) and in our 

study (10 and 37) is almost equivalent. Perhaps this may be representative of the proportion of 
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vasospasticity in such a population. Second, the presence of both vasospasticity and 

atherosclerosis in our study was established by questioning of the patient by the investigator and 

through review of the medical records. Although it is based on validated and previously published 

questionnaires (140, 513-516), the questionnaire used in this study has not been validated 

integrally. Objective, quantitative measurements methods for vasospasticity include finger blood 

flow and nailfold capillaroscopy, and should be used in future studies. Nevertheless, a number of 

studies have been published using only a questionnaire to establish the presence of vasospastic 

syndrome with seemingly good reliability without engaging in additional testing (513, 516, 517). 

Furthermore, in a cohort of 123 patients, the subjective complaint of cold extremities was 

significantly correlated with objective peripheral vasospastic testing (140). No hematological or 

biochemical measurements were carried out specifically for the purpose of this study.  

While the presence of migraines is thought to be a possible surrogate for vascular dysregulation 

(516, 518), all vasospastic subjects in this study did not also report a history of migraines. 

However, this is consistent with previous reports that not all patients with vasospastic syndrome 

suffer from migraine (519).  

Finally, our study demonstrates for the first time that OR and parameters of neuro-retinal damage 

are highly correlated in vasospastic subjects, compared to the group with ischemic vascular 

disease. In other words, this may indicate more structural damage in less rigid eyes, and perhaps 

also that OR may play a greater role in this subgroup of glaucoma patients. Vasospasticity, a 

known risk factor in glaucoma, may render the vasculature of the eye to be more susceptible to 

biomechanical stimuli, including IOP. In clinical practice, this may translate into an increased 

benefit for therapeutic IOP-lowering in vasospastic patients, especially those with lower OR. 

These findings provide insight into the pathophysiology of OAG, although further investigation is 

warranted to confirm the role of OR in glaucoma, and elucidate why and how low OR may play a 

greater role in certain subgroups of glaucoma patients. 

 



 

Chapter 7 – Limited Association between Ocular Rigidity and 

Corneal Biomechanical Parameters 

Corneal biomechanical parameters have been widely adopted in clinical practice as surrogate 

measurements for the eye’s overall biomechanical properties represented by OR. In this study, 

we aimed to investigate the relationship between CH, CRF and CCT with OR. This work is titled 

“Association between Ocular Rigidity and Corneal Biomechanical Parameters in Healthy and 

Glaucomatous eyes” and has been authored by Diane N. Sayah, Javier Mazzaferri, Denise 

Descovich, Santiago Costantino and Mark R. Lesk. (Manuscript in preparation) 

Abstract 

Introduction: To investigate the relationship between ocular rigidity (OR), and corneal 

biomechanical parameters, such as the corneal hysteresis (CH) and corneal resistance factor 

(CRF), as well as the central corneal thickness (CCT), in healthy and glaucomatous eyes. 

Methods: One hundred forty-five eyes from 145 patients (66 healthy eyes, 79 glaucomatous eyes) 

were recruited in this prospective cross-sectional observational study. OR was measured non-

invasively by video-rate optical coherence tomography (OCT) imaging coupled with automated 

choroidal segmentation, and dynamic contour tonometry. The OR coefficient was calculated 

using Friedenwald’s equation. CH and CRF were measured by the Ocular Response Analyzer. CCT 

was measured using ultrasound pachymetry. Bivariate and partial Pearson correlations were 

carried out to evaluate the relationship between OR and corneal biomechanical parameters. 

Results: CH, CRF and CCT were significantly lower in glaucoma patients compared with controls. 

OR was lower in the glaucoma group, however this difference did not attain significance 

(p=0.124). In the normal group, no associations were found between OR and the corneal 

biomechanical parameters. Only a weak positive correlation between OR and CH was found in 

the OAG group (r=0.267, p=0.017). In this same group, after adjusting for age, sex, ethnicity, GAT-

IOP and CCT, the correlation was no longer significant between OR and CH (r=0.210, p=0.073), 

while a positive correlation was found between OR and CRF (r=0.255, p=0.028).  
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Conclusion: The current study demonstrates no association between corneal biomechanical 

parameters and OR, except for a weak correlation between OR and CRF in glaucomatous eyes. 

This reinforces the notion that corneal biomechanical parameters are not a surrogate 

measurement for ocular rigidity and provides insight unto the pathophysiology of glaucoma. 

Introduction 

Ocular biomechanics are thought to play an important role in many diseases of the eye, including 

open-angle glaucoma (OAG). The ability to quantify the structural and material properties of the 

corneoscleral shell could help elucidate the pathophysiological mechanisms of this blinding 

disease, and potentially improve its diagnosis and treatment.  

Corneal biomechanical properties have been extensively studied in the last decade, due to easy-

to-use and readily-available measurement methods. Corneal hysteresis (CH) and corneal 

resistance factor (CRF) are biomechanical parameters which correspond to the viscous and elastic 

properties of the cornea respectively. The Ocular Response Analyzer (ORA; Reichert Technologies, 

Depew, NY), a non-contact tonometer, enables their measurement by analyzing the deformation 

of the cornea in response to a rapid air jet pulse (61). Infrared light is emitted, reflected on the 

cornea and detected by a photodetector. Following the air jet pulse, the cornea is flattened; this 

corresponds to the inward applanation pressure (P1). It continues to move inward then rebounds, 

reaching a second flattened state at an outward applanation pressure (P2), to take back its 

original shape. CH represents the cornea’s ability to absorb and dissipate energy, and is defined 

as the difference between P1 and P2. CRF provides information about the elastic properties of 

corneal tissue or their resistance to stress, and is defined as P1-kP2 where k is a constant derived 

empirically from central corneal thickness (CCT) (362). CCT is another relevant corneal parameter 

in glaucoma. Generally measured using ultrasound pachymetry, and widely adopted in clinical 

practice, it was first used to correct IOP readings (343). The importance of CCT as an independent 

risk factor and predictor for the development of OAG (5, 345) and visual field loss (346) was later 

demonstrated. Similarly, CH was found to be significantly lower in POAG compared to controls 

(365-368).  Numerous studies also associated a lower CH with an increased risk of glaucoma 
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progression (371-374), with a higher predictive value of glaucoma progression than CCT (371, 

372).  

How these corneal properties are linked to the ocular globe’s biomechanical properties and to 

the optic nerve’s susceptibility in glaucoma remains unclear. Ocular rigidity (OR) characterizes the 

resistance that the whole eye exerts to distending forces and is defined as the pressure-volume 

relationship in the eye (26). As the anterior extension of the sclera, the cornea contributes to the 

overall rigidity of the eye. However, the stiffness of the sclera is the major contributor to OR. 

Finite element modeling has shown scleral stiffness to be the most influential biomechanical 

factor of strain at the optic nerve head (16). Until now, only three studies have attempted to 

evaluate the association between OR and corneal parameters including CH, CRF and CCT. In one 

study where OR was measured using laser Doppler flowmetry and Pascal tonometry, a positive 

but weak correlation was found between OR and CCT (rho = 0.121, p=0.05) (23), indicating that 

subjects with a thinner cornea may have a more compliant sclera. No correlation was found in 

another study using an invasive measurement method (r=0.22, p=0.12) (351). OR measured using 

Schiötz tonometry, an indirect measurement method that was shown to be inaccurate due to its 

dependence on the eye’s biomechanical properties, has shown no correlation with CH (p=0.39), 

but was negatively correlated with CRF (r=-0.41, p=0.02) in 25 healthy subjects (520).  

In this paper, we aim to measure OR and investigate the relationship between OR and corneal 

biomechanical parameters including CH, CRF and CCT in both healthy and glaucomatous eyes. 

The measurement of OR will be carried out using a reliable, non-invasive and direct method that 

was developed by our group and recently validated (27, 494). 

Methods 

This prospective cross-sectional observational study was approved by the Maisonneuve-

Rosemont Hospital Institutional Review Board and conformed to the principles of the Declaration 

of Helsinki. Informed consent was obtained from all participants prior to testing.   

Adult subjects with healthy eyes or with OAG were recruited in this study. A complete ocular 

examination was performed for all participants. Normal subjects had intraocular pressure (IOP) 
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less than 21 mmHg, normal optic nerve appearance on fundus exam, normal visual fields and no 

other ocular disease. Subjects with OAG had open (non-occludable) angles on gonioscopy, a 

glaucomatous optic nerve appearance, as well as repeatable structural and/or functional findings 

with optical coherence tomography (OCT) imaging and Humphrey visual field (VF; Zeiss Humphrey 

Systems, Dublin, California, USA) testing (SITA standard threshold 24–2 strategy). According to 

this definition, pre-perimetric glaucoma patients were also included in the glaucoma group. 

Exclusion criteria for this study were prior intraocular surgery (except remote cataract extraction), 

corneal pathology, and contact lens wear. Subjects were also excluded if they had corneal, lens, 

or media opacities that resulted in poor retinal OCT quality, had unsteady fixation, or were unable 

to fixate a target with the contralateral eye.  

Ocular rigidity (OR) was measured using a non-invasive method involving video-rate OCT imaging 

and Pascal dynamic contour tonometry (DCT) (27, 494). This method is based on Friedenwald’s 

equation (419), which permits the ocular rigidity coefficient to be estimated as the following 

pressure-volume relationship: 𝑙𝑛 𝐼𝑂𝑃 𝐼𝑂𝑃&⁄ = 𝑂𝑅	 ×	(𝑉 − 𝑉&). The OR coefficient thus obtained 

is a single value for the overall OR of the corneoscleral shell.  

Through dynamic OCT imaging (Spectralis SD-OCT, Heidelberg Engineering GmbH, Heidelberg, 

Germany) with enhanced depth imaging (EDI) coupled with automated choroidal segmentation, 

we obtain a direct measurement of the volume of blood pumped into the eye with each heartbeat 

– the pulsatile ocular volume change (ΔV, or 𝑉 − 𝑉&). The choroidal segmentation algorithm is 

described in detail in our previous paper (27). Briefly, it is based on graph theory using an edge-

probability weighting scheme that enables the precise detection of the choroid's boundaries, and 

has been shown to be more robust in detecting the choroid-sclera interface compared with 

existing algorithms (27, 488). It measures the choroidal thickness change (ΔCT) associated with 

the cardiac cycle through the time-series. Since the choroid represents approximately 90% of the 

blood flow in the eye (82), ΔV can be estimated from the measured ΔCT. The ΔV is calculated 

according to the following equation : ∆𝑉 = 	 (𝜋 2⁄ )(𝐴𝐿*+, + 𝐶𝑇))	∆𝐶𝑇, where 𝐴𝐿*+,  is the ocular 

axial length (AL) measured using the IOL Master 500 (Carl Zeiss Meditec AG, Dublin, USA) and 

adjusted for the anterior chamber depth (ACD) (494). The pulsatile pressure change was 

measured using the Pascal DCT (Ziemer Ophthalmic Systems AG, Port, Switzerland). This 
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tonometer provides an IOP reading corresponding to the diastolic IOP, as well as the ocular pulse 

amplitude (OPA) which is the change in IOP between the systole and diastole.       

This non-invasive methodology has been previously validated and was also shown to have good 

repeatability (494).  

Corneal biomechanical parameters, namely CH and CRF, were obtained using the Ocular 

Response Analyzer (ORA) (61). Measurements were repeated at least twice and up to four times 

if the waveform score was below 6.0, in which case the acquisition with the highest waveform 

score was considered. Other relevant variables were measured, including CCT using a standard 

ultrasound pachymeter and IOP by Goldmann applanation tonometry (GAT).  

Descriptive statistical analysis of baseline demographics was assessed using SPSS. To compare 

biomechanical parameters’ values between the normal and OAG groups, a t-test was used. To 

further evaluate the relationship between OR, CH, CRF and CCT, multicollinearity was assessed, 

followed by bivariate and partial Pearson correlations, adjusting for potential covariates. A p-

value <0.05 was considered statistically significant.  

Results 

A total of 145 eyes from 145 subjects (66 normal and 79 with OAG; 66±13 years of age; 45% males) 

were included in this study. A description of the demographics of the normal and OAG groups is 

presented in Table 6. The average values of biomechanical parameters, including CH, CRF, CCT 

and OR are presented in Table 7. Lower CH, CRF and CCT were found in glaucomatous eyes 

compared to controls (p<0.001, p=0.009 and p=0.001 respectively). OR was lower in the OAG 

group, however this difference did not attain statistical significance (p=0.124). Table 8 shows the 

Pearson correlation coefficients and p-values between all relevant variables for the normal and 

OAG groups respectively. No multicollinearity was found, with a variance inflation factor inferior 

to 2.5 among all variables. 

CH and CRF were positively correlated with each other as well as with CCT. In the normal group, 

no associations were found between OR and the corneal biomechanical parameters (see Tables 

8 and 9). Only a weak positive correlation between OR and CH was found in the OAG group 
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(r=0.267, p=0.017) (Table 8). In this same group, after adjusting for age, sex, ethnicity, GAT-IOP 

and CCT, the correlation was no longer significant between OR and CH (r=0.219, p=0.058), while 

a positive correlation was found between OR and CRF (r=0.294, p=0.010) (Table 9).  

 

 Healthy (n=66) OAG (n=79) 

Study eye (OD / OS) 39/27 34/45 

Sex (Female / Male) 38/28 42/37 

Ethnicity (Caucasian / Other) 61/5 70/9 

Age (years) a 65±17 67±10 

Axial length (mm) a 23.84±1.18 24.65±1.43 

GAT-IOP (mmHg) a 15±3 17±6 

DCT-IOP (mmHg) a 16.8±2.7 19.6±5.3 

MD (dB) a -0.02±0.2 -5.0±6.1 
a Data is presented as the mean ± standard deviation.  
GAT-IOP = IOP measured by Goldmann applanation tonometry; DCT-IOP = IOP measured 
using Pascal dynamic contour tonometry; MD = Visual field mean deviation. 

 Baseline characteristics of subjects in the healthy and OAG groups. 

 

 Healthy (n=66) OAG (n=79) p-value 

Ocular rigidity coefficient (1/µL) a 0.0278±0.0139 0.0244±0.0126 0.124 

Corneal hysteresis (mmHg) a  10.1±1.8 8.6±1.9 <0.001 

Corneal resistance factor (mmHg) a  10.1±1.7 9.3±1.8 0.009 

Central corneal thickness (µm) a 549±36 529±37 0.001 
a Data is presented as: mean ± standard deviation. 

 Average ocular rigidity, corneal hysteresis, corneal resistance factor and central corneal 

thickness values in the healthy and OAG groups. 
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 Age AL GAT-IOP DCT-IOP CCT CH CRF OR 

Healthy Group 

CCT 0.150 
(0.229) 

0.012 
(0.922) 

0.205 
(0.120) 

-0.053 
(0.673)  0.422 

(<0.001) 
0.600 

(<0.001) 
-0.007 
(0.956) 

CH -0.071 
(0.573) 

-0.194 
(0.120) 

-0.192 
(0.145) 

-0.353 
(0.004) 

0.422 
(<0.001)  0.781 

(<0.001) 
0.051 

(0.687) 

CRF -0.058 
(0.644) 

-0.038 
(0.761) 

0.318 
(0.014) 

0.161 
(0.196) 

0.600 
(<0.001) 

0.781 
(<0.001)  0.013 

(0.920) 

OR -0.024 
(0.846) 

-0.494 
(<0.001) 

-0.116 
(0.383) 

-0.148 
(0.237) 

-0.007 
(0.956) 

0.051 
(0.687) 

0.013 
(0.920)  

Glaucoma Group 

CCT -0.171 
(0.132) 

0.162 
(0.155) 

0.328 
(0.003) 

0.247 
(0.028)  0.471 

(<0.001) 
0.575 

(<0.001) 
0.031 

(0.787) 

CH -0.129 
(0.258) 

0.091 
(0.423) 

-0.253 
(0.024) 

-0.382 
(0.001) 

0.471 
(<0.001)  0.455 

(<0.001) 
0.267 

(0.017) 

CRF -0.295 
(0.008) 

0.100 
(0.382) 

0.376 
(<0.001) 

0.289 
(0.010) 

0.575 
(<0.001) 

0.455 
(<0.001)  0.129 

(0.259) 

OR 0.139 
(0.222) 

-0.381 
(0.001) 

-0.265 
(0.018) 

-0.281 
(0.012) 

0.031 
(0.787) 

0.267 
(0.017) 

0.129 
(0.259)  

 Pearson correlation coefficients and significance values between OR, CH, CRF, CCT and 

other relevant variables for the healthy and OAG groups. 

 

 Covariates Healthy Group OAG Group 

OR and CCT Age, sex, ethnicity, GAT-IOP, CRF -0.004 
(0.975) 

-0.006 
(0.959) 

OR and CH Age, sex, ethnicity, GAT-IOP, CCT -0.033 
(0.813) 

0.210 
(0.073) 

OR and CRF Age, sex, ethnicity, GAT-IOP, CCT -0.013 
(0.926) 

0.255 
(0.028) 

 Pearson correlation coefficients adjusted for confounding variables (and significance 

values) between OR, CH, CRF, CCT for the healthy and OAG groups. 
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Discussion 

In this study, OR and corneal biomechanical properties including CH, CRF and CCT were not found 

to be correlated in healthy eyes, while only CRF was found to be positively, albeit weakly 

correlated with OR after adjusting for age, sex, ethnicity, IOP and CCT in glaucomatous eyes as 

seen in Table 9. The covariates were chosen according to the correlations presented in this paper 

and the literature (521, 522). These results demonstrate limited associations between corneal 

biomechanical factors and the rigidity of the overall corneoscleral shell. This also demonstrates 

that corneal biomechanical factors do not appear to be a surrogate for OR. This is corroborated 

by similar findings from a previous study investigating the link between OR and acute IOP 

elevation following intravitreal injections. IOP spikes were strongly correlated with OR, whereas 

they were not significantly associated with CCT, CH and CRF (523) (as shown in the following 

chapter).  

It is speculated that corneal biomechanical parameters could reflect glaucoma susceptibility in a 

given eye through similar properties of the extracellular matrix of the cornea, lamina cribrosa and 

peripapillary sclera. In other words, this would mean that an eye with a more deformable cornea, 

or low CH, CRF and CCT, may also be more vulnerable to IOP-induced ONH damage. Several 

experiments were carried out to better understand the link between CH, CRF and CCT and 

posterior structures of the eye in glaucoma. However, the relationship between the biomechanics 

of the cornea and the globe remains unclear. Our study further indicates that the link between 

corneal and corneoscleral biomechanical properties are indeed limited. Since CRF is akin to the 

elasticity of the corneal tissue, and OR reflects the elastic properties of the corneoscleral shell, 

this may explain our correlation between CRF and OR, more so than CH or CCT. The presence of 

such a relationship in glaucomatous eyes but not in healthy eyes is in line with similar findings in 

the literature. For example, previous studies have reported that low CH is associated with larger 

cup-to-disc ratio, deeper cup and smaller rim area in eyes with glaucoma (376, 377), while neither 

CH nor CCT were correlated with measures of optic disc cupping in a large, non-glaucomatous 

cohort (378). Similarly, CCT and optic nerve surface displacement (onsd) were correlated in OAG 

and OHT eyes undergoing therapeutic IOP reduction (349), while CH and onsd were correlated in 

glaucomatous eyes subjected to an acute IOP elevation, but not in healthy controls (366). In fact, 
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there is conflicting data regarding corneal biomechanical parameters and optic nerve parameters 

in healthy eyes. The discrepancy between findings is suggested to be due, at least partially, to 

sample size, study population and methodology (501).  

In this case, the methodology used may indeed provide some explanation for discrepancies 

between our findings and published reports. The development of a direct, non-invasive and 

reliable method to measure OR has long posed a challenge to the investigation of this important 

biomechanical property in vivo. While anterior chamber manometry is the main technique to 

directly measure OR (351, 411-413), it involves the intraoperative cannulation of the anterior 

chamber to inject fluid in the eye (351). Its invasive nature limits the technique’s applicability. 

One of the first non-invasive methods to measure OR involved the Schiötz tonometer. It has been 

shown to be inaccurate due to its dependence on the biomechanical properties of the eye (406-

409). The most significant source of this variability in OR coefficients originates from the use of 

weights in Schiötz tonometry, which compress the ocular wall and displace a significant amount 

of intraocular fluid (406, 409), but also through the erroneous assumption that the OR of all eyes 

is standard in the applicability of the conversion table which provides the IOP reading in mmHg 

(39, 51, 406). A recently developed non-invasive technique to measure OR, based on choroidal 

laser Doppler flowmetry gave only relative values because choroidal blood flow was measured in 

arbitrary units (23). Our group has since developed the first non-invasive and direct method to 

measure OR in living human eyes (27). The novelty of the method consists mainly in its ability to 

measure the pulsatile ocular volume change, or amount of blood pumped into the eye with each 

heartbeat, directly from OCT videos coupled with automated choroidal segmentation. The 

approach also uses Pascal DCT to measure the pulsatile IOP change. It has been validated against 

an invasive method and shown to be well correlated and reliable (494). As aforementioned, the 

current findings using this method are consistent with those obtained with the manometric 

technique regarding OR and CCT (351).   

The results of this study also confirm previous reported findings. CH and CRF are positively 

correlated with each other, and also with CCT (to a lesser extent with CH than CRF) (365, 522, 

524). CRF and age are negatively correlated (382, 524). This is shown in glaucomatous subjects 

but not in controls in our study. A negative correlation with AL and OR was confirmed in both 
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groups (23, 422). CH, CRF and CCT values were found to be lower in glaucomatous eyes compared 

with controls, similarly to previous reports (365-368). There was a tendency for lower OR in the 

glaucoma group, however this difference did not attain significance (p=0.124). This may be 

explained by the heterogeneity of the glaucoma group in this study. Indeed, while our group has 

previously reported lower OR in OAG (23), OR is thought to be altered throughout the course of 

the disease, and may increase with advanced glaucoma (17, 23, 399, 400). 

A potential limitation of this study is that, while both OR and corneal properties may be altered 

by topical hypotensive medications routinely prescribed for the treatment of glaucoma (18, 357-

359, 419, 420), this was not accounted for in our analysis. Our data shows that 67 out of 79 

glaucomatous patients in our study were treated with an average of 2±1 pressure-lowering 

agents. Of those, 59 were on prostaglandin analogs, 49 on beta-blockers, 12 on alpha-2 

adrenergic receptor agonists, 37 on topical carbonic anhydrase inhibitors (CAI), 3 on pilocarpine 

and 7 on oral CAIs. The agents could have been administered alone or as part of a combination. 

However, post-hoc analysis showed no significant correlation between OR and CH, CRF and CCT 

in the 12 non-treated eyes (p=0.866, p=0.150 and p=0.662 respectively). 

Finally, this study demonstrates no association between corneal biomechanical parameters and 

OR, except for a weak correlation between OR and CRF in glaucomatous eyes. This shows that 

there is limited association between the biomechanical properties of the cornea and those of the 

entire ocular globe. Corneal biomechanical factors do not appear to be a surrogate for overall OR.



 

Chapter 8 – Ocular Rigidity as a Predictor of IOP spikes 

following Therapeutic Intravitreal Injections 

Elevated IOP is a risk factor for glaucoma. IOP spikes are known to occur in eyes undergoing 

intravitreal injections (IVI) of bevacizumab, a common and effective treatment for various 

exudative retinal diseases. If we consider a rigid eye as a soccer ball and a compliant eye as a 

birthday balloon, we expect the rigid eye to have a bigger IOP change after injecting a known 

volume of fluid into it. When patients at risk of, or with concurrent glaucoma present with 

exudative retinal diseases requiring therapeutic IVIs, we hypothesized that OR could help us 

predict the magnitude of IOP spikes prior to initiating therapeutic IVIs. This would help prevent 

elevated IOP and subsequent ONH damage. This concept motivated the following study titled 

“Correlation of Ocular Rigidity with Intraocular Pressure Spike After Intravitreal Injection of 

Bevacizumab in Exudative Retinal Disease”.  

This work was published in the British Journal of Ophthalmology in 2020 (523). The authors are 

Diane N. Sayah, Andrei A. Szigiato, Javier Mazzaferri, Denise Descovich, Renaud Duval, Flavio 

Rezende, Santiago Costantino and Mark R. Lesk.  
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ABSTRACT
Background/aims To evaluate the non- invasive 
measurement of ocular rigidity (OR), an important 
biomechanical property of the eye, as a predictor of 
intraocular pressure (IOP) elevation after anti- vascular 
endothelial growth factor (anti- VEGF) intravitreal 
injection (IVI).
Methods Subjects requiring IVI of anti- VEGF for a 
pre- existing retinal condition were enrolled in this 
prospective cross- sectional study. OR was assessed in 
18 eyes of 18 participants by measurement of pulsatile 
choroidal volume change using video- rate optical 
coherence tomography, and pulsatile IOP change using 
dynamic contour tonometry. IOP was measured using 
Tono- Pen XL before and immediately following the 
injection and was correlated with OR.
Results The average increase in IOP following IVI 
was 19±9 mm Hg, with a range of 7–33 mm Hg. The 
Spearman correlation coefficient between OR and IOP 
elevation following IVI was 0.796 (p<0.001), showing 
higher IOP elevation in more rigid eyes. A regression 
line was also calculated to predict the IOP spike based 
on the OR coefficient, such that IOP spike=664.17 mm 
Hg·µL×OR + 4.59 mm Hg.
Conclusion This study shows a strong positive 
correlation between OR and acute IOP elevation 
following IVI. These findings indicate that the non- 
invasive measurement of OR could be an effective tool in 
identifying patients at risk of IOP spikes following IVI.

INTRODUCTION
Intravitreal injections (IVI) with anti- vascular 
endothelial growth factor (anti- VEGF) agents are a 
common and effective treatment for a multitude of 
retinal diseases. Given that a relatively large volume 
of fluid is added into the eye, IVI can cause a signif-
icant acute intraocular pressure (IOP) elevation. 
In fact, up to a third of patients may experience 
an IOP of over 50 mm Hg immediately after anti- 
VEGF injection.1–3 Based on clinical studies, it is 
currently unknown whether IOP spikes following 
IVI contribute to the development of glaucoma or 
affect disease progression in patients with estab-
lished glaucoma. However, experimental studies 
suggest that brief but rapid IOP elevation can result 
in retinal ganglion cell injury.4 Ocular rigidity (OR) 
was previously shown to decrease with longer 
axial length (AL), increase with age and increase 

with advanced glaucoma and exudative age- related 
macular degeneration (AMD).5–8 Furthermore, 
according to finite element modelling, the most 
influential factor determining mechanical strain in 
the optic nerve head is the stiffness of the sclera.9 
To our knowledge, although increased scleral thick-
ness was shown to be associated with higher IOP 
spikes following IVI,10 the relationship between OR 
and IOP spikes following IVI has never been inves-
tigated in living human eyes.

Despite the potential relevance of OR, traditional 
techniques used for its measurement were either 
invasive or unreliable,6 and limited its assessment 
in a clinical setting. Our group has developed a 
non- invasive and direct method to measure OR in 
living human eyes.7 11 This method is based on the 
measurement of the pulsatile ocular volume change 
from video- rate optical coherence tomography 
(OCT) imaging by automated choroidal segmen-
tation, and the pulsatile IOP change using Pascal 
tonometry, to compute the OR coefficient using 
Friedenwald’s equation.12

In the current study, we applied this method 
to investigate the role of OR as a risk factor and 
predictor of acute IOP spikes in eyes that undergo 
therapeutic IVI. We hypothesise that patients with a 
higher OR measured with this technique will have 
higher IOP elevation following a fixed increase in 
ocular volume delivered by IVI.

MATERIAL AND METHODS
Eighteen adult subjects who were to receive a 
therapeutic IVI of anti- VEGF for a pre- existing 
retinal condition such as exudative AMD, vascular 
occlusion or proliferative diabetic retinopathy 
were enrolled. Subjects were excluded if they had 
corneal, lens, or media opacities that resulted in 
poor retinal OCT quality, had unsteady fixation, 
were unable to fixate a target with the contralat-
eral eye, or if segmentation algorithms did not yield 
usable data. Subjects were also excluded if they had 
prior incisional glaucoma surgery, including trab-
eculectomy or a tube shunt, vitrectomy as well as 
recent laser treatment or ocular surgery within the 
past 3 months.

During the first part of the visit, subjects under-
went a review of their medical history including 
ocular and surgical history. A complete ocular 
examination was performed, followed by measure-
ments of blood pressure, OR and additional corneal 
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Table 1 Patient characteristics at baseline
Study eye (OD/OS) 7/11
Sex (female/male) 8/10
Age (years)* 68±10
Ethnicity African- American 1

Caucasian 16
Hispanic 1

Retinal conditions Retinal vein occlusion 7
Diabetic macular oedema 3
Exudative age- related macular 
degeneration

5

Chronic central serous 
chorioretinopathy

2

Idiopathic juxtapapillary choroidal 
neovascularisation

1

No. of subjects on glaucoma medications 3
No. of subjects with observed reflux post- IVI 3
No. of previous IVI per subject* 19±15
No. of previous IVI in last 12 months per subject* 8±3
Baseline pre- IVI IOP (mm Hg)* 17±5
Measured IOP spike, <30 s post- IVI (mm Hg)* 19±9
Range of measured IOP spike (mm Hg) 7–33
Measured ocular rigidity coefficients (1/µL)* 0.022±0.010
Range of measured ocular rigidity coefficients (1/µL) 0.006–0.042
Ocular axial length (mm) 23.53±0.90
Central corneal thickness (µm)* 529±47
Corneal hysteresis (mm Hg)* 9.9±1.7
Corneal resistance factor (mm Hg)* 10.6±2.4
Previous ocular surgery
(>3 months)

Cataract extraction 5

Previous laser treatment
(>3 months)

Panretinal photocoagulation 2
Verteporfin 1

Systemic blood pressure Systolic (mm Hg)* 145±24
Diastolic (mm Hg)* 80±8

Medical history Diabetes 5
Hypertension 11
Cardiovascular disease 5
Asthma 1

Systemic medications Insulin 3
Oral hypoglycemics 5
Statins 9
Diuretic 5
ACE inhibitors 7
Blood thinners 4
Beta blockers 5
Calcium channel blockers 1

*Data is presented as: mean±SD.
ACE, angiotensin- converting enzyme; IOP, intraocular pressure; IVI, intravitreal 
injection; OD, right eye; OS, left eye.

biomechanical properties such as corneal ultrasound pachym-

etry, corneal hysteresis (CH) and corneal resistance factor (CRF) 

(Ocular Response Analyzer, Reichert Technologies, Buffalo, 

New York, USA).

Our method for measuring OR is based on the Friedenwald 

equation
12

 :

 
ln IOP

IOP0
= OR

(
V− V0

)
  

where  V− V0  is the change in ocular volume and ( IOP/IOP0
 ) represents the change in IOP. Our approach

7
 uses video- rate 

spectral domain OCT (Spectralis SD- OCT, Heidelberg Engi-

neering GmbH, Heidelberg, Germany) with enhanced depth 

imaging coupled with an automated segmentation algorithm
13

 

to measure the pulsatile ocular volume change ( V− V0 ) as well 

as dynamic contour tonometry (DCT) to measure the pulsatile 

IOP change ( IOP/IOP0 ).7 More specifically, our custom segmen-

tation algorithm enables the precise measurement of the fluc-

tuations in submacular choroidal thickness associated with the 

heart rate throughout the time- series. Our scan covers 8 mm 

of the central macula. Considering that the choroid represents 

approximately 90% of the blood flow in the eye,
14

 the pulsa-

tile ocular volume change is extrapolated from the measured 

pulsatile submacular choroidal thickness change. This is done 

using a mathematical model of the eye which accounts for AL 

(IOL Master, Carl Zeiss Meditec, Dublin, California, USA).
11

 

The ocular pulse amplitude, corresponding to the change in IOP 

between the systole and diastole, is measured with the Pascal 

tonometer (Ziemer Ophthalmic Systems AG, Port, Switzerland). 

This non- invasive methodology has been previously validated.
11

 

The method’s repeatability, both intrasession and intersession, 

was found to be good, with an intraclass correlation coefficient 

of 0.925, 95% CI (0.881 to 0.953) and 0.950, 95% CI (0.763 to 

0.990), respectively.
11

The second part of the visit took place within the same session 

and involved assessment of IOP spikes due to IVI. The pre- IVI 

IOP was measured immediately prior to asepsis and speculum 

placement with the patient in the semi- supine position using a 

portable tonometer, the Tono- Pen XL (Reichert Technologies). 

Following this, 50 µL of bevacizumab (1.25 mg) was deliv-

ered off- label by IVI through a 30G needle following standard 

clinical protocol by a retinal specialist. Immediately after the 

removal of the speculum, post- IVI IOP was measured with the 

patient remaining in the semi- supine position. The presence or 

absence of fluid reflux was recorded and estimated by the retinal 

specialist.

Descriptive statistical analysis of the participants’ base-

line demographics, as well as the correlation between OR and 

the magnitude of the IOP spike following IVI were assessed 

using SPSS (V.23). A priori sample size of 13 was calculated to 

achieve 80% power to detect a correlation of 0.7 using a two- 

sided hypothesis test with a significance level of 0.05 (G*Power 

V.3.1.9.2)
15

 based on prior findings.
11 16

A linear regression analysis was carried out to evaluate the 

association between OR and IOP spikes and enable the predic-

tion of IOP spikes following IVI from the OR coefficient for a 

given eye. The correlation coefficients between other variables 

such as CH, CRF, central corneal thickness (CCT), AL, age, 

baseline IOP and IOP spikes were also computed.

RESULTS
A description of the baseline characteristics of the 18 partici-

pants in this study is presented in table 1, including the measured 

IOP elevation and OR coefficients.

The Spearman rank correlation coefficient between OR coef-

ficients and IOP spikes measured within 30 s following the IVI 

of 50 µL of bevacizumab was r
s
=0.796 (p<0.001). A scatter 

plot comparing OR and IOP spikes is presented in figure 1. A 

significant regression equation was found with an R
2
 of 0.53. 

The equation of the regression line is: IOP spike=664.17 mm 

Hg·µL×OR + 4.59 mm Hg. These results demonstrate a strong, 

positive correlation in which eyes with greater OR tend to have 

significantly greater IOP spikes.

There was no significant correlation between IOP spikes and 

CCT (r
s
=−0.077, p=0.763), CH (r

s
=−0.111, p=0.660) and 

copyright.
 on M

ay 15, 2020 at Universite de M
ontreal. Protected by

http://bjo.bm
j.com

/
Br J O

phthalm
ol: first published as 10.1136/bjophthalm

ol-2019-315595 on 28 April 2020. Downloaded from
 



110 

 

3Sayah DN, et al. Br J Ophthalmol 2020;0:1–5. doi:10.1136/bjophthalmol-2019-315595

Clinical science

Figure 1 Linear regression plot showing a strong positive correlation 
(rs=0.796, p<0.001) between the ocular rigidity (OR) coefficient and 
the transient elevation of intraocular pressure (IOP) as measured 
immediately post intravitreal injection (IVI) of bevacizumab in 18 eyes 
from 18 subjects with pre- existing retinal conditions. A significant 
regression equation represented by the dotted line was found with 
an R2 of 0.53. The equation of the regression line calculated is IOP 
spike=664.17 mm Hg·µL×OR + 4.59 mm Hg. The green data points 
represent the three eyes with fluid reflux and the orange data points 
represent the three eyes with concomitant glaucoma respectively.

CRF (rs=−0.334, p=0.176), as well as AL (rs=0.365, p=0.136) 
and age (rs=0.039, p=0.878). Similarly, no correlation was 
found between baseline pre- IVI IOP and IOP spikes (rs=−0.315, 
p=0.203).

DISCUSSION
To our knowledge, this is the first study to establish elevated OR 
as a major risk factor for acute IOP spikes following IVI. This 
finding is consistent with the relationship described between 
delta IOP and K (OR) in the Friedenwald equation. This is 
also in agreement with findings from an experimental ex vivo 
study performed in porcine eyes showing an increased magni-
tude of IOP change due to microvolumetric change (15 µL) with 
increased tangential and radial strains in the superotemporal 
region of the sclera, suggesting larger IOP elevation in eyes with 
a stiffer sclera.16 The present study also indicates that a non- 
invasive measurement of OR can accurately predict the magni-
tude of IOP elevation after IVI.

Since scleral stiffness is the major determinant of the ocular 
globe’s rigidity, the Friedenwald equation can be approximated 
from first principles using the mechanical properties (stress–
strain relationship) of its primary constituent (collagen) and 
shape.17 Thus, OR values obtained in this study are closely 
linked to scleral stiffness and are sometimes used as a surrogate.

Twelve subjects from this study were also included in the 
validation of the method, which showed a strong correlation 
between OR coefficients obtained using our non- invasive method 
and those obtained using an invasive procedure involving IVIs.11 
Hence, we could reasonably expect to find a positive correlation 
between OR and IOP spikes. Furthermore, a rigid eye should 
lead to higher IOP elevation following IVI compared with a 
compliant eye, due to the inability of the former to expand. This 
is consistent with the results reported in our study.

Factors such as medication reflux, history of ocular surgery 
or glaucoma, as well as the tonometer used could have had an 
impact on the measured IOP spike. Mild reflux was observed 

in three subjects. A small bore- needle size (30G) was used in all 
eyes to minimise reflux through the injection site.2 The equation 
of the regression line calculated when these three subjects were 
excluded is 668.02 mm Hg·µL×OR + 5.29 mm Hg (R2=0.55). 
Three subjects were on IOP- lowering topical medications due to 
glaucoma. The equation of the regression line calculated when 
these three subjects were excluded is 696.76 mm Hg·µL×OR 
+ 3.30 mm Hg (R2=0.62). These two scenarios would result 
in little to no difference in the prediction of IOP spikes, consid-
ering its given purpose. The difference in the predicted value of 
IOP spike would be between 0 and 1.7 mm Hg over the range 
of OR when compared with the IOP spike predicted by the 
model that includes all 18 eyes. Although excluded from this 
study, as vitrectomy could alter the fluid dynamics on injection, 
we measured OR and IOP spike for one vitrectomised eye. This 
subject had the highest IOP spike, 42 mm Hg, among all partic-
ipants, despite an OR coefficient in the mid- range, of 0.0244/
µL. We suggest that IOP spikes prediction should be explored 
further in vitrectomised eyes in an extended study. Finally, we 
recognise that the TonoPen XL used in this study may under-
estimate IOP when IOP is very high compared with Goldmann 
tonometry,18 however its use has been deemed acceptable and 
more practical in similar studies.2 19 20 Despite these potential 
limitations, the technique used in this study remains reliable as 
was validated previously.11

Various studies report yields of visualisation of the choroidal–
sclera interface (CSI). The largest study carried out with the 
Spectralis SD- OCT to measure subfoveal choroidal thickness 
reported a success rate of 93% out of 3468 subjects by averaging 
100 scans and carrying out manual segmentation at specific loca-
tions along the b- scan.21 Since we carry out dynamic imaging, 
as opposed to static, and it must be faster than the heart rate 
frequency, we can average only about five scans per frame. Our 
segmentation is automated and performed along the width of 
the b- scan and must detect the subtle thickness change corre-
sponding to choroidal filling. In many cases requiring IVI the 
choroidal boundaries are less well delineated than in normal eyes. 
Furthermore, because of maculopathy some patients had inade-
quate fixation for the longer scan time required. These factors 
led to a lower yield, which was 35%. We are currently working 
on several fronts to improve this yield in challenging patients. 
These strategies include imaging away from the obstruction 
(lesion/oedema), software improvements to our segmentation 
algorithms and migrating to OCT devices with longer, better 
penetrating wavelengths and faster acquisition, for better image 
averaging. While we use a spectral domain OCT (Spectralis 
SD- OCT at 40 000 A- scans/s), we are currently adapting our 
algorithm and imaging protocol to a swept- source (SS)- OCT. 
Regardless of the relatively low yield we believe that the strong 
relationship between OR and IOP spike magnitude is valid.

For a diagnostic test to be useful it must detect a problem 
that has significant morbidity or mortality and has an effective 
treatment.22 We hereby present a method to predict large IOP 
elevations after IVI, which may increase the risk of developing 
glaucomatous optic nerve damage, one of the most common 
causes of irreversible blindness worldwide.23 Preventing loss of 
peripheral vision is of vital importance to preserve function and 
independence in patients with poor central vision, as is often 
the case in patients requiring IVI. Much like patients with estab-
lished glaucoma, those with high OR could need to be treated 
more rigorously with acute pre- treatment IOP lowering medi-
cations on injection day, chronic IOP therapy, glaucoma surgery 
to prevent glaucoma development or progression, or half- dose 
(smaller volume) injections. Post- IVI paracentesis has been 
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proposed to temper IOP spikes but has been associated with 
an increased risk of endophthalmitis.24–26 Slow release devices 
might also be advantageous because they would require less 
frequent injections.27

A recent case from our clinic illustrates the use of this inno-
vation. A male patient in the seventh decade of life presented 
to our glaucoma clinic with advanced open- angle glaucoma that 
had progressed to central islands on visual fields despite IOPs 
in the high teens. We proposed filtration surgery but found that 
he also had early proliferative diabetic retinopathy with macular 
oedema in his right eye. Was it safe to administer anti- VEGF 
IVI before filtration surgery? A large IOP spike might threaten 
his fixation. Therefore, we measured his OR and found it to 
be 0.00958 µL-1. Using the regression equation described in the 
Results section, this predicted an IOP spike of 11.0 mm Hg, 
which we considered safe. A retina colleague proceeded with the 
IVI and measured a change of IOP of 10 mm Hg immediately 
following injection.

While IOP elevations following IVI are thought to return to 
normal levels within 30–60 min,2 3 longer durations of these 
IOP spikes may occur in some eyes, particularly in those with 
existing glaucoma.2 3 In fact, with repeated IVI, subjects can 
develop chronic IOP elevation.28–31 The mechanism behind 
this is poorly understood, with multiple proposed hypotheses 
including outflow obstruction from protein aggregates and/
or silicone oil droplets as contaminants from the syringes used 
or the anti- VEGF molecules themselves.3 It remains unknown 
whether the rigidity of the eye could influence the duration of 
IOP elevations following IVI.

Despite the absence of prospective trials to show whether 
transient IOP spikes following IVI contribute to glaucomatous 
damage or not, various clinical and experimental studies have 
shown that transient increases in IOP can compress prelaminar 
tissue,32 33 alter optic nerve blood flow,34 cause axonal transport 
blockage35 and alter electroretinogram responses.36 These find-
ings suggest that IOP spikes have the potential to cause optic 
nerve damage. Recent clinical studies may support this point 
in demonstrating increased glaucoma surgery procedures in 
patients with repeated IVI.37 38

The advantages of the method we used to measure OR in this 
study include its non- invasive nature, its ease- of- use and its reli-
ability and safety compared with invasive techniques.7 11 Based 
on OCT video- rate imaging to measure the pulsatile ocular 
volume change, it could be easily implemented in a clinical setting 
where OCT is widely available. Clinics where IVI are performed 
usually are equipped with an OCT device. Some limitations to 
consider regarding this technique is the possible obstruction of 
the choroid–sclera interface by macular oedema or scarring in 
subjects with exudative retinal conditions. As discussed, imaging 
of the CSI can be improved by using an OCT with longer 
wavelengths which penetrate deeper in tissue, such as SS- OCT. 
Studies have shown that SS- OCT can minimise light scattering 
in deeper tissues of the eye, such as the choroid. This technology 
can permit CSI identification in 100% of cases according to a 
study by Copete et al.39 Another strategy that can be employed 
is to image away from the diseased region in the eye, instead of 
submacularly if the CSI visualisation is hindered or shadowed by 
disease processes. In our unpublished data, imaging at the poste-
rior pole, away from the macula, yields a similar OR coefficient 
than imaging at the macula in healthy eyes. We also found that 
CCT, CH and CRF, other parameters of the corneo- scleral shell, 
did not predict the magnitude of IOP spikes and therefore do 
not appear to be a surrogate for OR. The finding regarding CCT 
is consistent with previous investigations,10 while a pilot study 

found lower CH to be associated with elevated IOP following 
IVI.40

Finally, this study shows for the first time a strong and positive 
correlation between the OR and acute IOP spikes in eyes that 
undergo therapeutic IVI. Further research could lead the way 
for future assessment of the clinical impact of OR in a number 
of ocular diseases, leading to the development of improved 
screening and treatment protocols.
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Chapter 9 – Lower Ocular Rigidity in Myopia 

In this chapter, we will briefly present the relationship between OR and myopia. Our motivation 

is to show that the pathophysiological mechanisms governing axial myopia, a risk factor for 

glaucoma and sight-threatening disease (525), can be studied using our method. This is 

particularly relevant due to its reliability, non-invasive nature and ease-of-use, which could be 

employed to study myopia longitudinally from early childhood to adulthood. In turn, this could 

lead to novel treatments to prevent myopia progression. (Manuscript in preparation) 

Abstract 

The biomechanical properties of the sclera are thought to be an important characteristic in axial 

myopia. Longer eyes are expected to have lower rigidity due to connective tissue alterations. The 

purpose of this study is to measure ocular rigidity using a novel, non-invasive measurement 

method and to compare OR values in healthy myopic and non-myopic eyes, as well as in 

glaucomatous myopic and non-myopic eyes. Based on Friedenwald’s equation, this method 

involves video-rate OCT imaging of the choroid coupled with a novel automated segmentation 

algorithm to measure the pulsatile ocular volume change, as well as Dynamic Contour Tonometry 

to determine the ocular pulse amplitude, and thus calculate OR. Fifty-nine adults with healthy 

eyes (17 myopic eyes with axial length ≥ 25.00mm, and 42 non-myopic eyes), and 53 adults 

diagnosed with open-angle glaucoma (OAG; 25 axial myopic eyes and 28 non-myopic eyes) were 

recruited and OR measurement was carried out. A Welch one-way ANOVA with Tukey post hoc 

test was conducted to compare differences between groups. There was a significant difference 

(p<0.001) in the OR coefficients between healthy myopic eyes (OR= 0.0154 ± 0.007/μL) and 

healthy non-myopic eyes (OR = 0.0329 ± 0.013/μL). Similarly, OR was significantly lower (p=0.020) 

in glaucomatous myopic eyes (OR = 0.0189 ± 0.007/μL) than in glaucomatous non-myopic eyes 

(OR = 0.0282 ± 0.014/μL). A negative correlation between OR and AL was also found in all 112 

eyes (r=-0.475, p<0.001). This confirms that eyes with axial myopia have lower OR than non-

myopic eyes, both in healthy eyes and eyes with OAG. Future longitudinal investigations of OR 
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change over time may help elucidate the mechanisms leading to myopia progression, and 

whether low OR leads to myopia.  

Introduction 

Axial myopia is characterized by an eye that is too long for its focal length, leading to distance 

vision impairment if left uncorrected. With a global prevalence predicted to reach 50% by 2050 

(526), and an increased risk of developing sight-threatening diseases including open-angle 

glaucoma (OAG) (426, 527, 528), the pathophysiology of axial myopia warrants further 

investigation. Ocular biomechanics are thought to be involved in the development and 

progression of axial myopia. There is evidence for an inverse correlation between OR and axial 

length (AL) in the literature (23, 422). Previous reports showed thinner peripapillary sclera and 

lamina cribrosa (423), as well as scleral remodeling in elongated eyes (424). Increased scleral 

creep, suggestive of lower OR, was associated with ocular growth in induced experimental myopia 

(529). These changes in the composition of the sclera and lamina cribrosa can lead to alterations 

in the biomechanical environment in the eye, facilitating the elongation of the eye. These 

alterations can also contribute to axonal damage and glaucoma via greater IOP-induced strain in 

longer, more compliant eyes (427).  

The objective of this study is to measure OR using our clinical method and evaluate differences in 

OR values between healthy axial myopic and non-myopic eyes as well as those with concurrent 

open-angle glaucoma (OAG). Axial myopic eyes are expected to have lower rigidity due to 

connective tissue alterations. 

Methods 

This study followed the tenets of the Declaration of Helsinki and was approved by the 

Maisonneuve-Rosemont Hospital institutional review board. Informed consent was obtained 

from all participants prior to testing.  

Adult subjects with healthy eyes or with OAG were recruited in this study. A complete ocular 

examination was performed for all participants. Normal subjects had intraocular pressure (IOP) 

less than 21 mmHg, normal optic nerve appearance on fundus exam, normal visual fields and no 
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other ocular disease. Subjects with OAG had open (non-occludable) angles on gonioscopy, a 

glaucomatous optic nerve appearance, as well as repeatable structural and/or functional findings 

with optical coherence tomography (OCT; Cirrus 5000, Carl Zeiss Meditec AG, Dublin, USA) 

imaging and Humphrey visual field (VF; Zeiss Humphrey Systems, Dublin, California, USA) testing 

(SITA standard threshold 24–2 strategy). Participants were required to have clear media, steady 

fixation, and the ability to fixate a target light with the study or contralateral eye. Patients with a 

previous history of intraocular surgery (except cataract extraction) including trabeculectomy, 

tube shunt, and refractive surgery were excluded. Other exclusion criteria included secondary 

glaucoma, non-glaucomatous optic neuropathy, any retinopathy, and documented systemic 

collagen disease. OR was measured non-invasively using our previously described method (27, 

494).  

The cohort was divided into four groups (healthy axial myopic, healthy non-myopic, glaucomatous 

axial myopic, glaucomatous non-myopic) according to AL measurements and refractive error (RE). 

The spherical equivalent was considered for RE assessment. We defined the myopic groups as 

having an AL ≥ 25.00 mm and a myopic RE of ≤-0.50 diopter (D) (526, 530, 531). The RE threshold 

was set as the most commonly used definition for myopia in published prevalence studies (526, 

530). While the cut-off for pathologic axial myopia is generally defined as 26.0 mm or 26.5 mm in 

most studies, we established a lower cut-off due to recent findings suggesting higher risk of sight-

threatening complications, namely myopic maculopathy, at shorter AL values (in the 25mm 

range) (531). Non-myopic eyes were defined as having an AL < 25.00 mm and RE > -0.50 diopter 

(D). Finally, the correlation between OR and AL was computed for all subjects. 

Statistical analyses were performed using SPSS statistical software (version 23; SPSS, Inc., Chicago, 

IL). Descriptive analysis of baseline demographics was carried out and presented as the mean ± 

standard deviation. To compare OR in the four groups, and between the corresponding myopic 

and non-myopic groups, a one-way ANOVA with Tukey post-hoc test was carried out. If the 

assumption of equal variances by Levene’s Test for Equality of Variances was not respected, a 

Welch one-way ANOVA test was conducted. The Pearson correlation coefficient was then 

computed for all subjects. For all statistical tests, a p-value inferior to 0.05 was considered 

significant.  
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Results 

A total of 112 adult subjects were recruited, 59 with healthy eyes and 53 with OAG. Out of the 

healthy eyes, 17 were myopic (11 OD; 7 M) and 42 were non myopic (28 OD; 18 M), whereas 25 

were myopic (15 OD; 15 M) and 28 were non-myopic (10 OD; 13 M) in the OAG group. One eye 

per subject was examined. The baseline demographics are presented in Table 10 for all 4 groups. 

As expected, a statistically significant difference in AL, RE and ocular pulse amplitude (OPA) is 

reported between the myopic and non-myopic groups in both healthy and glaucomatous eyes. 

CCT, CH and CRF values were not discriminative between myopic and non-myopic eyes within 

healthy or glaucomatous eyes respectively.  

 Myopia 
(n=17) 

No Myopia 
(n=42) p-value 

Glaucoma 
and Myopia 

(n=25) 

Glaucoma, No 
Myopia 
(n=28) 

p-value 
All 

Groups:
p-value 

Age (years) 58±21 67±16 0.111 64±9 69±8 0.588 0.076 

RE (D) -4.38±3.53 +1.13±1.06 <0.001 -6.30±3.15 +0.93±1.09 <0.001 <0.001 

AL (mm) 25.80±0.65 23.34±0.58 <0.001 26.49±1.26 23.71±0.62 <0.001 <0.001 

Pascal-IOP 
(mmHg) 17.6±2.8 16.8±2.9 0.927 20.4±5.8 18.7±4.5 0.446 0.007 

OPA (mmHg) 2.3±0.4 3.2±1.0 0.011 2.6±1.2 3.3±1.2 0.040 0.001 

CCT (μm) 544±40 550±33 0.968 544±39 523±41 0.186 0.036 

CH (mmHg) 9.6±2.1 10.1±1.5 0.879 8.9±1.8 8.8±2.0 0.991 0.027 

CRF (mmHg) 9.9±1.8 10.1±1.6 0.991 10.0±2.0 8.9±1.6 0.124 0.038 

OR (μL-1) 0.015±0.007 0.033±0.013 <0.001 0.019±0.007 0.028±0.014 0.020 <0.001 

MD (dB) -0.06±0.25 0.04±0.25 0.999 -2.96±3.28 -4.39±4.60 0.282 <0.001 

PSD (dB) 0.17±0.70 0.23±0.57 1.000 3.66±3.18 4.45±2.94 0.572 <0.001 

Average 
RNFLt (μm) 90±11 94±12 0.826 76±10 74±10 0.899 <0.001 

Data is presented as the mean ± standard deviation where applicable. RE=Refractive error; D=Diopter; AL= Axial 
length; IOP=Intraocular pressure; OPA=Ocular pulse amplitude; CCT=Central corneal thickness; CH=Corneal 
hysteresis; CRF=Corneal resistance factor; OR=Ocular rigidity; MD=Mean defect; PSD=Pattern standard deviation; 
RNFLt= Retinal nerve fiber layer thickness.  

 Baseline characteristics of participants in the healthy axial myopic group, healthy non-

myopic group, glaucomatous myopic group and glaucomatous non-myopic group.  
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A Welch one-way ANOVA was carried out to compare the four groups, and showed statistically 

significant differences in OR between all groups (p<0.001) as shown in Figure 16. A post hoc Tukey 

test showed that OR values between healthy axial myopic eyes (OR= 0.0154 ± 0.007/μL) and 

healthy non-myopic eyes (OR = 0.0329 ± 0.013/μL) were significantly different (p<0.001). In the 

cohort of glaucomatous subjects, OR was also significantly lower (p=0.020) in the myopic eyes 

(OR = 0.0189 ± 0.007/μL) compared to the non-myopic eyes (OR = 0.0282 ± 0.014/μL). 

A negative correlation was also found between OR and AL (r=-0.475, p<0.001) in all 112 eyes, as 

displayed in Figure 17.  

 

 

Figure 16. –  Ocular rigidity differences between healthy axial myopic (0.015±0.007/μL) and non-

myopic (0.033±0.013/μL) eyes (p<0.001), as well as glaucomatous axial myopic 

(0.0189±0.007/μL) and non-myopic eyes (0.0282±0.014/μL) (p=0.020). Data is presented as 

mean of OR coefficients and 95% confidence intervals. 
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Figure 17. –  Linear regression plot showing a moderate positive correlation (r = -0.475, p < 0.001) 

between the ocular rigidity (OR) coefficient and ocular axial length (AL) in 112 eyes. A 

significant regression equation was found: AL = 25.95mm – 55.62mm·µL ´ OR, R2 = 0.23. 

Discussion 

This brief report confirms previous findings and shows that OR is lower in axial myopia, both in 

healthy eyes and those with concurrent OAG. Using a direct, non-invasive and readily usable 

method, differences between axial myopic and non-myopic eyes can be detected. This is relevant 

for three reasons: 1) this further confirms the validity of our method, as it can detect OR 

differences between these two groups, 2) this confirms that the eye is more compliant in axial 

myopia, which may help explain the increased risk of developing OAG and myopic chorioretinal 

degeneration (426, 527, 528), and 3) the method used to measure OR is direct, non-invasive, uses 

readily available equipment, and can thus be used to study OR in myopia in large-scale and 

longitudinal studies. In an era where efforts are deployed to halt the progression of axial myopia 

and reduce its potential for vision loss, investigating the role of low OR in the elongation of the 

eye could be particularly useful, particularly as novel treatments to alter the stiffness of the sclera 

are being developed (446, 532, 533).  



 

Chapter 10 – Discussion 

10.1 Synthesis 

In this thesis work, the validity of a novel optical method to measure OR was improved and 

demonstrated and the relevance of OR in ocular diseases, particularly OAG was investigated.     

10.1.1 Method Validation and Improvement 

Until recently, there was no reliable, non-invasive clinical method to measure OR directly in living 

human eyes. Such a method has been developed recently, and published in 2015 (27). Based on 

the measurements of ΔV from video-rate OCT imaging coupled with automated choroidal 

segmentation, and of the pulsatile IOP change using Pascal tonometry, the OR coefficient can be 

computed using Friedenwald's equation. An improved mathematical model was proposed to 

extrapolate ΔV from submacular ΔCT that would account for the peripheral shape of the choroid, 

contrary to the previous model that was oversimplified (494). This new model remains simple 

enough to be used in a clinical setting as it uses easily measurable properties of the eye. The 

measurement of AL and ACD was initially proposed to be carried out in future iterations to 

determine the diameter of the spheres used in this model. With the onset of newer biometry 

devices, it is recommended that an additional parameter, the lens thickness (LT), be measured to 

further improve this model’s accuracy. Thus, the diameter of the inner sphere, or ALadj, would be 

determined as the difference between the measured AL and the effective lens position 

(ACD+0.5*LT), rendering this a more robust measurement when phakic status is considered. One 

caveat of this model remains: it considers the globe to be spherical, and should not be applied in 

eyes with a staphyloma or other shape irregularities. Despite this limitation, implications for the 

development of such a method are significant. This non-invasive method was validated by 

comparing OR coefficients obtained with those obtained using an invasive procedure involving 

intravitreal injections in the same eyes. The new mathematical model yielded OR values which 

are closer to those obtained using the invasive procedure and previously reported techniques. A 

strong correlation between the OR coefficients using both methods was found, with a Spearman 

coefficient of 0.853 (p < 0.001). Both intrasession and intersession repeatability were assessed, 
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with an intraclass correlation coefficient of 0.925, 95% CI [0.881, 0.953] and 0.950, 95% CI [0.763, 

0.990] respectively. This confirmed the validity and good repeatability of OR measurements using 

our non-invasive clinical method.  

By validating the method, a more precise estimation of ΔV was enabled. A question remains: can 

one estimate the pulsatile ocular volume from the pulsatile choroidal thickness change? 

Considering that the choroid accounts for about 90% of the total ocular blood flow, it can be 

assumed to be a fair approximation. Furthermore, if the AH turnover rate and ΔV are considered, 

we realize that the former is very small in comparison with the latter. Assuming a heart rate of 

1Hz, while the AH turnover rate is on average 2.4 μl/min, the ΔV per minute would be 438 μl/min 

(the average ΔV is 7.3 μl per heartbeat, according to our published findings (494)). We can thus 

effectively use video-rate OCT imaging coupled with our segmentation algorithm to reliably and 

directly measure ΔV, a parameter related to choroidal blood flow.    

The development of this optical method fills a big gap that once limited the effective study of 

ocular biomechanics in vivo. Previously, the interpretation of OR results with non-invasive 

measurement techniques had to be done carefully, and invasive methods were not suitable for 

large scale testing. The development of an accurate and non-invasive instrument to measure OR 

can now permit large scale and longitudinal studies to be carried out, to effectively determine 

whether low or high OR predispose to OAG, and how OR changes over the course of the disease. 

We speculate that ultimately this method could become a new diagnostic tool for assessing and 

predicting the progression of glaucomatous optic neuropathy, myopia and other diseases.  

10.1.2 Relevance of Ocular Rigidity in Disease 

We investigated the relevance of OR in healthy and diseased eyes, including OAG and axial 

myopia, as well as in preventing glaucoma in patients with exudative retinal diseases.   

First, it was demonstrated, for the first time, that lower OR is a risk factor for neuro-retinal 

glaucomatous damage. In a cohort of subjects with healthy eyes, suspect discs or primary open-

angle glaucoma, a modest but positive correlation between OR and structural OCT-based 

parameters was found. More specifically, this means that a more compliant eye is associated with 

thinner GCC and RNFL. Furthermore, the correlations obtained between OR and structural 
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damage parameters were comparable to those obtained with recognized risk factors such as 

Tmax, CH, CRF and CCT. To investigate whether OR plays a greater role in certain subgroups of 

glaucoma patients, a pilot study looking at differences between vasospastic and atherosclerotic 

patients was carried out. A strong correlation was reported between low OR and glaucomatous 

damage in patients with concurrent vasospasticity, compared with those with ischemic vascular 

disease. Despite some limitations including a small sample size and the use of a questionnaire 

instead of objective testing to establish the presence of vasospasticity, the results of this pilot 

study seem to confirm a greater susceptibility to glaucoma due to ocular biomechanical 

properties in vasospastic patients. This corroborates previous findings (144, 145) and may also 

translate to an increased benefit for therapeutic IOP-lowering in vasospastic patients, especially 

those with lower OR, in the clinical management of glaucoma.   

Then, we aimed to measure OR and investigate its relationship with corneal biomechanical 

parameters including CH, CRF and CCT in both healthy and glaucomatous eyes. We showed no 

significant correlation between OR and CCT, no correlation between CH and OR after adjusting 

for confounding variables, and a weak adjusted correlation between CRF and OR in glaucomatous 

eyes. This is important as it indicates that there is limited association between the biomechanical 

properties of the cornea and those of the entire ocular globe, and that corneal biomechanical 

parameters are not a surrogate measurement for overall OR. 

Always in an effort to prevent glaucomatous damage, we developed a model to predict the 

magnitude of IOP spikes following therapeutic intravitreal injections of bevacizumab from the OR 

coefficient in patients with exudative retinal diseases. We showed that 

IOP spikes = 699.94 mmHg·µL ´ OR + 4.92 mmHg, and that IOP spikes and OR are strongly 

correlated (rs=0.758, p<0.001). For the first time, this study showed that higher IOP elevations 

occur in more rigid eyes. We show once again that corneal biomechanical parameters do not 

appear to be a surrogate for OR, as they did not predict the magnitude of IOP spikes. In addition, 

the findings of our study indicate that the non-invasive measurement of OR could be an effective 

tool in identifying patients at risk of IOP spikes following IVI in a clinical setting. We discussed 

various strategies to improve the visualization of the CSI, and thus the yield of our method in eyes 

with exudative retinal diseases. The largest study carried out with the Spectralis SD-OCT to 
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measure subfoveal choroidal thickness reported a success rate of 93% out of 3468 subjects by 

averaging 100 scans and carrying out manual segmentation at specific locations along the b-scan 

(534). Since our method involves dynamic imaging, as opposed to static, that must be faster than 

the heart rate frequency, we only average 5 scans per frame. Our segmentation is automated and 

performed along the width of the b-scan and must detect the subtle thickness change 

corresponding to choroidal filling. We are currently working on several fronts to improve this yield 

in challenging patients. These strategies include imaging away from the obstruction 

(lesion/edema), software improvements to our segmentation algorithms, and migrating to swept-

source OCT devices with longer, better penetrating wavelengths and faster acquisition, for better 

image averaging.  

Finally, we were able to confirm OR differences between healthy non-myopic (OR = 0.033 ± 

0.013/μL) and axial myopic (OR= 0.015 ± 0.007/μL) eyes, as well as between glaucomatous non-

myopic (OR = 0.0282 ± 0.014/μL) and myopic eyes (OR = 0.0189 ± 0.007/μL). A negative 

correlation between OR and AL (r=-0.475, p<0.001) was also demonstrated. By its nature and ease 

of use, this non-invasive methodology could be used to measure OR and investigate its role in 

myopia and glaucoma progression in large scale, longitudinal studies.  

Although much remains to be investigated, our findings bring some light unto the 

pathophysiology of ocular diseases, particularly glaucoma. The biomechanical paradigm of 

glaucoma stipulates that IOP produces stress and strain within ocular tissues which ultimately 

lead to RGC damage (13). While the ONH’s response has been found to depend on eye-specific 

geometrical and material properties, it is interesting that finite element models found the 

stiffness of the sclera to be the most influential property on the biomechanical response of the 

ONH to IOP. We now know that low OR is correlated with glaucomatous damage, almost as well 

as IOP (Tmax). This may favor the theory that OR is lower in early glaucoma, engendering axonal 

stretching and damage, and that OR increases in the later stages of the disease.  

10.2 Future Work 

Despite the tremendous progress that has been achieved in understanding how biomechanical 

properties of the eye are critical in glaucoma, the pathophysiological mechanisms leading to 
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axonal degeneration in this blinding disease remain unclear. Our reliable, non-invasive OR 

measurement method will help us to better understand whether having a low or high OR suggests 

a predisposition for POAG or whether it simply reflects a change caused by the condition. A major 

obstacle in these studies is that OR seems to become more rigid both with aging and as glaucoma 

becomes more advanced. These factors can obscure the influence of low ocular rigidity when a 

heterogeneous population is studied. Overcoming these obstacles would require a long 

prospective study of early glaucoma patients. We will also need to evaluate the effect of 

numerous factors on OR, including medication, ethnic origin and cardiovascular disease. The idea 

that perhaps the rigidity of the eye can modulate the amount of blood pumped into the eye (ΔV), 

as opposed to their strong correlation being solely based on the use of Friedenwald’s equation to 

compute OR from ΔV, is also intriguing and will need to be assessed.    

To provide a complete picture of the optic nerve’s biomechanical responses in glaucoma, we will 

need to evaluate the interplay between scleral and laminar stiffness. Most attempts to study LC 

compliance in vivo measure laminar displacement with IOP change (349, 468, 469, 471, 472, 485, 

486, 535) or pulsatility (27, 536, 537). While early studies used scanning laser ophthalmoscopy to 

measure mean cup depth, IOP-induced deformation of the prelaminar neural tissue was not 

found to be a good surrogate for the deformation of the LC (401). Improved imaging methods 

such as OCT are now used for the direct visualization of the LC deeper in the ONH tissue (538). 

While this remains a challenge, coupling the laminar biomechanical properties with OR 

measurements in a same eye would be ideal to understand how RGC axonal damage is mediated 

by scleral and laminar interactions. We think that perhaps glaucoma predisposition occurs from 

a mismatch between scleral and laminar stiffness. However, this hypothesis remains to be fully 

assessed.  

We think that the integration of measured OR in biomechanical modeling could be useful to 

evaluate the interaction between scleral and laminar stiffness. While numerical models most 

often base scleral properties on data obtained ex vivo, our method would enable the inclusion of 

OR into these models. This has the potential to improve not only our understanding of ocular 

biomechanics’ role in glaucoma, but also of permitting the customization of these models for live 

patients’ eyes.  
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Perhaps the measurement of OR would also help predict the progression of OAG in patients, 

hence giving clinicians the ability to identify which patients will require more aggressive 

treatment. Currently, the only evidence-based treatment to prevent the progression of OAG is to 

lower IOP, regardless of baseline IOP (45-48). This supports the importance of biomechanics in 

OAG. IOP reduction can be carried out using pharmaceuticals, laser trabeculoplasty, surgical 

procedures, or a combination of these methods. However, current therapeutic options to lower 

IOP may also bring forth changes in the biomechanical properties of the corneoscleral shell (18, 

357, 419). Commonly used hypotensive drugs may have an impact on OR. On the other hand, 

while studies unequivocally show the benefit of IOP-lowering therapy in slowing structural and 

functional loss in glaucoma, this does not always halt the progression of the disease. Hence, the 

prevention and treatment of glaucoma remain an unsolved problem. This has fueled the 

development of neuroprotective treatments which do not rely on IOP reduction. Several 

experiments have shown some promise in protecting RGC following injury (539-545). One of them 

demonstrated that human recombinant insulin administered as eye drops could regenerate RGCs 

in experimental glaucoma (546).  

Given that the biomechanical properties of the sclera and LC are involved in axonal damage in 

glaucoma, altering these properties may also protect against the disease. Indeed, the study of OR 

could lead to new avenues of therapy for glaucoma. We believe that our method could be 

extended to animal models, and that its use to measure OR in experimental studies could be 

useful in drug development. Attempts to alter the stiffness of ocular tissues to prevent initial RGC 

injury have been carried out (547). Potential therapeutic approaches include targeting the matrix 

metallo-proteinases which modify collagen stiffness, or UV-crosslinking of collagen as is currently 

performed for corneal ectasias (548) and attempted in the sclera (446, 532, 533). Of course, a 

central question to this treatment option remains: is a stiffer or a more compliant sclera 

protective against IOP-induced stress and strain? We believe that this thesis work has brought us 

closer to answering this question.  
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