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Simon Ramstedt
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Résumé
Les processus de décision markovien (MDP), le cadre mathématiques sous-jacent

à la plupart des algorithmes de l’apprentissage par renforcement (RL) est souvent
utilisé d’une manière qui suppose, à tort, que l’état de l’environnement d’un agent
ne change pas pendant la sélection des actions. Puisque les systèmes RL basés
sur les MDP classiques commencent à être appliqués dans les situations critiques
pour la sécurité du monde réel, ce décalage entre les hypothèses sous-jacentes aux
MDP classiques et la réalité du calcul en temps réel peut entrâıner des résultats
indésirables. Dans cette thèse, nous introduirons un nouveau cadre dans lequel les
états et les actions évoluent simultanément, nous montrerons comment il est lié à
la formulation MDP classique. Nous analyserons des algorithmes existants selon
la nouvelle formulation en temps réel et montrerons pourquoi ils sont inférieurs,
lorsqu’ils sont utilisés en temps réel. Par la suite, nous utiliserons ces perspectives
pour créer un nouveau algorithme Real-Time Actor Critic qui est supérieur au Soft
Actor Critic contrôle continu de l’état de l’art actuel, aussi bien en temps réel qu’en
temps non réel.

mots-clés: apprentissage profond, apprentissage par renforcement
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Summary
Markov Decision Processes (MDPs), the mathematical framework underlying

most algorithms in Reinforcement Learning (RL), are often used in a way that
wrongfully assumes that the state of an agent’s environment does not change during
action selection. As RL systems based on MDPs begin to find application in real-
world safety critical situations, this mismatch between the assumptions underlying
classical MDPs and the reality of real-time computation may lead to undesirable
outcomes. In this thesis, we introduce a new framework, in which states and actions
evolve simultaneously, we show how it is related to the classical MDP formulation.
We analyze existing algorithms under the new real-time formulation and show why
they are suboptimal when used in real-time. We then use those insights to create
a new algorithm, Real-Time Actor Critic (RTAC) that outperforms the existing
state-of-the-art continuous control algorithm Soft Actor Critic both in real-time
and non-real-time settings.

Keywords: deep learning, reinforcement learning
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1 Introduction

Even today, most machines are still hand-programmed by humans. These

machines, however, are limited by the finite capacity of humans to understand

their environment’s dynamics and our poor ability of communicating knowledge via

computer code. This is hardly surprising. We have evolved to communicate mainly

with other humans that are able understand abstract and vague concepts.

With the rise of Machine Learning in recent years, hand-programmed systems

are getting replaced in areas such as computer vision or language understanding.

These areas are often the ones in which humans are intuitively good at but are not

amenable to traditional scientific and mathematical analysis. In those areas, instead

of programming rules, we provide training data that is used by learning systems to

find rules automatically, with the hope that the rules will generalize to new data

outside of the training set. While these supervised learning systems are less limited

than hand-programmed machines, they still require large amounts of training data

and sometimes learn spurious rules that do not generalize.

Reinforcement Learning systems can close that generalization gap as they interact

with their environment and are able to continuously incorporate new training data.

Furthermore, rather than requiring large amounts of training data it allows humans

to specify goals that can be encoded in a reward function. Unfortunately, few

Reinforcement Learning systems are currently operating in the real world. Even

though, there have been promising examples [Mnih et al., 2015, Silver et al., 2017],

most of them were in simulated environments that allowed for huge amounts

of environment interactions. As algorithms get more data efficient, they often

become more complex, too, involving multiple function approximators that are

being optimized with respect to each other [Janner et al., 2019].

In this thesis we take a look at the foundations of Reinforcement Learning and

find that there is room for improvement. We propose a new agent-environment

interaction scheme that improves real-world applicability and has the potential to

make future Reinforcement Learning algorithms simpler.
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1.1 Reinforcement Learning

Figure 1.1: The agent-environment system
(curtesy of Joe Marino [2019])

Reinforcement Learning splits up

the world into agent and environment.

The agent observes the environment

and receives rewards while it influences

the environment with its actions.

Time plays a central role. At each

timestep an agent observes new data

and selects a new action in order to

maximize rewards in the future. The

stream of observations, actions and re-

wards is divided into discrete timesteps

so it can be handled by digital computers. For mathematical convenience, we intro-

duce the notion of a state. A state contains all information from past observations

about the agent’s future observations and rewards, i.e. states are markovian. A

markovian state can be constructed for any type of observation by concatenating

all past observations.

With a well defined state space and action space we can represent the agent by

a policy, the environment by a Markov Decision Process and the agent-environment

system by a Markov Reward Process. While a policy is simply a distribution over

actions conditioned on a state, the Markov Decision Process [Bellman, 1957] defines

the action’s effects on the state and determines the evolution of states. Again:

Agent → Policy,

Environment → Markov Decision Process (MDP),

Agent-Environment System → Markov Reward Process (MRP).

Definition 1. A Markov Decision Process (MDP) is characterized by a tuple with

(1) state space S,

(2) action space A,

(3) initial state distribution µ : S → R,

(4) transition distribution p : S × S × A→ R,

(5) reward function r : S × A→ R.

2



1.2 The Agent-Environment System

An agent-environment system can be condensed into a Markov Reward Process

(S, µ, κ, r̄) which consists of a Markov process (S, µ, κ) and a state-reward function

r̄.

Until now, the standard way to condense an agent-environment system was to

marginalize out the action. Here, we refer to this procedure as the Turn-Based

Markov Reward Process (TBMRP ). Usually the TBMRP remains unnamed because

it is considered part of the standard RL and MDP framework. We call it TBMRP

to contrast it with the new Real-Time Markov Reward Process (RTMRP ) that is

going to be introduced in the next chapter.

Definition 2. A Turn-Based Markov Reward Process (S, µ, κ, r̄) = TBMRP (E, π)

combines a Markov Decision Process E = (S,A, µ, p, r) with a policy π, such that

(1) state space S (is the same as in E),

(2) initial distribution µ (is the same as in E),

(3) transition kernel κ(st+1|st) =

∫
A

p(st+1|st, a)π(a|st) da,

(4) state-reward function r̄(st) =

∫
A

r(st, a)π(a|st) da.

The Markov process induces a sequence of states (st)t∈N and, together with r̄, a

sequence of rewards (rt)t∈N = (r̄(st))t∈N.

Definition 3. The probability density for a sequence of states (s0, ..., st) in a Markov

Reward Process Ω = (S, µ, κ, r̄) can be recursively defined as

ptΩ(s0, ..., st) = κ(st|st−1) pt−1
Ω (s0, ..., st−1)

∣∣ with p0
Ω = µ (1.1)

The Reinforcement Learning objective is to find a policy that maximizes the

expected sum of rewards. In practice, rewards can be discounted and augmented to

guarantee convergence, reduce variance and encourage exploration. However, when

evaluating the performance of an agent, we will always use the undiscounted sum of

rewards.

3



Value Functions on a Markov Reward Process

One of the most important functions in Reinforcement Learning is the value

function. The value function measures the expected future reward for each state and

can thus be used to guide a learning agent towards higher value states. State-value

functions are a property of a Markov Reward Process (they are fully defined by it).

There are multiple flavours of value functions, some of which are defined below.

Definition 4. The n-step value function vnΩ of a MRP Ω = (S, µ, κ, r̄) is the

expected sum over the n next rewards, i.e.

vnΩ(st) = r̄(st) +

∫
S

κ(st+1|st)vn−1
Ω (st+1) dst+1

∣∣ with v1
Ω = r̄ (1.2)

= E[
n∑
i=0

r̄(si)|si>0 ∼ Ω, s0 = s]. (1.3)

Besides being useful in multiple other ways, the n-step value function is one

way of ensuring the finiteness of the sum of rewards. Another way, that is usually

preferred, is to exponentially discount rewards as follows.

Definition 5. The γ-discounted value function vΩ of a MRP Ω = (S, µ, κ, r̄) is the

expected infinite discounted sum over future rewards, i.e.

vΩ(st) = r̄(st) + γ

∫
S

κ(st+1|st)vΩ(st+1) dst+1 (1.4)

= E[
∞∑
i=0

γi r̄(si)|si>0 ∼ Ω, s0 = s] (1.5)

4



Action-Value Functions

Apart from state-value functions there are also action-value functions which

additionally condition on an action, i.e. they measure the expected future reward

for each state-action pair. However, since the Markov Reward Process, in its most

basic form, only models the state evolution (e.g. the actions are marginalized out in

the TBMRP ), the action-value function needs access to the Markov Decision Process

and the policy. Furthermore, it assumes that agent and environment interact in a

turn-based manner (as in a TBMRP ).

Definition 6. The γ-discounted action-value function qπE in an environment E =

(S,A, µ, p, r) with a policy π is the expected infinite discounted sum over future

rewards while in st, applying at and then evolving according to

qπE(st, at) = r(st, at) + γ

∫
S×A
π(at+1|st+1) p(st+1|st, at)qπE(st+1, at+1) d(st+1, at+1)

(1.6)

= r(s, a) + γ

∫
S

p(s′|s, a) vTBMRP (E,π)(s
′) ds′ (1.7)

Even though action-value is the basis of many successful Reinforcement Learning

algorithms such as Q-learning [Watkins and Dayan, 1992] or DQN [Mnih et al., 2015],

there are some problems. One problem that we will encounter and solve in the next

chapter is that the action-value function is not defined for non-TBMRP interaction

schemes. Another problem is that it is fundamentally timestep dependent and it is

undefined in the limit of infinitely small timesteps [Tallec et al., 2019].

5



Transforming and Comparing Markov Reward Processes

For the proof of Theorem 2, we need to manipulate and compare two Markov

Reward Processes that run at different timescales. Below, we introduce the necessary

definitions for that. This section can be skipped if the reader is not interested the

proof.

Definition 7. The n-step transition function of a MRP Ω = (S, µ, κ, r̄) is

κn(st+n|st) =

∫
S

κ(st+n|st+n−1)κn−1(st+n−1|st) dst+n−1.
∣∣ with κ1 = κ (1.8)

Definition 8. ΩΩΩ = (Z, ν,κκκ, r̄̄r̄r) is a sub-MRP of Ψ = (Z, ν, σ, ρ̄) if its states are

sub-sampled with interval n ∈ N and rewards are summed over each interval, i.e.

for almost all z

κκκ(z′|z) = κn(z′|z) and r̄̄r̄r(z) = vnΨ(z). (1.9)

Definition 9. A MRP Ω = (S, µ, κ, r̄) is a reduction of ΩΩΩ = (Z, ν,κκκ, r̄̄r̄r) if there is

a state transformation f : ZZZ → S that neither affects the evolution of states nor the

rewards, i.e.

(1) state space S = {f(z) : z ∈ Z},

(2) initial distribution µ(s) =

∫
f−1(s)

ν(z)dz,

(3) transition kernel κ(st+1|s) =

∫
f−1(st+1)

κκκ(z′|z) dz′ for almost all z ∈ f−1(s),

(4) state-reward function r(s) = r̄̄r̄r(z) for almost all z ∈ f−1(s).

Definition 10. A MRP Ψ contains another MRP Ω (we write Ω ∝ Ψ) if Ψ works

at a higher frequency and has a richer state that Ψ but behaves otherwise identically.

More precisely,

Ω ∝ Ψ ⇐⇒ Ω is a reduction (Def. 9) of a sub-MRP (Def. 8) of Ψ. (1.10)

6



Reaction Time in Reinforcement Learning

Figure 1.2: The action selection process from observations to actions. The vertical grey bars
mark observation times and the horizontal, black bars mark the time in which a particular action

influences the next observation.

In this thesis we propose a new interaction scheme (RTRL) in which the agent

is granted one full timestep to react to an observation. This stands in contrast to

the traditional Reinforcement Learning framework (RL) in which the agent has to

react instantaneously.

In Figure 1.2 we explore different action selection times. The top graph shows

the traditional framework. In the graph in the middle the agent selects an action

within a fraction of a timestep. Here, as in the traditional framework, each action

affects the immediately following observation. However, it is unclear if and how

each action affects the observation after that (thus the red lightning bolt).

The bottom graph shows our proposed framework in which the action only

affects the next observation but one. This is conceptually and mathematically much

more convenient and still covers the most important use case of back-to-back action

selection, as we explain in Section 2.3.1.

7



2 Real-Time Reinforcement
Learning

Authors: Simon Ramstedt, Christopher Pal

This chapter presents work that has been accepted at the Neural Information

Processing Systems (NeurIPS 2019) Confenference.

Contribution: We point out problems with the current agent-environment in-

teraction scheme in Reinforcement Learning and propose a new real-time interaction

scheme. Furthermore we demonstrate the usefulness of said scheme by creating a

new state-of-the-art continuous control algorithm on its basis.

Affiliation

• Simon Ramstedt, Mila, University of Montreal

• Christopher Pal, Mila, Polytechnique Montreal

In contrast to the paper, all proofs and information from the paper’s appendix

are given in the main text and marked with a gray background. Some additional

definitions were already given in this thesis’ introduction.
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2.1 Introduction

Figure 2.1: Turn-based
interaction

Figure 2.2: Real-time
interaction

Deep Reinforcement Learning, that is Reinforcement

Learning with deep neural networks as the underlying func-

tion approximators, has led to great successes in games

[Tesauro, 1994, Mnih et al., 2015, Silver et al., 2017] and in

real-world robotic control [Schulman et al., 2015, Hwangbo

et al., 2019].

At the same time, all of these methods rely on Turn-

Based Markov Reward Processes as underlying interaction

framework. Turn-Based Markov Reward Processes are a

perfect fit for turn-based decision problems such as board

games but less suited for real-time applications in which

the environment’s state continues to evolve while the agent

selects an action. Nevertheless algorithms based on the

Turn-Based Markov Reward Process have been used for

these real-time problems using what are essentially tricks, e.g. pausing a simulated

environment during action selection or ensuring that the time required for action

selection is negligible [Hwangbo et al., 2017].

Instead of relying on such tricks, we propose an augmented decision making

framework - Real-Time Reinforcement Learning (RTRL) - in which an agent is

allowed to take exactly one time-step to select an action. Surprisingly RTRL

allows us to greatly simplify many RL procedures such as actor-critic learning and

transition model rollouts. We will leverage RTRL to create Real-Time Actor-Critic

(RTAC), our new actor-critic algorithm based on Soft Actor-Critic (SAC) [Haarnoja

et al., 2018a] that is better suited for real-time environments. We then show

experimentally that RTAC outperforms SAC in both real-time and non-real-time

settings.

9



2.2 Background

2.2.1 Turn-Based Reinforcement Learning

Figure 2.3:
TBMRP

Recall the turn-based agent-environment interaction scheme:

Definition 11. A Turn-Based Markov Reward Process (S, µ, κ, r̄) =

TBMRP (E, π) combines a Markov Decision Process E = (S,A, µ, p, r)

with a policy π, such that

κ(st+1|st)=
∫
A

p(st+1|st,a)π(a|st) da and r̄(st)=

∫
A

r(st,a)π(a|st) da.

(2.1)

We say the interaction is turn-based, because an action selected in

a certain state is paired up again with that same state to induce the next state, i.e.

the environment’s state did not change during the action selection process. This is

illustrated in Figure 2.3.

2.3 Real-Time Reinforcement Learning

Figure 2.4:
RTMRP

In contrast to the conventional, turn-based interaction scheme, we

propose an alternative, real-time interaction framework in which states

and actions evolve simultaneously. Here, agent and environment step

in unison to produce new state-action pairs xxxt+1 = (st+1, at+1) from old

state-action pairs xxxt = (st, at) as illustrated in the Figures 2.2 and 2.4.

Definition 12. A Real-Time Markov Reward Process (XXX,µµµ,κκκ, r̄rr) =

RTMRP (E,πππ) combines a Markov Decision Process E = (S,A, µ, p, r)

with a policy π, such that

κκκ( st+1,at+1 | st,at )=p(st+1|st,at) πππ(at+1|st,at) and r̄rr( st,at )=r(st,at). (2.2)

10



The state space XXX = S × A and a0 can be set to some fixed value, i.e. µµµ( s0, a0 ) =

µ(s0) δ(a0 − c).1

Note that we introduced a new policy πππ that takes state-action pairs instead of

just states. That is because the state (s, a) of the RTMRP is now a state-action

pair and s alone is not a sufficient statistic of the future of the process anymore.

2.3.1 Why is the real-time framework sensible?

Consider the following two time spans:

timestep size ts (the time between two observations)

action selection time tπ (e.g. time for a forward pass of the policy network)

The real-time framework deals with the special case in which ts = tπ. In that case

an action at does not affect the next state st+1, which opens up a number of new

algorithmic possibilities. We think ts = tπ is the right assumption because it leads

to back-to-back action selection. That is, immediately upon finishing to compute an

action the next observation is sampled. This should always be the goal, no matter

how little time is required to compute an action. It allows the agent to update its

actions the quickest, e.g. if we can compute an action in 1ms we should do so 1000

times per second.

2.3.2 Real-time interaction can be expressed within the

turn-based framework

At first glance, the RTMRP looks quite different from the conventional MRP.

However, it is possible to express real-time interaction within the MRP framework,

which allows us to reconnect the real-time framework to the vast body of work

that has been done using to MRP framework. Specifically, we are trying to find

an augmented environment RTMDP (E) that behaves the same with turn-based

interaction as would E with real-time interaction.

In the real-time framework the agent communicates its action to the environment

via the state. However, in the turn-based framework only the environment can

directly influence the state. We therefore need to deterministically ”pass through”

1δ is the Dirac delta distribution. If y ∼ δ(· − x) then y = x with probability 1.
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the action to the next state by augmenting the transition function. Reusing existing

variable names if equal, we define the can Real-Time Markov Decision Process

(RTMDP). We will denote the actions of the RTMDP with aaat and after they are

passed through into the next state they become at+1.

Definition 13. A Real-Time Markov Decision Process (XXX,A,µµµ,ppp,rrr) = RTMDP (E)

augments another Markov Decision Process E = (S,A, µ, p, r), such that (1) the

state space XXX = S × A, (2) the action space is A,

(3) the initial state distribution is µµµ( s0, a0 ) = µ(s0) δ(a0 − c),

(4) the transition distribution is ppp( st+1, at+1 | st, at , aaat) = p(st+1|st, at) δ(at+1 − aaat),

and

(5) the reward function is rrr( st, at , aaat) = r(st, at).

Theorem 1. A policy πππ : A ×XXX → R interacting with RTMDP (E) in the con-

ventional, turn-based manner gives rise to the same Markov Reward Process as πππ

interacting with E in real-time, i.e.

RTMRP (E,πππ) = TBMRP (RTMDP (E),πππ) (2.3)

Proof. For any environment E = (S,A, µ, p, r) we want to show that the two above

MRPs are the same. Per Definition 11 and 13 for TBMRP (RTMDP (E),πππ) we have

(1) state space S × A,

(2) initial distribution µ(s)δ(a− c),

(3) transition kernel

∫
A

p(st+1|st, at)δ(at+1 − aaa) πππ(aaa| st, at ) daaa,

(4) state-reward function

∫
A

r(s, a) πππ(aaa| st, at ) daaa.

The transition kernel, using the definition of the Dirac delta function δ, can be

simplified to

p(st+1|st, at)
∫
A

δ(at+1 − aaa) πππ(aaa| st, at ) daaa = p(st+1|st, at) πππ(at+1| st, at ). (2.4)

The state-reward function can be simplified to

r(st, at)

∫
A

π(aaa|xxx) daaa = r(st, at). (2.5)
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It should now be easy to see how the elements above match RTMRP (E,πππ), Defini-

tion 12.

Interestingly, the RTMDP is equivalent to a 1-step constant delay MDP (Walsh

et al. [2008]). However, we believe the different intuitions behind both of them

warrant the different names: The constant delay MDP is trying to model external

action and observation delays whereas the RTMDP is modelling the time it takes

to select an action. The connection makes sense, though: In a framework where the

action selection is assumed to be instantaneous, we can apply a delay to account

for the fact that the action selection was not instantaneous after all.

Below we provide a listing of the code used in creating an environment wrapper

class for TBMRP using the OpenAI gym [Brockman et al., 2016] framework.

import gym

from gym.spaces import Tuple

class RealTimeWrapper(gym.Wrapper ):

def __init__(self , env):

super (). __init__(env)

self.observation_space = Tuple((env.observation_space ,

env.action_space ))

self.initial_action = env.action_space.sample ()

def reset(self):

self.action = self.initial_action

return super (). reset(), self.action

def step(self , action ):

observation , reward , done , info = super (). step(self.action)

self.action = action

return (observation , self.action), reward , done , info
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2.3.3 Turn-based interaction can be expressed within the

real-time framework

It is also possible to define an augmentation TBMDP (E) that allows us to

express turn-based environments (e.g. Chess, Go) within the real-time framework

(Definition 14). By assigning separate time steps to agent and environment, we can

allow the agent to act while the environment pauses. More specifically, we add a

binary variable b to the state to keep track of whether it is the environment’s or

the agent’s turn. While b inverts at every time step, the underlying environment

only advances every other time step.

Definition 14. A Turn-Based Markov Decision Process (Z,A, ν, q, ρ) = TBMDP (E)

augments another Markov Decision Process E = (S,A, µ, p, r), such that

(1) state space Z = S × {0, 1},

(2) action space A,

(3) initial state distribution ν( s0, b0 ) = µ(s0) δ(b0),

(4) transition distribution q( st+1, bt+1 | st, bt , at)

=

δ(st+1 − st) δ(bt+1 − 1) if bt = 0

p(st+1|st, at) δ(bt+1) if bt = 1

(5) reward function ρ( s, b , a) = r(s, a) b.

Theorem 2. A policy πππ(a′|s, b, a) = π(a′|s) interacting with TBMDP (E) in real-

time, gives rise to a Markov Reward Process that contains (Def. 10) the MRP

resulting from π interacting with E in the conventional, turn-based manner, i.e.

TBMRP (E, π) ∝ RTMRP (TBMDP (E),πππ) (2.6)

Proof. Given MDP E = (S,A, µ, p, r),

14



we have Ψ = (Z, ν, σ, ρ̄) = RTMRP (TBMDP (E),πππ) with

(1) state space Z = S × {0, 1} × A, (2.7)

(2) initial distribution ν( s, b, a ) = µ(s) δ(b) δ(a− c), (2.8)

(3) transition kernel σ( st+1, bt+1, at+1 | st, bt, at ) (2.9)

=

δ(st+1 − st) δ(bt+1 − 1) π(at+1|st) if bt = 0

p(st+1|st, at) δ(bt+1) π(at+1|st) if bt = 1
,

(2.10)

(4) state-reward function ρ̄( s, b, a ) = r(s, a) b. (2.11)

We can construct ΩΩΩ = (Z, ν,κκκ, r̄̄r̄r), a sub-MRP with interval n = 2. Since we always

skip the step in which b = 1 we only have to define the transition kernel for bt = 0,

i.e.

κκκ(zt+1|zt) = σ2( st+1, bt+1, at+1 | st, bt, at ) (2.12)

=

∫
S×A

σ( st+1, bt+1, at+1 | s′, 1, a′ ) σ( s′, 1, a′ | st, 0, at ) d(s′, a′) (2.13)

=

∫
S×A

p(st+1|s′, a′) δ(bt+1) π(at+1|s′) δ(s′ − st) π(a′|st) d(s′, a′)

(2.14)

=

∫
A

p(st+1|st, a′) δ(bt+1) π(a′|st) da′. (2.15)

For the state-reward function we have (again only considering b = 0)

r̄̄r̄r( s, b, a ) = v2
Ψ( s, b, a ) (2.16)

= ρ̄( s, 0, a )︸ ︷︷ ︸
=0

+

∫
S×A

ρ̄( s′, 1, a′ ) σ( s′, 1, a′ | s, 0, a ) d(s′, a′) (2.17)

=

∫
S×A

r(s′, a′) δ(s′ − s) π(a′|s) d(s′, a′) (2.18)

=

∫
A

r(s, a′) π(a′|s) da′. (2.19)

The sub-MRP ΩΩΩ is already very similar to TBMRP (E) except for having a larger

state-space. To get rid of the b and a state components, we reduce ΩΩΩ with a state

15



transformation f(s, b, a) = s. The reduced MRP has

(1) state space {f(z) : z ∈ Z} = S, (2.20)

(2) initial distribution

∫
f−1(s)

ν(z)dz =

∫
{s}×{0,1}×A
µ(s)δ(b)δ(a− c) d(s, b, a) = µ(s), (2.21)

(3) transition kernel

∫
f−1(st+1)

κκκ(z′|z) dz′ for almost all z ∈ f−1(st) (2.22)

=

∫
{st+1}×{0,1}×A
κκκ(z′|z) dz′ for almost all z ∈ {st} × {0, 1} × A

(2.23)

=

∫
A

p(st+1|st, a′) π(a′|st) da′, (2.24)

(4) state-reward function r̄̄r̄r(z) for almost all z ∈ f−1(s) (2.25)

=

∫
A

r(s, a′) π(a′|s) da′, (2.26)

which is exactly TBMRP (E).

As a result, not only can we use conventional algorithms in the real-time

framework but we can use algorithms built on the real-time framework for all

turn-based problems.
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2.4 Reinforcement Learning in Real-Time

Markov Decision Processes

Having established the RTMDP as a compatibility layer between conventional

RL and RTRL, we can now look how existing theory changes when moving from an

environment E to RTMDP (E).

Since most RL methods assume that the environment’s dynamics are completely

unknown, they will not be able to make use of the fact the we precisely know part

of the dynamics of RTMDP. Specifically they will have to learn from data, the

effects of the ”feed-through” mechanism which could lead to much slower learning

and worse performance when applied to an environment RTMDP (E) instead of E.

This could especially hurt the performance of off-policy algorithms which have been

among the most successful RL methods to date [Mnih et al., 2015, Haarnoja et al.,

2018a] since they can leverage old experience collected under different policies. Most

off-policy methods make use of the action-value function.

Definition 15. The action value function qπE for an environment E = (S,A, µ, p, r)

and a policy π can be recursively defined as

qπE(st, at) = r(st, at) + Est+1∼p(·|st,at)[Eat+1∼π(·|st+1)[q
π
E(st+1, at+1)]] (2.27)

When this identity is used to train an action-value estimator, the transition

st, at, st+1 can be sampled from a replay memory containing off-policy experience

while the next action at+1 is sampled from the policy π.

Lemma 1. In a Real-Time Markov Decision Process for the action-value function

we have

qπππRTMDP(E)( st, at , aaat)

= r(st, at) + Est+1∼p(·|st,at)[Eaaat+1∼πππ(·| st+1, aaat )
[qπππRTMDP(E)( st+1, aaat , aaat+1)]] (2.28)

Proof. After starting with the definition of the action-value function for an en-

vironment (XXX,A,µµµ,ppp,rrr) = RTMDP(E) with E = (S,A, µ, p, r), we separate the

transition distribution ppp into its two constituents p and δ and then, integrate over
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the Dirac delta.

qπππRTMDP(E)(xxxt,aaat) = qπππRTMDP(E)( st,at ,aaat) (2.29)

= rrr( st,at ,aaat)+Est+1,at+1∼ppp(·|st,at ,aaat)[Eaaat+1∼πππ(·| st+1,at+1 )
[qπππRTMDP(E)( st+1,at+1 ,aaat+1)]︸ ︷︷ ︸]

(2.30)

= r(st,at) +

∫
S

p(st+1|st,at)
∫
A

δ(at+1−aaat) ... dat+1 dst+1

(2.31)

= r(st,at)+

∫
S

p(st+1|st,at) Eaaat+1∼πππ(·|st+1,aaat )[q
πππ
RTMDP(E)( st+1,aaat ,aaat+1)] dst+1

(2.32)

Notice that the action aaat does not affect the reward nor the next state. The only

thing that aaat does affect is at+1 which, in turn, only in the next time step will affect

r(st+1, at+1) and st+2. To learn the effect of an action on E (specifically the future

rewards), we now have to perform two updates where previously we only had to

perform one. We will investigate the effect of this experimentally in Section 2.7.1.

2.4.1 Learning the state-value function off-policy

The state-value function can usually not be used in the same way as the action-

value function for off-policy learning.

Definition 16. The state-value function vπE for an environment E = (S,A, µ, p, r)

and a policy π is

vπE(st) = Eat∼π(·|st)[r(st, at) + Est+1∼p(·|st,at)[v
π
E(st+1)]] (2.33)

The definition shows that the expectation over the action is taken before the

expectation over the next state. When using this identity to train a state-value

estimator, we cannot simply change the action distribution to allow for off-policy

learning since we have no way of resampling the next state.

Lemma 2. In a Real-Time Markov Decision Process for the state-value function
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we have

vπππRTMDP(E)( st, at ) = r(st, at) + Est+1∼p(·|st,at)[Eaaat∼πππ(·| st, at )
[vπππRTMDP(E)( st+1, aaat )]].

(2.34)

Proof. We follow the same procedure as for Lemma 1.

vπππRTMDP(E)(xxxt) = vπππRTMDP(E)( st,at ) (2.35)

= E
aaat∼πππ(·| st,at )

[rrr( st,at ,aaat)+E
st+1,at+1 ∼ppp(·| st,at ,aaat)

[vπππRTMDP(E)( st+1,at+1 )]]

(2.36)

= r(st,at)+E
aaat∼πππ(·| st,at )

[

∫
S

p(st+1|st,at)∫
A

δ(at+1−aaat) vπππRTMDP(E)( st+1,at+1 ) dat+1 dst+1] (2.37)

= r(st,at)+

∫
S

p(st+1|st,at) E
aaat∼πππ(·| st,at )

[vπππRTMDP(E)( st+1,aaat )] dst+1 (2.38)

Here, st, at, st+1 are always a valid transition no matter what action aaat is selected.

Therefore in RTMDPs, we can use the value function for off-policy learning. In fact

Equation 2.34 is the same as Equation 2.27 except for the policy inputs. This is

suggesting that we can use the state-value function where previously the action-value

function was used without having to learn the dynamics of the RTMDP from data

since they have already been applied to Equation 2.34.

2.4.2 Partial simulation

The off-policy learning procedure described in the previous section can be applied

more generally. Whenever parts of the agent-environment system are known and

(temporarily) independent of the remaining system, they can be used to generate

synthetic experience. More precisely, transitions with a start state s = (w, z)

can be generated according to the true transition kernel κ(s′|s) by simulating the

known part of the transition (w → w′) and using a stored sample for the unknown

part of the transition (z → z′). This is only possible if the transition kernel

factorizes as κ(w′, z′|s) = κknown(w′|s) κunknown(z′|s). Hindsight Experience Replay
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[Andrychowicz et al., 2017] can be seen as another example of partial simulation.

There, the goal part of the state evolves independently of the rest which allows

for changing the goal in hindsight. In the next section, we use the same partial

simulation principle to compute the gradient of the policy loss.

2.5 Real-Time Actor-Critic (RTAC)

Actor-Critic algorithms [Konda and Tsitsiklis, 2000] formulate the RL problem

as bi-level optimization where the critic evaluates the actor as accurately as possible

while the actor tries to improve its evaluation by the critic. Silver et al. [2014] showed

that it is possible to reparameterize the actor evaluation and directly compute the

pathwise derivative from the critic with respect to the actor parameters and thus

telling the actor how to improve. Heess et al. [2015] extended that to stochastic

policies and Haarnoja et al. [2018a] further extended it to the maximum entropy

objective to create Soft Actor-Critic (SAC) which RTAC is going to be based on

and compared against.

In SAC a parameterized policy π (the actor) is optimized to minimize the

KL-divergence between itself and the exponential of an (approximate) action-value

function q (the critic) normalized by Z (where Z is unknown but irrelevant to the

gradient) giving rise to the policy loss

LSAC
E,π = Est∼DDKL(π(·|st)|| exp( 1

α
q(st, ·))/Z(st)) (2.39)

where D is a uniform distribution over a buffer of past states, actions and rewards.

The action-value function itself is optimized to fit Equation 2.27 presented in the

previous section (augmented with an entropy term). We can thus expect SAC to

perform worse in RTMDPs.

In order to create an algorithm better suited for the real-time setting we propose

to use a state-value function approximator vvv as the critic instead, optimized to fit

Equation 2.34.
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Proposition 1. The following policy loss based on the state-value function

LRTAC
RTMDP (E),πππ = E(st,at)∼DEst+1∼p(·|st,at)DKL(πππ(·|st, at)|| exp( 1

α
γvvv(st+1, ·))/Z(st+1))

(2.40)

has the same policy gradient as LSAC
RTMDP (E),πππ, i.e.

∇πππLRTAC
RTMDP (E),πππ = ∇πππLSAC

RTMDP (E),πππ (2.41)

Proof. As shown in Haarnoja et al. [2018a], Equation 2.39 can be reparameterized

to obtain the policy gradient, which, applied in a RTMDP, yields

∇πππLSAC
RTMDP (E),πππ = Exxxt,ε[∇πππ(logπππ(hhhπππ(xxxt, ε),xxxt)− 1

α
∇πππq(xxxt,hhhπππ(xxxt, ε))] (2.42)

and reparameterizing Equation 2.40 yields

∇πππLRTAC
RTMDP (E),πππ = Exxxt,ε[∇πππ(logπππ(hhhπππ(xxxt, ε),xxxt)− 1

α
γ∇πππEst+1∼p(·|xxxt)[vvv(st+1,hhhπππ(xxxt, ε))]]

(2.43)

where hhhπππ is a function mapping from state and noise to an action distributed

according to πππ. This leaves us to show that

∇aaatq(xxxt, aaat) = ∇aaatrrr(xxxt, aaat)︸ ︷︷ ︸
=0

+∇aaatγExxxt+1∼ppp(·|xxxt,aaat)[vvv(xxxt+1)] (2.44)

= γ∇aaatEst+1∼p(·|xxxt)[vvv(st+1, aaat)] (2.45)

which follows from the definition of the soft action-value function and simplifying

quantities defined in the RTMDP.

Note that we need an extra γ in the exponential to account for the discounting of

the value function. The value function itself is trained off-policy according to the

procedure described in Section 2.4.1 to fit an augmented version of Equation 2.34,

specifically

vvvtarget = r(st, at) + Est+1∼p(·|st,at)[Eaaat∼πππ(·|st,at)[v̄vvθ̄((st+1, aaat))− α log(πππ(aaat|st, at))]].
(2.46)
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Therefore, for the value loss, we have

LRTAC
RTMDP (E),vvv = E(xxxt,rrrt,st+1)∼D[(vvv(xxxt)− vvvtarget)

2] (2.47)

To trade off between the value function and policy loss, we introduce an additional

hyper-parameter β.

L(θ) = βLRTAC
RTMDP (E),πππθ

+ (1− β)LRTAC
RTMDP (E),vvvθ

(2.48)

2.5.1 Merging Actor and Critic

Using the state-value function as the critic has another advantage: When

evaluated at the same time step, the critic does not depend on the actor’s output

anymore and we are therefore able to use a single neural network to represent

both the actor and the critic. This could speed up learning and even improve

generalization, but could also lead to greater instability. In Section 2.7, we compare

RTAC with both merged and separate actor and critic networks.

2.5.2 Stabilizing learning

Algorithm 1: Real-Time Actor-Critic

Initialize parameter vectors θ, θ̄

for each iteration do

for each environment step do
at+1 ∼ π(·|st, at)
st+1 ∼ p(·|st, at)
D ← D ∪ {(st, at, rt, st+1)}

for each gradient step do
θ ← θ + λ∇θL(θ) Eqn. 2.48

θ̄ ← τθ + (1− τ)θ̄

Actor-Critic algorithms are known to be unstable during training. We use a

number of techniques that help make training more stable. Most notably we use

Pop-Art output normalization [van Hasselt et al., 2016] to normalize the value

targets. This is necessary if v and π are represented using an overlapping set

of parameters. Since the scale of the error gradients of the value loss is highly
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non-stationary it is hard to find a good trade-off between policy and value loss (β).

If v and π are separate, PopArt matters less, but still improves performance both

in SAC as well as in RTAC.

Another difficulty are the recursive value function targets. Since we try to maxi-

mize the value function, overestimation errors in the value function approximator

are amplified and recursively used as target values in the following optimization

steps. As introduced by Fujimoto et al. [2018] and like SAC, we will use two value

function approximators and take their minimum when computing the target values

to reduce value overestimation, i.e. v̄vvθ̄(·) = mini∈{1,2} vvvθ̄,i(·).
Lastly, to further stabilize the recursive value function estimation, we use target

networks that slowly track the weights of the network [Mnih et al., 2015, Lillicrap

et al., 2015], i.e. θ̄ ← τθ + (1 − τ)θ̄. The tracking weights θ̄ are then used to

compute vvvtarget in Equation 2.46.

2.6 Related work

While Firoiu et al. [2018] apply a multi-step action delay to level the playing field

between humans and artificial agents, it does not address the issue of turn-based

interaction and the significance and consequences of the one-step delay. Similar

to RTAC, NAF [Gu et al., 2016] is able to do continuous control with a single

neural network. However it is requiring the action-value function to be quadratic

in the action (and thus possible to optimize in closed form). This assumption is

quite restrictive and could not outperform more general methods such as DDPG. In

SVG(1) [Heess et al., 2015] a differentiable transition model is used to compute the

path-wise derivative of the value function one time step after the action selection.

This is similar to what RTAC is doing when using value function to compute the

policy gradient. However in RTAC, we use the actual differentiable dynamics of the

RTMDP, i.e. ”passing through” the action to the next state, and therefore we do not

need to approximate the transition dynamics. At the same time, transitions for the

underlying environment are not modelled at all and instead sampled which is only

possible because the actions aaat in a RTMDP only start to influence the underlying

environment at the next time step.
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2.7 Experiments

We compare RTAC to Soft Actor-Critic from Haarnoja et al. [2018a] on the

standard OpenAI Gym continuous control benchmark suite [Brockman et al., 2016].

Our SAC agents include both a action-value and a state-value function and use

a fixed entropy scale α (as in Haarnoja et al. [2018a] and not in Haarnoja et al.

[2018b] although performance is comparable). For a comparison to other algorithms

such as DDPG, PPO and TD3 also see Haarnoja et al. [2018a,b].

Figure 2.5: A collection six, representative MuJoCo tasks from the OpenAI Gym continuous
control benchmark suite.

Implementation To have a fair comparison we also use output normalization in

SAC which improves performance on all tasks (see Figure 2.10 in Appendix 2.8 for

a comparison between normalized and unnormalized SAC). The performance of our

SAC implementation in the non-real-time environments matches Haarnoja et al.
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[2018a,b] almost exactly. Both SAC and RTAC are performing a single optimizer

step at every time step in the environment except for the first 10000 time steps.

The hyper-parameters used can be found in Table 2.1.

Figures All figures show return trends over several runs. For each run, the test

return is computed each 20000 time steps as the average return over 100000 time

steps using a deterministic policy. For each run the test returns are then smoothed

with window size 0.1×number of test returns per run. The return trends show the

mean over all runs of the smoothed test returns whereas the shaded region is the

95% confidence interval assuming independently, normally distributed data points

with unknown mean and variance.

2.7.1 SAC struggles in RTMDP (E) as predicted

When comparing the return trends of SAC in turn-based environments E against

SAC in real-time environments RTMDP (E), the performance of SAC deteriorates.

This confirms our hypothesis from Section 2.4.

Figure 2.6: Return trends for SAC in turn-based environments E and real-time environments
RTMDP (E). Mean and 95% confidence interval are computed over eight training runs per

environment.
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2.7.2 RTAC is able to cope with real-time environments

Figure 2.7 shows a comparison between RTAC and SAC in real-time versions

of the benchmark environments. We can see that RTAC learns much faster and

achieves higher returns than SAC in RTMDP (E). This makes sense as it does not

have to learn from data the ”pass-through” behavior of the RTMDP. We show RTAC

with separate neural networks for the policy and value components showing that

a big part of RTAC’s advantage over SAC is its value function update. However,

the fact that policy and value function networks can be merged further improves

RTAC’s performance as the plots suggest. Note that RTAC is always in RTMDP (E),

therefore we do not explicitly state it again.

RTAC is even outperforming SAC in E (when SAC is allowed to act without

real-time constraints) in four out of six environments including the two hardest -

Ant and Humanoid - with largest state and action space (Figure 2.12). We theorize

this is possible due to the merged actor and critic networks used in RTAC. It is

important to note however, that for RTAC with merged actor and critic networks

output normalization is critical (Figure 2.13).

Figure 2.7: Comparison between RTAC and SAC in RTMDP versions of the benchmark
environments. Mean and 95% confidence interval are computed over eight training runs per

environment.
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2.7.3 Autonomous Driving Task

In addition to the Mujoco benchmark, we have also tested RTAC and SAC on

an autonomous driving task using a game-engine-based simulator where the agent

controls a car that has to steer around pedestrians. The observations are single

image (256x64 RGB pixels) and the car’s velocity. The actions are continuous and

three dimensional where the first dimension is the steering angle and the others are

for accelerating and breaking, respectively. The agent is rewarded proportionally to

the car’s velocity in the direction of the road and negatively rewarded when making

contact with a pedestrian. In addition, episodes are terminated when leaving the

road or colliding with any objects or pedestrians. We will provide a citation to a

document with more details about this simulator after anonymous peer review.

Figure 2.8: Comparison between RTAC and SAC in RTMDP versions of the autonomous
driving task. We can see that RTAC under real-time constraints outperforms SAC even without
real-time constraints. Mean and 95% confidence interval are computed over four training runs per

environment.

The hyperparameters used for the autonomous driving task are largely the same

as for the OpenAI Gym tasks, however we used a higher reward scale (20) and lower

learning rate (0.0001). We used convolutional neural networks with four layers of

convolutions with filter sizes (8, 4, 4, 4), strides (2, 2, 2, 1) and 32 channels at each

layer. The convolutional layers are followed by two fully connected layers with 256

units each.
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Figure 2.9: A screenshot from the driving simulator used for the experiments in Figure 2.8.

2.8 Additional Experiments

Figure 2.10: SAC with and without output normalization. SAC in E (no output norm)
corresponds to the canonical version presented in Haarnoja et al. [2018a]. Mean and 95%

confidence interval are computed over eight training runs per environment.
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Figure 2.11: Comparison between different actor loss scales (β). Mean and 95% confidence
interval are computed over four training runs per environment.

Figure 2.12: Comparison between RTAC (real-time) and SAC in E (turn-based). Mean and
95% confidence interval are computed over eight training runs per environment.
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Figure 2.13: RTAC with and without output normalization. Mean and 95% confidence interval
are computed over eight and four training runs per environment, respectively.
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2.9 Hyper-parameters

Table 2.1: Hyper-parameters

Name RTAC SAC

optimizer Adam Adam [Kingma and Ba, 2014]

learning rate 0.003 0.003

discount (γ) 0.99 0.99

hidden layers 2 2

units per layer 256 256

samples per minibatch 256 256

target smoothing coefficient (τ) 0.005 0.005

gradient steps / environment steps 1 1

reward scale 5 5

entropy scale (α) 1 1

actor loss scale (β) 0.2 -

PopArt alpha 0.0003 -

31



3 Conclusion

We have introduced a new framework for Reinforcement Learning, RTRL, in

which agent and environment step in unison to create a sequence of state-action pairs.

We connected RTRL to the conventional Reinforcement Learning framework through

the RTMDP and investigated its effects in theory and practice. We predicted and

confirmed experimentally that conventional off-policy algorithms would perform

worse in real-time environments and then proposed a new actor-critic algorithm,

RTAC, that not only avoids the problems of conventional off-policy methods with

real-time interaction but also allows us to merge actor and critic which comes with

an additional gain in performance. We showed that RTAC outperforms SAC on

both a standard, low dimensional continuous control benchmark, as well as a high

dimensional autonomous driving task.
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