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Résumé 

La perception d’un mouvement biologique correspond à l’aptitude à recueillir des 

informations (comme par exemple, le type d’activité) issues d’un objet animé en mouvement à 

partir d’indices visuels restreints. Cette méthode a été élaborée et instaurée par Johansson en 

1973, à l’aide de simples points lumineux placés sur des individus, à des endroits stratégiques 

de leurs articulations. Il a été démontré que la perception, ou reconnaissance, du mouvement 

biologique joue un rôle déterminant dans des activités cruciales pour la survie et la vie sociale 

des humains et des primates. Par conséquent, l’étude de l’analyse visuelle de l’action chez 

l’Homme a retenu l’attention des scientifiques pendant plusieurs décennies. Ces études sont 

essentiellement axées sur informations cinématiques en provenance de différents mouvements 

(comme le type d’activité ou les états émotionnels), le rôle moteur dans la perception des actions 

ainsi que les mécanismes sous-jacents et les substrats neurobiologiques associés. 

Ces derniers constituent le principal centre d’intérêt de la présente étude, dans laquelle 

nous proposons un nouveau modèle descriptif de simulation bayésienne avec minimisation du 

risque. Ce modèle est capable de distinguer la direction d’un ballon à partir d’un mouvement 

biologique complexe correspondant à un tir de soccer. 

Ce modèle de simulation est inspiré de précédents modèles, neurophysiologiquement 

possibles, de la perception du mouvement biologique ainsi que de récentes études. De ce fait, le 

modèle présenté ici ne s’intéresse qu’à la voie dorsale qui traite les informations visuelles 

relatives au mouvement, conformément à la théorie des deux voies visuelles. Les stimuli visuels 

utilisés, quant à eux, proviennent d’une précédente étude psychophysique menée dans notre 

laboratoire chez des athlètes. En utilisant les données psychophysiques de cette étude antérieure 
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et en ajustant une série de paramètres, le modèle proposé a été capable de simuler la fonction 

psychométrique ainsi que le temps de réaction moyen mesurés expérimentalement chez les 

athlètes.  

Bien qu’il ait été établi que le système visuel intègre de manière optimale l’ensemble des 

indices visuels pendant le processus de prise de décision, les résultats obtenus sont en lien avec 

l’hypothèse selon laquelle les indices de mouvement sont plus importants que la forme 

dynamique dans le traitement des informations relatives au mouvement. 

Les simulations étant concluantes, le présent modèle permet non seulement de mieux 

comprendre le sujet en question, mais s’avère également prometteur pour le secteur de 

l’industrie. Il permettrait, par exemple, de prédire l’impact des distorsions optiques, induites par 

la conception de verres progressifs, sur la prise de décision chez l’Homme. 

Mots-clés : Mouvement biologique, Bayésien, Voie dorsale, Modèle de simulation 

hiérarchique, Fonction psychométrique, Temps de réaction 
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Abstract 

The ability to recover information (e.g., identity or type of activity) about a moving 

living object from a sparse input is known as Biological Motion perception. This sparse input 

has been created and introduced by Johansson in 1973, using only light points placed on an  

individual's strategic joints. Biological motion perception/recognition proves to play a 

significant role in activities that are critical to the survival and social life of humans and 

primates.  In this regard, the study of visual analysis of human action had the attention of 

scientists for decades. These studies are mainly focused on: kinematics information of the 

different movements (such as type of activity, emotional states), motor role in the perception of 

actions and underlying mechanisms, and associated neurobiological substrates. 

The latter being the main focus of the present study, a new descriptive risk-averse 

Bayesian simulation model, capable of discerning the ball’s direction from a set of complex 

biological motion soccer-kick stimuli is proposed. 

Inspired by the previous, neurophysiologically plausible, biological motion perception 

models and recent studies, the simulation model only represents the dorsal pathway as a motion 

information processing section of the visual system according to the two-stream theory, while 

the stimuli used have been obtained from a previous psychophysical study on athletes. 

Moreover, using the psychophysical data from the same study and tuning a set of parameters, 

the model could successfully simulate the psychometric function and average reaction time of 

the athlete participants of the aforementioned study. 
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Although it is established that the visual system optimally integrates all available visual 

cues in the decision-making process, the results conform to the speculations favouring motion 

cue importance over dynamic form by only depending on motion information processing. 

As a functioning simulator, the present simulation model not only introduces some 

insight into the subject at hand but also shows promise for industry use. For example, predicting 

the impact of the lens-induced distortions, caused by various lens designs, on human decision-

making. 

Keywords : Biological motion, Bayesian, Dorsal pathway, Hierarchical simulation model, 

Psychometric function, Reaction time 
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Introduction 

Early Inspirations for Computational Brain Models 

In 1973 Alan Newell argued that the scientific trend in the field of psychology and 

cognitive science must reach beyond mere reductionism. Despite all functional aspects of 

reductionism, he believed that endeavours should lead to a unified knowledge integrated into a 

unified human-information processing model that could perform generalized tasks and could 

explain the exploitation and the synergy of the brain’s sub-functions (Kriegeskorte & Douglas, 

2018; Newell, 1994). 

On the other hand, the advent of ground-breaking imaging techniques like fMRI gave 

rise to the field of cognitive neuroscience, which succeeded in mapping the global functional 

layout of the brain, initially by associating task-related activations to the brain regions.  

Despite its high importance, one could not discover the related cognitive mechanism and 

subfunctions of the brain using such experimental manipulations in imaging. The reason is 

implicit in the reverse-inference problem which states that, since a variety of processes could 

be employed in the brain to accomplish a particular task, one could not infer the underlying 

cognitive processes based on an experimental manipulation or, in simple words, there is more 

than one cause for the same effect (Poldrack, 2006). So, no matter how advanced or high 

resolution the brain maps are, they could not unveil the underlying computational mechanisms 

due to the nature of the reverse-inference problem. 

Ultimately, a computational brain model could be envisioned as a model made up of 

biologically plausible components, which perform complicated cognitive tasks to re-enact 

behavior while using data from cognitive science or psychophysical experiments as criteria to 

corroborate, reject or fine-tune its foundations and functions. 

How to Tackle the Problem of Computational Modeling? 

Marr introduced the notion of levels of analysis, stating that the analysis (?) of a complex 

system should be conducted at different levels: computational, algorithmic and at an 

implementation level. Also, Marr believed that one should not proceed to a higher (?) level of 

analysis unless the system has been characterized at its introductory level. 
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 At the computational level, the concern is focused on the function of the system 

(definition of the task) and why it is necessary to execute such a function or performance (the 

goal of computation). Then, at the algorithmic or representational level, one must investigate 

how the system executes what it executes, in other words, how inputs are being represented and 

then manipulated to the outputs. Furthermore, at the implementation level, the question is how 

to materialize what we learned on the algorithmic level to replicate the function of the system 

(Kriegeskorte & Douglas, 2018; Marr & Poggio, 1976).  

Generally, Marr’s taxonomy provided a robust framework for intuitively describing 

models of perception and cognition. This is because, first, the insights from a higher level keep 

the researcher from pursuing redundant questions on lower levels and, second, studying the 

system on all levels in this way embodies the connection between experimental and theoretical 

findings in neuroscience (Poggio, 2012).  

Subsequently, Poggio, the coauthor of the original hypothesis, made an amendment to 

the tri-level manifesto of the late Marr, arguing that to understand and be able to describe how 

an organism learns from its experience in the real world might be even more critical and 

insightful than the characterization of what that organism has learned in detail. Therefore, he 

proposed a new level to be added above the computational level, called learning (Poggio, 2012). 

 

Figure 1-1: Marr's levels of analysis (Commons, 2018) 
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Implementation Level  

In order to create a realistic neural code from this viewpoint, one must consider the fact 

that neurons work together. So, to discover a neural code close to realism means to reveal how 

these neurons co-function. Observations of stereotyped patterns across the cortex which lead to 

the theory of repeated motifs of cortical microcircuits (Creutzfeldt, 1977) inspired some models 

that tried to explain the dynamics of a population of neurons, namely, mean field and neural 

mass models which were, in fact, systems of ordinary differential equations (Coombes, 2010).  

One of the more recent and more realistic neural-population dynamic models of this kind 

is the canonical microcircuit model that incorporates more details such as local recurrences in 

its dynamic (Bastos et al., 2012).  

One common exciting fact about all these models, from the most simple to the most 

complex, is the importance of the balance of inhibition and excitation between neurons which 

appeared to be a theme in the more recent studies, suggesting that an efficient neural code 

essentially requires a tight excitation and inhibition balance (Denève & Machens, 2016).  

However population-dynamics models are not showing much promise when it comes to 

explaining the interactions between cortical regions. Therefore, neuroscience resorts to 

connectivity models such as structural connectivity and functional connectivity models from 

which the graph-theoretic measures could be generated using thresholding, which shows the 

connection hubs between different regions of the brain. However, such models can not include 

latencies as well as indirect connectivities between brain regions (Sporns, 2007). 

Finally, effective connectivity methods are biologically plausible; they take latencies and 

indirect inter-regional connections into account. The idea is that one biophysical model like the 

canonical microcircuit and one measurement model like lead field model (if we are dealing with 

EEG data) is being assigned to each region under investigation, and from that a wide range of 

dynamics in EEG, fMRI and other forms of data could be described or generated. Nonetheless, 

they are built on mean overall activations of the regions and generally are not suitable to perform 

actual cognitive tasks (Stephan & Friston, 2010). 

 

Representational and Algorithm Level.  

While the traditional analyses are focused on the change in the overall activity of a region 

throughout a task, representational models seek to explain how brain activity patterns are related 
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to cognitive processes, responses or even stimuli. In other words, the objective is how neurons 

represent and process the information. In that regard encoding and decoding models exist: 

encoding models use the features from the stimuli to predict the brain responses, whereas 

decoding models try to predict the aspects of the stimuli from brain activation patterns. Other 

than stimulus reconstruction, a decoding model could contribute to understanding the 

representational content of a fine grain pattern or shed light on which areas between task and 

response contain mutual information (Diedrichsen & Kriegeskorte, 2017). 

Moreover, algorithm-based models like, neural network models, reinforcement learning, 

Bayesian models also belong to this level of analysis. Neural networks have been used as brain 

computational models in recent years to explain or predict human behaviour and brain activity 

data and to perform high-level tasks (Kriegeskorte, 2015).  The convolutional recurrent network 

which incorporated long-range connections into its architecture inspired by structural 

connectivities in the brain to model object recognition in the visual system (Nayebi et al., 2018), 

and canonical microcircuit based models within Bayesian framework in the work of (Moran, 

Pinotsis, & Friston, 2013) are two more recent examples. 

 

Modeling Circuit Mechanisms and Neural Dynamics of Decision-making 

Decision Making as a Proof of Life   

Biologists make the assertion that “life is irritable.” Therefore, an entity is considered a 

living organism as long as it creates a purposeful response to the environment’s stress that 

impacts it. One thoughtful, resolute response to a situation indeed entails the concept of decision 

making. According to this view, the act of decision making is one common thing among all 

living things (Dobransky, 1999). 

Unlike a rock that does nothing actively in response to its surroundings, a frog decides 

to hop away from the predator, a tree grows its branches towards light and not the shade, and 

these are all decisions made in response to what presented by the environment. On the human 

level, decisions are what renders each person’s identity without equal on earth and that identity 

comes from nothing but the sum of all and every single decision ever made until that time point 

by that person (Dobransky, 1999).  



 

22 

The above could shed some light on the importance of decisions and, consequently, their 

mechanisms in every aspect of the lives of living organisms. 

 

There Will Be Uncertainty   

Decision-making could be viewed as an act of finding a solution to a problem (presented 

by the environment). The solution has to be satisfactory or even better: optimal. Such a process 

could be based on the agent’s knowledge of explicit or tacit nature, while the result would be 

rational or irrational (Brockmann & Anthony, 2002). Furthermore, finding a solution could be 

construed as a simple act of choosing an alternative among multiple alternatives. Reality dictates 

that different circumstances could lead to different results and, the more of them there are, the 

less certain would the agent be about the outcomes. So, one could say that the nature of the 

events in our universe begets uncertainty in making a decision, and that is why choice under 

uncertainty is the core of decision theory. 

Decision theory dates back to the 17th century when Pascal introduced the notion of 

expected value as a criterion for making a decision in the sense that, by knowing the value of 

each outcome and its probability and by multiplying these two numbers, one has the expected 

value of each result and could simply choose the one with the highest value as the winning 

alternative. In the following century, Bernoulli, using the St. Petersburg Paradox, argued that 

such a solution to the problem of decision making is suboptimal and, to resolve this conundrum, 

he introduced the expected utility hypothesis which asserts that only counting on expected value 

would not suffice and other factors like the agent’s wealth, the diminishing marginal benefit and 

the cost of entering the game must be taken into consideration in the form of one utility function. 

Thereupon, the agent could make an optimal decision (Schoemaker, 1982). 

The resurfacing of the Bayesian probability theory in the 20th century extended the 

capacities of the expected utility theory and “expected utility maximization” was able to explain 

some rational behaviours, (Von Neumann, Morgenstern, & Kuhn, 2007). Later, Maurice Allais 

and Daniel Ellsberg demonstrated systematic deviation from expected-utility maximization in 

many human behaviors. After that, the prospect theory renewed the experimental economic 

behavior studies, introducing three distinct regularities in human decision making (Allais & 

Hagen, 2013): 

1. Losses appear larger than gains 
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2. The agent has more focus on changes in the utility rather than the actual utilities 

3. The initial piece of information offered to the agent at the beginning of the 

process critically affects its estimation of subjective probabilities 

Ultimately, it is safe to say that the process of decision making is a statistical 

phenomenon and any effort to explain or model such a process must indeed capture its essence 

of randomness. 

 

Brain: Our Statistical Decision-Making Machine   

So far, we believe that our nervous system, with the brain as its chief, is in charge of the 

decisions that we make. Even though establishing decision-making as a statistical process does 

not entail that decision-making happens in the same fashion in the brain, a wide range of 

evidence and the hypotheses built upon it consolidates the idea that the brain is, in fact, a 

statistical computation machine. For instance, using the logarithm of the likelihood ratio of 

alternatives as a single quantity that could incorporate many aspects of a statistical decision 

variable over time, researchers have proposed neural computations that could explain the 

categorical decisions about sensory stimuli and their substrata in the brain based on 

electrophysiological studies (Gold & Shadlen, 2001, 2007). 

As another example, one recent study suggests that the feeling that one gets after making 

any decision is called “confidence” in the decision. The results indicate that despite the 

subjective essence of this notion of confidence, as a matter of fact, it depends on objective 

statistical calculations (Sanders, Hangya, & Kepecs, 2016). 

These are just two primary examples of how the neural computations taking place in the 

brain are parallel to statistical calculations. Therefore, not only that uncertainty is a significant 

natural element embedded in the decision-making process but, also, the agent, being the brain, 

calculates probabilities to achieve a final decision. Considering these notions, the path to model 

the decision making on any level is clearer.  However, to make a good start, one should examine 

the process on a deeper level. 

More Practical Definition of Decision-Making   

When it comes to defining the process of decision-making, everyone automatically 

recalls only the act of choosing, but this process in living creatures in its entirety is a concept 

beyond that. A good explanation of the organic process of decision-making is: forming a 
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judgment about an issue of certain difficulty under various conditions of exigency and risk. In 

other words, the decision-maker happens to make the right decision about an identical problem 

for a different range of urgency and risk situations. For example, one has to cross a highway 

with fast-moving cars while being chased by wild dogs or has to pass the very same road with 

the same fast cars being rewarded for the most nimble performance at its best convenience. 

  Moreover, a long history of behavioral studies corroborates this intuitive notion that  

decisions are less accurate when conditions side with speed and are more accurate when they 

favour accuracy, also referred to as speed-accuracy trade-off (SAT)(Fitts, 1966; Standage, 

Blohm, & Dorris, 2014; Wickelgren, 1977). At the same time, there is often the element of risk 

involved in every quotidian decision and, not surprisingly, has been a matter of investigation in 

a whole diverse spectrum of subjects from cognitive studies to neuro-economics (Braun, 

Nagengast, & Wolpert, 2011; Dayan & Niv, 2008; Nagengast, Braun, & Wolpert, 2010; Niv, 

Edlund, Dayan, & O'Doherty, 2012; Shen, Tobia, Sommer, & Obermayer, 2014). 

The more elaborate the definition is, the clearer are the features that need to be addressed 

by proposed models. It also shows what would be the next step towards a more general model 

beyond what already exists. 

Having a rather good definition of the decision-making process facilitates discussion of 

the ways to model it. First, at the representational level and from there, we could gradually 

proceed to the implementation level. 

 

Modeling of Decision Making   

Given levels of abstraction in modeling, models of decision making are accordingly 

categorized into algorithmic (representational) and implementation levels (Marr, 1982). 

Intuitively, all proposed models always fall somewhere between these two ends of the modeling 

spectrum (Standage et al., 2014). Moreover, interestingly, analytic studies demonstrate that 

under certain conditions and assumptions, implementation-level models could be deemed 

equivalent to algorithmic models, which provides a massive degree of flexibility when it comes 

to having a neural code (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006). 

The most extensively adhered-to hypothesis in decision making is the bounded 

integration framework. According to this framework, the decision-making agent integrates the 

available noisy evidence of different alternatives in various specific fashions until the 
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aggregating total meets a criterion level. The aggregating amount is referred to as a decision 

variable, while the criterion level is referred to as bound. A higher bound allows for a longer 

time of evidence integration, which could lead to more accurate decisions due to more 

information. More precisely, integration low-pass filtering quality helps with averaging the 

accumulating evidence in the presence of noise either in the neural processes or the evidence 

itself. So, clearly the more prolonged the integration time, the better the average and the higher 

the chance of accurate decision (Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis, 2010; 

Ratcliff & McKoon, 2008; P. L. Smith & Ratcliff, 2004; Standage et al., 2014). 

It was mentioned previously that the integration of evidence from alternatives by the 

model could be conducted in different fashions and that is one ground on which the families of 

bounded integration algorithmic models are categorized;  

• Race models: when the evidence of each alternative is integrated independently from 

the others 

• Drift diffusion models (DDM): when the evidence for each choice serves as evidence 

against the other (two alternative tasks) (Fig 1-2).  

• Competing accumulator models: considered as arbitration between models above; this 

time, each decision variable associated with its respective alternative gets subtracted by 

other weighted decision variables. 

Only by changing the weights in Competing accumulator models, one could transition from 

pure race models to absolute DDMs. More importantly, this class of models incorporates multi 

alternative tasks while it serves as a gateway where the algorithmic level could be interpreted 

into implementation level (Standage et al., 2014). 

It is beneficial to emphasize several points before moving further with the bounded 

integration modeling at the implementation level: Firstly, the decision variable is not necessarily 

made up of the input associated with evidence, and, in reality, there exist other inputs besides 

evidence. For example, inputs that modulate prior probabilities of the evidence. This notion 

elucidates the distinction between the decision variable and the amount of integrated modulated 

evidence, albeit the implications in defining the bounded integration framework in which 

evidence of an alternative and the decision variable seemed interchangeable (Standage et al., 

2014); Secondly, it was mentioned that the integration helps with noise reduction but, in reality, 



 

26 

noise is not always white. In other words, the autocorrelation of the noise signal, in reality, is 

not zero and there would be a correlation time, that could only mean that the benefits of 

integration depend on the timescale of noise correlations (Standage et al., 2014). Finally, 

although integration operation pertains to the continuous-time domain, for simplicity here, 

accumulation of evidence in discrete time is being referred to as integration.  

 

 

 

Figure01-2: Example graph of accumulation of evidence in a Drift-Diffusion Model, with a 

source at 100% noise (Commons, 2017) 

 

Now that some light has been shed on the body of work trying to characterize the 

computations underlying decision making (Ratcliff & McKoon, 2008; P. L. Smith & Ratcliff, 

2004), the leading existing hypotheses on identification of neural correlates of these 

computations may be examined further  (Gold & Shadlen, 2007; Kable & Glimcher, 2009; 

Schall, 2001). 

 



 

27 

Neural Correlates of Decision Making 

Signal Detection Theory and Sequential Analysis  

It has been highlighted above that multiple pieces of evidence shall come together in 

time, for an agent, in order to pick an alternative. This could be all substantiated within 

sequential analysis as an extension to signal detection theory. According to signal detection 

theory, to infer whether the signal is present or not makes up two hypotheses: ℎ1, the signal is 

present, and  ℎ2, the signal is not present. Now, evidence 𝑒 bears on the likelihood of each  ℎ1 

and ℎ2 to be true. Likelihood of ℎ1 states how likely it is that the ℎ1is true, given 𝑒, (𝑃(ℎ1|𝑒)).  

The good news is that, in order to decide which hypothesis is true, we do not necessarily 

need the exact level of likelihood, but that only the ratio of the two likelihoods, 𝐿𝑅, would 

suffice to come up with a decision (Gold & Shadlen, 2001, 2007).  

(1.1)                                                     𝐿𝑅1,2|𝑒 =  
𝑃(ℎ1|𝑒)

𝑃(ℎ2|𝑒)
                                 

Therefore, if 𝐿𝑅1,2|𝑒 > 1 , the agent would decide that the signal is present and it is not present, 

if the other way around (in case 𝐿𝑅1,2|𝑒 = 1, it will randomly pick one of the hypotheses).  

Now, if there exists any knowledge on the likelihood of the events prior to the presence 

of evidence or, in general, any external factor that affects the likelihoods, it is best to adjust the 

previous formula into a general one (sequential analysis formalization) capable of incorporating 

such factors.  Therefore, the decision goes to ℎ1if (Gold & Shadlen, 2001, 2007): 

(1.2)                                  𝐿𝑅1,2|𝑒  
𝑃(ℎ1)

𝑃(ℎ2)
  =   

𝑃(ℎ1|𝑒)𝑃(ℎ1)

𝑃(ℎ2|𝑒)𝑃(ℎ2)
> 1                           

where 𝑃(ℎ1) and 𝑃(ℎ2) are the prior probabilities of the two hypotheses before presenting the 

agent with any evidence. More interestingly, the rule allows for the integration of multiple 

independent observations (𝑒1, 𝑒2, …, 𝑒𝑛) (Gold & Shadlen, 2001, 2007):  

(1.3)                      𝐿𝑅1,2|𝑒1,𝑒2,…,𝑒𝑛
= 𝐿𝑅1,2|𝑒1

∙ 𝐿𝑅1,2|𝑒2
. … ∙ 𝐿𝑅1,2|𝑒𝑛

                        

 

Ultimately, to factor in the cost or benefits affiliated with the choices, one would choose 

the  ℎ1 when (Gold & Shadlen, 2001):  
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(1.4)                                  𝐿𝑅1,2|𝑒 >  
𝑉22 − 𝑉21

𝑉11 − 𝑉12
   

where, 𝑉𝑖𝑗is the expected cost of choosing ℎ𝑗  when ℎ𝑖 is true (when 𝑖 = 𝑗 it is a positive reward, 

and it is a negative cost when 𝑖 ≠ 𝑗). Combining all three equations above that incorporate prior 

knowledge and cost computing into the process of decision making, the result is (Gold & 

Shadlen, 2001; D. M. Green & Swets, 1966): 

(1.5)                          𝐿𝑅1,2|𝑒1
∙ 𝐿𝑅1,2|𝑒2

∙ … ∙ 𝐿𝑅1,2|𝑒𝑛
∙

𝑃(ℎ1)

𝑃(ℎ2)
∙

𝑉11 − 𝑉12

𝑉22 − 𝑉21
> 1 

Here the left side of the equation is what we mathematically refer to as the decision variable 

and, as one can see, it is not only comprised of likelihood ratios of pieces of evidence.  

It is worth mentioning that the formalization is not only limited to two-choice tasks. 

Instead, it applies to multi-alternative scenarios by calculation and comparison of all the 

likelihood ratios (D. M. Green & Swets, 1966).  

Furthermore, given that applying a monotonic kernel holds the inequality, taking the 

logarithms of the previous equation yields: 

(1.6)        𝑙𝑜𝑔𝐿𝑅1,2|𝑒1
+ 𝑙𝑜𝑔𝐿𝑅1,2|𝑒2

+ ⋯ + 𝑙𝑜𝑔𝐿𝑅1,2|𝑒𝑛
+ 𝑙𝑜𝑔 [

𝑃(ℎ1)

𝑃(ℎ2)
] + 𝑙𝑜𝑔 [

𝑉11 − 𝑉12

𝑉22 − 𝑉21
] > 0 

This form of the decision rule shows how pieces of evidence could be accumulated towards a 

final decision by simple summation. That is to say, while a positive value is in favour of 

accepting the ℎ1 , a negative value weakens this hypothesis.  

To summarize, the LR allows for information from various sources to combine and 

accumulate over time, making up the evolving decision variable (besides other terms). Given a 

criterion value, the decision-making agent arrives at a perceptual judgment upon the act of 

comparison with criterion value (Carpenter & Williams, 1995).  

 

Where Is This Log LR in the Brain?  

The reason behind highlighting the practicality of log LR is that neurons could 

approximate these quantities (Gold & Shadlen, 2001). Imagine a light-sensitive neuron with a 

higher rate of spikes when light is present and vice versa. Two probability density functions, 
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𝑓(𝑒| ℎ1) and 𝑓(𝑒| ℎ2)   characterize  the neuron’s output under two conditions of the presence 

(ℎ1) or absence of light (ℎ2); therefore, to have an output instance of the neuron (or the group 

of neurons), 𝑦, would mathematically suffice to decide whether there were light or not, but 

implementational-wise, it predicates on neurons stored knowledge of the two distributions that 

open doors to a whole lot other new conditions and distributions that the brain must know. 

 It would be much easier to have an equivalent decision rule that circumvents the 

dependency on the probability distribution functions. Following that logic and remembering that 

using monotonically changing kernels (i.e., log()) will not affect the decision rule, let us assume 

that a sensory neuron (or batch of neurons) respond to two conditions (ℎ1: light, ℎ2: no light) 

with different rates of discharge following two normal distributions of different means, 𝜇1 > 

𝜇2, and the same standard deviation, 𝜎, respectively. Subsequently,(Gold & Shadlen, 2001): 

(1.7)                                  𝐿𝑅1,2|𝑦 =  
exp [−

1
2𝜎2 (𝑦 − 𝜇1)2]

exp [−
1

2𝜎2 (𝑦 − 𝜇2)2]
   

𝑦, being the spike rate response of the neuron (or pool of neurons), then: 

(1.8)        𝑙𝑜𝑔𝐿𝑅1,2|𝑦 =  −
1

2𝜎2
[(𝑦 − 𝜇1)2 − (𝑦 − 𝜇2)2] = −

1

2𝜎2
[2𝑦(𝜇2 − 𝜇1) + 𝜇1

2 − 𝜇2
2] 

Now, it is clear that the log LR is linearly related to the output activity of the neuron, the 

decision rule ( log LR > 0 then ℎ1 is true ) would become, 𝑦 >
(𝜇1+𝜇2)

2
 then ℎ1 is true. 

As one could see, the rule comes down to comparing the neuron’s response with criterion 

value. It is true that there is no necessity to know the probability densities but yet with this new 

criterion, 
(𝜇1+𝜇2)

2
, the brain has to know the averages and consider any changes that affect them, 

which is not very probable.  

There must be a better biological solution to this, and there is: the antagonistic acting 

neuron (or group of neurons) which responses exactly in opposite manner of the original neuron 

(or group of neurons), these neurons that have been dubbed “antineurons” by Gold and Shadlen, 

respond with an average rate of 𝜇2 when ℎ1is the condition and with an average rate of 𝜇1 when 

ℎ2 is the case.  
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A good example would be the combination of a sensitive to the rightward motion neuron 

and its antineuron, a left-motion-sensitive neuron. Hereafter, the log LR of the antineuron with 

the output spike rate, 𝑦′, in favor of ℎ1would be(Gold & Shadlen, 2001): 

(1.9)                  𝑙𝑜𝑔𝐿𝑅1,2|𝑦′ =  −
1

2𝜎2
[2𝑦′(𝜇1 − 𝜇2) + 𝜇2

2 − 𝜇1
2] 

 

Now, the log LR given two outputs would be the summation of the two log LRs: 

(1.10)                        𝑙𝑜𝑔𝐿𝑅1,2|𝑦,𝑦′ =  
𝜇1 − 𝜇2

𝜎2
(𝑦 − 𝑦′) 

With the new output 𝑦′, the decision only depends on whether the sign of (𝑦 − 𝑦′) is positive 

or negative because it is the only decisive term for the decision rule (𝑙𝑜𝑔𝐿𝑅1,2|𝑦,𝑦′ > 0 then ℎ1 is 

true) (Gold & Shadlen, 2001).  

Therefore, introducing adversarial evidence from another group of neurons eliminated 

the need to know the distributions or averages and being responsive to all the factors that affect 

them by the brain.  

So far, the introduced platform explains how a categorical decision is being made 

through the calculation of the decision variable, which is the estimate of the natural logarithm 

of the likelihood ratio of one hypothesis over another one or all other hypotheses. Moreover, the 

nature of the logarithm provides a framework that allows the incorporation of sensory evidence 

from different sources and different time points, in combination with prior and expected costs 

or rewards. After that, it has been shown under normal (distribution) assumption for likelihoods 

the estimate of logLRs would reduce to a comparison between spike rates from two pools of 

sensory neurons, each favouring one of the hypotheses (Gold & Shadlen, 2001). 

There is experimental evidence that neurons in action-planning structures in the brain 

calculate the aforementioned decision variable. The sensory information essential to form the 

decision variable lies in the responses of neurons in these structures. Additionally, the body of 

evidence shows that prior knowledge, along with costs and rewards, affect the neural responses 

in those structures (Gold & Shadlen, 2001). 
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It Is Teamwork and It Is Hierarchical to Form the Decision Variable.  

The neural processing stages required to form a perceptual decision could not be fewer 

than two levels. For at least, sensory neurons must encode the stimulus information and a second 

group of neurons must be capable of computing the decision variable from the responses of the 

previous group. It is worth emphasizing that the two stages are the minimum number required 

while, in reality, there are hierarchies of neural processing for most tasks (Graham, 1989). 

It turns out that the special neuron groups residing in the sensory cortex are doing a pretty 

good job encoding sensory stimuli: extrastriate visual cortex neurons sensitive to motion and 

somatosensory cortex neurons responsive to the vibration frequency in a tactile stimulus are 

examples found through lesion and electrophysiological studies (Albright, 1993; Britten, 

Shadlen, Newsome, & Movshon, 1992; Mountcastle, Talbot, Sakata, & Hyvärinen, 1969; 

Newsome & Pare, 1988; Parker & Newsome, 1998; Romo, Hernández, Zainos, Brody, & 

Lemus, 2000; Romo, Hernández, Zainos, & Salinas, 1998; Salzman, Murasugi, Britten, & 

Newsome, 1992).  Yet, the neural responses from the sensory neurons are merely momentary, 

when, in fact, making decisions relies on a more continuous type of neural activity; that is to 

say, there is a demand for the accumulation of the sensory responses from sensory neuronal 

pools over time that apparently is not occurring in those very sensory neurons (Deneve, Latham, 

& Pouget, 1999; Johnson, 1980a, 1980b; Recanzone, Guard, & Phan, 2000; Seung & 

Sompolinsky, 1993; Shadlen & Newsome, 1996).  

For instance, representational models of motion discrimination tasks are only able to 

explain the performance accuracy by the accumulation of the moment-to-moment responses of 

sensory neurons (Gold & Shadlen, 2000; Parker & Newsome, 1998; Shadlen & Newsome, 

1996).  Also, explaining the discrimination of sequential stimuli could only be achieved when 

there exists a more persistent representation of sensory information (Boussaoud & Wise, 1993; 

Miller, Erickson, & Desimone, 1996; Romo, Brody, Hernández, & Lemus, 1999). 

 The neuronal signal of such a sustained nature that bears sensory representations in 

addition to forthcoming action planning information has been detected in parietal and frontal 

lobes of the association cortex through physiological and anatomical studies (Bruce & Goldberg, 

1985; Colby & Goldberg, 1999; Schall & Bichot, 1998; Snyder, Batista, & Andersen, 2000). 

One good example would be the recordings from frontal eye field (FEF) neurons in monkeys 
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shifting their gaze towards visual targets; these single-neuron responses not only discriminate 

the target from the distractor but also carry information due to the onset of saccadic movements 

(Bichot & Schall, 1999). All in all, these qualities made these type of neurons eligible to be 

hypothesized as evidence accumulators in the decision-making process (Gold & Shadlen, 2001). 

Thus far, the discussion has focused on how neural responses representative of sensory 

evidence contribute to the formation of a decision, but as discussed before, a decision variable 

also encompasses psychological aspects such as priors and anticipated costs. Fortunately, under 

the Log LR regime, it is only a question of adding those factors to the sensory representations 

to contain those aspects. Thus, it is not difficult to assume that the same circuits which process 

sensory pieces of information would also encode those other factors involved in a decision 

variable (Gold & Shadlen, 2001). 

Neural correlates modulating prior probabilities have been reported in the oculomotor-

signal-generating circuits in visually guided eye movement tasks. By biasing the frequency of 

target appearance in specific locations in blocks of trials (Dorris & Munoz, 1998; Platt & 

Glimcher, 1999) or tampering with the number of possible target locations (Basso & Wurtz, 

1997, 1998), neurons in LIP (Platt & Glimcher, 1999) and superior colliculus (Basso & Wurtz, 

1997, 1998; Dorris & Munoz, 1998) have shown offset in their responses before and during 

saccade target presence.  

Similarly, it turns out that varying the reward according to the responses in visual tasks 

would affect the activity of neurons in LIP (Platt & Glimcher, 1999). Comparable to the function 

of agonist and antagonistic sensory neurons for estimating the Log LR, a continuous evaluation 

of the difference between the predicted reward and actual reward could count for the calculation 

of the term, 𝑙𝑜𝑔 [
𝑉11−𝑉12

𝑉22−𝑉21
], in our previous decision rule equations (Gold & Shadlen, 2001). 

Despite the effectiveness and reliability of this framework on explaining the neural code 

of decision variables and how pieces of evidence accumulate in time, it is still missing some 

elements to account for the mechanisms which ultimately could explain the decision process in 

its wholeness which must be able to implement the SAT (Standage et al., 2014) or explain how 

the commitment to choice is manifested at the neuronal level.  
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Bounded Integrator Models in Implementation Level.  

The bounded integration framework must be further explored in order to have a more 

inclusive code at the implementation level.  It is helpful to define the counterparts of the bounded 

integration parameters in the neuronal terms, beforehand: 

1. Noisy evidence: The response of the sensory neurons to task-relevant stimuli, i.e.,  

neurons’ response in the medial temporal area (MT) of monkeys to the movement of the 

dots in RDM tasks (Britten et al., 1992; Britten, Shadlen, Newsome, & Movshon, 1993). 

2. Decision variable: the activity of down-stream neuron populations that are believed to 

integrate the stimuli-relevant activity of the sensory neurons or other factors, a more 

detailed definition of decision variables at the neuronal level will be discussed in the 

next section; i.e., the building up type activity in lateral intraparietal area (LIP) which 

responds to the chosen target, namely, target-in neurons (Churchland, Kiani, & Shadlen, 

2008; Roitman & Shadlen, 2002), activities of the same nature also have been recorded 

in dorsolateral prefrontal cortex (dlPFC) (Kim & Shadlen, 1999) and the frontal eye 

fields (FEF) (Ding & Gold, 2012) cortical areas.  

3. The starting point of the decision variable: the baseline level activity of the integrator 

neurons before the onset of evidence is deemed to be the starting point of the decision 

variable (Bogacz et al., 2010). 

4. The Decision criterion: the rate of the activity of the integrator neurons at the time of 

commitment to a choice (Bogacz et al., 2010). 

Also, the fact that MT area projects to LIP gives rise to the idea that the building up activity 

in LIP is the integration of the modulated evidence that has been supplied by MT and will 

successively project to the circuits which mediate the movements of the eyes or, in other words, 

action circuitry. It is worth noting that, at the implementation level, different stages of the 

process are taking place in different physical stages as well (Gold & Shadlen, 2007; Shadlen & 

Kiani, 2013). 

 Previously, it was asserted that one category of bounded rationality, the competing 

accumulator model is the gateway from algorithmic to implementation level; therefore, for the 

next step, it would be beneficial to find the correspondences of that framework within the 

implementation level. While the rate of activity in neurons responsive to the chosen target 
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(target-in neurons) is high, the neurons that are responsive to the not chosen target (target-out 

neurons) demonstrate noticeably lower than target-in activity before commitment to choice 

(Bollimunta & Ditterich, 2011; Ding & Gold, 2012; Roitman & Shadlen, 2002). This dynamic 

of enhanced activity in the target-in and suppressed activity in the target-out neurons could be 

construed as an interaction between decision variables that have a competitive nature 

(Albantakis & Deco, 2009; Standage & Paré, 2011; Usher & McClelland, 2001; X. J. Wang, 

2002).  

 

It Runs on Inter-Inhibition, Intra-excitation, and Leakage.  

Such a dynamic could be interpreted as a competing accumulator model: for each 

alternative, a population of neurons would act as the evidence accumulator or the 

implementation-level decision variable, while the degree of inhibition between these groups 

could be thought of as the weight of subtraction in the competing accumulator model (Standage 

et al., 2014).   

Nevertheless, to incorporate only the inhibition parameter would not suffice to make this 

neural code function. That is, the competing accumulator model needs more parameters to 

achieve decision-making capability in neural terms. While the inhibition parameter is about the 

interplay between target-in and target-out groups of neurons, leakage and recurrent excitations 

govern the dynamics within each of those groups.  

First, the membrane potential and synaptic activation decline over time; this is known as 

leakage. The leakage-time constants are of the order of tens of milliseconds, whereas it takes 

around 500 to 1200 milliseconds to accomplish a perceptual decision. Such short time-constants 

could not maintain the temporal integration of hundreds of milliseconds (Standage et al., 2014). 

The above arguments necessitate the existence of some other dynamics to render the 

long integrations possible. That dynamic is believed to be composed of the recurrent excitations 

between individual neurons of a population responsive to a given alternative, which occurs 

through synaptic connectivities (X. J. Wang, 2002). Therefore, the strength of recurrent 

excitation from other neurons within a population along with the leakage and inhibitory synaptic 

currents as the linear inputs of the individual neuron could administrate the length of time for 

evidence integration (limited by the neuron’s maximum firing rate) (Standage et al., 2014).     
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It is the network dynamics of the competing neural population that regulates the time 

length over which the evidence could be integrated. However, it is the local-circuit dynamics 

that put a constraint on how long a population could maintain integration (Standage et al., 2014). 

 

State-Space Interpretation. From the state-space perspective, the rise of activity of the 

winning integrator population to the final high-rate state concurrent with the suppression of 

the other populations associated with not-chosen alternatives through recurrent inhibition 

corresponds to the network’s state transition from an unstable steady state (emergent of the 

onset of evidence as an initial condition) to one possible attractor of the system (picture 

below) (Standage et al., 2014).  

System attractors are the stable states of one system that the state of that system will 

eventually transit to and stay there under a set of conditions unless the conditions change. 

Usually, the state evolves slowly from the unstable steady state, which is in accord with the 

demand for a longer interval for integration. We refer to this time over which the integration is 

maintained, as the effective time constant of the network (Wong, Haith, & Krakauer, 2015).  

As discussed before, it is the recurrent dynamics that support the time for integration, 

and the strength of the dynamics would control the effective time constant. Unsurprisingly, with 

very weak recurrent dynamics, the effective time constant of the system would decline to the 

order of neurons’ leakage time constants (Standage et al., 2014). 
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Figure 1-3:  The ball is the current state of the system, and the curve is the energy landscape of 

the neural model, T is the target the low-energy, attractor and D is the other low-energy attractor, 

the distractor. The vertical arrow represents the onset of the stimulus and how this change could 

drive the system towards each of these steady-state attractors (Standage et al., 2014)   

 

 

The Processing Stages of Decision Making.  In the preceding section, we mentioned that a 

perceptual decision could not be formed with less than two stages: one stage for encoding the 

stimulus information and one stage for computing the decision variable from the first stage 

(Graham, 1989); But a more elaborate way to categorize the successive processing stages of 

decisions is depicted below: 

 

Figure01-4: From left to right, 1. The evidence-encoding stage, 2. The integration stage, 3. 

The Thresholding Stage (Standage et al., 2014) 
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From left to right: 

1. The first stage is the evidence-encoding stage, comprised of groups of target-

responsive or distractor-responsive populations of neurons (Target and distractor 

stimuli are specified with letters T and D in the picture above, respectively). 

Weak recurrent dynamics prevail on this level, which means the effective time 

constant is governed by leakage (leakage regime), which is far shorter than the 

time constant required to support evidence integration.  

2. The integration of encoded evidence by integrator neural populations occurs at 

the second stage: there exist  moderate to strong dynamics (recurrent excitatory 

connectivities and inhibition between populations), which set the stage to support 

the integration of encoded evidence projected from the first stage. Moreover, to 

control the strength of the dynamics means controlling the SAT (decision 

regime). 

3. The last stage is the choosing stage that has very strong dynamics (shown by 

thick connectivities), which has a short effective time constant (little support for 

evidence integration) to an input with a critical level in the winner-take-all 

fashion; also called thresholding circuitry (Simen, 2012). 

 

These three stages composed of neuron populations with different dynamics embody the 

different phases of bounded rationalization in representational (algorithmic) level, which are: 1. 

to acquire pieces of evidence, 2. to integrate the pieces of evidence, and 3. finally, to commit to 

a choice (Standage et al., 2014). 

 

Hypotheses on Modeling SAT at the Implementation Level.  

In light of the three stages described above, it is time to advance to the hypotheses 

describing the speed-accuracy trade-off, as one salient feature of the perceptual decision-making 

process. 

There are three classes of hypotheses on the implementation of the SAT, depending on 

which stage out of three is being modulated (Standage et al., 2014). There exist revealing 

electrophysiological data (Heitz & Schall, 2012) supporting the occurrence of all three classes 
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of hypotheses, which merely demonstrate that these hypotheses are not mutually exclusive 

(Standage et al., 2014).  

 

Modulation of the encoding of evidence.  Data from a study in 2012 show that the baseline 

rates of visual neurons regardless of being target-in or target-out were higher under speed and 

lower under accuracy conditions before the onset of the stimulus (Heitz & Schall, 2012). The 

hypothesis suggests that, under the speed condition, all visual neurons receive a spatially non-

selective common excitatory cognitive signal that increases their baseline activity. The 

increase in the baseline rate is equivalent to having a lower decision threshold, and 

consequently, accuracy conditions call for a weaker common signal; such a mechanism is 

referred to as gain modulation in attractor models. 

 

Figure01-5: Modulation of the encoding of the evidence (Standage et al., 2014) 

Modulation of the Integration of Evidence, Encoded by the Previous Stage   This class of 

hypotheses has three sub-classes: 1. Modulation of the rate of integration, 2. Modulation of the 

onset of integration, and 3. Modulation of the sensitivity of the integration circuits. 

 Evidence for the first sub-class abounds, demonstrating the change in the rate of rising 

in the integrators according to speed or accuracy conditions (Heitz & Schall, 2012).  

 

There are also two hypotheses explaining the modulation of the rate of integration: 

a) A spatially non-selective stationary excitatory cognitive signal applied to the integrators 

controls the strength of recurrent dynamics (gain modulation). Expectedly, stronger 

persistent spatially non-selective spike-trains result in faster but less accurate choices 
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and the opposite happens for the weaker signals (Furman & Wang, 2008; Roxin & 

Ledberg, 2008). 

b)  A time-dependent ramp signal (linearly increasing as time elapses) called the urgency 

signal applied to the integrators would control the ramp of the sigmoid gain function 

associated with the recurrent dynamics governing the support for integration and 

affecting the effective time constant (Standage et al., 2014).   

 

 

 

 

Figure01-6: Modulation of the rate of integration of evidence (Standage et al., 2014) 

 

 

The other subclass, modulation of the onset of integration, states that one inhibitory gate adjusts 

the onset of the integration which, as mentioned, equates adjusting the bound (Purcell, Hair, & 

Mills, 2012). 
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Figure01-7: Modulation of the onset of integration (Standage et al., 2014) 

 

Finally, the last subclass of this category assumes that, depending on speed or accuracy 

condition, integrators select different sub-populations of evidence-encoding neurons (black and 

gray arrows representing two separate sets of encoded-evidence for two-speed and accuracy 

conditions) (Scolari, Byers, & Serences, 2012). 

 

 

Figure01-8: Modulation of the Sensitivity to the Evidence (Standage et al., 2014) 

Modulation of the Amount of integrated evidence Adequate for Commitment to Choice. The 

hypotheses in this class are categorized into two subclasses, 1. Adjustment to the cognitive 

input added to the thresholding circuit input, and 2. Modulation of the connectivity strength 

between integrators and thresholding circuitry (Standage et al., 2014). 

1. Modulation of non-selective input to thresholding circuitry: such a top-down, spatially 

non-selective signal does not have the same effective time constant adjustment 

characteristic as before (being applied to the integrator populations). The reason is that 



 

41 

the dynamics in thresholding circuits are already strong; instead, if to commit to a choice 

entails a fixed level of activity from the previous stage (integrators),  then the amount of 

the non-selective signal dictates how much of integrated evidence is required to make a 

decision. Under speed conditions, a higher level of the top-down signal allows for a 

faster but less accurate decision due to less available information (Forstmann et al., 2010; 

Frank, 2006; N. Green, Biele, & Heekeren, 2012; Simen, Cohen, & Holmes, 2006).  

 

    

 

Figure 1-9: Modulation of the non-integrator signal into the thresholding circuitry  

(Standage et al., 2014) 

 

2. Adjusting the strength of connectivity between integrators and thresholding populations, 

is a hypothesis proposed in a biophisacally-based model for saccadic decisions (Lo & 

Wang, 2006).  

 

Figure 1-10: Connectivity Modulation between Integrators and Thresholding stage (Standage 

et al., 2014) 
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Modeling Behaviour.  

The ultimate goal of all the efforts to find neural correlates of the decision making 

representational models in the brain is to model the behavior of the brain in a natural context.   

All the proof of concept and ideal-observer studies sets the stage to launch into modeling the 

behaviour.  Many studies that have suggested the mechanistic hypothesis were trying to explain 

some behavioural data of the subjects doing RDM tasks (Xiao Jing Wang, 2008, 2012).  

Evidently, to model behaviour in its true definition is a daunting challenge because it has 

to go beyond research paradigms towards natural, richer scenarios, let alone all the existing 

predicaments. In other words, going towards more real brain modeling predicates: 1. modeling 

real behavior, and 2. modeling the behavior in scenarios closer to real situations. 

Present Study 

The present study tries to make a step in this direction. Therefore, it was decided to model 

the behavior of a group of elite athletes as epitomes of the human brain in the face of a biological 

motion detection task representing a situation closer to reality (Romeas & Faubert, 2015). 

 

Why Biological Motion? 

The ability to recover information like identity or the type of activity of a moving living 

object from a sparse input is known as Biological Motion perception. This sparse input has been 

created and introduced by Johansson in 1973, using only light points placed on the individual's 

strategic joints (Johansson, 1973). Below one can see one frame of a person kicking an invisible 

ball in a soccer kick biological motion stimulus (Figure 1-11): 
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Figure 1-11: A frame from a soccer kick biological motion stimulus  

 

Moreover, it has been shown that athletes show superior levels of perceptual-cognitive 

capacities in biological motion perception not only in tasks within sports contexts but also, 

surprisingly, in non-sport related tasks. Results demonstrated that athletes’ performance in 

general tasks like point-light walker direction detection was more accurate and robust compared 

to non-athletes (Romeas & Faubert, 2015). 

Additionally, one other compelling study has shown that athletes’ ability to read and 

make decisions in dynamic visual sports scenes, within which the biological motion information 

is a key element, can be enhanced with a non-contextual, perceptual-cognitive training task 

called “3D Multiple Object Tracking”. It is safe to say that this may be the first evidence of 

transference where  non-contextual perceptual-cognitive training could contribute to the 

enhancement of biological motion perception (Romeas, Guldner, & Faubert, 2016). 

The above led to the idea that whatever is happening inside the brain that results in the 

betterment of the subjects’ performance could have less to do with the actual soccer-related 

experiences and more to do with pure perceptual aspects of this process. It would be desirable 

to have an implementational-level model that could explain this biological motion detection that 

could be manipulated. 

In addition, implementing a genuinely functional framework could provide a powerful 

tool to explore, test and design other aspects, hypotheses and new experiments, respectively. 
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Present State of Modeling of Biological Motion?  

The study of visual analysis of human action as a significant role-player in the survival 

and social life of humans and primates had the attention of scientists for decades (Giese & 

Poggio, 2003).  

The main themes of these studies are as follows (Blake & Shiffrar, 2007):  

1. Kinematics information of the different movements (such as the type of activity and 

emotional states)  

2. Motor role in the perception of actions  

3. Neural mechanisms   

Therefore, to date, a multitude of psychophysical, neurophysiological and functional 

imaging experiments have been conducted on movement perception/recognition leading to the 

procurement of a wide range of experimental data. For instance, the prominent cortical areas 

involved in biological motion perception/cognition have been identified: 

1. The dorsal pathway, specialized in motion information processing, is a substantial 

contributor to the perception of biological motion (Mather, Radford, & West, 1992)  

2. Recognition of gait movements from stimuli stripped of motion cues also points to 

the fact that the ventral pathway, in charge of form perception, could also be involved 

(Beintema & Lappe, 2002) 

Accumulation of a significant amount of experimental data and the demand for a useful tool 

to put some of the possible explanations to the test made devising a computational model for 

the biological motion perception inevitable (Blake & Shiffrar, 2007). 

A model based on four assumptions was proposed in 2003(Giese & Poggio, 2003):  

1. The model entails two parallel processing modules simulating the ventral (form) and 

dorsal streams (Optic flow).  

2. Both pathways consist of hierarchies of neural detectors to extract form or optic-flow 

features.  

3. This model adopts a predominantly feed-forward architecture for both pathways.  
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4. The visual system stores prototypical patterns and uses them for 

perception/cognition. 

This study concluded that local motion analysis taking place in the dorsal pathway is the 

most influential one, contradicting an earlier study by Beintema and Lappe (2002) (Beintema & 

Lappe, 2002). Later, Blake and Shiffrar suggested that a multitude of contingencies, including 

both local motion or dynamic form processing, could be deployed to make the 

perception/recognition of the actions as robust as possible, with the internal and external noise 

present (Blake & Shiffrar, 2007). 

Behavioural evidence entails the existence of low-level motion-capturing filters for 

biological motion detection (Chang & Troje, 2008; Troje & Westhoff, 2006).  However, other 

than developmental studies showing the presence of some sort of natural predisposition towards 

biological motion in human infants and newborn chicks, no study points to a similar sensitivity 

to biological form cues. That implicitly suggested that there is no specialized substrate in the 

brain for dealing explicitly with biological form (Bardi, Regolin, & Simion, 2011; Vallortigara, 

Regolin, & Marconato, 2005). 

Therefore, in 2014, Thurman and Lu proposed a Bayesian template-matching model that 

integrated form features of the stimuli using a weighting system, suggesting that the dynamic 

form analysis pathway works for both biological and non-biological motion in a Bayesian 

fashion (Thurman & Lu, 2014). 

Investigations of the neural correlates involved in the body movement perception implicate 

a vast cortical network (Grosbras, Beaton, & Eickhoff, 2012).  Even though the biological 

motion stimuli activate both form-related and motion-related cortical regions, the causal nature 

of those areas’ contributions is under question (Gilaie-Dotan, Saygin, Lorenzi, Rees, & 

Behrmann, 2015; Kourtzi, Krekelberg, & Van Wezel, 2008).  Recently, one exciting study 

investigated whether the activations of the ventral pathway in the event of biological motion 

detection are functionally essential to the perception process. The study showed that six patients 

with a focally injured ventral visual cortex in multiple regions managed to recognize the point-

light stimuli with thresholds similar to those of the control groups while outperforming the 

subjects with compromised regions critical to biological motion perception other than ventral 

pathway (Gilaie-Dotan et al., 2015). 
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Studies and simulations above with all their assumptions and limitations were our starting 

point for designing our own biologically plausible simulation model capable of discerning  

human biological motion. 

Subsequently, it was hypothesized that, with an implementational-level model that 

processes motion features of a complex biological motion stimulus (our case: a manifold of 

soccer kicks to the left or right of the observer) we could affirm that: 

1. Motion feature processing could undertake the whole process on its own. (The 

speculation of the (Gilaie-Dotan et al., 2015) and (Casile & Giese, 2005) studies). 

2. If so, certain aspects of motion are more significant than other elements of motion to 

biological motion detection (i.e., expansions versus rotations)    

3. It is a risk-averse process due to the nature of natural reinforcement when (?) learning 

happens in a living thing. 

4. The thresholding circuitry must reflect a mutual inhibition dynamic to enact human 

behavior (Wilson, 1999).     

 

Present Work.  

Initially, the capability of the (Casile & Giese, 2005) implementational-level model as 

the closest existing platform, which conformed to our hypothesis, was investigated. The present 

model was implemented only the motion pathway and got good results for the biological motion 

stimuli of walking. 

The integration circuitry of the model was the well-known one-dimensional mean-field 

array of template-matching neurons and the templates were radial basis functions, that is, 

Gaussian kernels of different stages of a walking movement in time to the left and right 

directions. 

 The thresholding circuitry was also of the same dynamic but with faster effective time. 

So, the inhibitions between decision-making neurons (or group of neurons) were analogous to 

the integration circuitry of their model. 
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 While the stimuli were produced by rotating a pre-captured biological motion of an 

actual human kick with an invisible ball around its Z-axis (Fig 1-), the task was to detect the 

direction of the ball (left or right side of the observer). 

 

Figure01-12: Schematics of how the stimuli were produced. The connecting lines or the ball 

were not present at the actual stimuli (Romeas & Faubert, 2015)  

  After implementing, adjusting and tuning their integration stage to as many feasible 

Gaussian kernels using the stimuli, an acceptable response was not achievable. It is conceivable 

that the reason lies in the fact that the original integration stage was purported to be tuned to 

temporal templates of two leftward and rightward walking stimuli, as opposed to the problem 

at hand that was 40 kicking stimuli (all angles from 20°to the left to 20°to the right). 

 

The Anatomy of the Model. A brief  outline of the implementational level decision-making 

model is listed below:  

1. Local motion energy detectors (the first stage of the encoding of evidence) 

2. Opponent motion detectors (the second stage of the encoding of evidence)   

3. Complex global optic flow patterns (the integration of evidence stage) 

4. Complete biological motion pattern detectors (thresholding stage) 
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Local motion energy detectors. The presence of neurons with small receptive fields and 

sensitive to the direction of motion has been reported in the monkey visual cortex in area V1/2 

and area MT (A. T. Smith & Snowden, 1994). The evidence being the direction of the motion, 

these neurons characterize “the evidence encoding stage” of our model (Figure 1-13). These 

pieces of evidence are still too high-dimensional to be fed to the integration stage. Instead, 

they will be processed by the next hierarchy of neurons: the opponent-motion detectors. 

 To implement this level, like in the work of Giese and Poggio (2003) and Casile and 

Giese (2005), the optical flow of every two consecutive frames has been calculated and gives a 

vector field (Casile & Giese, 2005; Giese & Poggio, 2003). As a result, using the vector field, 

the activity of all the detectors at each time point (every 500 msec) is approximated. 

  

 

Figure 1-13: Each white square with an arrow represents a neuron sensitive to the direction that 

its arrow direction. Two areas show the reflection of two moving dots on the retina and, 

therefore, on V1. As the dots pave their paths, if there exists a sensitive neuron would fire and 

get deactivated as the stimulus passes. Here, for the sake of demonstration, we kept all the 

stimulated neurons active on the right side of the picture.    

Opponent-motion detector expansions, contractions, and rotations are what is deemed as the 

opponent motions. Imaging studies suggest the existence of the neurons sensitive to these type 

of motions in the kinetic occipital area (KO/V3B) of humans (Orban et al., 1995; Orban et al., 

1992) 
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An expansion-type opponent motion detector pools the responses of the local motion 

detectors of the same direction preference into one subfield using a maximum operator. Then, 

it does the same to the other subfield but, this time, for the opposite direction and finally creates 

an output from the multiplication of these pooled quantities (Allman, Miezin, & McGuinness, 

1985). The counter clock-wise rotation opponent motion detector has been depicted below 

(Figure 1-14):  

 

Figure 1-14: The color-filled arrows in the white square boxes demonstrate the activated local 

motion detectors at one point in time. The hexagons on the right represent an ensemble of 

opponent motion detectors at a higher level in the visual system. The counter clock-wise 

opponent motion detector is the only one firing (shown by neon green) because its subfields 

(depicted by dotted lines) are experiencing the anticipated motions at this point in time, in this 

example.     

Opponent motion detectors in the proposed network establish the evidence encoding 

stage that passes a 100- to 140-element feature vector as the evidence to the integration stage at 

each time point. 
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 Complex global optic flow patterns. At the integration stage, each neuron embodies a 

template that is tuned to a template that represents a specific interval of the stimuli sequence; 

for example, the second neuron has a template that represents the features of the seconds 11 to 

20 of all the right-side kicks (all 20 angles). In other words, the templates are temporal. 

At each time point, the evidence feature-vector gets passed to all the integration stage 

neurons at the same time and the template matching process happens in every neuron providing 

each one with its required instantaneous feed-forward input.   

In the Casile and Giese (2005) model, the instantaneous feed-forward input to the mean-

field integration network is produced from the template-matching of the tuned Gaussian kernels 

(templates) against the evidence (Casile & Giese, 2005). The feed-forward input of the present 

model is a product of a multiclass Bayesian classification scheme that will be thoroughly 

discussed in the upcoming chapters. 

It is believed that the complex optic flow pattern neurons are to be found in diverse areas 

of the superior temporal sulcus (STS) (Decety & Grèzes, 1999; Oram & Perrett, 1994; Perrett 

et al., 1985; Vaina, Solomon, Chowdhury, Sinha, & Belliveau, 2001) 

To give the reader a clearer mental image, the cartoon below demonstrates the mechanics 

of such a process (Figure 1-15): 
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Figure 1-15: On the right, there is an exemplary 140-element feature vector made by opponent 

motion neurons in which white means no activity and colors represent different quantities 

(sparse for the demonstration purposes). On the right, there are 18 complex global flow pattern 

detectors 9 for the right kicks and 9 for the left kicks inside each of these neurons; there is a 

template stored. The more similar the input is to the templates the larger is the feed-forward 

input of that neuron (depicted by neon yellows of different intensity). From the picture one could 

assume that the presented feature vector represents the seconds 41 to 50 of the right side kick 

stimulus sequence (the detector 4 of the right kick group has the most intense yellow) while the 

detector 4 of the left kick group falsely shows some activity. It is up to the thresholding stage to 

receive the integrated evidence to make the final decision.  

 

Complete biological motion pattern detectors. As expected, the integration-like activity from 

the right-kick group of neurons (optic-flow pattern detectors) goes to a right-kick thresholding 

neuron (or group of neurons) and the activity from the left-kick group of neurons to a left-kick 

thresholding neuron (or group of neurons).  

According to imaging studies, the whereabouts of these specialized biological motion 

decision making neurons are likely to be in STS (Grossman et al., 2000; Vaina et al., 2001), and 

perhaps also in FFA (Grossman et al., 2000). 
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As mentioned earlier, a mutual inhibition dynamic was adopted and modified to model the 

dynamic of these two neurons (groups of neurons). The anatomy of their interaction is depicted 

below but further details will be discussed further in the next chapters (Figure 1-16). 

 

Figure01-16: The anatomy of the interaction between two decision making neurons (or group 

of neurons). The round headed shape connections (blue and pink) represent the existing mutual 

inhibitions. “R” marks the neuron (or group of neurons) that gets activated if the decision is “to 

the right” and “L” marks the neuron (or group of neurons) that gets activated in case the decision 

is “to the left”.  

 

SAT and Our Model.  Although the speed/accuracy trade-off is a very significant element to 

the decision-making process, the psychophysical data that the model is based on do not 

incorporate it. There was no design in the experiment to integrate different levels of urgency in 

the first place. Apparently, given such data modeling, the SAT at the implementational level 

will be incredibly insightful and challenging at the same time.     
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Abstract 

Biological motion perception is integral not only to survival but also to the social life of 

human beings. Identifying the underlying mechanisms and their associated neurobiological 

substrates has been a matter of investigation and debate for some time. Although, in general, it 

is believed that the integration of local motion and dynamic-form cues in the brain empowers 

the visual system to perceive/recognize biological motion stimuli, some recent studies have been 

insinuating the importance of dynamic form cues in such a process. Inspired by the previous, 

neurophysiologically plausible biological motion perception models, a new descriptive risk-

averse Bayesian simulation model, capable of discerning the ball’s direction from a set of 

complex biological motion soccer kick stimuli, is proposed. The model only represents the 

dorsal pathway as a motion information processing section of the visual system according to the 

two-stream theory. The stimuli used have been obtained from a previous psychophysical study 

on athletes in our lab. Furthermore, the acquired psychophysical data from that study have been 

used to re-enact human behavior using our simulation model. By adjusting the model 

parameters, the psychometric function of athlete subjects has been mimicked. The correlation 

analysis between human and simulation data shows a significant and robust correlation between 

angular thresholds and slopes of the psychometric functions of both groups. Although it is 

established that the visual system optimally integrates all available information in the decision-

making process, the results conform to the speculations favouring motion cue importance over 

dynamic form by testing the limits when biological motion perception only depends on motion 

information processing. 

  Keywords: Biological motion, Bayesian, Dorsal pathway, Hierarchical simulation model  
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 Introduction 

Human's robust ability to recover information (e.g., identity or type of activity) about a 

moving living thing from sparse input is known as Biological Motion Perception. This sparse 

input has been created and introduced by Johansson in 1973, using only light points placed on 

the individual's strategic joints. Biological motion perception is critical to survival and social 

interactions of humans and primates and plays a significant role in their activities. In this regard, 

there has been an emphasis  on the visual analysis of human action in multiple studies with the 

primary focus on the kinematic information of the movements (such as the type of activity and 

emotional states), the motor role in the perception of actions, and the neural mechanisms (Blake 

& Shiffrar, 2007; Giese & Poggio, 2003) 

The many psychophysical, neurophysiological and functional imaging experiments 

conducted on movement perception resulted in a wide range of experimental data and findings. 

Activation of the "dorsal pathway," specialized in motion information processing, the form 

pathway (ventral pathway) and where the two streams converge at superior temporal sulcus 

(STS) are counted as the highlights of the discoveries as mentioned earlier (Beintema & Lappe, 

2002; Mather et al., 1992). 

Furthermore, significant accumulation of experimental data and the necessity for a 

compelling theoretical framework emphasized the specific demand for a neurophysiologically 

plausible computational model for biological motion perception (Blake & Shiffrar, 2007). 

Based on the assumption that the visual system stores prototypical patterns in the 

perception/cognition process, a hierarchical feed-forward model has been proposed (Giese & 

Poggio, 2003). The model entailed two parallel processing modules simulating the ventral 

(form) and dorsal streams (optic flow). The study concluded that local motion analysis taking 

place in the dorsal pathway is the most critical factor in pattern detection (Blake & Shiffrar, 

2007; Casile & Giese, 2005; Giese & Poggio, 2003), contradicting an earlier study by Beintema 

and Lappe (Beintema & Lappe, 2002). Only recently has it been suggested that the multitude of 

contingencies are at work simultaneously, to integrate either local motion or dynamic form 

analysis to make the perception/recognition of the actions in the presence of internal and external 

noise as robust as possible (Blake & Shiffrar, 2007). 
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While behavioural evidence implies the existence of low-level filters capable of 

capturing motion cues to detect biological motion as pure-motion detection mechanisms (Chang 

& Troje, 2008; Troje & Westhoff, 2006), developmental studies also show a natural predilection 

towards biological motion in human infants and newborn chicks while suggesting the lack of 

such sensitivity to biological form cues. To be precise, unlike motion, the visual system 

processes the biological and non-biological dynamic form in the same fashion, and there is no 

specialized substrate in the brain for dealing explicitly with biological form (Bardi et al., 2011; 

Vallortigara et al., 2005). Thereafter, in 2014, to validate the behavioural results from their study 

and hypothesis, Thurman and Lu proposed a Bayesian template-matching model, which 

integrated form features of the stimuli using some weighting scheme, asserting that the dynamic 

form analysis pathway (ventral pathway) works for both biological and non-biological motion 

in a similar Bayesian fashion. This result suggests the absence of a specialized substrate for the 

processing of dynamic biological form (Thurman & Lu, 2014).  

Further investigations of the neural correlates involved in the perception of body 

movement show an extensive cortical network (Grosbras et al., 2012).  Even though the 

biological motion perception incorporates both form and motion (Kourtzi et al., 2008) and, 

therefore, the cortical regions linked to both cues get activated, it is unclear that the contribution 

of those areas is all of causal nature (Gilaie-Dotan et al., 2015).  Recently, to address whether 

the activations of the ventral pathway during the biological motion detection are functionally 

integral to the perception process, one study examined six patients with focally (compromised) 

injured ventral visual cortex in multiple regions. Not only did they all manage to recognize the 

point light stimuli, but their thresholds were also not significantly different from the control 

group’s thresholds. More interestingly, they significantly outperformed subjects with 

impairment in other regions critical to biological motion perception (Gilaie-Dotan et al., 2015). 

In regard to the question of modeling and simulating this phenomenon more explicitly, 

one could always picture the detection of biological motion as a sequential ? decision-making 

task. Like many other natural scenarios, biological motion perception also occurs in the presence 

of uncertainty, which stems from the inherent uncertainty of the subject's generative model and 

the noise of the input process (Bitzer, Park, Blankenburg, & Kiebel, 2014). Uncertainty begets 

risk, so it is essential to deem human decision making to be subjected to this factor and, 
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therefore, not always economically rational. In that light, a more plausible model could most 

certainly benefit from taking the risk factor into account (Kahneman & Tversky, 2013). In recent 

years, the risk-sensitive decision-making problem has been brought to researchers’ attention and 

been investigated in different areas including neuroeconomics and cognitive sciences (Braun et 

al., 2011; Dayan & Niv, 2008; Nagengast et al., 2010; Niv et al., 2012; Shen et al., 2014). 

Here, we intend to propose a feed-forward risk-sensitive Bayesian simulation model. 

The suggested model is hierarchical and appropriates the earlier assumption of stored 

prototypical patterns in STS located in the temporal lobe of the brain. Moreover, to model the 

motion pattern neurons, which are the decision-making neurons and also believed to be located 

in STS, a dynamic model called the mutual inhibition network had been utilized (Lugo et al., 

2018). The presented model has been challenged with a stimulus of higher complexity, namely 

a soccer kick, only to detect the direction of the ball from the subject's point of view. 

Furthermore, as for the proof of concept of the Gilaie and Dotan study in 2015, the ventral 

pathway has not been implemented (Gilaie-Dotan et al., 2015). Finally, the behavioral data that 

had been collected previously in our lab was used to validate the performance of the proposed 

model, in a sense that the model has been tuned to different modes only to replicate the behavior 

of 11 athlete subjects. The simulated psychometric function parameters show a significant 

correlation with those of athlete human subjects (Romeas & Faubert, 2015).  

Model 

The neural model devised for our simulations is inspired by the biologically plausible 

model proposed by Poggio and Giese (2003) and by Cassile and Giese (2005) (Casile & Giese, 

2005; Giese & Poggio, 2003). Our simulation model appropriates three assumptions of the 

models, as mentioned earlier: 1. Dorsal stream (Optic flow) like other visual pathways consists 

of hierarchies of neural detectors to extract optic-flow features. 2. This model adopts a 

predominantly feed-forward architecture. 3. The visual system stores prototypical patterns and 

uses them for perception/recognition (Figure 2-1) 

The neural hierarchy of the dorsal stream is as follow:  
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Local Motion Energy Detectors. These detectors are sensitive to different motion directions 

and have small receptive fields (≈0.4 deg). For the present study, the simulations have 

implemented receptive fields which are sensitive to four different directions: right, left, up and 

down and, for the sake of simplicity, no diagonal direction has been implemented. These 

detectors have been deployed in a 36x31 assembly of receptive fields according to Smith et. Al 

(1994).  It is reported that these selectively acting neurons reside in monkey visual cortex in 

area V1/2 and area MT (A. T. Smith & Snowden, 1994). 

To simplify things, we calculated the optical flow of every two consecutive frames of 

the stimulus so that the activity of all the assigned motion detectors in the 36x31 assembly could 

have been approximated at each time point (every 500 msec) using the obtained vector field. 

The more detailed explanation of the implementation of this level can be found in (Casile & 

Giese, 2005).  

Opponent-motion detectors. These detectors are sensitive to opponent motions like 

expansions, contractions, and rotations. For example, a neuron specialized in vertical 

contraction detection gets activated by the occurrence of such opposite motion in the two 

adjacent subfields located in its receptive field (A. T. Smith & Snowden, 1994). The opponent 

motion detector pools the responses of the local motion detectors of the same direction 

preference into one subfield using a maximum operator. In the case of vertical contraction, the 

detector pools the rightward motion in the left subfield and leftward motion from the adjacent 

subfield. The output of the Opponent motion is made up of the multiplication of these maxima 

(The square root of this multiplicative pooling) (Allman et al., 1985). Utilization of the/a 

maximum operator in the opponent motion-sensitive neurons simulation is rooted in the 

discovery of the same sort of computation in the visual cortex of monkeys and cats (Gawne & 

Martin, 2002; Lampl, Ferster, Poggio, & Riesenhuber, 2004). Moreover, the pooling process 

entails the spatial invariance within the respective receptive fields (Riesenhuber & Poggio, 

1999).  

Imaging studies suggest that opponent-motion detectors probably exist in the kinetic occipital 

area (KO/V3B) of humans (Orban et al., 1995; Orban et al., 1992).   

Similar to Cassile’s 2005 study, we implemented the four types of vertical and horizontal, 

contraction and expansions using 5x5 assemblies of detectors to generate 100 simulated features 
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at each time point (every 500 msec). For more descriptive details one must refer to (Casile & 

Giese, 2005). 

 

Complex Global Optical-Flow Patterns. The third hierarchy level is made up of neurons 

capable of discerning momentarily complex optic flow patterns. The other critical factor to 

which these neurons must be responsive is the temporal order of the input that they are receiving. 

In other words, each detector is tuned to a certain optic flow pattern of a certain temporal order. 

In previous attempts to model optic flow detectors with this characteristic, a network of laterally 

coupled neurons has been proposed. It is through these asymmetrical connections that the active 

neuron at one moment excites the neurons tuned to the future optic flow patterns and inhibits 

the rest of the detectors encrypting earlier patterns (Mineiro & Zipser, 1998). In this manner, 

the assumed dynamic of the optic flow pattern neuron sensitive to the 𝑖th frame (the optic flow 

that comes from the 𝑖 − 1 and 𝑖th frames) of one stimulus sequence is as follow (Casile & Giese, 

2005): 

(1)                𝜏𝑂𝐹𝑃�̇�𝑖(𝑡) = −𝐻𝑖(𝑡) + 𝐺𝑖(𝑡) + ∑ 𝑤(𝑖 − 𝑚)𝑓(𝐻𝑖(𝑡))

𝑚

 

Where 𝐻𝑖(𝑡) is the activity of the 𝑖th neuron, the 𝜏𝑂𝐹𝑃 = 150 𝑚𝑠 is the time constant of the 

global optic flow pattern detection dynamic, 𝑤(𝑚) is an asymmetrical weight kernel, 𝑓(𝐻) is a 

step threshold function, and 𝐺𝑖(𝑡) is considered as the instantaneous feed-forward input of the 

neuron. As mentioned before, one of the fundamental assumptions about the model is the 

prototypical matching performed by the neuron. It is only the result of this template matching 

process that constitutes the aforementioned feed-forward input. In previously proposed models, 

for each key feature-vector derived from the stimulus video sequence, namely template, a 

Gaussian radial basis function has been designated and tuned it. Thus, when the detector receives 

its input from the previous level, depending on how similar it is to the center of the 

corresponding Gaussian function, the instantaneous feed-forward input gets generated. For a 

detailed description of this, the reader is referred to Giese and Poggio (2003) and Casile and 

Giese (2005) (Casile & Giese, 2005; Giese & Poggio, 2003). While our model holds the exact 

laterally connected dynamics for the optical flow detectors, it uses far fewer neurons and a 

different strategy to generate the instantaneous feed-forward input, 𝐺𝑖(𝑡).    
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In our model, the feed-forward input 𝐺𝑖(𝑡) is deemed to be a product of a multiclass Bayesian 

classification scheme. Here, the most classical minimization of classification error did not seem 

to serve the purpose; instead, minimizing the average risk method, which includes different 

significances for different errors, shows more efficiency. To be more precise, false classification 

of the represented frame into one of the future vital feature-vectors must have less gravity 

compared to one related to an older template (Theodoridis, 2010). The logic behind it can be 

explained by the goalkeeper example; meaning that if a goalkeeper decides that the frame 

observed in a scene belongs to one of the future states of the sequence, the chance to save the 

ball is less compromised as opposed to classifying that scene into one of the earlier-encoding 

templates. 

The same stimuli have been used in previous experiments in our lab (Romeas & Faubert, 2015). 

Each stimulus sequence is comprised of 90 frames. For every two consecutive frames (after 

passing through the first two levels), a feature-vector of 140 elements would be generated and 

fed to the optical flow pattern detection stage. There exists a stimulus for every angle of 

deviation from the center in order to train or test the model. We considered nine stages for each 

kicking sequence. Our classification problem consists of 18 classes, nine classes for the 

rightward kick and nine for the leftward. Each class represents one specific stage of the kicking 

process, i.e., the 1st class associated with right-ward kick means we are in the first stage of the 

kicking process (first ten frames) and the 3rd class associated with a left-ward kick is the right 

decision when the stimulus reaches somewhere between frames 31 to 40. Therefore, our 

problem is an 18-class, 𝜔𝑖 , 𝑖 = 1, … ,18 classification problem, where 𝑅𝑗 , 𝑗 = 1, … ,18 makes 

up the regions of the feature space. An error happens when the feature-vector 𝑢 which pertains 

to the region 𝑅𝑖 gets misclassified in class 𝜔𝑘 while 𝑖 ≠ 𝑘 and so, a loss term 𝜆𝑘𝑖will be assigned 

to this incorrect decision. In this manner, a Loss matrix could be formed that its element 𝜆𝑘𝑖 

constitutes the penalty for action 𝑘 (here: classification in class 𝜔𝑘 ) when the actual state is 𝑖 

(the feature-vector fed to the layer). It can be shown that the average risk is minimized when 

(Theodoridis, 2010): 

(2)          𝑢 ∈  𝑅𝑖   𝑖𝑓 ∑ 𝜆𝑘𝑖𝑝(𝑢|𝜔𝑘)𝑝(𝜔𝑘)

18

𝑘=1

< ∑ 𝜆𝑘𝑗𝑝(𝑢|𝜔𝑘)𝑝(𝜔𝑘)

18

𝑘=1

   𝜆𝑙𝑙 = 0,    ∀ 𝑗 ≠ 𝑖 
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which indicates, that 𝑢 originates from the region 𝑅𝑖 when it has the lowest weighted sum and 

classifies in class 𝜔𝑖. 

𝑝(𝑢|𝜔𝑘) is the likelihood of the feature-vector given the class 𝜔𝑘, and 𝑝(𝜔𝑘) is the prior 

probability of the class 𝜔𝑘. In our model, we assume that the likelihood of feature-vectors of 

each region 𝑅𝑖 follows a Gaussian distribution 𝒩(𝜇𝑖, Σ𝑖), in which, 𝜇𝑖 is the mean vector, and 

Σ𝑖 is the covariance matrix. Moreover, the priors, 𝑝(𝜔𝑘), are predefined for each class 𝜔𝑘 

separately where ∑ 𝑝(𝜔𝑘) = 118
𝑘=1 .   

In this manner, the detector tuned to class 𝜔𝑖 receives a positive non-zero feed-forward input, 

𝐺𝑖(𝑡), at each time step whenever 𝑢(𝑡) belongs to the feature region, 𝑅𝑖.  

To describe it in the cellular level, when one input matches the saved template of one neuron, 

all other neurons with different classes see that as a sizeable weighted quantity added to their 

risk sum while the loss term 𝜆𝑖𝑖 = 0 relieves the matching neuron from adding that large signal 

to its risk sum. In other words, the neuron with the matching template inhibits the feed-forward 

input of other neurons.  

The consensus is that the complex optic flow pattern neurons are likely to be found in disparate 

areas of the superior temporal sulcus (Decety & Grèzes, 1999; Oram & Perrett, 1994; Perrett et 

al., 1985; Vaina et al., 2001). 

Complete Biological Motion Pattern Detectors (Motion Pattern Detectors). Discrimination 

of complete biological motion patterns occurs in motion pattern neurons, which make up the 

fourth and highest level of the model. The complete biological actions in our study comprise of 

leftward kick and rightward kick. The sum of the activities of the optic flow pattern detectors 

that belong to one particular action serves as an input to the motion pattern detector associated 

with that very action. It is the activities of these motion pattern detectors which constitute the 

decision response or more generally the behaviour of the biological motion detection system 

(Casile & Giese, 2005; Giese & Poggio, 2003). Moreover, imaging studies account for the 

possibility of the existence of motion pattern neurons in STS (Grossman et al., 2000; Vaina et 

al., 2001), and perhaps also in FFA (Grossman et al., 2000). 

A non-linear, excitatory and inhibitory network has been adapted, to simulate these motion 

pattern detectors, which has been used initially to describe neuronal polarity under various 

circumstances (Lugo et al., 2018). In this mechanism, which is known as mutual or global 
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inhibition, the element with the highest excitatory input suppresses the activity of those whose 

activities have not passed their thresholds in a nonlinear and reciprocated fashion (Lugo et al., 

2018; Wilson, 1999).  

The fact that mathematical models similar to the mutual inhibition one have shown success in 

the simulation of humans' decision neuronal networks (Wilson, 1999) is the reason behind this 

choice of model. 

 

Robust Mutual Inhibition Model. Initially, the mutual inhibition model (Lugo et al., 2018) 

explains the response of decision making neurons using the following nonlinear dynamic 

below:   

(3)               𝜏
𝑑𝑇

𝑑𝑡
= −𝑇 + 𝑆(𝑃𝑇(𝐷)) 

(4)          𝜏
𝑑𝐷

𝑑𝑡
=  −𝐷 + 𝑆(𝑃𝐷(𝐷, 𝑇)) 

Where  is the activity of whichever neuron getting excited first by the activity of the previous 

hierarchy level and  is the activity of the rest of the neurons.  is a time constant and 𝑆() is 

a modified Michaelis-Menten function (Wilson, 1999) which is especially useful in designing 

excitatory-inhibitory networks (Lugo et al., 2018): 

 

(5)                        𝑆(𝑃) = {
𝑀𝑃2

𝜎2 + 𝑃2
   𝑃 ≥ 0

0       𝑃 < 0

} 

 

where 𝑀 is the maximum information threshold for the excitatory-inhibitory activity and 𝜎 

almost always marks the information, threshold point where the function hits half of its 

maximum.  𝑃𝑇 and 𝑃𝐷 are the information thresholds available to 𝑇 − 𝑡𝑦𝑝𝑒 and 𝐷 − 𝑡𝑦𝑝𝑒 

neurons, respectively: 

 
(6)                               𝑃𝑇(𝐷) = 𝐸𝑇 − 𝑘𝑁𝐷       

 
(7)        𝑃𝐷(𝐷, 𝑇) = 𝐸𝐷 − 𝑘(𝑁 − 1)𝐷 − 𝑘𝑇  

 

where 𝑁 is the number of neurons and the constant  is the inhibitory feedback gain. Also, 𝐸𝑇 

and  𝐸𝐷  represent the external inputs generated from the previous hierarchy level. The number 

T

D t

k
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of equations to solve depends on how many decision-making neurons are involved in the 

process. For instance, if we want decision-making agents to pick one choice out of 𝑁 choices, 

we would need to solve one equation (6) and 𝑁 − 1 equations (7). Thus, 𝑁 = 2, since, in our 

model, the decision is between left and right kicks. For more information and mathematical 

details, one must refer to Lugo et al. (2018) (Lugo et al., 2018). 

 

The original mutual inhibition model dictates that only the non-negative information thresholds, 

𝑃𝑇or 𝑃𝐷, would contribute to the activity of the decision neurons and, when negative, the neuron 

activity attenuates exponentially according to the linear first-order dynamic that it follows in the 

absence of any input and interconnection between other neurons. Although this implementation 

maintains some degree of robustness, it falls short facing the high variation signals coming from 

the third hierarchy layer. To reduce the level of sensitivity, we modified the system to neglect 

the negative changes. In other words, when neurons are disconnected as a result of negative 

information thresholds, detectors’ activities will be as follows: 

 

(8)        𝜏
𝑑𝑇

𝑑𝑡
= {

−𝑇     𝑇 ≤ 0
   0      𝑇 > 0

}      

(9)         𝜏
𝑑𝐷

𝑑𝑡
=  {

−𝐷     𝐷 ≤ 0
   0      𝐷 > 0

} 

 

Modeling of the Internal Noise. To simulate uncertainty in the decision-making process, we 

assumed that the output of each optic flow pattern neuron is drawn from a Gaussian distribution, 

𝒩(𝐻𝑖(𝑡), ∆𝑡𝛿2), where 𝐻𝑖(𝑡) is the ideal activity of the optic flow neuron in the absence of the 

added internal noise of the variance, 𝛿2. In our model, this implementation can be construed as 

the generative input process of the 4th layer due to the physiological noise in the visual pathway. 

It also can be shown that in the particular case of the constant priors for generating feed-forward 

input, 𝐺𝑖(𝑡), such exercise mirrors the uncertainty in the internal generative models of the 3rd 

layer. In this case, the added noise represents the error between the internal generative model 

and the feature input that the decision-making agent receives. 
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Figure02-1: Schematic of the model in one hypothetical point in time, from left to right: (a) the 

reel of biological motion stimulus (b) local motion detectors as ensemble of 1116 neurons 

positioned in a 36 by 31 arrangement, are firing due to the motions they have experienced during 

two consecutive frames, represented by the cells with filled-color arrows (blue: right, orange: 

left, grey: up, and green: down), the larger,  two-headed, colorful arrows were drawn to display 

the types of opponent motions that would be sensed on the next level (cyan: horizontal 

expansion, orange: vertical expansion, and magenta: vertical contraction) (c) opponent motion 

detectors, the ensemble of 100 neurons to detect horizontal expansion, horizontal contraction, 

vertical expansion, and vertical contraction, the activated detectors are marked with color-filled 

hexagons with their corresponding color (cyan: horizontal expansion, orange: vertical 

expansion, and magenta: vertical contraction), (d) optical-flow pattern detectors, an arrangement 

of 18 neurons following a one-dimensional mean-field dynamics, each neuron incorporates a 

statistical template (displayed as colorful map) that represents a specific part of the manifold of 

the kicking sequences (for example neuron number 2 contains a template for the seconds 11 to 

20 of the kick-to-right sequence, while neuron number 10 would have a larger instantaneous 

input for the seconds 1 to 10 of the kick to the left stimulus). Green arrows are highlighting the 

contribution of two cells to the evidence integration at that hypothetical point due to the 
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similarity of the evidence signal and their template (e) thresholding stage, two decision neurons 

for the right and left decisions (marked by capital letters R and L on the square cells with soft 

edges) are following our mutual inhibition dynamics receiving their corresponding inputs from 

integration stage, the straight and curve lines with rounded heads highlight the inhibitory 

interaction between the neurons and the auto-inhibition, respectively. No activity could be seen 

by either of the neurons since at that hypothetical point in time, neither made a decision yet.     

Methods 

All implementations of the simulation model have been executed in Matlab, and for the 

data fitting and statistical analyses, R Studio platform has been used. 

Stimuli and Data. To simulate the same conditions of the psychophysics study (Romeas & 

Faubert, 2015) for which we propose a simulation model, we adopted the same original point 

light soccer kick captured by Mixamo studio. The stimulus comprises 15 dots representing the 

head and the human body's major joints (shoulders, hips, elbows, wrists, knees, and ankles). The 

stimulus is comprised of 90 frames with a duration length of 4.5 seconds. By rotating the original 

stimulus around the Z-axis, we were able to create the stimuli for leftward and rightward point-

light soccer kicks with different angles. In the psychophysics study, subjects were exposed to 

the stimuli with deviations of 2, 4, 8 and 15◦ angles either towards the left-hand side or right-

hand side of the viewer. For training and cross-validation of the model, the utilized data is 

comprised of all shooting angles within the range of 1° to 20°. This range is the angular range 

in a penalty kick from the goalie's point of view. As a real-world example, a penalty kick 

resembles a wide range of situations.  Nonetheless, in a regulated and constrained condition, it 

provides a framework to estimate an angular range within which one can assume the human 

brain has been trained. In other words, we believe that this angular range is the approximate 

range that constructs the prototypical patterns in one's visual system. 

A k-fold cross-validation (k=5) procedure has been used to validate our model (Jung & Hu, 

2015). Thenceforth, the model has been trained in the range of 7° to 20°moreover, tested for 

angles 2°, 4°, 8° and 15°to recreate the behavioral test conditions.  
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Local Motion Energy and Opponent Motion Neurons. The methods to implement the 1st 

and the 2nd hierarchy level of the present simulation model have been borrowed from the 

previous studies (Casile & Giese, 2005; Giese & Poggio, 2003). 

 

Optic Flow Pattern Neurons. For each direction (left or right), we installed nine optical flow 

pattern detectors. Each detector is selective for 10 consecutive frames out of 90; for example, 

neuron 𝐻1
𝐿𝑒𝑓𝑡

 is selective for frames 1 to 10 of the left side shooting and 𝐻6
𝑅𝑖𝑔ℎ𝑡

 is selective for 

the frames 41 to 50 of the right-side shooting. Each neuron incorporates an internal generative 

model, 𝑝(𝑢|𝜔𝑘), 𝑘 = 1, . . ,18, assumed to be of the Gaussian form, 𝒩(𝜇𝑘, Σ𝑘). The mean, μ_k, 

and covariance matrix, Σ_k, of each template is computed using feature vectors derived from 

10 frames of multiple stimuli with different degrees of deviation. For instance, 𝐻6
𝑅𝑖𝑔ℎ𝑡

 is trained 

using feature vectors from frames 61 to 70 of the shootings with 7° to 20° degrees of deviation 

to the right-hand side of the observer. Concisely, 𝐻6
𝑅𝑖𝑔ℎ𝑡

 is supposedly selective for frames 61 

to 70 regardless of the deviation of the shooting.  

While the feed-forward input to each optic flow neuron is derived from the previous layer 

output, the dynamic of the neurons of this level, following (1), is solved using Euler's method. 

To provide the input for the next hierarchy level, an independent Gaussian noise has been added 

to the activity of each of the optical flow detectors. 

 Below, the activity of these neurons in the absence of the internal noise to the stimulus 

representing a kick with 9°degrees of deviation to the right is demonstrated (Figure 2-2). 
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Figure02-2: The activity of these neurons in the absence of the internal noise to the stimulus 

representing a kick with 9°degrees of deviation to the right. Neurons 1 to 9 are responsive to the 

right-side kicks and neurons 11 to 18 are sensitive to the left-side kicks. 

 

Motion-Pattern Neurons. At the decision-making layer, two motion pattern neurons have been 

implemented, One for the leftward kick motion and the other one for the rightward kick motion. 

As described in the previous section we modeled the dynamic of these detectors using robust 

mutual inhibition method. The fourth-order Runge-Kutta has been utilized to solve the nonlinear 

system dynamics. 

Also, the activity of these decision-making neurons as members of the thresholding stage 

when the stimulus is a sequence of a 9° degrees to the right kick, while the internal noise is not 

present, is depicted in figure 2-3, below: 
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Figure02-3: The neuron responsive to the right-side kick (blue) is highly activated, while the 

inhibition in the other neuron is evident.   
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Simulating Human Behaviour. In the behavioral study, Romeas and Faubert (2015) utilized a 

forced-choice paradigm task to decide the direction of the ball (left or right) by only relying on 

the biological motion signal (Romeas & Faubert, 2015). Each subject was exposed to a total of 

1080 randomized stimulus sequences of left and right shooting with deviations of 2°, 4°, 8° and 

15° angles (120 times for each angle at each side). Accordingly, for each subject, a psychometric 

function to relate human behaviour to the angular deviation was determined (Romeas & Faubert, 

2015). Here, to simulate those performances, three parameters of our simulation model were 

adjusted to mimic the behaviours of 35 athlete subjects from the psychophysical study.   

Just like the behavioural study, for each angle and side, the simulation model has been exposed 

to the particular stimulus 120 times in order to generate an error percentage quantity. 

Additionally, this has been repeated 30 times, and the corresponding psychometric function has 

been determined using the simulated results. 

The three variables for tuning the model to 35 athlete subjects were: 

1. The standard deviation of the added internal noise, 𝛿.  

2. The time constant, 𝜏. 

3. The inhibitory feedback gain, 𝑘.  

 

Results 

While the previously proposed models, trained with similar data, performed very poorly for 

detecting the point-light kicking sequences, our model efficiently showed outstanding 

performance facing the stimuli. The 5-fold cross-validation of our model resulted in 87.5% 

average success. 

The model performance demonstrated remarkable robustness in the presence of a wide range of 

imposed internal noise, 𝛿. Besides noise being a prominent adjuster of our model, the degree of 

inhibition occurring between two decision making neurons, represented by 𝑘, along with their 

intrinsic latency, represented by 𝜏, prove to be critical factors to bring the model into different 

functional states. Grid search computation has been performed for different ranges of internal 

noise, 𝛿, mutual inhibition gain, 𝑘, and intrinsic latency of the decision neurons (thresholding 

stage), to generate the results. Here we present a part of the results from solving the model for 
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different parameters as an effort to get an insight into how each parameter could contribute to 

the model’s decision-making behavior (Table 2-1). Increase in neurons’ dynamic time 

constant, 𝜏 always results in better performance, meaning lower angular thresholds and steeper 

slopes, while an increase in the inhibitory gain, 𝑘 shows a different trait.  

 

Figure02-4:  The psychometric function angular thresholds resulted from running the model for 

exemplary ranges of neuronal latency ( 𝜏 = 0.024, 0.025, 0.03, 0.033, 0.037 𝑠𝑒𝑐) and 

inhibitory gain (𝑘 = 2, 4, 8, 16, 32) for three noise levels (𝛿 = 0.028, 0.030, 0.034)   
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Figure02-5: The psychometric function slopes resulted from running the model for exemplary 

ranges of neuronal latency ( 𝜏 = 0.024, 0.025, 0.03, 0.033, 0.037 𝑠𝑒𝑐) and inhibitory gain 

(𝑘 = 2, 4, 8, 16, 32) for three noise levels (𝛿 = 0.028, 0.030, 0.034)    

At first, the increase of inhibition gain, 𝑘 leads to deterioration of performance (higher 

threshold, flatter slope) but this changes after 𝑘 passes the value of 8. However, the phenomenon 

seems less evident for 𝛿 =0.030. At that noise level, the angular thresholds are not decreasing 

and just increasing at a lower rate; however, one must notice the slopes taking on a new trend 

becoming steeper which only means reaching higher accuracy in smaller angular deviations.  

Unsurprisingly, the betterment of the performance does not come free of cost. Analyzing 

the activity of decision neurons shows it takes far more time for the winning neuron to reach the 

highest point of its activity when the inhibitory gain, 𝑘, is too large, and that could only be 

interpreted as longer processing time.  
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Human Results Vs. Simulation Results. By adjusting the parameters mentioned above: 

internal noise, 𝛿, mutual inhibition time constant, 𝜏, and inhibitory gain, 𝑘, the behaviour of 35 

athlete subjects has been mimicked. The parameters and the associated simulated angular 

thresholds and slopes versus the experimental values have been reported below in table 2-2. 

Subjects are grouped by similar angular thresholds and slopes and each group is simulated by 

one set of parameters. Such an approach helps to acquire a more generalized understanding of 

subjects’ behaviours as groups. 

Moreover, a ranked assembly of experimental angular thresholds versus their simulated 

counterparts has been plotted in figure 2-2, and the corresponding slopes to the angular 

thresholds have been plotted versus their corresponding simulated slopes in figure 2-3. The two 

figures provide a more discernable comparison between experimental and simulation results. 

Correlation analysis shows a significant positive correlation between experimental and 

simulated angular threshold values, with the Spearman correlation coefficient 𝑟𝑠 = 0.991, 𝑝 −

𝑣𝑎𝑙𝑢𝑒 = 7.08𝐸 − 31 (𝑝 < 0.001) and another significant positive correlation between 

simulated and experimental slope values with Spearman correlation coefficient 𝑟𝑠 = 0.963, 𝑝 −

𝑣𝑎𝑙𝑢𝑒 = 2.70𝐸 − 20(𝑝 < 0.001). 
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Table 2-1:  by tuning the 𝑘, 𝜏 and 𝛿 Parameters the angular thresholds (75%) and the slopes of 

athletes’ psychometric functions have been simulated 

 
Subjects 

Angular 
Thresholds 

from 
Experiment 

Angular 
Thresholds from 
Simulation 

Slopes 
from 

Experiment 

Slopes 
from 

Simulation 

Inhibitory 
Gain 
(𝑘) 

Time 
Constant 

(𝜏) 

Noise 
(𝛿) 

C12 4.041±1.05 5.209±0.200 0.261±0.03 0.260±0.0048 4 0.0245 0.022 

A10 4.176±1.08 ˶ 0.252±0.028 ˶ ˶ ˶ ˶ 

B04 4.506±1.1 ˶ 0.246±0.027 ˶ ˶ ˶ ˶ 

B01 4.805±1.12 ˶ 0.243±0.026 ˶ ˶ ˶ ˶ 

A15 5.321±1.14 5.448±0.205 0.242±0.025 0.251±0.0047 2 0.033 0.032 

B05 5.361±1.04 5.425±0.193 0.284±0.028 0.279±0.005 4 0.037 0.03 

B09 6.602±1.41 6.871±0.268 0.188±0.02 0.181±0.0036 4 0.025 0.034 

A11 6.637±1.52 ˶ 0.171±0.019 ˶ ˶ ˶ ˶ 

A06 6.609±1.21 6.556±0.232 0.233±0.022 0.218±0.004 8 0.033 0.032 

A01 7.000±1.51 7.228±0.263 0.175±0.019 0.188±0.0036 8 0.03 0.034 

C07 7.097±1.42 ˶ 0.192±0.02 ˶ ˶ ˶ ˶ 

C11 7.165±1.39 ˶ 0.197±0.02 ˶ ˶ ˶ ˶ 

B14 7.692±1.79 7.664±0.363 0.147±0.017 0.130±0.0031 1 0.024 0.026 

B08 7.753±1.8 ˶ 0.146±0.017 ˶ ˶ ˶ ˶ 

A02 7.837±1.86 ˶ 0.141±0.017 ˶ ˶ ˶ ˶ 

A13 7.873±1.69 ˶ 0.159±0.018 ˶ ˶ ˶ ˶ 

B11 8.132±2 8.509±0.421 0.132±0.017 0.115±0.003 1 0.024 0.028 

C13 8.594±2.08 ˶ 0.128±0.016 ˶ ˶ ˶ ˶ 

C04 9.173±1.77 9.275±0.337 0.158±0.017 0.151±0.003 16 0.025 0.034 

B03 9.191±2.64 9.198±0.438 0.103±0.016 0.113±0.0029 2 0.024 0.028 

C06 9.543±2.34 9.818±0.496 0.118±0.016 0.102±0.0028 2 0.024 0.03 

B07 9.589±2.86 ˶ 0.096±0.015 ˶ ˶ ˶ ˶ 

C08 9.747±1.69 9.791±0.313 0.170±0.017 0.168±0.0031 32 0.033 0.032 

A03 10.49±1.56 11.131±0.376 0.130±0.011 0.144±0.0028 32 0.025 0.34 

A04 10.801±2.2 ˶ 0.132±0.015 ˶ ˶ ˶ ˶ 

A07 10.843±2.25 ˶ 0.128±0.015 ˶ ˶ ˶ ˶ 

A05 10.77±2.71 10.696±0.529 0.105±0.015 0.098±0.0028 4 0.024 0.028 

C01 10.83±2.6 ˶ 0.110±0.015 ˶ ˶ ˶ ˶ 

A08 12.132±2.75 12.315±0.606 0.109±0.015 0.091±0.0027 8 0.024 0.028 

B02 12.173±2.67 ˶ 0.113±0.015 ˶ ˶ ˶ ˶ 

B06 12.525±2.81 ˶ 0.108±0.014 ˶ ˶ ˶ ˶ 

B13 12.86±3.93 12.258±0.664 0.078±0.014 0.083±0.0027 2 0.024 0.034 

A14 16.617±4.88 17.978±1.105 0.071±0.013 0.06±0.0025 8 0.024 0.036 

A09 17.194±5.84 ˶ 0.061±0.013 ˶ ˶ ˶ ˶ 

C02 17.787±5.35 ˶ 0.068±0.013 ˶ ˶ ˶ ˶ 
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Figure 2-6: diamonds represent the angular thresholds (75%) calculated from the psychometric 

function of the subjects in the experimental tests and the black dots display the angular 

thresholds generated by simulation. 

 

Figure02-7 : Diamonds represent the slopes of the subjects’ psychometric functions while 

black dots demonstrate the simulated slopes 
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Discussion 

We applied our descriptive risk-averse Bayesian decision-making approach to the 3rd 

layer and the mutual inhibition method to the 4th layer of the hierarchies, and unlike their 

predecessor proposed methods (Casile & Giese, 2005; Giese & Poggio, 2003), the model 

showed notable success to simulate human behaviour in the sense of mimicking their 

psychometric function. Therefore, despite all the existing limitations of the model, mirroring the 

behaviour of 11 athletic subjects has been accomplished. Moreover, we deem the model has not 

unleashed its full capacity, and those potentials are yet to be implemented which would make 

the model encompass the behaviour of all the subjects. One other future work at hand is to 

integrate the reaction time into the present model. 

It is generally agreed that the human visual system exploits a mixture of all sorts of 

motion and form cues to detect the biological motion and neither the optical flow features nor 

the form features in and of themselves are adequate for the biological motion recognition (Blake 

& Shiffrar, 2007). Here, by the proposed model, we aimed to investigate and test the extent of 

the optic flow features sufficiency to discern a complex biological motion stimulus. The results 

seem to corroborate the findings in the Gliaie and Dotan (2015) study, which does not find the 

form cues integral to biological motion detection (Gilaie-Dotan et al., 2015). Also, our findings 

are in line with the claim in the Thurman and Lu (2014) study suggesting that the ventral 

pathway processes the dynamic biological and non-biological forms in the same fashion 

(Thurman & Lu, 2014). 

However, there are limitations to be considered and discussed. One imposed constraint 

is the fact that each opponent motion neuron in our model only looks at two horizontally abutting 

receptive fields while in reality some of these neurons are wired to pool the signals from two 

distant receptive fields, enabling the visual system to process more global relative motions in a 

moving scene (A. T. Smith & Snowden, 1994). Furthermore, for the sake of simplification, like 

in the previous studies, the activity of the local motion neurons have been approximated by the 

computation of the optical flow from the stimulus animation (Casile & Giese, 2005). Also, both 

the first and second layers have been presumed to be noise free. Additionally, while the 

existence of rotation detectors have been substantiated in the human visual system (A. T. Smith 
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& Snowden, 1994), in our model, opponent motion detection level only provides the next level 

with expansion and contraction cues while rotation cues are an additional source of information 

from which  the decision making parts of the model could benefit. Again, online learning is 

another capacity that needs to be implemented.   

Additionally, it has been shown that executive function deficit leads to slower cognitive 

processing speed and longer time for completing tasks (Hill, 2004). Moreover, disorders such 

as anxiety disorder, major depressive disorder, attention deficit hyperactivity disorder, and 

autism impair the executive function (Hosenbocus & Chahal, 2012). Furthermore, one 

introduced model has suggested that some forms of autism are caused by an increased ratio of 

excitation/inhibition in sensory, mnemonic and some other systems because of genetics and 

environmental factors affecting one’s neural system (Rubenstein & Merzenich, 2003). In our 

model, the increase in the processing time appearing in large inhibitory gains (which affects the 

excitation/inhibition ratio of the motion pattern neuronal system) could be construed as 

noticeable compliance of the present model with current findings. 

The present model uses fixed prototypes, parameters, and priors to perceive and make 

decisions. A more comprehensive model could benefit from online learning and adaptation 

capacities. To implement such capabilities in the current platform and empower it to detect 

biological motion through online learning also lies in our plan for future work. 
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Abstract 

The importance of biological motion perception in different aspects of human lives such 

as survival, their social life, and interactions is a well-established consensus. So, it comes as no 

surprise that to determine its mechanisms and affiliated neurobiological substrates has been a 

subject of interest for quite a while. Previously, we proposed a descriptive risk-averse Bayesian 

simulation model, which represented the dorsal pathway as a motion information processor of 

the visual system (assimilating two-stream theory). This approach has been inspired by recent 

studies questioning the degree of impact of dynamic form cues in biological motion perception 

and was developed based on earlier neurophysiologically plausible model assumptions. The 

model was trained to distinguish the soccer ball’s direction (invisible) from a set of complex 

biological motion soccer-kick stimuli used in an earlier psychometric study in our lab. The goal 

was to simulate the accuracy behaviour of the athlete subjects from our previous study by 

recreating their psychometric functions with the model. However, the model was not capable of 

simulating the subjects’ reaction times in a neurophysiologically credible manner, and a few 

subjects could not be simulated. Therefore, in the present work, incorporating neural adaptation 

using our novel disremembering strategy in the decision-making level enabled the model to 

simulate the reaction times of the athlete subjects. Also, similar to earlier works, in our previous 

model, the rotational optic flow patterns have not been taken into account for decision making. 

Therefore, in the present extended version, the receptive fields to detect rotational optic flow 

have been implemented leading to the simulation of a new subject and the betterment of 

correlation between simulation and experimental coefficients. Such finding sheds light on the 

criticality of how rotational optic flow could contribute to the decision-making process while 

providing some insight on how different individuals perform at different levels. The correlation 

analysis of human versus simulation data shows a significant, almost perfect correlation between 

experimental and simulated angular thresholds and slopes, respectively, and also a significant 

and strong relation between athlete subjects and simulations average reaction times. 

Keywords: Biological motion, Bayesian, Dorsal pathway, Hierarchical simulation model, 

Reaction Time 
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Introduction 

The consistent flowing motions exclusive to biological agents are known as biological 

motion phenomenon. Biological motion tends to disclose a variety of information, ranging from 

the identity of a predator to the intent of a person in a social context. To accurately perceive 

those cues under somewhat suboptimal conditions could preserve the physiological or social 

survival of an observer (Blake & Shiffrar, 2007; Johansson, 1973). Biological motion could be 

efficiently recognized from point-light displays which are a number of lit points representing 

significant joints of the biological agent (Gilaie-Dotan et al., 2015; Johansson, 1973). The body 

of research in this domain is vast and diverse, but it mainly has been targeting three prominent 

themes: kinematic information captured by the visual system, underlying neural mechanisms of 

the biological motion perception (Blake & Shiffrar, 2007; Giese & Poggio, 2003) and brain’s 

sensory and motor areas participation in biological motion perception (Saygin, 2012). 

On account of the massive number of imaging, neurophysiological and psychophysical 

studies on the subject it appears that there exists a unanimous agreement on the prominent 

activated areas of the brain during the biological motion perception process. Dorsal and ventral 

pathways of the visual system along with the site of their convergence in the superior temporal 

sulcus (STS) are considered the major activated areas during the process (Beintema & Lappe, 

2002; Mather et al., 1992).  

Naturally, after a while, the accretion of data from biological motion experiments and 

also the need for a sound theoretical framework necessitated a computational model that could 

explain the biological motion perception specifically in a neurophysiologically plausible fashion 

(Blake & Shiffrar, 2007). Therefore, founded on the idea of formation and presence of saved 

prototypical patterns in the visual system Giese et al. proposed a feedforward multi-level 

architecture with one stream for dynamic form detection and one stream to detect the optic flow, 

simulating the dorsal and ventral pathways of the visual system (Giese & Poggio, 2003). Using 

this simulation model in their study, they concluded that it is the dorsal pathway (motion analysis 

stream) which has the most impact for biological motion perception (Blake & Shiffrar, 2007; 

Casile & Giese, 2005; Giese & Poggio, 2003). Such finding was at variance with the earlier 

study on the matter by Beintema and Lappe (Beintema & Lappe, 2002). Later, it was argued 
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that the perception/recognition of the biological motion requires the synergy between two 

pathways in order to achieve the most robust response (Blake & Shiffrar, 2007).  

Meanwhile, developmental studies apprise of exclusive predisposition towards motions 

emanated from biological agents in human infants and newborn fowls while no exclusivity has 

been distinguished about organic shapes and forms over non-biological ones (Bardi et al., 2011; 

Vallortigara et al., 2005). Also, the existence of some low-level motion capturing filters 

specialized in biological motion has been indicated by behavioral data (Chang & Troje, 2008; 

Troje & Westhoff, 2006). Consequently, Thurman and Lu (2014) showed that the ventral 

pathway processes the biological and non-biological dynamic forms similarily, challenging the 

existence of any substrate, specialized in processing dynamic biological form exclusively 

(Thurman & Lu, 2014).  

Although, further examinations of the neural correlates show the activation of some 

cortical regions linked to form and motion cues in addition to the ventral and dorsal pathways 

in the event of biological motion perception, the nature of those activations could not be 

appraised as causal in nature (Gilaie-Dotan et al., 2015; Grosbras et al., 2012; Kourtzi et al., 

2008). Consequently, one study has investigated six patients with compromised visual cortex 

who had focal injuries in multiple regions of their ventral pathway. Accordingly, all subjects 

were capable of recognizing the point-light stimuli while maintaining not significantly different 

thresholds compared to intact subjects. Surprisingly, they exceded other patients who had 

injuries in other areas of the brain critical to biological motion perception (Gilaie-Dotan et al., 

2015).                 

To explore the potentials and the limits of the dorsal pathway, considering the 

connotations from all recent findings and the apparent need to address the biological motion 

perception in a more realistic context, the necessity of a more effective biologically plausible 

computational framework appears desirable(Misaghian et al., 2018).  

In a more pragmatic approach, Misaghian et al. proposed a biologically plausible 

simulation model which could anticipate the direction of the ball from a wide range of biological 

motion stimuli of a soccer player, adopted from Romeas et al. (2015), while previous approaches 

showed no promise when confronted with these stimuli (Romeas & Faubert, 2015). Founded on 
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the very assumption that the visual system recognizes and makes a decision using stored 

prototypical patterns (Giese & Poggio, 2003), our model managed to replicate the psychometric 

functions of 11 athlete subjects from a behavioural study accurately, (Misaghian, Lugo, & 

Faubert, 2018; Romeas & Faubert, 2015). The model is comprised of hierarchies parallel to the 

motion pathway hierarchy levels in the visual system (Casile & Giese, 2005; Giese & Poggio, 

2003) while incorporating a descriptive risk-averse Bayesian scheme for pattern recognition and 

a more robust version of a mutual inhibition network for decision making (Misaghian et al., 

2018). Despite the model’s success, it could not contain all the subjects’ performances from the 

psychophysical study (Romeas & Faubert, 2015)  and lacked the circuitry to characterize the 

subjects’ reaction times.  

The present study intends to augment the scope of the model above in the sense that it 

could represent all subjects’ behaviors from the Romeas et al (2015) (Romeas & Faubert, 2015). 

study in both accuracy and reaction time domains. In the enhanced model the integration of 

rotational detectors at the opponent-motion detection level extends the model’s ability to explain 

observers’ performance more comprehensively by exploring the role of the rotational cues (A. 

T. Smith & Snowden, 1994; Tanaka & Saito, 1989) in the decision-making process. In the 

meantime, modification of our robust mutual inhibition model that represents the motion pattern 

detection level empowers our simulation model to estimate the reaction time of the observers 

without compromising the results of the previous work (Misaghian et al., 2018). 

Model 

The descriptive risk-averse Bayesian model mentioned above is a feed-forward model 

consisting of hierarchies of neurons representing the dorsal stream as follows: 
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Local Motion Energy Detectors. Neurons at this level are sensitive to motion directions with 

small receptive fields (≈0.4 deg). At this level, the descriptive risk-averse Bayesian model 

directly incorporates sensitivity to four relative directions in 2D (up/down/left/right). The 

receptive fields are arranged in a 36x31 grid with some overlapping according to (A. T. Smith 

& Snowden, 1994). For the sake of simplification, the activity of local motion detectors is 

approximated using the vector fields obtained from the calculation of optical flow in all 

consecutive frames of the stimulus. A more detailed description can be found in Casile and 

Giese’s paper (2005) (Casile & Giese, 2005). The presence of such neurons has been reported 

in areas V1/2 and area MT of monkey’s visual cortex(A. T. Smith & Snowden, 1994). 

Opponent-Motion Detectors. The second level of the hierarchy pertains to neurons that are 

sensitive to expansions, contractions, and rotations occurring in the contiguous subfields of their 

receptive fields (A. T. Smith & Snowden, 1994). It is believed that, within each subfield, Such 

detector “max-pools” the responses of the corresponding local energy neurons from the lower 

level and the output signal is a product of the maxima, suggesting spatial invariance within the 

receptive field (Allman et al., 1985; Gawne & Martin, 2002; Lampl et al., 2004; Riesenhuber & 

Poggio, 1999). It has been suggested that opponent-motion detection neurons might reside in 

the human brain’s  KO/V3B area (Orban et al., 1995; Orban et al., 1992). 

In this study clockwise and counterclockwise rotation detectors have been implemented in 

addition to the previous horizontal and vertical contraction and expansion sensors to explore 

their role in the process of biological motion perception in light of previous findings (Misaghian 

et al., 2018).  

Here, two 5x4 assemblies, accounting for clockwise and counterclockwise detectors, introduce 

20 new rotation detectors to the previous arrangement of 100 contraction and expansion 

detectors (Casile & Giese, 2005; Misaghian et al., 2018).      
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Complex Global Optic Flow Pattern Detectors. Detectors in the next hierarchy level do 

possess receptive fields of more than 0.8 degrees (which cover the whole stimulus) and 

recognize complex optic flow patterns in the right temporal order. More accurately, detectors at 

this level are tuned to a specific optic flow pattern of a particular temporal order. Here, to 

simulate the third hierarchy level, the same structure as the previous study has been maintained 

(Misaghian et al., 2018).  

The 18 neurons at this level of our model are asymmetrically and laterally connected. These 

connections are arranged in a way that the active neuron excites the neurons tuned to the future 

templates and inhibits the ones tuned to the past (Casile & Giese, 2005; Giese & Poggio, 2003; 

Mineiro & Zipser, 1998).   

The dynamic of a detector sensitive to the optic flow pattern in the 𝑖th frame (the optic flow 

risen from the 𝑖 − 1 to 𝑖th frame) of one stimulus sequence is as follows (Casile & Giese, 2005): 

𝜏𝑂𝐹𝑃 �̇�𝑖(𝑡) = −𝐻𝑖(𝑡) + 𝐺𝑖(𝑡) + ∑ 𝑤(𝑖 − 𝑚)𝑓(𝐻𝑖(𝑡))

𝑚

 

Where 𝐻𝑖(𝑡) is the activity of the detector 𝑖, 𝜏𝑂𝐹𝑃 = 150 𝑚𝑠, is also the time constant of the 

global optic flow pattern layer dynamic, 𝑤(𝑚) is a weight kernel, 𝑓(𝐻) is a step threshold 

function, and the instantaneous template matching performed by the neuron is modeled as the 

feed-forward input 𝐺𝑖(𝑡). Here, the feed-forward input is generated by our previously designed 

descriptive risk-averse Bayesian classifier. Refer to Misaghian et al. (2018) for a thorough 

description of this approach(Misaghian et al., 2018) . 

Different areas in the superior temporal sulcus have been known to be the most probable 

locations of the complex optic flow pattern neurons (Decety & Grèzes, 1999; Oram & Perrett, 

1994; Perrett et al., 1985; Vaina et al., 2001) 

Complete Biological Motion Pattern Detectors (Motion Pattern Detectors). The robust 

mutual inhibition model from Misaghian et al. (2018) had possessed no mechanism to explain 

the reaction time of the athlete subjects from Romeas and Faubert’s study 2015  study 

(Misaghian et al., 2018; Romeas & Faubert, 2015). Here, by introducing, the disremembering 

strategy into the robust mutual inhibition model, motion pattern neurons are enabled to make 

consistent decisions but, this time, within a similar reaction time frame. 

Neural adaptation refers to the decrease in the responsiveness of neurons exposed to a constant 

stimulus over time. For example, in the visual system, perception of an image or a motion 



 

84 

gradually diminishes or vanishes if there is no micro-saccadic eye movement (Martinez-Conde, 

Macknik, & Hubel, 2004). Moreover, the effect of adaptation phenomena has also been 

investigated and characterized in the context of decision making (Mayo & Smith, 2017; 

Theodoni, Kovács, Greenlee, & Deco, 2011). Complete motion pattern neurons as decision-

making neurons are no exceptions and could not stay activated perpetually. Our disremembering 

strategy serves to implement the ephemeral nature of neural activation in our model.    

Robust Mutual Inhibition Model with Adaptation. The mutual inhibition model (Lugo et al., 

2018) has the dynamic below and explains the response of decision making neurons:   

(3)               𝜏
𝑑𝑇

𝑑𝑡
= −𝑇 + 𝑆(𝑃𝑇(𝐷)) 

(4)          𝜏
𝑑𝐷

𝑑𝑡
=  −𝐷 + 𝑆(𝑃𝐷(𝐷, 𝑇)) 

where,  is the activity of a primarily excited neuron and  represents the activity of other 

neurons.  is a time constant and 𝑆() is a modified Michaelis-Menten function (Wilson, 1999) 

which has been proven advantageous in excitatory-inhibitory network model design. Also, 𝑃𝑇 

and 𝑃𝐷 are the information thresholds (Lugo et al., 2018). When information thresholds are 

negative and, as a result, the neurons lateral connections are off, the robust mutual inhibition 

model sets the negative output of the neurons into zero. For more information on the mechanism 

of robust mutual inhibition one must refer to Misaghian et al. (2018) (Misaghian et al., 2018).  

To actualize the neural adaptation in our model, we add the following terms as an input to the 

dynamic of both  𝑇 and 𝐷 neurons: 

 

(5)       𝐷𝑖𝑠𝑇 = 𝑢(𝑡 − 𝜏𝑎) ∗ [𝑇 − 𝑆(𝑃𝑇(𝐷)) − 𝑘𝑇 ]  

(6)       𝐷𝑖𝑠𝐷 = 𝑢(𝑡 − 𝜏𝑎) ∗ [𝐷 − 𝑆(𝑃𝐷(𝐷, 𝑇)) − 𝑘𝐷] 

 

where, 𝑢() is the unit step function, 𝜏𝑎 marks the time point when adaptation starts and 𝑘 is just 

a weighting coefficient. As one can see, at 𝜏𝑎, the disremembering inputs to the differential 

equations get switched on and the dynamic of each neuron reduces to a simple exponential 

decline, driving the neuron out of excitation state. 

T D

t
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Modeling Internal Noise. Like our previous study, to model the uncertainty, output of each 

optic flow pattern neuron is considered to be elicited from 𝒩(𝐻𝑖(𝑡), ∆𝑡𝛿2), where 𝒩() is a 

Gaussian process with the mean,  𝐻𝑖(𝑡), as the activity of the optic flow neuron 𝑖 without noise 

and 𝛿2 being the variance of the added internal noise (Misaghian et al., 2018). 

 

 

Figure03-1: Schematic of the model in one hypothetical point in time, from left to right: (a) the 

reel of biological motion stimulus (b) local motion detectors as ensemble of 1116 neurons 

positioned in a 36 by 31 arrangement, are firing due to the motions they have experienced during 

two consecutive frames, represented by the cells with color-filled arrows (blue: right, orange: 

left, grey: up, green: down), the larger,  two-headed or curved, colorful arrows were drawn to 

display the types of opponent motions that would be sensed on the next level (cyan: horizontal 

expansion, orange: vertical expansion, magenta: vertical contraction, green: counter-clockwise 

rotation, and yellow: clockwise rotation) (c) opponent motion detectors, the ensemble of 140 

neurons to detect horizontal expansion, horizontal contraction, vertical expansion, and vertical 

contraction, the activated detectors are marked with color-filled hexagons with their 

corresponding color (cyan: horizontal expansion, orange: vertical expansion, magenta: vertical 

contraction, green: counter-clockwise rotation, and yellow: clockwise rotation), (d) optical-flow 

pattern detectors, an arrangement of 18 neurons following a one-dimensional mean-field 

dynamics, each neuron incorporates a statistical template (displayed as colorful map) that 
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represents a specific part of the manifold of the kicking sequences (for example neuron number 

2 contains a template for the seconds 11 to 20 of the kick-to-right sequence, while neuron 

number 10 would have a larger instantaneous input for the seconds 1 to 10 of the kick to the left 

stimulus). Green arrows are highlighting the contribution of two cells to the evidence integration 

at that hypothetical point due to the similarity of the evidence signal and their template (e) 

thresholding stage, two decision neurons for the right and left decisions (marked by capital 

letters R and L on the square cells with soft edges) are following our mutual inhibition dynamics 

receiving their corresponding inputs from integration stage, the straight and curve lines with 

rounded heads highlight the inhibitory interaction between the neurons and the auto-inhibition, 

respectively. No activity could be seen by either of the neurons since at that hypothetical point 

in time, neither made a decision yet. Also, the dotted curved arrows and the circle with the letter 

D, are the representatives of the disremembering mechanism.      

Methods 

The simulation model has been implemented in Matlab, and the data and statistical 

analyses have been performed within R Studio framework. The original point light soccer kick 

from Romeas and Faubert (2015) has been adopted to maintain the similarity between the 

simulation model and human subjects (Romeas & Faubert, 2015). The stimulus is a 90-frame 

animation with 4.5-sec length demonstrating bright point lights, representative of human body 

significant joints, with a dark background. The leftward and rightward kicks have been 

synthesized by rotating the stimulus above about the Z-axis for different angles. While it is 

possible to rotate the stimulus to any arbitrary degree, the existing psychometric data only 

contain the human response from the deviations of 2° , 4°, 8° and 15° for either direction 

(Romeas & Faubert, 2015). Cross-validation and training data have been chosen from a whole 

range of 1° to 20° of deviation for both sides. This range spans all the possible degrees of 

deviation from a soccer goalkeeper point of view, considering the ball’s distance from the goal 

and the physical goal width. The penalty kick is one realistic example where such a task is 

required by a soccer player.  
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The model has been validated using k-fold cross validation (k=5). Furthermore, the range 

of 7° to 20° has been used for training. Also, the model has been tested for the angles from the 

psychophysical study (Misaghian et al., 2018; Romeas & Faubert, 2015). 

Local Motion Energy and Opponent Motion Neurons. While the 1st hierarchy level of local 

motion energy detectors have been correctly implemented as in Casile and Giese (2005), the 

new version of our model incorporates the clockwise and counterclockwise detectors in addition 

to previously implemented vertical and horizontal expansion and contraction neurons in its 2nd 

level (Casile & Giese, 2005; Misaghian et al., 2018). We implemented 20 receptive fields for 

each clockwise and counterclockwise detection, encompassing the 36x31 local motion detection 

grid of the lower layer. Each rotation receptive field is connected to 4 contiguous and 

overlapping subfields allowing the rotation detector to pick up the highest rotational activity 

using the max-pooling strategy. Each subfield is comprised of 14x14 local motion sensors 

making up a 4x5 receptive field arrangement for either of clockwise and counterclockwise 

rotation in the opponent-motion detection level. To clarify the mechanism of the detection, let 

us consider one clockwise rotation receptive field: as mentioned, there are four subfields 

connected to each detector: the upper-left, the upper-right, the lower-left and the lower right. 

Because our local motion detection level only detects the four fundamental right, left, up and 

down directions, the clockwise rotation could only manifest itself under two conditions depicted 

in Figure 3-2, and either of these situations get the clockwise rotation detection neuron excited. 

  

 

Figure03-2 : Subfields in one clockwise rotation receptive field of our model 
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Optic Flow Pattern Neurons. The architecture of the 3rd hierarchy level has remained 

unchanged from the previous model introduced in Misaghian et al. (2018) (Misaghian et al., 

2018). Briefly, there exist nine detectors for each direction, and each detector is sensitive to 10 

sequential frames out of 90 frames of the stimulus which sums it up to 18 neurons in the optic 

flow pattern level. For more detailed information on this one could refer to (Misaghian et al., 

2018).   

Motion Pattern Neurons. Two complete motion pattern neurons have been assigned, to 

differentiate between the leftward kick and rightward kick stimuli. The robust mutual Inhibition 

model with the ability to adapt and disremember has been utilized to model the interactive 

dynamics of these decision-making neurons. To solve this nonlinear differential system, we 

have employed the 4th order Runge-Kutta method.  

Operating the Simulator. In the behavioral study of our interest, a forced-choice paradigm task 

has been devised to detect the direction of the ball (left or right) from the biological motion 

stimuli (Romeas & Faubert, 2015). Therefore, subjects performed the task for a total of 960 

times, facing the randomly ordered stimuli of left and right shooting with 2°, 4°, 8° and 15° 

degrees of deviation (120 times for each side and each angle). Subsequently, in our previous 

study, the tuning of three parameters of the model was adequate to replicate the psychometric 

function of 35 athlete subjects which described their precision in terms of angular deviation 

(Misaghian et al., 2018). The three mentioned parameters are the standard deviation of the 

internal noise, 𝛿, the time constant, 𝜏, and the inhibitory feedback gain, 𝑘. In the present 

extended model, the new parameter 𝜏𝑎, which characterizes the starting time point of the 

adaptation process is the parameter which enables our model to simulate the reaction time of 

human subjects. More precisely, each reaction time from each trial is calculated by averaging 

the time points within which the winning decision signal is at its maximum. It is our intention 

to tune our model in a way that can generate the angular threshold and the slope of each subject 

along with its average reaction time and this must be achieved by modifying four parameters 

instead of the previous three: 

1. The standard deviation of the added internal noise, 𝛿 . 

2. The time constant, 𝜏 . 

3. The inhibitory feedback gain, 𝑘, and 
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4. The time point of adaptation onset, 𝜏𝑎 

Results 

Extended Model Reaction Time Output. For a wide range of parameters, 𝑘, 𝜏 𝑎𝑛𝑑 𝛿, the 

model has been run for a constant parameter value of 𝜏𝑎 = 1.22 𝑠𝑒𝑐 and the angular thresholds, 

slopes and reaction times have been calculated accordingly. Part of the results has been 

presented below to give an insight into how the reaction time would vary as a function of all 

four parameters (Table 3-1). Each measured reaction time in the psychometric data (Romeas & 

Faubert, 2015) is a sum of motor time plus the actual reaction time (time lapse between exposure 

to the stimulus and the initiation of the motor response). Thus, it is worth mentioning, that the 

motor time (time elapsed from motor response initiation and button being pushed) has been 

approximated to zero in this study. This approximation has been made, considering the motor 

time being only a fraction of the reaction time in our task, one being in the order of tens of 

milliseconds (Botwinick & Thompson, 1966) and the other one’s average being one second. 

Adding to previous findings, the increase in neurons’ time constant, 𝜏, not only contributes to 

smaller angular thresholds and steeper slopes but also leads to a decrease in the reaction time. 

In other words, better performance. Furthermore, while an increase in  inhibitory gain, 𝑘, 

deteriorates and then ameliorates the response accuracy of the model after certain inhibition gain 

value, it always leads to higher reaction time. As one could see in the Table 3-1, shaded cells 

show how doubling the inhibitory gain, 𝑘, results in a lower angular threshold and a steeper 

slope while the reaction times of both conditions are unrealistically large which is normal 

considering 𝑘 being too large for both conditions. It is the consensus, that slower cognitive 

processing speed could be a result of executive function deficit because of disorders such as 

autism and attention deficit hyperactivity disorder (Hill, 2004; Hosenbocus & Chahal, 2012). 

Also, it has been suggested that some forms of autism are believed to be caused by a high ratio 

of excitation/inhibition in neuronal systems (Rubenstein & Merzenich, 2003).  

Intriguingly, having within-range accuracy with such high reaction time when 𝑘 is large stands 

in line with an autistic behaviour, corroborating the implications from our previous work, 

suggesting these states of our model could be associated with what occurs in some forms of 

autism (Hill, 2004; Hosenbocus & Chahal, 2012; Misaghian et al., 2018; Rubenstein & 

Merzenich, 2003). 
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Furthermore, the increase in internal noise level, 𝛿, results in a higher angular threshold, flatter 

slope and faster reaction time or overall worse performance of the simulation model. 

 

Figure03-3: The reaction times resulted from running the model for exemplary ranges of 

neuronal latency ( 𝜏 = 0.024, 0.025, 0.03, 0.033, 0.037 𝑠𝑒𝑐) and inhibitory gain (𝑘 =

2, 4, 8, 16, 32) for three noise levels (𝛿 = 0.028, 0.030, 0.034)   

Also, the table below demonstrates the mentioned reaction times of the simulated observer along 

with its corresponding angular thresholds and slopes for the mentioned ranges of 𝜏 and 𝑘. 
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Table03-1: For 𝜏𝑎 = 1.22, the angular threshold and slope of the psychometric function and the 

average reaction time of the model for different values of 𝜏 and 𝑘, for two noise levels (𝛿 =

0.030 and 𝛿 = 0.034) have been calculated and reported below. 

 Threshold   τ    Threshold   τ   

 𝜹 = 𝟎. 𝟎𝟑𝟎 0.024 0.025 0.03 0.033 0.037  𝜹 = 𝟎. 𝟎𝟑𝟒 0.024 0.025 0.03 0.033 0.037 

 2 9.82 5.57 5.28 5.20 5.02  2 12.26 6.40 5.89 5.81 5.67 

k 4 10.96 5.96 5.60 5.59 5.43 k 4 13.97 6.87 6.41 6.17 5.98 

 8 13.97 6.83 6.34 6.15 5.93  8 16.32 7.73 7.23 7.05 6.80 

 16 14.72 8.30 7.69 7.40 6.96  16 16.71 9.28 8.59 8.47 7.95 

 32 14.88 10.18 9.31 9.04 8.91  32 15.45 11.13 10.59 10.26 9.90 

              

              

 Slope   τ    Slope   τ   

 𝜹 = 𝟎. 𝟎𝟑𝟎 0.024 0.025 0.03 0.033 0.037  𝜹 = 𝟎. 𝟎𝟑𝟒 0.024 0.025 0.03 0.033 0.037 

 2 0.10 0.23 0.26 0.28 0.29  2 0.08 0.19 0.22 0.24 0.24 

k 4 0.10 0.22 0.26 0.25 0.28 k 4 0.08 0.18 0.21 0.22 0.24 

 8 0.08 0.20 0.22 0.24 0.27  8 0.07 0.16 0.19 0.20 0.22 

 16 0.09 0.18 0.20 0.21 0.24  16 0.07 0.15 0.17 0.17 0.20 

 32 0.10 0.16 0.18 0.19 0.19  32 0.09 0.14 0.15 0.16 0.16 

              

              

 RT   τ    RT   τ   

 𝜹 = 𝟎. 𝟎𝟑𝟎 0.024 0.025 0.03 0.033 0.037  𝜹 = 𝟎. 𝟎𝟑𝟒 0.024 0.025 0.03 0.033 0.037 

 2 1.375 1.028 1.019 1.030 1.039  2 1.434 1.025 1.014 1.022 1.034 

k 4 1.530 1.021 1.006 1.014 1.025 k 4 1.622 1.019 0.996 1.007 1.019 

 8 1.915 1.016 0.985 0.994 1.006  8 2.070 1.017 0.976 0.986 0.996 

 16 2.433 1.027 0.957 0.968 0.981  16 2.581 1.033 0.948 0.960 0.974 

 32 2.793 1.096 0.938 0.948 0.960  32 2.876 1.121 0.928 0.937 0.951 
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Integration of Rotation Detection in Opponent Motion Hierarchy Level. One other aspect 

of our extended model, as mentioned above, is the integration of rotation detection receptive 

fields in the opponent-motion hierarchy level. In doing so, as anticipated, feeding the rotation 

features in addition to expansion/contraction features to the third layer leads to a better 

performance in all computed states of the model with no exception, meaning a lower angular 

threshold and steeper slope (no significant change in reaction time). It is needless to say that the 

opponent motion detectors were trained with rotation included training data, with the same 

fashion reported in Misaghian et al. (2018) (Misaghian et al., 2018). 

Interestingly, by turning on the rotation receptive fields, the simulation of the performance of 

subject B10 which was not attainable in the previous setup (Misaghian et al. 2018) has been 

achieved leaving us with only two non-simulated subjects from our entire athlete subject pool. 

One credible interpretation of this finding could be that, when it comes to biological motion 

perception, it is highly probable that the visual system of different individuals deploys a different 

combination of its expansion/contraction and rotation receptive fields. In more general words, 

because of the various factors, the representation of the neural hierarchies of the visual system 

could be diverse at different levels, including the opponent motion detection layer (Kriegeskorte 

& Douglas, 2018). Therefore, one could deduce that, by knowing the right combination of 

operating expansion/contraction and rotation receptive fields the two non-simulated subjects 

could be mimicked. Implementing the capacity for the model to deploy the appropriate 

combination would be an exciting subject of future work. 
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Human Results Vs. Simulation Results. The simulated angular thresholds and slopes along 

with the average reaction time and the four parameters which drive the model in those states 

versus the corresponding experimental values have been reported in table 3-2. Similar to our 

previous work (Misaghian et al., 2018), we grouped the subjects based on the similarity of their 

angular threshold, slopes and reaction times and used grid-search to simulate those groups and 

determine the corresponding parameters. It is worth noting that there were some subjects with 

no similarity to any other subjects and that they were accounted for as a group with a single 

member. Moreover, this grouping approach only makes it easier to gain much more generalized 

insight into the overall behaviour of subjects. While it is entirely possible to pinpoint each 

subject with a slightly different set of parameters, one could see that it could only defeat the 

purpose of generalization. 

Since the reaction time is the new output feature of our model, a plot of the groups’ average 

reaction times against the corresponding simulated values is depicted in Figure 3-4, below. 

Analysis of the correlation reveals significant positive correlations between experimental and 

corresponding simulated variables: Spearman’s correlation coefficient between experimental 

and simulated angular thresholds is 𝑟𝑠 = 0.984, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 2.01𝐸 − 27 (𝑝 < 0.001), 

between experimental and simulated slope, is 𝑟𝑠 = 0.955, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 1.22𝐸 − 19(𝑝 <

0.001) and finally between experimental and simulated average reaction time is 𝑟𝑠 = 0.513,

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.0014 (𝑝 < 0.005). Higher variation of reaction times from subject to subject 

and our approach to simulate subjects in groups for the sake of generalization is the reason that 

the correlation value between experimental and simulated average reaction times shows a 

distinct relationship. However, if we look into the correlation between simulated average times 

and the subjects’ average of each group the relationship proves to be strong: 𝑟𝑠 = 0.70, 𝑝 −

𝑣𝑎𝑙𝑢𝑒 = 0.002(𝑝 < 0.005).  
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Table03-2: by tuning the 𝑘, 𝜏, 𝛿 and 𝜏𝑎 the angular thresholds (75%) and the slopes of athletes’ 

psychometric functions along with their average reaction times have been simulated.  

Rotation detectors are active for simulating B10 

 
Subjects 

Angular 
Thresholds 

from 
Experiment 

Angular 
Thresholds 

from 
Simulation 

Slopes 
from 

Experiment 

Slopes 
from 

Simulation 

Reaction 
Time from 
Experiment 

Reaction 
Time from 
Simulation 

Inhibitory 
Gain 
(𝑘) 

Time 
Constant 

(𝜏) 

Noise 
(𝛿) 

adaptation 
onset 
(𝜏𝑎) 

'C12' 4.041±1.06 5.252±0.20 0.261±0.030 0.263±0.0049 0.994±0.07 1.148±0.0005 4 0.025 0.022 1.22 

'A10' 4.176±1.08 ˶ 0.252±0.029 ˶ 0.929±0.04 ˶ ˶ ˶ ˶ ˶ 

'B04' 4.506±1.11 ˶ 0.246±0.028 ˶ 1.194±0.05 ˶ ˶ ˶ ˶ ˶ 

'B01' 4.805±1.13 ˶ 0.243±0.027 ˶ 1.443±0.06 ˶ ˶ ˶ ˶ ˶ 

'A15' 5.321±1.15 5.317±0.19 0.242±0.025 0.276±0.005 1.131±0.08 1.106±0.0002 2 0.033 0.032 1.34 

'B05' 5.361±1.05 5.201±0.18 0.284±0.028 0.307±0.0055 1.165±0.01 1.146±0.0002 4 0.037 0.030 1.40 

'B09' 6.602±1.42 6.872±0.27 0.188±0.021 0.180±0.0036 1.001±0.03 1.020±0.0003 4 0.025 0.034 1.22 

'A11' 6.637±1.52 ˶ 0.171±0.023 ˶ 1.013±0.05 ˶ ˶ ˶ ˶ ˶ 

'A06' 6.609±1.22 6.793±0.25 0.233±0.020 0.200±0.0038 0.989±0.03 0.883±0.0002 8 0.033 0.032 1.10 

'A01' 7.000±1.52 6.909±0.25 0.175±0.02 0.205±0.0038 1.007±0.01 1.089±0.0003 8 0.030 0.034 1.40 

'C07' 7.097±1.42 ˶ 0.192±0.02 ˶ 1.169±0.07 ˶ ˶ ˶ ˶ ˶ 

'C11' 7.165±1.39 ˶ 0.197±0.02 ˶ 1.146±0.08 ˶ ˶ ˶ ˶ ˶ 

'B14' 7.692±1.80 7.701±0.36 0.147±0.018 0.131±0.0032 1.005±0.04 1.076±0.0009 1 0.024 0.026 0.96 

'B08' 7.753±1.81 ˶ 0.146±0.018 ˶ 0.923±0.06 ˶ ˶ ˶ ˶ ˶ 

'A02' 7.837±1.87 ˶ 0.141±0.018 ˶ 1.133±0.04 ˶ ˶ ˶ ˶ ˶ 

'A13' 7.873±1.69 ˶ 0.159±0.018 ˶ 1.203±0.08 ˶ ˶ ˶ ˶ ˶ 

'B11' 8.132±2.00 8.459±0.39 0.132±0.017 0.124±0.0031 1.065±0.02 1.116±0.0009 1 0.024 0.028 1.00 

'C13' 8.594±2.09 ˶ 0.128±0.017 ˶ 1.147±0.05 ˶ ˶ ˶ ˶ ˶ 

'C04' 9.173±1.78 9.685±0.35 0.158±0.017 0.148±0.003 0.887±0.03 0.880±0.0003 16 0.025 0.034 1.04 

'B03' 9.191±2.64 9.292±0.45 0.103±0.016 0.111±0.0029 1.141±0.07 1.181±0.0012 2 0.024 0.028 1.00 

'C06' 9.543±2.34 9.709±0.41 0.118±0.016 0.123±0.0029 0.899±0.05 1.078±0.001 2 0.024 0.030 0.90 

'B07' 9.589±2.86 ˶ 0.096±0.016 ˶ 1.264±0.07 ˶ ˶ ˶ ˶ ˶ 

'C08' 9.747±1.70 9.838±0.32 0.170±0.017 0.167±0.0031 0.947±0.05 0.944±0.0003 32 0.033 0.032 1.22 

'A03' 10.490±1.56 12.076±0.43 0.130±0.011 0.130±0.0028 0.964±0.04 0.858±0.0006 32 0.025 0.340 0.88 

'A04' 10.801±2.20 ˶ 0.132±0.016 ˶ 0.757±0.05 ˶ ˶ ˶ ˶ ˶ 

'A07' 10.843±2.26 ˶ 0.128±0.016 ˶ 0.871±0.05 ˶ ˶ ˶ ˶ ˶ 

'A05' 10.770±2.72 10.747±0.41 0.105±0.015 0.130±0.0029 1.098±0.06 1.068±0.0014 4 0.024 0.028 0.80 

'C01' 10.830±2.61 ˶ 0.110±0.016 ˶ 0.909±0.06 ˶ ˶ ˶ ˶ ˶ 

'A08' 12.132±2.76 12.722±0.45 0.109±0.015 0.124±0.0027 0.793±0.03 0.962±0.0013 4 0.024 0.032 0.66 

'B02' 12.173±2.68 ˶ 0.113±0.015 ˶ 0.936±0.05 ˶ ˶ ˶ ˶ ˶ 

'B06' 12.525±2.82 ˶ 0.108±0.015 ˶ 0.888±0.06 ˶ ˶ ˶ ˶ ˶ 

'B13' 12.860±3.94 11.549±0.49 0.078±0.015 0.109±0.0028 1.032±0.06 1.067±0.0011 2 0.024 0.034 0.84 

*'B10' 13.160±3.02 13.363±0.56 0.103±0.015 0.101±0.0027 1.044±0.06 1.208±0.0009 64 0.025 0.036 1.15 

'A14' 16.617±4.89 17.319±0.74 0.071±0.014 0.088±0.0025 1.058±0.06 1.154±0.0017 4 0.024 0.038 0.60 

'A09' 17.194±5.84 ˶ 0.061±0.014 ˶ 1.014±0.04 ˶ ˶ ˶ ˶ ˶ 

'C02' 17.787±5.36 ˶ 0.068±0.014 ˶ 0.842±0.04 ˶ ˶ ˶ ˶ ˶ 
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Figure03-4: Diamonds represent the average reaction time of athlete sub-groups performing the 

tasks in the psychometric experiment (Romeas & Faubert, 2015) while dots demonstrate the 

average reaction times acquired from the model simulating those sub-groups. 

Discussion 

To achieve better performance by including the rotational optic flow detectors into the 

mix, obviously, was not a counterintuitive result because, most of the time, more information 

leads to better decisions. However, the interesting finding was the discovery of a more flexible 

and wider range of angular threshold-to-slope relationships in psychometric curves that enables 

the model to encompass a noticeably bigger spectrum of behaviours. There were three subjects 

out of 38 in the subject pool whose behaviour could not be simulated before (Misaghian et al., 

2018). The fact that such accuracy behaviours (psychometric functions) exist in the human data 

is a reliable indicator of a missing factor or factors in the previous setups. Moreover, managing 

to simulate one of these subjects by including the rotational features postulates that the 

utilization of such features is essential but that they most likely differ from individual to 

individual. Unfortunately, the extent of it could not be estimated by our simulation model.  
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Furthermore, empowering the model to have a reaction time using our physiologically 

plausible strategy not only seemed necessary for a thorough simulation model but also appeared 

to be a source of new information and disambiguation. For instance, the earlier setup could 

achieve similar behaviours with different tunings, and it was only possible to pick the right set 

of parameters by examining the characteristics of the decision signals. However, in the extended 

model, the reaction time of the model was showing which tuning complies with human behavior. 

Also, as mentioned in the results section, the same accuracy behavior but with much more longer 

reaction time could be deemed as a result of executive function deficit and analyzing the model’s 

parameters showed that such states occur when the mutual inhibition is high. Interestingly, it 

has been suggested that some forms of autism could be the result of an increased ratio of 

excitation/inhibition in sensory, mnemonic and some other systems (Rubenstein & Merzenich, 

2003).  

There exist numerous limitations to the present model. For example, the opponent-

motion neuron in the model only receives signals from adjoining receptive fields, and there is 

no detector to pool the signals from two distant receptive fields. Hence, it is unable to 

incorporate any global relative motion in a moving scene (A. T. Smith & Snowden, 1994). Also, 

both the first and second layers have been presumed to be noise-free and also no process noise 

has been introduced to the model. That is going to be considered in the future work. 

Furthermore, the feedforward assumption in our model imposes fixed prototypes, 

parameters, and priors which apparently is far from what happens in the live human visual 

system. A more inclusive model must also be capable of learning and updating. Therefore, the 

integration of such capacities lies in our future work. 
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Conclusion 

Complying with the law of parsimony or Ockham's razor, the descriptive simulation 

model of biological motion perception adopts certain assumptions:  

• Maintaining feedforward architecture while the brain always updates and learns:  

In general, intelligence is regarded as the capacity to perceive, infer the information and 

preserve it as knowledge for further use (Gottfredson, 1997). If this cognitive process involves 

working memory, it is called fluid intelligence (i.e., pattern recognition and problem-solving) 

and if it depends on long term memory it is known as crystallized intelligence (i.e., the ability 

to deduce using words or numbers) (Cattell, 1963; Ross & Martin, 2006; Tullo, Faubert, & 

Bertone, 2018). Moreover, what resides in the first level of the working memory is nothing but 

an activated subset of representations in long-term memory. The second level of the working 

memory could retain up to four of these activated representations (Cowan, 1998). Therefore in 

both cases of fluid or crystallized processes, we are dealing with already formed representations 

that are prone to minor changes and updates. In our simulation model, the fixed prototypical 

templates count for the aforementioned memory representations; therefore, the feed-forward 

fixed architecture assumption only falls short if we want the model to learn any body movement 

automatically from the ground up or to update the prototypes in case of significant variations of 

the body movements after the representations are formed.        

• Resorting to the two-stream theory and modeling the motion pathway while there 

exists an ongoing debate on the validity of such theory (Whitwell, Milner, & Goodale, 2015)   

• Excluding the mirror neurons in the implementation of the model, while one 

group of neurons which is considered to be a part of the mirror neuron system and reside in 

superior temporal sulcus (STS), does not discharge amid the execution of action but is 

selectively responsive to biological motion (Grossman et al., 2000)  

There is no doubt that these items must be addressed and integrated into future work. As 

for the next step, to excel the model into an online and Omni-learner could be considered a 

significant leap forward. 
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Online Learning 

One primary assumption of the model is that the model adopted a feed-forward 

architecture for the sake of simplicity. While such a constraint created a controlled setup to 

address the concerns of this study, in reality, it is expected that the network learns and updates 

its knowledge according to what it is being exposed to and the variations of the exposure in 

time. Such a platform is one step closer to the idea of a universal biological motion detector like 

the one in the visual system. 

As mentioned in previous chapters, our approach is a statistical risk-sensitive framework 

with a pre-tuned risk matrix. Now, for making our network capable of online learning, it only 

makes sense that we only pursue those algorithms that cater to our solution. In the realm of 

machine learning, reinforcement learning wherein an agent learns to do specific actions that 

result in the highest reward is a subset of unsupervised learning whose method of learning 

conforms to cause and effect. Q-learning as a form of reinforcement learning has shown promise 

in modeling reward-based human decision making and dopamine mediated reward prediction 

mechanisms (Schultz, 2002; Schultz, Dayan, & Montague, 1997; Shen, 2015). 

To give a brief background on Q-learning, here we introduce some concepts: 

• Environment: The plot within which the problem happens 

• Agent: an autonomous actor that performs actions under certain assumptions 

• Action: any possible performance that the agent could perform (like a link in a 

graph) 

• State: the situation within which the agent could preside (like a node in a graph) 

• Reward: the immediate gain that the environment awards the agent for its last 

action (like a weight assigned to each link) 

• Policy: the strategy that dictates the next action by the agent based on the current 

state  

• Value: expected long-term gain of any state using a specific policy 
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• Action value: also called Q-value similar to value but only depends on the action, 

which means the expected long-term gain from taking a particular action in a 

particular state using specific policy  

If we assume, in a certain environment, one of the states is the goal, the objective of the 

agent with a clean slate is to arrive at that state when put into the mentioned environment. For 

instance, to assign one state as the goal could be achieved by associating a reward value or 

weight to each possible action. For example, if there is one state from which the agent could go 

to the goal state in the next step that action has a reward value of 100, but, any action that does 

not lead to the goal state has zero reward value. One could suggest that the reward is a matrix 

that relates the states to actions with elements of the matrix being the reward values. In that 

matrix besides the values of zero and 100, when some action does not exist, we merely assign a 

negative reward value to it. Now, the Action value matrix, Q, with an unknown number of 

elements and also initialized to a zero matrix with a single value of zero (expands when new 

states discovered), represents the brain of our agent who knows nothing.  With a simple 

transition formula: 

𝑄(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) = 𝑅𝑒𝑤𝑎𝑟𝑑(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) +  𝛾 × 𝑀𝑎𝑥(𝑄(𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒, 𝑎𝑙𝑙 𝑎𝑐𝑡𝑖𝑜𝑛𝑠)) 

Each element of the 𝑄 would be calculated by adding a learning term to the corresponding value 

in the reward matrix. The updating term is the maximum value from the 𝑄 for all possible actions 

in the next state multiplied by learning rate, 𝛾.   

By initializing the agent in a random state and 𝑄 to a zero matrix, the algorithm could 

start. At each step the agent randomly chooses to go to one of the possible states, then we 

calculate the value of the element in the 𝑄 by adding the corresponding element of the reward 

matrix element to the maximum value of all possible actions in the next state in the 𝑄 multiplied 

by an updating factor (figure 1). What is explained above characterizes one iteration of the 

learning process. Upon convergence, one can assume that the agent knows the optimal path to 

the goal, meaning from whichever initial state the path that sums up the highest value is the path 

to take (McCullock, 2012). 
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In the framework of our biological motion perception model, the agent would be the 

third layer that recognizes the different stages of the motion, the state space is the stimuli (all 

kinds of body movement) moved through the first and second layers, and the action space would  

 

Figure04-1 : A simple example of one episode of the Q-learning algorithm for a 3 state system 

with an absorbing goal 
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be the classification of the observations into their corresponding temporal stages. At every run, 

we set up a new environment with a new initial state. At each step, for a given sequence in the 

stimulus, we get an action from the agent based on which the environment returns reward and a 

new state. This set of state, action, reward, and next states shapes up our Q-value according to 

the mentioned updating rule. A stabilized converged Q-value is the policy that enables the agent 

to make the best classification given observation for maximum reward. To attain accurate Q-

values, one could resort to deep neural networks. Hence, the term deep Q-learning (Surma, 

2018). 

To model systems with unknown transition probabilities like human behaviour one study 

has proposed a risk-sensitive Q-learning algorithm for implementing the sequential decision 

making in humans and asserted that by a careful choice of utility function this algorithm could 

offer a risk-sensitive framework for decision making with noisy rewards which fall perfectly 

into our question’s scenario (Shen, 2015). 

More on Autism 

We showed that the increase in the inhibitory gain, k, causes a change of the 

performance. Surprisingly, after exceeding a certain value, the system performs better in 

exchange for noticeably longer reaction time. Whereas, slower cognitive processing speed is 

believed to be one repercussion of executive function deficit caused by a multitude of disorders 

such as ADHD or autism (Hill, 2004; Hosenbocus & Chahal, 2012). Therefore, we found this 

trait of our model in concurrence with the findings by Rubenstein and Mezernich (2003) which 

suggested that some forms of autism are believed to be caused by a high ratio of 

excitation/inhibition in neuronal systems (Rubenstein & Merzenich, 2003). It is worth noticing 

that we are referring to the slower reaction time in cognitive function of individuals with autistic 

spectrum disorder and not the slowed-down motor time caused by the compromised 

proprioception for some ASD individuals (Schmitz, Daly, & Murphy, 2007). 

Reaction Time Approximation 

Previously, we mentioned that the motor time (MT) had been approximated to zero in 

this study. One could define the Reaction time as the amount of time between exposure to a 
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stimulus and the initiation of the motor response to that stimulus by the individual (Wong et al., 

2015). It has been reported that the mean reaction time for young adults is around 160 

milliseconds for a simple auditory stimulus detection task and about 190 milliseconds for visual 

stimulus detection task and, expectedly, this number goes up for Go/No-go, choice reaction time 

(CRT) and discrimination reaction time tasks (Kosinski, 2008; Taoka, 1989). Also, in a simple 

reaction time test (the simple task of lifting a finger in response to an auditory stimulus), by 

recording the EMG signals of the subjects’ hands, it has been shown that unlike reaction time 

(premotor time), motor time is highly uncorrelated with the reaction time. Also, the same study 

reported that the mean range of the MT is something between 38 milliseconds and 42 

milliseconds (Botwinick & Thompson, 1966). Thus, considering the average time lapse needed 

for pushing the button and the complexity of our task which begets a long RT (approximately 1 

second), our approximation is rendered sufficiently feasible. 

Applications of the Extended Descriptive Risk-averse Bayesian Model 

As a functioning simulator, the present simulation model could have multiple usages. 

One that has attracted the attention of the industry is that this virtual brain model could help to 

predict the impact of the lens-induced distortions, caused by various lens designs, on human 

decision-making. 

Therefore, the producers of ophthalmic lenses would be able to evaluate and estimate 

the impact of their designs on real-life situations in advance. An example of such situations is 

to determine if the person approaching from straight ahead goes to the left or right of the 

observer in order to avoid a collision or to detect more subtle movements. This application could 

be accomplished by inserting the lens design model between the biological motion stimulus and 

the simulation model as presented in the figure below. By implementing the process before the 

production, the lens manufacturer could spare a large part of the expenses and time that is 

typically invested into the assessment stage. 
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Figure04-2 : From left to right: animated visual input, the lens design model, local motion 

detection layer, opponent motion detection layer, global pattern detection layer, complete 

biological motion detection layer 

As a proof of concept, a 2.3 dioptre barrel-type distortion has been imposed on the soccer 

kick biological motion stimulus as a visual input to the simulation model tuned to two 

participants from our subject pool. Below, one can see the change in the thresholds and the 

slopes of the psychometric functions of these subjects: 

• subject B03’s threshold of 9.3° alters to 17.9°moreover, its slope of 0.12 

becomes 0.06  

• subject A05’s threshold of 10.7°alters to 42.3° moreover, its slope of 0.11 

becomes 0.013  

Moreover, there exist several other applications like in robotic vision for recognition of 

human gestures, surveillance systems for specification determination and in sports, for 

monitoring the performance and, finally, in motion-based tracking systems. 

To conclude, to have a virtual brain in order to determine the impact of ophthalmic lens 

designs on decision-making outcomes for socially relevant actions unlocks possibilities that are 

not presently accessible. The presently existing limitations of the simulation model are related 

to the type of action we have studied. However, using more data, it could be extended to 

numerous human actions of interest in the future. 
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Figure04-3 : Above are three frames from one stimulus and below are the corresponding 

aberrated frame with barrel aberration of 2.3 diopters 
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Annex I: Model Outputs for Ranges of All Parameters   

As the output of the model, the angular threshold, the slope and the reaction time has 

been computed for different ranges of parameters, 𝑘, 𝜏 𝑎𝑛𝑑 𝛿, the model has been run for a 

constant parameter value of 𝜏𝑎 = 1.22 𝑠𝑒𝑐. In the tables below “SD” is the standard deviation 

of the internal noise (𝛿), “Tau” is the time constant (𝜏), “k” is the inhibitory feedback gain (𝑘) 

and “TauA” is the time when adaptation starts (𝜏𝑎). The outputs are for the rotation-off condition 

unless indicated otherwise. 

Threshold       

SD=0.28       
k/Tau 0.0238 0.024 0.025 0.03 0.033 0.037 

2   9.197664 5.336503 5.04255 4.840897 4.744169 

4   10.6964 5.651746 5.490651 5.182649 5.096875 

8 16.85817 12.31467 6.486838 5.996146 5.737578 5.665996 

16   14.28962 7.72746 7.254823 7.023524 6.815714 

32   13.93415 9.692215 9.212861 8.737363 8.361226 

Slope       

SD=0.28       
k/Tau 0.0238 0.024 0.025 0.03 0.033 0.037 

2   0.113052 0.254628 0.284279 0.311952 0.333829 

4   0.098356 0.244615 0.26296 0.294649 0.321853 

8 0.06408 0.090725 0.213841 0.255491 0.262199 0.2982 

16   0.08876 0.19051 0.215353 0.231348 0.24347 

32   0.107469 0.170732 0.184602 0.200075 0.210914 

RT       

SD=0.28 TauA=1.22      
k/Tau 0.0238 0.024 0.025 0.03 0.033 0.037 

2   1.353221 1.026973 1.022712 1.032164 1.042237 

4   1.497359 1.01993 1.006413 1.018348 1.029181 

8 2.07263 1.848327 1.015681 0.988631 1.000207 1.00965 

16   2.353995 1.022339 0.962445 0.97369 0.986381 

32   2.726345 1.08692 0.939905 0.951588 0.963768 

 

 

 

 



 

ii 

Threshold       

SD=0.30       
k/Tau 0.0238 0.024 0.025 0.03 0.033 0.037 

2   9.818355 5.572589 5.276817 5.200037 5.024327 

4 15.52754 10.95955 5.963591 5.597452 5.58571 5.425188 

8 18.03722 13.96506 6.827265 6.335999 6.145875 5.925539 

16   14.72345 8.299454 7.686642 7.399865 6.964347 

32   14.88309 10.18108 9.309029 9.035201 8.910117 

Slope       

SD=0.30       
k/Tau 0.0238 0.024 0.025 0.03 0.033 0.037 

2   0.101679 0.231018 0.256602 0.277914 0.292677 

4 0.067909 0.095588 0.221492 0.256027 0.253839 0.279148 

8 0.060368 0.081558 0.197813 0.217659 0.237907 0.270065 

16   0.08605 0.177634 0.197 0.211577 0.239028 

32   0.098457 0.160104 0.178489 0.188514 0.190639 

RT       

SD=0.30 TauA=1.22      
k/Tau 0.0238 0.024 0.025 0.03 0.033 0.037 

2   1.374671 1.02771 1.018876 1.029551 1.038786 

4 1.745106 1.529833 1.021327 1.00599 1.014472 1.025188 

8 2.15216 1.915206 1.015998 0.985379 0.994378 1.005593 

16   2.432881 1.027326 0.956882 0.968061 0.980932 

32   2.793 1.096267 0.937695 0.948128 0.959711 

 

Threshold       

SD=0.32       
k/Tau 0.0238 0.024 0.025 0.03 0.033 0.037 

2 13.77285 10.63042 5.948867 5.673493 5.447783 5.458618 

4 17.82864 12.26712 6.44257 5.998894 5.752032 5.663438 

8 19.79285 15.26717 7.262721 6.744773 6.556027 6.315479 

16   15.86156 8.705413 7.952382 7.893298 7.528021 

32   15.042 10.72309 10.10217 9.790671 9.399096 

Slope       

SD=0.32       
k/Tau 0.0238 0.024 0.025 0.03 0.033 0.037 

2 0.072913 0.10086 0.199398 0.228581 0.251764 0.259913 

4 0.055488 0.085456 0.196842 0.230259 0.247588 0.253931 

8 0.05645 0.071952 0.178734 0.198864 0.218022 0.231969 

16   0.079999 0.162328 0.188988 0.194631 0.194631 

32   0.096955 0.154813 0.157765 0.16814 0.17607 

RT       



 

iii 

SD=0.32 TauA=1.22      
k/Tau 0.0238 0.024 0.025 0.03 0.033 0.037 

2 1.5673 1.397142 1.025497 1.016617 1.024827 1.034829 

4 1.802622 1.575956 1.020388 1.001828 1.011001 1.023062 

8 2.244682 1.997408 1.014841 0.980023 0.988714 1.000737 

16   2.514902 1.029418 0.95435 0.962444 0.978297 

32   2.841894 1.108206 0.932323 0.941686 0.954792 

 

Threshold         

SD=0.34         
k/Tau 

0.0234 0.0235 0.0238 0.024 0.025 0.03 0.033 0.037 

0.5 26.04025046       6.026699089       

1 31.05527662 22.94449074             

2     15.86212919 12.25782571 6.401044206 5.894937185 5.813227631 5.671442048 

4     18.70755768 13.97207374 6.871074951 6.412694163 6.173939798 5.978884373 

8     21.61145844 16.32418223 7.73404209 7.227720629 7.046449537 6.795070439 

16       16.71376121 9.275310169 8.585520937 8.474794536 7.949813794 

32       15.4491377 11.13088719 10.59331628 10.26492392 9.896368657 

64       15.9493597 13.44320848 12.51420123 12.43958556 12.15062332 

Slope         

SD=0.34         
k/Tau 

0.0234 0.0235 0.0238 0.024 0.025 0.03 0.033 0.037 

0.5 0.037786571       0.195469731       

1 0.031884199 0.043532551             

2     0.062134829 0.082699084 0.187360785 0.222609027 0.236419165 0.238308982 

4     0.055887914 0.075268041 0.181560805 0.209892796 0.218916881 0.236060457 

8     0.050748892 0.067899487 0.162471863 0.18830491 0.196393501 0.219149673 

16       0.07423423 0.15139445 0.168538926 0.173152716 0.195031271 

32       0.094809381 0.143633761 0.153896898 0.160483108 0.164625517 

64       0.105170582 0.130740016 0.141374893 0.142660867 0.144270715 

RT         

SD=0.34 TauA=1.22        
k/Tau 

0.0234 0.0235 0.0238 0.024 0.025 0.03 0.033 0.037 

0.5 1.798960938       1.033139757       

1 1.86449566 1.757355903             

2     1.596083333 1.434205729 1.025394097 1.013573785 1.022244792 1.034171007 

4     1.844083333 1.622039063 1.019449653 0.996434028 1.006876736 1.019079861 

8     2.315454861 2.069783854 1.01706684 0.976282118 0.986235243 0.996454861 

16       2.581341146 1.032777778 0.948445313 0.960373264 0.97402691 

32       2.876326389 1.120559896 0.927696181 0.936998264 0.951432292 

64       2.886463542 1.271202257 0.919350694 0.929057292 0.937887153 



 

iv 

 

Threshold   

SD=0.35   
k/Tau 0.0234 0.0235 

0.5 35.41457 23.55513 

1 34.75212 30.00713 

2 46.73145 32.78787 

4 51.85078 44.689 

Slope   

SD=0.35   
k/Tau 0.0234 0.0235 

0.5 0.026912 0.041811 

1 0.028418 0.031384 

2 0.021194 0.030766 

4 0.019944 0.02279 

RT   

SD=0.35   
k/Tau 0.0234 0.0235 

0.5 1.840424 1.72482 

1 1.913123 1.795263 

2 2.065134 1.952413 

4 2.379926 2.260973 

 

 

 

Threshold     

SD=0.36     
k/Tau 0.0234 0.0235 0.0238 0.024 

0.5 33.40041       

1 36.23791 25.79852     

2 40.76853 31.98546 16.75126   

4 59.43271 40.80413   14.17264 

8       17.78255 

Slope     

SD=0.36     
k/Tau 0.0234 0.0235 0.0238 0.024 

0.5 0.029067       

1 0.028036 0.0387     

2 0.025078 0.032689 0.059942   

4 0.017576 0.025055   0.07571 

8       0.062458 



 

v 

RT     

SD=0.36 TauA=1.22    
k/Tau 0.0234 0.0235 0.0238 0.024 

0.5 1.85592       

1 1.944779 1.81361     

2 2.100295 1.970632 1.631792   

4 2.42594 2.277661   1.665456 

8       2.131043 

 

Threshold       

SD=0.37       
k/Tau 0.0234 0.0235 0.0238 0.024 0.025 0.03 

0.5 32.91093           

1 47.91844 26.80331 15.67928     6.169073 

2 48.62642 33.72745 17.54302     6.39065 

4 69.3816 43.3165         

8             

16           9.280559 

Slope       

SD=0.37       
k/Tau 0.0234 0.0235 0.0238 0.024 0.025 0.03 

0.5 0.030125           

1 0.020417 0.037992 0.065093     0.205144 

2 0.02086 0.030335 0.057043     0.193823 

4 0.014459 0.023745         

8             

16           0.153828 

RT       

SD=0.37 TauA=1.22      
k/Tau 0.0234 0.0235 0.0238 0.024 0.025 0.03 

0.5 1.859872           

1 1.954814 1.826126 1.518168     1.017628 

2 2.119239 1.988892 1.647724     1.008941 

4 2.443091 2.313084         

8             

16           0.942225 

 

 

 



 

vi 

 

 

Threshold        

SD=0.38        
k/Tau 0.0234 0.0235 0.0236 0.0238 0.025 0.03 0.033 

0.5 32.51423       6.650587 6.386482   

1 36.65452 26.78533 23.58953 15.90159     6.418915 

2 52.27162 33.75394 30.20205 19.10257       

4 73.01815 58.49941 33.43291 22.32362   7.194801   

Slope        

SD=0.38        
k/Tau 0.0234 0.0235 0.0236 0.0238 0.025 0.03 0.033 

0.5 0.030962       0.179394 0.186303   

1 0.027708 0.039189 0.041185 0.061043     0.188688 

2 0.019958 0.031139 0.033522 0.052846       

4 0.013925 0.016791 0.030452 0.048202   0.177758   

RT        

SD=0.38 TauA=1.22       
k/Tau 0.0234 0.0235 0.0236 0.0238 0.025 0.03 0.033 

0.5 1.874886       1.032575 1.021787   

1 1.951345 1.831886 1.723938 1.530787     1.025449 

2 2.146878 2.010883 1.893503 1.663383       

4 2.502425 2.36184 2.192076 1.971137   0.992323   

 

 

 

 

 

 

 

 

 

 



 

vii 

Threshold       

SD=0.028     ROTATION: ON 

k/Tau 0.023 0.024 0.025 0.03 0.033 0.037 

2   8.422681         

4   9.550793   4.901833     

8   11.27742         

Slope       

SD=0.28       
k/Tau 0.023 0.024 0.025 0.03 0.033 0.037 

2   0.140878         

4   0.121165   0.328095     

8   0.108359         

RT       

SD=0.28 TauA=1.22      
k/Tau 0.023 0.024 0.025 0.03 0.033 0.037 

2   1.357878         

4   1.4912   1.010036     

8   1.781836         

 

Threshold       

SD=0.030     ROTATION:ON 

k/Tau 0.023 0.024 0.025 0.03 0.033 0.037 

2   9.20318         

4           4.870994 

8     6.105788       

16   13.36789         

Slope       

SD=0.30       
k/Tau 0.023 0.024 0.025 0.03 0.033 0.037 

2   0.12729         

4           0.341674 

8     0.238425       

16   0.092837         

RT       

SD=0.30 TauA=1.22      
k/Tau 0.023 0.024 0.025 0.03 0.033 0.037 

2   1.381705         

4           1.027491 

8     1.007914       

16   2.313459         

 



 

viii 

Threshold      

SD=0.032    ROTATION:ON 

k/Tau 0.023 0.025 0.03 0.033 0.037 

2       5.036455 4.953634 

4           

8       5.910174   

16           

32       8.556405   

Slope      

SD=0.32      
k/Tau 0.023 0.025 0.03 0.033 0.037 

2       0.310352 0.324894 

4           

8       0.25423   

16           

32       0.170468   

RT      

SD=0.32 TauA=1.22     
k/Tau 0.023 0.025 0.03 0.033 0.037 

2       1.025159 1.035743 

4           

8       0.994075   

16           

32       0.952406   

 

Threshold     

SD=0.034   ROTATION:ON 

k/Tau 0.023 0.024 0.025 0.03 

2   10.1927     

4     6.098976   

8       6.541491 

16   14.64847 8.214337   

32     10.53772   

Slope     

SD=0.34     
k/Tau 0.023 0.024 0.025 0.03 

2   0.109074     

4     0.219381   

8       0.231781 

16   0.082493 0.164951   

32     0.127072   



 

ix 

RT     

SD=0.34 TauA=1.22    
k/Tau 0.023 0.024 0.025 0.03 

2   1.433964     

4     1.013773   

8       0.997075 

16   2.493138 1.030563   

32     1.118101   
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