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Résumé 
 

 

   La blockchain propose un système d'enregistrement décentralisé, immuable et 

transparent. Elle offre un réseau de nœuds sans entité de gouvernance centralisée, ce qui la 

rend "indéchiffrable" et donc plus sûr que le système d'enregistrement centralisé sur papier 

ou centralisé telles que les banques. L’approche traditionnelle basée sur l’enregistrement 

ne fonctionne pas bien avec les relations numériques où les données changent 

constamment. Contrairement aux canaux traditionnels, régis par des entités centralisées, 

blockchain offre à ses utilisateurs un certain niveau d'anonymat en leur permettant 

d'interagir sans divulguer leur identité personnelle et en leur permettant de gagner la 

confiance sans passer par une entité tierce.  

   En raison des caractéristiques susmentionnées de la blockchain, de plus en plus 

d'utilisateurs dans le monde sont enclins à effectuer une transaction numérique via 

blockchain plutôt que par des canaux rudimentaires. Par conséquent, nous devons de toute 

urgence mieux comprendre comment ces opérations sont gérées par la blockchain et 

combien de temps cela prend à un nœud du réseau pour confirmer une transaction et 

l’ajouter au réseau de la blockchain. 

   Dans cette thèse, nous visons à introduire une nouvelle approche qui permettrait d'estimer 

le temps il faudrait à un nœud de la blockchain Ethereum pour accepter et confirmer une 

transaction sur un bloc tout en utilisant l'apprentissage automatique. Nous explorons deux 

des approches les plus fondamentales de l’apprentissage automatique, soit la classification 

et la régression, afin de déterminer lequel des deux offrirait l’outil le plus efficace pour 

effectuer la prévision du temps de confirmation dans la blockchain Ethereum. Nous 

explorons le classificateur Naïve Bayes, le classificateur Random Forest et le classificateur 

Multilayer Perceptron pour l’approche de la classification. Comme la plupart des 

transactions sur Ethereum sont confirmées dans le délai de confirmation moyen (15 

secondes) de deux confirmations de bloc, nous discutons également des moyens pour 

résoudre le problème asymétrique du jeu de données rencontré avec l’approche de la 

classification. Nous visons également à comparer la précision prédictive de deux modèles 

de régression d’apprentissage automatique, soit le Random Forest Regressor et le 

Multilayer Perceptron, par rapport à des modèles de régression statistique, précédemment 

proposés, avec un critère d’évaluation défini, afin de déterminer si l’apprentissage 

automatique offre un modèle prédictif plus précis que les modèles statistiques 

conventionnels. 

   Mots clés: Apprentissage automatique, Ethereum, Blockchain, Régression, 

Classification, Random Forest, Naïve Bayes, Multilayer Perceptron, Transaction 
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Abstract 

 

 

  Blockchain offers a decentralized, immutable, transparent system of records. It offers a 

peer-to-peer network of nodes with no centralised governing entity making it ‘unhackable’ 

and therefore, more secure than the traditional paper based or centralised system of records 

like banks etc. While there are certain advantages to the paper based recording approach, 

it does not work well with digital relationships where the data is in constant flux. Unlike 

traditional channels, governed by centralized entities, blockchain offers its users a certain 

level of anonymity by providing capabilities to interact without disclosing their personal 

identities and allows them to build trust without a third-party governing entity.  

   Due to the aforementioned characteristics of blockchain, more and more users around the 

globe are inclined towards making a digital transaction via blockchain than via rudimentary 

channels. Therefore, there is a dire need for us to gain insight on how these transactions 

are processed by the blockchain and how much time it may take for a peer to confirm a 

transaction and add it to the blockchain network.  

   In this thesis, we aim to introduce a novel approach that would allow one to estimate the 

time (in block time or otherwise) it would take for Ethereum Blockchain to accept and 

confirm a transaction to a block using machine learning. We explore two of the most 

fundamental machine learning approaches, i.e., Classification and Regression in order to 

determine which of the two would be more accurate to make confirmation time prediction 

in the Ethereum blockchain. More specifically, we explore Naïve Bayes classifier, Random 

Forest classifier and Multilayer Perceptron classifier for the classification approach. Since 

most transactions in the network are confirmed well within the average confirmation time 

of two block confirmations or 15 seconds, we also discuss ways to tackle the skewed 

dataset problem encountered in case of the classification approach. We also aim to compare 

the predictive accuracy of two machine learning regression models- Random Forest 

Regressor and Multilayer Perceptron against previously proposed statistical regression 

models under a set evaluation criterion; the objective is to determine whether machine 

learning offers a more accurate predictive model than conventional statistical models.  

   Keywords: Machine learning, Ethereum, Blockchain, Regression, Classification, 

Random Forest, Naïve Bayes, Multilayer Perceptron, Transaction. 
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1. Introduction 

 

 

   Currencies are defined as an economic buffer; an entity that allows individuals to convert 

their efforts into something tangible. It allows their efforts to maintain a certain value which 

can be converted into goods or services as desired. It is governed by a central entity such 

as a bank and is state backed. Blockchain, fundamentally, was meant to disrupt the whole 

socio-economic dynamic. It was meant to transform the way we interact and exchange 

value by rendering the need of a middleman or a governing third-party entirely 

inconsequential.  

   This chapter introduces blockchain technology and discusses its basic structure. It then 

states the problem statement for the thesis and the motivation behind it. It also presents 

briefly the thesis contribution. Finally, it presents the organization of the rest of this thesis.  

 

1.1 Blockchain: An Overview 
 

   Blockchain Technology is a distributed database shared between nodes in a peer-to-peer 

network (e.g., more than 10000 nodes in Ethereum). Basically, each network node can 

receive and broadcast transactions. Blockchain, as its name suggests, records transactions 

into linked blocks [1]. When a user wants to interact with the blockchain (e.g., to transfer 

cryptocurrency or store a testament), they create and sign, using their private key, a 

transaction; note that blockchain, in itself, uses public key encryption. Then, it sends the 

transaction to the blockchain network; a node that receives the transaction, validates the 

transactions (e.g., verifies the user’s signature) and, if valid, stores the transaction in its 

pending list of transactions and transmits it to its neighbouring nodes. Periodically, a node 

is selected to create a block; the selection is based on the consensus protocol in use. In the 

case of proof-of-work (PoW) consensus protocol [2], the node that first solves a 

mathematical puzzle, is the one that creates the new block. It is important to emphasize 

that there should be no shortcuts to solve the puzzle in order to guarantee that nodes are 

selected randomly. PoW consists in determining a string (called nonce) such that when 

combined with the block header and hashed results in hash that includes a given number 

of leading bits 0 (this number represents the difficulty to solve the puzzle). Nodes are 

incentivised to create new blocks because they are rewarded by newly minted coins (e.g., 

in the bitcoin blockchain, the reward is 12.5 bitcoins as of 2019) as transactions fees. The 
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time it takes to generate a block, called block time, is specific to the blockchain in use; for 

example, the block time for bitcoin is 10 minutes whereas it is 15 seconds for Ethereum. 

   Given the network delays, two or more nodes may create new blocks that reference the 

same previous block; this may cause diverging views of the blockchain (i.e., this is called 

“natural” fork). To solve this problem, nodes consider the longest blockchain (in terms of 

the number of blocks) as the correct/consensus blockchain to build on.  

   A block consists of block header and a list of transactions; the node selects, from its 

pending list of transactions, the transactions to include in the block. The maximum number 

of transactions in a block depends on the blockchain that is used. The blockchain header 

includes (a) a timestamp that represents the time when the block is created;  the timestamp 

is generated by secure mechanisms of timestamping to guarantee the chronological creation 

of blocks in the chain; (b) a hash of the previous block; this makes blockchain immutable  

since it is not possible to modify any block without changing the entire chain (see Figure 

1.1).  

 
Fig 1.1. A depiction of Blocks in a Blockchain 

   Indeed, changing even one bit in a block changes the value of its hash; (c) a nonce that 

solves the mathematical puzzle when proof-of work consensus mechanism is used; and (d) 

root node of Merkle tree that represents the hash of all transactions inside the block. The 

node that creates the new block, appends it to its copy of the blockchain and sends it to its 

neighbouring nodes. Upon receipt of the new block, a node validates the block and, if valid, 

appends it to its copy of the blockchain and sends it to its neighbouring nodes. The block 

validation process includes (a) checking the Merkle tree's root hash; (b) checking the 

validity of all transactions in the block; and (c) checking the hash of the previous block. 

Broadcasting and validating the new block are what keep all the nodes on a network 

synchronized with each other. When a new block is appended to the blockchain, the 

transactions in this block are said to be confirmed. 

 

 



       

 

3 
 

1.1.1 Blockchain: Nodes 
 

   According to [3], there are three types of blockchain nodes: (a) mining nodes: they are 

responsible for producing blocks; each time a mining node produces a block, it is rewarded; 

(b) full nodes: they are responsible for maintaining and distributing copies of the entire 

blockchain; in particular, they are responsible for the validation of blocks produced by the 

mining nodes. The more full nodes, the more decentralized the blockchain and the harder 

to hack; and (c) light nodes: They perform similar functions as full nodes without 

maintaining the entire blockchain; in general, a light node connects to a full node, 

downloads only the headers of previous blocks; they connect to a full node. 

 

1.1.2 Blockchain: Categories 
 

   Blockchain comes in many different types. More specifically, there are three types of 

blockchains: permission less blockchain also known as public blockchain (e.g., Bitcoin and 

Ethereum), permissioned blockchain also known as consortium blockchain (e.g., 

Hyperledger fabric), and private blockchain. In public blockchains, any participant/user 

can write data to the blockchain and can read data recorded in the blockchain; anybody can 

be a full node, a miner or a light node. Thus, there is little to no privacy for recorded data 

and there are no regulations or rules for participants to join the network. Generally, pubic 

blockchains are considered pseudo-anonymous (e.g., bitcoin and Ethereum); a participant 

does not have to divulge her identity (e.g., name) instead she is linked to an address (i.e., 

hash of public key). Providing anonymity is difficult but it is feasible (e.g., Zcash [4]). The 

success of this type of blockchains depends on the number of participants; it uses incentives 

to encourage more participation. Consortium blockchains put restrictions on who can 

participate. In particular, the creation and validation of blocks are controlled by a set of 

pre-authorized nodes; for example, we have a consortium of 10 banks where each bank 

operates one node. The right to read data recorded in the blockchain can be public or 

restricted to the participants. Even participants may be restricted on what they can do in 

the blockchain; for example, transactions between 2 participants may be hidden from the 

rest of participants. In a private blockchain, write permissions are centralized and restricted 

to one entity; read permissions may be public or restricted. 

  

1.1.3 Blockchain: Characteristics 
 

   The key characteristics of Blockchain can be summarized as follows: 

• Decentralization: there is no central entity that controls the blockchain; indeed, 

blockchain nodes are responsible, via consensus, for the maintenance of the blockchain 

in a trust less environment.  Nodes can join or leave the network at will. Each node of 

the network has its own copy of the blockchain making it resilient to single point 

failure. 
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• Transparency: all transactions that are stored in the blockchain are visible to anyone 

(e.g., suitable for audit). Privacy can be supported but it is difficult to deploy (e.g., 

Zcash [4] supports privacy). 

• Immutable: When transactions are confirmed in the correct/consensus blockchain, it is 

impossible to remove/alter them. This is because block N includes the hash of block 

N-1; thus, any modification in block N-1 will break the link to block N. 

• Secure: blockchain is “unhackable”; this assumes that no entity can control 51% of the 

hashing power of the blockchain network; since its inception, bitcoin has never been 

hacked.   

 

1.2 Motivation and Problem Statement 
 

   Blockchain offers a way for users to exchange value with all the capabilities offered by 

state-backed currencies but is more secure and does not require central governing entity. 

The biggest application of blockchain is cryptocurrency.  Cryptocurrency is a digital or 

virtual type of currency that uses encryption techniques to convert plain text into 

unintelligible text and vice-versa. It is designed to work as a medium of exchange as well 

as to control the creation of additional units and validate transactions and allow their 

transfer through the blockchain network. Bitcoin, Namecoin, Ethereum etc. are a few 

examples of most commonly used cryptocurrencies.  

   The market capitalization of publicly traded cryptocurrencies as of April 10, 2019 is 

about 176.3 billion out of which Bitcoin makes up to 141.6 billion and Ethereum makes up 

to 26.6 billion dollars [5]. On average, about 12 billion USD is transferred via at least a 

million transactions each day. The amount of capital involved alone makes it necessary for 

one to be able to perform analysis on historical and real-time data and allow one to infer 

and/or predict a certain level of details about future trends in the market. These trends can 

range from analysis of address space, price prediction, transaction confirmation time 

prediction, etc.  

   Bitcoin, when it first came to be in 2009, was not simply meant to be a tool to spend 

money digitally. It was meant to be a convergence of networking, cryptography and open 

source software technologies with the aim to completely eradicate the need of state-backed 

currencies by crossing international boundaries and nullifying the usage of banks as a mean 

to store money [6]. Since then, there has been a gradual increase in the awareness and 

excitement in regard to cryptocurrencies and the rudimentary distributed ledger (or 

Blockchain) technology. On the grassroot level, these blockchain based cryptocurrencies 

are meant to provide complete anonymity (or rather pseudo-anonymity)  to its users by 

providing them capabilities to operate via a set of addresses without having to disclose any 

of their personal details [7] all the while providing high level of transparency on past 

transactions.  

   Ethereum, the second most commonly used cryptocurrency was launched in 2015, is the 

most well-established, largest open-ended, public and blockchain-based software platform. 
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Unlike Bitcoin, which only allows for value exchange, Ethereum permits the utilization of 

Smart Contracts. These are snippets of code or protocols that digitally facilitate, verify and 

ensure performance of a contract [8].  It also offers a programming language allowing users 

to publish Distributed Applications without external interference, fraud or downtime using 

its own decentralized public blockchain technology [9] [10].  

   Ethereum is a decentralized technology. It runs on a network of machines (or nodes) that 

are distributed globally. Since there is no central point of failure, Ethereum is also immune 

to hacking or any attack preventing its operation. These characteristics of Ethereum allow 

it to be more formidable in comparison to its counterparts and hence, make it possible for 

Ethereum data to be used for knowledge inference and/or analysis. As such, in this thesis, 

we particularly focus on Ethereum and the time it takes for a mining node to confirm a 

transaction on the said platform. A transaction is how the external world interacts with the 

Ethereum network. Each time there is a need to modify or update the state of the network, 

a transaction has to be made. These transactions can be of three types: (1) Fund transfer 

between two accounts; (2) Deployment of a contract on the Ethereum network; and (3) 

Execution of a function on a deployed contract. 

   Any change in the state of the network is considered to be a transaction. The transaction 

carries information of the user, via the user interface (e.g., browser), to the network, to 

another endpoint on the network or back to the user’s station. It could carry large amount 

of capital in form of ether or data through contracts that a transaction can call for execution.  

   Due to the importance of these transactions and the amount of capital these might carry 

within them, it is very important for a user to gain some insight on how much time it might 

take for the transaction to be processed based on the network traffic. By gaining these 

insights ahead of time, a user can infer whether right now would be the right time for her 

to send this transaction to the network. In case where a transaction is highly time sensitive, 

prediction of confirmation time can assist a user in making changes to the transaction to 

ensure that a mining node confirms it as swiftly as possible. Not only this, by understanding 

how much time the miners will take to process a transaction, user can gain insight on miner 

policies, i.e., what factors are taken into consideration by mining nodes while choosing one 

transaction over the others. In general, a miner would choose a transaction where they 

would get the most incentive. But, since there is no set policy for the Ethereum blockchain, 

these policies can change at any time and by analysing the most recent network trend, the 

user can keep up to date with these policies.  

   Each time a user makes a transaction, she has to pay a fee. Again, while miners will 

process transactions with higher fees first, it is not efficient for a user to send a transaction 

with a value so low that the transaction would never be picked up and she would have to 

resend the transaction at a higher value. Similarly, it would not be helpful (or rather it 

would be wasteful) for the user to make a transaction with fees higher than what miners 

are accepting to prioritize transactions. Gaining insight on the current network state will 

assist the user to determine “optimal” fees she needs to pay for her transaction. 
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1.3 Contribution 
 

   In this thesis, we propose to use Machine Learning in order to predict confirmation time 

for a transaction on the Ethereum blockchain network. The prediction problem, in a 

simplified manner, can be seen as a classification problem in machine learning 

terminology. A classifier would predict which of the eight classes of confirmation time 

frame, the transaction in question belongs to. These eight classes, set as per analysis of 

transaction data, are: within 15 seconds (or approximately 1 block time), within 30 seconds, 

within 1 minute, within 2 minutes, within 5 minutes, within 10 minutes, within 15 minutes, 

within 30 minutes or longer [11]. We explore the Naïve Bayes, Random Forest (RF) as 

well as Multilayer Perceptron (MLP) classifiers. For our exploration, we employ Naïve 

Bayes classifier with Gaussian distribution and MLP with batch normalization and dropout 

with SoftMax output layer.   

   It should be noted that out of the million transactions used as historical data for the 

classification problem, 49.4% of the transactions belonged to class 1 (within 15 seconds) 

and 24.8% belonged to class 2, making the dataset highly imbalanced and the classification 

task becomes challenging since the classification models have a tendency of always 

classifying the dominant class. This problem would bias the classifier to always predict a 

transaction as belonging to class 1. To overcome this, we also explore re-sampling methods 

for the dataset. 

   We also consider the problem at a more fundamental level as a machine learning 

regression problem.  A regressor would take in as input the transaction metadata and based 

on the data learned in the past would make a prediction for the transaction in question. We 

explore random forest and MLP regressors. The Naïve Bayes algorithm is not suitable for 

regression problem and, therefore, was not explored in this case.  

    While there has been some previous literary work on Ethereum network analysis that 

uses machine learning, most of it has been focussed on analysis of user address space or 

price prediction. These experiments were done mostly in a restricted environment and only 

considered historical data for prediction or analysis. In case of transaction confirmation 

time prediction, there has not been any work with machine learning and has mostly been 

focused on statistical regression algorithms. While statistical modelling has been shown to 

work well for prediction problem, the complexity of a statistical algorithm is compared 

with the two machine learning algorithms, random forest and multilayer perceptron (MLP), 

to explore which of the three algorithms would work best with our problem statement.  

   We show that our proposed models achieve a performance of 83.6% in case of 

classification and a remarkable 89.36% in case of regression approach. In addition, by 

exploring multiple variants of the machine learning algorithms proposed in this thesis as 

well as comparing them with statistical algorithms already used for prediction purposes, 

we draw insight on which of the two, machine learning or statistical analysis, is more 

viable. We conclude that the flexibility with handling complex relationships among dataset 
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features offered by machine learning makes it an extremely promising option for further 

research and analysis of Ethereum blockchain network.  

 

1.4 Organisation of this Thesis 

 

   In Chapter 2, we introduce fundamentals of Ethereum and discuss how a transaction is 

executed on the Ethereum network. In chapter 3, we discuss basic concepts and 

terminologies in machine learning. We briefly discuss different machine learning models 

such as classification, regression, etc. We also present the criteria of evaluation for these 

machine learning models.  

In Chapter 4, we present our proposed method that is used to predict transaction block 

confirmation time. Chapter 5 presents the details of the evaluation and the implementation 

of our proposed model. Finally, Chapter 6 concludes the thesis and presents future work. 
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2. Ethereum 
 

 

   Ethereum is a public, open-source, distributed ledger computing platform that aims to 

achieve a new, more secure and trust-oriented internet. It is a supercomputer running on 

blockchain technology that permits utilization of smart contracts to make digital payments, 

to securely transfer data and to provide access to an open financial system. It was designed 

to utilize the internet to create a decentralized value-transfer system, globally available and 

virtually free to use. It is meant to exist without a centralised governing entity but to be 

operated and governed by all who share the network. Fig 2.1 shows a graphical illustration 

of the Ethereum Network.  

 

 

Fig 2.1. A depiction of the Ethereum Network. 

   Ethereum facilitates exchange between consenting individuals who, without it, would 

have no mean to trust one another. It allows individuals who are geographically separated, 

unwilling and incompatible to make any transactions via traditional systems due to lack of 

trust or because of their rudimentary legal system. Ethereum offers this by providing a 
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secure, trusted mechanism to make such exchanges all the while providing a degree of 

anonymity to its users.  

      According to Dr. Gavin Wood, the founder of Ethereum [2], “Ethereum is a project 

which attempts to build the generalized technology; technology on which all transaction-

based state machine concepts may be built. Moreover, it aims to provide to the end-

developer a tightly integrated end-to-end system for building software on a hitherto 

unexplored compute paradigm in the mainstream: a trustful object messaging compute 

framework.” 

   In this chapter, we present the Ethereum blockchain paradigm and the associated 

terminologies. We will then discuss the transaction execution model in Ethereum 

blockchain network.  

 

2.1 Ethereum Blockchain Paradigm 
 

   Ethereum was developed to facilitate transactions among individuals without requiring 

them to disclose their personal details, i.e., by developing trust among two anonymous 

entities. As a whole, it is a transaction-based state machine beginning at the genesis state 

[12] and moves on to the final state via incremental execution of transactions [13]. The 

final state of the machine is what is perceived as the canonical version of Ethereum 

network. It includes details such as account balances, trust arrangements, reputations, etc. 

In between the two states, there can be valid or invalid changes. The invalid state changes 

may or may not imply an invalid account balance modification in either the sender’s or the 

receiver’s account. Formally [2], 

𝜎𝑡+1 = 𝑌(𝜎𝑡, 𝑇) 

where, Y is Ethereum state transition function allowing components to carry out 

computations and 𝜎 allows them to store arbitrary state between transactions.  

   These transactions are accumulated into blocks by utilizing Merkle trees [14]. These 

blocks work as journals recording the transactions and are connected to one another using 

a cryptographic hash. Since a transaction changes the state of the network, it must be valid. 

For a transaction to be valid, it has to go through a process called mining. Blocks punctuate 

transactions with incentives for the mining nodes. This incentivization is a state-based 

function that adds value to a nominated account [2]. 

   Mining is the process of allocating effort on one set of transaction series or block over 

the others. It is achieved via a cryptographically secure process called ‘proof-of-work’. 

Formally [2],  

𝜎𝑡+1 ≡ 𝛱(𝜎𝑡 , 𝐵) 

𝐵 ≡ (… , (𝑇0, 𝑇1, … )) 
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𝛱(𝜎, 𝐵) ≡ Ω(𝐵, 𝑌(𝑌(𝜎, 𝑇0), 𝑇1) … ) 

where, Ω is the block-finalisation state transition function used to reward the nominated 

account; B is the block in question; Tn represents the transaction associated with the block 

and  Π is the block-level state function.  

   This represents the basic blockchain paradigm on which Ethereum and all blockchain 

based technologies operate on. Similar to other blockchain technologies, like Bitcoin or 

Namecoin that came before it, Ethereum has its own cryptocurrency called Ether (ETH). 

ETH is digital money. It is the token whose blockchain is generated by Ethereum platform. 

It can be transferred among accounts or mining nodes to compensate for goods and services 

offered on or outside the Ethereum network.  The smallest denomination of Ether is Wei. 

One Ether is defined as 1018 Wei. The denominations of Ether are given in Table 2.1. 

TABLE 2.1 DENOMINATION OF ETHER 

Multiplier Name 

100 Wei 

1012 Szabo 

1015 Finney 

1018 Ether 
 

   As discussed, Ethereum is a state-based machine decentralized machine. This means that 

each node has equal opportunity and capability to create a new block on some pre-existing 

block. This may lead to a block tree and deciding, which path may be the best root to leaf 

traversal path, may be not trivial. If the chain were to diverge, the user might end with two 

distinct states and there will be no way to determine which state is most ‘valid.’ This is 

known as a fork and must be avoided at all cost as the uncertainty might compromise the 

whole system. Fig 2.2. illustrates forks in blockchain1.  

 

Fig 2.2. Forks in blockchain.  

 
1 Figure source: Kasireddy, P., How does Ethereum work, anyway?, Medium, 
https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369 , last 
accessed 2019/04/15. 
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   To draw consensus on which path is most viable, GHOST (Greedy Heaviest Observed 

SubTree) protocol is used [15]. With GHOST, the path that has had most computation done 

on it is selected as the consensus path. This is done by looking at the block number of the 

most recent block on each possible path. The higher the block number, the more the number 

of blocks in that chain which implies that higher amount of effort has been put into this 

chain. For instance, in case of the tree illustrated in Fig 2.2., GHOST would choose the 

chain with three blocks in it as illustrated in Fig 2.3. 

 

 

Fig 2.3. Illustration of GHOST protocol1. 

 

2.2 Accounts in Ethereum 
 

   The basic unit of Ethereum is account. For an individual to make a transaction she needs 

to have an account. Each account has a 20-byte address and a state associated with it.  These 

accounts are of two types: Externally Owned Account (EOA) and Contract Accounts. EOA 

are controlled by private keys whereas Contract Accounts are controlled by their contract 

code and can only be activated by an EOA. Irrespective of the type of account in question, 

each account state has four components given in Table 2.2. and Fig 2.4. 

TABLE 2.2: COMPONENTS OF ACCOUNT STATE IN ETHEREUM 

Component  

nonce 

For EOA, this represents the number of transactions sent 

from the account’s address. For contract account, nonce 

represents number of contracts created by the account. 

balance Number of Wei currently owned by the account.  

storageRoot 
A 256-bit hash of Merkle tree’s root node that encodes the 

storage content of the account. This is empty by default.  

codeHash 

For contract account, the Ethereum Virtual Machine code 

of the account gets hashed and stored in codeHash while 

for EOA, codeHash contains the hash of an empty string.  
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Fig 2.4. Components of Account State2 

 

2.2.1 Externally Owned Account 
 

   An externally owned account, controlled by a private key, has an ether balance and can 

send transactions to other accounts. These transactions can be to transfer ether, trigger 

contract accounts or update the state of the machine. There is no code associated with an 

externally owned account. Fig 2.5 illustrates the operation of an externally owned accounts 

that calls a contract account.  

 

 

Fig 2.5 An Externally Owned Account2.  

 

2.2.2 Contract Account 
 

   A contract account too has an ether balance but unlike EOA has some kind of code 

associated with it. The code execution is triggered by transactions from EOA or message 

 
2 Figure source: Kenneth, H., Ethereum Account, Medium, https://medium.com/coinmonks/ethereum-
account-212feb9c4154, last accessed 2019/04/15. 
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calls received from other contracts. These message calls, unlike transactions, do not 

broadcast or publish anything on the blockchain. A message call does not consume any 

ether and discards all state changes when the call is done. Whenever a contract account is 

executed, it performs operations or arbitrary complexities, manipulates its own persistent 

storage or its own permanent state and/or call other contracts.  

   A contract account can list all the incoming transactions and is of two types: Simplet 

account and Multisig account. A Simplet account is created and owned by a single user 

account but a Multisig (Multisignature) account can have multiple owners one of which 

would also be the creator account.  

 

2.3 The Transactions 
 

   A transaction is how the external world interacts with the Ethereum Network. It is a 

cryptographically signed instruction sent by an account holder to change the state of 

Ethereum at any given time. There are two types of transactions in Ethereum: (1) 

Transactions made to generate message calls or (2) To create new accounts with code, i.e., 

contract accounts. Both of these transactions have a common set of components [2] 

discussed in Table 2.3 (a), (b) and (c).  

 

TABLE 2.3 (a): COMPONENTS OF A TRANSACTION IN ETHEREUM 

Component  

nonce Represents the number of transactions sent by the sender 

(𝑇𝑛). 

gasPrice 

Number of Wei to be paid per unit of gas for the 

computation cost incurred due to the execution of a 

transaction (𝑇𝑝).  

gasLimit 

Represents the maximum amount of gas that should be 

used to execute a transaction. This is paid upfront and 

cannot be modified later (𝑇𝑔).   

to 
160- bit receiver’s address or that of a contract creation 

transaction (𝑇𝑡).  

value Value of Wei to be transferred (𝑇𝑣). 

v, r, s 
Transaction signature; it is also used to determine the 

transaction source or sender (𝑇𝑣, 𝑇𝑟 and 𝑇𝑠).  
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TABLE 2.3 (b): ADDITIONAL COMPONENTS OF CONTRACT CREATION 

TRANSACTION IN ETHEREUM 

Component  

init 

An unlimited size byte array that specifies the EVM-code 

for account initialization procedure (𝑇𝑖). 

It is an EVM code fragment that returns the body, the 

second code fragment to be executed each time the 

account receives a message call while init is executed only 

once.   

 

 

TABLE 2.3 (c): ADDITIONAL COMPONENTS MESSAGE CALL IN ETHEREUM 

Component  

data 
An unlimited sized byte array containing the input data of 

the message call (𝑇𝑑). 

 

2.4 The Block 
 

   An Ethereum block is a collection of the block header (H), all the data relevant to the 

transactions (T) it includes, and a set of other block headers (U) that are known to have a 

parent block equal to the current block’s parents’ parents, known as ommers. Table 2.4 

shows the components of a block header [2] and Fig 2.6 describes these components.  
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Fig 2.6 A block header in Ethereum blockchain. 
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TABLE 2.4: COMPONENTS OF A BLOCK HEADER IN ETHEREUM 

Component  

parentHash 256-bit hash of the parent block’s header (𝐻𝑝). 

ommersHash 
256-bit hash of the ommers list part of the block 

(𝐻𝑜).  

beneficiary 
160-bit address of the mining node to which all the 

incentive for this block would go to (𝐻𝑐).    

stateRoot 256-bit hash of the root node of state trie (𝐻𝑠).  

transactionRoot 
256-bit hash of the root node of transaction trie 

(𝐻𝑡). 

receiptsRoot 
256-bit hash of the root node of transaction trie 

(𝐻𝑒). 

logsBloom 

Bloom filter composed of logger address and log 

topics contained in each log entry from the receipt 

of reach txn in txn list (𝐻𝑏). 

difficulty 
Scalar corresponding to the difficulty level of the 

block (𝐻𝑑). 

number 
Number of ancestor blocks (𝐻𝑖). For genesis block, 

this is zero.  

gasLimit Current limit of gas expenditure for the block (𝐻𝑙).  

gasUsed 
Total gas used in transactions belonging to this 

block (𝐻𝑔). 

timestamp 
Unix time stamp for when the block was created 

(𝐻𝑠). 

extraData 
Bit array containing relevant data to the block (𝐻𝑥). 

This must be 32 byte or fewer. 

mixHash 

256-bit hash which when combined with nonce 

proves the amount of computation done on the 

block (𝐻𝑚). 

nonce 

64-bit hash which when combined with mixHash 

proves the amount of computation done on the 

block (𝐻𝑛). 
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2.5 Gas and Payment 
 

   In order to prevent network abuse, all transactions on Ethereum are subject to a fee. This 

fee is paid in ‘gas’. Gas is the fundamental unit used to measure the cost of computation 

and execution of a transaction on Ethereum.  

   Every transaction has a specified amount of gas associated with it known as gasLimit 

(see Table 2.3 (a)). This is the prepaid amount that is charged to the sender account before 

the transactions is processed. The amount is charged based on another entity included in a 

transaction called gasPrice. Consider an example, if the sender sets the gas limit to 50,000 

and a gas price of 20 gwei. Then, this would mean that the sender is willing to spend at 

most 50,000 x 20 gwei or 10-3 Ether in order to execute that transaction.  

   If an account cannot pay for a transaction it wants to process, the transaction would be 

considered failed or invalid. On the other hand, if a transaction requires less amount of gas 

that what is paid by the account then the remaining gas is refunded back to the user’s 

account. Fig 2.7 shows that a transaction failed because there wasn’t enough gas to cover 

execution cost; the gas spent is not refunded.  

 

Fig 2.7 (a) Gas and Payment for an invalid transaction in Ethereum3.  

 

Fig 2.7 (b) Gas and Payment for a valid transaction in Ethereum3.  

 

 
3 Figure source: Kasireddy, P., How does Ethereum work, anyway?, Medium, , last accessed 2019/04/15. 
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   The fee that each account holder is charged for making a transaction on Ethereum 

network is sent to the miner since they are the ones who had put in the effort to run 

computations and validate these transactions. Typically, the higher the fees a sender is 

willing to spend, the more a miner can derive from and better are the chances for the 

transaction to get validated right away.  

 

2.6 World State 
 

   The world state in Ethereum is the mapping between the 160-bit identifier addresses and 

account states that is stored in a modified Merkle tree (trie) [2]. A Merkle tree is a binary 

tree composed of a set of nodes where a large number of leaf nodes contain underlying data 

and all the intermediate nodes store a hash for their two child nodes with a root node, also 

containing a hash of its child nodes represents the top of the tree. Fig 2.8. illustrates a 

simple Merkle tree.  

 

Fig 2.8. A Merkle tree is a binary tree with leaf nodes containing underlying data and the 

other nodes containing hash of their two child nodes. 

 

   The trie stores bytearrays to bytearrays mapping in a simple backend database known as 

the state database. The data contained in the leaf nodes is generated by splitting our data in 

chunks and then splitting those chunks into buckets. Then, we hash the newly created 

buckets and we continue hashing until there is only one left that represents the root node. 

This hash is known as the root hash. The trie has a key for each node. Starting from the 

root node, each key contains the information about which node should be traversed next to 

get to the desired leaf node. 

   Similar trie structure is used to store transactions and receipts. The receipts in Ethereum 

are used to store the state after a transaction has been executed. These receipts are also used 

to record the cumulative gas used for the execution of the said transaction.  
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2.7 Transaction Execution 
 

   Execution of a transaction in Ethereum is defined by the state transition function 𝑌. 

Before any transaction is executed, it has to go through an intrinsic test of validity [2]. This, 

according to Dr. Gavin Woods, includes:  

1 The transaction is well-formed RLP (Recursive Length Prefix), with no additional 

trailing bytes;  

2 The transaction signature is valid;  

3 The transaction nonce is valid (equivalent to the sender account’s current nonce);  

4 The gas limit is no smaller than the intrinsic gas, g0, used by the transaction. The 

intrinsic gas includes:  

- A predefined cost of 21,000 gas. 

- A gas fee for data sent with the transaction (txn). This fee greatly depends on the 

size of that is being sent with the txn (4 gas for each byte of zero data and 68 gas 

for each non-zero byte of data).  

- In case of contact creation txn, another 32,000 in gas.  

5 The sender account balance contains at least the cost, vo, required in up-front payment. 

   Only when a txn meets all of the above requirements is it considered valid. We then 

consider the upfront cost of computation for the transaction and deduct from the sender’s 

account. The nonce for the sender is also increased by 1. Then, the transaction is executed 

and Ethereum tracks the transaction via substate which contains:  

1 Self-destruct set: A set of contract accounts (if any) to be discarded after the execution 

of the txn. These contract accounts have a self-destruct function that is used to free 

space on blockchain by clearing up contract data.  

2 Log series: archived and indexable checkpoints of the virtual machine’s code 

execution. 

3 Refund balance: the amount to be refunded to the sender account after the transaction. 

   Once the sender is refunded (a) miner is paid for the effort put in for the txn; (b) gas used 

is added to the gasUsed counter in the block; (c) data in self-destruct set is discarded; and 

(d) new state of Ethereum network is achieved.  
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3. Prediction Models 
 

 

   Machine learning provides explicit learning capabilities to a computing system by using 

statistical techniques. It is the study of programs and algorithms that can learn from 

historical data and based on that, it can make predictions for new data. A ML algorithm 

takes a set of input samples called training set and uses the set to learn in three fundamental 

ways: supervised, un-supervised and reinforcement learning [16].  

- Supervised Learning algorithm also has knowledge of the target output for the 

training set, known as labels, and the algorithm learns the input to achieve the 

target.  

- Unsupervised Learning has no such labels as in supervised learning. It aims to 

draw structure or pattern from a given input dataset.    

- Reinforcement Learning deals with the problem of learning the appropriate 

action(s) in order to maximize payoff.  

   The focus of this thesis is entirely on supervised learning. Consequently, after defining 

certain machine learning terminologies, this chapter discuss supervised learning in detail. 

We then discuss some key concepts in supervised machine learning such as Generalisation, 

Overfitting, etc. We also present the evaluation criterion for machine learning algorithm, 

namely classification and regression algorithms, used in this thesis.  

 

3.1 Terminology 
 

   This section introduces the basic terminology of machine learning which will be used in 

the rest of the thesis. For any supervised learning algorithm, there exists a dataset which is 

a collection of data in a set of rows and columns. Each row corresponds to a distinct 

instance of the data also known as a training example or an instance. The columns, on the 

other hand, are called input variables, attributes or features. Each dataset is also associated 

with one or more target(s), label(s) or output variables.  These target(s), label(s) or output 

variable(s) represent the result computed from the set of input variables.  

   The dataset in machine learning is typically divided into two subsets; training set and 

testing set. The training set is what is used by a machine learning algorithm to learn 

underlying features of the dataset while the testing dataset is used to evaluate how well the 

model learned the training set and how accurate its predictions are.  
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3.2 Supervised Machine Learning: Concepts and Definitions 
 

   In supervised learning, the dataset in question has two parts which are fed to a machine 

learning algorithm. These parts are: (1) a set of input instances 𝑋 = {𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … , 𝒙𝒎} and 

(2) a set of target values 𝑌 = {𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑚}. Each input instance 𝒙𝒊 has a set of 

𝑛 features 𝒙 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛}. Moreover, each feature 𝑥𝑖 can either take real numerical 

values or categorical values belonging to an unordered set. These features can be modified 

to another form depending on the complexity of the problem at hand. This process is known 

as data pre-processing. 

   There also exists an unknown function 𝑓∗(∙) that maps each input instance 𝒙 to the best 

possible target value 𝑦. The main idea behind supervised learning is to approximate this 

unknown function, known as the true function, based on the given set of input  𝑋 and output 

𝑌. This process of approximating 𝑓∗(∙), using a function 𝑓𝜃(∙) where 𝜃 is a set of 

parameters, is known as learning.  

   Typically, a supervised learning algorithm aims to learn the parameters 𝜃 of the function 

𝑓𝜃(∙) by minimizing the prediction error made by the model. Formally, the function that 

maps the relative discrepancies between estimated and actual target values into a real 

number is known as a loss function [16].   

   Generally, a learning process can be defined as the process of finding the best parameters 

𝜃 in order to minimize loss function over all instances of the dataset. Formally, the learning 

process is as follows:  

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 {∑ 𝑙(𝑦𝑖, 𝑜𝑖; 𝜃)

𝑚

𝑖=1

},  

where 𝜃 is the learned set of parameters; 𝑦𝑖 is the set of target labels and 𝑜𝑖 is the output 

given by the learning algorithm for ith input instance.  

   Whenever the target values are an unordered set of discrete values, the machine learning 

task is known as a classification problem. Whereas, when the target label is a set of 

continuous values, the task is known as a regression problem.  The two learning algorithms 

are discussed in detail in subsequent sections.  

 

3.2.1 Classification 
 

   In machine learning, classification is defined as the task of predicting the category to 

which the data instance in question belongs to. These predictions are made based on one 

or more independent variables in the dataset. The output given by a classification algorithm 

is discrete and belongs to an unordered set of C distinct classes {1, 2, …, C}. 

   In order to make predictions about the new examples, the model can either output a class 

label from the set of classes or can output a set of probabilities. Each probability would 
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correspond to a distinct class and indicates the probability that the given instance belongs 

to a specific class. In classification models that provide probabilistic outputs, either the 

class with the highest probability is chosen to be the predicted label or the class label is 

drawn by sampling the output distribution.  Fig 3.1 illustrates a simple binary classification. 

 

Fig 3.1 A simple binary classification. 

 

3.2.2 Regression 
 

   Regression, in machine learning, is defined as a statistical process of prediction target 

values given a set of input instances when the target label in question is a continuous 

quantity. It aims to find a relation between different variables of the dataset and output a 

set of continuous numeric values. Fig 3.2 illustrates an example of regression.  

 

Fig 3.2 A simple regression instance.  

   In regression problems, Mean Square Error (MSE) is one of the most commonly used 

loss functions used to evaluate model performance. The algorithm aims at minimizing this 

loss function which maps the variation between the numerical values predicted by the 

model and those observed or true targets. Formally,  

𝑀𝑆𝐸(𝑂, 𝑌) =  ∑‖𝑜𝑖 − 𝑦𝑖‖2
2

𝑛

𝑖=1
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3.3 Generalisation 
 

   Machine learning aims to develop models that are able to make predictions for 

unforeseen examples. Henceforth, generalisation to new instances is an important part of 

learning algorithms. We seek models that can work accurately not just with the training 

dataset but also the testing set. Therefore, instead of simply memorizing the training set, 

we want the algorithms to learn the underlying factors of variation.   

 

3.3.1 Bias-Variance Trade-off 
 

   Bias and variance of a machine learning algorithm helps in formal understanding of the 

reason behind errors encountered during the prediction task. To understand bias and 

variance in machine learning, we assume that the model in question can be trained multiple 

times with different randomly selected datapoints. Errors in prediction, caused due to bias 

and variance, are known as errors due to bias and errors due to variance respectively [17] 

[18]. 

   Let 𝑓(𝑥) be the prediction model; bias can be defined as the difference between the 

expected output of the model and the target value [19]. Formally,  

𝑏𝑖𝑎𝑠 = 𝐸[𝑓(𝑥)] − 𝑦 

where 𝐸[∙] is the expected value and y represents the true target. Variance, on the other hand, is the 

variability in different predictions of multiple trained instances of the model [19]. Formally,  

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  |𝑓(𝑥) − 𝐸[𝑓(𝑥)]|2 

   The total error observed in the model, in terms of bias and variance, is given as; 

𝑒𝑟𝑟𝑜𝑟 = 𝐸[(𝑓(𝑥) − 𝑦)2] = 𝑏𝑖𝑎𝑠2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

Given that the amount of data available is limited, there is always a trade-off between bias and 

variance. One may decrease one at the cost of the other. Therefore, the error can only be minimized 

by finding a balance between the two. Fig 3.3 illustrates and example of trade-off.  
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Fig 3.3 Dart chart: A graphical illustration of bias-variance trade-off. Consider a 

classification problem as throwing darts at a board. If darts land in very different parts of 

the board, the model has “high variance”. If their mean is close to the centre of the board, 

the model has “low bias”. Similarly, “low variance” and “high bias” can be defined. The 

above four dart boards correspond to these situations in [20]. 

 

3.3.2 Overfitting Problem 
 

   Overfitting is a problem encountered in machine learning where the model learns the 

training data so well but is unable to make prediction for the unseen instances from the 

testing dataset.  It means that the model has learned everything from the training dataset 

including noise instead of learning the underlying relations among variables in the dataset. 

According to Bishop [21], overfitting can occur due to limited availability of the dataset or 

too many model parameters. Another reason for overfitting can be the presence of 

imbalanced dataset which is a problem encountered mostly in classification problems; it 

has been discussed with respect to the classification model proposed in this thesis in later 

sections. Fig 3.4 illustrates overfitted, underfitted and a fit model.  
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Fig 3.4 Left: the model is underfitted or equivalently has high bias. This is because a linear 

function was used to approximate a second order polynomial function. Right: the model is 

overfitted because a high order polynomial function is used. This model has high variance.  

Middle: the model is just fitted. The Figure is adopted from Bishop [21]. 

 

Overfitting Due to Unbalanced Data 

 

   A dataset is said to be imbalanced or skewed if majority of instances belong to one class 

than other(s). In such cases, the classifiers would be inclined to always predict the majority 

class rendering the model weak and inaccurate. This type of overfitting simply happens 

because the classification objective assumes that errors from different classes have the 

same costs [22].  

 

3.4 Performance Evaluation for Classification 
 

   It is important to evaluate the strength of any given model. Error metrics help us 

determine how good the model will perform when exposed to unseen data. This section 

gives a brief description about the error metrics used for performance measure of a 

classification model.  

 

3.4.1 Accuracy 
 

   Accuracy of a model is defined as the percentage if correct predictions made by a model. 

Formally,  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
 

   However, with imbalanced data, one must face the accuracy paradox. If a class is 

abundant in a dataset, the model may be tempted to always classify each entry with this 

class. The accuracy may be high, but the model may not be able to find the entries of the 

under-represented class(es). In those cases, the accuracy must be compared with the null 

accuracy, which is a metric defined as the percentage of times the majority class is 

predicted by the model irrespective of the target for a given example. Formally,  

𝑁𝑢𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑦 =
# 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
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3.4.2 Kappa Score  
 

   Cohen’s Kappa is a statistical measure used to assess the reliability of an agreement 

between a fixed numbers labels whilst assigning categories. In case of more than two 

labels, we utilise Fleiss Kappa. It tells us how much better our model is performing over 

the performance of another model which will simply guess the result based on the 

frequency of each class. Formally,  

𝜅 =
�̅� − 𝑃�̅�

1 − �̅�𝑒

 

Where, �̅� represents the relative observed agreement among the raters and 𝑃�̅�  is the 

hypothetical probability of agreement. The factor 1 − �̅�𝑒 provides degree of agreement that 

is attainable and �̅� − 𝑃�̅�  gives the degree of agreement actually achieved. A value of 0 

indicates that the classifier is useless. The interpretation of the Kappa score is given in 

Table 4.1 [23]. 

TABLE 3.1: INTERPRETATION OF KAPPA SCORE. 

Value of Kappa Level of Agreement % of Data that is Reliable 

  <0 None 0-4% 

0.1 – 0.20 Minimal 4–15% 

0.21 – 0.40 Weak 15–35% 

0.41 – 0.60 Moderate 35–63% 

0.61 – 0.80 Strong 64–81% 

Above 0.90 Almost Perfect 82–100% 

 

 

3.5 Performance Evaluation for Regression 
 

   These error metrics help measure the strength and accuracy of a regression model when 

it is introduced to unseen data. These metrics are: Mean Absolute Error, Root Mean Square 

Error, Mean Absolute Percentage Error and Prediction Value (PRED).  

 

3.5.1 Mean Absolute Error  
 

   Mean Absolute Error (MAE) is defined as the mean of absolute error or difference 

between predicted and actual values. Mathematically, this can be defined as follows:  
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𝑀𝐴𝐸 =  
1

𝑛
∑|𝑎𝑐𝑡𝑖 − 𝑒𝑠𝑡𝑖|

𝑛

𝑖−1

 

 

3.5.2 Root Mean Square Error 
 

   RMSE represents the standard deviation of the magnitude difference between predicted 

and actual values. It measures the square root of the average of the squared difference 

between predicted values and the true values. Formally,  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑎𝑐𝑡𝑖 − 𝑒𝑠𝑡𝑖)2

𝑛

𝑖=1

 

 

3.5.3 Mean Absolute Percentage Error 
 

   MAPE is percentage equivalent of MAE. It is most commonly used as a loss function in 

regression problems and model evaluation due to its intuitive interpretation of relative 

error. Formally,  

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑎𝑐𝑡𝑖 − 𝑒𝑠𝑡𝑖

𝑎𝑐𝑡𝑖
|

𝑛

𝑖=1

× 100% 

 

3.5.4 Prediction Value (PRED) 
 

   PRED(n) represents the percentage of absolute percentage errors that are less than or 

equal to the value n among N transactions. 

𝑃𝑅𝐸𝐷(𝑛) =
1

𝑁
∑ {

 1, 𝑖𝑓 𝑀𝐴𝐸 ≤ 𝑛
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑁

1

 

   In this chapter, we discussed, in detail, the fundamentals behind supervised learning and 

presented some key concepts in supervised machine learning, such as Generalisation, 

Overfitting, etc. We also presented the evaluation criterion for the two machine learning 

approaches, namely classification and regression algorithms, used in this thesis. The 

following chapter presents the methodology employed in this work. We discuss the 

classification and regression models employed as well as the characteristics of the 

Ethereum blockchain dataset.  
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4. Methodology 
    

 

   Ethereum is a state-based machine. It changes the state of the network with every block 

confirmation and transaction made. Due to the volatile nature of the network, any 

prediction model must be able to keep up with the current state of the network in real time. 

    In this chapter, we propose machine learning models and techniques to tackle the 

transaction confirmation time prediction problem; we consider both classification and 

regression approaches. In case of classification, we present three machine learning 

algorithms that will be able to predict an approximate time window in which a transaction 

would be confirmed to a block. After general dataset analysis in terms of classification, we 

observed that the dataset was highly skewed meaning that most of the transactions 

belonged to one class over the others. Thus, dealing with an imbalanced classification 

problem, we made use of techniques to make the dataset more balanced. On the other hand, 

in case of regression approach, we present two machine learning algorithms that would be 

able to predict the time it would take for a transaction to be confirmed in terms of real 

values as opposed to the categorization done in classification. 

   In section 4.1, we will briefly discuss the limited research work done on the subject in 

the past and its limitations. In section 4.2, we analyse our dataset and understand its 

characteristics, features and class distribution, in case of our classification approach, and 

then present techniques to overcome those limitations. In section 4.3, we present the two 

approaches we adopt to tackle the imbalanced nature of our classification problem: 

algorithmic approach (Ensemble methods in Section 4.4) and the data-based approach (Re-

sampling techniques in Section 4.5). Section 4.6 presents the three machine learning 

algorithms that we adopt in order to tackle the confirmation time prediction problems for 

both the classification and regression approach. 

 

4.1 Related Work 
 

    Due the volatile nature of the Ethereum transaction dataset, its predictability has been 

sparsely covered in published literature. However, this section briefly discusses the work 

involving Ethereum transaction confirmation time prediction and their limitations.  

   Eth Gas Station [24] proposed a Poisson regression model to estimate the expected 

number of blocks it would take for a transaction to be confirmed based on the amount of 
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gas used by the transaction and the gas price. The model outputs real values (in seconds 

and in blocks). The model makes its estimations based on the data from the last 10,000 

blocks at any given time. The model uses statistical analysis and outputs the confirmation 

time prediction based on the percent of blocks that had a similar transaction confirmed 

within them in the past. The Poisson regression model [24] is periodically retrained to keep 

up with the most recent state of the Ethereum network.  The model does not take into 

consideration the transactions in the past that are still pending and how the data from those 

transactions could relate to current transactions. Their proposed statistical model is used as 

the basis of this thesis. It is used to analyse which of the two, machine learning or statistical 

modelling, would be more efficient for the prediction problem.  
 

4.2 Dataset Analysis 
 

   The initial dataset consists of about one million transactions that were made on Ethereum 

with the last transaction in the set dating at November 18, 2018. The data was extracted 

from etherscan.io API [25] and included the gas price, gas limit set by the user, gas used, 

timestamp for when the transaction was confirmed and when the transaction was made as 

well as the number of transactions made by the sender. While there is no given field in the 

API that would suggest when the transaction was made, we wrote a python script to extract 

the timestamp from the API’s pending transaction pool [26]. These transactions were used 

as the historical data to train the model before the actual time estimations were made.   

   For the purpose of classification, we divided the confirmation time in 8 categories: within 

15 seconds (or approximately 1 block time), within 30 seconds (approximately 2 blocks 

time), within 1 minute (approximately 4 blocks time), within 2 minutes (approximately 8 

blocks time), within 5 minutes (approximately 20 blocks time), within 10 minutes 

(approximately 40 blocks time), within 15 minutes (approximately 60 blocks time), within 

30 minutes or longer. The classes were defined based on the Ethereum network trend of 

creating new block about every 15 seconds. Most of the transactions (49.4%) belonged to 

class one (confirmed within 15 seconds) with only 0.112% of the transactions having to 

wait more than 30 minutes before being confirmed by a mining node. This implies the 

skewedness of the dataset. In general, classification algorithms have an affinity towards 

always predicting the majority class. This imbalanced nature of the dataset is why it is vital 

to adopt some kind of balancing techniques to ensure accurate predictions by the 

classification model.  

   It was also observed that out of the million transactions, about 1% of these were reverted 

transactions or failed. This can be visualised in Fig 4.1 while Table 4.1 presents the 

categorization of the dataset.  
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TABLE 4.1: STATISTICS OF DATASET 

Class Number of transactions 

1. Within 15 seconds 494,071 

2. Within 30 seconds 248,609 

3. Within 1 min. 173,047 

4. Within 2 min. 38,918 

5. Within 5 min. 33,951 

6. Within 10 min. 31,349 

7. Within 15 min. 8,934 

8. Within 30 min. and longer 1,121 

 

 

Fig 4.1 Total to okay and failed transactions. 

 

In order to classify a transaction into one of the 8 aforementioned classes, the independent 

variables which includes gasPrice, gasLimit, value and receipt_status are used to determine 

the class to which the transaction would belong.  

   On the other hand, in terms of regression, in order to predict discrete valued output 

defining the time taken by a mining node to confirm a transaction, no categorisation of the 

dataset is needed. The independent are simply passed through a regressor to determine the 

Failed Okay
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dependent variable, conf_time. This dependent is the difference between the two 

timestamps: (1) transaction’s introduction to the network and (2) the timestamp for its 

confirmation. Table 4.2 lists the variable in the input and output vector for our machine 

learning model. 

 

TABLE 4.2: DEPENDENT AND INDEPENDENT VARIABLE OF THE DATASET 

Variable Type Description 

gasPrice Independent 
Gas price provided by the sender in 

Wei. 

gasLimit Independent 

Represents the maximum amount 

of gas that should be used to 

execute a transaction. 

value Independent Value transferred in Wei 

receipt_status Independent 

Either 1 (success) or 0 (failure). 

This marks whether the transaction 

was successfully confirmed or not. 

timestamp_0  

Timestamp for when the 

transaction was added to the 

pending pool. 

timestamp_1  

Timestamp for when the 

transaction was confirmed by the 

mining node. 

conf_time Dependent 

Difference between timestamp_0 

and timestamp_1. This is used as 

the dependent variable in case of 

regression.  

class Dependent 

In case of classification, valued 

between 1 to 8. This defines the 

class to which a transaction 

belongs. 

 

   When a user wishes to make an exchange or execute a contract, initially, the data would 

have to be converted into a raw transaction data. This raw transaction contains the gasPrice, 

the gasLimit set by the user, the destination addresses as well as value; this value is the 

total amount of Ether they wish to send. It would then include the data into it which would 

be the hash of the function in the contract that the account holder wishes to execute.  

    In order to ensure that the transaction is made by the account holder and not by an 

unauthorized entity, the transaction would then have to be signed with the user’s private 

key. This is also used to ensure accountability of the sender.  
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   The transaction is then broadcasted to the Ethereum network and the local geth (or parity) 

node will generate a transaction ID that the user will be able to use to track its status. These 

geth (GO-Ethereum) or parity (Parity-Ethereum) nodes run Ethereum protocols that define 

how a user would operate, how the network works and the rules each user must follow to 

be a valid part of the Ethereum network [27]. These geth and parity nodes communicate 

with other nodes on the network and hold the ability to mine new transactions, to validate 

transactions in the block, to add new transactions to the block as well as to execute them. 

Fig 4.2 illustrates the broadcasting process.  

 

Fig 4.2 Signed Transaction propagating through the network.  The transaction is 

broadcasted by sender’s local geth (or parity) node to its peers who then broadcast it to 

their peers and so on until the whole network has a signed copy of the transaction. This 

figure is adopted from M. Murthy4. The Etherscan geth and parity nodes are responsible 

for updating the etherscan API [25]. 

 

   As discussed in Section 2.1, in the Ethereum network, some nodes work as full nodes or 

mining nodes. These nodes pick up a transaction and put in the effort to include the said 

transaction into a block. Mining nodes have a transaction pool where each transaction 

exists as pending before it is picked up for evaluation. These transactions are stored in the 

pool as per the gas price associated with each one of them. Higher the price, more likely is 

the node to evaluate it first. A sample pending pool is illustrated in Fig 4.3.  

 
4 Figure source: Murthy, M., Life Cycle of an Ethereum Transaction, Medium, 
https://medium.com/blockchannel/life-cycle-of-an-ethereum-transaction-e5c66bae0f6e, last accessed 
2019/04/20. 
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Fig 4.3 Mining node’s pending transaction pool.  

   It should be noted that the pending transaction pool can only hold a limited number of 

transactions. If account holders keep on generating transactions with higher gas price, as is 

the trend, the transaction with the minimum gas would be discarded and the transaction 

would have to be re-broadcasted to the network. 

   Next, once the miner has picked up the transaction to include in the block, the transaction 

would be validated, included into the pending block and the proof of work begins. Then, 

once the block is added to the blockchain, the valid block is then broadcasted to the entire 

network by the mining node.  

   Finally, the local node will receive the new block and will then sync its local copy of the 

blockchain. It would then execute all the validated transactions in the block.  

   In order to build a model that keeps up with the ever-changing state of the Ethereum 

network, we wrote a python script with the purpose of monitoring a local Geth node. This 

was done to extract data about mined as well as pending transactions. This allowed the 

model to access real-time data and make predictions based on current market trends rather 

than simply relying on historical data.  

   The data extracted from monitoring the mining node, again, included gasPrice, gasLimit, 

value, timestamp for when the transaction was confirmed as well as the timestamp for when 

the transaction was added to the pending pool of the geth node. The two timestamp variable 

were used to calculate the dependent variable for the regression model. This variable 

represented the time that it took for the mining node to confirm a transaction once it was 

added to its pending pool. This was calculated as the different of the two independent 

timestamps.  

   It should be noted that while on average, it takes up to 2 blocks for a transaction to be 

confirmed, it varies depending on network traffic as well as the number of transactions that 
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a mining node is assigning to a block. Another parameter that affects the confirmation time 

for a transaction is the gas limit the user has imposed on the transaction in question. A 

mining node gets an incentive for working on each transaction (see Chapter 2, Section 2.1). 

Higher the price the user is willing to pay, the higher the incentive the miner would get for 

the effort put in to perform computations on the transaction. Therefore, the mining node 

would be inclined to confirming such transactions over others leading to lower 

confirmation time. The variation in number of pending transactions per minute can be 

observed in Fig. 2 [28] and the block confirmation time variation can be observed in Fig. 

3 [29].  

 

Fig 4.4 Ethereum pending transaction queue (per min.). 

 

Fig 4.5 Ethereum Average Block time chart. (in seconds). 
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4.3 Tackling Unbalanced Data 
 

   Classification algorithms, in general, assume that the class distribution is balanced, either 

implicitly or explicitly [30]. Therefore, employing any classification algorithm on 

unprocessed skewed dataset would lead to an inaccurate classifier.  

   Moreover, in a simple classification model such as a Naïve Bayes model or a Support 

Vector Machine (SVM) the probability that one of the minority classes would be predicted 

is almost zero. Whereas, in case of complex classifiers such as Decision Trees, the feature 

selection criterion would simply ignore those minority classes [31].  Given a small amount 

of data for one class, feature selection methods could easily fail as there is no significant 

change in model performance by adding or eliminating a feature [30].  

   Assuming that these minority classes are the main cause of inaccurate classifiers, for the 

classification approach towards predicting confirmation time, we mostly focus on adapting 

our learning algorithm to accommodate the minorities. We will look into two approaches; 

(1) Algorithmic approach and (2) Data centric approach. These are discussed in detail in 

subsequent sections.  

 

4.3.1 Algorithmic Approach 
 

   The algorithmic approach for handling imbalanced class distribution uses ensemble 

methods. Ensemble method is a form of regularization technique that compensates for the 

drawbacks of a simple classifier by designing a complex structure of multiple classifiers. 

It aims to train multiple instances of the classifier and aggregate their outputs to get the 

final result with higher predictive accuracy. In terms of bias-variance trade-off (see Chapter 

3), combining and then aggregating multiple classifiers is meant to help reduce the high 

variance observed in a classifier due to skewed or imbalanced dataset. One of the most 

important ensemble method algorithms is Random Forest which is based on multiple 

instances of Decision Trees. Random forest is introduced in detail in Section 4.6.3. 

 

4.3.2 Data-centric Approach 

 
   Data-centric approach towards handling imbalanced dataset is based on re-sampling the 

dataset in order to make the classifier equally biased to the minority class(es) as it is 

towards the majority class. There are two types of re-sampling techniques: (1) Under-

Sampling and (2) Over-Sampling. In under-sampling, the algorithm would delete 

datapoints from the majority class whereas in over-sampling, the algorithm creates new 

data points for the minority class(es).  
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4.4 Ensemble Methods 
 

   The main idea behind ensemble methods is to generate complex classification models 

that combine prediction results of much simpler ones. These simpler models are known as 

base models. In general, base algorithms used in ensemble methods are Naïve Bayes, 

Decision Tree and Support Vector Machines. Ensemble methods aim to improve predictive 

performance of a model by reducing bias, variance or both [32]. 

   The two common ensemble methods towards combining classifiers are: Bagging and 

Boosting. There are discussed in subsequent sub-sections and are illustrated in Fig 4.6.  

 

Fig 4.6 Left: Represents a single classifier where the whole dataset is fed to the model in a 

single instance. Centre: Represents bagging where multiple variants of the dataset are 

created, each different from the other in a randomly sampled manner and are then fed to a 

number of models. The result is an aggregation of results from each model instance. Right: 

Represents boosting where random sampling with replacement over weighted dataset is 

used.  

 

4.4.1 Bagging 
 

   Bagging aims to reduce variance and avoid over-fitting [32]. It generates several same 

sized instances of the original dataset by sampling it with replacement. There may or may 

not be some datapoints from the original dataset that are repeated in these instances.  

   This process is known as bootstrapping. Bootstrapping increases the size of the training 

set which reduces the variance. The sets are fed to the model and their results are combined 

by either averaging (regression) or choosing the majority class (classification) [33].   

 

4.4.2 Boosting 
 

   Boosting aims to reduce both bias and the variance [32]. It aims to combine weak learner 

to generate a stronger one. At each training instance, the dataset is fed to a weak model 

which then gets added to a stronger model with weight associated with its accuracy. Each 

time the output from a weak learner is added to next, stronger one, the datapoints that have 
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been classified correctly, lose weight. This allows for the model to focus on misclassified 

datapoints. The process is repeated n times and the result will be a combination of n weak 

learners as a strong learner [34]. 

 

4.5 Data Resampling 
 

   As discussed in section 4.3.2, re-sampling is a data-centric approach towards tackling 

imbalanced data. It involves generation of samples of the dataset such that there is no bias 

in the model towards one class over others. Some of the generally used re-sampling 

techniques are discussed below.  

 

4.5.1 Random Over-sampling 
 

   In random over-sampling, the algorithm aims to generate new datapoints for the minority 

class. These new datapoints are simply copies of some randomly selected datapoints from 

the original dataset. The algorithm keeps on generating new datapoints until all the classes 

in question have same number of datapoints.  

 

4.5.2 Random Under-sampling 
 

   In random under-sampling, the algorithm aims to randomly delete datapoints from the 

majority class. The process continues until all classes have same number of datapoints. 

One drawback of this technique is that it might delete the datapoints in the decision 

boundary that are important in the process of decision making. 

 

4.5.3 SMOTE 
 

   Synthetic Minority Over-sampling Technique (SMOTE) [35] is a re-sampling technique 

that utilizes interpolation between current datapoints to generate new datapoints in the 

minority class. A major drawback of this technique is that it might also generate new 

datapoints for the majority class.  

 

4.6 Prediction Models 
 

   In this section, we introduce the machine learning models used in the thesis for the 

prediction of confirmation time in Ethereum blockchain network. These models are: Naïve 

Bayes Classifier, Decision Tree and its implementation: Random Forest as well as 

Multilayer Perceptron (MLP).  
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4.6.1 Naïve Bayes Classifier 
 

   Let 𝐾 be the number of classes in a distribution. The conditional probability of class 𝑘 

given a vector of n distinct features 𝒙 = {𝑥1, 𝑥2, … , 𝑥𝑛} can be written as 𝑃(𝐶𝑘|𝒙). 

According to Bayes theorem [36], this probability can be formulated as:  

𝑃(𝐶𝑘|𝒙) =
𝑃(𝒙|𝐶𝑘)𝑃(𝐶𝑘)

𝑃(𝒙)
 

where, 𝑃(𝐶𝑘|𝒙) is the posterior, i.e., our updated knowledge conditioned on the observed 

data while 𝑃(𝒙|𝐶𝑘) and 𝑃(𝐶𝑘) are called the likelihood and the prior respectively.  

   In terms of classification, 𝑃(𝒙) remains same for all classes and the training of a classifier 

is meant to be such a way that the nominator is maximized for the target class and 

minimized for all others [37]. This nominator is the joint probability of all the classes  𝐶𝑘 

and the features 𝒙; 𝑃(𝐶𝑘, 𝑥1, 𝑥2, … , 𝑥𝑛). This, by chain rule [38], can be formulated as:  

𝑃(𝐶𝑘, 𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑃(𝐶𝑘) ∗ 

𝑃(𝑥𝟏|𝐶𝑘) ∗ 

𝑃(𝑥𝟐|𝑥𝟏, 𝐶𝑘) ∗ 

𝑃(𝑥𝟑|𝑥𝟐, 𝑥𝟏, 𝐶𝑘) ∗ 

…  

𝑃(𝑥𝒏|𝑥𝒏−𝟏, … , 𝑥𝟏, 𝐶𝑘) 

   Consequently, since 𝑃(𝐶𝑘|𝑥1, … , 𝑥𝑛)  ∝  𝑃(𝐶𝑘, 𝑥1, 𝑥2, … , 𝑥𝑛), a classifier can be formally 

defined as:  

�̂� = argmax
𝑘∈{1,2,…,𝐾}

𝑃(𝐶𝑘, 𝑥1, 𝑥2, … , 𝑥𝑛) 

   In practice, training such a classifier with large number of features can be complex and 

challenging. A simpler yet effective variant of a probabilistic classifier is a Naïve Bayes 

classifier [39]. It assumes that given the class label 𝐶𝑘, all features 𝒙 = {𝑥1, 𝑥2, … , 𝑥𝑛}  are 

independent from one another. A graphical illustration of a Naïve Bayes classifier is given 

in Fig 4.7.  
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Fig 4.7 Bayesian network representation of the naive Bayes classifier. According to the 

graph representation, conditioned on the class 𝐶𝑘,, all the features 𝒙 = {𝑥1, 𝑥2, … , 𝑥𝑛} are 

independent of each other. 

 

4.6.2 Decision Tree 
 

   Decision tree is a decision support tool that employs a tree-like structure of decisions as 

well as their consequences. It operates like a flow-chart where each node represents a test 

on an attribute and each branch represents the outcome of the test. The leaf node represents 

a decision on the numerical target [40]. 

   A simple example [41], consider a set of features {Outlook, Humidity, Wind} and the 

target is Play Tennis which takes values of “Yes” or “No”. A decision tree is illustrated in 

Fig 4.8    

 

Fig 4.8 A graphical representation of a decision tree classifier. The classification starts 

from the top and moves downwards to the leaf nodes which represent the outcome of 

whether playing tennis would be a possibility or not. The example has been adopted from 

Mitchel [41]. 

 

4.6.3 An Ensemble of Decision Trees: Random Forest 
 

   Random Forest is an ensemble learning method. The algorithm is based on combining 

decision trees to build a stronger prediction model. A decision tree leads to hierarchical 

partitioning of the feature space. Starting from the root node, each node divides the feature 

space in two or more partitions. The partitioning becomes more and more complex with 

each new decision node. This can lead to over-fitting where in, due to the complexity of 
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partitions, the training set yields almost no error whereas the testing set yields more or less 

very inaccurate results.  

   This is where combining decision trees can be helpful [40]. Random forest is an ensemble 

of decision trees in which the final prediction is the result of aggregation of the output from 

each of the individual decision trees.  

   Given a training set 𝑋 = {𝒙1, 𝒙2, … , 𝒙𝑚} and a corresponding set of targets 𝑌 =

{𝑦1, 𝑦2, … , 𝑦𝑚} where 𝒙𝑖 has a set of n features 𝒙 = {𝑥1, 𝑥2, … , 𝑥𝑛}, the following steps are 

done k  times to train a random forest model: 

- Select a random set of samples with replacement from 𝑋 called 𝑋𝑘.  

- Build a decision tree on 𝑋𝑘 which is trained on a random subset of features 

(n’ < n). 

   This process can be visualized in Fig 4.9.  For classification task, the prediction of class 

for an unseen sample can be done by choosing the majority class from each of the k decision 

trees. Whereas, for regression, the output prediction can be the aggregation of the output 

of all the k decision trees.  

 

Fig 4.9 In a random forest, k different decision trees are trained using k different subsets of 

the dataset. During test time, a sample input point is fed to all trees and predictions 𝑃1, 𝑃2, 

𝑃3,…, 𝑃𝑘 are generated. A voting is then applied on all predictions to make a single final 

prediction. 

 

    The performance of a random forest model is mostly dependent on two factors [42]: 

correlation between two trees and the accuracy of each tree. By increasing the feature 

subset (n’) size, the tree’s accuracy would increase but so would the correlation. Hence, n’ 
should be optimized. Random forest model, in general, performs well at learning complex, 

highly non-linear relationships; like between time and both gas price and gas used in 

Ethereum blockchain dataset. The model is known to outperform fundamental 
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classification and regression models like naïve Bayes, polynomial and linear regressors 

[43]. 

 

4.6.4 Multilayer Perceptron (MLP) 
 

    A perceptron is a linear classifier that classifies input by separating two categories with 

a straight line [44]. The perceptron produces single output based on linear combination of 

several revalued inputs and input weights. Formally,  

𝑦 =  𝜑 (∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

) = 𝜑(𝒘𝑻𝒙 + 𝑏) 

where, 𝑥𝑖 represents the inputs to the unit, 𝑤𝑖 represents the weights, 𝑏 represents the bias 

and 𝜑 is the non-linear activation function. In terms of classification, this non-linear 

activation function 𝜑 is a hard threshold at zero. Whereas, in terms of regression, it uses a 

linear model such that 𝜑(𝑧) = 𝑧 [44].  

   A perceptron in itself, is single layered. It is unable to formulate model hierarchy as in 

an artificial neural network. It is, therefore, shallow neural network that is unable to 

perform non-linear operation such as XOR function [45]. The term shallow implies that 

the neural network does not have more than one or two hidden layers.  

   MLP is an adaptive neural structure made up of at least three layers constituting an input 

layer which is made up of a number of perceptions equal to the number of attributes of the 

dataset. The network must have at least one hidden layer and an output layer made up of 

one perceptron in case of regression and a number of perceptrons equal to the number of 

classes in case of a classification problem. Every unit in one layer is connected to every 

unit in the next layer making it a fully connected network. These layers communicate 

among one another via synaptic connections represented by weights [46]. Each layer except 

the input layer has a non-linear activation function.   

   MLP is a supervised learning technique which learns a function 𝑓(∙) ∶  𝑅𝑛 → 𝑅𝑜 by 

learning a dataset with 𝑛 input dimensions and 𝑜 output dimensions. Training involves 

adjusting parameters, weights or biases for the model with an aim to minimize error. These 

adjustments are generally made via Backpropagation.     

   MLPs, in general, have two ways of operation: Forward pass or Backward pass. In 

forward pass, the signal flows from input layer through hidden layer to the output layer 

where the decision accuracy is measured against target labels. In backward pass, however, 

the chain rule of calculus i.e., partial derivatives w.r.t. the weights and biases are back 

propagated through MLP. This differentiation provides us with a gradient along with which 

the parameters can be adjusted further so as to minimize error. The process continues until 

the error measure reaches a set limit and the model is said to be a convergence state.  Fig. 

4.10 shows a simple MLP regressor. 
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Fig 4.10 A simple MLP regressor. 

 
   MLP can work with as many hidden layers and parameters as one might require, all with 

non-linearities between them. This allows the model to be able to learn any complex non-

linear relationship in a dataset, as observed with random forest. MLP is known to be 

flexible and adaptive to any feature-variable relationships and hence, does not require one 

to stress over the structure of the network [43].    

   This chapter presented the limited research work that has been done in order to make 

confirmation time predictions in Ethereum blockchain as well as the machine learning 

models employed in our thesis. We also discussed the techniques to tackle the problems 

associated with our classification approach and the skewed nature of the dataset. The 

following chapter discusses the complexities of the three models proposed in this chapter 

and presents the results observed from our experiments with the three models in terms of 

both classification and regression approaches.  
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5. Results and Discussion 
 

 

   In the previous chapters, several methods and algorithms for confirmation time prediction 

in Ethereum blockchain network have been introduced in terms of both, classification and 

regression. In this chapter, Section 5.1 explains the toolkit and environments used for our 

experiments. Section 5.2 discusses the computational complexities of the machine learning 

techniques used in this thesis as well as the statistical regression technique that is currently 

being used [24] to make prediction for Ethereum network. Section 5.2 implementation 

details of the classification approach. We report and analyse the performance of several 

machine learning and re-sampling algorithms in Section 5.3. Section 5.4 discusses the 

model implementation details of regression approach. Then, in Section 5.5, we analyse the 

performance of the machine learning regression algorithms. Finally, in section 5.6, we 

discuss our results and observations.  

 

5.1 Environments and Toolkits 
 

   In this section, we present the details about the programming environment and the 

toolkits that were employed during our experiments. Both the classification and regression 

implantation of our problem statement were set up in Python details of which are discussed 

in the following subsections. 
 

5.1.1 Python 
 

   Python is a general-purpose, interpreted, dynamic and most widely used programming 

language when it comes to data analysis or any of the related problems. It offers a robust 

collection of scientific, mathematical and statistical tools that allows for easy 

implementations of varying degree of machine learning algorithms.  

   It offers many distinct libraries, each with their own specific features and capabilities. 

These libraries include, but are not limited to, NumPy (Python’s Numerical library) [47], 

SciPy (Scientific library) [48], scikit-learn and Imbalanced-learn. In our work, we employ 

Python 3.0 among other libraries facilitating data and model performance analysis.  
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5.1.2 Scikit-learn 
 

   Scikit-learn [49] is a machine learning oriented python library build atop NumPy and 

SciPy. It offers varying degree of data-mining and analysis tools and is open source. It is 

capable of implementing multiple machine learning algorithms for the fundamental 

machine learning tasks of classification, regression or clustering.  
 

5.1.3 Imbalanced-learn 
 

   Imbalanced-learn [50] is a python library built atop scikit-learn, SciPy and NumPy that 

offers many re-sampling techniques to handle data imbalance such as over-sampling, 

under-sampling, SMOTE etc.  

 

5.2 Computational Complexities 
 

   The computational complexity of an algorithm can be defined as the measure of resources 

required for running it. For a given instance or input vector [51], it is the measure of the 

number of steps required to compute the output, assuming this to be the worst-case 

scenario. In general, complexity of machine learning algorithms is highly dependent on 

their implementations, dataset properties, etc. [52]. While discussing the complexity of the 

two machine learning algorithms employed in this paper, we consider upper bounds in case 

of dense data as is the case with our dataset. 

   Let  𝑛 denote the number of instances or transactions in our training subset, 𝑝 denote the 

number of parameters passed as input vector (seven in our case), ℎ𝑙𝑖 denote the number of 

nodes in each layer 𝑖 of MLP, 𝑒 denote the number of epochs and 𝑡 denote the number of 

trees in the random forest method. Table 5.1 shows the complexities of the three 

approaches.  

 

TABLE 5.1: COMPLEXITY OF MACHINE LEARNING ALGORITHMS  

Model Training Prediction 

Naïve Bayes 𝑂(𝑛𝑝) 𝑂(𝑝) 

MLP 
𝑂(𝑒 ∗ 𝑛 ∗ (𝑝ℎ𝑙1 +

ℎ𝑙1ℎ𝑙2) 

𝑂(𝑝ℎ𝑙1 + ℎ𝑙1ℎ𝑙2

+ ⋯ ) 

Random Forest 𝑂(𝑛2𝑝𝑡) 𝑂(𝑝𝑡) 

Eth Gas Station 𝑂(𝑝2𝑛 + 𝑛3) 𝑂(𝑝) 

 

   We observe that in the case of Naïve Bayes, which is only employed for classification 

purposes, the training complexity is entirely dependent on the number of instance and 

number of parameters passed as input. Whereas, random forest, which is an ensemble 
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method, simply multiplies the prediction accuracy, of a simple regressor used by Eth Gas 

Station, by the number of trees or ‘voters’ employed. While, one interpretation of this could 

be increased complexity, the presence of multiple voters also ensures stronger model with 

a chance at better predictive accuracy.   

   Similar inference can be made in case of MLP. The complexity of MLP depends on the 

number of layers, number of neurons in each layer as well as the number of training epochs. 

While the network structure may increase, it also leads to a stronger more accurate 

predictive model; this is not the case when we consider a liner regressor like the one used 

by Eth Gas Station.  

 

5.3 Implementation Details for Classification Approach 
 

   As discussed in Section 4.2, the data set was distributed into 8 classes making this a 

multi-class classification problem. Once data was obtained, the dataset was split into 2 

disjoint sets. The first set which comprises 80% of the data was used for training and 

validation. The second set was used as a test data set in order to compare the performance 

of each model on identical data instead of a randomly split dataset. 

   In the subsequent sections, we discuss the implantation detail of the three algorithms- 

Naïve Bayes classifier, Random Forest Classifier and Multilayer Perceptron.  
 

5.3.1 Naïve Bayes Classifier 
 

   We know that Naïve Bayes classifier employs Bayes theorem (see Section 4.6.1). In most 

implementations, the prior is calculated by using an estimate for the class probability from 

the training set.  

𝑃(𝐶𝑘) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔 𝑡𝑜 𝐶𝑘 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
 

   To model the likelihood term, one can assume a distribution over the data represented by 

feature vector. In our work, we use Gaussian distribution. While, there are many other 

functions (e.g., Bernoulli) that could have been employed, Gaussian or Normal distribution 

is easiest to work with since it can approximate wide range of data by simply calculating 

mean and variance. Formally [53], 

𝑃(𝒙|𝑪𝒌) =
1

√2𝜋𝜎𝐶𝑘

2

𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝜇𝐶𝑘

)2

2𝜎𝐶𝑘

2 ) 

where 𝜎𝐶𝑘
 and 𝜇𝐶𝑘

 are estimated via maximum likelihood.  
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5.3.2 Random Forest 
 

   Random forest is an ensemble of decision trees. As the number of trees in the forest 

increases, better overall performance is achieved [54]. However, it can also be 

computationally expensive to create forests with large number of trees. In our experiment, 

since the model is expected to keep up with the most recent state of the Ethereum network, 

the number of transactions that the model will learn at time would be of a relatively small 

dataset. Therefore, it is possible to seek out more accurate predictions by employing a 

forest with higher number of trees. Each tree in the forest would classify any given 

transaction into one of the eight labels (as discussed in Chapter 4 Section 2). Then, the final 

classification for the transaction would be predicted by taking a mode over the prediction 

by each tree in the forest. During our experiments, we observed that by increasing the 

number of trees in the forest, the model accuracy increased. However, after employing a 

forest with 500 trees, the increase in model’s predictive accuracy was insignificant as 

compared to the training time for the random forest model.  

 

5.3.3 Multilayer Perceptron (MLP) 
 

   An MLP with batch normalization [55] and dropout [56] is used for the dataset with a 

Softmax output layer [57]; Cross entropy [58] was used as the loss function for the network. 

The model with only one hidden layer was used and the optimization of the neural network 

was performed using AdaGrad optimization [59]. Furthermore, the learning rate was 

decayed exponentially with each epoch of training in order to optimally converge the 

learning process for the neural network. 

 

5.4 Results with Classification Approach 
 

   The three models were first evaluated with the static data (as discussed in Section 4.2) 

and then, they were also evaluated as incrementally re-trained models. This section 

presents the results observed with the three models when used on both static and 

incrementally updated real time dataset for our classification approach towards predicting 

the transaction confirmation time in Ethereum blockchain network. 
 

5.4.1 Initial Performance 
 

   During the evaluation process of the three models, a randomly selected data subset of 

100,000 transactions was used and the prediction accuracy, null accuracy and kappa score 

for each model, was calculated for the three re-sampling techniques: Under- Sampling, 

Over-Sampling and SMOTE. 

   It should be noted that while the data acquired from the Ethereum API had several 

attributes, they did not all have the same effect on the prediction accuracy. We observed 

that the gas price and gas limit have the most effect on the confirmation time for a 

transaction and that the model accuracy can be increased by a large factor (as per our 
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experiments) if weighted models are employed. Out of three, only MLP offers weighted 

nodes for parameters. The other two model were modified as locally weighted Naïve Bayes 

[60] and weighted random forest [61]. The evaluation results can be observed in Table 5.2, 

5.3 and 5.4.  

 

TABLE 5.2: INITIAL EVALUATION RESULTS WITH CLASSIFICATION 

APPROACH WITH UNDER-SAMPLING 

Time to train (in 

minutes) 

Accuracy Null Accuracy Kappa 

Score 

Model used 

7 57.78% 54.85% 21.54% Naïve Bayes 

13 94.56% 93.23% 87.00% Random Forest 

35 71.35% 68.42% 77.13% MLP 

 

 

TABLE 5.3: INITIAL EVALUATION RESULTS WITH CLASSIFICATION 

APPROACH WITH OVER-SAMPLING 

Time to train (in 

minutes) 

Accuracy Null Accuracy Kappa 

Score 

Model used 

20 57.78% 54.85% 21.54% Naïve Bayes 

38 96.88% 95.67% 88.78% Random Forest 

89 73.35% 72.45% 77.36% MLP 

 

 

TABLE 5.4: INITIAL EVALUATION RESULTS WITH CLASSIFICATION 

APPROACH WITH SMOTE 

Training 

Data 

Time to train 

(in minutes) 

Accuracy Null 

Accuracy 

Kappa 

Score 

Model used 

100,000 15 99.54% 98.85% 26.74% Naïve Bayes 

100,000 20 97.39% 97.46% 85.00% Random Forest 

100,000 53 85.27% 55.32% 73.61% MLP 

1,000,000 25 92.08% 90.5% 27.70% Naïve Bayes 

1,000,000 40 96.78% 95.13% 83.42% Random Forest 

1,000,000 130 92.91% 67.39% 78.50% MLP 

 

   The naïve Bayes model with SMOTE resulted in best prediction accuracy; however, the 

null accuracy for the model was also very similar to the prediction accuracy hence 

rendering the model inaccurate. The random forest model with SMOTE came out with the 

best kappa score but also had high null accuracy relative to prediction accuracy; this makes 

MLP with SMOTE the best but moderately accurate model for prediction of the classes for 

the testing data. The performance of the three models with under-sampling and over 

sampling was observed to be subpar at best.   
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   The three models were then executed with the whole dataset providing similar results 

(See Table 5.4) but with better accuracy and Kappa score implying that these models learn 

better with more data available to train.  

 

5.4.2 Real-time Dataset 
 

   In order to accurately predict the confirmation time for a transaction, the model needs to 

keep the network congestion in mind. Hence, there is a need for the model to be re-trained 

incrementally. For our classification approach, this was only implemented in the MLP 

model; this is because Naïve Bayes classifier offered a weaker model, as discussed above, 

and Random Forest model is incapable of storing weights, i.e., each time there is new 

dataset available, the model needs to be re-trained from scratch. 

   To train the model from scratch at each interval would prove to be inefficient due to high 

training time. To make it work, after training the network, the weights associated with it 

are saved and loaded when new data becomes available. This allows the model to be trained 

from where it was last trained. 

   According to the data collected from Ethstats.net [62], each block in Ethereum has a gas 

limit of 7,999,992 and let’s assume that each transaction costs 21,000 gas, assuming 

nothing else is attached to it and that the mining nodes are in fact generating full blocks. 

This implies that there are ~380 transactions (upper limit) in each block with a block time 

of ~15.03 seconds. This would result in about 25.346 txn/second. The MLP model 

discussed in section 5.1.3 was re-trained at 10-minute, 15-minute and 30-minute intervals; 

Table 5.5 shows the results.   

 

TABLE 5.5: REAL-TIME DATA EVALUATION RESULTS WITH 

CLASSIFICATION APPROACH 

Time Interval 

(in minutes) 

No. of 

transactions 

(thousands) 

Time to train 

(in minutes) 

Model 

Accuracy 

Kappa Score 

10 15.6 ~14 83.61% 78% 

15 23.4 ~15 82.34% 78.12% 

30 46.8 ~17 82.18% 78.77% 

 

   We observed that MLP worked with average accuracy of about 82.7% irrespective of the 

time interval at which the model was trained with the new dataset. It was also observed 

that the training time did not vary much with the increased time interval. Therefore, in 

order to prevent the model from learning a large number of transactions at a time, we 

decided to re-train the model at a 15 minutes interval.  
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5.5 Implementation Details for Regression Approach 
 

   Before we assess the performance of any given model, especially in case of regression 

where the output is a set of continuous values and not a set of discrete values, it is necessary 

to understand and optimize the model structure. Since the continuous valued output 

expected from a regressor can either be less or more than the known value, it is important 

to employ absolute error (discussed in Chapter 3 Section 5) as the evaluating factor in order 

to evaluate the performance accuracy of a regression model. This is because the error 

metric such as RMSE would severely penalize extreme outlier (or very bad predictions) 

since it is root of the square of the difference between the estimated and actual target values. 

However, this is not the case with MAE where the metric is not as sensitive to outlier as 

MSE. 

   In the subsequent section, we present the implementation details for the two regression 

models: Random Forest regressor and Multi-Layer Perceptron regressor. This is because 

Naïve Bayes, as utilized in case of classification approach does not offer an alternative for 

the regression approach. Whereas, as discussed in Chapter 4, both MLP and Random 

Forest, in general, perform well at learning complex, highly non-linear relationships (e.g., 

relationship between time and both gas price and gas). 

 

5.5.1 Random Forest  
 

   As discussed earlier, the performance of a random forest algorithm greatly depends on 

the number of tress in the forest. After a certain point, using large number of trees only 

makes the model more complex rather than improving its accuracy. In our experiment, we 

employed multiple variants of random forest model: with 250 and 500 trees with at least 5 

samples at the leaf node, with 1000 trees and at least 10 samples at the leaf nodes, 1500 

trees and at least 15 samples as well as one with 2000 trees and at least 20 samples at leaf 

nodes. Before the data features and the dependent variable (time taken to confirm a 

transaction) are passed through the random forest regressor function available in scikit-

learn [63], we passed also employed a grid search operation available in the library [64] to 

optimise the model depth (max_depth) for each of the random forest variant to optimise 

their performance accuracy. Each tree in the forest would take the set of independent 

variables, as discussed in Chapter 4 Section 4.2, and make discrete valued prediction for 

the conf_time which is time taken by the mining node to confirm a given transaction. A 

random forest regressor will then take an average over the discrete valued results calculated 

by each tree in the forest [42] and generate the final result as the estimated prediction for 

the transaction.  

 

5.5.2 Multi-Layer Perceptron (MLP) 
 

    In case of MLP, we trained multiple variations of MLP with one hidden layer, two 

hidden layers as well as with three hidden layers to compare the effect of added layer on 
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training complexity and the prediction accuracy of the model. All variants of MLP employ 

backpropagation and no activation function (or identity function) at the output layer. This 

is because in case of regression, we are interested in predicting numerical values and do 

not require any transformations as was the case with the classification approach. MLP also 

employs square error as the loss function. Formally,  

𝐿𝑜𝑠𝑠 (�̂�, 𝑦, 𝑊) =
1

2
‖�̂� − 𝑦‖2

2  +  
𝛼

2
‖𝑊‖2

2 

where, α‖𝑊‖2
2 is an L2- regularisation term (or penalty) that penalises the MLP 

model; and α > 0 represents the non-negative hyperparameter that controls the 

magnitude of penalty. MLP regressor, starting from random weights 𝑊, works on the 

minimizing the aforementioned loss function by running multiple iteration and 

updating the weights at every step as it backpropagates through the output layer.  
 

5.6 Results with Regression Approach 
 

   Similar to the case of classification, we initially split the historical data in two parts where 

80% of the transactions were fed to both of our proposed models, i.e., MLP and random 

forest, and the remaining 20% was used to validate the models after the training phase. 

This was done to make sure that the model was able to properly predict the block 

confirmation time for the transaction before real-time data was involved. 

 

 

5.6.1 Initial Performance 
 

   The computational complexity of MLP is dependent on the number of hidden layers used 

to design the network and that of random forest depends mostly on the number of trees 

used (see Section 5.1). In order to further understand the complexity, we executed multiple 

variants of the two machine learning models (MLP and Random Forest). The results of 

these experiments can be observed in Table 5.6, 5.7 and Figs. 5.1 and 5.2.  

 

TABLE 5.6: TRAINING TIME FOR THE THREE MLP VARIANTS 

Model Time to train (in minutes) 

MLP with one hidden layer 130 

MLP with two hidden layers 210 

MLP with three hidden layers 350 
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Fig 5.1 Training time for different variants of MLP (in minutes). 

 

TABLE 5.7: TRAINING TIME FOR THE FIVE RANDOM FOREST VARIANTS 

Model Time to train (in minutes) 

250 trees/5 samples 10 

500 trees/5 samples 22 

1000 trees/10 samples 40 

1500 trees/15 samples 53 

2000 trees/20 samples 71 

 

 

 

Fig 5.2 Training time for different variants of Random Forest (in minutes). 
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   We also observed that there was a gradual increase in prediction accuracy of the model 

as we added more layers, in case of MLP and more trees, in case of random forest. 

However, the increase was so slight that when considering the time taken to train these 

variations, the increased model accuracy turns out to be a bad trade off. The performance 

of the two models and the variants can be observed in Table 5.8, 5.9 and Fig 5.3 and 5.4.   

 

 

TABLE 5.8: RESULT ANALYSIS FOR STATIC DATASET WITH MLP WITH 

REGRESSION APPROACH 

Model MAE RMSE MAPE Pred (0.20) 

One hidden 

layer 0.167 0.408 7.40% 87.51% 

Two hidden 

layers 0.153 0.391 6.89% 88.02% 

Three hidden 

layers 
0.1493 0.386 6.57% 88.44% 

 

 

 

TABLE 5.9: RESULT ANALYSIS FOR STATIC DATASET WITH RANDOM 

FOREST WITH REGRESSION APPROACH 

Model MAE RMSE MAPE Pred (0.20) 

250 trees/5 

samples 0.118 0.343 5.07% 89.54% 

500 trees/5 

samples 0.112 0.334 4.83% 93.79% 

1000 trees/10 

samples 0.109 0.33 4.81% 93.91% 

1500 trees/15 

samples 0.1087 0.329 4.809% 93.92% 

2000 trees/20 

samples 0.1087 0.329 4.809% 93.92% 
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Fig 5.3 Performance comparison between variations of MLP, with static data and under 

the set evaluation criteria. 

 

 

 

Fig 5.4 Performance comparison between variations of, Random Forest with static data 

and under the set evaluation criteria. 
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5.6.2 Real-time Dataset 
   

   For real time data, the local geth node that was being monitored (see Section III) has been 

recording details of the transactions as they are made. These details include the timestamp 

for when the transaction was made, the number of blocks that were created before it was 

confirmed, the gas price as well as the gas limit set by the user. Whenever there is a set of 

new transactions for which the model is required to make confirmation time predictions, it 

would do so based on the data collected by geth node for the most recent confirmed 

transactions (from the past 100 blocks). These are then fed to the model with the main 

strategy of predicting the confirmation time for a transaction given a certain gas price 

between 0-100 gwei at the current state of the transaction pool.  

   The two machine learning regression techniques proposed were compared with Poisson 

Regression Statistical model used by Eth Gas Station [24]. Since there is no literature 

available confirming the accuracy of this statistical model; to measure the prediction 

accuracy of Eth Gas Station, a randomly generated subset of the data gathered from the 

local geth node was passed through a regression model similar to the one used by Eth Gas 

Station  as available on their GitHub page [65]. Eth Gas Station performs their predictions 

in terms of number of blocks a transaction had to wait before it was confirmed by a mining 

node instead of number of seconds as done in this work [66]. It should be noted that, on 

average, in Ethereum, a new block is created every 15 seconds. This implies that if a 

transaction had to wait 29 seconds before it was confirmed by a mining node then it waited 

for two block confirmations. This interchangeability between the two allowed us to 

compare the performance of our machine learning algorithms against Eth Gas Stations 

Poisson regression model.  

   According to the data collected from BitInfoCharts [67], on average, each block has 138 

transactions in it. Considering that our models consider data from 100 most recent block to 

predict the confirmation time for transaction(s) in question, the models will have to learn 

about 13.8 thousand transactions. Table 5.10 illustrates the time taken by each model to 

learn these transactions.  

TABLE 5.10: TRAINING TIME FOR THE THREE MODELS TO LEARN 100 

BLOCKS 

Model Time to train (in minutes) 

Eth Gas Station 2.91 

MLP 7.31 

Random Forest 2.78 

 

   Taking into consideration the complexity of each variant as observed in previous section, 

comparison of statistical approach taken by Eth Gas Station was done against MLP with 
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one hidden layer and random forest with 500 trees and at least 5 samples at leaf nodes. It 

should be noted that for Eth Gas Station, we implemented a Poisson regression model to 

calculate the time taken by the model to learn 13.8k transactions. 

    Since users are allowed to make transactions at any given time, our model should remain 

up to date with the most recent Ethereum blockchain network state. Given the time taken 

by each of the three models as seen in Table 5.10. we trained the random forest model at 

an interval of 3 minutes whereas the MLP was trained at an interval of 8 minutes. Table 

5.11 and Fig 5.5 shows the results for the two models when compared with Eth Gas Station.  

 

 

TABLE 5.11: RESULT ANALYSIS FOR THREE REGRESSION MODELS 

Model MAE RMSE MAPE Pred (0.20) 

MLP 0.21 0.424 10.54% 82.74% 

Random Forest 0.13 0.36 5.70% 89.36% 

Eth Gas Station 0.174 0.417 9.31% 84.79% 

 

 

 

Fig 5.5 Performance comparison between MLP, Random Forest and Eth Gas Station 

under the set evaluation criteria. 

 

   The Multi-Layer Perceptron produces a mean absolute error of about 0.21 with the root 

mean square error of 0.424 and pred(n) of 82.74% at n being 0.20. While analysing 

hyperparameters, it was observed that RMSE can be decreased at the cost of prediction 

accuracy, resulting in a weak or inaccurate model. The mean absolute percentage error 

observed with MLP was about 10.54%. Similarly, with random forest, MAE was observed 
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to be good at 0.13 with RMSE at 0.36, MAPE at 5.7% and pred (0.20) of a solid 89.36%. 

When evaluating the statistical Eth Gas Station, the mean absolute error of 0.174 was 

observed with mean absolute percentage error at 0.31%, RMSE at 0.417 and a prediction 

accuracy of 84.79%. We conclude, from above discussion, that the random forest model 

performs better than the other two models in all the evaluation criterions employed.  

5.7 Discussion 
 

   In terms of classification approach, prediction accuracy and Cohen’s Kappa score are one 

of the most important performance measurement metrics. We observed that random forest 

and MLP both perform well under the two metrics. However, it is not possible to store the 

weights in random forest therefore the model does not perform well with real-time data 

which is the most important aspect of our problem statement. MLP, on the other hand, 

presents a model with relatively good accuracy and moderate strength in terms of Cohen’s 

kappa score. The MLP model work with an average accuracy of about 82.5%.  We know 

that on average, a transaction has to wait for two block confirmations (~30 seconds) before 

it is confirmed. However, in cases where the model would predict that the transaction 

belongs to ‘within 5 minutes’ class, there is no way for the user to know if it would take 3 

minutes, 4 minutes or more. Hence, while the model performs with good prediction 

accuracy, it can only provide a user with an approximation of time it would take for their 

transaction to be confirmed which may or may not always be ideal. Due to the large amount 

of capital involved and the sensitivity of data that is to be transferred via a transaction 

through the Ethereum blockchain network, the user may want more precise predictions in 

terms of transaction confirmation. This is where regression approach comes in.  

   Unlike the classification approach, the regression approach to our problem results in real 

valued predictions for the confirmation time. The principal metric for evaluation of a 

regression model is Root Mean Square Error. We observed that out of the two machine 

learning algorithms we proposed, i.e., random forest regressor and MLP regressor and the 

previously employed Poisson regression model, random forest perform the best with an 

RMSE score of about 0.36 and a prediction accuracy (PRED (0.20)) of 89.36%. This is 

because of random forest model’s inherent capability of handling variations and noises in 

the dataset all the while keeping the model unbiased and stable.  

   As discussed in the previous chapter, Random Forest is an ensemble method and reduces 

the error by reducing the variance. There are two features contributing in the reduction of 

variance: averaging and random sampling. Each tree in the Random Forest has a very high 

variance but averaging reduces the variance as long as the trees are not co-related. Since 

training many trees on the same dataset generates strongly co-related trees, different 

subsets of the dataset are fed to decision trees. By adding randomness to the sampling 

process, trees are trained even more independently, which in case of large number of trees, 

the gain for averaging can be more dramatic.  However, we also observed that there is a 

certain point at which adding more trees to the forest does not significantly improve the 

model performance but indeed increases the computational complexity of the model.  
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   We also observed that MLP underperforms in comparison to the other two techniques. 

While MLP is capable of learning any non-linear relationship among data features, its 

performance is greatly dependent on the number of epochs and iterations used. Due to the 

need for the model to be retrained periodically and the time taken by MLP to learn new 

data, it is not the most viable model for confirmation time prediction. On the other hand, 

random forest needs to be trained from scratch each time we want the model to learn new 

data. However, it is observed that it learns new data much faster with lesser complexity as 

compared to MLP.  

   Despite the limitations of MLP and random forest in terms of complexity and training 

time, machine learning does provide a novel approach when it comes to these confirmation 

time predictions and can, as observed, outperform statistical methods. 
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6. Conclusion 

 

 

   The task of predicting the confirmation time for a transaction in Ethereum network is 

nontrivial and a necessity considering the amount of capital involved. In this thesis, we did 

consider two approaches towards the problem at hand. A simpler classification approach, 

where we categorized a transaction into eight classes based on the transaction confirmation 

time, and a more complex but precise regression approach. We systematically compare the 

performance of three machine learning classification algorithms and tackle the skewed 

nature of the class distribution. We also compare the two machine learning regression 

algorithms to the previously employed statistical technique and draw insight on which 

model works the best for our prediction problem.  

   To summarize out contribution, we found that classification, while it provides relatively 

accurate predictions, is not the best approach to the confirmation time prediction problem 

since more precise prediction may be more viable considering the sensitivity of data and 

the capital involved in Ethereum transactions. We also found that out of machine learning 

and statistical regression techniques, Random Forest algorithm outperforms all other 

techniques presented in this thesis. We observed that while there is an increase in the 

prediction accuracy of the two algorithms, i.e., Random Forest and Multilayer Perceptron 

Regressors, under the more complex variants, there is only a slight increase in the accuracy 

when these complex variants are compared with their simpler counterparts. Thanks to the 

relatively fast learning observed with random forest, it outperforms the other two 

algorithms with real-time data as well.  

   One of the future works might be to explore other models like deep neural networks, 

which like MLP, can easily update their knowledge base with new data. This in in addition 

to exploring these and other neural structures to determine whether changes made to the 

hyper-parameters (e.g., the learning rate or the size of hidden layer(s))  can decrease 

relative error magnitude without affecting model accuracy, i.e., presenting stronger 

regression or prediction model which would be more suited to the ever-changing Ethereum 

network. Another question that remains to be answered would be to understand and explore 

how the knowledge of time prediction can help user manipulate the network into making 

transactions more economic or faster in the future. We also intent on publishing a web 

application based on the model proposed in this thesis which would be available for usage 
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for any Ethereum user to make confirmation time predictions before they make a 

transaction to the network.  
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