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ABSTRACT 

Background: Multi-organ failure is a consequence of severe ischemia-reperfusion injury after 

traumatic hemorrhagic shock, a major cause of mortality in trauma patients. Circulating uric acid, 

released from cell lysis, is known to activate pro-inflammatory and pro-apoptotic pathways and 

has been associated with poor clinical outcomes among critically ill patients. Our group has 

recently shown a mediator role for uric acid in kidney and lung injury, but its role in liver and 

enteric damage after hemorrhagic shock remains undefined. Therefore, the objective of this study 

was to evaluate the role of uric acid on liver and enteric injury after resuscitated hemorrhagic 

shock. 

Methods: A murine model of resuscitated hemorrhagic shock was treated during resuscitation 

with a recombinant uricase, a urate oxidase enzyme (rasburicase, Sanofi), to metabolize and reduce 

circulating uric acid. Biochemical analyses (liver enzymes, liver apoptotic and inflammatory 

markers) were performed at 24h and 72h after hemorrhagic shock. Physiological testing for enteric 

permeability and gut bacterial product translocation measurement (plasma endotoxin) were 

performed 72h after hemorrhagic shock. In vitro, HT-29 cells were exposed to UA, and the 

expression of intercellular adhesion proteins (ZO-1, e-cadherin) was measured to evaluate the 

influence of uric acid on enteric permeability. 

Results: The addition of Uricase to resuscitation significantly reduced circulating and liver uric 

acid levels after hemorrhagic shock. It also prevented hemorrhagic shock-induced hepatolysis and 

liver apoptotic/inflammatory mediators at 24h and 72h. Hemorrhagic shock-induced enteric 

hyperpermeability and endotoxemia were prevented with uricase. 
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Conclusions: After resuscitated hemorrhagic shock, uric acid is an important mediator in liver and 

enteric injury. Uric acid represents a therapeutic target to minimize organ damage in polytrauma 

patients sustaining hemorrhagic shock.  

Level of evidence: Foundational research 

Study type: Animal study 

Keywords: Hemorrhagic shock, organ failure, danger-associated molecular patterns, uric acid. 
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BACKGROUND 

Hemorrhagic shock (HS) is a leading cause of severe systemic ischemia-reperfusion in critically 

injured patients1. While HS leads to early death, multi-organ dysfunction and sepsis are responsible 

for late mortality and morbidity among resuscitated survivors2, 3. Aside from organ support and 

treatment of infections, no interventions have demonstrated to be beneficial in preventing organ 

dysfunction in injured patients sustaining HS. This unmet clinical need warrants new therapeutic 

approaches. While wide suppression of the immune system is potentially hazardous in the context 

of ongoing tissue repair and increased risk of sepsis4, 5, targeting danger associated molecular 

patterns (DAMPS), key upstream initiators of the sterile inflammatory response observed in 

injured patients, may prove beneficial6, 7. 

 

Direct tissue damage and ischemia-reperfusion injury lead to uric acid (UA) release from cell 

death, a molecule resulting from DNA and purine metabolism through the xanthine oxidase (XO) 

pathway8-10. Animal models have demonstrated a peak of circulating UA following HS and these 

studies aimed at evaluating the potentially protective role of XO inhibition on oxidative stress, 

microcirculatory dysfunction and ATP depletion11-13. However, the direct impact of UA on organ 

damage has not been investigated after HS. UA has been well established as a pro-inflammatory 

and pro-apoptotic molecule, both as a crystal and a soluble molecule8, 14. In-vitro studies have 

shown that soluble UA could induce a pro-inflammatory phenotype through interaction with Toll-

like receptor-4 (TLR4), promoting inflammasome activation (NLRP-3, caspase-1), pro-

inflammatory cytokine release (IL-1, IL-18) and enhanced endothelial immune cells adhesion 

proteins (ICAM-1, VCAM)14, 15. UA has also been shown to induce the release of High Mobility 

Group Box Protein 1 (HMGB1) from endothelial cells, another DAMP associated with distant 
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organ injury, alteration of mucosal barrier, organ failure and mortality in animal and clinical 

studies16-19. 

 

Our group has recently shown that UA metabolization after resuscitated HS, using a recombinant 

urate oxidase enzyme (uricase) specifically targeting UA, prevented apoptosis and inflammation 

in lungs and kidneys, as well as TNF- circulation20. However, the role of UA in liver damage 

after HS remains undefined. While some animal studies have suggested a protective role for XO 

inhibition, a short-term model of HS showed a benefit of UA pre-treatment on hepatocellular 

injury, presumably through antioxidant pathways11, 21, 22. 

 

Furthermore, there is accumulating evidence that the gut represents a driver of systemic 

inflammation and organ dysfunction via endotoxemia as part of systemic ischemia-reperfusion 

injury23-26. This argument, with the direct anatomical relationship between the gut and the liver 

through the portal circulation, makes the evaluation of intestinal damage of paramount importance. 

We hypothesized that UA liberation after HS could directly impact liver and enteric injury 

following ischemia-reperfusion. The main objective of this study was to characterize the role of 

UA in HS-induced liver damage through evaluation of inflammatory and cell death/survival 

pathways. The secondary objective was to investigate the role of UA on enteric injury after HS 

and provide some insight into a potential relationship between liver damage and HS-induced 

intestinal permeability. 
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METHODS 

Animals handling and group allocation 

Male Wistar rats weighing 350-450g were used for experiments following approval by the local 

animal ethics committee. Rats were allowed a 3-days period of acclimatization and managed 

according to the Canadian Council on Animal Care Guidelines (2020).  

 

Animals were randomly assigned to Sham, hemorrhagic shock (HS) or hemorrhagic shock+uricase 

(HS+U) the day before the experiments (n=6/group). All three groups underwent general 

anesthesia, endotracheal intubation and femoral vessels cannulation. Sacrifice was performed at 

24h and 72h for a total of 36 animals distributed in 6 groups. 

 

Interventions, HS induction and experimental design 

General anesthesia was induced with ketamine and xylazine (60 and 10 mg/kg, respectively) and 

maintained with isoflurane 1-2%. After intubation with a 16-gauge angio-catheter, animals were 

ventilated under volume-controlled mode (6ml/kg).  Following a 1cm inguinal incision, the 

femoral artery and vein were dissected and cannulated. Arterial access allowed invasive blood 

pressure monitoring and blood withdrawal was done through the vein. Pulse oximetry, rectal 

temperature and electrocardiogram were displayed in real time. 

 

HS was induced as previously described, with blood withdrawal until a mean arterial pressure 

(MAP) of 30 mmHg was reached, which was maintained for 1 hour20. Animals were then 

resuscitated to maintain a MAP above 60 mmHg for 1h with a 1:1 mix of Ringer’s Lactate and 

shed blood (kept at 37C with 0.2ml citrate-dextrose solution, Sigma-Aldrich). In the HS+U group, 
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uricase (Rasburicase, Sanofi-Aventis) was administered IP (1.5mg/kg) at the beginning of 

resuscitation20. In the HS+vehicle group, an equal volume of saline 0.9% was administered IP as 

a placebo. The Sham group underwent all procedures, including general anesthesia for 45 minutes, 

without HS. After resuscitation, femoral vessels were decannulated and ligated. The skin was 

closed with absorbable suture. The saturation of the cannulated limb was verified. Animals were 

weaned from isoflurane, extubated and observed over 24h or 72h, depending on group allocation. 

Analgesia was provided with subcutaneous buprenorphine (0.05 mg/kg). Among the entire 

protocol, two rats died due to protocol deviations regarding tight MAP maintenance during shock. 

 

Sacrifice, blood sampling and organ harvesting 

Animals were sacrificed by decapitation under sedation with ketamine/xylazine injection IP (60 

and 10mg/kg, respectively). Blood was sampled simultaneously and centrifuged at 3000g for 15 

minutes. The plasma was aliquoted, frozen in liquid nitrogen and stored at -80C. Organs were 

harvested on ice, frozen in liquid nitrogen and stored at -80C. A 5cm segment of jejunum was 

harvested 10cm from the pylorus for ex-vivo permeability assessment (see below).  

 

Plasma analysis/tissue analysis 

Uric acid concentration was measured in plasma and liver parenchyma at 24h and 72h using a 

fluorescent assay (STA-375 400 assays, Cell Biolabs). Liver tissue homogenization was performed 

the same way as for western blot (see below). The protocol of the manufacturer was followed as 

described previously20. 

Hepatocellular injury was assessed with duplicated measurement of liver enzymes (ALT, AST) in 

200 L of plasma at 24h and 72h, using the COBAS c111 automated analyzer system (Roche 

Diagnostics).  
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Plasma endotoxin (LPS) levels were measured in duplicate at 72h, using an enzymatic assay 

according the manufacturer protocol (MyBioSource, MBS268498). 

Plasma HMGB1 was measured in duplicate at 24h and 72h by ELISA according to the protocol 

provided by the manufacturer (Elabscience, E-EL-R0505). 

 

Liver Caspases activities 

Caspase-1, -3 and -8 activities were measured in duplicate. Liver samples were suspended in lysis 

buffer and homogenized with sonication. Tissue homogenates were processed as previously 

described in detail 20. Fluorescence was quantified with spectrofluorometry (Photon Technology 

International, Lawrenceville, NJ, USA) at appropriate excitation/emission wavelengths (340/435, 

365/465 and 365/430nm for caspase-1, -3 and -8, respectively). 

 

Western blot (WB) 

Protein markers of apoptosis (Bax), cell survival (Bcl-2, phosphorylated-AKT), inflammation 

(ICAM-1) and epithelial junctional proteins (ZO-1, E-cadherin) were assessed by WB. Samples 

(liver or HT-29 cells) were handled according to standard technique as previously described28. 

Protein expression, probed with primary antibodies for ICAM-1 (Invitrogen, MA5407), E-

cadherin (Abcam, ab1416) and Zonula-occludens (Proteintech, 21773-1-AP), was normalized with 

Beta-Actin (Sigma, A2066-2ML). Proteins such as Bax (Abcam, ab182733), Bcl-2 (R&D systems, 

MAB8272), phosphorylated-AKT (Cell signalling technology, 4060S) and total AKT (Cell 

signalling technology, 9272S) were reported as ratios (Bax/Bcl-2; phospho-AKT/AKT).  
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Myeloperoxidase activity 

Myeloperoxidase (MPO) activity was used to quantify neutrophil accumulation in the liver. 

Tissues were weighted and handled as described elsewhere29. MPO activity was measured using 

the same method as previously published20. MPO activity was calculated as follows:  

 

MPO activity (
IU

mg × min
) =

Absorbancemax − Absorbancemin (IU)

weight of sample (mg) × 5 (minutes)
 

 

Liver TNF- and IL-1 concentrations 

Liver pro-inflammatory cytokines (TNF-, IL-1) were measured in duplicate at 24h and 72h 

using the ELISA technique. Liver samples were homogenized with the same technique as WB. 

Using the Lowry method, 200g of proteins was used for measurement of cytokine concentration 

according to the protocol provided by the manufacturer (Rat IL-1/TNF-, DuoSet Elisa, RD 

systems).  

 

Ex-vivo intestinal permeability and intestinal resistance 

Small bowel permeability was assessed ex-vivo using FITC-dextran permeability with a Ussing 

Chamber. Using a 5cm segment of jejunum, the mucosa was bluntly stripped from the 

seromuscular layer and a 1cm2 of mucosa was placed in the cassette so that the luminal side of the 

mucosa faced the chamber with the FITC-dextran solution (4mg/ml). Fluorescence was measured 

at 30, 60 and 90 minutes in the chamber facing the basolateral side of the mucosa using 

spectrofluorometry (Cary Elipse). Alternatively, intestinal transepithelial resistance was measured 

continuously during the 90 minutes. Chambers were continuously oxygenated to prevent cell 

death. Results at 90 minutes were reported for comparisons. 
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In vitro experiments using human intestinal cells (HT-29) 

HT-29 cells were cultured between passage 5 and passage 15 in McCoys medium (Wisent) and 

5% Fetal Bovine Serum (FBS, Wisent) and maintained on room air at 37C with 5% CO2. A 0.2M 

solution of soluble UA was prepared with UA sodium salt (SIGMA, U2875-25G) dissolved in 

0.2% NaOH medium and filtered with a sterile 0.22m filter to ensure the absence of crystals. HT-

29 cells were divided into 4 groups: 1-Vehicle (NaOH) alone as a control group, 2-UA exposure 

(UA 5x10-4M for 18h), 3-UA exposure + Uricase (UA 5x10-4M  for 4h, then Uricase 0.5g/ml for 

14h) and 4-Uricase 0.5g/ml for 18h alone. Microscopy was performed at the beginning and the 

end of treatments to confirm the absence of crystals. After three washings with PBS, cells were 

isolated with centrifugation and adhesion protein expression (ZO-1, E-Cadherin) was assessed by 

western blot. 

 

Statistical analyses 

Based on an effect size of 0.75 (0.6-0.9) from previous data, an alpha error of 0.05 and a power of 

0.9, 36 (30-54) animals were needed for the 6 groups (3 experimental groups with two time points). 

All data were normally distributed and expressed as Mean± Standard Deviation (SD). A one-way 

ANOVA with Bonferroni post-hoc analysis was performed for homogeneous variance. For 

heterogeneous variances, a Brown-Forsythe correction with a Games-Howell post-hoc analysis 

was performed. A p-value less than 0.05 was considered statistically significant.  
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RESULTS 

Hemodynamic parameters and UA circulation 

Physiological variables, including heart rate, MAP, oxygen saturation and temperature are 

presented in a Table (Supplemental Digital Content 1, Table 1, http://links.lww.com/TA/B735).  

Both the HS and HS+U groups had similar MAP patterns, weights, total volumes of withdrawn 

blood to induce shock and reinfused resuscitation volumes (Fig 1A, B).  

 

Circulating UA levels were significantly induced by HS compared to sham, which was prevented 

following uricase administration at 24h and 72h (Fig 2A). Similar patterns of UA levels were 

observed in the liver at 24h without detectable difference at 72h (Fig 2B). 

 

Impact of UA modulation on the liver  

The intervention with uricase blunted the HS-induced increase in ALT levels at both at 24h and 

72h (Fig 3A). For AST, the effect was marginal in the HS+U group compared to HS at 72h (Fig 

3A). At 24h, the same pattern was observed for ALT levels, with no difference for AST levels 

(Supplemental Digital Content 2,  Figs 3 and 4, http://links.lww.com/TA/B736). 

 

Apoptosis indicators were assessed using caspase-3 (common pathway effector caspase) and 

caspase-8 (extrinsic pathway initiator caspase) activities. Other components involved in survival 

program signalling pathways were Bax/Bcl-2 and pAKT/AKT ratios, respectively. At 72h after 

HS, uricase prevented a nearly two-fold increase in liver caspase-3 and -8 activities (Fig 3B). 

Increase in liver Bax/Bcl-2 ratio after HS was also prevented (Fig 3C). HS lead to a significant 

decrease in liver phosphorylated-AKT/AKT ratio, a protein that promotes cell survival upon 
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phosphorylation; lowering UA with uricase prevented this phenomenon (Fig 3C). The same 

patterns were observed 24h after HS (Supplemental Digital Content 2,  Figs 3 and 4, 

http://links.lww.com/TA/B736). 

 

Regarding inflammation in the liver, MPO enhancement at 24h after HS was completely prevented 

with uricase (Fig 4A), whereas no difference was observed at 72h (Supplemental Digital Content 

2,  Figs 3 and 4, http://links.lww.com/TA/B736). The adhesion protein ICAM-1 was significantly 

enhanced by HS at both timepoints, and also prevented by uricase administration (Supplemental 

Digital Content 2, Fig 4A, http://links.lww.com/TA/B736). Furthermore, uricase completely 

prevented increases in liver TNF- and IL-1 24h after HS (Fig 4B). Although IL-1 was not 

measured at 72h due to its early kinetics30, liver TNF- showed no difference at 72h (Supplemental 

Digital Content 2,  Figs 3 and 4, http://links.lww.com/TA/B736). Caspase-1 activity, part of the 

inflammasome complex31, was significantly induced both at 24h and 72h after HS and completely 

abolished with UA metabolism by uricase (Supplemental Digital Content 2, Fig 4B, 

http://links.lww.com/TA/B736). 

 

Impact of UA modulation on intestinal permeability and epithelial adhesion proteins 

HS lead to significantly increased plasma endotoxin (LPS) circulation at 72h compared to sham, a 

phenomenon completely prevented by the administration of uricase during resuscitation (Fig 5A). 

In line with this finding, both ex-vivo intestinal transepithelial resistance and dextran permeability 

were altered 72h after HS (Fig 5B). The drop in transepithelial resistance, as well as intestinal 

hyperpermeability following HS, were prevented with uricase. HS-induced circulating HMGB1 

was persistently abolished at both timepoints following uricase treatment (Fig 5C).  
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Additional in vitro experiments were performed to investigate how UA could alter intestinal 

permeability. HT-29 cells treatment with UA decreased junctional protein expression (E-cadherin 

and ZO-1) by almost half and UA metabolism with subsequent addition of uricase to culture media 

prevented this phenomenon (Fig 6A). As control measures, no difference was observed between 

control and uricase alone regarding the expression of both proteins (Fig 6A). Uricase was 

confirmed to completely metabolize UA in the culture media, with a final medium UA 

concentration identical to control (Fig 6B).  

 

DISCUSSION 

We have previously shown that UA, released in the circulation as part of HS, contributes to lung 

and kidney injury in association with systemic inflammation20. This study demonstrates that 

targeting one specific DAMP during resuscitation, namely UA, directly impacts on enteric organs 

after HS. We show that UA plays a key role in liver enzyme release (ALT), liver inflammation, 

regulatory apoptotic and survival signaling pathways, as well as increased enteric permeability 

following HS. We specifically evaluate the role of circulating UA as a direct mediator for hepatic 

and enteric injury after HS, given controversial previous experimental data11, 21, 32-34. In the past, 

most studies pertaining to the UA/XO pathway were performed using XO inhibitors with the 

theory that decreasing XO activity would decrease oxidative stress35, 36. However, UA levels were 

either not measured34 or measured not as a direct mediator but rather as a marker of XO 

inhibition11, 35, 36. In addition, organ injury was assessed relatively early after HS11, 21, and some 

studies tested pre-treatment strategies21, 34, 35. Although this is relevant to planned procedures such 

as organ transplantation, this is of questionable relevance to the trauma population, knowing that 

post-traumatic organ failure is a late phenomenon and that it is impossible to pre-treat a trauma 
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patient before injury occurs2, 3. With time, UA has been well established as a DAMP and has been 

implicated in numerous inflammatory conditions such as the tumor lysis syndrome, coronary artery 

disease, gouty arthritis, and morbidity in ICU populations37-40. Our pharmaceutical strategy 

(uricase), used as an adjunct to resuscitation, metabolizes UA downstream of XO and therefore 

differentiates whether organ damage is related to XO-induced oxidative stress or UA itself. 

Furthermore, our model was designed to evaluate organ damage with a temporal resolution that is 

clinically relevant to the trauma population, as we used a rat model of HS with longer survival (24-

72h). 

 

Our study shows that HS-induced liver ischemia-reperfusion injury is related to UA circulation as 

evidenced by decreased ALT levels at both 24h and 72h timepoints in the uricase treated groups. 

This phenomenon was less clear with AST levels, presumably due to non-hepatic AST sources 

such as skeletal muscle. Further experiments showed that UA plays a role in hepatocellular 

regulation of apoptotic pathways through activation of caspases and increased Bax/Bcl-2 ratio. 

Such phenomena have also been observed kidney tubular cell line after UA exposure41. Uricase 

treatment prevented the decreased AKT phosphorylation (pAKT) induced by HS, a marker of one 

signaling pathway involved in cell survival. This contrasts with the survival benefit and pro-

inflammatory profile induced by UA in human monocytes42. At least, in the liver parenchyma, our 

findings are consistent with our previous study on lung and kidney caspases activation20. Although 

mechanisms remain incomplete, these results suggest either multiple distinct pro-apoptotic effects 

of UA, or significant cross-talk between the intrinsic and extrinsic apoptotic pathways.  
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UA also seems to be involved in liver inflammation following ischemia-reperfusion injury. 

Decreased liver pro-inflammatory cytokines (TNF-, IL-1), ICAM-1 expression and neutrophilic 

infiltration were observed at 24h when UA was targeted during resuscitation. The fact that MPO 

and TNF- were not increased in the parenchyma 72h after HS, despite enhanced ICAM-1 

expression, points to a possible bimodal systemic effect. The ischemia effect present in the early 

phase of inflammation might decrease with time, while the persistent circulating UA might 

enhance ICMA-1 endothelial expression. The effect of persistent activation at the level of the 

immune system or hepatocytes by circulating UA is suggested through caspase-1 activation, a key 

downstream effector of the NLRP-3 inflammasome complex43. Hence, UA has been shown to 

promote IL-1 expression and ICAM-1 expression on renal tubular cells14. The fact that IL-1 

levels and caspase-1 activities were significantly blunted with uricase suggests that UA contributes 

to liver ischemia-reperfusion injury through an inflammasome-mediated process. It is possible that 

the phenomenon is related to local TNF- activated by inflammation and apoptosis, particularly 

through the extrinsic apoptotic pathway44. 

 

One of the most interesting findings of the present study is the impact on intestinal permeability 

and resistance. The clinical relevance of intestinal permeability was assessed with measurement 

of endotoxemia, with the assumption of a digestive tract source in absence of gram-negative sepsis. 

Consistent with the prevention of HS-induced intestinal hyperpermeability, the intervention on 

UA prevented the development of endotoxemia 72h after HS, which has been shown to correlate 

with organ dysfunction in populations sustaining severe ischemia-reperfusion injury such as severe 

trauma23, 45 and cardiac surgery patients46,47. The mechanism by which UA alters intestinal 

permeability may be related to decreased expression of epithelial contact proteins (E-cadherin and 

Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.

ACCEPTED



 

17 

 

ZO-1) as demonstrated in-vitro; indeed, other have demonstrated its impact on the intestinal barrier 

in hyperuricemic mouses48. An alternative mechanism may be through promotion of HMGB1 

circulation, a DAMP known to cause distant organ damage and to alter mucosal barrier function17-

19, 49. The fact that our in-vivo intervention on UA persistently prevented HMGB1 circulation after 

HS supports this mechanism and is consistent with previous in-vitro studies showing that soluble 

UA can induce HMGB1 release15. 

 

Whether altered intestinal permeability is a driver of systemic inflammation and distant organ 

damage or merely an injured organ among others is currently undefined. The fact that multiple 

studies have shown an association between endotoxemia and distant organ failure suggests that 

increased intestinal permeability, with concomitant endotoxemia, may be a major factor in distant 

organ failure23,45. Alternatively, one could postulate that gut failure is solely a marker of 

hypoperfusion severity and may not mechanistically contribute to distant organ injury. Although 

the direct anatomical relationship between the gut and the liver provides insight into a potential 

causal relationship, our model cannot answer this question.  

 

We have to acknowledge several limitations of our study. First, our model is limited to a controlled 

HS survival model with measures up to 72h, without direct tissue injury as sustained by polytrauma 

patients. Secondly, although our model does present significant hypoperfusion (Delta lactate) and 

transient renal dysfunction as previously reported20, 28, liver dysfunction per se was not measured. 

In addition, histologic assessment of intestine and liver injury, including cellular apoptosis, were 

not performed. Finally, despite our ex-vivo and in-vitro approach for the evaluation of intestinal 
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permeability and epithelial junctional protein expression, these findings remain consistent with the 

in-vivo measures of endotoxemia.  

Even though targeting UA with uricase consistently prevented the consequences of ischemia-

reperfusion injury on the liver and the gut after HS, whether uricase can prevent long-term organ 

failure and sepsis remains to be explore. Although our findings point to an overall deleterious 

effect of UA as part of systemic ischemia-reperfusion injury, caution remains important as 

beneficial anti-oxidant effects have been suggested in local neuronal ischemia50, 51. 

Notwithstanding these findings, they do not necessarily apply to injury sustained in HS, as 

different mechanisms involving other DAMPs or immune mediators could induce distant organ 

injury. 

 

CONCLUSION 

UA released from systemic ischemia-reperfusion injury after HS impacts liver and enteric 

function, leading to injury through activation of inflammatory and apoptotic pathways and 

alteration of intestinal permeability. Despite limited knowledge of underlying mechanisms, UA 

appears to be a key upstream mediator in HS-induced organ injury and could represent a potential 

therapeutic target in adjunction to standard resuscitation. 
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FIGURE’S LEGENDS 

 

Figure 1: Mean arterial pressure (A), weight (B), Shed blood volume (C) and resuscitation volume 

(D) among HS and HS + Uricase groups. Expressed as mmHg, grams or ml  SD. 

 

Figure 2: Circulating (A) and liver (B) uric acid concentration 24h and 72h after hemorrhagic 

shock. Values expressed as fold change  SD. * indicates p<0.05 between HS and the two other 

groups. 

 

Figure 3: Plasma ALT and AST (A), Caspase-3 and -8 activation (B), Bax/Bcl-2 ratio and 

pAKT/AKT ratio (C) and representative Western Blot bands (D) at 24 and 72h after HS. Values 

expressed as IU/L or fold change  SD. * indicates p<0.05 between HS and the two other groups. 

# indicates p<0.05 between HS+U and HS group. 

 

Figure 4: Liver neutrophil infiltration, ICAM-1 adhesion protein expression with representative 

bands (A), pro-inflammatory cytokine expression related to inflammasome activation and caspase-

1 activation (B). Values expressed in fold change or pg/ml  SD. * indicates p<0.05 between HS 

and the two other groups. 

 

Figure 5: Plasma LPS (A), ex-vivo intestinal permeability studies (B) and plasma HMGB-1 (C).  

Expressed in ng/ml (A), fold change and Ohms (B) and pg/ml (C)  SD. * indicates p<0.05 

between HS and the two other groups. 
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Figure 6. In-vitro HT-29 junctional protein expression (A) and UA supernatants concentrations 

(B) after UA exposure. Expressed in fold change and M  SD. n=6/group. * indicates p<0.05 

between the UA group and all other groups. 
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Figure 1 
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Figure 2 
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Figure 4 
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Figure 5 
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Figure 6 
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Table: Physiological variables of experimental groups. 

 Baseline Shock Reperfusion 

Sham (n=12) 

   MAP,  mmHg 

   HR, bpm 

   Saturation, % 

   Temperature, (°C) 

 

65.2 (7.6) 

238 (19.6) 

98 (1.2) 

33.8 (1) 

 

64.7 (7.8) 

243 (19.6) 

98 (1) 

34.1 (1) 

 

64.7 (7.8) 

243 (19.5) 

98 (1) 

34.1 (1) 

HS (n=12) 

   MAP,  mmHg 

   HR, bpm 

   Saturation, % 

   Temperature, (°C) 

 

66.9 (6.1) 

241 (14.7) 

98 (0.7) 

33.8 (1) 

 

32.2 (1.8) 

223 (22) 

97 (1.5) 

33.4 (1) 

 

56.3 (7.6) 

250 (19.6) 

98 (0.7) 

33.5 (1.2) 

HS + Uricase (n=12) 

   MAP, mmHg 

   HR, bpm 

   Saturation, % 

   Temperature, (°C) 

 

63.5 (6.4) 

243 (22) 

98 (0.7) 

34.4 (1) 

 

31.2 (1.7) 

235 (27) 

98 (1) 

33.9 (1) 

 

56.1 (7.4) 

252 (29.4) 

98 (1.2) 

33.9 (1) 

 

All values are represented as means (SD).  MAP: mean arterial pressure; HR: heart rate; bpm: beats per minutes. 

Average values are reported at baseline, during hemorrhagic shock, then during reperfusion until extubation. 
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A. At 24h, the intervention with uricase (U) blunt HS-induced increase in ALT levels; increased AST  

levels after HS compared to Sham is not attenuated following uricase intervention. 

B. At the 24h after HS, uricase prevents a nearly two-fold increase in liver caspase-3 and -8 activities.  

C. Increase in liver Bax/Bcl-2 ratio after HS is prevented. HS leads to a significant decrease in liver  

phosphorylated-AKT/AKT ratio; lowering UA with uricase prevented this phenomenon. 

D. Representative Western Blot bands.  

Values expressed as IU/L or fold change  SD. * indicates p<0.05 between HS and the two other groups. 

 

Supplementary figure 3 
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A. No differences are observed at 72h for Myeloperoxidase (MPO). The adhesion protein ICAM-1 is significantly 

enhanced by HS and prevented by uricase administration.  

Supplementary figure 4 
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B. Representative Western Blot bands of ICAM-1 

C. liver TNF- showed no difference at 72h; Caspase-1 activity, is significantly induced till 72h after HS and 

completely abolished with UA metabolism by uricase. 

Values expressed in fold change or pg/ml  SD. * indicates p<0.05 between HS and the two other groups. 
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