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Abstract

In longitudinal settings, causal inference methods usually rely on a
discretization of the patient timeline that may not reflect the underly-
ing data generation process. This paper investigates the estimation of
causal parameters under discretized data. It presents the implicit as-
sumptions practitioners make but do not acknowledge when discretiz-
ing data to assess longitudinal causal parameters. We illustrate that
differences in point estimates under different discretizations are due
to the data coarsening resulting in both a modified definition of the
parameter of interest and loss of information about time-dependent
confounders. We further investigate several tools to advise analysts
in selecting a timeline discretization for use with pooled Longitudinal
Targeted Maximum Likelihood Estimation for the estimation of the
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parameters of a marginal structural model. We use a simulation study
to empirically evaluate bias at different discretizations and assess the
use of the cross-validated variance as a measure of data support to
select a discretization under a chosen data coarsening mechanism. We
then apply our approach to a study on the relative effect of alterna-
tive asthma treatments during pregnancy on pregnancy duration. The
results of the simulation study illustrate how coarsening changes the
target parameter of interest as well as how it may create bias due to a
lack of appropriate control for time-dependent confounders. We also
observe evidence that the cross-validated variance acts well as a mea-
sure of support in the data, by being minimized at finer discretizations
as the sample size increases.

Keywords: electronic health data; coarsening; TMLE; semi-parametric es-
timation; cross-validation

1 Introduction

In health care research, causal inference has become central to the investi-
gation of questions involving the effect of exposures in observational stud-
ies. [1] Administrative data have rapidly been embraced as a powerful tool for
observational research due to their broad potential including relatively low
cost, large size, longitudinal nature and long follow-up period. [2] In spite
of these benefits, such databases were not intended to be used for research
as the data are mainly collected for administrative purposes, which leads
to inherent problems including poor data quality, absence of information on
confounders, and comparability of data. [3] Furthermore, with any type of
observational data that represent real-world processes, such as administra-
tive data, the times at which exposures may change may not be controlled
by the study design or through a regular schedule of follow-up visits, leading
to an underlying exposure process that changes in continuous time. How-
ever, most existing methods for longitudinal causal inference assume that
exposure changes only at common discrete time-points and therefore rely
on a discretization of the timeline assumed to represent the true underlying
data generating process. [4] Consequently, an analytical issue arises when the
coarsening is left to the possibly arbitrary choice of the researcher. [5]



Through a framework that conceptualizes and defines discretization, we
illustrate that arbitrary discretization can become problematic because the
chosen discretization scale for the analysis can affect the definition of the tar-
get parameter and the assumptions required for estimating causal effects from
longitudinal observational data. Hence, as for conditional parametric mod-
els, [6] the estimated Marginal Structural Model (MSM) parameters [7, §]
may change with different discretizations. In addition, in the presence of
time-dependent confounding, if one chooses a scale that is not fine enough
to capture the intricate relations between exposure, time-dependent con-
founders, and outcome, the estimates may be biased. On the other hand, an
excessively narrow scale could lead to data sparsity at the individual time-
points, potentially resulting in finite-sample bias and inflated variance. [8-10]
This leaves open the question of how to select an appropriate discretization,
ideally at a fine enough scale that would capture all time-dependent con-
founding while balancing for inflated variance. Even though some concerns
and warnings regarding arbitrary discretization have emerged, [11,12] no cri-
teria have yet been proposed to guide an analyst’s choice of discretization.
We investigate different tools which collectively inform whether there is ad-
equate data support for a given discretization for use with pooled Longitu-
dinal Targeted Maximum Likelihood Estimation (LTMLE). [13] Specifically,
we propose that the finest possible discretization be conditionally chosen for
analysis given appropriate data support, primarily informed by tables of lon-
gitudinal frequencies of exposure and censoring, by the convergence of the
pooled LTMLE algorithm, and by the pooled LTMLE variance, evaluated
through cross-validation. [14] We evaluate our approach through a simula-
tion study and provide empirical evidence that the cross-validated variance
supplies information about the data support. Finally, we apply our selection
procedure to a real-world application of the evaluation of asthma treatment
on pregnancy duration. To the best of our knowledge, this analysis is the
first to account for time-dependent confounding in that setting.

It is known that traditional methods fail to produce unbiased estima-
tion of causal effects in the presence of time-dependent confounding. [15]
LTMLE [16,17] is a doubly robust method for estimating longitudinal treat-
ment effects. It has also been shown to be less biased and result in smaller
variance than Inverse of Probability of Treatment Weighting (IPTW), [8,9]
especially in cases where data sparsity occurs, [13, 18] which makes the
method appealing in this context. Pooled LTMLE [13] is a more robust ver-
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sion of LTMLE for the estimation of the coefficients of an MSM that has been
shown to perform better than alternative implementations of LTMLE. [13]

The paper is organized as follows. In section 2, we will present the mo-
tivating example of the effect of asthma medication on time to delivery. In
section 3, we describe the general data structure and introduce the concept
of a discretized dataset. In section 4, we introduce our causal parameter of
interest. In section 5, we explore how discretization may affect the target
parameter and the plausibility of the identifiability assumptions. In section
6, we review the pooled LTMLE algorithm to present our corresponding se-
lection procedure. Section 7 presents the simulation study and Section 8
the real data application and results. Finally, we discuss discretization in
practice, alternative approaches, and future lines of inquiry.

2 Motivating example

The investigation of discretization strategies was motivated by a study on
the evaluation of the safety of asthma controller medications on pregnancy
outcomes. [19] In the initial study, data on pregnant asthmatic women with
deliveries between 1998 and 2008 were extracted from the linkage of the
RAMQ and MED-ECHO administrative databases in the province of Québec,
Canada. Information on pregnancy outcomes, exposure to asthma medica-
tion, and related confounders were assessed from prescription renewals in
community pharmacies, hospitalisations, emergency room visits, and out-
patient medical consultations. For additional information on the data and
these administrative databases, refer to the Table 1 and the supplementary
materials of the original article. [19]

It is known that uncontrolled asthma is associated with adverse effects
for the fetus and that advantages of adequate control outweigh any poten-
tial risks of asthma medication. [20] Therefore asthma should continue to
be controlled with medications during pregnancy. [21] However, it has been
shown that about 50% of women tend to lower their controller medication
during pregnancy, [22] potentially due to fear of adverse medication effects.
This is specifically the case for women with mild asthma, for whom treat-
ment may alternate between low daily doses of Inhaled Corticosteroids (ICS)
or no controller medication. [21,23] The published literature has not iden-



tified adverse effects of low ICS dosage on pregnancy outcomes. However,
although asthma control is a time-dependent confounder of the longitudinal
exposure to controller medication, [21] there are currently no data on the
effectiveness and safety of asthma medications from studies considering the
time-dependent confounded nature of asthma control. The proposed analy-
sis is therefore aimed at fitting an MSM, estimated with pooled LTMLE, to
evaluate the short-term relative effect of low ICS dose versus no ICS dose on
time to delivery in women with mild asthma.

Since it is known that the relationship between asthma control and treat-
ment happens at a finer scale than trimester, [21] interest lies in performing
a time-dependent extraction of the administrative health data. While a finer
scale would supposedly ensure the best possible control for time-dependent
confounding, limitations exist because of the nature of the methods used to
control for said time-dependent confounding. We are then faced with the
dilemma of how to choose an appropriate discretization given the available
data.

3 Data structure and causal parameter of in-
terest

In the above described example, consider a longitudinal data structure where,
for every individual, we observe the following data

O = (L(0), A(0), Y(1), L(1), A(1), ..., Y(K), L(K), A(K), Y(K+1)) .

Let t index the discrete times at which time-dependent variables are ob-
served, t = 0,..., K + 1. Let Y(t) denote a time-dependent outcome, A(t)
a time-dependent exposure, and L(t) a time-dependent vector of covariates,
for arbitrary time-point ¢, measured in that order. In particular, let L(0) be
the baseline covariates measured at the beginning of the study, and Y (K +1)
be the final outcome assessed at the end of the study, and assume that all
individuals are outcome-free at study entry (i.e. Y(0) = 0). We consider
a binary exposure where A(t) = 1 indicates that a person was exposed at
time-point ¢. Let the overbar represent a variable’s history, such that, for
example, A(t) = (A(0), A(1),..., A(t)) denotes an individual’s exposure his-
tory up until time-point ¢. Examples of fixed regimes (i.e. possible values



at which A(t) may be set) include “always exposed”, a(t) = (1,1,...,1),
a regime where the subject is exposed to treatment at every time-point,
and “never exposed”, a(t) = (0,0,...,0), where the subject is unexposed to
treatment at every time-point.

3.1 Discretization

Formally, define the timeline Z = [0,7] on the real line, where 7 corre-
sponds with the maximum follow-up period of a longitudinal study at which
the last outcome is assessed. A partition P of Z is a finite collection of

points tg,t1, ..., tk, tx+1 such that the union formed by the disjoint intervals
Jp = [tk, te1] is Z, where the 5 can be ordered such that 0 =ty <t} < ... <
tg < txy1 = 7. It follows that each different partition P,., r = rg, 71, ..., 7R,

of our timeline corresponds to a different discretized dataset O,., where 7). is
the set of time-points in P, and R is the number of possible different dis-
cretizations.

In particular, let us denote P,, as the finest partition into which our
timeline can be divided in practice, corresponding to the dataset O,, and
time-points 7,,. This finest discretized data structure is equal to the finest
possible scale at which changes can be observed. In health administrative
databases, this finest partition may consist of the set of all days during the
follow-up period. Any other partition P, that does not include all of these
points is said to be coarser than P,,. Examples of coarser partitions could be
a set of time-points where the intervals between time-points are of 1 week.
Inversely, a discretization formed by partition P,, is finer than another dis-
cretization P,, if it includes all points in P,, and at least one other point in
7. It follows that there are no possible refinements of P,,. Note that a parti-
tion need not only include points that form equally spaced intervals. Figure
1 illustrates three nested discretized timelines, representing respectively a
timeline where we consider the finest discretized data, a timeline where we
only consider every other time-point, and a timeline where we consider every
fourth time-point.

Further, let a,(t) define an exposure regime up to time ¢ on the discretized
data O,, with a,.(7) = a, of same length as T,.. Correspondingly, A, can be
defined as the set of all possible regimes of interest on 7,. From here on,
with some abuse of notation, let us renumber the time-points 7). in any given
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Figure 1: Illustration of the finest discretized timeline, and two coarser dis-
cretizations of the finest timeline

partition P, as T,, = {0,1,2,..., K,, K, + 1}.

3.2 Discretization in practice

Any observed dataset, O,, can then be defined from the finest partitioned
dataset, O,,, as a function of its partition: O, := O(P,)(0O,,). Note that
this mapping may not be unique since in practice various procedures may be
employed to discretize the finest data, thus resulting in various potential dis-
cretized datasets for the analysis. For example, to create O,, corresponding
to discretization ry in Figure 1, one might choose a mapping that completely
omits information at removed time-points. Hence, for binary exposures say,
ar,(t2) = (0,1,0) = a,,(t2) = (0,0). Another mapping could aim to sum-
marize the information of the omitted time-points, for example A,,(t3) =
I(A,(t2) =1] A, (t1) =1) such that a,,(t2) = (0,1,0) = a,,(t2) = (0,1).
In doing so, one may be altering the initial definitions of the variables and
may be violating some causal assumptions, which we discuss in Section 5.2.

3.3 Parameter of interest

Following the Neyman-Rubin counterfactual framework, [24,25] and for a
given discretization indexed by r, let Y (¢) be a random variable repre-
senting a subject’s counterfactual outcome at time ¢ had they followed the
exposure history (A(t—1),t € T}) = a,(t—1). The hypothetical intervention
represented by a,.(t — 1) corresponds to exposures that are set at times T, and
sustained throughout the intervals between observed discretized time-points.

In particular, discretized regimes may only contain treatment changes at



time-points in the discretization. Note that variables indexed by negative
values should be taken as the null set. E[Y % (t)] is the mean outcome had
the exposure history been set to a specific fixed regime a,(t — 1) for every
subject in the population of interest. In such longitudinal settings, an MSM
may be used to describe the expectation of the time-dependent counterfac-
tual outcome as a function, m;(a,t, W),j = 1,...,J, of exposure history,
time, and possibly a subset of baseline characteristics, W C L(0) [7,8,13]:

J
f(E[Y“T(t) 4, W]) = n(B.apt, W)=Y Bymy(a,.t, W),t € T,

j=1

As in Petersen et al. (2014), [13] and corresponding to our motivating
example, we may be interested in modelling the counterfactual survival prob-
ability using the variable Y'(¢), a binary indicator of failure by time ¢. In this
case, one could define a working MSM, for example evaluating the effect of
most recent exposure on the counterfactual probability of failure by time ¢:

0B, ar,t) = logitP(Y™ () = 1)] = fo+ Brar(t — 1) + Bt L€ T, . (1)

Accordingly, our target parameter, 9,., the coefficients in the model, could be
defined using the logistic log-likelihood, given the hypothetical experiment
where exposure is set to some fixed regime at time-points in 7.

Yr = arg;naxEt; a% {Yer ()log(expit(n(B,ar, 1)) + (1 = Y (t))log(1 — expit(n(B, ar, 1))}. (2)
Note that the above MSM is defined on a fixed (arbitrary) discretization.
By changing the discretization, we impose a different target causal parame-
ter since different discretizations would impose summing over different sets
of regimes on the corresponding counterfactual data, i.e. only those that can
change at the set of time-points considered. We show this numerically in the
simulation study in section 7.

The parameter of interest is defined on the resulting counterfactual data
0% = (Y% (t), L* (t);t € T,), where L (t) is the counterfactual covariate
value at time ¢ had past exposures been set to a,.(t — 1). For any given 7,
O%" consist of n independent, identically distributed observations from a true
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underlying distribution Qo(0?%"), which can be decomposed according to the
time-dependent distribution of the data as:

Q0f) = I PEe@I|L7@), Y @E-1) [  P@* @) |V (t),L" (1)

teT,\{0} teT \{Kr+1}

Qoy (0%7) QoL (0%7)

Here we suppose that Qo(0%") is a member of a statistical model space
M that can be decomposed into Qy and Qp, the set of all possible values
of Qoy (0%) and Qor(0%), respectively. For every coarsened dataset, our
causal parameter of interest is thus defined as a mapping ¥, = ¥(Q(0%")) :
M — RP for some function W that takes as argument a member from the
statistical model space M into the parameter space RP. As a result, we see
that the true value of the parameter being targeted, #¥,, directly depends on
the data discretization. Consequently, interpretation of the target parameter
relies on the chosen discretization.

4 Causal assumptions

To obtain consistent estimates of causal effects from longitudinal observa-
tional data one must assume some identifiability conditions. We review the
relevant assumptions in order to examine how they are affected by discretiza-
tion.

4.1 Causal assumptions for longitudinal data

The time-ordering assumption states that L(t — 1) precedes A(t — 1), which
precedes Y (t), for any time-point on an arbitrary discretization indexed as
t=0,1,..., K+1. Another necessary assumption is the so called no unmea-
sured confounders assumption, [26] formally, the (weak) sequential random-
ization assumption (SRA) [27]:

Vo) JTAGC-1) | Lt — 1), Y (t — 1), A(t —2),t =1,... K + 1.

This assumption can be thought of as in a sequential randomized trial, where
at each follow-up time t, exposure is randomly assigned conditional on the
observed history. Here, it is assumed that the measured L(t—1) is a sufficient



set of confounders such that the SRA holds. We further assume positivity
[17,26] which requires that:

P(A(t) = a(t) | L(t),Y (), A(t — 1) =a(t — 1)) > 0,Va(t),t =0,..., K,

for every combination of the values of the confounders L(t) and exposure
history for which P(L(t) = I(t), A(t—1) = a(t—1)) > 0. Even if the positiv-
ity assumption holds in theory, estimated near practical positivity violations
may occur when the support in the data for a given regime is not sufficient.
Hence, for estimation purposes, the positivity assumption must also hold
in practice since, under near practical positivity violations, standard causal
methods have been known to produce biased estimates and exhibit substan-
tial variability. [28]

Furthermore, the no interference assumption [29] indicates that an in-
dividual’s counterfactual is not affected by another individual’s exposure.
Finally, consistency implies that Y%(t) = Y (¢) and L%(t) = L(t) when
A(t — 1) = a(t — 1). [25,30] This assumption also implies that the levels
of exposure have to correspond to well-defined interventions. [31] Below we
will examine some of the implications of discretization on the plausibility of

these causal assumptions.

4.2 Causal assumptions for discretized data

Preservation of time-ordering is strongly dependent on the discretization pro-
cess. A case in which coarsened data could fail to preserve time-ordering is
when, instead of removal of information, the next observed time-point would
constitute of a summary measure of the unobserved time-points, similarly
to the example in section 3.2. Let us take as illustration a case where the
finest discretization constitutes five time-points, 7, = 0, 1,2, 3,4, and sup-
pose that a(4) = (0,1,0,0,0) and /(4) = (0,0,1,0,0). By coarsening the
data such as to only observe every fourth time-point (i.e. 7,, = 0,4), one
could consider that A,,(4) = 1 if exposure occurred in any of the time-
points t = 1,2,3,4, similarly for L,,(4). In this specific example, we would
thus obtain A,,(4) = 1 and L,,(4) = 1. However, in the finest discretiza-
tion, exposure happened prior to the covariate event, although this is not
represented in the coarsened data. Thus correct time-ordering at the finest
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discretization does not imply preserved time-ordering in the coarsened data.
One commonly adopted approach to maintain time-ordering in this scenario
is to use lagged values of confounders. For example, for the discretized data
in the above example, confounder information at time-point ¢t = 4, L,,(4),
would only consist of the information contained in L,,(0). It is thus clear
that time-ordering is preserved since L,,(0) = L,,(0) occurred prior to the
information summarized in A,,(4). Note that this may, however, lead to
problems regarding the SRA assumption since exposure is in truth informed
based on confounder information just prior to exposure but this information
is now omitted.

In general, excessive discretization may fail to capture sufficient relations
between the variables to remove time-dependent confounding bias. Thus
by imposing a discretization, we are potentially wrongfully assuming that
the SRA still holds. Suppose we assume that the SRA holds at the finest
discretization rg:

yoo(t) [TA(E—1) | Lt —1),Y(t — 1), A(t — 2),t € T,,,.

In addition to the example of lagging covariate values given above, a second
example in which the SRA may not hold is illustrated in the Directed Acyclic
Graph (DAG) in Figure 2. This DAG depicts the causal relations between
exposure A(t), covariate L(t), and outcome Y (¢ + 1) at three time-points.
One can see that when discretization is carried out by removing informa-
tion about A(1), L(1), and Y (1), an unmeasured confounder U(1) is created
for the relationship between A(2) and Y'(3). By failing to adjust for U(1),
confounding bias may be introduced when estimating the effect of A(2) on
Y (3). A similar loss of information may arise even if the variables at t = 2
are redefined as summaries of the information at times ¢ = 1 and ¢ = 2.

— ~
L(0) — L(1) - L(Z)\

\

4 \\\;L\ \

T

I

Figure 2: Figure 2. DAG illustrating the result of discretization on time-
dependent confounding
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In some very specific settings, there may exist some coarser discretization,
rT, where the SRA still holds. For example, Figure 3 gives a case where the
SRA would hold when calculating the effect of most recent exposure, A(2),
on subsequent outcome, Y(3), even in the presence of U(1). Note, however,
that whether a specific coarsening approach leads to a discretization in which
the SRA is preserved is untestable.

L(0) — L(1) — L(2) L) __ L(2)
e R T ST T s
VoA S Ay (LA — A0) 7 ¥ A©2)
N XY A N % N
. Y(l)&» }'(2)&—» Y (3) )’(2)&-» v (3)

Figure 3: DAG illustrating the result of discretization on time-dependent
confounding

The positivity assumption must also hold for every discretization r, at each
time-point ¢ € T,.:

P(A(t) = a(t) | L(t),Y (), A(t — 1)) > 0,Va(t),t € T,.

Because the set of discretized regimes may be a subset of regimes at the finest
scale, if positivity holds at the finest scale, then it is plausible that it would
hold for any coarser discretization conditional on the true covariate history.
Furthermore, in longitudinal contexts with many time-points, causal meth-
ods relying on inverse weight calculations may be more at risk of so called
near practical positivity violations because they involve the product of the
above probabilities over all time-points. [32] When the discretization is overly
fine and the number of time-points is large these probabilities may vanish.
Coarsening is enticing because coarser discretizations of the timeline may be
used as a quick fix since the product would be taken over fewer time-points.
Hence, as the discretization gets coarser, the practical positivity assumption
may be relaxed by only requiring that the estimated probabilities be larger
than zero at fewer observed discretized times.

For consistency, note that the counterfactual intervention is well-defined
relative to the chosen discretization, where exposure at selected time-points
would be intervened on and sustained between time-points, with changes
only allowed at discretized time-points. It would then be important to as-
sess whether it is likely that the resulting counterfactuals corresponding to
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this hypothetical experiment are equal to the observed outcomes, for sub-
jects whose summarized observed exposure corresponds to the intervention
under the experiment. Whether or not this is the case would rely on how ex-
posure between time-points is summarized, and how well observed between-
time-point exposures correspond to the sustained exposure assignment of the
hypothetical intervention. In section 1 of the Supplementary Materials, we
provide an example where consistency does not hold.

Finally, it is logical to assume that if no interference holds at 7, it holds
for all T,.. If one subject’s exposure does not affect another subject’s poten-
tial outcome under the finest discretization, then it will also not affect the
potential outcome under a coarsened discretization.

5 Methods

In this section, we first recapitulate the steps of the pooled LTMLE algorithm
to estimate the parameters of an MSM [13] in order to describe the cross-
validated variance that can inform the selection of the discretization of the
timeline.

5.1 Pooled LTMLE

In order to explain the algorithm, let us define the conditional expected value
of the outcome at time t given past covariate history and a fixed exposure
history a,(t—1) as Q¥ (t) = E(Y% (t) | A(t—1) = a,(t—1),L(t—1),Y (t—1)).
Recursively, for j = t,...,1, define Q¥ (j) = E(Q¥ (i +1) | A(j — 1) =
a.(j—1),L(j —1),Y(j —1)) where Q¥ (t+1) := Y% (t). Q¥ (j) is sometimes
conveniently referred to as the “outcome regression”. Under the described
causal assumptions, our causal parameter of interest can be identified with
respect to these iterated conditional expectations [13,17] as

Kr+1 __
b = g £S5 {0 (Dlogleapit(n(B.ant. W) +
t=1 g,.eA,

(1= Qi (1)log(1 — expit(n(B, ar,t, W)))}.

We can construct a simple plug-in estimator that fits a regression of the es-
timate of Q7" (1) on a,,t,and W according to our MSM.
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J
Likewise, let us define for every j =t,....1, g% (j) = [[ P(A(k) = a(k) |
_ k=0

L(k),Y(k), A(k — 1) = a,(k — 1)) which can be described as the “propen-
sity scores” and represent the probabilities of receiving exposure A(j) = a,(j)
given covariate history L(j) and a fixed exposure history A(j—1) = a,.(j—1).

For each time ¢, implementation of the pooled LTMLE, as developed in
Petersen et al. (2014), [13] involves the calculation of an initial estimate
¢7(j) and the update of this initial estimate to Q7,*(j) along a path that
uses information from g% (j). Here the subscript n indicates estimated quan-
tities. A submodel that defines the update path is described in section 2 of

the Supplementary Materials, along with the specific logistic regression used

to fit this submodel. This update is recursively carried out for j =1¢,...,1
to obtain (){,,"(1). This is then repeated for each ¢, after which we can

compute our targeted substitution estimator 4., using a pooled logistic re-
gression over all Q¢7,"(1),t =1,..., K, + 1. The specific algorithm, as given

in Petersen et al. (2014), [13] is reproduced in detail for our setting in the
Supplementary Materials.

The variance of 4, , can be approximated using a sandwich estimator
based on the efficient influence curve (EIC). [13,17] Note that the EIC is a
function of the inverse of the exposure probabilities which can take large val-
ues in practice. As a consequence, under data sparsity, the above algorithm
may lead to unstable inference. In particular, since the generalized score of
the submodel used for the updating step spans the EIC, [33] failure to solve
the score equation will then result in non-convergence of the algorithm. To
alleviate this problem, it is known that using the inverse of the exposure
probabilities as weights in the logistic regression model used for the update
improves the performance of the estimator in the face of data sparsity prob-
lems. [34,35] If this approach also fails, implementation of pooled LTMLE in
the ltmleMSM function of the ltmle R package version 1.1-0 [36,37] proceeds
without updating Qf7,(5), i.e. Q{7 (j) = Q¢ (j). We view failure to con-
verge as a serious warning for potential lack of support in the data. Thus, we
consider this convergence issue as a criterion for the selection of candidate
discretizations for analysis.
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5.2 Discretization selection

Ideally, the selected discretization, r*, would allow to adjust sufficiently for
time-dependent confounding while avoiding inflated variance caused by ex-
cessive refining. Hence, to more efficiently discriminate between discretiza-
tions leading to excessively high-variance estimates, our selection approach
incorporates the cross-validated variance estimate of the target parameter,

\//'aE(l,b,.,n). Note that this term is asymptotically small, and thus coherent

as a measure of adequate data support. Below, we outline steps to identify
potential discretizations as close as possible to the finest discretization, with

sufficient data support.

~

Step 1: Create candidate discretizations

Beforehand, the candidate discretizations that we want to compare
must be chosen, ideally including one at a sufficiently fine scale.
Other choices could be motivated by convention or a priori knowledge
of scales that may sufficiently allow to control for time-dependent
confounding, although, whether the SRA is satisfied for any particular
discretization remains an untestable assumption.

One should then create a table of prevalent and incident exposures
at each time-point. Results from this table can be used as a tool to
investigate which discretizations offer sufficient support for every ex-
posure regime of interest, and thus determine if a given discretization
should even be considered as a candidate. The table may also include
numbers of uncensored subjects at each time point. An example of
such a table and discussion of its usefulness in assessing data support
can be found in the application results in section 8.1.

Step 2: Cross-validation [14]

For each candidate discretization r, separate each discretized dataset
into V' folds of size {;. Let each of these folds be indicated by
v = 1,...,V. Let the observations in a specific fold v constitute

the validation sample and let the training sample comprise of the
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remaining V' — 1 folds. Let P, and Py, represent the true probabil-
ity distributions of the training and validation samples, respectively,
and let P and P, represent estimations of Py, and Py, respectively.

For each fold v =1,...,V, repeat steps 3 and 4:

Step 3: Pooled LTMLE

Fit the pooled LTMLE algorithm using the training sample, i.e.
estimators PJ , of Fy, are built in the training sample.

Discard any candidate discretizations for which the pooled LTMLE
algorithm failed to converge.

Step 4: Evaluation of \//a\r('l,[),.,n(PT?’v)) among remaining dis-
cretizations

Define Q;',(PY,) as the pooled LTMLE updated values evaluated
on the validation sample using the estimations Pfl)yv built with the
training sample in Step 3. The subscript 1 indicates evaluation on
the validation sample. Specifically, using the remaining sample v,
calculate estimates of @y7"(1),¢t = 1,..., K, + 1 from the estimations

Py.,. With the validation sample v, evaluate \//z;('tpr,n(Pg’v)). The

cross-validated variance is the average of \//a\r(z/)r,n(PT?’U)) across
samples v.

We propose that the analyst select the finest discretization that has
a cross-validated variance ”comparable” to the lowest cross-validated
variance, in the set of remaining candidate discretizations for which
the algorithm has converged. While not a strict decision rule, this
procedure provides an analyst with three tools to diagnose estima-
tion under various discretizations. Importantly, when making their
selection, the analyst should be blind to the estimates and confidence
intervals to avoid p-value hacking.
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The resulting estimated parameter 9, , is obtained by using pooled
LTMLE on the selected discretized dataset O, for the selected dis-
cretization r*.

We empirically evaluate the usage of the cross-validated variance for the
selection of a discretization through a simulation study in the next section.
Sample code of this procedure for a two time-point example is provided in the
following GitHub repository: https://github.com/steveferreiraguerra/
PLTMLE.

6 Simulation study

The first aim of this simulation study is to assess the impact of discretiza-
tion on the estimation of a causal quantity of interest using pooled LTMLE.
It further aims to evaluate the performance of the cross-validated variance
criterion on selection of a discretization.

The simulated data consist of n 4.i.d. observations with structure O =
(L(0), A(0),Y (1), L(1), A(1),Y(2),..., L(11), A(11),Y(12)). These data are
aimed to mimic the data in the motivating example consisting of a study
where individuals remain exposed after first exposure. Hence, defining all
variables as binary, let A(t) = 1 indicate whether a person was exposed by
time ¢, L(t) = 1 indicate whether a person had covariate L at time ¢, with
L(0) representing a sole baseline covariate, and Y (¢) = 1 indicate the occur-
rence of the outcome by time t. The exposure and outcome processes are
monotone (i.e. if Y(t — 1) = 1 then Y (¢) = 1, and similarly for A(¢)) and
all subjects were outcome-free at study entry (i.e. Y(0) = 0). The data is
generated at the finest scale, at fixed equally-spaced intervals, conditional on
the past three time-points, t —1,¢ —2,t — 3. The full data generating process
is described in greater detail in the Supplementary Materials.

Candidate discretizations were created by sequentially removing a single
time-point from the finest generated data. The candidate discretized datasets
consist of O = {O0O,,, O,,, O,,, O,,, O,,, O,,, O,,, O,., O, O,, 0,,} T,
indicates which time-points are included in the discretization, such that 7,, =
{0,1,2,3,4,5,6,7,8,9,10,11,12},7,, ={0,1,2,3,4,5,6,7,8,9,10,12}, T}, =
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{0,1,2,4,5,6,7,8,9,10,12}, T,, = {0,1,2,4,5,6,8,9,10,12}, T,, = {0,1,2,
4,5,6,8,10,12}, T,. = {0,2,4,5,6,8,10,12}, T,, = {0,2,4,6,8,10,12}, T,.. =
{0,2,4,6,8,12}, T,, = {0,4,6,8,12}, T,, = {0,4,8,12}, T,,, = {0,4,12}.
We adopted a simplistic discretization method that consists of omitting the
observed information of unselected time-points, as if it had never been ob-
served. For example, O,, = (L(0), A(0),Y(4),L(4), A(4),Y(8), L(8), A(8),
Y (12)), where (Y (t), L(t), A(t)) € O,, are identical to (Y (t), L(t), A(t)) €
0,, fort €{0,4,8,12}.

The target parameter is defined as in equation (2). Here the goal is there-
fore to analyze the effect of most-recent exposure on the probability of event
by time ¢ across different discretizations. This choice is motivated by the fact
that the definition of most-recent exposure is consistent across discretizations
and can consistently be interpreted as the effect of exposure at the previous
observed time-point on current outcome. The true value of the parameter of
interest for the finest discretization was assessed numerically and is equal to
-0.442 up to the third decimal. True values for every other discretization were
also attained numerically and are presented in Table 1. In the simulation, the
target parameter is estimated through pooled LTMLE. Pooled LTMLE code
for the parameters of an MSM is currently available in R software [38] as the
ltmleMSM function of the ltmle [36,37] package version 1.1-0, developed in
Petersen et al. (2014). [13] We constructed pooled LTMLE code specific to
this estimation problem, in which we also implemented a similar numerical
approach to solve for € in the updating step if the approach using a regression
model did not converge . This was done in order to reduce the computational
complexity of the more general function ltmleMSM, to adequately capture
failures in convergence, and to more efficiently perform the cross-validation
steps. The point estimates were found to be nearly identical between both
codes with sample datasets.

500 sets of simulated data were analyzed. In Table 1, for each discretiza-
tion, the mean estimates and Monte Carlo (MC) variance are reported for the
corresponding pooled LTMLE estimate. As mentioned previously, due to the
nature of the generated data, which may present severe practical positivity
violations at certain levels of discretization, the pooled LTMLE algorithm
may not converge. In such situations, we report an estimated value NA. We
therefore report mean estimates and MC variance from non-missing estimates
only. It is also often recommended to respond to such practical positivity
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violations using ad-hoc methods such as truncation, [28] a common approach
to reducing the variance, but which may introduce bias due to misspecifica-
tion of the treatment model. We therefore apply truncation at the 5th and
95th percentiles of the cumulative weights at each time-point. Additionally
in Table 1, we present the percentage of times each discretization had the
smallest cross-validated variance. In order to assess how the support in the
data affects the discretization choice, data with sample sizes n = 500, 1000,
2500 were analyzed.

6.1 Simulation results

The results for each discretization and for the selection procedure are pre-
sented in Table 1, which is separated in three sections: one for each sample
size. Each line corresponds with the results for a candidate discretization.
The true values of the target parameter of interest for every discretization
are displayed in the second column. It can be observed that the true value
changes according to the discretization of the data, with the true value at the
finest discretization (—0.442) being far from the true value at the coarsest
discretization (—0.651). Note that convergence of true values to the finest
parameter is non-monotonic, meaning that there is no guarantee that we ap-
proach the true value at the finest discretization as we refine a given coarser
discretization.

The next two columns contain the mean pooled LTMLE estimates and
MC variance for every discretization and for the selected discretization. We
can see from these results that at coarser discretizations the mean estimate
was biased for the corresponding true value of the parameter of interest and
that, at finer discretizations, the mean estimates were roughly unbiased for
the true value. For example, with a sample size of n = 500, the mean es-
timate at the coarser discretization, rig9, was equal to —0.810 and the true
value equalled —0.651. This indicates that coarser discretizations may not
have fully controlled for time-dependent confounding resulting in biased es-
timates. It is of interest to note that this bias is non-monotonic, and that
it is thus possible that we attain local minima which are less biased than
at certain finer discretizations. Note also that the Monte Carlo variance de-
creased with finer discretization. This corresponds with the logic that as the
number of time-points increases our estimation becomes more precise since
we have more pooled data. However, these measures were only computed
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on available estimates since, for finer discretizations and small sample sizes,
most of the estimates were returned as NA, with proportions summarized in
the last column. This may underestimate the true variability of the estima-
tor under finer discretizations. For example, at n = 500, discretizations finer
than r5 produced an estimate for fewer than 26% of simulated sets. Missing
estimates were due to large weights and sparse observations that occurred
frequently at finer discretizations, even after employing truncation. This was
particularly problematic at smaller sample sizes.

Regarding selection based on minimization of cross-validated variance, for
which the results are shown in the column % select CV-Var, we first notice
that, as the sample size increased, finer discretizations tended to be selected
more often. Indeed, the most selected discretizations were rg, rg, and ry for
sample sizes n = 500, 1000, and 2500, respectively. This illustrates that this
criterion behaves as expected and that finer discretizations are preferred as
data support increases due to efficiency gained with the pooling of data over
more time points.

7 Data application

This section revisits the motivating example of Section 2 on the comparison
of the effect of low ICS dose versus no ICS on pregnancy duration. To re-
flect the underlying nature of the data and to capture all possible changes in
covariates, a day-by-day follow-up of asthma medication exposure, asthma
related covariates and pregnancy related covariates was longitudinally ex-
tracted. The final cohort consists of pregnancies with no gaps in the woman’s
insurance plan coverage from 1 year before and throughout pregnancy, of
women who were less than 45 years of age, had a singleton delivery, and
women contributing to a maximum of two pregnancies. The presence of
asthma was established based on at least one diagnosis of asthma combined
with at least one filled prescription for an asthma medication during the
pregnancy or one year prior to pregnancy. Women taking theophylline, cro-
moglycate, nedocromil, ketotifen, or LABA without an ICS were excluded.

Finally, a subsetted cohort of women with mild asthma in the year prior

to pregnancy with no use of ICS during the first trimester was created. Mild
asthma was defined using a validated severity indicator developed in our re-
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Table 1: Mean estimate, MC variance, percentage minimal cross-
validated variance and percentage NA for every discretization for
various sample sizes

Discretization  True value! ~ Mean Est.* MC variance* % min CV-Var % NA

n=>50 7o -0.651 -0.811 0.160 9.6 2.4
T -0.601 -0.666 0.091 32.4 1.2
g -0.518 -0.527 0.055 39.2 9.2
7 -0.519 -0.516 0.050 7.6 32.0
T -0.512 -0.500 0.036 8.8 37.6
s -0.471 -0.422 0.027 0.8 68.8
T4 -0.495 -0.462 0.036 0 76.0
rs -0.472 -0.480 0.032 0.4 79.2
o -0.438 -0.456 0.031 0.4 78.0
r -0.440 -0.414 0.025 0 84.8
7o -0.442 -0.449 0.026 0 85.2

n=1000 710 -0.651 -0.787 0.071 0.4 0.0
T -0.601 -0.648 0.039 2.8 0.4
T8 -0.518 -0.525 0.027 27.2 0.0
7 -0.519 -0.513 0.023 4.4 7.2
- -0.512 -0.502 0.017 42.4 8.0
- -0.471 -0.433 0.014 11.2 30.0
T4 -0.495 -0.480 0.019 2 42.4
r3 -0.472 -0.475 0.016 1.6 40.8
T -0.438 -0.441 0.014 3.6 41.6
1 -0.440 -0.434 0.011 2.4 48.0
o -0.442 -0.442 0.010 2 48.8

n=2500 710 -0.651 -0.764 0.036 0 0.0
T -0.601 -0.641 0.019 0 0.0
T8 -0.518 -0.518 0.013 0.8 0.0
rr -0.519 -0.513 0.010 0 0.0
T -0.512 -0.502 0.010 3.6 0.0
- -0.471 -0.440 0.010 28 0.8
ra -0.495 -0.490 0.010 0 7.2
r3 -0.472 -0.481 0.010 0 7.6
- -0.438 -0.453 < 0.005 11.6 6.4
1 -0.440 -0.437 < 0.005 42.8 6.0
o -0.442 -0.445 < 0.005 13.2 6.8

1 indicates true value for every discretization
* computed using non missing values only
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search group. [39] The start of follow-up was established at 20 weeks since no
deliveries occurred before week 20 by definition. In this application, candi-
date discretized datasets to be analyzed consisted of 3-week intervals (O,,),
4-week intervals (O,,), 5-week intervals (O,,), and 6-week intervals (O,,)
from start of follow-up. The finest discretized dataset consisting of daily
data was not considered as a candidate discretization due to the resulting
data being far too voluminous and sparse. Discretized data were created
from the finest daily data and defined as O, = (Y (t), L(t), A(t)), t € T,,
where L(t) is a vector of confounder variables measured during [t — 1,¢],
A(t) = (Aq(t), Ay(t)) represents a multivariate ”treatment” measured at ¢
composed of an ongoing exposure indicator A;(¢) and a censoring indicator
Ay(t), where A;(t) = 1 indicates exposure to low daily doses of ICS and
A, (t) = 0 indicates no exposure to ICS. Identically, As(t) = 1 indicates that
a subject has been censored by time ¢, Ay(t) = 0 otherwise. Specifically,
a subject could be censored if their asthma treatment differed from one of
the above defined regimes for mild asthma. For example, a subject could be
censored if they begin receiving a higher ICS daily dose or the concomitant
usage of LABA with ICS, which both indicate an increase in asthma severity.
Finally, Y () = 1 represents a delivery occurring during [t — 1,¢[. Figure 4
displays the time-ordering of the observed data according to different dis-
cretizations.

Start of follow-up
Weekly data : I:: e b |
h I 21 22 23 24 25 26 27 28 20 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 !
45

20

Figure 4: Candidate discretized timelines in the data application

Potential confounders were divided into four categories: characteristics of
the mother, chronic maternal diseases, pathologies related to pregnancy, and
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maternal asthma control related variables. A complete list of confounders
may be found in Table 2. In this application, baseline characteristics were
evaluated from the year prior to pregnancy to the start of follow-up at 20
weeks of gestation and are equal regardless of discretization. They are pre-
sented in Table 2.

The parameter of interest was defined according to equation (2). In this
study, since we defined ICS exposure as monotone (once a woman receives
a medication, she is considered to be exposed for the remainder of the preg-
nancy, unless censored), regimes of interest were defined as initiation of low
ICS doses at any time during pregnancy. For instance, initiating at the third
time-period is a, = (0,0,1,...,1).

Finally, the usual influence curve based sandwich estimator for the vari-
ance of pooled LTMLE is said to be anti-conservative when practical posi-
tivity violations occur. [13] Hence, in order to obtain a valid estimate of the
variance, we used the original [tmleMSM function from the [tmle R package
which proposes an alternative robust variance estimate. [36,37] Efficiency in
the estimation of the pooled LTMLE requires consistent estimation of both
the models for the probabilities of exposure and outcome processes. There-
fore, it may be preferred to estimate these quantities using machine learning
techniques or Super Learner, [40] an ensemble-learning approach. However,
due to computational reasons, we opted not to use such data-adaptive meth-
ods for this application. Therefore, simple logistic regressions conditional on
all past covariates were used to fit the models in steps 1 and 2 of the pooled
LTMLE algorithm. As in common practice, in order to avoid overly large
weights, truncation at a level of 5% was applied.

7.1 Application Results

The final cohort of women with mild asthma in the year prior to pregnancy
and no ICS use during the first trimester comprised of 2878 pregnancies. The
pregnancy duration in this cohort had a mean of 38.5 weeks and a range of 20
to 42 weeks. The baseline characteristics of the pregnancy cohort are given
in Table 2 by exposure status at start of follow-up. For gestational hyper-
tension / PECL / ECL, a missing value at baseline is given in the table since
these characteristics could only be measured after the 20" week of pregnancy.
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The sample was primarily composed of women who had their asthma con-
trolled in the year prior to pregnancy (80.40%). Women with no ICS usage
at start of follow-up tended to have their asthma less well controlled in the
year prior to pregnancy. The women were also mostly aged between 18 and
34 years at delivery (85.79%), mostly living in urban areas (83.22%), with
roughly half receiving social assistance (54.76%). With respect to mother
characteristics, chronic maternal diseases, and pathologies related to preg-
nancy, no great disparities existed between exposure groups. On the other
hand, asthma control related variables were dissimilar for women taking low
ICS doses versus no ICS doses. Indeed, a higher proportion of women with
low ICS doses had at least one hospitalization or emergency room visit for
asthma. Identically, these women had also a higher proportion of oral and
nasal corticosteroids, and had a higher number of doses per week of short-
acting beta2-agonists. Markers for poor asthma control were much higher
in the low ICS group due to differential indication since in the latent pe-
riod between the end of first trimester and cohort entry their asthma may
have been poorly controlled, which motivated the clinical decision to change
asthma treatment to low ICS doses. This table also demonstrates potential
practical positivity problems in the data as evidenced by the few counts in
many cells.

Table 3 shows exposed individuals, individuals who changed treatment
from no ICS to low doses of ICS, and new censored individuals at each
time-point ¢ € T, for every candidate discretization. For example, for the
discretized dataset O,,, there were 275 exposed women at g, the start of
follow-up. At t; there were now 366 women exposed, 100 of whom changed
from no ICS at ty to low doses of ICS at t;. In total, 36 women from either
exposure group were censored at t;. Missing values indicate end of exposure
measurement. For example, for the discretized data O,,, all values were
missing after time-point ¢3, since only four time-points were used. Generally,
the results from this table show that as the discretizations get coarser, the
data offers more support for every exposure regime of interest.

In Table 4, Pooled LTMLE estimates of the parameter of interest and cor-
responding standard errors and 95 % confidence intervals (CI) are reported
for every discretization. The corresponding values of the cross-validated vari-
ance are also presented for each candidate discretization. The reported values
in the second column correspond to estimates of the 5, parameter in equation
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Table 2: Women’s baseline characteristics per exposure status - n(%)

Exposure
No ICS Low ICS Neither (Censored)
n = 2426 n = 275 n = 177
Characteristics of the mother
Age at beginning of pregnancy
<18 30 (1.24) 8 (2.91) 0 (0.00)
18-34 2095 (86.36) 236 (85.82) 138 (77.97)
> 34 301 (12.41) 31 (11.27) 39 (22.03)
Social assistance benificiary in the year prior to pregnancy 1322 (54.49) 147 (53.45) 107 (60.45)
Rural location of residence at delivery 413 (17.02) 44 (16.00) 26 (14.69)
Chronic maternal diseases
Chronic hypertension 67 (2.76) 7 (2.55) 3 (1.69)
Diabetes mellitus 77 (3.17) 3 (1.09) 7 (3.95)
Uterine disorders 44 (1.81) 4 (1.45) 1 (0.56)
Other chronic diseases 17 (0.70 ) 3 (1.09) 1 (0.56)
Pathologies related to pregnancy
Gestational diabetes 31 (1.28) 9 (3.27) 2 (1.13)
Gestational hypertension / PECL / ECL - - -
Placental complications 20 (0.82) 0 (0.00) 2 (1.13)
Other pregnancy-related pathologies 475 (19.58) 52 (18.91) 29 (16.38)
Maternal asthma control related variables
Asthma control in the year prior to pregnancy 1991 (82.07) 218 (79.27) 105 (59.32)
SABA (doses/week)
0 1159 (47.77) 44 (16.00) 20 (11.30)
> 0-3 1267 (52.23) 231 (84.00) 157 (88.70)
>3 0 (0.00) 0 (0.00) 0 (0.00)
LTRA 30 (1.24) 1 (0.36) 9 (5.08)
ocs 179 (7.38) 55 (20.00) 41 (23.16)
NCS 266 (10.96) 53(19.27) 43 (24.29)
Hospitalization for asthma 20 (0.82) 9 (3.27) 13 (7.34)
Emergency room visit for asthma 207 (8.53) 77 (28.00) 32 (18.08)

1, interpreted as the effect of most recent exposure on delivery. Consequently,
exp(f;) corresponds to the odds of delivery for women on low ICS dose ver-
sus no ICS. Hence, regardless of discretization, the point estimates can be
interpreted as a reduced odds of delivery after switching to low ICS dose
at any given time ¢, which is consistent with clinical hypotheses. For all
discretizations, the results were statistically non significant, except for the
estimate obtained from the discretized data O,,.

The cross-validated variance was minimized at the discretization rg. How-
ever, the selected discretization for analysis was rj5, since it is the finest
discretization with cross-validated variance similar to the minimal cross-
validated variance. Hence, we obtain an OR estimate of 0.843 with CI =
[0.646,1.10]. In contrast with the simulation results, the data application
point estimates did not display clear convergence to a value as the dis-
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Table 3: Number of exposures, treatment changes, and censorings at
every time-point for each candidate discretization

Disc. t() 21 (2 t3 T4 t5 t6 t7 ts

re¢ 275 465 624 619 - - - - -
Exposure rs 275 422 576 684 271 @ - - - -
(Prevalent) ry 275 395 517 627 692 270 - - -
rg 275 366 460 538 624 682 616 77 -

re 275 200 177 117 - - - - -
Treatment change r5; 275 158 167 128 33 - - - -
(Incident) ry 275 130 131 116 98 21 - - -
rg 275 100 98 87 90 75 H6 4 -

re 177 45 47 19 - - - - -
Censoring rs 177 43 39 26 6 - - - -
(Incident) ry 177 36 33 25 18 4 - - -
rg 177 31 18 31 17 13 7 0 -

cretization became finer. The fact that the candidate discretizations were
not necessarily nested may have contributed to this. The standard error es-
timates decreased progressively for discretizations rg, r5, and r4. This can
be explained since additional data translates into a gain in precision in the
pooled model. Yet, at the finest discretization rs3, the standard error estimate
increased. This suggests that this discretization led to large weights and stan-
dard errors. This is also displayed by the larger value of the cross-validated
variance, which was much greater than for other discretizations, providing
evidence that the cross-validated variance diagnoses lack of support in the
data.

8 Discussion

Only a few methods, and extensions of these, handle a continuous underlying
data generating distribution. [4,41-47] While some of these are limited in the
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Table 4: Pooled LTMLE estimates with corresponding standard er-
ror, 95% CI, and cross-validated variance for every candidate dis-

cretization

Discretization Estimate Standard error 95% CI CV-var
re -0.232 0.164 [-0.554, 0.090]  1.412
s -0.171 0.136 [-0.437, 0.095]  1.635
T4 -0.310 0.133 [-0.570, -0.050]  4.587
r3 -0.258 0.272 [-0.792, 0.275]  17.228

data structure and estimation problem to which they can be applied, oth-
ers are not specific to the estimation of MSMs. Apart from these methods,
most causal inference methods have relied on arbitrary discretization of the
patient timeline in longitudinal studies. We note that arbitrary discretiza-
tion is analogous to the choice of follow-up time-points in any observational
study where treatment may change between follow-ups. Hence, our results
may also be relevant when designing an observational study which measures
exposure at discrete time-points, although this would not apply to settings
where patients with chronic conditions are expected to maintain treatment
or only change treatment at pre-specified follow-up visits at regularly spaced
intervals. However, this is not the case in our motivating example in mild
asthma. We have shown that such arbitrary timeline coarsening may result
in bias and affects the value and identification of the underlying parameter of
interest one is estimating. Furthermore, we evaluated the usage of the cross-
validated variance of the pooled LTMLE to inform selection of the timeline.
This procedure is readily adaptable to any MSM and LTMLE specification.

Since certain causal inference methods have been known to be sensitive
to practical positivity violations, which may occur much more frequently
in longitudinal contexts, one appeal of coarser discretization is that it may
limit such violations by decreasing the number of observed time-points .
Although pooled LTMLE has shown practical advantages over IPTW meth-
ods, notably in contexts with small support for certain regimes of interest,
such methods may still be vulnerable to severe practical positivity viola-
tions. Such violations occurred in our simulation study when the number of
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time-points was large and the sample size small and in the data application,
particularly when the number of time-points increased, given the relatively
high-dimensional confounder space. To this purpose, our selection approach
included the pooled LTMLE cross-validated variance in order to better iden-
tify discretizations in which such violations would occur and hence inflate the
estimated variance. The variance estimator used is based on the influence
curve, which has been found to be substantially anti-conservative in settings
where data sparsity due to rare outcomes or practical positivity violations
occurs. Implementation of the selection procedure using the robust variance
estimate provided in [36,37] should be investigated as it could produce better
inference.

In the simulation study, the employed discretization method may not
have been the most representative of common approaches which preserve
confounder and exposure information rather than discarding it. However, we
also showed how summarizing information between time-points may violate
the time-ordering assumption. We demonstrated that the true value of our
parameter of interest may change across discretizations. This indicates that
the interpretation of said parameter should be made with respect to the cho-
sen discretization. Nonetheless, theoretical results about the large-sample
properties of the resulting LTMLE on the selected discretization remain to
be investigated. It is possible that the variance of the LTMLE — estimated
using the efficient influence function on the selected dataset — is underes-
timated due to the selection of the timeline. One solution may be to use
sample splitting to select a discretization and obtain estimates on separate
data splits. [48]

In the data application, of the options provided, our approach indicated
that we should select 5 week intervals. The results could not conclude that,
for women with mild asthma, a protective effect of low ICS treatment ver-
sus no ICS treatment on delivery time exists, although point estimates were
indicative of such. However, given the absence of adjustment for important
confounders such as smoking, body mass index, etc., these estimates remain
potentially biased. While we evaluated most recent exposure, these methods
may be employed for other exposure measures such as cumulative exposure
or the effects of exposure at multiple time-points. Most importantly, the
different results across discretizations illustrate how the underlying data dis-
cretization may be used to alter the final conclusion, and the need for trans-
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parent practice.

In summary, this paper serves as an early investigation of the causal
inference problem of data discretization and proposes several investigative
methods. Given the widespread usage of arbitrary discretization, more inves-
tigation is needed to evaluate related problems. Data-adaptive approaches to
data extraction from administrative data may provide statistical advantages
and an unambiguous decision making procedure.
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