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RÉSUMÉ 

Introduction: Le dalcétrapib est un inhibiteur de la protéine de transfert des esters de 

cholestérol (CETP) qui augmente le niveau du cholestérol-HDL. Des études d’association 

pangénomiques ont révélé une association entre les polymorphismes du gène adénylate 

cyclase de type 9 (ADCY9) et les réponses au dalcétrapib. Le but de cette étude était 

d’identifier le polymorphisme nucléotidique (SNP) causal, ce qui pourrait mener à comprendre 

le mécanisme moléculaire modifiant les effets du dalcétrapib sur les bénéfices 

cardiovasculaires.  

Méthodes: Des essais d’EMSA (electrophoretic mobility shift assay) ont été réalisés afin 

d’analyser les effets modificateurs de douze SNPs candidats sur la liaison de protéines 

nucléaires, provenant de cellules monocytaires THP-1. Ensuite, des essais de transfections 

avec un gène rapporteur ont été utilisées pour évaluer l’effet transcriptionnel de ces SNPs. La 

liaison des protéines au SNP rs12920508 a par la suite été étudiée par des chromatographies 

d’affinité d’ADN suivies par des spectrométries de masse et par MC-EMSA (multiplexed 

competitor EMSA).  

Résultats: Sept sur douze SNPs ont démontré une liaison spécifique à un allèle qui n’a pas été 

influencée par l’exposition des cellules au dalcétrapib. Le résultat des transfections de vecteurs 

rapporteurs dans les cellules THP-1 a montré que les constructions plasmidiques portant les 

variants rs1967309 et rs12920508 augmentaient l’activité transcriptionnelle. Onze protéines 

ont été identifiées comme des candidats potentiels pouvant se lier à la région du SNP 

rs12920508. De plus, la région contenant les deux variants rs1967309 et rs12920509 a 

présenté une activité transcriptionnelle accrue et significativement plus élevée pour 

l’haplotype délétère.  

Conclusion: Le polymorphisme rs1967309 semble causer la majorité des effets fonctionnels 

dans la lignée cellulaire THP-1. Cependant, une interaction avec le SNP rs12920508 ou la 

présence de la région de ce SNP pourrait être nécessaire pour l’activité optimale de rs1967309. 

Des travaux supplémentaires sont nécessaires pour élucider le lien entre le SNP 

potentiellement causal et les réponses cardiovasculaires induites par le dalcétrapib. 

 

Mots clés: Dalcétrapib, ADCY9, SNP, EMSA, maladie cardiovasculaire, HDL-C 
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ABSTRACT 

Introduction: Dalcetrapib is a cholesteryl ester transfer protein (CETP) inhibitor that increases 

the circulating level of HDL-cholesterol. Genome-wide association studies have revealed an 

association between polymorphisms found in the adenylate cyclase type 9 (ADCY9) gene and 

responses to dalcetrapib, including its cardiovascular benefits. The purpose of this study was 

to identify the causal single nucleotide polymorphisms (SNP) which could lead to understand 

the molecular mechanisms altering dalcetrapib effects on cardiovascular outcomes. 

Methods: Electrophoretic mobility shift assays (EMSA) were performed to analyze the allele-

specific effects of the best causal SNP candidates on binding with nuclear proteins obtained 

from a THP-1 monocytic cell line. Afterwards, a dual luciferase reporter assay was used to 

assess the effect of selected genetic variants on gene transcription. Protein binding to SNP 

rs12920508 was investigated by DNA-affinity chromatography followed by mass 

spectrometry and multiplexed competitor EMSA.  

Results: Seven out of 12 SNPs demonstrated allele-specific protein binding, which was not 

influenced by dalcetrapib exposure of the cells. Results from dual luciferase reporter assay 

showed that plasmid constructs bearing variants rs12920508 and rs1967309 increased 

transcriptional activity when transfected into THP-1 undifferentiated monocytic cells. Eleven 

proteins were identified as potential candidates binding to region of SNP rs12920508. 

Additionally, region containing both SNPs rs1967309 and rs12920508 displayed increased 

transcriptional activity with significantly higher activity for deleterious haplotype.  

Conclusion: Polymorphism rs1967309 seems to be causing most functional effects in the 

THP-1 monocytic cell line. However, an interaction with rs12920508 or presence of the DNA 

region of this SNP may be necessary for optimal activity of rs1967309. Further work is 

required to elucidate the link between potentially causal SNPs and cardiovascular responses 

induced by dalcetrapib.  

 

Keywords: Dalcetrapib, ADCY9, SNP, EMSA, cardiovascular disease, HDL-C 
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1 INTRODUCTION 

1.1 Atherosclerosis 

Cardiovascular disease is the leading cause of human death in North America and other 

developed countries. In most cases, the major cause of the cardiovascular event is atherosclerosis. 

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids, 

inflammatory cells and fibrous elements in medium-sized and large arteries. In the heart, 

atherosclerosis can result in myocardial infarction and heart failure caused by coronary artery 

stenosis. In the brain, rupture of atherosclerotic plaques or stenosis may induce a stroke [1-3].  

1.1.1 Risk factors for atherosclerosis 

Numerous risk factors for atherosclerosis were identified over the past years. Some of them, 

called modifiable risk factors, can be controlled in order to delay or prevent atherosclerosis 

progression. To the modifiable factors we can include: elevated levels of cholesterol and low-

density lipoprotein (LDL), reduced levels of high-density lipoprotein (HDL), cigarette smoking 

(>10/day), hypertension, diabetes, severe obesity (>30% overweight) and inactive lifestyle [4]. 

The other risk factors such as sex, age, ethnicity and family history cannot be regulated and are 

therefore called non-modifiable risk factors.  

The majority of enumerated risk factors are not independent and contribute to global risk profile. 

For example, diabetic patients often exert elevated levels of low-density lipoprotein-cholesterol 

(LDL-C) and hypertension that might contribute to atherogenesis. Also, active lifestyle is known 

to have protective effect on atherosclerosis, likely due to reduced blood pressure and body 

weight, increase in high-density lipoprotein-cholesterol (HDL-C) levels and decrease in LDL-C. 

Therefore, understanding the global risk profile of a patient could provide improved predictive 

power for atherosclerosis [5-7].  

In addition, total risk profile of atherosclerosis is complicated even more by presence of genetic 

factors. One of the first genetic factors affecting cardiovascular diseases was discovered in a 

patient with hypocholesterolemia and his mother. Both patients possessed a 5-kb deletion in low-

density lipoprotein receptor (LDLR) gene that result in reduced production of LDLR on the cell 

surface. Decreased levels of LDLR subsequently impair receptor–mediated hepatic uptake of 

LDL and lead to elevated levels of circulating cholesterol [8]. Another family-based study 
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identified mutations in two additional genes, ApoB and PCSK9, which cause 

hypercholesterolemia and elevated levels of LDL [9, 10].  

1.1.2 Pathogenesis of atherosclerosis 

Atherosclerosis is a chronic inflammatory condition, which remains unnoticed during its first 

phases of development. Formation of lesions begins with endothelial dysfunction, endothelial cell 

activation, accumulation of atherogenic LDL, inflammation and may lead to an acute clinical 

event induced by plaque rupture and thrombosis.  

 

Endothelial dysfunction 

The basic structure of blood vessel is divided into three morphologically distinct layers. The 

outermost layer called adventita is built from connective tissues with scattered fibroblasts and 

smooth muscle cells (SMCs). The middle layer, media, consists essentilally of SMCs. The 

innermost layer, which is in direct contact with the blood flow is called the intima. On the 

luminal side, the intima consists of a monolayer of endothelial cells, which play an important role 

in development of atherosclerosis [2]. The endothelium regulates vascular homeostasis, serving 

as a selectively permeable barrier between blood and tissues. The endothelium also produces a 

vast range of factors, which regulate processes affecting creation of atherosclerotic lesions, such 

as vascular tone, adhesion of cells, thromboresistance, proliferation of SMCs, and inflammation 

of vessel wall. One of the most important factors released by endothelium is a potent 

vasodilatator called nitric oxide (NO). Nitric oxide opposes the effect of endothelium-derived 

vasoconstrictors and inhibits oxidation of low-density lipoproteins. Defect in its production or 

activity leads to endothelial dysfunction [11, 12]. Oxidative stress, which may originate from 

smoking, hypertension, hyperlipidemic states and diabetes, can also interfere with the production 

and activity of nitric oxide and as a result  provoke an inflammatory response, vascular 

remodeling and higher permeability of endothelium [3].  

Monocyte adhesion and accumulation of LDL 

Beside causing increased permeability of endothelium, endothelial dysfunction is also implicated 

in the inflammatory response, known as endothelial cell activation. Factors inducing endothelial 

cell activation are: certain bacteria and viruses, pro-inflammatory cytokines such as interleukin 1 

and tumour necrosis factor, physical and oxidative stress, oxidised low density lipoproteins. 
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During endothelial cell activation, the endothelium express cell surface molecules, such as 

vascular cell adhesion protein 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and 

endothelial leukocyte adhesion molecule (E-selectin). Expression of these surface molecules 

facilitates the recruitment and attachment of circulationg monocytes and T-lymphocytes to the 

vessel wall [13, 14] .  

Increased permeability of arterial wall also favors accumulation of atherogenic lipoproteins, 

mainly LDL, which extravasate through the leaky and defective endothelium into the 

subendothelial space. Retained lipoprotein particles undergo oxidative modifications and become 

cytotoxic, proinflammatory and proatherogenic. The molecules responsible for such 

modifications are reactive oxygen species (ROS) as well as myeloperoxidases and lipoxygenases 

released by inflammatory cells and responsible for the production of HOCl and oxygenated 

lipids, respectively  [15, 16]. 

Plaque progression 

Oxidized lipids trigger secretion of chemokines (chemotactic cytokines) by overlying endothelial 

cells. Next, chemokines direct transmigration of adherent monocytes across endothelium into the 

intima. Monocyte chemotactic protein-1 (MCP-1) is the most important atherogenic 

chemoatractant. Its receptor on monocytes C-C chemokine receptor type 2 (CCR2) may be 

upregulated significantly during plaque development. Monocytes located within subendothelial 

space, differentiate into macrophages. The macrophages express scavenger receptors that bind 

oxidized lipoproteins. The expression of scavenger receptors is influenced by other important 

cytokines secreted by endothelial cells, namely macrophage colony stimulating factors (M-CSF) 

[2]. These receptors are not down-regulated by cholesterol accumulation, thus the macrophages 

internalize continously modified LDL, what leads to foam cell formation [1]. Foam cells trapped 

within arterial intima ultimately die and contribute to the formation of destabilizing lipid-rich 

core in the plaque. Transformation of the macrophages to foam cells may be inhibited by removal 

of excess cholesterol by HDL in a process called reverse cholesterol transport (RCT) [2].  

Macrophages and T cells located within lesions produce growth factors, such as insulin-like 

growth factor 1 (IGF-1) and platelet-derived growth factor (PDGF), which induce smooth muscle 

cells (SMC) migration to arterial intima [17]. Subsequently, SMCs proliferate and produce 

collagen-rich matrix which cause plaque increase in size. Advanced lesions can grow sufficiently 
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large to block completely blood flow [2]. Nevertheless, smooth muscle cells confer stability to 

plaques, protecting them from more important consequences such as plaque rupture that can lead 

to thrombosis [15].   

Additionally, cholesterol crystals can form in foam cells and cause release of interleukin 1 β (IL-

1β), which further provokes SMC to produce interleukin 6 (IL-6). Both inteleukins are pro-

inflammatory, and induce synthesis of C-reactive protein (CRP) in the liver. Increased production 

of CRP results in its secretion into the circulation and subsequent rise in CRP serum 

concentration. Since the concentration of CRP in the serum is known to correlate with the 

occurence of cardiovascular disease, CRP levels are considered as a risk marker [18].  

 

 

Figure 1 : Monocytes in atherogenesis. Monocytes are recruited to defective endothelium by 

adhesion molecules. Adherent monocytes migrate into the intima and differentiate into 

macrophages. Macrophages internalize oxidized low-density lipoproteins and become foam cells. 

Trapped foam cells eventually die and contribute to atherosclerotic plaque formation. Figure 

presented with permission (Peter Libby, 2002) [19]. 

 

 

 



5 
 

1.2 Existing treatments 

Prevention is an important part of atherosclerosis treatment. Change of lifestyle including 

modification of diet, stimulation of physical activity and suspension of smoking may greatly 

reduce progression of the disease. However, if the modification of lifestyle is not sufficient, 

introduction of medical therapy is neccesary.  

The most popular therapies reducing cardiovascular events focus on lowering the levels of 

atherogenic LDL cholesterol. Although LDL-C-lowering medications significantly improve 

cardiovascular health of the patients, remaining risk needs to be targeted by modulation of other 

factors, such as triglycerides (TGs) and HDL-C. In addition, there is more and more evidence that 

therapy outcomes vary depending on the patient genotype. Therefore, the future of cardiovascular 

treatment should focus on personalized medicine to deliver right treatment to the patients, taking 

into account their genetic profiles [20].  

LDL-C-lowering treatments 

Until now 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) 

are the most effective and the most often prescribed medicines for atherosclerosis. Statins 

competitively inhibit HMG-CoA reductase and cause an elevated expression of LDL receptors on 

the hepatocytes surface. Upregulated expression of LDL receptors then leads to decreased plasma 

levels of LDL-C and other apo B-containing lipoproteins. Apart from their lipid lowering action, 

statins have been reported to exert anti-inflammatory activity by lowering serum levels of C-

reactive protein [21]. Statins are generally safe and well-tolerated in patients. At the maximum 

dosage, the most effective statins reduce LDL-C levels by 55% to 60% [22]. Clinical trials with 

patients with and without coronary heart disease, reported that statins decrease the relative risk of 

major coronary events by ~30%. Also, patients with higher baseline risk, benefit more from 

statin treatment [23].   

Although statins greatly reduce cardiovascular risk, patients often stop statin therapy due to 

adverse effects. Two causally related adverse effects of statins are myopathy and impairement of 

insulin resistance.  Myopathy is the most common adverse effect of statins, and is caused by 

depletion of muscle ubiquinone (CoQ10), what results in impairment of mitochondrial function. 

In relation to insulin resistance, statins increase the risk of incident diabetes by ≈ 9%  to 28% 

[24]. 
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Ezetimibe is another medicine that reduces levels of LDL-C by inhibiting cholesterol absorption. 

No significant adverse effects were observed for ezetimibe thus it is ofen used as second-line 

therapy in patients with contraindications to statins [20]. Also, therapy combining ezetimibe with 

statins was found to lower the risk of cardiovascular events in high-risk patients in comparison to 

statin therapy alone [25]. 

Bile acid sequestrants can produce a reduction in LDL-C of 18-25%, when used at the highest 

dose. But their use is limited due to gastrointestinal secondary effects and interactions with other 

often prescribed drugs [20]. 

Recently discovered proprotein convertase subtilisin/kexin type-9 (PCSK-9) inhibitors are 

promising medicines, which significantly decrease LDL-C levels. PCSK9 was found to regulate 

LDL receptor degradation. Its inhibition prevents degradation of LDL receptors, improves 

absorption of LDL-C particles by liver and therefore decreases LDL-C plasma concentration. The 

limiting factors for PCSK-9 inhibitors are their current relatively high costs and lack of solid 

outcomes in large randomised controlled trials [26].  

TG-lowering treatments 

Beside LDL-lowering ability, statins also reduce plasma levels of TG-rich particles throughout 

inhibition of HMG-CoA reductase [21].  

Another type of drugs which reduce concentrations of triglycerides are the agonists of 

peroxisome proliferator-activated receptor-α (PPARα), called fibrates. PPARα is a nuclear 

hormone receptor, which binds to DNA and modulates the transcription of genes involved in lipid 

and glucose metabolism. Fibrates decrease the plasma levels of TG by stimulating the catabolism 

of TG-rich lipoproteins [27].  

HDL-C-increasing treatments 

Treatment with fibrates is also associated with a moderate increase in HDL-C concentrations. 

Raise of HDL-C levels by fibrates results from the increased synthesis of the major HDL 

apolipoproteins, apoA-I  and apoA-II , mediated by PPARα. Most studies conducted with fibrates 

reported coronary risk reduction after fibrate treatment [28]. However, the response of 

hypercholesterolemic patients to fibrates was found to vary. For example, patients with higher 

body mass index (BMI>29) and with higher probability of having the metabolic syndrome 
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benefited more from fibrate treatment. Also, fibrate treatment was associated with significantly 

less ischemic heart disease in patients with diabetes [29, 30]. The Helsinki Heart Study analysed 

the baseline levels of HDL-C in patients treated with fibrate (gemfibrozil) and found that patients 

with lower levels of baseline HDL-C showed greatest benefit from treatment [31]. However, 

there is controversy as to wheter the beneficial effects of fibrates are related to the increase of 

HDL-C or to an absolute reduction in LDL-C [32]. Surprisingly, in some patients with 

dyslipidemia, fibrate treatment resulted in increase of LDL-C levels [33]. Therefore, treatment 

with fibrates should be prescribed with consideration of patient profile.  

Niacin increases the levels of HDL-C throught non-competitive inhibition of enzyme involved in 

triglyceride synthesis, called hepatocyte microsomal diacylglycerol (DGAT2). Additionally, 

niacin raise HDL-C by selective inhibition of apoA-I uptake. In two recent clinical trials (AIM-

HIGH and HPS2-THRIVE) niacin failed to significantly reduce cardiovascular events. In 

addition, niacin treatment is limited by adverse side-effects [34].  

Another promising group of medications increasing levels of HDL-C are the cholesteryl ester  

transfer protein (CETP) inhibitors. CETP inhibitors increase HDL-C levels by inhibition of 

cholesteryl esters transfer from HDL to apoB-containing proteins, and are described in detail in 

chapter 1.3.  

1.3 HDL and their atheroprotective properties  

Although statins constitute an essential part of the standard of care forin cardiovascular disease 

(CVD) secondary prevention, there remains a significant CV risk in these patients. Therefore, 

development of new therapies with different targets is necessary [35]. Low plasma concentrations 

of high-density lipoprotein cholesterol are commonly associated with higher risk for 

cardiovascular disease in patients. Thus, raising the levels of HDL-C became a target of many 

novel therapies. Disappointingly, the results from the majority of clinical trials demonstrate so far 

that despite significant rises of HDL-C levels in patients, HDL-raising drugs show no significant 

improvement in cardiovascular events. Such results emphasize the complexity of high-density 

lipoprotein molecule structure, metabolism and function. It is important for further studies in 

HDL field to consider different subclasses of HDL particles and their various involvement in 

atheroprotective mechanisms, such as reverse-cholesterol transport [34].  
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1.3.1 The HDL hypothesis and epidemiological studies 

Early studies in 1951, reported by Barr et al. showed that patients with coronary artery disease 

have reduced plasma levels of high-density lipoprotein cholesterol [36]. A subsequent 

Framingham study of Gordon et al. in 1977, demonstrated that low level of HDL-C is a risk 

factor for coronary heart disease [37]. These discoveries initiated multiple HDL studies, which 

reported numerous beneficial effects of increased levels of HDL-C and led to formulation of the 

HDL hypothesis. This hypothesis states that the intervention to raise plasma levels of HDL-C 

protects against atherosclerosis. Following this belief, strategies to raise plasma HDL levels were 

developped but they did not bring the expected results so far. Therefore, the HDL hypothesis 

started to be questioned. 

In the last few decades many epidemiological studies supported the HDL hypothesis [38]. A 

meta-analysis of four large studies, including in total 15252 individuals, showed that each 

1 𝑚𝑔 𝑑𝐿⁄  raise of HDL-C levels was associated with a 2-3% decrease in risk of cardiovascular 

disease [39]. However, the fact that many factors affect both CVD risk and HDL-C levels brings 

uncertainty to the causality of HDL-C alone. For example, it was shown that women have on 

average higher levels of HDL-C than men [40]. Smokers show 14% lower levels of HDL-C than 

nonsmokers [41]. Also, it was reported that regular aerobic exercise raise HDL-C levels by 

around 2.5 𝑚𝑔 𝑑𝑙⁄  [42]. Moreover, the abdominal obesity is associated with lower HDL-C levels, 

whereas weight loss is associated with raise of HDL-C levels [43, 44]. Finally, systemic 

inflammation that is a known risk factor for CVD was shown to be associated with low levels of 

HDL-C [45]. 

Studies investigating human genetics of HDL led to better understanding of HDL metabolism, 

but also suggested that HDL-C may not be significantly associated with cardiovascular risk. 

Three mendelian disorders causing the loss of the capacity to produce mature HDL, were 

identified up to date [46]. These include the apoA-1 structural mutations, ABCA1 deficiency 

(Tangier disease), and familial LCAT deficiency. Although, studying these disorders helped 

identification of genes and proteins playing important role in regulation of HDL-C levels, they 

did not demonstrate convincing association with increased risk of CVD.  

The other evidence causing doubt in HDL hypothesis are the clinical trials with HDL-raising 

drugs, niacin and CETP inhibitors [47]. Niacin is a medication used to raise HDL-C levels and 
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lower LDL-C and TGs. A trial called Coronary Drug Project reported that niacin reduced 

cardiovascular events in hypercholesterolemic men [48]. Two more recent trials AIM-HIGH and 

HPS2-THRIVE, which studied treatment of patients with cardiovascular heart disease who had 

well-controlled LDL-C levels, failed to demonstrate significant reduction of cardiovascular 

events. However, there is uncertainty associated with interpretations of these two trials. The 

number of individuals taking part in AIM-HIGH study was relatively low, and there was a 

modest increase in HDL-C levels in the treated group compared to placebo [49]. The HPS2-

THRIVE trial was larger but included a additional drug called laropiprent, which reduces the 

flushing associated with nacin [50]. Although HPS2-THRIVE study failed to demonstrate 

significant association of niacin therapy with lower cardiovascular risk, a tendency was observed 

with significant benefit in a group of patients with higher baseline LDL-C levels.  

Another HDL-raising group of drugs, which failed to confirm HDL hypothesis is called CETP 

inhibitors. Torcetrapib was the first CETP inhibitor to enter in a phase III clinical trial called 

ILLUMINATE [51]. In the ILLUMINATE study, torcetrapib raised HDL-C levels by 72.1 %, but 

this trial was prematurely terminated due to elevated rate of cardiovascular events and mortality 

in the torcetrapib group. Such unexpected results were further explained by the fact that 

torcetrapib has off-target effect on blood pressure and aldosterone that may explain the increased 

cardiovascular risk [52]. What is more, group of researchers investigating effects of torcetrapib in 

animal species, claimed that the blood pressure response caused by torcetrapib is independent on 

CETP inhibition [53]. They showed that torcetrapib increases blood pressure to an equivalent 

extent in normal and CETP transgenic mice. Also, the same group demonstrated that treatment of 

CETP transgenic mice with another CETP inhibitor, anacetrapib results in an equal rise of HDL-

C like with torcetrapib treatment, but has no influence on blood pressure. Explanations of failure 

of niacin and torcetrapib trials and the fact that HDL has been demonstrated with many anti-

atherogenic properties (described in section “Atheroprotective properties of HDL”) bring hope 

for HDL-raising therapies.  

1.3.2 HDL composition and structure 

Plasma HDL represents an heterogenous group of small discoidal and spherical particles. The 

HDL particles distinguish themselves from other lipoprotein classes by they small particle size 

(7-12 nm diameter) and high protein content (30-70% by weight). The HDL proteins may be 

divided into four groups: apolipoproteins, enzymes, lipid transfer proteins and minor proteins that 
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make up <5% of total HDL proteins. Apolipoproteins and enzymes play an important role in 

HDL metabolism and function. Additionally, minor proteins, such as acute phase response 

proteins and proteins involved in regulation and protection against infectious disease gained 

increased attention in the past few years. The major HDL structural apolipoprotein is 

apolipoprotein (apo) A-I. The ApoA-I accounts for around 70% of total HDL proteins, and is 

significantly involved in HDL biogenesis, and function. Apolipoprotein (apo) A-II is the second 

main HDL apolipoprotein, and accounts for around 20% of total HDL proteins. Less aboundant 

HDL apolipoproteins include among others: apoA-IV, apoA-V, apoC-I and apoE. Some of the 

enzymes carried by HDL particles are involved in important mechanisms. For example, 

lecithin/cholesterol acyltransferase (LCAT) plays and important role in lipid metabolism. Other 

enzymes, paraoxygenase 1 (PON1), platelet-activating factor-acetyl hydrolase (PAF-AM) and 

glutathione selenoperoxidase (GSPx) have antioxidative activities. The HDL lipidome comprises 

40-60% of phospholipids, 30-40% of cholesteryl esters, 5-12% of triglycerides and 5-10% of free 

cholesterol. Additionally, more than 200 individual lipid species were identified in HDL particles 

due to advances in lipidomic analyses. HDL was also found to carry multiple copies of 

microRNAs that may be delivered to cells and tissues [54].  

The subclasses of plasma HDL particles differ significantly in their physicochemical properties, 

metabolism and biological function. The heterogeneity in HDL particles size and structure is 

caused by different conformations of apoA-I, induced by different quantity of attached lipids 

[55]. The smallest class of HDL particles is called pre-β-1 HDL. This subclass is represented by 

lipid-poor (lipid content ≤ 30% ), ≤ 8 𝑛𝑚  diameter discoid particles. Pre-β-1 HDL particles 

mainly contain apoA-I together with small amounts of phospholipids and free cholesterol. Larger 

class of HDL particles, called spherical HDL are > 8 𝑛𝑚 in size and contain hydrophobic core of 

cholesteryl esters and triglycerides. Two subclasses of spherical HDL can be recognised, HDL2 

and HDL3. The HDL2 are larger, lipid-rich particles, containing: 9% of TGs, 18% of CE, 6% of 

free cholesterol and 25% of PLs, of total HDL mass. The HDL3 particles are smaller and denser 

than HDL2, and contain lipid-poor HDL subfraction, including: 7% of TGs, 14% of CEs, 3% of 

free cholesterol and 23% of PLs of total HDL mass [54].  

In-depth understanding of different properties of HDL subclasses is crucial for comprehension of 

HDL protective properties. A recent meta-analysis of two large studies (Framingham Offspring 
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Study and Jackson Heart Study) showed that HDL2 and HDL3 subclasses were differently 

associated with cardiovascular events. Only HDL3 was found to significantly reduce 

cardiovascular risk [56].  

1.3.3 HDL metabolism 

The main function of HDL proteins is to transport cholesterol and other lipids between 

circulating cells, lipoproteins, tissues and organs. During this process, HDL particles undergo 

dynamic remodeling (Figure 2) [54]. At first small precursors of mature HDL, lipid-free apoAI 

and lipid-poor pre-β-1 HDL particles are synthesized by liver and intestine. Next, these particles 

collect increasing quantities of free cholesterol from peripheral tissues, via ATP binding cassette 

transporter 1 (ABCA-1) mediated efflux. Afterwards, lecithin/cholesterol acyltransferase (LCAT) 

transfers fatty acid residues from lecithin to the hydrozyl group of cholesterol, what results in 

formation of cholesteryl esters. Cholesteryl esters have hydrophobic properties, therefore they 

migrate into the hydrophobic core of HDL particles, converting discoidal HDL into lighter and 

larger spherical HDL3. Further, acquired cholesterol can be converted to cholesterol esters by 

LCAT enzyme and create less dense spherical HDL2 particles. Phospholipids for the LCAT 

reaction are transfered from VLDL into HDL by phospholipid transfer protein (PLTP) [57]. 

Spherical HDL particles can promote cholesterol efflux from peripheral cells, such as 

macrophage foam cells, by aqueous diffusion, ATP-binding cassette sub-family G member 1 

(ABCG-1) or scavenger receptor class type 1 (SR-B1) [58]. HDL2 then transfer cholesterol esters 

to the liver through SR-B1 receptor. After HDL2 particles return CE to liver they become HDL3 

particles again. The other pathway which involves HDL2 and HDL3 is the CETP-mediated 

transfer of cholesteryl esters from spherical HDL to apoB-containing lipoproteins, such as LDL 

and VLDL. Throughout heteroexchange of cholesteryl esters and triglycerides between HDL and 

apoB-containing lipoproteins, TG-rich particles are created. These TG-rich HDLs can be 

hydrolysed by hepatic lipase (HL) to small TG-rich particles. Next, upon action of both CETP 

and HL, the HDL size is reduced and lipid-poor HDL particles are generated, which then can 

interact with ABCA1 in next lipidation cycle [59]. Therefore, the HDL lipids are catabolised in 

the liver upon selective uptake via scavenger receptor class type 1 (SR-B1), or upon CETP-

mediated transfer to apoB-containing particles.   
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Figure 2: Principal stages of HDL metabolism. HDL discoidal particles, synthesised by the liver 

acquire cholesterol from peripheral cells by ABCA1-mediated cholesterol efflux. Free cholesterol 

in discoidal HDL is converted into cholesterol ester by LCAT. Cholesterol esters migrate into 

hydrophobic core of HDL and generate spherical HDL. Mature HDL can further acquire free 

cholesterol from peripheral tissues by aqueous diffusion or cholesterol efflux mediated by either 

SR-B1 receptor or ABCG1. Finally, HDL cholesterol esters and free cholesterol are transferred to 

the liver, via SR-B1 receptor for elimination. Figure presented with permission (Fabian H. 

Rached, 2015) [54]. 

1.3.4 Atheroprotective properties of HDL 

The main objective of HDL research nowadays concentrates on understanding the mechanisms 

by which HDL protects against atherosclerosis. The most important antiatherogenic function of 

HDL is reverse-cholesterol transport (RCT), a process crucial for HDL particle maturation. In 

RCT process, HDL particles collect free cholesterol from lipid-rich macrophage foam cells and 

as a result facilitate plaque regression. Acquired cholesterol is further excreted from organism by 

the liver and biliary system [58]. Epidemiological studies showed strong inverse association 

between cholesterol efflux capacity and coronary and peripheral atherosclerosis [34].  
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Reverse cholesterol transport starts with the cholesterol efflux from macrophages to HDL 

particles. Four cellular efflux pathways were identified, which involve key proteins, such as SR-

B1, ABCG1 and ABCA1. Different subclasses of HDL particles were shown to interact 

differently with these proteins, possibly influencing the cholesterol efflux capacity. The first 

pathway that mediates the bidirectional flux of cholesterol between the cell plasma membrane 

and HDL is called aqueous diffusion. The direction of mass transport of cholesterol is determined 

by the cholesterol concentration gradient in the donor and acceptor molecules [60]. Since, 

cholesterol efflux in this pathway is not significantly affected by the size of HDL particle, the 

efflux by aqueous diffusion is equally effective for all HDL subclasses [61]. In the second 

pathway, transfer of cholesterol to HDL particles is facilitated by SR-B1 [62]. HDL binds to SR-

B1 and forms complex, which possess hydrophobic channel via which cholesterol molecules may 

diffuse. Larger HDL particles are more effective in mediating cholesterol efflux by this pathway, 

because they bind better to SR-B1 receptor [63, 64]. In the third pathway, ABCG1 increases the 

pool of free cholesterol in plasma membrane and reorganises it so it desorbs better into the 

extracellular medium. Larger HDL2 and smaller HDL3 are equally effective acceptors in this 

pathway. Discoidal HDL, created by the apoAI/ABCA1 reaction are also an effective acceptors 

of cholesterol effluxed by ABCG1 [65, 66]. Last pathway for cellular cholesterol efflux is 

mediated by ABCA1 receptor. In this case pre-β-1 HDL particles are the main acceptors. 

Subsequently, cholesterol collected by HDL particles is transferred through the plasma 

compartment by diverse HDL remodeling steps described in the previous section, “HDL 

metabolism”, and is delivered to the liver. The cholesterol uptake by the liver is mediated by SR-

B1 receptor expressed at hepatocytes’ surface. HDL particles bind to the receptor and free 

cholesterol and cholesterol esters are diffused into the cell plasma membrane. Large HDL 

particles (10 nm diameter) bind better to SR-B1 receptor, thus deliver more cholesterol ester than 

small HDL particles (8 nm diameter) [57].  

Other antiatherogenic properties of HDL include its antioxidant, anti-inflammatory and anti-

thrombotic functions. HDL exert antioxidant activity thanks mainly to its associated enzyme 

called paraoxonase-1 (PON1). PON1 reduces formation of lipid peroxide known to oxidize LDL. 

Oxidized LDL accumulates on endothelium and disrupts its structural integrity and function. 

Thus, PON1 activity decrease the risk of cardiovascular event [34, 67]. Anti-inflammatory 

properties of HDL concern the ability of HDL particles to inhibit expression of adhesion 
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molecules in endothelial cells, such as VCAM-1, ICAM-1 and E-selectin. Down-regulation of 

these molecules causes reduced recruitment of monocytes to the arterial wall [34, 68]. Few HDL 

functions are responsible for their anti-thrombotic properties. HDL upregulate the expression of 

NO synthase (eNOS), which reduces vasorelaxation. HDL also activate prostacyclin (PGI2). 

PGI2 is known to inhibit platelet activation and proliferation of smooth muscle cells [34].  

1.4 CETP inhibitors 

CETP inhibitors belong to the group of drugs developed to increase HDL-C levels in the blood. 

The interest in CETP inhibition as a therapeutic approach began with observation that patients 

with mutations in the CETP gene possess high levels of HDL-C and often a substantial reduction 

in LDL-cholesterol and apoB levels. According to many epidemiological studies, elevated 

concentration of HDL-C and decrease in LDL-C concentration reduce the cardiovascular risk. 

Nevertheless, the exact association between inhibition of CETP function in patients and 

cardiovascular outcomes remains complex and not fully understood [69].  

1.4.1 Mechanism of action of CETP inhibitors 

CETP is a plasma protein, mainly secreted by the liver. It binds to HDL in circulation and takes 

part in transfer of cholesteryl esters (CE) from HDL to apoB-containing lipoproteins LDL and 

VLDL (heterotypic transfer). In exchange for cholesteryl esters, apoB-containing lipoproteins 

transfer triglycerides (TGs) to HDL particles. Inhibition of CE transfer results in increased 

concentration of HDL-C and lower levels of LDL-C, indicating that CETP has proatherogenic 

properties. Contrary, CETP also facilitates the transfer of CE among HDL subtypes (homotypic 

transfer) and the conversion of apoA-I-containing α-HDL (HDL2 and HDL3) to small lipid-poor 

pre-β-HDL particles (remodeling of HDL). Homotypic transfer with remodeling of HDL particles 

play an important role in RCT thus is antiatherogenic. Generated pre-β-HDL particles are 

involved in ABCA1-dependent cholesterol efflux [70, 71].  

1.4.2 Different CETP inhibitors  

There are two types of drugs targeting cholesteryl ester transfer protein, potent CETP inhibitors 

(torcetrapib, anacetrapib, evacetrapib) and CETP modulators (dalcetrapib). They belong to two 

different chemical classes, thus their mechanism of action and inhibition of CETP activity 

presumably differs. Potent CETP inhibitors are 3,5-bis-trifluoromethyl-benzene derivatives and 

they increase plasma HDL-C levels in humans up to 130%. Their high-affinity binding to CETP 
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results in formation of CETP-lipoprotein complex. Created complex is inactive and cannot 

facilitate the transfer of lipids between different lipoproteins, thus blocks both heterotypic and 

homotypic transfer [71]. CETP modulator dalcetrapib is a benzenethiol derivative and it raises 

HDL-C levels in humans up to 36%. Dalcetrapib was shown to form disulfide bond with Cys13 

of CETP and to impair its conformational change required for its proper function. Such a 

modulation of CETP activity limits heterotypic CE transfer from HDL to LDL but does not 

influence CETP activity among HDL subtypes and sustained formation of pre-β-HDL particles 

[71]. These findings suggest that in comparison to potent CETP inhibitors, dalcetrapib maintains 

or even potentially enhances the reverse cholesterol efflux.  

1.4.3 Evacetrapib and anacetrapib clinical trials  

The efficacy of the CETP inhibitor evacetrapib was assessed in placebo-controlled, phase III 

clinical trial, called ACCELERATE. Study enrolled 12092 patients with high cardiovascular risk. 

The end point was the occurrence of cardiovascular event, such as death from cardiovascular 

causes, myocardial infraction, stroke, coronary revascularization or hospitalization from unstable 

angina. The results showed improvement of patients lipid profile after 3 months of treatment, 

with 37% absolute decrease in the mean concentration of LDL-C and 131.6% absolute increase in 

the mean levels of HDL-C. Despite this improved lipid profile in treated patients, evacetrapib did 

not reduce the number of cardiovascular events among patients with high-risk vascular disease 

[72, 73]. More favorable results were obtained from phase III clinical trial REVEAL, which 

aimed to evaluate safety and efficacy of another CETP-inhibitor, anacetrapib. Study enrolled 

30449 adults with atherosclerotic vascular disease and demonstrated that treatment with 

anacetrapib for around 4 years reduced the occurrence of major coronary events by 9% [74]. The 

lack of observed benefits in clinical trial testing efficacy of evacetrapib may result from 

insufficient number of study group and too short length of treatment.  

1.4.4 Dalcetrapib clinical trials 

Dalcetrapib entered phase III clinical trials. A first study named dal-ACUTE was a double-blind, 

placebo-controlled study which aimed to evaluate efficacy and safety of dalcetrapib in 300 

patients hospitalized for an acute coronary syndrome. The results showed 33.7% increase of 

HDL-C after 4 weeks of treatment and 11.8% raise of apolipoprotein A1. Despite one-third 

increase in HDL-C the total cholesterol efflux raised only by 9,5%, suggesting that increase of 

HDL-C levels may not correlate with improved HDL function [75]. 
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Next, a significantly bigger phase III clinical trial called dal-OUTCOMES intended to test 

dalcetrapib influence on cardiovascular risk in patients with a recent acute coronary syndrome 

(ACS). The 15,871 clinically stable patients after a recent ACS were randomly assigned to 

600 mg daily treatment with dalcetrapib or placebo on top of basic treatment. The primary 

endpoint of the study was the time to occurrence of first cardiovascular event, such as coronary 

heart disease death, nonfatal myocardial infraction, unstable angina, cardiac arrest with 

resustitation, or ischemic stroke. The results of the study demonstrated that dalcetrapib increased 

HDL-C levels by around 30% and had minimal effect on LDL-C concentration. Study was 

terminated sooner than expected due to futility. Dalcetrapib did not influence the risk of 

cardiovascular events comparing to placebo without significant effect on any component of the 

primary end point. Patients treated with dalcetrapib had higher levels of inflammatory marker, 

called C-reactive protein, than placebo group [76, 77]. 

The dal-PLAQUE-2 is a phase III substudy designed to evaluate the effect of dalcetrapib on 

progresion of atherosclerosis in 988 patients with evidence of coronary artery disease. Patients 

were randomized to receive treatment with 600 mg of dalcetrapib or placebo. Planned time of 

trial was 24 months, however study was terminated earlier, after 12 months, due to 

discontinuation of dal-OUTCOMES clinical trial [77]. Dalcetrapib and its increase of HDL-C in 

patients from dal-PLAQUE-2 study had no effect on carotid intima media thickness (IMT) [78]. 

Generally all clinical trials confirmed safety of dalcetrapib and lack of off-target effects caused 

by the other CETP-inhibitor torcetrapib.  

1.5 Genome-wide association study 

In the past few years big projects such as sequencing of whole human DNA (Human Genome 

Project) and development of a haplotype map of human genome (HapMap) contributed to 

significant progress in understanding of genetic causes of human disease. Collected data on 

human genome and common patterns of human genetic variation enabled identification of 

numerous loci associated with diseases and drug response. Genome wide association study 

(GWAS) allows such a discoveries by using genotyping platforms with a large number of 

markers spread across the human genome, called single nucleotide polymorphisms (SNP). This 

hypothesis free approach tests if there is a significant association between SNP(s) and phenotype 

of interest, frequently disease. Due to high number of performed tests, analysis often result in a 
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high false positive rate, therefore the genomewide statistical significance is usually set at P values 

of 5 × 10−8 or lower. To be able to reach statistical significance very large sample sizes are 

needed. Results obtained by GWAS are usually repeated in an independent sample set focusing 

only on identified SNPs or loci, to validate genuineness of association. Single nucleotide 

polymorphisms that lay in close proximity tend to be in linkage disequilibrium (LD), what means 

that their specific alleles are correlated in population. Frequently, GWAS genotyping arrays 

contain only few variants per LD what limits power of detection. Thus, other SNPs from the 

identified loci may be additionally imputed in order to discover other potential associations [79].  

1.5.1 GWAS Dalcetrapib 

After obtaining results showing the lack of benefit from dalcetrapib dal-OUTCOMES trial, the 

group of researchers under lead of Dr Jean-Claude Tardif and Dr Marie-Pierre Dubé decided to 

conduct pharmacogenomics analysis on dal-OUTCOMES study using genome-wide association 

study (GWAS) approach [77]. The goal of this GWAS analysis was to determine if there is an 

association between genetic variants with cardiovascular events in patients treated with 

dalcetrapib.  

The DNA samples from 5749 white participants of dal-OUTCOMES study that gave informed 

consent for genomic research were tested in GWAS using Illumina array with 2567845 genetic 

variants. The genome-wide significant threshold was set at P value < 5 × 10−8 to detect genetic 

variant(s) associated with cardiovascular events in dalcetrapib treatment arm. Next, the 

significant variants were tested in the placebo arm to verify if detected association was only 

observed with dalcetrapib treatment. Tested phenotype included all cardiovascular events from 

dal-OUTCOME primary outcome with the addition of unanticipated coronary revascularization.  

A single region located in adenylate cyclase 9 gene was found to be associated with 

cardiovascular events in the dalcetrapib arm (Figure 3). In the identified region, genetic variant 

rs1967309 passed the significance threshold with P value = 2.41 × 10−8. In the same region, 7 

other single nucleotide polymorphisms were identified with P value < 1 × 10−6 (Table 1). In 

patients with AA genotype (minor allele) for SNP rs1967309, 39% reduction in the 

cardiovascular risk was observed when treated with dalcetrapib compared to placebo. Contrary, 

for patients with GG genotype (major allele), 27% increase in cardiovascular events was detected 
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in the dalcetrapib arm versus placebo. For heterozygote patients AG and placebo arm alone, there 

was no significant effect observed [77].   

 

 

 

 

 

 

 

 

 

Figure 3 : Cumulative incidence of cardiovascular events from dal-OUTCOMES study for the 

dalcetrapib and the placebo arm separately. Data stratified by the three genotypes of variant 

rs1967309 located within ADCY9 gene. Figure from Tardif JC et al., 2015 [77]. 

To validate the results obtained, 27 SNPs located in the ADCY9 gene were selected to genotype 

the samples of participants of dal-PLAQUE-2 study, which gave informed consent for genomic 

research (n=386). Tested endpoint for dal-PLAQUE-2 studies was the mean intima media 

thickness of common carotid arteries measured after 6 and 12 months of dalcetrapib treatment. 

Due to high correlation of tested genetic variants there was no need for adjustment of significance 

threshold for multiple testing, thus associations were considered as significant reaching P value 

< 0.05.  

Ten single nucleotide polymorphisms displayed association with IMT measures and reached 

significance threshold (Table 1). Interestingly, significant association was observed for SNP 

rs2238448 (P value = 0.009), which is in high linkage disequilibrium with rs1967309 (𝑅2 =

0.80)  and was also found to be associated with cardiovascular events in dal-OUTCOMES 

(P value = 8.88 × 10−8 ). In patients with TT genotype (minor allele) at variant rs2238448 

changes in IMT measure were −0.027 ± 0.079 mm, in heterozygote carriers 0.000 ± 0.048 mm 
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and in participants with CC genotype (common allele) 0.009 ± 0.038 . Again, there was no 

observable effect in dalcetrapib arm alone. SNP rs1967309, which provided significant 

association with cardiovascular outcomes in dal-OUTCOMES studies, did not reach significance 

threshold for association with change in IMT (P=0.114). However, observed changes in intima 

media thickness measure were consistent with findings in dal-OUTCOMES [77]. 

Table I : Genetic variants identified by genome-wide association study in dal-OUTCOMES (P 

value < 1 × 10
-6

) and dal-PLAQUE-2 (P value < 0.05). 

SNP ID P value dal-OUTCOMES P value dal-PLAQUE-2 

rs1967309 2.41 × 10−8 0.114 

rs2531971 7.74 × 10−8 0.1415 

rs2238448 8.88 × 10−8 0.009 

rs11647778 1.72 × 10−7 0.0087 

rs1259911 1.72 × 10−7 0.0205 

rs12595857 2.02 × 10−7 0.0193 

rs12920508 3.18 × 10−7 0.114 

rs2239310 9.58 × 10−7 0.6456 

rs11647828 1.32 × 10−6 0.0051 

rs8049452 1.93 × 10−6 0.0126 

rs12935810 1.03 × 10−5 0.0186 

rs8061182 4.72 × 10−5 0.0182 

rs4786454 1.91 × 10−4 0.0222 

rs2531967 6.67 × 10−4 0.0184 

 

In patients treated with dalcetrapib, genotypes of the SNP rs1967309 were also found to be 

associated with change in total cholesterol after 1 month. The homozygote carriers of common 

allele (GG) had a smaller total cholesterol increase compared with AG and AA carriers [10.0 ±

23.3 𝑚𝑔 𝑑𝐿⁄ (0.2586 + 0.6025 𝑚𝑚𝑜𝑙 𝐿)⁄ , 12.9 ± 30.3 𝑚𝑔/𝑑𝐿 (0.3336 + 0.7836 𝑚𝑚𝑜𝑙 𝐿)⁄  

and 13.8 ± 23.3 𝑚𝑔/𝑑𝐿 (0.3569 + 0.6025 𝑚𝑚𝑜𝑙 𝐿)⁄ , respectively]. For the changes in LDL-C 

after 1 month, similar genotype-dependent pattern was observed. Additionally, rs1967309 also 
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influenced the changes in body mass index, weight, plasma LDL/HDL cholesterol ratio and 

triglycerides. Surprisingly, the changes were in opposite direction than could have been 

anticipated [77].  

The association of genetic variant rs1967309, reported to interact with dalcetrapib, was examined 

in DNA samples obtained from patients participating in ACCELERATE trial. Analysis revealed 

similar pattern of genetic association as observed with dalcetrapib, but did not reach statistical 

significance for evacetrapib-treated arm [80]. Meta-analysis of dal-OUTCOMES and 

ACCELERATE studies aimed to further investigate the evidence that ADCY9 genotype affects 

the treatment response to CETP-inhibitors on incidence of cardiovascular events. Analysis 

demonstrated the evidence of heterogeneity across genetic groups (P=0.004) with regard to 

relative risk, thus lending support to a potential interaction between CETP inhibition and ADCY9 

genotype for cardiovascular events [81].  

1.5.2 Association of dalcetrapib treatment and C-reactive protein levels 

HDL are commonly considered to have atheroprotective properties, partly due to their anti-

inflammatory functions. One of the standard markers of inflammation is high-sensitivity C-

reactive protein (hs-CRP). Studies measuring hs-CRP levels in patients from dal-OUTCOMES 

trial showed unexpected results. After 3 months of treatment, patients taking dalcetrapib had 

+13.7 𝑚𝑔 𝑑𝐿 (+0.3543 𝑚𝑚𝑜𝑙 𝐿)⁄⁄  increase of HDL-C from baseline and 

+0.21 𝑚𝑔 𝑑𝐿 (+0.005431 𝑚𝑚𝑜𝑙 𝐿)⁄⁄  raise in hs-CRP. Patients from placebo group had slight 

increase in mean change in HDL-C +1.7 𝑚𝑔 𝑑𝐿 (+0.04396 𝑚𝑚𝑜𝑙 𝐿)⁄  ⁄  and reduction in hs-

CRP −0.49 𝑚𝑔 𝑑𝐿 (−0.012671 𝑚𝑚𝑜𝑙 𝐿)⁄⁄  [82]. Considering different genotype of patients for 

variant rs1967309 an association between genotype groups and treatment was observed. Placebo-

adjusted geometric mean percent changes in hs-CRP from baseline (12 months) to the end of trial 

were 18.1% for patients with common genotype GG, 18.7% for participants with AG and -1.0% 

for patients with minor genotype AA. The increase in hs-CRP levels after treatment with 

dalcetrapib, which increases HDL-C thought to possess anti-inflammatory properties is difficult 

to understand but has also been observed for other CETP inhibitors such as anacetrapib and 

evacetrapib [83]. The fact that only patients with protective genotype AA showed no increase in 

C-reactive protein levels supports the results obtained from GWAS and suggests that 
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inflammatory responses may be differently regulated depending on the genotype of the patient 

[84]. 

1.5.3 Association of dalcetrapib treatment and cholesterol efflux 

Cholesterol efflux is an important step of RCT. In this process HDL particles remove excess 

cholesterol from cells of peripheral tissues and deliver it to the liver for its excretion [85]. The 

mean change in cholesterol efflux capacity of serum HDL in patients from dal-PLAQUE-2 trial 

as measured by the standard J774 macrophage assay was similar between study arms. However, 

the increase in cholesterol efflux capacity differed between participant groups treated with 

dalcetrapib. Patients with GG genotype had 7.8 ± 18.0% increase in cholesterol efflux capacity, 

participants with AG 12.9 ± 16.9% and patients with AA 22.3 ± 22.3%. The highest increase in 

cholesterol efflux capacity for patients with protective genotype is another evidence supporting 

the genotype-dependent effects of dalcetrapib [84].  

1.5.4 Linkage disequilibrium block located at ADCY9 gene 

Single nucleotide polymorphisms associated with responses of patients treated with dalcetrapib 

are located within the ADCY9 gene on chromosome 16. Majority of identified SNPs are 

nonrandomly associated and create a linkage disequilibrium block (Figure 4). This LD block 

occupies a 27-kb region overlapping part of intron 2 and 3 of the ADCY9 gene. 

 

Figure 4 : Graphical representation of adenylyl cyclase 9 gene. Linkage disequilibrium (LD) 

block lies within second and third intron of ADCY9 gene. Polymorphism shown in bold red 

(rs1967309) was found to be significantly associated with cardiovascular response of patients 

treated with dalcetrapib. The other SNPs presented in black are polymorphisms selected for 

functional analysis, majority of them is in high linkage disequilibrium with rs1967309. 
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1.6 Adenylyl cyclases 

The adenylyl cyclases (AC) are membrane-associated enzymes that catalyse the conversion of 

adenosine triphosphate (ATP) to 3’,5’-cyclic AMP (cAMP). They play an essential role in signal 

transduction following stimulation of G-protein coupled receptors, as they are the sole source of 

cAMP. Cyclic AMP is a second messanger involved in many biological processes, such as 

hormone responses. Nine membrane-bound adenylyl cyclase isoforms have been identified with a 

tenth distinct isoform that lacks membrane spans. The primary structure of the first nine isoforms 

consist of twelve transmembrane (TM) regions featuring cytosolic N and C termini. The first six 

TM domains (TM1-TM6) are followed by a cytosolic region with catalytic domain (C1a) and 

C1b domain. The second TM region (TM7-TM12) finishes with a second catalytic domain C2a 

and C-terminal C2b [86-88]. The tenth, soluble isoform has different regulatory and catalytic 

properties, and resembles more cyanobacteria enzymes [89].  

1.6.1 Adenylyl cyclase 9 

In comparison to the previous eight adenylyl cyclases, the ninth isoform (ADCY9) is the least 

characterized and the most divergent one. Human ADCY9 gene is located at chromosome 16 and 

its cDNA contains a 4059 bp open reading frame, which encodes a 1353 amino acid protein.  

Human ADCY9 cDNA is 85% identical to the mouse Adcy9 cDNA. On the protein level, ADCY9 

is 90% identical to the mouse protein and all the structural motifs predicted in mouse Adcy9, 

such as 12 transmembrane domains, Asn-linked glycosylation sites and cAMP-dependent protein 

kinase phosphorylation sites, are conserved in the human form [90].  

1.6.2 Expression of ADCY9 

Each isoform of adenylyl cyclases has unique tissue distribution. ADCY9 expresses high levels of 

mRNA and protein in a wide variety of tissues. The mRNA levels of ADCY9 are present in most 

human tissues and the highest levels occur in brain, skeletal muscle, heart and pancreas [90-92]. 

According to the EMBL-EBI expression atlas, ADCY9 is also expressed in lower level in CD14-

positive, CD16-negative classical monocytes.  

1.6.3 Regulation of ADCY9 activity 

Like all adenylyl cyclases, ADCY9 main function is catalysis of second messenger cyclic AMP 

formation. Despite the same basic function, each of the isoforms possess unique regulatory 

properties. Depending on these properties and expression levels of the isoforms in a tissue or cell 
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type and cell compartments, extracellular signals received by G-protein coupled receptors can be 

differently integrated [91]. All the isoforms are known to be upregulated by G-protein (𝐺𝛼𝑠), 

which is involved in well known signaling pathway mediated by one of the G-protein coupled 

receptors, called β-adrenergic receptor (β2AR). The agonists of β2AR induce its interaction with 

α subunit of heterotrimeric G-protein (𝐺𝛼𝑠). Next, 𝐺𝛼𝑠 binds GTP and in turn dissociates from G-

protein γ subunit. The GTP-bound 𝐺𝛼𝑠 then binds and activates adenylyl cyclase, which produces 

cAMP. Increased levels of cAMP may lead to activation of protein kinase A (PKA) and other 

important signalling cascades. G proteins were found to bind directly to the catalytic core of AC, 

which includes two homologous cytoplasmic domains (C1a and C2a). However, each of the AC 

isoforms consists of additional structural elements that are crucial for the correct assembly of G-

proteins and proper enzymatic function of ACs. A team of researchers, which determined the 3D 

structure of the bovine ADCY9 in complex with 𝐺𝛼𝑠 , reported that the C2b region plays an 

important role in the G protein-bound state of ADCY9. The occlusion of ADCY9 reaction center 

by the C2b region reduces the affinity for the substrate (ATP) and as a result decreases 

production of cAMP. The 3D structure of bovine ADCY9 also revealed that transmembrane 

helices TM6 and TM12 are laterally exposed to the lipid bilayer and they extend into the cytosol 

becoming helices h1.1 and h2.1. Therefore, it is likely that direct interactions of TM6 and TM12 

with lipids and other molecules could directly influence the catalytic domain by altering  

orientation of helices h1.1 and h2.1 [88]. Additionally, Pálvölgyi et al. reported that the short 

motif in the C2b isoform-specific domain of ADCY9 is responsible for supression of ADCY9 

activation by 𝐺𝛼𝑠 protein. The authors also suggested that the autoinhibitory effect of C2b domain 

on ADCY9 activation in the heart may be released by proteolytic cleavage of this domain [93].  

The other agents known to regulate the activity of all the isoforms of AC are 𝐶𝑎2+ and 𝑀𝑔2+. 

The rest of regulatory agents are isoform-specific. Since ADCY9 is the least characterized 

isoform, its regulation is poorly characterized. Unlike other adenylyl cyclase isoforms, the 

activity of ADCY9 is unaffected by forskolin and calcineurin inhibitors. Also, ADCY9 is 

stimulated by 𝐺𝛼𝑠-coupled receptors activation but is not weaken by 𝐺𝑖-coupled receptors [90]. 

ADCY9 was reported to be phosphorylated by four different types of protein kinases, protein 

kinase C (PKC), protein kinase A (PKA), casein kinase 1 (CK1) and cyclin-dependent protein 

kinase 5/p35 complex (cd5/p35). Additionally, ADCY9 contains two N-glycosylation sites 
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located on the sixth extracellular loop and the studies showed that blocking of ADCY9 

glycosylation impair 𝐺𝛼𝑠 stimulation [94].  

1.6.4 ADCY9 in cardiovascular disease 

GWAS studies identified single nucleotide polymorphisms located in ADCY9 gene to be 

associated with asthma, malaria and obesity [95-97]. Patients from dal-OUTCOMES trial showed 

different responses to HDL-modulating medicine dalcetrapib, depending on the genotype at SNP 

rs1967309 located in ADCY9 gene.  

The association of ADCY9 with cardiovascular diseases is not fully understood. A few 

fundamental studies showed that heterogeneous distribution of the cholesterol on the cell-

membrane surface influences cell structure and function. Cholesterol colocalizes in caveolae, a 

cell-surface membrane invaginations. Due to the evidence that the majority of caveolae-bound 

proteins are signal transduction molecules, the hypothesis was proposed that the 

compartmentalization of signaling molecules is responsible for regulation of signaling-events and 

cross-talk between different signaling pathways. β2AR can localize in caveolae and exit after 

adrenergic stimulation [98]. Hence, cholesterol depletion from the plasma membrane induces 

redistribution of signaling compartments and leads to increased β2AR-stimulated cAMP 

production. Elevated cholesterol levels had an opposite effect [99]. Study investigating loss of 

Adcy9 in mice showed that Adcy9 inactivation results in no obvious abnormalities in size or 

structure of an animal. However, in the heart, lack of Adcy9 significantly decreased basal 

phosphorylation of heat shock protein 20 (Hsp20), which is responsible for cardioprotective 

effects of Hsp20 [100]. Other studies demonstrated that protein kinase A is responsible for 

phosphorylation of ATP-binding cassette A (ABCA1). Since PKA activity is highly influenced 

by production of cAMP by ADCY9 and ABCA1 plays major role in cholesterol efflux to 

apolipoprotein particles, it can be another potential connection of adenylyl cyclase 9 to 

cardiovascular responses [101].  

The activity of ADCY9 was also found to mediate different functions of immune cells and to 

regulate various inflammatory responses. Activation of ADCY9 by rapamycin complex 2 

(mTOR2) was found to be crucial for chemotaxis process of white blood cells, specifically 

neutrophils. Active ADCY9 produces cAMP from ATP and regulates back contraction via 

phosphorylation of myosin II (MyoII). It was shown that upon chemoattractant stimulation, 
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phosphorylated protein kinase CβII (PKCβII) is translocated to the plasma membrane, where it 

activates ADCY9 by phosphorylation. Membrane translocation of PKCβII requires its 

phosphorylation by mTOR2 [102, 103]. cAMP signaling is known to strongly diminish monocyte 

and macrophage inflammatory responses, with notably strong effect on tumor necrosis factor α 

(TNFα). Consequently, down-regulation of adenylyl cyclases (isoform 7 and 9) in monocytes 

was found to significantly promote the TNFα production [104]. In 𝐶𝐷4+ 𝐶𝐷25−  T cells and 

𝐶𝐷4+ 𝐶𝐷25+ regulatory T cells, the activity of ADCY9 is controlled by microRNA miR-142-3p. 

The levels of miR-142-3p expression regulate the formation of cAMP in those cells, which is the 

crucial factor for intercellular communication among these two cell subclasses [105]. Also, 

ADCY9 expression in mice macrophages determines the production of interleukin 6 and TNFα. 

Inhibition of ADCY9 resultes in reduced IL-6 expression [106].  

1.6.5 ADCY9  inactivation protects from atherosclerosis only in the absence of CETP 

Recently published data showed that inactivation of Adcy9 in mice has atheroprotective effects in 

the absence of CETP [107]. This study aimed to evaluate atherosclerosis, vasorelaxation, heart 

rate and adipose tissue content. Animals used in this study were Adcy9-inactivated 

(𝐴𝑑𝑐𝑦9𝐺𝑇 𝐺𝑇⁄ ) and wild-type (WT) mice, which were or not transgenic for the CETP gene 

(𝐶𝐸𝑇𝑃𝑡𝑔𝐴𝑑𝑐𝑦9𝐺𝑇 𝐺𝑇⁄  𝑎𝑛𝑑 𝐶𝐸𝑇𝑃𝑡𝑔𝐴𝑑𝑐𝑦9𝑊𝑇). All animals were submitted to an atherogenic 

protocol that include injection of an AAV8 (adeno-associated virus serotype 8) expressing a 

PCSK9 gain of function variant, which induced a 90% reduction in hepatic LDL receptor 

expression, and 0.75% cholesterol diet during 16 weeks. The Adcy9-inactivation in 𝐴𝑑𝑐𝑦9𝐺𝑇 𝐺𝑇⁄  

mice was confirmed by reverse transcription-qPCR, which showed at least 90% decrease of 

Adcy9 mRNA expression in the heart.  

Study demonstrated that the atherosclerotic lesions, covering the aortas surface were reduced by 

65% in Adcy9-inactivated mice, compared to wild-type (P<0.01). Also, a numeric reduction of 

plaque area all along aortic root was observed in 𝐴𝑑𝑐𝑦9𝐺𝑇 𝐺𝑇⁄  mice (P=0.07). In contrast to 

Adcy9-inactivated mice, WT animals had plaques in the brachiocephalic arteries that are more 

complex and prone to rupture (P<0.05). In addition, plaques found in WT mice had more often 

fibrin deposits on their surface, compared to  𝐴𝑑𝑐𝑦9𝐺𝑇 𝐺𝑇⁄ mice (P=0.06). 

Further, Adcy9 inactivation resulted in diminished accumulation and proliferation of CD68-

positive foam cells, which are main components of atherosclerotic plaques. CD68-positive foam 
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cells represented 19.0 ± 1.9%  of the lesion area in WT animals, and 11.4 ± 2.1%  in 

𝐴𝑑𝑐𝑦9𝐺𝑇 𝐺𝑇⁄ mice (P<0.05). Decrease of CD68-positive foam cells proliferation was observed in 

Adcy9-inactivated mice compared to WT (P<0.05). The blood concentration of total monocytes 

and their main subpopulations was unchanged by inactivation of Adcy9. Also, the migration 

capacity of bone marrow-derived monocytes toward C-C motif chemokine ligand 2 (CCL2) was 

unaffected.  

The absence of Adcy9 increased both endothelial-dependent and endothelial-independent 

vasodilatation in femoral arteries of atherosclerotic mices (P < 0.05). To understand the 

mechanism involved in reduced foam cell accumulation in 𝐴𝑑𝑐𝑦9𝐺𝑇 𝐺𝑇⁄ mice, study assessed the  

adhesion of splenocytes to the native endothelium. Results showed that basal adhesion of 

splenocytes to the endothelium was decreased in Adcy9-inactivated mice compared to wild-type 

animals (P=0.07). Only wild-type mice showed significantly increased adhesion of splenocytes 

after activation of endothelium by histamine. The expression of cell adhesion molecules, such as 

CD18, CD162, and CD62L on the splenocytes surface was unaffected by inactivation of Adcy9. 

Next, to establish which mechanism may explain the increased endothelial-dependent 

vasodilatation in Adcy9-inactivated mice, researchers performed selective pharmacological 

blockage of concerned signaling pathways. The use of nitric oxide synthase blocker L-NNA 

resulted in significant inhibition of endothelial-dependent vasodilatation in both animals, WT and 

𝐴𝑑𝑐𝑦9𝐺𝑇 𝐺𝑇⁄  (P < 0.01). Same compound reduced the flow-mediated vasodilatation only in 

𝐴𝑑𝑐𝑦9𝐺𝑇 𝐺𝑇⁄  mice. In turn, the cyclooxygenase inhibited exclusively endothelial-dependent 

vasodilatation in Adcy9-inactivated animals (P<0.01).  

It was observed that mice with inactivated Adcy9 possessed increased body weight (P<0.01). It 

should be noted that, contrary to patients with deleterious ADCY9 rs1967309 genotype, 

dalcetrapib-treated patients with the protective AA genotype did not lose weight [77]. Magnetic 

resonance imaging demonstrated that 𝐴𝑑𝑐𝑦9𝐺𝑇 𝐺𝑇⁄  mice had doubled total body adipose tissue 

volume compared to WT (P<0.01). Atherogenic diet and increased fat deposits did not influence 

the blood glucose and insulin concentration. The Adcy9-inactivated mice demonstrated 

significantly increased feed efficiency, defined as the ratio of weight gain over energy intake 

(P<0.01). These data suggest the involvement of autonomic nervous system (ANS), which is 

known to regulate energy balance. Further evaluation of ANS activity demonstrated that RR 
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interval was increased in 𝐴𝑑𝑐𝑦9𝐺𝑇 𝐺𝑇⁄  mice in comparison to WT (P<0.05), and the nocturnal 

heart rate was lower in Adcy9-inactivated animals. 

Observed atheroprotective properties of Adcy9 inactivation were lost when human CETP was 

introduced to Adcy9-inactivated mice.  

Based on the ADCY9 tissue expression data, showing hight levels of ADCY9 expression in the 

different brain regions and results obtained from described above study, apart monocytes, brain 

cells could be other interesting cells to investigate the association of patients genotype with 

cardiovascular responses induced by dalcetrapib [91, 108].  

1.7 From association to function 

Although genome wide association studies have identified numerous loci associated with 

complex diseases and clinical drug response, the majority of associations still lack mechanistical 

understanding. Since the results of GWAS do not specify which is the causal variant of the 

identified locus neither the affected target gene, the functional follow up on a GWAS data is 

highly challenging.  

Identified loci generally contain many co-inherited variants in strong linkage disequilibrium with 

the most significant disease-associated variant (leading SNP). First and major challenge is to 

determine which of the linked polymorphism(s) is actually causing the association [109, 110]. 

Multiple causal variants are increasingly identified at the risk locus [111]. After successful 

prioritization of putative causal SNP(s) and altered mechanism, the next step is to identify target 

gene(s) and exact impact of genetic variant(s) on phenotype.  

1.7.1 Prioritization of functional SNP 

A causal SNP is a genetic variant that affects molecular process to alter phenotype. Identification 

of causal SNP(s) among loci determined by GWAS is complicated by the fact that more than 

90% of disease-associated variants are located in the gene non-coding regions [109]. 

Combination of bioinformatic analysis together with experimental approaches can somewhat 

facilitate this task.  
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1.7.2 How intronic SNP(s) can influence gene expression?  

Disease-associated variants located in intergenic or intronic regions of the genome often function 

through modulation of genetic expression of one or more target genes. Gene expression is a 

process by which gene products, usually proteins, are synthesized from information contained in 

genes. In eukaryotes it is a complex multistep process regulated by various factors on many 

levels. Therefore, noncoding variants may influence the expression of a target gene regulating 

many different steps, including gene transcription, RNA splicing, non-coding RNA function and 

epigenetic regulation [112].  

Regulation of transcription in eukaryotes 

All cell types in mammalian body have the same genotype, yet their characteristics and functions 

differ significantly. The transcriptome is the set of transcribed genes that defines a cell type. The 

transcriptome of a cell includes RNA species from commonly transcribed genes for all cell types 

(housekeeping genes) and ones that are transcribed only for one or few specific cell types (cell-

type-specific genes). Therefore, the expression of different cell-type-specific genes and their 

different levels of transcription are responsible for different characteristics of the cells [113].  

The transcription process can be viewed as the first step of gene expression and its aim is to 

synthesize mRNA from DNA template. Transcription in eukaryota is controlled mainly by 

transcription factors (TFs) that bind to specific DNA sequence motifs in regulatory regions of a 

gene (Figure 5). The main regulatory region of a gene is generally located upstream of the 

transcription start site (TSS) and is called the promoter. Commonly, minimal promoter is made 

up of a TATA box and initiator sequences. Control elements may also be found within introns or 

downstream of the coding regions of a gene [114]. In eukaryota, RNA polymerase II (pol II) is 

responsible for transcription of genes that encode proteins. The promoter region is necessary for 

proper positioning and orientation of pol II at the transcription start site. Although, polymerase 

itself is enough to catalyse RNA synthesis, it does not recognize the DNA promoter region alone. 

Therefore, recruitment of RNA polymerase II to TSS is facilitated by the transcription 

preinitiation complex (PIC). PIC consists of five general transcription factors (TFIIB, TFIID, 

TFIIE, TFIIF and TFIIH) and its recruitment to DNA promoter is initiated by a subunit of general 

transcription factor  TFIID, called TATA-binding protein (TBP), which binds to TATA element 

[115].  
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Except for general transcription factors, gene expression is also regulated by specific 

transcription factors. These specific TFs can bind to promoter regions of a gene or more distant 

regulatory regions, called enhancers, and regulate transcription of neighbouring or distant genes. 

Binding of these specific regulatory proteins provide a unique expression patterns of genes 

specific for individual cell types and dependent on developmental state of a cell or impact of 

external stimuli. Transcription factors which bind to specific DNA motifs within enhancer 

regions typically recruit cofactors, which either induce transcription (coactivators) or inhibit 

transcription (corepressors). Cofactors then act on transcription by inducing physical interaction 

between enhancer and core promoter, enabled by looping of DNA. Examples of well 

characterized cofactors are Mediator complex and cohesin [113, 114].  

 

Figure 5 : Assembly of preinitiation complex. Specific transcription factors bind to DNA motifs 

within enhancer regions and recruit cofactors. Cofactors bind to RNA polymerase II, which with 

the help of general transcription factors orientate on promoter region of a target gene and binds to 

transcription start site. Figure presented with permission (Lee TI., 2013) [113]. 

Beside the control of transcription initiation, transcription factors may also control elongation 

step. Recruited RNA polymerase II initiate transcription, synthesize short RNA fragment and 

typically pause. Pol II molecule may finish transcription at this stage and release small RNA 

species or continue the elongation process by release of the pause. Continuation of elongation is 

caused by phosphorylation of paused polymerase and associated pause control factors by positive 

transcription elongation factor b (P-TEFb). This factor is recruited to transcription sites in form of 

super elongation complex (SEC). Also, other complexes and individual transcription factors were 
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found to regulate the elongation process. For example, c-Myc stimulate release of pol II from 

pause sites [113, 115].  

SNPs in regulatory DNA binding sites 

DNase I hypersensitivity sites (DHSs) are known predictors of accesible chromatin state and thus 

potential presence of DNA binding proteins, likely transcription factors, at certain DNA regions. 

Genome-wide data on chromatin accessibility showed that almost 60% of intronic 

polymorphisms identified by GWAS lie within DHSs. These data suggest that genetic variants in 

non-coding regions of human genome disrupt DNA binding motifs of transcription factors. More 

and more functional analysis of GWAS data identify variable TF-DNA interactions as leading 

cause of phenotypic variation [116].   

Intronic polymorphisms can be present within DNA regions where specific regulatory proteins 

bind. Change of allele may disrupt DNA binding motif and change binding affinity of certain 

protein, resulting in different regulation of gene transcription. SNP may disrupt already exisiting 

TF-DNA binding site of coactivator causing transcription of lower mRNA levels or corepressor 

resulting in higher mRNA levels (Figure 6A). Intronic polymorphism can also create new binding 

sites for regulatory proteins. Expression quantitative trait loci (eQTL) analysis help to determine 

the effect of polymorphisms on gene expression levels in specific tissues or cell lines. An eQTL 

is a genomic locus, which influences the level of mRNA from a given gene. eQTLs may either 

influence expression of a gene in close proximity (cis-eQTLs) or a gene located further away 

from regulatory region (trans-eQTLs). The annotation of SNPs to eQTL regions in tissue or cell 

type of interest facilitates identification of causal SNP(s) [117].  

However, the molecular mechanisms mediating TF-binding variation appear to be less obvious 

than originally anticipated. Only the minority of TF-DNA events were found to be triggered by 

the nucleotide substitution in the consensus motifs of considered TFs. The other mechanisms, by 

which SNPs may influence the binding affinity of transcription factors depend on the alterations 

of proximal motifs. Binding of some TFs depends on the presence of other DNA binding 

proteins. Since, genomic regulatory regions often comprise multiple TF binding sites, nucleotide 

changes in one motif can modulate binding of other proximal or farther protein. Transcription 

factors can bind to the regulatory sites cooperatively (Figure 6B). In this case, TFs physically 

interact to increase the affinity of complex to the specific region of DNA. Disruption of one of 
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the two TF binding motifs can affect binding of the entire complex. Regulatory proteins can also 

bind to particular sites in the genome in collaborative manner (Figure 6C). DNA binding motifs 

of TFs binding collaboratively may be located in far distances from one another. Since affinity of 

nucleosome to DNA is generally higher than affinity of single TF, two or more proteins may 

interact together to displace nucleosome in order to get access to DNA. The influence of distal 

genetic variants on protein binding to DNA can be explained by long distance TF-TF interactions 

enabled by chromatin looping (Figure 6D). Polymorphism can alter state and conformation of 

chromatin and in turn disturb the interactions among TF and DNA, and between TFs [116]. 

 

 

 

 

 

Figure 6 : Different mechanisms of TF-DNA binding variation by genetic variants. (A) 

Nucleotide substitution disrupts transcription factor binding motif. (B) Polymorphism influences 

cooperative binding of regulatory proteins. (C) Polymorphism influences collaborative binding of 

regulatory proteins. (D) Distal genetic variant influences the conformation of chromatin and 

affect TF-DNA binding. Figure presented with permission (Deplancke B., 2016) [116]. 

Genetic variants affecting alternative splicing  

Another process which affects the levels of gene expression is called alternative splicing. RNA 

pol II transcribes DNA region of a gene into precursor mRNA (pre-mRNA) that contains coding 

(exons) and non-coding (introns) parts of a gene. The pre-mRNA further undergoes splicing 

process in which introns are removed and the final mRNA product contains only exons. Since the 

majority of genes comprise multiple exons and different splice sites, individual gene can produce 

various mRNA isoforms with different number of exons in the process known as alternative 

splicing. Alternative splicing of a gene may result in mRNA isoforms with diverse regulated 

functions, which can be often translated into different protein isoforms exerting various 

biological properties. Therefore, this process contributes to the increased diversity of 

transcriptome and proteome of a human [118].  
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A large number of human genes undergo alternative splicing and a variety of events may lead to 

it. The main patterns involve exon skipping, alternative 5’ and 3’ splice sites, intron retention and 

mutually exclusive exons. However, alternative splicing may also be the result of other complex 

patterns that are often cell-type specific. The formation of alternative mRNA isoform is regulated 

by protein-RNA interactions. Splicing cis-elements in 5’ and 3’ splice sites, branch point 

sequences and polypyrimidine tract of pre-mRNA recruit spliceosome complex crucial for the 

splicing process. Supplementary cis-elements in exon regions or surrounding introns modulate 

exon splicing through interactions with trans-acting factors, mainly RNA-binding proteins 

(RBPs). These auxiliary elements can either promote or repress exon splicing [119].   

Genetic variants can affect alternative splicing process and lead to changed phenotype. 

Polymorphisms located in exonic or intronic regions of a gene may disrupt specific motifs in 

splice sites, enhancer or silencer cis-elements, resulting in formation of abnormal mRNA and 

protein isoforms [120, 121]. Also, genetic variants may affect trans-acting factors and cause 

dysregulation of splicing of all downstream target genes.   

SNP(s) and non-coding RNA 

Beside protein-coding transcripts, human genome transcribes a large number of non-coding RNA 

(ncRNA). Firstly considered as “genomic noise”, ncRNAs have been later found to play 

important role in gene expression regulation. According to their size, we can distinguish two 

main classes of ncRNA. Small non-coding RNA with transcript length less than 200 nucleotides 

and long ncRNA with more than 200 nucleotides in length.  

microRNAs 

One of the most abundant subclass of small non-coding RNAs are microRNAs (miRNAs). These 

short (around 19-24 nucleotides long) single-stranded RNAs are known to participate in post-

transcriptional gene regulation. MicroRNAs are part of an evolutionary conserved family of 

ncRNAs, which undergo characteristic process of biogenesis. Initially longer primary miRNA 

(pri-miRNA) transcript is processed in the nucleus by the enzymes Drosha and DGCR8 into 

shorter (around 70 nucleotides long) precursor miRNA (pre-miRNA). Next, pre-miRNA is 

transported into the cytoplasm and shortened by the enzyme Dicer into approximately 20 bp 

miRNA molecule. RNA-induced silencing complex (RISC) incorporates single strand of miRNA 
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molecule and targets messenger RNA transcript. Recognition sequence at the 5’ end of miRNA, 

called seed sequence, binds in a complementary manner to nucleotide motif typically present in 

the 3’-UTR of the target mRNA. Binding of RISC complex to mRNA transcript induces its 

degradation or inhibit its translation.  

Genetic variations located in the sequence of microRNA or their target messenger RNA can 

influence the expression and functionality of miRNA thus causing downregulation or 

upregulation of their target genes or affect regulation of the target gene. Such variation in turn 

influences pathways in which those target genes are involved. There are various ways by which 

SNPs could influence the levels of miRNA. Polymorphisms present in miRNA regulatory 

sequences, such as promoters or enhancers, may modulate transcription process and in 

consequence the expression levels of miRNA. Also, SNPs located in pri-miRNA or pre-miRNA 

can influence the maturation efficiency of miRNA. Further, genetic variation in miRNA 

transcript or target mRNA sequence may disrupt miRNA-target interaction. SNP in microRNA 

can affect loading of miRNA molecule into RISC complex, resulting in failure to recognize target 

mRNA. Finally, polymorphism in the sequence of target mRNA may destabilize miRNA 

recognition motifs or create new ones [122, 123].  

Long non-coding RNAs 

Long non-coding RNAs are a heterogeneous group of transcripts including four subclasses. The 

biggest group is represented by long intergenic non-coding RNAs (lincRNAs). LincRNA genes 

are known to not overlap, neither locate close to protein-coding genes. The second subclass of 

lncRNA are antisense lncRNAs, which are transcribed from the opposite strand of the protein 

coding genes. The third group are sense lncRNA transcripts. These lncRNAs lie on the same 

strand than protein-coding gene and are transcribed in the same direction. The fourth subclass is 

the bi-directional group. Transcripts of these lncRNAs are located on antisense strand and have 

transcription start site next to TSS of protein-coding gene. However, they are transcribed in 

opposite direction to protein-coding gene.  

The precise mechanisms of action of long non-coding RNA molecules are still not fully 

understood, however lncRNAs are known to have ability to interact with DNA, RNA and various 

proteins. They control post-transcriptional processes, such as maturation and transport of RNA 

and protein synthesis. Additionally, lncRNA can alter transcriptional gene silencing by epigenetic 
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mechanisms. Common mechanisms of lncRNAs include the signaling of the biological state of a 

cell to induce or repress genes. Second mechanism called “decoy” rely on the ability of some 

lncRNA species to compete with another RNA or proteins (e.g. transcription factors) for binding. 

In the other “guide” mechanism of action, lncRNAs bind to particular regulatory proteins and 

transport them to specific target regions. Long non-coding RNA molecules may also facilitate 

interaction of multiple proteins by binding to them and bringing them closer to each other [123].  

Still the understanding of how single nucleotide polymorphism could influence lncRNA 

expression or function is rather limited. SNP in promoter sequence of lncRNA could influence its 

expression level, likely repress it. Also, polymorphism can disturb binding sites of inhibitory 

complexes, resulting in gain of function for lncRNAs, not expressed under normal conditions. 

Additionally, genetic variant in lncRNA genes may regulate its function. SNP may alter the 

secondary structure of lncRNA or lead to alternative splicing of the transcript [123].  

Polymorphisms in epigenetic pathways 

Epigenetics involves the heritable changes in the phenotype driven by factors other than DNA 

sequence. Epigenetic mechanisms lead to the selection of which sets of proteins are transcribed 

through activation or repression of gene expression [124]. An important process responsible for 

gene regulation is the organization of chromatin structure. In eukaryotic nucleus, DNA is packed 

into chromatin in form of basic units called nucleosomes. Single nucleosome contains histone 

octamer with 146 bp DNA region. The localization of nucleosomes, commonly called “beads-on-

a-string” serve as first level of chromatin structure organization. Higher structural level is 

obtained by linker histones, which compact nucleosomal DNA into higher-order structure, called 

fiber. Fiber structure can be further compacted into higher levels of chromatin organization but 

mechanisms driving higher folding are mainly unclear. However, it is known that the dynamic of 

higher-order chromatin compaction is responsible for transcriptional regulation. For processes, 

such as DNA replication and transcription initiation, DNA binding factors need to access specific 

DNA regions. These interactions are prevented by packaging of DNA into chromatin. Dense 

structure of chromatin (heterochromatin) is generally associated with repression of gene 

transcription, whereas the open structure of chromatin (euchromatin) promotes active 

transcription. The basic epigenetic processes regulating the structure of chromatin are DNA 

methylation and histone modifications [125].  
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DNA methylation 

DNA methylation is mainly associated with cytosine residues in CpG-rich regions of DNA. 

These regions are primarily present in transcription start sites of genes, but may also be located in 

the intergenic regions and gene bodies. DNA methylation is commonly considered as silencing 

epigenetic mark, however, evidence suggests that gene body methylation rather stimulate 

transcriptional elongation than repress it. Also, methylation in the gene body may affect splicing 

process [126]. There are two proposed mechanisms explaining how methylation of DNA may 

affect gene transcription. First, DNA methylation can disrupt binding of regulatory proteins (e.g. 

transcription factors) to the gene. Second, methylated DNA can recruit chromatin remodeling 

proteins that control histone modifications, inducing formation of dense, inactive 

heterochromatin [127, 128].  

Histone modifications 

Histone proteins possess tails that bulge from the nucleosomes. Residues in these tails can 

undergo post-translational modifications, which may affect interactions among nucleosomes, 

further altering overall chromatin structure. Histone tail modifications may also induce binding of 

remodelling enzymes, which are capable of repositioning nucleosomes using the energy produced 

by ATP hydrolysis [129, 130]. There are five known types of histone modifications: acetylation, 

methylation, phosphorylation, ubiquitination and sumoylation. The most established histone 

acetylation is associated with promotion of gene expression. Acetylation of lysine side chain 

neutralizes its positive charge and in turn attenuates DNA-histone  interactions, resulting in more 

accesible DNA regions. Similarly, phosphorylation of amino-acid chains at histone tails modulate 

chromatin structure adding negative charge to histone protein [129]. The regulation of gene 

expression by histone methylation depends on which amino acid in histone protein undergoes 

modification as well as the number of attached methyl groups. In some cases histone methylation 

can promote gene transcription whereas in others it can lead to repression [131].  

Genetic variants and epigenetic control 

There is more and more evidences suggesting that genetic variants in the genome may influence 

epigenetic control of gene expression. Few studies identified cis-acting genetic variations, 

causing epimutations [112]. Among others, in the patients with hereditary nonpolyposis 
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colorectal cancer, the hypermethylation of MLH1 gene resulted in transcriptional repression, 

which was associated with polymorphism located at MLH1 5’ UTR [132]. Beside cis-regulating 

variants, polymorphisms may alter DNA methylation of enhancer regions located far from target 

genes [133]. Further, genetic variants were also found to affect the allele-dependent binding of 

transcription factors and chromatin structure. For example, the risk of asthma and autoimmune 

disease was associated with the transcriptional repressor CTCF. This transcription factor is a 

known chromatin structure modulator, which binds to DNA in allele-specific manner and alters 

expression of several genes [134].   

1.7.3 Bioinformatic analysis to prioritize putative causal SNP(s) 

Recent evolution of publicly available data sets from large-scale genomic and epigenomic 

experiments shared by projects ENCODE, the National Institutes of Health (NIH) Roadmap 

Epigenomic project and Nuclear Receptor Cistrome (NRCistrome) facilitates functional 

evaluation of intronic regulatory regions overlapping with genetic variants. Prediction of genomic 

features, such as TF binding, chromatin state and epigenetic marks help narrowing down the 

number of putative functional SNPs. Also, bioinformatics predictions can simplify planification 

of experimental techniques to elucidate regulatory function of variants.  

RegulomeDB, HaploReg and FunciSNP are available online tools, which test the potential 

influence of genetic variants on different genomic features. These databases include information 

about: expression quantitative-trait loci (eQTL), DNase I hypersensitive sites (DHS), chromatin 

immunoprecipitation (ChIP), TF-binding motifs, chromatin interactions and evolutionary 

conservation of sequence [112]. Information about DNase I hypersensitive sites (DHS) and 

histone modifications help to predict if genetic variant impacts the open state of proximal 

chromatin region and hence, alter the accessibility of DNA to transcription factors and RNA 

polymerase II. Prediction of TF-binding motifs and ChIP-seq data facilitate identification of 

regulatory proteins, which may bind in allele-specific manner to the region of SNP of interest.  

Although described databases help predicting function of noncoding genetic variants, it should be 

taken into account that majority of these tools rely on ENCODE data, which do not include data 

from all TFs and cell types. Additionally, one should focus on data obtained in relevant cell and 

tissue types since these tools do not consider tissue specificity [112].  
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1.7.4 Experimental approaches to identify causal SNP(s) 

Even though bioinformatic analysis greatly facilitate prediction of noncoding variant functions, in 

silico findings need to be confirmed and further investigated by experimental techniques in vitro 

and in vivo.  

Despite the complexity of GWAS follow-up functional studies, numerous publications can be 

found that aim to identify causal SNP(s) and molecular mechanism responsible for association. 

The majority of these studies fail to definitely prove the association of SNP(s) with phenotype but 

suggest possible mechanisms involved and give the foundation for further studies. Also, 

exemplary GWAS follow-up studies demonstrate recent approaches worth to employ in 

functional characterization of risk loci. Some of these studies which intended to identify causal 

SNP(s) concern associations with complex diseases such as estrogen-receptor positive breast 

cancer [135], schizophrenia [136] and osteoarthritis [137]. Most often, these functional follow up 

studies start with examination of associations of lead SNP(s) with expression levels of genes 

located in close proximity. Edwards et al found that risk-associated G allele of SNP rs10941679 

was associated with increased mRNA expression of FGF10 and MRPS30 genes [135]. SNP 

rs1006737, associated with schizophrenia, was identified as cis-eQTL for gene CACNA1C[136]. 

Next, the regulatory capability of DNA regions containing candidate SNP(s) is often evaluated 

using reporter assays. Regions containing allele of SNP of interest can be subcloned into 

luciferase reporter construct, either with promoter of particular gene or SV40, and transfected 

into appropriate cell line. In breast cancer risk loci, putative regulatory element, containing SNP 

rs10941679 displayed enhancer activity, leading to increase in FGF10 and MRPS30 promoter 

activity. However, the replacement of an allele of the SNP did not change the activity of 

regulatory element. The authors explains it by the fact that SNP may affect the recruitment of 

regulatory proteins required for the epigenetic modification of enhancer region, which would not 

be observed in reporter assay [135]. Interestingly, Loughlin et al observed that the regulatory 

activity of osteoarthritis risk region may be caused by the combined effect of two SNPs: 

rs835487 and rs835488 [137]. Further, to seek the evidence that putative causal SNP(s) lies in 

enhancer element, allele-specific protein binding to a region of interest may be investigated. The 

most popular technique used for this purpose is called electrophoretic mobility shift assay 

(EMSA). In the above-mentioned study of the locus associated with breast cancer, EMSA 

revealed allele-specific binding to SNP rs10941679. Four proteins (FOXA1, FOXA2, CEBPB 
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and OCT1) were identified by a variation of EMSA, named supershift assay. The authors tried to 

confirm binding of these proteins in vivo by chromatin immunoprecipitation (ChIP). They 

observed the enrichment with FOXA1 and OCT1 binding to DNA region of SNP rs10941679, 

but without difference in binding between alleles of the SNP. In the end, authors concluded that 

the strongest signal of association is mediated through coordinated activation of FGF10 and 

MRPS30 [135]. The group working on locus associated with schizophrenia found that 13 SNPs 

from identified locus displayed allele-specific differences in nuclear protein binding affinity. 

Hence, they suspect that multiple SNPs participate in regulation of CACNA1C gene expression 

[136]. In the osteoarthritis locus, supershift EMSAs identified few TFs (SP1, SP3, YY1 and 

SUB1) binding stronger to the risk alleles of the two SNPs, rs835487 and rs835488. Researchers 

concluded that the association of this region is the result of different levels of expression of target 

gene caused by allele-dependent protein binding to both SNPs [137].  

Determining the allele-specific binding of regulatory proteins to DNA 

The majority of processes that influence gene expression are mediated through regulatory 

proteins, mainly transcription factors. Hence, the causal SNPs may affect the binding affinity of 

transcription factors to DNA regulatory regions and further modulate expression of a target gene 

[109]. 

One of the methods investigating the ability of nuclear proteins to bind to DNA region bearing 

SNP of interest in vitro is called electrophoretic mobility shift assay (EMSA). EMSA is a simple, 

robust and extremely sensitive technique that allows detection of sequence-specific protein-DNA 

interactions. This method consists of five basic steps. First, the preparation of protein sample. If 

protein of interest is unknown, nuclear or cytoplasmic extract are used. Second, the construction 

and labeling of probes. Probes are DNA or RNA fragments consisting of a particular protein 

binding site. Labeled DNA fragments can be from 20 up to 300 bp long. Interpretation of results 

may become complicated for longer probes, since they may contain binding motifs for numerous 

proteins. Third, the preparation of binding reactions. In the binding reactions, the protein mixture 

is bound to the probe. The conditions of binding reactions need to be precisely optimized to 

mimic the binding conditions specific for the studied protein-DNA interaction. Fourth step 

includes preparation of non-denaturing gel and running of binding reactions on the gel. Common 

gels for EMSA are 4% to 5% polyacrylamide gels. Very large protein-DNA complexes may be 
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run on agarose gels. The choice of appropriate running buffer is important to obtain the stability 

of protein-DNA complexes. Typical buffers used are Tris-borate (TBE), Tris-acetate (TAE) and 

Tris-glycine electrophoresis buffers. The last step, consists of detection of DNA-protein 

complexes using chemiluminescence, fluorescence, radioactivity or immunohistochemical 

approaches. For identification of allele-specific binding proteins, two labeled probes can be 

designed, containing region of SNP, one with reference and other with variant allele. Next, 

probes are incubated separately in binding reactions with nuclear extract and affinity of protein 

binding to the probes can be compared for each allele of genetic variant [138, 139]. 

Detection of protein binding to the DNA region of interest (labeled probe) by EMSA is based on 

the principle that in a non-denaturing gel, negatively charged nucleic acid migrates towards 

anode when subjected to electric current (Figure 7B; lane 1). Longer sequences, having higher 

molecular weight migrate slower than shorter and lighter probes. The conformation and 

circularity of nucleic acid can also alter its gel migration. Higher structures could be eliminated 

by denaturation, however this step cannot be applied in EMSA, because it would disrupt DNA-

protein interactions. If protein interacts with studied probe, the protein-nucleic acid complex will 

have higher molecular weight than probe alone and adjusted charge. Formed complex will alter 

migration of free probe and result in shift of observed band (Figure 7B; lane 2) [138]. The 

specificity of formed complex can be assessed by competition binding assay. It is important to 

verify specificity of binding, especially when using crude nuclear or cytoplasmic protein extracts, 

which contain specific and non-specific DNA binding proteins. In the competition binding assay, 

the specific competitor, of the same DNA sequence than probe but not labeled, is added to the 

protein mix in the binding reaction before addition of labeled probe. If specific competitor 

competes binding and results in weaker intensity of observed band, binding can be defined as 

specific (Figure 7B; lane 3). Additionally, non-specific competitor may be used as well, which 

can be any unrelated sequence but generally it is the same unlabeled sequence like specific 

competitor but with mutation in the binding site. Addition of non-specific competitor should 

result in weaker competition than with specific competitor or no competition at all.  
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Figure 7 : Schematic representation of electrophoretic mobility shift (EMSA) assay. (A) Labeled 

probe is incubated together with nuclear extract (NE) in the binding reaction. (B) Different 

mobility of binding EMSA reactions through non-denaturing gel. Lane 1 – free labeled probe; 

Lane 2 – Shift of band representing protein-DNA complex; Lane 3 – competitor assay, band 

intensity decreases after addition of specific competitor to the binding reaction; Retrieved from 

dx.doi.org/10.17504/protocols.io.k3ccyiw [140]. 

Although basic EMSA method allows detection of protein-DNA interactions, binding specificity 

and quantitative determination of binding affinity, it does not provide the answer about molecular 

weight or identity of protein present in the complex. Variations of EMSA, such as antibody 

supershift assay and competitor assay with consensus TF-binding sites can help with 

identification of proteins present in the complex. In the supershift assay, specific antibody is 

added to the binding reaction. If the protein recognized by selected antibody is present in DNA-

protein complex, the addition of antibody should result in formation of antibody-protein-DNA 

complex and further shift in gel migration (supershift). Second method, competitor assay with 

consensus TF-binding sites is based on the same principle as competitor assay performed to 

verify specificity of binding, but uses unlabeled consensus TF-binding sites instead of specific 

competitor. If addition of consensus binding site for specific transcription factor compete the 

protein-probe interactions, the related TF may be present in the complex [139].  

Described variations of EMSA can facilitate the identification of protein present in the complex, 

but they require prior knowledge of putative proteins that may bind to studied region. The list of 

1 A B 2 3 

https://dx.doi.org/10.17504/protocols.io.k3ccyiw
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putative proteins can be created using bioinformatic predictions and be tested either by supershift 

or competitor assay. However, it is a difficult task to predict which regulatory proteins can bind 

DNA region of interest. The method enabling indentification of DNA-binding proteins without 

prior knowledge of putative proteins is DNA-affinity chromatography followed by mass 

spectrometry. Similarly like in the EMSA technique labeled probes containing DNA region of 

interest are incubated with the protein extract. Then DNA-protein complexes are purified, 

proteins are eluted and analysed by mass spectrometry. This method is unbiased and allowes 

detection of allele-specific protein binding [141].  

Since, EMSA and DNA-affinity chromatography followed by mass spectrometry are both in vitro 

methods, allele-dependent protein binding should be confirmed in vivo by chromatin 

immunoprecipitation (ChIP). In the ChIP assay DNA-protein complexes are crosslinked in vivo 

and after shearing of chromatin into fragments, DNA regions bound to protein of interest are 

immunoprecipitated by specific antibody. Enriched DNA fragments can be analysed by qPCR 

with allele-specific primers to detect difference in protein binding between alleles of SNP in a 

heterozygous cell line [109, 142].  

Testing transcriptional regulation of genetic variant 

The effect of allele-specific binding proteins on transcription can be further tested by cell-culture 

based reporter assays. Cassettes containing the region of SNP can be cloned into plasmid with 

reporter gene and transfected into relevant cell type. Depending on which regulatory activity of 

genetic variant is analysed, cassettes may be cloned into different positions with respect to the 

reporter gene. Depending on activity of cloned element, different levels of mRNA are transcribed 

and then translated into active protein. Activity of protein can be measured and compared in 

between alleles of a SNP. The effect of interactions between multiple variants on transcription 

can be tested by subcloning to the reporter vector an insert bearing more than one SNP.  

In general, reporter assays are very useful in determining potential function of genetic variants, 

however these assays have few limitations. High variability in results is often observed for 

reporter assays, due to significant amount of transcriptional noise. Also, slight differences in 

reporter activity can be caused by small differences in amount of transfected plasmid DNA or 

transfection efficiency. And most importantly, reporter assays do not test the regulatory activity 

of genetic variants in the native genomic context. The method overcoming these issues is 
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genome-editing. The most recent clustered regularly interspaced short palindromic repeat 

(CRISPR) systems allow either deletion of whole or parts of the linkage disequilibrium block 

detected by GWAS to analyze the regulatory function of this region, or mutation of single allele 

of SNP to determine allele-specific regulatory functions [109].  

After successful identification of causal variant and its regulatory function next steps are to 

determine affected target gene(s) and to understand how the altered regulation or function of 

causal genes are associated with disease risk or certain phenotype.  

1.8 Justification of the cell type choice for identification of causal SNP associated with 

cardiovascular responses of patients treated with dalcetrapib 

The results from many GWAS follow up studies suggest that majority of causal variants 

influence the phenotype by modulating the function of regulatory elements, what leads to altered 

expression of target genes in cell-type specific manner. That is why selection of cell-type for 

follow up studies is very important. Very often, eQTL effect is seen in cell types known to be 

relevant in affected disease [109]. Therefore, since monocytes play important role in 

atherosclerotic plaque formation and reverse cholesterol transport the monocytic cell lines are 

good candidates to study association of genetic variants and cardiovascular response of patients 

treated with dalcetrapib. Moreover, SNP rs1967309 and many other variants in high LD with it, 

were found to be eQTLs for ADCY9 gene expression in blood and peripheral blood CD14
+
 CD16

-
 

monocytes [143, 144]. Since, the activity of ADCY9 mediate different functions of immune cells 

and regulate various inflammatory responses [102-106], the fact that genotype of patients at SNP 

rs1967309 was found to be associated with changes of C-reactive protein levels suggests possible 

effects of genetic variants on inflammatory responses of patients [84]. Further, according to the 

data collected in FANTOM5 database, transcription start sites (indicating presence of promoters) 

are located at DNA regions overlapping SNPs rs1967309 and rs12920508, the last showing 

signal mainly in cells of monocytic origin. Additionally ENCODE data suggest open chromatin 

state in these regions in primary monocytes. 

Therefore, two cell line models for human monocytes were selected for these functional studies. 

In the majority of experiments, undifferentiated THP-1 monocytes were used, which are 

immortalized cells isolated from the pheripheral blood of a 1-year old male patient with acute 

monocytic leukemia [145]. A second cell line, U937, was used in minority of experiments. The 
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U937 cells were isolated from the histiocytic lymphoma of a 37-year-old male patient [146]. Both 

cell lines have many common features. They are used often as models to examine monocyte and 

macrophage-realted physiological processes and they are both immortalized cell lines what brings 

them many advantages over human primary monocytes. The most obvious advantages are their 

easy cultivation and safety of use, high growing rate that enables collection of large amount of 

cells for downstream analysis and their ability to grow up to high passage without significant 

changes of cell sensitivity and activity. The other advantage of THP-1 and U937 cells over 

human primary monocytes is their homogeneous genetic background, which minimizes the 

degree of variability in the cell phenotype and results in higher reproducibility of findings [147]. 

The main disadvantage of THP-1 and U937 cell lines is their cultivation under controlled 

conditions, what may result in different sensitivities and responses compared to somatic cells in 

their natural environment [148]. The other drawback is lack of possibly relevant interactions 

between the target cells and surrounding cells, as in natural tissues. This issue may be important 

for our studies since the association of patient genotype was visible only in patients treated with 

dalcetrapib, therefore the effect may not be observed in isolated cells without interactions with 

surrrounding [149].  

Despite high similarity of THP-1 and U937, few differences exist between those cell lines. Main 

differences are their origin and maturation stage [147]. THP-1 are isolated from peripheral blood 

when U937 originate from tissue, hence more mature stage. Other differences significant for our 

studies include differences in their genotype. THP-1 cells are homozygotes GG for SNP 

rs1697309. THP-1 cells are homozygotes for allele CC for SNP rs12920508, which allele, due to 

high linkage disequilibrium between SNPs rs1967309 and 12920508 ( 𝑅2 = 0.98 in dal −

OUTCOMES population ) is associated to the deleterious allele. Wild-type U-937 cells are 

heterozygotes for both SNPs. Our laboratory designed CRISPR-Cas9 clones of THP-1 cells for 

SNP rs1937309 what gives advantage for use of this cell line. However, wild-type U937 cells are 

heterozygotes for our both SNPs of interest rs1967309 and rs12920508, what enables us to 

perform analysis of allele-specific protein binding in vivo with more physiologically natural state. 

Therefore the main reason for using two different cell lines in this work is their genotype.  

 

  

https://en.wikipedia.org/wiki/Histiocytic
https://en.wikipedia.org/wiki/Lymphoma
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2 HYPOTHESIS AND OBJECTIVES 

Personalized medicine is a promising approach to improve patient care. It has potential to adjust 

therapies depending on patient’s genetic profile, to result in best response and the highest safety 

of the treatment [150]. The response of patients treated with dalcetrapib is associated with 

different genotype of patients. Understanding the molecular mechanisms driving these 

associations is important for further development of dalcetrapib-based personalized treatment, for 

patients having suitable profile. Genetic variants associated with responses of patients to 

dalcetrapib are located within intronic regions of ADCY9 gene. Many of them are in high LD, and 

it is unknown which SNP causes the association. Since the majority of causal intronic SNPs 

function through regulation of target gene expression by allele-specific recruitment of 

transcription factors, we hypothesize that SNP rs1967309 or one of the other identified SNPs in 

high LD with it affects ADCY9 expression. Given the importance of monocytes in atherosclerosis 

and inflammatory responses, and the association between rs1967309 and monocytic counts [80], 

monocytes represent cells of particular interest. The possible mechanism would imply altered 

binding affinity of regulatory protein(s) to alleles of the causal SNP, what may further lead to 

altered target gene expression, and modulate response of patients under dalcetrapib treatment. 

The general objectives of this project are to identify the causal single nucleotide polymorphisms 

(SNPs) and to understand the molecular mechanism connecting causal SNPs and dalcetrapib 

effects on cardiovascular outcomes. To answer general objectives, I set three specific aims: 

1. Identification of specific DNA-protein complexes 

DNA-binding regulatory proteins mediate most processes that modulate gene expression. 

Therefore, I will investigate the allele-specific DNA-binding of proteins to selected SNPs in 

order to prioritize functional variants.  

2. Determination of transcriptional activity of selected genetic variants 

The effects of SNP on gene expression levels in specific cell lines are great predictors of 

functionality of genetic variant. I will analyze the transcriptional and enhancer activities of DNA 

regions containing SNPs of interest to narrow down list of putative causal variants.  

3. Identification of causal SNP(s) and elucidation of molecular mechanism altering ADCY9 

gene expression 
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Based on the results obtained from specific DNA-protein binding and transcriptional activity 

assays I will restrict the list of putative causal SNPs and I set out to identify possible mechanisms 

linking putative causal SNPs and ADCY9 gene expression. 
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3 ARTICLE 

 

Student contribution 

Over the time of my master project, I performed the majority of presented results. I optimized 

and carried out the approaches, such as electrophoretic mobility shift assay to detect protein 

binding to the SNPs, dual luciferase reporter assay to assess the effect of selected polymorphisms 

on gene transcription, multiplexed competitor EMSA, DNA-affinity chromatography followed by 

mass spectrometry and chromatin immunoprecipitation to identify proteins binding to chosen 

SNP. Furthermore, I mainly contributed to writing of presented article. Co-author Rocio Sanchez 

prepared plasmids for dual luciferase reporter assay and performed transfections (n=4) for 

cassettes 3 and 9, containing SNPs rs1967309 and rs12920508, respectively. Co-author Gabriel 

Théberge-Julien contributed to the presented article mainly with his knowledge about PCRs. Co-

author Marie-Pierre Dubé together with my director Jean-Claude Tardif and co-director Eric 

Rhéaume are the researchers who discovered the ADCY9 risk loci and supervised my work.   
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Abstract 

The cardiovascular responses of patients with coronary artery disease receiving dalcetrapib 

treatment differ depending on their genetic profile. Genome-wide association study identified an 

associated locus within intronic regions of adenylate cyclase 9 (ADCY9) gene, but the detailed 

molecular mechanism underlying this association remains unknown. Our main objective was to 

identify putative causal genetic variant(s) from associated locus to gain knowledge into the 

mechanism involved.  

 Using electrophoretic mobility shift assay (EMSA), we demonstrated that seven single 

nucleotide polymorphisms (SNPs) of ADCY9 linkage disequilibrium block show differential 

allelic binding to nuclear proteins from THP-1 monocytic cell line, however, binding was not 

influenced by direct exposure of cells to dalcetrapib. Among these variants, the regions bearing 

SNPs rs1967309 and rs12920508 demonstrated increased promoter activity in dual luciferase 

reporter assays. Mass spectrometry identified 11 proteins binding significantly stronger to allele 

C (deleterious) of rs12920508 and we confirmed binding of TAR DNA-binding protein 43 by 

chromatin immunoprecipitation. We discovered that DNA construct containing both SNPs 

rs1967309 and rs12920508 showed elevated promoter activity with significantly higher activity 

for deleterious haplotype, what corresponded the tendency of SNP rs1967309.  

Taken together, our data support hypothesis that polymorphisms located in ADCY9 gene are 

associated with cardiovascular responses of patients induced by dalcetrapib. Additionally, 

although SNP rs12920508 appears in a region that may possess transcriptional activity, SNP 

rs1967309 may overshadow its effect and seems to be responsible for the observed effect of this 

region in THP-1 monocytic cell line. Still, further work is required to understand the link between 

potentially causal SNPs and cardiovascular responses induced by dalcetrapib.  

Keywords: Dalcetrapib, ADCY9, SNP, EMSA, cardiovascular disease, HDL-C 
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Introduction 

According to data of the World Health Organization from May 2017, cardiovascular diseases 

(CVDs) are the number one cause of death globally [1]. Reduced levels of high-density 

lipoprotein cholesterol (HDL-C) are commonly recognized as a major CVD risk factor. One of 

the main antiatherogenic function of HDL may involve its role in reverse cholesterol transport 

(RCT). In this process high-density lipoprotein particles allow the excretion of cholesterol 

accumulated in macrophage foam cells, what leads to plaque regression. Other atheroprotective 

properties of HDL include its antioxidant, anti-inflammatory and anti-thrombotic functions [2].  

Dalcetrapib is a cholesteryl ester transfer protein (CETP) inhibitor, which aims to increase levels 

of HDL-C in patients. Its mechanism of action lies in inhibition of transfer of cholesteryl esters 

from HDL to apolipoprotein B-containing particles, such as low-density lipoproteins (LDLs). 

Although clinical trials showed the safety of dalcetrapib and its efficacy to raise HDL-C levels by 

around 30 %, its development was suspended due to the lack of clinically significant benefits [3]. 

Genome-wide association study (GWAS) of the dalcetrapib clinical trial dal-OUTCOMES 

identified a single region located in adenylate cyclase 9 (ADCY9) gene that is associated with 

cardiovascular events in dalcetrapib-treated patients. In the identified region, genetic variant 

rs1967309 passed the significance threshold with P value = 2.41 × 10−8. In the same region, 7 

other single nucleotide polymorphisms (SNPs) were identified with P value < 1 × 10−6 . In 

patients bearing the AA genotype (minor protective allele) for SNP rs1967309 and treated with 

dalcetrapib, there was a 39% reduction in the cardiovascular risk compared to placebo. Contrary, 

for patients with GG genotype (major deleterious allele), a 27% increase in cardiovascular events 

was detected in dalcetrapib arm versus placebo. For heterozygote patients AG and placebo arm 

alone, there was no significant effect observed. A panel of 27 SNPs located in the ADCY9 gene 

was selected for targeted genotyping and analysis of samples from dal-PLAQUE-2 study 

participants to confirm association of identified locus and cardiovascular responses of patients to 

dalcetrapib. Selected panel included 5 imputed SNPs with P value = 10−6  and 15 genotyped 

SNPs with P value < 0.05  identified in the discovery GWAS to the dal-OUTCOMES study, 

together with 7 SNPs chosen based on literature review and functional prediction. Ten single 

nucleotide polymorphisms displayed association with measure of intima-media thickness and 

reached the significance threshold (P value≤ 0.05) [4]. Additionally, the genotype of patients 
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from dal-OUTCOMES at SNP rs1967309 was associated with changes of C-reactive protein 

(CRP) levels under treatment with dalcetrapib. Only patients with protective haplotype AA did 

not show an increase in CRP levels [5]. 

Single nucleotide polymorphisms associated with responses of patients treated with dalcetrapib 

are located within ADCY9 gene. Majority of identified SNPs are nonrandomly associated and 

create a linkage disequilibrium block that occupies the regions of intron 2 and 3 of ADCY9 gene 

[4]. Adenylate cyclase 9 is a membrane-associated protein that catalyzes the conversion of 

adenosine triphosphate (ATP) to second messenger cyclic AMP (cAMP) [6]. The mechanisms 

underlying the association of ADCY9 with cardiovascular responses to dalcetrapib are still not 

fully understood. However, the activity of ADCY9 was found to mediate different functions of 

immune cells and to regulate various inflammatory responses [7-11]. Also, recently published 

data showed that inactivation of Adcy9 in mice has atheroprotective effects but only in the 

absence of CETP [12].  

Despite the rapid advancement of GWAS, many identified associations still lack mechanistical 

understanding. Functional follow up on GWAS data includes multiples steps, such as fine 

mapping of GWAS signal, bioinformatic analysis, identification of causal SNP(s) and its 

function, and identification of target gene(s) and its link to the phenotype [13]. Identification of 

causal SNP(s) is a challenging task, since majority of identified loci lie in non-coding parts of a 

genome [14]. Our task may be even more challenging as the cardioprotective response was only 

observed in dalcetrapib-treated patients. 

Disease-associated variants located in intergenic or intronic regions often function through 

modulation of genetic expression of one or more target genes. Gene expression is a complex 

multistep process regulated by various factors on many levels. Therefore, noncoding variants 

may influence the expression of a target gene by regulating many different steps, including gene 

transcription, RNA splicing, non-coding RNA function and epigenetic regulation [13]. Genome-

wide data on chromatin accessibility showed that almost 60% of intronic polymorphisms 

identified by GWAS lie within DNase I hypersensitivity sites (DHSs). These data suggest that 

genetic variants in non-coding regions of human genome disrupt DNA binding motifs of 

regulatory proteins. Numerous functional analysis of GWAS data identify variable transcription 

factor (TF)-DNA interactions as leading cause of phenotypic variation [14, 15].  



51 
 

Expression quantitative trait loci (eQTL) analysis allows to determine the effect of 

polymorphisms on gene expression levels in specific tissues or cell lines. The annotation of SNPs 

to eQTL regions in tissue or cell type of interest facilitates identification of causal SNP(s) [16]. 

Polymorphism rs1967309 and/or other genetic variants in high linkage disequilibrium with it, are 

associated with ADCY9 gene expression in blood and peripheral blood CD14
+
CD16

-
 monocytes 

[17, 18].  

Given the above, we hypothesize that SNP rs1967309 or one of the other identified SNPs in high 

LD with it, regulate expression of ADCY9 gene in monocytes. The putative mechanism would 

imply altered binding affinity of regulatory protein(s) to alleles of the causal SNP, what may 

further lead to altered target gene expression, and modulated response of patients under 

dalcetrapib treatment.  

Here, we characterize genetic variant rs1967309 and 11 other selected SNPs with final goal of 

identifying the SNP(s) that cause the association (causal SNP), and understanding its link with 

dalcetrapib effects on cardiovascular outcomes. First, we tested if any proteins bind in allele-

dependent manner to regions of selected SNPs. Next, we assessed the influence of chosen genetic 

variants on gene transcription. Finally, we identify proteins binding to the regions of the putative 

causal SNP.  
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Materials and methods 

SNP selection 

Twelve lead SNPs were selected as putative causal SNPs: rs1967309, rs2531971, rs2238448, 

rs11647778, rs1259911, rs12595857, rs12920508, rs11647828, rs12935810, rs74702385, 

rs3789035, rs2238449 (Table I and Figure 1). All SNPs (n=7) with p values < 10
-6

 for association 

with cardiovascular responses of patients treated with dalcetrapib in dal-OUTCOMES were 

chosen [4]. Three SNPs with p value between 1.32 × 10−6 and 7.31 × 10−5 were selected 

because they seemed to occur in regions of interest based on ENCODE data. Variant rs3789035 

was selected due to its low P value (9.85 × 10−7) in high-density imputation. SNP rs2238449 

was chosen because it was found to be an eQTL for ADCY9 in peripheral blood CD14
+
CD16

–

monocytes [17] and is in moderate LD with rs1967309.  

Cell culture 

THP-1 and U-937 cell lines were obtained from ATCC® and both are human monocytic cell 

lines. THP-1 and U-937 cells were grown in Roswell Park Memorial Institute medium (RPMI-

1640, Wisent Bioproducts) supplemented with 10 % fetal bovine serum (FBS, Wisent 

Bioproducts). Both cell lines were cultured at 37 ℃ and 5 % 𝑪𝑶𝟐.  

THP-1 cells are homozygotes GG for SNP rs1697309. THP-1 cells are homozygotes for allele 

CC for SNP rs12920508, which allele, due to high linkage disequilibrium between SNPs 

rs1967309 and 12920508 ( 𝑅2 = 0.98 in dal − OUTCOMES population ) is associated to the 

deleterious allele. Wild-type U-937 cells are heterozygotes for both SNPs.  

Electrophoretic mobility shift assay (EMSA) 

Probe synthesis  

For each selected SNP, biotinylated DNA probes of 31 bp long sequences, 15 bp on each side of 

the SNPs, were designed (Table II). Synthesized probes encompassed the major or minor variant 

of every polymorphism. For each allele of the SNP, forward and reverse complementary 

sequences single-strand DNA were first synthesized and were further annealed together to 

generate double-strand DNA probes. Specific competitor probes encompassed the same sequence 

and the same allele of variant like biotinylated probes but were not biotinylated.  
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Nuclear proteins extraction  

Nuclear proteins were extracted from THP-1 monocytic cell line. Extractions were performed 

using NE-PER nuclear and cytoplasmic extraction kit reagents (Thermo-Fisher), according to the 

manufacturer’s protocol. Protein concentration was further assessed by Lowry method. 

To assess if DNA-protein binding was influenced by dalcetrapib, THP-1 cells were exposed to 

5 µM dalcetrapib for 24 hours and then nuclear proteins were extracted from those cells as above.  

Binding reactions preparation  

Electrophoretic mobility shift assay was performed according to the manufacturer’s protocol 

(LightShift Chemiluminescent EMSA Kit; Thermo Scientific). In brief, the components of 

binding reactions: 1X binding buffer, 2.5 % glycerol, 5 mM 𝑀𝑔𝐶𝑙2, 0.5 µg Poly(dI-dC), 25 ng 

calf thymus DNA and 0.05 % NP-40 were incubated with 4 µg of nuclear proteins and 200 fmol 

of biotinylated probe. In competition assays, 100x non-labeled competitor probes relative to the 

labeled probe concentration were added to the reactions before addition of biotinylated probe. 

Reactions were incubated at room temperature for 20 min, followed by addition of 5X loading 

buffer.  

Gel electrophoresis and exposure 

Samples were electrophoresed on a 4 % polyacrylamide gel for 40 min at 100 V and then 

transferred to nylon membrane. Membranes were UV crosslinked and visualized by 

Chemiluminescent nucleic acid detection module kit (Thermo Scientific). The images were taken 

using ChemiDoc MP (Bio-Rad) and bands were quantified using Image Lab 5.2.1. 

Dual luciferase reporter assay 

Dual luciferase reporter assays were used to measure the effects of selected polymorphisms on 

gene transcription activity. To assess enhancer activity of genetic variants, DNA fragments with 

sequences flanking either the deleterious or protective alleles of selected SNPs were individually 

amplified by PCR from genomic DNA and then inserted into the enhancer position of the 

pGL3SV40 promoter vector. To assess promoter activity of genetic variants, DNA fragments 

containing either the deleterious or protective alleles of selected SNPs were individually inserted 

into the promoter site of pGL4.10[luc2] vector, lacking promoter. Isolated genomic DNA from 
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five individuals with minor haplotype and five individuals with major haplotype were obtained 

from patients from dal-OUTCOMES study [4]. Next, one genomic DNA was selected for PCR 

amplification. The list of primers used is presented in Table III. Amplified DNA fragments were 

cleaved by BamHI restriction enzymes, and then subcloned into BamHI restriction site of 

pGL3SV40 promoter vector, or in the BamHI-compatible BglII restriction site of pGL4.10[luc2] 

vector. Cloned amplified fragments were sequenced to validate the absence of unwanted 

mutation. DNA fragments, commonly called cassettes, were ~500 − 1000  bp long DNA 

fragments obtained from individual with either the deleterious or protective haplotype. See Table 

IV for details about size and location of the tested DNA fragments.  

Exceptionally, longer DNA fragment (4185 bp), called Insert A was prepared differently than 

shorter cassettes. The synthetic gene HapP/D-Insert A was assembled from synthetic 

oligonucleotides and PCR products (Life technologies). Next, assembled fragment was cloned 

into plasmid pMA (ampR) using PacI and AscI cloning sites. Plasmids were then purified and 

inserts were verified by sequencing. Inserts were cloned into enhancer position of pGL3SV40 

vector, using XhoI-SacI restriction sites. Since only deleterious insert could successfully be 

subcloned, the corresponding protective insert was created by site-directed mutagenesis. DNA 

fragment of insert A contains both SNPs rs1967309 and 12920508. Hence, to generate insert with 

protective haplotype (PA(7309-0508)-pGL4Basic) these two SNPs were mutated in deleterious 

insert (DA-pGL4Basic). Site-directed mutagenesis was carried out using QuickChange Lighting 

Multi Site-Directed Mutagenesis Kit (Stratagene), according to the manufacturer’s protocol. The 

resulting insert sequence was verified by sequencing. 

Luciferase reporter constructs were transfected into THP-1 cells along with the renilla control 

reporter vector (pRL-CMV) (Promega). Transfection was carried out in 96-well plates with white 

bottom (BrandTech Scientific). In each well, 200 000 THP-1 cells were plated and transfected 

with 9 µl of reagent-DNA complex. Reagent-DNA complex contained 0.4 µl of TransIT-2020 

(Mirus), OPTI-MEM reduced-serum media (Gibco), 90 ng of luciferase reporter vector and 10 ng 

of renilla control vector, per well. After 48 hours of transfection, luciferase and renilla activities 

were measured by Synergy 2 plate reader (BioTek), using Dual-Glo Luciferase Assay System 

(Promega) according to manufacturer’s protocol. Normalized firefly luciferase activity was 
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calculated by dividing measured luciferase activity by the renilla luciferase activity from the 

same transfected sample. 

Multiplexed competitor EMSA (MC-EMSA)  

We used two different approaches to identify the proteins binding to SNP rs12920508 location. 

First, multiplexed competitor EMSA uses cocktails of consensus DNA-binding sequence 

oligonucleotides of well characterized transcription factors to compete the specific band shift 

from conventional EMSA [19]. Seven cocktails were used, each containing unlabeled consensus 

short sequence double-strand DNA for ten TFs (Table V). Competition cocktails were incubated 

with nuclear extracts in EMSA binding reactions for 30 minutes on ice, before addition of labeled 

probe.  

Consensus binding sequences DNA for transcription factors from the cocktail competing specific 

band shift from EMSA were further added separately to the binding reactions to determine which 

TF-binding DNA was responsible for competition.  

DNA-affinity chromatography followed by mass spectrometry 

The second method we used to identify proteins binding to the site of polymorphism rs12920508 

is called DNA-affinity chromatography followed by mass spectrometry. Firstly, 17 pmol of 

biotinylated probes bearing either deleterious (C) or protective (G) allele of variant rs12920508 

were incubated with 340 µg of nuclear extracts derived from THP-1 monocytes for 25 minutes at 

room temperature. The conditions of binding reactions were the same as for the EMSA 

experiments. Next, 10 µl of streptavidin-coated magnetic beads (Dynabeads M-280 Streptavidin, 

Invitrogen by Thermo Scientific) were incubated overnight with reactions at 4℃ on a rotating 

platform. After magnetic separation, the beads were washed three times with 400 µl 50 mM 

ammonium bicarbonate solution. Afterwards, beads were suspended in 20 µl of the washing 

buffer and sent for mass spectrometry analyses to the Proteomics technology platform located at 

the Research Institute - McGill University Health Centre (RI-MUHC). Beads with bound proteins 

from samples, were boiled in Laemmli buffer and the resulting beads & buffer were loaded onto a 

single stacking gel band to remove lipids, detergents and salts. A single gel band containing all 

proteins was reduced with DTT, alkylated with iodoacetic acid and digested with trypsin. 

Extracted peptides were re-solubilized in 0.1% aqueous formic acid and loaded onto a Thermo 

Acclaim Pepmap (Thermo, 75 m ID X 2 cm C18 3 m beads) precolumn and then onto an 
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Acclaim Pepmap Easyspray (Thermo, 75 m X 15 cm with 2 m C18 beads) analytical column 

separation using a Dionex Ultimate 3000  uHPLC at 220 nl/min with a gradient of 2-35% organic 

solvent (0.1% formic acid in acetonitrile) over 2 hours. Peptides were analyzed using a Thermo 

Orbitrap Fusion mass spectrometer operating at 120,000 resolution (FWHM in MS1) with HCD 

sequencing at top speed (15,000 FWHM) of all peptides with a charge of 2+ or greater. The raw 

data were converted into *.mgf format (Mascot generic format) for searching using the 

Mascot 2.5.1 search engine (Matrix Science) against human protein sequences (Uniprot 2018). 

The database search results were loaded onto Scaffold Q+ Scaffold_4.4.8 (Proteome Sciences) 

for statistical treatment and data visualization. Significance was determined by Fisher’s exact 

test.  

To control for nonspecific binding, two controls were designed. The first control contained 

biotinylated scrambled probe in order to exclude nonspecific binding to the probes. Second 

control was lacking biotinylated probe, what enabled us to detect nonspecific binding of proteins 

directly to the magnetic beads.   

Chromatin immunoprecipitation (ChIP) 

We performed chromatin immunoprecipitation to assess if proteins identified by mass 

spectrometry are binding to region of SNP rs12920508 in vivo. The assay was carried out 

according to the manufacturer’s protocol (ChIP-IT Express, Active Motif). Approximately 15 

million of U-937 cells were fixed with 0.54 ml of 37 % formaldehyde for 10 minutes at room 

temperature on a shaking platform. Next, glycine-stop solution was added to the cells and 

incubated at room temperature for 5 minutes. Supernatant was removed after centrifugation for 

10 minutes at 2500 rpm in 4 ℃ and cells were washed with 1X PBS. Cells were centrifuged one 

more time in same conditions and resuspended in 1X PBS supplemented with PMSF. Crosslinked 

cells were next lysed and homogenized by 10 strokes in Dounce homogenizer to help nuclei 

release. Chromatin was sheared by 2 pulses of sonication, each lasting 15 seconds with 30 second 

pause on ice in between.  

The concentration of DNA was measured by NanoDrop. The size of chromatin fragments was 

verified by migration of sheared chromatin sample on a 1 % agarose gel in TAE buffer. The size 

of fragments obtained after shearing was 200-500 base pairs.  
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ChIP reactions contained 25 µl of protein G magnetic beads, 20 µl ChIP buffer 1, 60 µg of 

sheared chromatin DNA, 2 µl of protease inhibitor cocktail and 4 µg of antibody (Table VI). 

After addition of all components, reactions were incubated overnight at 4 ℃ on a rotating 

platform. Magnetic beads were next washed once with 800 µl of ChIP Buffer 1 and two times 

with 800 µl of ChIP Buffer 2. Bound fragments of chromatin were eluted and analyzed by 

quantitative PCR and ddPCR (supplementary methods). Primers used for amplification of region 

containing SNP rs12920508 are presented in Table VII.  

Statistical analysis 

Statistical analyzes were carried out using GraphPad Prism 7 software or SAS 9.4 for multilevel 

model.  

For all collected data, Shapiro-Wilk normality test was performed in order to check distribution 

of data. Further, outliers located below Q1-1.5 IQR or above Q3+1.5 IQR were calculated and 

data were analyzed with and without them to identify any possible false results.  

For dual luciferase results, significance was determined by the multilevel model specified in term 

of fixed effects for vector construct (deleterious, protective, control) as repeated factors. The 

random effects within the model was the intercept and vector, to take into account correlation 

within cells and within vector x cells. 

For ChIP data analyzed by qPCR, results were presented after  𝑙𝑜𝑔2  transformation and 

significance was determined by one sample t-test.  
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Results 

Protein binding to regions of selected SNPs 

Seven SNPs show allele-specific protein binding 

Since all 12 selected SNPs are located in intronic regions of ADCY9, the most likely way they 

could influence gene expression is by allele-specific transcription factor binding. To test if any 

nuclear proteins from THP-1 monocytic cell line bind to the regions of the selected SNPs and if 

allele alteration affects binding, we performed electrophoretic mobility shift assay (EMSA). 

First, we assessed if nuclear proteins derived from THP-1 bind to 31-bp-DNA probes centered 

around each of the 12 selected SNPs, and if the binding is allele-dependent. An example of such 

results is shown for rs1967309 (Figure 2). We set a minimum ratio of quantified bands between 

alleles of the same SNP higher than 2 to assign the protein binding to be allele-dependent.  

Next, we checked protein binding specificity by competition assays. According to this principle, 

protein binding is specific if band intensity decreases after addition of specific competitor to the 

binding reaction. To conclude that binding was specific to variants of interest, we set the cut off 

to be at least 2 times decrease after addition of specific competitor for the stronger binding allele. 

EMSA experiments revealed that binding of nuclear proteins derived from THP-1 can be detected 

to all tested probes for the genetic variants. Eight probes displayed allele-dependent protein 

binding which was also specific, according to competition experiments (Table VIII). Probes 

corresponding to the regions of polymorphisms rs1967309, rs12920508 and rs2238449 displayed 

the strongest protein binding, while protein binding to variant rs11647778 was very weak, thus 

we did not select it for further functional analysis. Four SNPs, rs2238448, rs12595857, 

rs12920508 and rs12935810 demonstrated increased binding to their haplotype-associated 

deleterious allele, whereas three SNPs rs1967309, rs2531971 and rs2238449 showed stronger 

binding to protective allele probes.  

Exposure of THP-1 cells to dalcetrapib did not influence nuclear protein binding 

After discovery of allele-dependent protein binding to seven variants of interest, we decided to 

verify if protein binding could be directly influenced by dalcetrapib. To do this, we performed 

EMSA experiments with nuclear extract derived from THP-1 monocytes exposed to 5 µM of 

dalcetrapib for 24 hours.  
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We calculated the ratio of binding intensity between alleles of SNPs before and after exposure to 

dalcetrapib (Figure 3). The ratio of binding intensity between alleles of variants did not change 

significantly after exposure to dalcetrapib. We conclude that direct exposure of THP-1 cells to 

dalcetrapib did not influence significantly nuclear protein binding for all seven tested SNP-

containing probes.  

Allele-specific regulatory activity of selected genetic variants 

DNA regions containing SNPs rs1967309 and rs12920508 show transcriptional activities 

In order to assess regulatory capacity of genetic variants that demonstrated allele-specific protein 

binding in EMSA experiments, we carried out dual luciferase reporter assays. For each selected 

genetic variant, two DNA fragments, thereafter called cassettes (see Table IV), were generated by 

PCR amplification from patients’ DNA bearing protective and deleterious haplotype. To compare 

enhancer activity of selected SNPs’ allele, cassettes were cloned into downstream of the 

luciferase cDNA in reporter vector. Rs2238449 and rs2238448 were included in one construct 

because of their physical proximity. Additionally, for SNPs rs1967309, rs12920508, 12595857 

and rs12935810, luciferase reporter vectors with cassettes cloned into the promoter position, 

upstream of luciferase cDNA, were also generated to assess promoter activity.  

For each SNP, four independent experiments were performed, and four replicate samples were 

assayed in each experiment. Relative luciferase activity was obtained by normalization to the 

luciferase activity of the control vectors pGLSV40 or pGL4Basic. Two cassettes, those bearing 

SNPs rs1967309 and rs12920508, initially showed increased transcriptional activity. SNP 

rs12920508 showed a tendency towards higher activity for protective haplotype. Exceptionally, 

for these two cassettes, assays with cassettes in promoter position were repeated ten times (Figure 

4). After increasing repeats to n=10, P value illustrating difference in between alleles in promoter 

position was 0.0674 for SNP rs1967309 and 0.0389 for rs12920508. SNPs rs12595857 and 

rs12935810 did not display change in promoter activity in comparison to control vector (data not 

shown). 

None of the 7 selected variants showed enhancer activity. Interestingly, constructs containing 

alleles of SNPs rs12920508 and rs1967309 reduced expression of reporter gene suggesting 

potential repressor activities, nevertheless without significant differences in between the alleles 

(Figure 4). Additionally, protective haplotype of cassette 4 (rs2531971) displayed lower enhancer 
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activity comparing to control plasmid, but without significant difference in activity with the 

deleterious haplotype (data not shown). In conclusion, of the 7 SNPs showing allele-specific 

protein binding in EMSA experiments, only cassettes with rs1967309 and rs12920508 displayed 

significantly increased transcriptional activity but without significant difference between alleles.  

Identification of proteins binding to the DNA probe containing SNP rs12920508 

Eleven proteins were identified binding significantly more to the probe bearing the 

deleterious allele of rs12920508   

Considering that the DNA cassette region of variant rs12920508 displayed a tendency for higher 

activity of the protective allele in luciferase reporter assays, we decided to identify proteins 

binding to this region. We used an approach consisting of DNA-affinity chromatography 

followed by protein mass spectrometry. DNA-protein complexes binding specifically to EMSA 

probes with rs12920508 presenting each allele separately were pulled down by streptavidin 

coated magnetic beads. Afterwards, proteins were eluted and detected by mass spectrometry. 

Obtained data were analyzed using Scaffold 4 proteome software. P values representing 

enrichment of proteins binding to deleterious C allele over protective G, or over the control 

scramble sequence probe or magnetic beads without probe were calculated by Fisher’s exact test.  

In the EMSA experiments, the probe with variant rs12920508 showed three bands with higher 

protein binding to the C allele (data not shown). Ratios of band intensity between alleles (C/G) of 

samples sent to mass spectrometry analysis for higher, middle and lower bands were 1.7, 3.1 and 

3.6, respectively.  

Mass spectrometry identified 11 proteins, which were significantly enriched in the sample with 

probe C compared to probe G and both controls (Table IX). The majority of detected proteins are 

DNA or RNA-binding proteins. Some of them were found to be involved in splicing (HNRNPM, 

TARDBP), regulation of transcription (TARDBP, FUBP1 and FUBP3) or RNA degradation 

(MTREX, EXOSC10 and ZCCHC8).   

TAR DNA-binding protein 43 binds to the chromatin region of variant rs12920508 

To validate in vivo the in vitro results obtained by mass spectrometry, we performed chromatin 

immunoprecipitation (ChIP) in U-937 cells.  
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From 11 identified proteins, we selected four which showed the highest number of peptides 

detected for prepared sample with probe containing allele C (deleterious allele). Although 

previous analysis was done with nuclear extract derived from THP-1 monocytes, we decided to 

use U-937 monocytes for ChIP assays. Wild type THP-1 cells are homozygotes CC for SNP 

rs12920508, while U-937 cells are heterozygotes for this variant. Thus, U-937 cells could 

potentially enable determination of allele-specific protein binding. EMSA reactions with nuclear 

extract derived from U-937 demonstrated similar binding pattern to those with nuclear extract 

derived from THP-1 cells (data not shown).  

DNA fragments enriched by ChIP were quantified in two ways, by classical approach 

quantitative PCR (qPCR) and droplet digital PCR (ddPCR). Sample with RNA polymerase II 

antibody served as positive control.  

For qPCR analysis we used normalization based on the fold enrichment method. The results 

obtained represent the ChIP signal as the fold increase in signal relative to the background signal 

with non-specific IgG, calculated by the formula: 2−(𝐶𝑡 𝐼𝑃−𝐶𝑡 𝐼𝑔𝐺)  (Figure 5A). The TAR DNA-

binding protein 43 (TARDBP) demonstrated the highest fold enrichment at the region of SNP 

rs12920508 (≈ 26). Other tested proteins hnRNPM, FUBP3 and FUBP1 showed much lower 

fold enrichment 3.7, 0.47 and 2.1, respectively. Since fold enrichment (FE) over IgG data are not 

normally distributed, we represented TARDBP data as 𝑙𝑜𝑔2(𝐹𝐸) and we applied one-sample t-

test to assess if enrichment with TARDBP antibody was significant (Figure 5B). Obtained P 

value did not reach significance with value of 0.0553.  

Results from ChIP assay analyzed by ddPCR are presented in the supplementary results section 

but presented high variability between replicates and high background signal from the IgG 

control sample and thus did not allow firm conclusions to support the qPCR data or to quantify 

separately immunoprecipitation of allele-specific chromatin (supplementary Figure 13).   

MC-EMSA for detection of potential TFs binding to variant rs12920508 

We used multiplexed competitor EMSA (MC-EMSA) as a second method to identify proteins 

binding to DNA probe with SNP rs12920508. This high-throughput technique uses cocktails of 

small DNA probes bearing consensus binding sites of well characterized transcription factors, 

together with a conventional EMSA approach. We tested seven competitor cocktails. Each 

cocktail contained 10 DNA probes with consensus binding sites for TF, giving in total the 
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potential to alter binding of 70 TFs to the probe. The ratios of band intensity, representing DNA-

protein complex, before and after addition of competitors were calculated for each cocktail and 

the set of TFs showing the highest competition was selected for further analysis. Next, DNA 

probes with consensus binding sites from the most competing cocktail were tested separately to 

detect which of the ten TF was responsible for observed competition.  

The specific band shift (middle band) observed in EMSA for the probe bearing C allele of 

rs12920508 and nuclear extract derived from THP-1 monocytes was significantly decreased in 

three independent experiments by cocktail #3, with ratio of band intensity before and after 

addition of this mix of competitors equals 10.8 (Figure 6A). Subsequent experiments using the 

individual competitor probes from cocktail 3 identified interferon-stimulated response element 

(ISRE) as the element responsible for competition in binding (ratio 3.1 for middle band) (Figure 

6B).  

Region containing both SNPs rs1967309 and rs12920508 shows increased promoter activity 

with significantly higher activity for deleterious haplotype 

Since both regions bearing genetic variants rs1967309 and rs12920508 showed increased 

promoter activity in reporter assays but resulting in opposite direction with regard to 

transcriptional activity of the protective allele compared to the deleterious allele, we decided to 

assess the activity of a longer DNA fragment containing both SNPs. An insert encompassing a 

deleterious haplotype background was cloned into promoter position of the luciferase reporter 

vector. The protective alleles of SNPs rs1967309 and rs12920508 were then generated by site-

directed mutagenesis. The two vectors were transfected into THP-1 cells. The DNA region 

containing both rs1967309 and rs12920508 SNPs displayed increased promoter activity with 

significant difference between deleterious and protective alleles (n=10, P value=0.0004) (Figure 

7). Higher activity was observed for deleterious alleles, what corresponds with the pattern 

obtained with the shorter region cassette containing SNP rs1967309 but with transcriptional 

activity that is intermediate that obtained with the small cassette bearing rs12920508 (Figure 4).  
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Discussion 

Genome-wide association study of the dal-OUTCOMES trial revealed the association of a locus 

in the ADCY9 gene and cardiovascular responses to dalcetrapib of patients with coronary artery 

disease [4]. Molecular mechanisms linking identified locus with dalcetrapib effects on 

cardiovascular outcomes are not fully understood. Identification of the causal variant from the 

locus and its function could facilitate understanding of the pathways involved and mechanisms. 

Here we report a functional study aimed to narrow down the list of putative causal SNPs and to 

investigate their possible transcriptional modulation effect in monocytic cell line, THP-1. 

Functional analysis included identification of allele-specific protein binding by EMSA, 

assessment of transcriptional activity of DNA regions bearing selected variants by reporter assays 

and identification of proteins binding to prioritized polymorphism using two different 

approaches.  

Intronic SNPs predominantly function through regulation of target gene expression [13]. They 

often modulate expression of target gene(s) by allele-specific binding of regulatory proteins, such 

as transcription factors. Non-coding genetic variants may create new DNA binding site or disrupt 

existing one, what results in altered gene expression [20]. Our results from EMSA experiments 

indicate that 7 out of 12 selected SNPs demonstrate allele-specific binding with nuclear proteins 

derived from THP-1 monocytic cells. Among them, three variants: rs1967309, rs12920508 and 

rs2238449 show the strongest binding. These SNPs may change binding affinity of transcription 

factors and in turn regulate the expression of the target gene(s). EMSA also revealed that direct 

exposure of cells to dalcetrapib did not affect protein binding affinity to SNPs that previously 

showed allele-specific protein binding. However, we need to consider the fact that EMSA is an in 

vitro method that does not reflect conditions of living system, such as chromatin organization and 

long-range interactions. Chromatin structure is an important factor in DNA-protein binding, since 

open and close chromatin state affects proteins ability to bind DNA [21]. Also the assembly of 

DNA-protein complex may require special binding conditions that often cannot be reached in in 

vitro assay. Also, and maybe more importantly, the effect of dalcetrapib that is modulated by the 

genome may be indirect, for instance, it may be the result of increased HDL possibly combined 

to altered HDL composition. Therefore, we do not exclude the posibility that dalcetrapib may 

influence allele-specific protein binding in living system and that the studied SNPs or even other 

SNPs could also demonstrate allele-specific protein binding in different conditions of the assay. 
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We understand this limitation and therefore cannot eliminate completely the remaining SNPs as 

causal SNPs. These limitations aside, we focused our attention on three SNPs showing the 

strongest evidence to bind regulatory proteins in allele-dependent manner.  

Polymorphism rs1967309 and other variants in high LD with it are eQTLs for ADCY9 gene in 

monocytes and blood [17, 18]. This suggest that at least one of these SNPs are located in a DNA 

regulatory region modulating ADCY9 transcription. Our data from reporter assay support this 

evidence showing that regions encompassing SNPs rs1967309 and rs12920508 displayed 

increased promoter activity in THP-1 cells. Longer DNA fragment containing both SNP 

rs1967309 and rs12920508 also demonstrated increased promoter activity with significantly 

higher activity for deleterious haplotype. Since a similar tendency was observed for the short 

cassette with SNP rs1967309, we suspect that this variant is responsible for majority of observed 

effect. However, the overall level of transcriptional activity was higher for the small cassette with 

rs12920508 and the longer fragment with both SNP than for the cassette with SNP rs1967309 

alone, what suggest the influence of variant rs12920508 or its region on the effect of rs1967309. 

Moreover, increasing number of studies identifies cooperation of mutliple variants that drives the 

associations [22, 23]. Therefore, we should keep in mind the possibility of interaction between 

SNPs at ADCY9 loci.  

Commonly, the associated variants influence the expression of genes located nearby [20]. Thus 

we believe that DNA region containing SNPs rs1967309 and rs12920508 regulates the 

expression of ADCY9 gene. Moreover, the observations that our group made related to Adcy9 

inactivation in the mouse, the observation that despite increased weight, the Adcy9-inactivated 

mouse are protected from atherosclerosis but only in absence of CETP, support ADCY9 as a 

target gene. The exact mechanisms linking putative causal SNPs with ADCY9 activity and 

cardiovascular responses to dalcetrapib are still unknown but we speculate that different levels of 

ADCY9 gene expression dependent on genotype of patients in rs1967309 could result in 

modulated inflammatory pathways in monocytes and lead to changed cardiovascular responses of 

patients treated with dalcetrapib.  

Despite this promissing evidence, reporter assay should be repeated in order to overcome its 

limitations. One of the limitations we faced is the presence of multiple variants present in some 

cassettes, including the one with SNP rs1967309. Hence, we cannot exclude the possibility that 
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different haplotypes of the same DNA region could yield different results. However, for cassette 

containing SNP rs1967309, two other variants in this DNA fragment (rs74702385 and 

rs3789035) did not demonstrate allele-specific protein binding. Also, site-directed mutagenesis of 

rs74702385 and rs3789035 did not result in significant alteration of transcriptional activity 

(Sanchez et al, data not shown). What suggest that observed effect of the cassette is drived mostly 

by SNP rs1967309.  

Before we tested the transcriptional activity of the longer DNA fragment, that now suggest a 

major role of SNP rs1967309, variant rs12920508 seemed more interesting due to the higher 

transcriptional activity of the cassette bearing it. Therefore, we were interested to identify 

proteins binding in allele-specific manner to region of SNP rs12920508. We identified 11 

proteins binding significantly more to allele C (deleterious) than allele G (protective) by DNA-

affinity chromatography followed by mass spectrometry. Among the four most enriched proteins, 

we confirmed in vivo binding of TAR DNA-binding protein 43 (TARDBP). We also observed 

high binding of RNA polymerase II to the region of SNP rs12920508, what supports evidence 

that this region has indeed transcriptional activity or that it may be a region of RNA polymerase 

II pausing [24]. TARDBP is a DNA and RNA binding protein involved in multiple processes, 

such as transcription, mRNA splicing and translation. TARDBP was reported to behave as a 

transcriptional repressor [25], what correlates with our observation that the protein had higher 

binding affinity to the allele C of variant rs12920508, which showed lower transcriptional 

activity. Therefore, allele-dependent binding of TARDBP could repress the transcription of target 

gene, possibly ADCY9. 

Since DNA-protein binding is very sensitive to changes in binding conditions, we used another 

assay, called multiplexed competitor EMSA. This method pointed to interferon-stimulated 

response element (ISRE) as an element competing DNA-protein binding to SNP rs12910508. 

Taking into account wide involvement of interferon proteins in signaling pathways that trigger 

immune responses of immune cells, such as monocytes and macrophages [26], we found this lead 

very interesting and worth following. Unfortunatelly the identified competing consensus binding 

sequence (ISRE) is an element with ability to bind multiple proteins involved in modulation of 

IFN-regulated genes. Hence, further tests are required to identify binding protein. 
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In conclusion, presented evidence reinforces our hypothesis that tested SNPs lie in regulatory 

elements and function through modulation of gene expression. Additional work is still required to 

understand the link between causal SNP function, inflammation and cardiovascular response 

induced by dalcetrapib. Presented results allow prioritization of potential causal SNP(s) involved 

in response of patients to dalcetrapib and bring new evidence to help understanding the 

mechanisms involved. Identification of causal SNP(s) associated with response of patients to 

dalcetrapib treatment may allow proper selection of patients, using this SNP(s) as biological 

marker. Such accurate selection of patients would ensure safety and best response to the 

treatment and avoid unnecessary use of medicine in patients with unsuitable genetic profile. Also, 

understanding the mechanism of dalcetrapib action could allow further development of new 

drugs and personalized therapeutic approaches targeting atherosclerosis.  
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Article Table I 

Table II : Polymorphisms selected for functional analysis. P values obtained from Genome Wide 

Association in dal-OUTCOMES. 𝑅2 values represent linkage disequilibrium in dal-OUTCOMES 

study. MAF represents minor allele frequency from population of dal-plaque 2 study. Adapted 

from (Tardif et al., 2015) [4]. 

SNP 𝑷𝒗𝒂𝒍𝒖𝒆 Linkage 

disequilibrium 

with rs1967309 

(𝑹𝟐) 

Deleterious 

allele 

(major) 

Protective 

allele  

(minor) 

MAF 

(minor 

allele 

frequency) 

rs1967309 P=2.4 × 10−8 1 G A 0.411 

rs2531971 P=7.74 × 10−8 0.84 T G 0.434 

rs2238448 P= 8.88 × 10−8 0.81 C T 0.459 

rs11647778 P= 1.72 × 10−7 0.77 G C 0.459 

rs1259911 P= 1.72 × 10−7 0.86 T T 0.444 

rs12595857 P= 2.02 × 10−7 0.86 A G 0.447 

rs12920508 P= 3.18 × 10−7 0.98 C G 0.420 

rs11647828 P= 1.32 × 10−6 0.69 T C 0.438 

rs12935810 P= 1.03 × 10−5 0.48 A G 0.430 

rs74702385 P= 7.31 × 10−5 0.2 A A 0.125 

rs3789035 P= 9.85 ×

10−7 * 

0.485 T C 0.276*** 

rs2238449 P= 5.70 × 10−9 

** 

0.482 G C 0.416*** 

* in high-density imputation 

** eQTL in peripheral blood CD14
+
CD16

- 
monocytes 

*** MAF retrieved from NCBI public database, 1000 Genomes phase 3, European population 
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Article Table II 

Table III : Sequences of 5’-biotinylated oligonucleotides used in EMSA. Complementary 5’-

biotinylated oligonucleotides were also synthesized and annealed to prepare double-stranded 

DNA probes. 

 SNP Deleterious allele Protective 

allele 

1 rs1967309 ATTTCTTTCAACCCTCAGCCCAGATCCTAAC [T] 

2 rs2531971 ACCCCCATAGGCTGGTGGTGAGCAGGGGGCA [G] 

3 rs2238448 TTCTTTCTTTCTTTTCTGAGATGGGGGTCTC [T] 

4 rs11647778 GGTGCTTTCTCAGAGCAGACTGAGGTTTGGG [G] 

5 rs1259911 CACATGGACCCTGGGTTCCAAGTTCATTAGA [G] 

6 rs12595857 AACCTCAACAACAGCAATGTCTTTTATCAGC [G] 

7 rs12920508 GAAAATGTAAAATTACGTTGTGGTGATGGTT [G] 

8 rs11647828 AAGGTGGCATCTGCCTGGTTTGTCCACTGTG [C] 

9 rs12935810 CGACTGTATGATCTCATCCTTTGCAGCCACA [G] 

10 rs74702385 CCCACCAGGTGCTATCGCTGTCATTCATTTG [T] 

11 rs3789035 CCTGCCTCAGCCTCCTGAGCAGCTGGGACTA [C] 

12 rs2238449 GACGCAGGAGTGAAGGCATCTTTATACTAAT [C] 
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Article Table III 

Table IV : List of primers used for PCR amplification of cassettes.  

Cassette Primers 

Cass 1 forward 5’-GGGCTTTGTCAGTCACTCTT-3’ 

reverse 5’-GCTCCTGATTTGTTTCTGACTTG-3’ 

Cass 3 forward 5’-TGATCTCGGCTATCTGCAAC-3’ 

reverse 5’-AGTACAGTGGCTCCCTCA-3’ 

Cass 4 forward 5’-ACCTCTGCGGCATTCTTT-3’ 

reverse 5’-CTAACTCTATGTCCCTGGCATT-3’ 

Cass 6 forward 5’-TGAAGGCGGGTATAAGCC-3’ 

reverse 5’-GGTCATAGCTGAGAATCA-3’ 

Cass 9 forward 5’-CAAGCAGTCCTCCTGCCTC-3’ 

reverse 5’-TAACAGCTCATCCGTAGGTTTCT-3’ 

Cass 10 forward 5’-GATGCCTCTGTGAAATGTTTC-3’ 

reverse 5’-ATGACTATTCCTGCTCACCATG-3’ 
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Article table IV 

Table V : Location and size of cassettes used for luciferase reporter assay.   

Cassette Size Location (hg19) SNPs present 

1 760 bp chr16: 4062068-4062827 rs12595857, rs12599911 

3 932 bp chr16: 4064993-4065924 rs1967309, rs74702385, 

rs3789035 

4 1006 bp chr16: 4050416-4051421 rs2531971, rs183973203, 

rs3222326, rs11647778, 

rs2238446 

6 668 bp ch16: 4059187-4059854 rs22238448, rs2238449, 

rs73490533, rs113201607 

9 562 bp ch16: 4066523-4067084 rs12920508 

10 1104 bp ch16: 3999038-4000141 rs12935810, rs12917711, 

rs10852639 
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Article table V 

Table VI : Transcription factors covered in seven competitor probe cocktails used in multiplexed 

competitor EMSA [19].   

1 2 3 4 5 6 7 

AP1 E2F1 HIF1a NFATc RAR Stat4 VDR 

AP2 Egr ISRE NFkB RXR Stat5 YY1 

AR ER HNF-4 NR5A2 SIE Stat56 ZEB 

Brn3 Ets IRF1 Oct-01 Smad Tbet HNF-1 

CBP Ets1 MEF1 p53 Smad34 TFE3 ARP1 

CDP FAST1 MEF2 PAX5 Smuc TFEB NFY 

CEBP GAS MIBP1 Pbx1 Sp1 TFIID HNF-3 

cMyb GATA MycMax Pit1 SRE TGIF BARP 

CREB G61 NF1 PPAR Stat1 TR SREBP1 

CTCF GR NFE2 PR Stat3 USF1 HSF1 
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Article Table VI 

Table VII : Antibodies used in chromatin immunoprecipitation assays. 

Name  Reference no Company Type of antibody 

RNA polymerase II 39097 Active Motif mouse monoclonal IgG1 

IgG ab18413 Abcam mouse control IgG2a 

hnRNP M1-M4 NB200-314SS Novus Biologicals mouse monoclonal IgG1 

TDP-43 12892-1-AP Proteintech rabbit polyclonal 

FUBP1 GTX104579 GeneTex rabbit polyclonal 

FUBP3 10623-1-AP Proteintech rabbit polyclonal 
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Article Table VII 

Table VIII : Primers used for amplification of DNA regions containing SNP rs12920508, 

enriched by chromatin immunoprecipitation.  

rs12920508 forward 5’-CTAACGGATGCAGGGTTACTT-3’ 

rs12920508 reverse 5’-TCACCCTCTCAAGTGTATGATTT-3’ 
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Article table VIII 

Table IX : Summary of EMSA results for 12 tested SNPs. 

SNP 1 2 3 4 5 6 7 8 9 10 11 12 

Protein binding +++ ++ ++ + + + +++ + ++ + + +++ 

Ratio between alleles + + + + - + + - + - + + 

Competition assay + + + + + + + - + + - + 

EMSA assay was repeated 3 times for each SNP. For all 12 SNPs, band shift was observed, 

suggesting possible protein binding to all of these regions. SNPs are presented as a number from 

1 to 12 labelled accordingly: 1-rs1967309, 2-rs2531971, 3-rs2238448, 4-rs11647778, 5-

rs1259911, 6-rs12595857, 7-rs12920508, 8-rs11647828, 9-rs12935810, 10-rs74702385, 11-

rs3789035, 12-rs2238449. For protein binding, one plus “+” indicates very weak binding, three 

pluses “+++” strong binding. Nine variants showed allele-specific protein binding (indicated by a 

“+”), which was assessed by the ratio between alleles ≥ 2. The specificity of the binding was 

determined by competition assays. For binding to be specific as indicated by “+” sign, ratio 

between band quantification of protein and probe complex, before and after addition of specific 

competitor ≥ 2 for stronger binding allele.  
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Article Table IX 

Table X : Eleven proteins identified by mass spectrometry binding significantly more to the C 

allele of SNP rs12920508. 

Protein ID C allele G allele Fold 
change by 

sample  
allele C/G 

Allele C vs 
Allele G 
(pValue) 

Allele C vs 
Control 1 
(pValue) 

Allele C vs 
Control 2 
(pValue) 

HNRNPM 98 11 8.9 <0.00010 <0.00010 <0.00010 

TARDBP 58 4 15 <0.00010 <0.00010 - 

FUBP3 35 - 35 <0.0001 <0.0001 - 

FUBP1 30 9 3.3 <0.00017 <0.015 <0.00025 

KCNAB2 25 2 13 <0.0001 <0.0006 - 

PDCD11 24 6 4 <0.00028 <0.0001 - 

MTREX 23 - 23 <0.0001 <0.0012 - 

EXOSC10 14 3 4.7 <0.0036 <0.034 - 

RPA1 13 4 3.2 <0.015 <0.0026 - 

ZCCHC8 11 - - <0.009 <0.0065 - 

DAZAP1 8 - 8 <0.0027 <0.026 - 

 

First column represents identified protein ID, second and third columns number of protein 

peptides detected by mass spectrometry. Fourth column represents fold change by sample allele 

C/G. P values calculated by Fisher’s exact test representing enrichment of sample with probe C 

over probe G, Control 1 and Control 2. Control 1 represents reaction with scrambled probe, 

whereas control 2 represents reaction without probe.  
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Article Figure 1  

 

 

Figure 8 : SNPs selected for functional analysis with supplementary ENCODE and FANTOM5 

data.  

Linkage disequilibrium (LD) block is presented in cyan. Transcription start sites (TSS) 

overlapping SNPs rs1967309 and rs12920508 are indicated by increased counts of CAGE reads 

in FANTOM5 database.  
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Article figure 2 

 

rs1967309 G allele probe BIOT*5’-GTTAGGATCTGGGCTGAGGGTTGAAAGAAAT-3’ 

        3’-CAATCCTAGACCCGACTCCCAACTTTCTTTA-5’*BIOT 

rs1967309 A allele probe BIOT*5’-GTTAGGATCTGGGCTAAGGGTTGAAAGAAAT-3’ 

        3’-CAATCCTAGACCCGATTCCCAACTTTCTTTA-5’*BIOT 

 

 

Figure 9 : SNP rs1967309 shows allele-specific protein binding. 

Typical analysis of nuclear protein binding to region of SNP, based on variant rs1967309. (A) 

Sequences of the rs1967309 double-stranded, biotinylated probes with alleles of SNP marked in 

color. (B) EMSA for oligonucleotides containing SNP rs1967309 with the G (deleterious allele) 

and A (protective allele) assayed using THP-1 nuclear extracts. (C) Analysis of allele-dependent 

protein binding. Bands were quantified and ratio between alleles of SNP was calculated. Error 

bars denote standard deviation from at least 3 independent experiments. (D) Analysis of binding 

specificity. Ratio between band quantification of protein and probe complex, before and after 

addition of specific competitor. Error bars denote standard deviation from at least 3 independent 

experiments. P/SC – probe/ specific competitor. 
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Article Figure 3 
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Figure 10 : Exposure of cells to dalcetrapib did not influence protein binding. 

Summary of EMSA results for seven selected SNPs, assayed using nuclear proteins from THP-1 

monocytes exposed or not to dalcetrapib. Ratio of binding intensity between alleles of SNPs 

before and after 24 h exposure to dalcetrapib (presented as Untreated and Dalcetrapib, 

respectively). For SNPs rs2238449 and rs12920508, multiple bands representing protein-probe 

complexes were observed, which are described on the figure as “upper”, “middle” and “lower”. 

Error bars denote standard deviation from at least 3 independent experiments.  
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Article Figure 4 

 

 

Figure 11 :  Luciferase reporter assays for SNPs rs1967309 and rs12920508 after transfection of 

THP-1 cell lines. 

Average relative luciferase activity for cassettes containing selected genetic variants bearing 

deleterious (Del) and protective (Prot) alleles. First bar represents control vector, pGL4Basic 

control vector without promoter for assessment of promoter activity or pGL3SV40 control vector 

for assessment of enhancer activity containing SV40 promoter. Error bars denote standard 
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deviation from 4 independent experiments for plasmids inserted into enhancer position and from 

10 independent experiments for plasmids inserted into promoter position. P values were 

calculated by multilevel model (*≤ 0.05; **≤ 0.01; ***≤ 0.001). 
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Article Figure 5 
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Figure 12 : TARDBP binds to the region of SNP rs12920508 in vivo. 

Summary of the results from chromatin immunoprecipitation. (A) qPCR analysis results 

representing average fold enrichment over IgG for region of SNP rs12920508. Error bars denote 

standard deviation from replicas of independent experiments (n=3 for IgG, RNA pol II, 

TARDBP; n=2 for FUBP1 and n=1 for hnRNPM, FUBP3). (B) Statistical analysis of enrichment 

with TARDBP antibody. Data of fold enrichment over IgG (FE) were converted into 𝑙𝑜𝑔2(𝐹𝐸) 

and analyzed by one sample t-test. Obtained P value=0.0553.  

A 

B 
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Article Figure 6 

 

         

       

Figure 13 :  Multiplexed competitor EMSA with cocktails against the probe bearing C allele of 

variant rs12920508 assayed using nuclear extract derived from THP-1 monocytes.    

 (A) MC-EMSA with 7 cocktails of unlabeled DNA competitors. First lane represents free probe, 

second lane (nuclear extracts) the band shift representing DNA-protein complex created after 

addition of nuclear extract, third lane (specific competitor) reaction with addition of specific 

competitor, and subsequently reactions with addition of seven competitor cocktails. * shows 

competed specific band. (B) EMSA with individual competitors from cocktail 3.  
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Article Figure 7 

 

Figure 14 : Luciferase reporter assay for DNA region containing SNPs rs1967309 and 

rs12920508 after transfection of THP-1 cell lines. 

Average relative luciferase activity for cassette containing polymorphisms rs1967309 and 

rs12920508, showing deleterious (Del) and protective (Prot) alleles. First bar represents control 

vector pGL4Basic, lacking promoter. Error bars denote standard deviation from 10 independent 

experiments. P values were calculated by multilevel model (*≤ 0.05; **≤ 0.01; ***≤ 0.001). 
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4 SUPPLEMENTARY METHODS 

Digital droplet PCR (ddPCR) analysis of DNA regions enriched in ChIP 

We used digital droplet PCR (ddPCR) aiming to assess allele-specific binding of TARDBP in 

vivo. In the ddPCR method using Bio-Rad (QX200 system), PCR solution is separated into 20000 

partitions by a water oil emulsion technique, which allows an absolute counts of target DNA 

copies. Moreover, we combined this method with a TaqMan assay using activatable probes 

enabling the differentiation between alleles of SNP. The distinction between alleles of SNP is 

possible thanks to specific quantification by use of probes with fluorophore attached at the 5’-end 

and quencher at the 3’-end. We used two probes, one recognizing G allele of SNP rs12920508 

with HEX fluorophore, and second one recognizing C allele with FAM fluorophore. Probes were 

designed and synthesized by Integrated DNA Technologies.  In each probe, four different nucleic 

acids were “locked” by inserting a new covalent bound in the ribose of those nucleic acids to 

increase the affinity of the probes. This creates a significant difference in melting temperature 

(Tm) between the probes binding their correct target and one with a single mismatch. 

Consequently, using the proper annealing temperature (60℃), only a probe specific to a SNP can 

bind to the region with that allele of the SNP. The specific probe bound to nucleic acid sequence 

does not emit fluorescence signals as long that the quencher molecule is proximal to the 

fluorophore and inhibits its fluorescence. When the Taq polymerase reaches the probe during the 

extension, the polymerase cleaves the hybridized probe and causes the separation of the quencher 

and of the fluorophore, increasing the distance between both molecules. Lack of quenching effect 

results in fluorophore emitting fluorescence, which can be detected by the PCR thermal cycler. 

Detected fluorescence is directly proportional to the released fluorophore and also DNA template 

amount present in assessed reaction. Depending on allele of SNP in the sequence, different probe 

will bind, and different fluorophore will be released, allowing separate quantification of DNA 

regions with either G or C allele.   

Impact of interferons treatment on transcriptional activity of region containing SNP 

rs12920508 

To assess the influence of exposure of cells to interferons on promoter activity, IFNγ, IFNα-2a 

and IFNβ were added separately to the cells in dual luciferase reporter assay. Luciferase reporter 

assays were performed according to earlier described protocol and IFNs in concentration 

20 ng/ml were added 24, 6 and 2 hours before luciferase activity read-out.  
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5 COMPLEMENTARY RESULTS 

This chapter represents preliminary data which follow results presented in the article. Here we 

present data on allele-dependent protein binding of TARDBP analyzed by droplet digital PCR 

and follow up on interferon-stimulated response element identified by multiplexed competitor 

EMSA.  

Probable allele-dependent binding of TAR-DNA binding protein 43 to region of SNP 

rs12920508 

To detect allele-specific binding of proteins identified by mass spectrometry to the region of SNP 

rs12920508 in the natural chromatin context, DNA fragments enriched by chromatin 

immunoprecipitation were analyzed by digital droplet PCR. This assay could allow to distinguish 

between alleles of variant and presents results in the form of absolute copies detected per µl 

(Figure 15).  

TARDBP was enriched the most among all tested proteins, with slightly higher absolute copies 

number for C allele (30.9 average absolute copies/µl for C allele and 23.6 for G allele). However, 

high variability was observed in between 3 independent repeats of the experiment. RNA 

polymerase II displayed relatively low copy number with no significant difference in between 

alleles of genetic variant (6.2 average absolute copies/µl for C allele and 7 for G allele). 

IFN-gamma-activated site (GAS) also competes protein binding to SNP rs12920508 

Sequence of interferon-stimulated response element (ISRE), which competed protein binding to 

SNP rs12920508 turned out to be the same as sequence of IFN-gamma-activated site (GAS) from 

cocktail 2. Since cocktail 2 did not result in visible competition of protein binding, we decided to 

confirm if this sequence decrease specific band shift observed in EMSA for the probe bearing C 

allele of rs12920508 and nuclear extract derived from THP-1 monocytes. When ran separately, 

GAS competitor probe competed protein binding, with ratio of band intensity before and after 

addition of competitor probe equals 3.90 (Figure 16).  

IFNα-2a tend to decrease promoter activity of protective allele of SNP rs12920508 

Since interferon-stimulated response element competed DNA-specific binding to variant 

rs12920508, we decided to check if treatment of cells with IFNs could modulate promoter 
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activity of mentioned SNP. We repeated luciferase reporter assay for constructs containing 

variant rs12920508 with treatment of cells with IFNγ, IFNα-2a and IFNβ for 2, 6 and 24 hours. 

Next, luciferase and renilla activities were measured and normalized luciferase activity was 

calculated.  

Treatment of cells with IFNα-2a for 24 hours resulted in decrease in promoter activity of 

protective allele (Figure 17). Treatments with IFNγ and IFNα-2a for 6 and 2 hours, as well as 

treatment with IFNβ did not influence promoter activity of DNA region containing SNP 

rs12920508.  
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Additional results 
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Figure 15 : Chromatin immunoprecipitation results analyzed by droplet digital PCR. 

Results represent absolute copies detected per µl for variant rs12920508, separately for 

deleterious allele C shown in red and protective allele G in blue. Error bars denote standard 

deviation from replicates of independent experiment (n=3 for IgG, RNA pol II, TARDBP; n=2 

for FUBP1 and n=1 for hnRNPM, FUBP3).   
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Figure 16 : EMSA with ISRE and GAS competitor probes. 

Competitor EMSA with individual competitors for interferon stimulated response element (ISRE) 

and IFN-gamma-activated site (GAS) against the probe bearing C allele of variant rs12920508 

assayed using nuclear extract derived from THP-1 monocytes. 
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Figure 17 : Dual luciferase reporter assay with IFN-γ, INFα-2a and INF-β treatment in THP-1 

monocytic cell line. 

Average luciferase/renilla ratio for alleles of SNP rs12920508 with IFNγ, INFα-2a and INF-β 

treatments for 24, 6 and 2 hours. Grey bar represents pGL4Basic control plasmid, red bar cassette 

with deleterious alleles of rs12920508 and blue bar cassette with protective allele of rs12920508. 

Error bars denote standard deviation from at least 3 independent experiments.  
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6 DISCUSSION 

In the last few years genome-wide association studies identified numerous DNA loci that 

influence the risk for complex diseases and response of patients to various treatments. Yet most 

of these associations remain poorly understood. The main goal of GWAS functional follow up 

studies is to identify causal genetic variant within associated loci and its function [109]. 

Identification of causal SNP is challenging because very often a lead variant detected by GWAS 

is in linkage disequilibrium with many variants on the same haplotype. Hence, observed effect 

may be mediated by any of the SNPs in LD block [151]. GWAS of the dal-OUTCOMES study 

identified a region within the ADCY9 gene that is associated with cardiovascular responses of 

patients induced by dalcetrapib [77]. Molecular pathways underlying this association remain 

unknown. Identification of variant causing the association and its function could contribute 

significantly to provide explanation of the mechanisms involved. The majority of intronic SNPs 

were found to function through modulation of genetic expression of one or more target genes 

[112]. In this study, we investigated putative causal SNP candidates and their possible effect on 

ADCY9 gene expression in THP-1 monocytic cell line. Functional analysis included identification 

of allele-specific protein binding by electrophoretic mobility shift assay, assessment of 

transcriptional activity of region of selected variants and possible allelic modulation by reporter 

assays and identifiaction of proteins binding to prioritized polymorphism using two different 

approches.  

Intronic SNPs often regulate expression of target genes through allele-specific protein binding. 

Genetic variant can disrupt or create new DNA binding motif of regulatory proteins, such as 

transcription factors and alter gene expression [151]. Bioinformatic analysis of selected 

polymorphisms by RegulomeDB and MatInspector revealed possibility of protein binding to their 

position. Therefore we assessed the ability of selected SNPs to bind TFs in allele-specific manner 

by EMSA. We demonstrated that 7 out of 12 selected SNPs showed allele-specific binding with 

nuclear proteins derived from THP-1 monocytic cells. The strongest binding was observed to 

variants rs1967309, rs12920508 and rs2238449, implicating that these SNPs may change binding 

affinity of regulatory proteins and in turn regulate the expression of target gene. Exposure of cells 

to dalcetrapib did not affect protein binding to regions of selected SNPs assesed by EMSA. Lack 

of observed effect may be explained by the fact that this technique evaluates only if treatment 

with dalcetrapib changes the amount of proteins in the nucleus, when it may be other mechanism 
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involved. Moreover dalcetrapib increases the amount of circulating HDL-C what may lead to 

different levels of cholesterol in the plasma membrane and influence other mechanisms not 

directly affecting protein binding to DNA region [99]. Additionally EMSA is an in vitro assay, so 

it does not reflect the same conditions as living system. In vitro assay does not take into account 

the structure and organization of chromatin, which is important since open and close state of 

chromatin greatly affects the ability of proteins to bind to DNA [125]. Also in vitro assay does 

not reflect DNA looping which may be crucial for binding of protein complexes. Nevertheless we 

demonstrated that seven SNPs from the LD block have ability to bind nuclear proteins in allele-

specific manner, what may lead to further influence of target gene expression. Since DNA-

protein binding is very sensitive for changes in binding conditions, we do not exclude possibility 

that other SNPs could also show allele-dependent protein binding with different conditions of the 

assay. Therefore, we do not consider the exclusion of remaining SNPs for any further study but 

rather a reason to focus on three SNPs showing the strongest allele-dependent protein binding. 

Predictions of eQTLs, genomic locus influencing level of mRNA expression, are often indicators 

of SNP functionality. Few among selected SNPs are known to be eQTLs for ADCY9 gene in 

monocytes and blood [143, 144]. To follow up on this evidence, we investigated the enhancer 

and promoter activities of regions containing SNPs showing allele-specific protein binding by 

reporter assays. SNPs rs1967309 and rs12920508 demonstrated increased promoter activity. 

Interestingly DNA region containing both mentioned SNPs together also showed increased 

promoter activity with significantly higher activity for deleterious haplotype. These results 

resemble more the pattern of the results obtained with SNP rs1967309, what suggests that SNP 

rs1967309 is responsible for the majority of observed effect. However, difference in activity 

between alleles and activity in general was much higher for longer DNA region than that of the 

smaller DNA region with SNP rs1967309 alone, what let us believe in possible interactions 

between both SNPs. With increasing number of GWAS follow up studies, it is starting to be more 

common that observed phenotype is caused by more than one genetic variant. Multiple functional 

SNPs can act cooperatively to regulate the same target gene or they may modulate the expression 

of different genes [152]. Since seven of SNPs in ADCY9 LD block showed allele-specific protein 

binding and transcriptional activity of SNPs rs1967309 seems to be modulated by variant 

rs12920508, we should not exclude posibility that function of multiple SNPs in our loci of 

interest leads to observed phenotype.  
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The exact mechanism by which DNA regions containing SNPs rs1967309 and rs12920508 could 

induce ADCY9 promoter activity is challenging, since these SNPs are located in the intronic 

region of ADCY9 gene, and not in its known promoter region. However, some evidence from 

FANTOM5 database identifies some transcription start sites located at DNA regions overlapping 

SNPs rs1967309 and rs12920508 which supports our data that these regions behave like 

promoters. Intron DNA sequences were already shown to have the potential to affect 

transcription initiation and to have important role in determining the site of transcript initiation 

[153]. An interesting example of promoter region located in intronic region is illustrated by a 

study which investigated a risk loci associated with piglet splay leg (PSL) syndrome [154]. This 

study identified a promoter region in intron 4 of homer scaffolding protein 1 (HOMER1) gene. 

By dual luciferase reporter assays, researchers detected allele-dependent promoter activity driven 

by SNP rs235197091. Therefore, they proposed that G allele of rs235197091 may create binding 

site for aryl hydrocarbon receptor nuclear translocator (ARNT) protein, which could regulate the 

intronic promoter activity and in turn affect the expression of HOMER1 gene. Another study 

qualified fragment of the first intron of the c-fos gene as genuine promoter, because this fragment 

induced luciferase expression in the absence of any promoter [155]. Authors confirmed promoter 

activity of intron 1 in vivo in embryonic and adult tissues, proposing novel, tissue-specific 

promoter function for gene c-fos. They suggested that an enhancer-like effect may result from the 

sum of canonical and intronic promoter activities. Another group of researchers showed that 

higher-order chromosomal organization regulates transcription and that promoter-promoter 

interactions may play important role in transcription regulation of housekeeping and tissue-

specific genes [156]. Taken together, we suspect that intronic promoter containing SNPs 

rs1967309 and rs12920508 may interact with the canonical promoter of ADCY9 and contribute to 

modulation of ADCY9 transcription. Direct interaction of these two loci should be confirmed by 

chromosome conformation capture (3C) analysis. Another explanation could be that this region 

lie in an alternative promoter for initiation of transcription of an alternative RNA, possibly a long 

non-coding RNA, which could further influence the expression of ADCY9 and/or other 

uncharacterized target gene(s).  

Since common assumption consider that most associated variants lie in regulatory element that 

affects the activity of neighboring gene [151], we believe that DNA region containing rs1967309 

and rs12920508 regulates the transcriptional activity of ADCY9 gene. Our speculations are 
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further supported by the evidence that silencing of ADCY9 in mices in the absence of CETP has 

atheroprotective effect [107]. In reporter assays, deleterious haplotype of DNA region containing 

two putative functional SNPs (rs1967309 and rs12920508) showed increased transcriptional 

activity. Further mechanisms underlying the association of ADCY9 activity with cardiovascular 

responses to dalcetrapib are hard to predict with our present knowledge, but ADCY9 was reported 

to mediate different functions of immune cells and to regulate various inflammatory responses 

[102-106]. Therefore, we believe it is possible that different levels of ADCY9 gene expression 

dependent on genotype of patients in rs1967309 could modulate inflammatory pathways in 

monocytes and lead to changed cardiovascular responses of patients treated with dalcetrapib. One 

possible hypothesis that links ADCY9 activity with responses to dalcetrapib assumes that ADCY9 

dependent cAMP production could modulate activity of protein kinase A that is responsible for 

phosporylation of ATP-binding cassette A (ABCA1), widely involved in cholesterol efflux [101, 

157]. However, many other mechanisms could be responsible for this association. Finding causal 

SNP and its functional pathway will greatly help understanding of involved mechanisms. 

Also we need to keep in mind that regulatory elements such as enhancers and silencers can 

regulate expression of genes over a considerable distance. Thus we cannot exclude possibility 

that our loci of interest regulates further located gene than ADCY9, or may modulate multiple 

target genes. Once causal variant is found, affected gene can be identified experimentally. The 

most common assays used for this purpose are: changing sequence of SNP using CRISPR, 

overexpressing or silencing TFs binding to causal SNP or by testing long-range chromatin 

interactions [151].  

Despite solid evidence pinpointing variant rs1967309 to influence gene expression of target gene, 

we need to keep in mind limitations of our assay. Some cassettes, including the one with SNP 

rs1967309, contained more that one genetic variant. Since our transfection repeats did not reflect 

independent DNA preparations of each construct, from different donors, we cannot exclude that 

possible changes could appear if we used different haplotypes of the same DNA fragment. Also 

unknown subtle variables could affect the regulatory activity of DNA fragments. What reasures 

us in the functional role of SNP rs1967309 is the fact that cassette containing this SNP DNA 

includes two more polymorphisms (rs74702385 and rs3789035), which did not show allele-

specific protein binding in EMSA assays. Therefore, we think that SNP rs1967309, which 
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demonstrated very strong allele-dependent binding to its region is more likely to cause the effect. 

Additionally, the construction of longer cassette containing both SNPs, was different. To create 

protective haplotype in DNA fragment with deleterious haplotype, the alleles of SNPs rs2967309 

and 12920508 were changed by site-directed mutagenesis. Thus, in this case the effect could be 

associated only with these two changed alleles.  

Before we obtained the results suggesting that longer DNA region containing both SNPs 

rs1967309 and rs12920508 reflects more the effect pattern of SNP rs1967309, we were more 

focused on SNP rs12920508. Hence the rest of our experiments and discussed results concerns 

this variant. In light of these more recent results it would be interesting to perform similar 

analysis to characterize protein binding to SNP rs1967309. 

To understand the mechanism how rs12920508 could influence the transcripion of target gene, 

we decided to identify proteins binding to its region using our 31-bp DNA probe used previously 

in EMSA experiments. Mass spectrometry identified 11 proteins that were binding significantly 

stronger to deleterious allele (allele C). From the four most enriched proteins in the assay, we 

identified TAR DNA-binding protein 43 (TARDBP) to bind in vivo to region of SNP 

rs12920508. Interestingly, antibodies recognizing RNA polymerase II also resulted in high 

enrichment of regions containing SNP rs12920508, what seems to support evidence that region 

with this genetic variant has increased promoter activity. TARDBP demonstrates the ability to 

bind both DNA and RNA and to affect multiple processes, such as transcription, mRNA splicing 

and translation. Originally, TARDBP was found to repress the transcription of HIV-1 by binding 

to chromosomally integrated trans-activation response element (TAR) DNA [158]. Further, 

TARDBP was reported to be a splicing factor binding to intron/exon junction of cystic fibrosis 

transmembrane conductance regulator (CFTR) and apolipoprotein A-II (apoAII) genes, and to 

regulate alternative splicing of these genes [159, 160]. TARDBP was also shown to be a neuronal 

activity response factor in the dendrites of hippocampal neurons. What suggests its probable 

function in regulation of mRNA transport, stability and local translation in neuronal cells [161]. 

The function of TARDBP as a repressor of transcriptional activity correlates with observation 

that the protein had higher binding affinity to the allele C of variant rs12920508, which in 

reporter assays showed lower transcriptional activity. Thus, allele-specific binding of TARDBP 

could repress the transcription of target gene, possibly ADCY9. The results from reporter assay 



98 
 

for longer DNA fragment, encompassing both SNPs rs1967309 and rs12920508, showed lower 

transcriptional activity for protective haplotype. However, the protective allele of SNP rs1967309 

which showed higher affinity to proteins at EMSA assays, also demostrated lower transcriptional 

activity in reporter assays. What could indicate that TARDBP may bind also to region of SNP 

rs1967309 or there may be a repressor protein complex binding to both SNPs. Detection of high 

levels of RNA polymerase II in this region may also suggest that allele-specific binding of 

proteins could induce RNA polymerase II pausing or release and in turn affect the level of 

transcriptional activity. For example, in Drosophila cells protein Argonaute 2 (Ago2) was found 

to localize to promoters with paused RNA polymerase II and modulate its activity. Studies in 

Drosophila also showed that probability of RNA polymerase II pausing depends on the 

nucleotide sequence of initialy transcribed region on a given gene [162, 163].  

Unfortunatelly we failed to confirm allele-specific binding of TARDBP in vivo to SNP 

rs12920508. Analysis of DNA fragments enriched from chromatin immunoprecipitation assay by 

droplet digital PCR could have given the possibility to distinguish between alleles of this variant. 

However we faced difficulties in optimizing the assay to obtain enough input material to reach 

the power to compare the affinity of binding between alleles. Still, it is important to validate 

allele-specific binding of TARDBP to rs12920508 in vivo, hence it would be necessary to test 

alternative methods. One method that could answer our question is based on same protocol like 

chromatin immunoprecipitation followed by droplet digital analysis, but the input cells would be 

transfected with reporter vectors containing DNA regions of SNP of interest. This would increase 

the amount of DNA regions enriched in ChIP with antibody recognising TARDBP. Once 

reaching enough signal at ddPCR to compare the affinity of binding between alleles of variant, it 

would be interesting to analyze if RNA polymerase II (run as positive control) demonstrates 

different affinity to alleles of SNPs showing increased promoter activity (rs1967309 and 

rs12920508). However, the drawback of this technique is that assessed protein binding is not to 

the chromatin DNA, thus it does not takes into account epigenetic factors and chromatin 

conformation.  

Succesfull identification of DNA-protein interactions depends on the binding conditions of the 

assay. To increase the power of detection we performed one more assay to identify proteins 

binding to region of SNP rs12920508. MC-EMSA identified interferon stimulated response 
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element (ISRE) as an element competing one of the DNA-protein complexes. Moreover the 

sequence of ISRE turned out to be the same like sequence of IFN-gamma-activated site (GAS), 

which also competed the same binding when run separately. Since interferons are widely 

implicated in signaling pathways which trigger immune responses of immune cells, such as 

monocytes and macrophages [164], we found this result very intriguing. Identification of the 

exact protein binding to this region is not evident, however, since both ISRE and GAS are 

elements with ability to bind multiple regulatory proteins. In response to the external stimuli 

(pathogens), cell release interferons, which transfer signal to modulate immune system. Type I 

interferons (α or β) induce expression of IFN-stimulated genes (ISGs). Their transcription is 

regulated by binding of transcription factors family called IFN regulatory factors (IRFs) to the 

ISRE located in promoter regions of these genes. There are nine cellular IRFs which bind directly 

to ISRE element [165]. Type II interferons (γ) induce transcription of variety of genes implicated 

in inflammatory responses by binding of gamma interferon activation factors (GAFs) to GAS 

elements. GAF complex is a dimer of transcription factor Stat. Family of Stat proteins contains at 

least six Stats able to recognise GAS element [166, 167]. Taking into account that protein binding 

to SNP rs12920508 could be either IRF or one of the Stat protein and that these TFs often bind in 

form of heterodimers, identification of exact protein still requires further work. 

We tried to narrow down the list of possible candidate proteins that could be the protein 

competed by ISRE and GAS unlabeled probe, and to understand more the mechanisms involved. 

We presumed that if protein binding to region of SNP rs12920508 would belong to family of 

IRFs or GAF complex and would be responsible for promoter activity of this region, then 

treatment with IFN type I or type II should have an effect on observed promoter activity. Indeed, 

after 24 hours of treatment with IFNα-2a, we noticed a tendency of the protective allele to show 

decreased promoter activity. Interestingly, difference in activity between alleles of rs12920508 

took the opposite direction. Referring to our assumption that protein binding to variant 

rs12920508 has a repressor activity (stronger binding for deleterious allele with lower promoter 

activity), we suspect that treatment with IFNα-2a promotes binding of protein to protective allele, 

which in turn decrease its transcriptional activity. Since the effect was observed with IFNα-2a 

which is a type I interferon, this indicates that the binding protein belongs to the family of IRFs. 

Some of the proteins from IRFs family were found to exert repressor activities. IRF-2 could be a 

promising candidate since it was reported to negatively regulate many IFN-responsive genes, 
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such as iNOS, MHC class I and 2’-5’-oligoadenylate synthetase [168]. Additionally IRF2 can 

create heterocomplex with IRF8/ICSBP which was also found to possess repressor function  in 

immune cells [169, 170]. Binding of IRF-2 or other protein from IRF family exerting repressor 

activity could be tested by chromatin immunoprecipitation assay. However, we need to keep in 

mind that these are preliminary results that should be repeated more times and verified testing 

additional controls, for example reporter vectors with elements known to be regulated by IFNα. 

Additionally, mass spectrometry analysis of proteins binding to this region did not identify 

proteins from IRFs family.  
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7 CONCLUSION AND PERSPECTIVES 

In this master thesis we present functional analysis of SNPs associated with cardiovascular 

responses induced by dalcetrapib. We present strong evidence about functionality of variant 

rs1967309 in THP-1 monocytic cell line with possibility of its interaction with variant 

rs12920508.   

Throughout our experiments, we showed that seven SNPs located in intronic LD block of ADCY9 

gene have ability to bind nuclear proteins derived from THP-1 monocytes, in allele-specific 

manner. Among these SNPs, two genetic variants rs1967309 and rs12920508 demonstrated 

increased promoter activity. Using DNA-affinity chromatography followed by mass 

spectrometry, we further identified TAR-DNA binding protein as putative protein binding to 

region of rs12920508. Binding of TARDBP in vivo was confirmed by chromatin 

immunoprecipitation. Subsequent results showed that DNA region containing both rs1967309 

and rs12920508 together had higher promoter activity for the deleterious haplotype, what 

corresponds with tendency observed for SNP rs1967309 alone. Therefore, we prioritize SNP 

rs1967309 as putative causal SNP, but we do not exclude the possibility that other SNPs in LD 

block, such as rs12920508, may cooperate with it. In addition, lower promoter activity for the 

protective haplotype supports our beliefs that this region modulates expression of ADCY9 gene, 

since silencing of Adcy9 gene in mouse was shown to exert atheroprotective properties.   

Moving forward, it will be important to identify proteins binding in allele-specific manner to 

region of rs1967309 in order to understand molecular mechanism involved. Also, it would be 

interesting to perform similar analysis in different cell lines, since this study was focused 

exclusively on monocytic cells which may not be the sole target cell involved.  

In conclusion, presented findings support the evidence that SNP(s) located within ADCY9 

intronic LD block exert functional effect, and may regulate expression of target gene, most likely 

ADCY9 itself. Additionally, these results narrow down the list of putative causal SNP(s) 

associated with patient’s response to dalcetrapib treatment. Still, further work is required to 

identify causal SNP(s) and to understand the link between its function, inflammation and 

cardiovascular response induced by dalcetrapib. Understanding the mechanism of dalcetrapib 

action will allow further development of new drugs and personalized therapeutic approaches 

targeting atherosclerosis. 
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