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Résumé
Extraire une représentation de tous les facteurs de haut niveau de l’état d’un

agent à partir d’informations sensorielles de bas niveau est une tâche importante,
mais difficile, dans l’apprentissage automatique. Dans ce memoire, nous explore-
rons plusieurs approches non supervisées pour apprendre ces représentations. Nous
appliquons et analysons des méthodes d’apprentissage de représentations non su-
pervisées existantes dans des environnements d’apprentissage par renforcement, et
nous apportons notre propre suite d’évaluations et notre propre méthode novatrice
d’apprentissage de représentations d’état.

Dans le premier chapitre de ce travail, nous passerons en revue et motiverons
l’apprentissage non supervisé de représentations pour l’apprentissage automatique
en général et pour l’apprentissage par renforcement. Nous introduirons ensuite un
sous-domaine relativement nouveau de l’apprentissage de représentations : l’ap-
prentissage auto-supervisé. Nous aborderons ensuite deux approches fondamentales
de l’apprentissage de représentations, les méthodes génératives et les méthodes
discriminatives. Plus précisément, nous nous concentrerons sur une collection de
méthodes discriminantes d’apprentissage de représentations, appelées méthodes
contrastives d’apprentissage de représentations non supervisées (CURL). Nous ter-
minerons le premier chapitre en détaillant diverses approches pour évaluer l’utilité
des représentations.

Dans le deuxième chapitre, nous présenterons un article de workshop dans lequel
nous évaluons un ensemble de méthodes d’auto-supervision standards pour les
problèmes d’apprentissage par renforcement. Nous découvrons que la performance
de ces représentations dépend fortement de la dynamique et de la structure de
l’environnement. À ce titre, nous déterminons qu’une étude plus systématique des
environnements et des méthodes est nécessaire.

Notre troisième chapitre couvre notre deuxième article, Unsupervised State
Representation Learning in Atari, où nous essayons d’effectuer une étude plus
approfondie des méthodes d’apprentissage de représentations en apprentissage par
renforcement, comme expliqué dans le deuxième chapitre. Pour faciliter une éva-
luation plus approfondie des représentations en apprentissage par renforcement,
nous introduisons une suite de 22 jeux Atari entièrement labellisés. De plus, nous
choisissons de comparer les méthodes d’apprentissage de représentations de façon
plus systématique, en nous concentrant sur une comparaison entre méthodes géné-
ratives et méthodes contrastives, plutôt que les méthodes générales du deuxième
chapitre choisies de façon moins systématique. Enfin, nous introduisons une nouvelle
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méthode contrastive, ST-DIM, qui excelle sur ces 22 jeux Atari.
Mots-Clés: apprentissage de représentations profondes, apprentissage non super-

visé, apprentissage de représentations, apprentissage par renforcement, apprentissage
auto-supervisé, contrastives d’apprentissage de représentations non supervisées
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Summary
Extracting a representation of all the high-level factors of an agent’s state from

level-level sensory information is an important, but challenging task in machine
learning. In this thesis, we will explore several unsupervised approaches for learning
these state representations. We apply and analyze existing unsupervised representa-
tion learning methods in reinforcement learning environments, as well as contribute
our own evaluation benchmark and our own novel state representation learning
method.

In the first chapter, we will overview and motivate unsupervised representation
learning for machine learning in general and for reinforcement learning. We will
then introduce a relatively new subfield of representation learning: self-supervised
learning. We will then cover two core representation learning approaches, generative
methods and discriminative methods. Specifically, we will focus on a collection
of discriminative representation learning methods called contrastive unsupervised
representation learning (CURL) methods. We will close the first chapter by detailing
various approaches for evaluating the usefulness of representations.

In the second chapter, we will present a workshop paper, where we evaluate a
handful of off-the-shelf self-supervised methods in reinforcement learning problems.
We discover that the performance of these representations depends heavily on the
dynamics and visual structure of the environment. As such, we determine that a
more systematic study of environments and methods is required.

Our third chapter covers our second article, Unsupervised State Representation
Learning in Atari, where we try to execute a more thorough study of representation
learning methods in RL as motivated by the second chapter. To facilitate a more
thorough evaluation of representations in RL we introduce a benchmark of 22 fully
labelled Atari games. In addition, we choose the representation learning methods for
comparison in a more systematic way by focusing on comparing generative methods
with contrastive methods, instead of the less systematically chosen off-the-shelf
methods from the second chapter. Finally, we introduce a new contrastive method,
ST-DIM, which excels at the 22 Atari games.

Keywords: deep learning, unsupervised learning, representation learning, rein-
forcement learning, self-supervised learning, constrastive unsupervised representation
learning
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1 Background and Related
Work

1.1 Machine Learning

Artificial intelligence is a subfield in computer science with a long and rich

history [Russell and Norvig, 2016]. One of the most recently successful subfields

within AI is machine learning. Traditionally in computer science, a programmer

specifies an algorithm, which is a set of instructions for the computer to execute.

Machine learning, on the other hand, is concerned with shifting this algorithm

creation process to the computer, where the goal is to coax the machine into

learning these algorithms on its own from input data. Understanding this thesis will

require basic knowledge of machine learning, and more specifically deep learning.

For a full introduction to machine learning and deep learning, we encourage the

reader to check out [Bishop, 2006, Murphy, 2012, Goodfellow et al., 2016].

1.2 Unsupervised Learning

Machine learning is typically divided into two major categories: supervised

learning and unsupervised learning.

Supervised learning usually involves learning from a dataset of pairs, x, y ∼
(X, Y ) each of which is composed an input example, x paired with a corresponding

label y, which is usually provided by a human. The goal of supervised learning is

then to learn a function to predict y from x, usually by modelling the probability

distribution, p(y|x) [Goodfellow et al., 2016].

Unsupervised learning, on the other hand, is concerned with learning without

labels using just input examples, X. The goal in this case widely varies, but often

deals with estimating or sampling from the distribution P (X) or some specific parts
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of it [Goodfellow et al., 2016]. Four common goals of unsupervised learning are

[Khemakhem et al., 2019]:

1. Modelling the Data Distribution

Modelling the data distribution, pdata(x), is often concerned with fitting a

model pmodel(x) to approximate the data distribution. This is often referred

to as density estimation.

2. Sampling

Sampling involves learning a model that allows you to approximate sampling

from pdata(x). This can be accomplished using density estimation if you learn

a model you can sample from. Moreover, one directly learn a function made

specifically for sampling [Goodfellow et al., 2014, Andrieu et al., 2003].

3. Reveal Underlying Structure of the Data

In this case, we are interested in revealing underlying structure of the data.

We can often imagine the data is created by some unknown generative process

that takes a few underlying high level conceptual quantities and combines

them to form the raw data. In this case we are interested in discovering these

latent quantities that are part of this data generating process.

4. Downstream Task performance

In this case, we aim to learn transformations of the data, which we call

representations, that are amenable to future prediction tasks. This is com-

monly called representation learning. We cover representation learning in

more detail in the next section.

These four goals are interrelated, and not mutually exclusive. For example, many

papers model the data distribution and can also sample from the data distribution

[Dinh et al., 2017, van den Oord et al., 2016]. Moreover, models known as latent

variable models aim to reveal underlying structure, as well as approximately model

data distribution and allow you to sample from them [Kingma and Welling, 2013].

The models that accomplish the first and second goals are known as generative

models and will be covered in a bit more detail in section 1.5. Models that attempt

to learn the underlying structure are often used for downstream tasks which we will

show in section 1.5. However, modeling the data distribution may not automatically

allow us to learn underlying structure or useful features. For example, a perfect

generative model, which could estimate the data distribution perfectly and allow us
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to sample from it could be a non-parametric model, which stores an infinite number

of samples from the data distribution. This model would have no knowledge of

the underlying structure even though it would have modeled the data distribution

perfectly, as parodied in Gelly et al. [2018].

1.3 Representation Learning

Performance of machine learning algorithms is often dependent on data repre-

sentations. A representation is often defined as a transformation of the data into

another form or space before inputting it to a machine learning algorithm. One

example of transforming a raw data to get a representation is what is called feature

engineering or computing hand-crafted features [Lowe, 2004, Horn and Schunck,

1981]. Representation learning, on the other hand, is concerned with automatically

learning these transformations from the raw data instead of a programmer specifying

a function to extract representations. As such, representation learning has been

defined as representing data in a way that facilitates pulling out relevant features

for downstream prediction tasks [Bengio et al., 2013]. This idea is the fundamental

idea behind supervised deep learning, where we train a deep model to learn the

appropriate representation and then use it to solve the task at hand in one big

end-to-end way. Recently, however, representation learning has become synonymous

with unsupervised representation learning, where we aim to learn a representation

useful for many tasks without explicitly knowing the task ahead of time. Instead of

optimizing the representation for a specific task, we can think of the representation

learning process as one that tries to extract the high-level hidden, semantic factors

of variation that are involved in the unknown generative process that created the

data [Bengio et al., 2013].

1.3.1 What do we want in a representation ?

We want a representation by definition to facilitate success in future supervised

tasks. However, it is hard to know a priori what exact traits must be present in

a representation to result in high downstream performance. Nevertheless, there

are several desirable traits of a representation that are thought to be important
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for future tasks. We often want a representation that identifies, extracts, and

organizes underlying, semantically meaningful factors. Furthermore, we want our

representations to be expressive in the sense that they should concisely capture

a lot of these salient factors. We also want these representations to be invariant,

which means insensitive to noise or other unimportant changes in the raw input.

For example, incrementing the pixel value of a few background pixels of a photo of

cat should not change the representation’s encoding of the identity and traits of the

cat.

1.3.2 Disentangling

Another very common desired trait of a representation is that it is disentangled.

Bengio et al. [2013] define a disentangled representation as one that untangles the

salient factors of variation in the input. These high-level factors are thought to

be initially fairly independent and untangled from each other, but they are then

highly entangled during the data generative process. As such, learning models that

can disentangle these factors can potentially result in models that are more robust

to noisy, entangled low-level sensory signals. Disentangling has traditionally been

a tough term to define, but currently one of the more agreed-upon definitions is

representations that are explicit, modular, and compact [Ridgeway and Mozer, 2018].

Explicit means that the representation encodes high level salient factors in a way

that is easily accessible by a downstream classifier. More formally, it means that

mapping between factors and elements of the representation can be implemented

simply, like with a linear classifier. A representation is modular if different parts of

the representation capture only one factor each, and it is compact if each factor

is captured by only one part of the representation. Formally, being modular and

compact means there is a more or less one-to-one mapping between different parts

of the representation and different high-level factors.

1.4 Self-Supervised Learning

Self-supervised learning has emerged as a very popular collection of methods

for representation learning [LeCun, 2018]. Due to the novelty of this term and its
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name, there has been a lot of confusion regarding its official definition and how it

is different from unsupervised learning. While there is no agreed upon definition

for the term in the machine learning community, practitioners of self-supervised

learning are in relative agreement on its rough definition. We will attempt to define

the term as such, as well give examples of self-supervised methods throughout this

background section. Self-supervised learning methods are a subset of unsupervised

learning techniques, which take advantage of structure in the data to create a

supervisory signal, allowing self-supervised models to be trained in the same way as

supervised learning techniques [Fernando et al., 2017]. This automatically generated

supervisory signal comes in the form of “free”, intrinsic labels that are either formed

from inherent structure in the data, like temporal order of frames in a video, or

come along with data as another modality, like actions paired with each observation

in an RL agent. Using these intrinsic labels, we can train a seemingly supervised

task. These tasks are often called “pretext” tasks, as they are carefully designed so

that solving the task forces the model to learn a good representation. The word

pretext is defined as “a reason given in justification of a course of action that is not

the real reason” [Dictionary, 1989], so one can think of pretext tasks as tasks that

are not important to solve in and of themselves, but are excuses to get a model

to learn useful representations. Examples of these pretext tasks are determining if

video frames out of order [Misra et al., 2016], solving jigsaw puzzles [Noroozi and

Favaro, 2016] with the patches of images, and guessing what words neighbor a given

word in a sentence [Mikolov et al., 2013]. More examples of self-supervised methods

are presented in later sections of the background and throughout this work.

1.5 Generative Models for Representation

Learning

Generative models are concerned with learning a joint distribution over all

observed variables. One of the most common formulations of generative models in

machine learning is a probabilistic model. A probabilistic model is a mathematical

specification of the joint distribution of observed data [Kingma and Welling, 2019].

Specifically, if one observes some raw data, like an image, a probabilistic model
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of this image complete specification of joint distribution of all observed random

variables, P (x1, x2, . . . , xn), where xi is the ith pixel of the image.

Generative models also can be used in representation learning. The intuition

behind their utility in representation learning is that by forcing a representation to

be useful for modeling the world, the representation can potentially encode the world

at an abstract level and that maybe would be beneficial for certain downstream

tasks that require an understanding of the world in order to be solved [Kingma and

Welling, 2019]. Most generative approaches for representation learning use what

is called a latent variable model. A latent variable model is a probabilistic model

that not only tries to model joint distribution over observed variables, but also over

latent variables, z1, z2, . . . : P (x, z). While observed variables are observed by the

model, like pixels, latent variables are unobserved variables that must be inferred.

We can think of latent variables as abstract, underlying random variables that

describe the data distribution. Often, we can imagine the data as generated by some

unknown generative process that combines some hidden, high-level factors along

with some noise to create the input data. These high-level factors are modelled using

latent variables. Thus, a parametric latent variable model is concerned not only

with learning the parameters of the model, but in estimating the latent variables

as well. In representation learning, the estimate of these latent variables is used as

the representation. One of the most popular neural latent variable models used for

representation learning is the variational autoencoder (VAE).

1.5.1 Variational Autoencoders

A VAE learns a latent variable model by maximizing an approximate lower

bound on the log marginal likelihood of the data, log p(x). Learning a latent variable

model by directly maximizing the marginal log likelihood: log p(x) = log
∫
p(x, z)dz

is intractable to compute because there is no closed form solution and no efficient

estimator, as z is continuous and can take on any value. If we knew p(z|x), the log

marginal likelihood would be easy to compute, but p(z|x) is also unknown [Kingma

and Welling, 2019] However, if we can approximate p(z|x) with a parametric model

qψ(z|x), then we can learn a lower bound on the log marginal likelihood, log p(x).
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This lower bound is called the evidence lower bound (ELBO):

LELBO = log pθ(x|z)−DKL(q(z|x;ψ) || p(z)) ≤ log p(x) (1.1)

Where p(z) is the prior distribution, often picked to be N (0, I) an isotropic Gaussian

distribution. We parametrize both qψ(z|x), which we call the encoder, and pθ(x|z),

called the decoder, with neural networks. Using the reparameterization trick [Kingma

and Welling, 2013], we can train both models end-to-end to maximize this lower

bound. First, an image is transformed by the encoder resulting in the mean and

variance parameters of the posterior distribution over the latent variables. The latent

variables z are sampled using the reparameterization trick 1 [Kingma and Welling,

2013] then this z is transformed by the decoder to obtain x̂, a reconstruction of the

input x. The ELBO, used as a loss, is then computed and both the encoder and

decoder are updated end-to-end to maximize this loss like in any neural network.

Representation learning is concerned with finding a mapping φ(x) of the data

that facilitates better performance on downstream tasks. In the case of VAE’s, our

φ(x) is the encoder of the VAE, qψ(z|x), where our representation is the mean

parameter output by qψ(z|x).

1.5.2 Other Generative Methods for Representation Lear-

ning

While the original formulation of VAE’s remains the most common generative

representation learning technique, other variants of the VAE have been developed

specifically for the purpose of representation learning. Higgins et al. [2017a], Kim

and Mnih [2018], Kumar et al. [2017], Chen et al. [2018] all train VAE’s with

different modified objectives for qφ(z|x) that try to coax it into learning a more

disentangled representation.

While the VAE and its variants dominate the field of representation learning,

other generative methods have been used as well. The most notable of these

are various variants of generative adversarial networks (GANs)[Goodfellow et al.,

2014]. A GAN consists of a neural network, called the generator, that attempts to

transform randomly sampled noise into approximate samples from the dataset, x̂

1. where sampling is seen as a deterministic, differentiable function of x and of some independent
and identically distributed variables
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by attempting to maximize the classification error of another neural network that

is trained to discriminate between real samples from the dataset and the neural

network generated ones. Chen et al. [2016] learns a representation by forcing the

inputs, z, to the generator of a GAN to be distributed in a certain way and have

high mutual information with the generated sample, x̂. Dumoulin et al. [2017],

Donahue et al. [2017] also harness a GAN to learn embeddings of the input data,

while also guaranteeing that these embeddings are useful for generating samples.

Generative Self-Supervised Methods

In addition to representation learning methods that are based on an objective

that tries to model the distribution of the input data, there are several self-supervised

methods that learn representations by conditionally modeling parts of the data

distribution. Pathak et al. [2016b] learns representations by removing a patch from

an image forcing a neural network to generate the missing patch, Zhang et al. [2016]

generates the colors of each pixel from an image that has been transformed to gray

scale and Zhang et al. [2017] trains an autoencoder to generate a missing RGB

channel using the others two channels as input. Lastly, in video, many researchers

have used pixel prediction of the future frames in a video to learn representations

[Oh et al., 2015, Finn et al., 2016, Srivastava et al., 2015, Lotter et al., 2016, Mathieu

et al., 2015].

1.6 Discriminative Models for Representation

Learning

One of the main goals of representation learning is to capture high-level features,

but ignore more noisy local information. The main goal of generative models, on

the other hand, is to try to model every little detail in the raw data. To be sure,

generative models for representation learning include other inductive biases like

latent variables, but their main objective is modeling every pixel. Intuitively this

seems like computational overkill, as a lot of capacity is spent trying to model

complex local pixel relationships, while ignoring the high-level semantic context. A

few high-level latent variables contain much less information than all the pixels in an
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image. Hence, modelling p(x|z) (thousands of bits) does not seem like a good idea if

you are just interested in learning p(z|x) ( 10 bits). What if there was a way to learn

p(z|x) without using a generative model. Discriminative models for representation

learning try to do just that. Discriminative methods for representation learning

create a training objective that looks like supervised classification and acts directly in

representation space. There are two main approaches to discriminative representation

learning: contrastive methods and auxiliary label classification methods.

1.6.1 Contrastive Unsupervised Representation Learning

Contrastive unsupervised representation learning (CURL) methods are algo-

rithms that harness pairs of unlabelled examples that are known to be dependent,

like frames in video close together in time or adjacent words in a sentence. Most

CURL methods follow a standard recipe where representations from pairs of de-

pendent examples, φ(x), φ(x+) are input to a score function f(φ(x), φ(x+)) where

the goal is to make the score for dependent pairs higher on average than that for

independent pairs, f(φ(x), φ(x−)) [Arora et al., 2019]. Losses are then created by

constructing a likelihood that is high when the score function behaves as intended

and low otherwise. Once one has created this likelihood the loss to be minimized is

simply the negative log likelihood:

LCURL = −Ex,x+,x−
[

log
exp f(φ(x), φ(x+))

exp f(φ(x), φ(x−)) + exp f(φ(x), φ(x+))

]
(1.2)

This equation is an example of using just one negative pair and creating a binary

classification problem, but this can be extended to use multiple negatives. The score

function, f(x1, x2) can be a dot product, a concatenation, or a bilinear function.

Dependent pairs are often straightforward to acquire using consecutive frames in a

video, adjacent patches in an image, or adjacent sentences. Independent pairs are

usually selected randomly [Arora et al., 2019].

Contrastive methods trace their origins back to Noise Contrastive Estimation

(NCE) [Gutmann and Hyvärinen, 2010]. NCE was originally proposed as a new

technique for estimation of unnormalized parametric density estimation models,

like energy-based models or markov random fields. Under NCE, the parameters

of the density model are estimated by learning a binary classifier that can classify
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whether a sample is from the dataset or whether it is randomly sampled noise.

While this idea was initially proposed for learning parameters of unnormalized

explicit density models, it has been extensively used for implicit density generative

models, namely generative adversarial networks (GANs)[Goodfellow et al., 2014].

Instead of discriminating between a real datapoint and randomly sampled noise,

GANs discriminate between real datapoints and ones generated by a neural network

with the goal of approximating samples from the data distribution with a neural

network. Most recently, NCE has been adapted to representation learning ; instead

of discriminating between real datapoints and generated ones or random noise, we

discriminate between matched and unmatched pairs of representations, as shown

in equation 1.2. One of the earliest examples of this was permutation contrastive

learning (PCL) [Hyvarinen and Morioka, 2017], which is a method for learning

transformations of the data for time series data. PCL follows equation 2, where

x, x+ are consecutive examples in time, x− is a randomly selected example in the

sequence, and the score function f is concatenation [Hyvarinen and Morioka, 2017].

Examples of Contrastive Methods in Self-Supervised Learning

While many self-supervised methods are based on intuitive, domain-specific

heuristics, a lot of them can simply be reduced to the CURL formulations in

equation 1.2. Many self-supervised methods for videos, for instance, can be reduced

to contrastive tasks. Misra et al. [2016] and Fernando et al. [2017] train a model

to discriminate between sequences of frames in a video that are in order and those

that are out of order. These tasks can be derived from equation 1.2 if we consider

the score function f to be the concatenation function and positive examples to

be triplets of frame features that are in order for [Misra et al., 2016] or sets of

frame representations that are out of order [Fernando et al., 2017]. Methods like

[Misra et al., 2016, Fernando et al., 2017] that classify between sequences are very

straightforward to connect to contrastive methods because they train a classifier,

but there are also some self-supervised techniques for video that use what is called

a triplet loss. The triplet loss maximizes the L2 distance between representations of

dissimilar pairs, while minimizing the distance between similar pairs:

Ltriplet = Ex,x+,x−
[
max(||φ(x)− φ(x+)||22 − ||φ(x)− φ(x−)||22, 0)

]
(1.3)
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Time Contrastive Networks (TCN) [Sermanet et al., 2017] considers videos filmed

from multiple angles and uses a triplet loss to discriminate between frames that

are close together in time, but filmed at different angles and frames filmed at the

same angle but at different time steps.Wang and Gupta [2015] uses the triplet loss

to discriminate between spatial patches of a video containing the same object at

different time steps and those where only one patch has the object. CURL methods

are very prevalent in natural language processing (NLP). Logeswaran and Lee [2018]

contrast sentence fragments that are consecutive with random sentence fragments

and Mikolov et al. [2013] discriminates between a tuple of a word’s embedding with

neighboring words’ embeddings and a tuple of the word’s embedding with random

word embeddings.

Connections to Mutual Information

Mutual information between two random variables, u and v is defined as the

KL divergence between the joint distribution of the variables and the product of

marginals of the variables:

I(u; v) = DKL[p(u, v) || p(u)p(v)] (1.4)

It can actually be shown that when using a multiple negative version of NCE,

InfoNCE [van den Oord et al., 2018]:

LInfoNCE = −Ex,x+,xi
[

log
exp f(φ(x), φ(x+))

exp f(φ(x), φ(x+)) +
∑i=k

i=0 exp f(φ(x), φ(x−i ))

]
(1.5)

where there are k negative examples. The optimal score function f(x1, x2) actually

approximates the density ratio: p(x1,x2)
p(x1)p(x2)

, which is the ratio used in mutual infor-

mation, so then it can be shown that when using InfoNCE, minimizing the loss,

LInfoNCE maximizes a lower bound on mutual information [van den Oord et al.,

2018, Poole et al., 2019]: I(x;x+) ≥ log(k)−LInfoNCE. This bound becomes tighter

as, k, the number of negative examples increases. This lower bound is used in Deep

InfoMax (DIM) [Hjelm et al., 2019] and CPC [van den Oord et al., 2018].
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1.6.2 Auxiliary Label Classification (ALC)

While CURL methods create a classification problem by constructing a likelihood

function that captures the intuition of discriminating between positive pairs and

negative pairs, there are some methods that work by simply directly solving a

classification problem using the features as input and either a label derived from the

context of the data or one from some other modality included in the data. Instead

of directly contrasting pairs of features, they instead try to classify this “auxiliary”

label from the features. Examples of labels derived from the structure of the data

are the index of a patch in an image or the difference in time index between two

frames in a video. The loss of ALC tasks follow a similar setup to contrastive tasks:

LALC = −Ex1,x2
[

log
exp fj(φ(x1), φ(x2))∑k
i=1 exp fi(φ(x1), φ(x2))

]
(1.6)

Where j is the index of the correct class and there are k classes. The difference here

is the score function is different for each term in the numerator and denominator,

but the input to the score function is the same for all terms. φ(x1) and φ(x2) are

usually embeddings from two or more patches in an image, frames in a video, or

even words in a sentence, for example.

Examples of ALC methods in Self-supervised Learning

There are many examples of ALC in classic self-supervised tasks. For example,

for static images [Noroozi and Favaro, 2016] create a self-supervised task, whereby

an image is cut up into patches, then each patch is encoded into a representation

and the patches are shuffled. Then, a neural network is tasked with classifying which

of the possible permutations of patch representations is the correct one. Similarly,

[Doersch et al., 2015] train a model that takes as inputs embeddings from a pair of

patches and must classify the relative position between the two patches. Temporal

distance classification [Aytar et al., 2018] processes representations from two frames

in a video, xt and xt+k and classifies the difference in time index between the two

(k). [Agrawal et al., 2015, 2016] both harness labels that are not quite derived from

the structure of the data, but are essentially “free” and come with every datapoint

as a separate modality. Agrawal et al. [2015], for example uses a model that given

two frames in a video classifies the direction the camera was moved in, a label,

which is included in the data. Agrawal et al. [2016] uses states and actions from a
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reinforcement learning agent: x1, a1, x2, a2, x3, a3, . . . and train a model that takes

embeddings from two consecutive frames φ(xt), φ(xt+1) to classify the corresponding

action, at that was taken at time t.

1.7 Reinforcement Learning

1.7.1 (Deep) Reinforcement Learning Primer

Reinforcement learning (RL) refers to three things: a subfield of machine learning,

a sequential decision-making problem, and a collection of methods to solve the

problem. In essence, RL is a problem where the aim is to learn a way to act in a

given situation, such that some goal is accomplished or specifically some reward

value is maximized [Sutton et al., 1998]. A very straightforward, formal way to model

this problem is using Markov decision processes (MDPs). An MDP is composed of

an agent, an environment, actions, states, and rewards. The agent is the decision

maker, which makes decisions about how to interact with an environment. The

agent sequentially receives a state, St from the environment, which represents the

situation the agent is in. To interact with the environment the agent takes actions,

At , which it selects based on the state it’s in. Based on the action the agent

selects, it receives a numerical reward, rt+1 along with the next state, St+1 from the

environment. S and R are random variables and A(s) is a function of the state. We

can form a conditional probability distribution over these random variables, where

the probability of reaching state s′ and receiving reward r when the agent is at

state s and takes action a is given by:

p(s′, r|s, a) = P (St = s, Rt = r|St−1, At−1 = a) (1.7)

This probability distribution fully describes the dynamics of the environment.

The goal in RL is then to maximize the expected return, which is the discounted

sum of rewards the agent will receive:
∑∞

t=0 γ
tRt, where γ (0 <= γ <= 1) is the

discount rate, which not only favors rewards which happen sooner, but by being

between 0 and 1 guarantees the sum converges [Sutton et al., 1998]. The pursuit of
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this goal is often also referred to as control. When the reward is 0 in all but a few

states in an environment the problem is often called a sparse reward problem.

In order to do this we often learn two things: a policy and a value function. A

policy, for the sake of this thesis, is a parametric function π(a|s; θ), which maps

states to probabilities or preferences of taking actions. Throughout the course of

training, an agent continues to improve its policy in order to act in a way that

maximizes returns. A value function, vπ(s) is the expected return the agent will

receive if it starts in state s and then follows the policy π. Following in this sense

means sampling from π as it interacts with the environment. vπ(s) is known as the

state-value function, but there is also the action-value function, qπ(s, a), which is

defined as the expected return if the agent finds itself in state s then takes action a

and from then on follows the policy π. In deep RL, qπ and vπ are parameterized by

neural networks, which take the state or state and action as input and output a

real number estimating the return.

In deep RL, these value function neural networks are often trained using neural

fitted Q learning [Riedmiller, 2005] or deep Q-learning, DQN [Mnih et al., 2015],

which minimize the following loss:

LDQN = (Qθ(s, a)− (r + γmaxa′Q̂(s′, a′)))2 (1.8)

2 where s′, r ∼ p(s′, r|s, a). Another common approach is directly learning a parame-

terized policy, π(s; θ) instead of a value function. These approaches are called policy

gradient methods [Sutton et al., 1998]. Models that learn a policy or value function

using just observed states, like Q-learning or policy gradient methods are called

model-free methods. Model-based methods, on the other hand, try to explicitly

estimate p(s′, r|s, a), which can then be sampled from to learn a policy, instead

of what model free methods do, which is just directly mapping states to actions

[Sutton et al., 1998].

In many cases, the agent cannot observe the true state and observes a low-level

sensory information, like an image, which we call the observation denoted by Xt.

The states in this case are unobserved latent variables.

While trying to directly maximize a sum of extrinsic, human specified rewards

is the most common goal in the field of reinforcement learning, other common goals

2. where Q̂ is considered fixed while we update Qθ
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include exploration and imitation learning. Exploration often involves the agent

trying to visit as many novel states as possible. This is usually accomplished by

maximizing an “intrinsic” reward that tries to measure how infrequently a certain

state has been visited [Ostrovski et al., 2017, Pathak et al., 2017a]. Imitation learning

is concerned with learning a policy by observing humans completing similar tasks,

which is often achieved by maximizing some reward based on how closely the agent

has mimicked the human.

1.7.2 Representation Learning for RL

Although DQN has had achieved great success in achieving high scores in video

game environments, it is very sample inefficient [François-Lavet et al., 2018]. It is

also very brittle in that it only does well on exactly the games it was trained on

and any slight alterations to the games would result in poor performance [Leike

et al., 2017, Zhang et al., 2018, Kansky et al., 2017]. As such, it seems deep RL

would benefit greatly from representation learning. Representation learning is about

learning a transformation of the data to make a downstream task easier, so it makes

sense to learn a representation that makes a downstream control task more sample

efficient and robust. Indeed, some works have begun to think about harnessing

representation learning for RL by learning a representation of the state, s in a

separate representation learning phase followed by policy or value function learning

phase that is learned on top of this learned “state representation” [Lesort et al.,

2018]. For example, Cuccu et al. [2019] shows that once one extracts a good state

representation, the policy model can be small and simple to train and it excels at

Atari games. Jonschkowski and Brock [2015] and Jonschkowski et al. [2017] try

to learn state representations by creating several heuristic priors with which they

constrain their representation to follow.

Most current research using state representation for control uses generative

methods, especially latent variable models. The most common model used in RL

for representation learning is the VAE. Several prior works use a VAE and its

variations to learn state representations [Ha and Schmidhuber, 2018a, Watter et al.,

2015, van Hoof et al., 2016, Duan, 2017, Cuccu et al., 2019]. Thomas et al. [2017]

tries to extract a representation from states in a environment that captures how

the state changes as actions are taken using a VAE as the base model. Higgins
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et al. [2017b] uses a β-VAE to discover features that help for transfer policies to

new, unseen environments. One of the other common generative methods used

in state representation learning is prediction in pixel-space, where one trains a

generative model to model the distribution of the observations from the next state

given the current observation and action taken: p(xt+1|xt, at). [Oh et al., 2015,

Finn et al., 2016], for example, have exploited these pixel prediction models for

RL. Since generative models have dominated state representation learning in RL,

discriminative methods are more rarely found in the literature. One example of

researchers applying discriminative methods is in CPC [van den Oord et al., 2018],

where they train a policy gradient method, A3C, with encoded representations

from CPC as input instead of raw images from a visual RL environment. While

discriminative methods are not common in traditional control approaches, they have

seen use in exploration [Pathak et al., 2017a] and imitation learning [Aytar et al.,

2018]. In the two articles in this thesis, we will, however, explore discriminative

representation learning algorithms for control.

1.8 Evaluating Representations

Representation learning is often defined as the process of learning features useful

for downstream tasks, so evaluating representations can sometimes simply be done

by measuring the performance on a given downstream task. However, theses tasks

are not always known ahead of time, so more and more people have attempted to

measure the general, task-agnostic “utility” of a representation. Assessing the utility

is often preferred if we do not know a priori what downstream tasks we want to

solve or we want a “general purpose” representation. Figuring out what “general

purpose” means is difficult and for that reason measuring representations remains

a challenge in representation learning. There are usually two main approaches for

evaluating representations: qualitative evaluations and quantitative evaluations.
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1.8.1 Quantitative Techniques for Evaluating Representa-

tions

The most common quantitative approach requires identifying “ground truth”

factors of variation. These factors are usually heuristically identified ahead of time

by humans as salient, high level context information. Examples of “ground truth”

factors of variation include: position, orientation, and color of objects. Harnessing

these “labels” at test time, we can evaluate how well a representation encodes and

organizes these ground truth factors of variation. Measuring the extent to which a

representation encodes factors is often defined as explicitness [Ridgeway and Mozer,

2018].

Explicitness

A representation is defined as explicit if the mapping between factors and

elements of the representation can be implemented simply. Generally this means

that a simple, shallow classifier like a linear classifier or a random forest can

classify the ground truth factors when it receives the representation as input . This

“classifier” is often purposely restricted in capacity in order to really test how well a

representation has captured these factors. This is because at evaluation time, we

want to evaluate a representation not learn a new one. Linear models are shallow

and do not learn intermediate representations, whereas deep MLP’s, for instance, do.

Using a supervised linear classifier on a representation is often called “linear probing”

[Alain and Bengio, 2017] and is commonly used in the disentangling literature

[Eastwood and Williams, 2018].

In learning disentangled representations, one not only cares about explicitness,

how well salient factors are captured, but also how they are organized. In the

disentangling literature, this is usually summarized by two many desired traits:

modularity and compactness.

Modularity

A representation is modular if each representational unit, ri (usually one element

in a vector) is associated with only one ground truth factor of variation, yi. ri → yi.

More concisely it measures how close to a one-to-one mapping exists between

representational units and ground truth vectors. Modularity is often measured in
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a multitude of ways. For example, the BetaVAE score [Higgins et al., 2017a], the

FactorVAE score [Kim and Mnih, 2018], the modularity score [Ridgeway and Mozer,

2018], and the disentanglement score [Eastwood and Williams, 2018] all measure

modularity by quantifying how well a single representational unit correlates with a

single ground truth variable.

Compactness

A representation is compact if it ensures that a single ground truth factor is

represented using only one or a few representational units. ri ← yi. In essence, it

measures whether there is a one-to-one mapping between ground truth vectors and

representational units. SAP score [Kumar et al., 2017], completeness [Eastwood and

Williams, 2018], mutual information gap [Chen et al., 2018] all assess compactness

If a representation is both modular and compact, then for the valid representa-

tional units, there is a bijection between representational units and ground truth

factors. In this manuscript, we mostly focus on explicitness.

1.8.2 Qualitative Techniques for Evaluating Representations

There are many ways to qualitatively inspect how well a representation captures

salient factors. These include decoder-based methods, similarity-based measures,

and feature map inspection methods.

Decoder-Based Methods

For evaluating explicitness, one common decoder-based qualitative methods is

to inspect the reconstruction created by passing the representation through the

decoder and checking to see if salient objects and other factors are present in the

reconstructed image. For evaluating traditional disentangling traits, like modularity

and compactness, one often does what is called latent space interpolation [Dumoulin

et al., 2017]. This entails changing just one element of the representation and

passing the resulting changed vector back through the decoder and inspecting what

has changed in the resulting image. If the representation is nicely disentangled,

one might expect to see just one high level feature of the image changing as one

representational unit changes, like the x position of a ball or its color. This is a very
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popular technique that has been used frequently [Chen et al., 2016, Brock et al.,

2018, Dumoulin et al., 2017]

Similarity-Based Measures

One technique for similarity-based measures is to visualize low-dimensional

embeddings of the representations in your dataset using a technique like t-stochastic

neighbor embedding (t-SNE) [Maaten and Hinton, 2008]. Using this visualiza-

tion, one can see which datapoints’ representations are close together in this

low-dimensional space and then visually inspect whether these datapoints are

semantically similar. Instead of embedding representations to 2 or 3 dimensions,

some researchers have visually inspected neighboring datapoints in representation

space. This technique is known as finding “nearest neighbors in feature space” and

consists simply of computing the L2 distance between a datapoint representation

and all the other datapoints in a dataset and then visually inspecting the closest

datapoints [Brock et al., 2018, van den Oord et al., 2018].

Feature Map Inspection

There are several visualization techniques that are used when the underlying

encoder model is a convolutional neural network. Namely, saliency map methods

and feature map inspection methods. Feature map inspection techniques simply

involve visually inspecting intermediate feature maps from convolutional neural

network to see if important features are captured. Saliency map based methods try

to interpret what the CNN is learning by computing the sensitivity of the output of

the network with respect to each input pixel [Springenberg et al., 2014, Selvaraju

et al., 2017]

In the first chapter, we explore quantitative measures along with qualitative

feature map analysis, whereas in the second work, we only focus on quantitative

measures.
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2.1 Abstract

Self-supervised methods, wherein an agent learns representations solely by

observing the results of its actions, become crucial in environments which do not

provide a dense reward signal or have labels. In most cases, such methods are used

for pretraining or auxiliary tasks for ”downstream”tasks, such as control, exploration,

or imitation learning. However, it is not clear which method’s representations best

capture meaningful features of the environment, and which are best suited for which

types of environments. We present a small-scale study of self-supervised methods

on two visual environments: Flappy Bird and Sonic The HedgehogTM. In particular,

we quantitatively evaluate the representations learned from these tasks in two

contexts: a) the extent to which the representations capture true state information

of the agent and b) how generalizable these representations are to novel situations,

like new levels and textures. Lastly, we evaluate these self-supervised features by

visualizing which parts of the environment they focus on. Our results show that the

utility of the representations is highly dependent on the visuals and dynamics of

the environment.

2.2 Introduction

Self-Supervised methods have emerged as powerful methods for pretraining

to learn more general representations for complicated downstream tasks in vision

[Misra et al., 2016, Fernando et al., 2015, 2017, Wei et al., 2018, Vondrick et al.,

2018, Jayaraman and Grauman, 2015, Agrawal et al., 2015, Pathak et al., 2017b,

Wang and Gupta, 2015] and NLP [Peters et al., 2018, Subramanian et al., 2018,

Mikolov et al., 2013, Conneau and Kiela, 2018]. In interactive environments, they

have begun to receive more attention due their ability to learn general features of

important parts of the environment without any extrinsic reward or labels [LeCun,

2018]. Specifically, self-supervised methods has been used as auxiliary tasks to

help shape the features or add signal to sparse reward problems [Mirowski et al.,

2016, Jaderberg et al., 2016, Shelhamer et al., 2016]. They also have been used

in unsupervised pretraining for control problems, [Ha and Schmidhuber, 2018b].

Moreover, they have been used in imitation learning to push expert demonstrations
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and agent observations into a shared feature space [Aytar et al., 2018, Sermanet

et al., 2017]. Lastly, they have been used in intrinsic reward exploration to learn

a representation well-suited for doing surprisal-based prediction in feature space

[Pathak et al., 2017a, Burda et al., 2018a]. In each of these cases, the desired feature

space learned with self-supervised methods should capture the agent, objects, and

other features of interest, be easy to predict, and generalize to unseen views or

appearances. However, existing evaluations of these methods do not really shed

light on whether the representations learned by these self-supervised methods really

robustly capture these things. Instead, these evaluations only evaluate the utility of

these methods on the particular downstream task under study. While these types of

tasks have been studied theoretically [Hyvarinen et al., 2018, Arora et al., 2019],

they have not really been examined empirically in depth. As such, in this paper we

examine a few self-supervised tasks where we specifically try to characterize the

extent to which the learned features capture the state of the agent and important

objects. Specifically, we measure how well the features: capture the agent and object

positions and generalize to unseen environments, and lastly, we qualitatively measure

what each self-supervised method is focusing on in the environment. We pick Flappy

Bird and Sonic The HedgehogTM because they represent simple and complex games

respectively in terms of graphics and dynamics. Also, one can change the level and

colors of each to make an ”unseen” environment to test generalizability. 1

2.3 The Self-Supervised Methods We Explore

We explore four different approaches for self-supervision in interactive en-

vironments: VAE [Kingma and Welling, 2013], temporal distance classification

(TDC)[Aytar et al., 2018] , tuple verification [Misra et al., 2016], and inverse model

[Agrawal et al., 2016, Jayaraman and Grauman, 2015, Pathak et al., 2017a]. We

also use a randomly initialized CNN as a baseline. All self-supervised models in

this study use a base encoder, φ which is a four layer convolutional neural network,

similar in architecture to the encoder used in the VAE in [Ha and Schmidhuber,

2018b]. The encoder takes as input a single frame in pixel space, x and outputs

1. https://github.com/eracah/supervise-thyself
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an embedding, φ(x), where φ(x) ∈ R32. Depending on the self-supervised task,

certain heads, f(φ(x1), φ(x2) are placed on top of the encoder, like a deconvolutional

decoder or a linear classifier, that take φ(x) or multiple concatenated φ(x)’s as

input.

Random CNN: We use a randomly initialized CNN as a baseline method. In

this case, it is an untrained base encoder, φ, with randomly initialized weights that

are not updated. Random CNN’s have been used with varying degrees of success in

[Burda et al., 2018a,b]

VAE: VAEs [Kingma and Welling, 2013] are latent variable models that maximize

a lower bound of the data likelihood, p(x) by approximating the posterior p(z|x),

with a parametric distribution q(z|x) and a prior p(z). VAEs also include a decoder

p(x|z), which reconstructs the input x by mapping samples of z back to pixel space.

In our setup q(z|x) is parameterized by a Gaussian with mean φ(x) and the variance

is parameterized by a separate fully connected layer on top of the penultimate

layer of the base encoder. Also, we use a deconvolutional network, x̂ = g(z) to

parameterize p(x|z). The VAE is trained by minimizing the KL divergence between

the prior, p(z), which we often pick to be an isotropic Gaussian, and the approximate

posterior, q(z|x), while also minimizing the negative log-likelihood of p(x|z), like so:

LELBO = Ez∼q(z|x)[log p(x|z)−DKL[q(z|x)||p(z)]] (2.1)

The idea is that if we learn close to factorized latent variables that encode enough

information to reliably reconstruct the frame, they will capture important structure

of the image, like objects with assumption that objects are independent, which

might be too simplifying of an assumption.

Temporal Distance Classification (TDC): Temporal Distance Classification

(TDC) is a self-supervised method introduced by [Aytar et al., 2018], similar to

[Hyvarinen and Morioka, 2016], where the network is asked to predict the relative

distance in time between two frames. This is done by learning a linear function,

f(φ(xt), φ(xt+∆t), which predicts ∆t, the distance in time between two frames, as a

function of the embeddings of the two frames. ∆t is sampled from a set of intervals,

∆t ∈ D
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D = {[0], [1], [2], [3− 4], [5− 9]} The idea is that in order to do well at the task, it

must learn the features of the input that change over time, which often corresponds

to objects [Aytar et al., 2018].

Tuple Verification: Tuple Verification [Misra et al., 2016] is an instance of a tem-

poral order or dynamics verification task, where the network must figure out if a se-

quence of frames is in order or not. The method works as such: five chronologically or-

dered, evenly-spaced frames are chosen from a rollout: {xt, xt+∆t, xt+2∆t, xt+3∆t, xt+4∆t}
In this paper we use an evenly spaced sampling of 5 frames from a sequence of 10

consecutive frames. A binary classification problem is created by shuffling the frames

to create sequences that are out of order, which we will call negative examples.

The middle three frames in the order: {xt+∆t, xt+2∆t, xt+3∆t} is what we call a

positive example, whereas sequences where we permute the middle frame with the

first frame: {xt+∆t, xt, xt+3∆t} or permute the middle frame with the last frame:

{xt+∆t, xt+4∆t, xt+3∆t} are out-of-order sequences that we call negative examples. We

ensure that there is a 2 : 1 : 1 ratio between positive samples and the two types of

negative examples. The tuple verification model score function, f concatenates the

embeddings from the three frames, f [{φ(xt+∆t), φ(xt+2∆t), φ(xt+3∆t)}] and linearly

transforms them. A softmax classifier is then trained to maximize the score of the

”ordered” trajectories and minimize the score of the out of order trajectories. Being

successful at this task requires knowing how objects transform and move over time,

which requires encoding of features corresponding to the appearance and location

of objects [Misra et al., 2016].

Inverse Model: The inverse model [Agrawal et al., 2016, Jayaraman and Grau-

man, 2015, Pathak et al., 2017a] works by taking two consecutive frames from a

rollout from an agent, then classifying which action was taken to transition from

one frame to other. The model predicts the action by a linear classifier trained on

the concatenation of the embeddings of two frames. The idea is that in order to

reason about which action was taken, the network must learn to focus on parts of

the environment that are controllable and affect the agent [Choi et al., 2018]. This

should then result in the network learning features that capture the agent’s state

and location as well potential obstacles to the agent.
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Figure 2.1 – General architecture for self-supervised embedding. Shown for Flappy Bird.
Two or three frames are each input to the base encoder then the outputs from the encoder, φ(x)
are concatenated and passed to a linear softmax layer that classifies either a) ”how many time
steps are between a pair of frames ?” for the TDC model [Aytar et al., 2018], b) ”what action was
taken to go from the first frame to second ?” for the inverse model [Agrawal et al., 2016], or c)
”are a triplet of frames in the correct chronological order ?” for the tuple verification model [Misra
et al., 2016]

2.4 Experiments/Results

2.4.1 Datasets/Environments

We collect the data for Flappy Bird [Tasfi, 2016] and Sonic The HedgehogTM,

the GreenHillZone Act 1 level [Nichol et al., 2018] by deploying a random agent to

collect 10,000 frames. At train time we randomly select frames from these 10,000 to

form each batch. For the generalization experiments in section 2.4.3, we use what

we call FlappyBirdNight, whereby we change the background, the color of the bird

and the color of the pipes. For generalization in Sonic, we use GreenHillZone Act 2.

We edit the action space of Sonic to be just the two actions: [”Right”] and [”Down”,

”B”]. This ensures the random agent will get pretty far in the level and actually

collect a good diversity of frames. For both games, we resize the frames to 128 x

128. All ground truth position information (y position of bird, x position of pipe, y

position of Sonic) is pulled from the gym API of these games and discretized to

16 buckets and represents the relative position of these objects in the frame, not

the absolute position in the game. We purposely do not choose the x position of

the bird or Sonic because in most frames of the game, the x position is relatively

constant, while the background moves.
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2.4.2 Extracting Position Information

To show whether the self-supervised methods are capable of encoding the position

of important objects, we probe the representations learned from these methods with

a linear classifier trained to classify the agent position (bucketed to 16). The results

of this experiment are displayed in table 2.1 We find features from the inverse model

are the most discriminative for detecting the position of the bird, likely because the

inverse model focuses on what parts of the environment it can predictably control.

We find features from TDC are the best for localizing the pipe. This is likely the

case because TDC focuses on what parts of the environment are most discriminative

for separating frames in time and in Flappy Bird, the background and bird stay in

one place and the pipes move to the left to simulate the bird moving to the right.

Tuple verification features are good for both objects, the pipe and the bird, likely

because the position of the pipe relative to the bird is a very important temporal

signal, which is discriminative to whether the frames are in order or not. The VAE

does not do much better than random features for the small-sized bird, but very

respectably for the large pipe, likely due to VAEs preference to capture larger global

structure that more contributes to the reconstruction loss.

Sonic, on the other hand, has much more complex dynamics and graphics than

Flappy Bird. As a result the classification performance is not as strong. For example,

the inverse model does much worse at capturing the position of Sonic. This is likely

due to the more inconsistent response of Sonic to action commands. For example,

when Sonic is already in the air jumping, the right command has no effect. The

ambiguity to which action was called for what pairs of frames, likely causes the

inverse model to do bad at its task and thus not learn good features. Moreover, the

frame moves up in response to Sonic jumping, so Sonic’s exact pixels are not the

only thing that change in response to jump, making it tougher for the inverse model

to focus in on Sonic. Moreover, sequence verification methods like TDC and tuple

verification are also tripped up by Sonic. This is most likely because even though

Sonic moves to the right fairly consistently, the background moves in the x position

not Sonic. Normally, that would be no problem for TDC and tuple verification, like

in Flappy Bird. However, there is no consistent landmark in the background for

these methods to use like the pipes in Flappy Bird. VAEs also do worse than they

do at Flappy Bird. However, they do relatively better than any other self-supervised

methods. Likely, this is because they are not affected by weird dynamics of the
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environment.

2.4.3 Generalizing to New Levels and Colors

We can also show how well these features generalize to new situations. Theoreti-

cally, if the features are truly, robustly capturing objects of interest, changing the

level or the colors of the environment, should not affect a linear classifier’s ability

to localize objects of interest. We test this out by looking at zero-shot linear probe

accuracy with the background, pipe, and bird colors changed for Flappy Bird and

on a new level for Sonic.We see these results in table 2.2. Unsurprisingly, we find the

performance decreases for all self-supervised methods in Flappy Bird. Surprisingly,

the features from TDC generalize better than the inverse model for classifying bird’s

location. Potentially, this is because the color of the bird changes and the features

from the inverse model are more specific to the exact appearance of the bird from

the setup it was trained on. TDC features, on the hand, may encode the bird based

on where it is relative to the pipes, and less so on exactly how it looks and for the

same reason, TDC features are able to capture the pipes, despite their different

color. The VAE features’ performance unsurprisingly drops for both objects, as the

global structure that they learn to encode completely changes with the new colors

in the FlappyBirdNight setup.

2.4.4 Qualititative Inspection of Feature Maps

We show qualitative inspection by superimposing a frame’s feature map on top of

the frame itself. We pick the most compelling feature map for each frame, which we

show in figures 2.2 and 2.3. Confirming our hypothesis from 2.4.2, we see for Flappy

Bird, the inverse model feature map focuses on the bird and the TDC feature map

focuses on the pipe. Interestingly enough, tuple verification keys in on the top half

of the pipe and the VAE activates on everything in the frame, but the pipes. For

Sonic, things are not as clean and interpretable. As we see in figure 2.3, the inverse

model feature map and the TDC one focus in on a cloud, perhaps mistaking it for

Sonic, and the tuple verification map keys in on nothing at all. The VAE feature

map, unsurprisingly, activates on important, ubiquitous objects for reconstructing

the frame, like the tree and the bush. None of these representative feature maps key

in on Sonic himself, which agrees with the poor quantitative classification accuracy
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Table 2.1 – Extracting Position Information We train a linear classifier on top of feature
spaces from each method and measure the classification accuracy for the various position of various
objects in the game, y position of the bird and x position of the first pipe for Flappy Bird and y
position of Sonic in Sonic

Method Flappy Bird Sonic

Bird Y Pos Acc (%) Pipe X Pos Acc(%) Y Pos (%)

RandCNN 35.57 52.13 23.88

VAE 36.20 76.52 53.82

Inv Model 91.67 81.64 25.83

tuple verification 75.41 87.08 11.2

TDC 56.06 92.36 10.42

Table 2.2 – Generalizing Extracting Position to New Levels and Colors We see how
well the trained linear classifiers do in a zero shot transfer to new colors for Flappy Bird and a
new level for Sonic

Method FlappyBirdNight Sonic GreenHillZone Act 2

Bird Y Pos Acc (%) Pipe X Pos Acc(%) Y Pos (%)

RandCNN 34.03 7.41 28.31

VAE 2.53 2.0 34.57

Inv Model 36.5 8.90 27.28

tuple verification 1.88 1.74 14.4

TDC 46.9 16.22 13.59

results in table 2.1.

2.5 Related Work

This paper is not the first paper to quantitatively and qualitatively compare

features from self-supervised methods in interactive environments. [Burda et al.,

2018a] compare the feature spaces learned from VAEs, Inverse Models, and Random

CNN’s and raw pixels (but not sequence verification methods) across a large variety

of games. They even measure the generalization of these feature spaces to new,
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unseen environments. However, all their evaluations are in the context of how well

an agent explores its environment with this feature space using extrinsic rewards

and other measures of exploration. Additionally, [Shelhamer et al., 2016] studies

VAEs, Inverse Models, and a sequence verification task in RL environments, but they

evaluate these self-supervised methods as auxiliary tasks paired with a traditional

extrinsic reward policy gradient algorithm, A3C [Mnih et al., 2016], using empirical

returns from extrinsic rewards as a measure of utility of each feature space. Lastly,

trying to infer the position of salient objects has been explored a lot in robotics in a

field called state inference [Jonschkowski and Brock, 2015, Jonschkowski et al., 2017].

Moreover, [Raffin et al., 2018, Lesort et al., 2018] look into using some self-supervised

tasks for state inference, but they mostly measure performance on control tasks ;

they do not measure direct correlation or classification accuracy of the features to

the true position of the object.

2.6 Conclusion

We have shown comparing methods on interactive environments reveals intriguing

things about the self-supervised methods as well as the environments themselves.

Particularly, we expose various traits of environments that some self-supervised

tasks can take advantage of and others cannot. For example, inverse models are

very good at localizing what they can control even when it is small, but only when

the dynamics are simple and predictable and the appearance of the agent itself is

consistent. Temporal distance classifiers are very good at capturing things that move

very predictably in time. Tuple verification encoders are good at capturing small

and large objects in environments with pretty consistent graphics and dynamics.

VAEs learn good features when the objects are big and repeatably show up in the

scene with consistent appearance.

2.6.1 Future Work

The very different behaviors of each method depending on the traits of the

environment warrants further study covering more environments with more diverse

appearances and dynamics, as well as a wider range of self-supervised methods. In
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addition, the fact that some methods excel at capturing or generalizing better than

others depending on the environment motivates exploring potentially combining

these methods by having a shared encoder body with multiple self-supervised heads.

We hope that this study can open the door to more extensive, rigorous approaches

for studying the capability of self-supervised methods and that its results can inspire

new methods that learn even better features.
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Figure 2.2 – Qualititative Inspection of Feature Maps Flappy Bird feature maps from the
last convolutional layer of the encoder superimposed on top of a sequence of frames they are a
function of. Red pixels are high values, blue are low values
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Figure 2.3 – Sonic feature maps from the last convolutional layer of the encoder superimposed
on top of the frames they are a function of for from left: random CNN, VAE, inverse Model, tuple
verification, and temporal distance classification. Red is high values, blue are low values
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3.1 Abstract

State representation learning, or the ability to capture latent generative factors

of an environment, is crucial for building intelligent agents that can perform a wide

variety of tasks. Learning such representations without supervision from rewards is a

challenging open problem. We introduce a method that learns state representations

by maximizing mutual information across spatially and temporally distinct features

of a neural encoder of the observations. We also introduce a new benchmark based on

Atari 2600 games where we evaluate representations based on how well they capture

the ground truth state variables. We believe this new framework for evaluating

representation learning models will be crucial for future representation learning

research. Finally, we compare our technique with other state-of-the-art generative

and contrastive representation learning methods.

3.2 Introduction

The ability to perceive and represent visual sensory data into useful and concise

descriptions is considered a fundamental cognitive capability in humans [Marr, 1982,

Gordon and Irwin, 1996], and thus crucial for building intelligent agents [Lake et al.,

2017]. Representations that succinctly reflect the true state of the environment

should allow agents to learn to act in those environments with fewer interactions,

and effectively transfer knowledge across different tasks in the environment.

Recently, deep representation learning has led to tremendous progress in a variety

of machine learning problems across numerous domains [Krizhevsky et al., 2012,

Amodei et al., 2016, Wu et al., 2016, Mnih et al., 2015, Silver et al., 2016]. Typically,

such representations are often learned via end-to-end learning using the signal from

labels or rewards, which makes such techniques often very sample-inefficient. In

contrast, human learning in the natural world appears to require little to no explicit

supervision for perception [Gross, 1968].

Unsupervised [Dumoulin et al., 2017, Kingma and Welling, 2013, Dinh et al.,

2017] and self-supervised representation learning [Pathak et al., 2016a, Doersch

and Zisserman, 2017, Kolesnikov et al., 2019] have emerged as an alternative to

supervised versions which can yield useful representations with reduced sample
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complexity. In the context of learning state representations [Lesort et al., 2018],

current unsupervised methods rely on generative decoding of the data using either

VAEs [Watter et al., 2015, Higgins et al., 2017b, Ha and Schmidhuber, 2018a,

Duan, 2017] or prediction in pixel-space [Oh et al., 2015, Finn et al., 2016]. Since

these objectives are based on reconstruction error in the pixel space, they are not

incentivized to capture abstract latent factors and often default to capturing pixel

level details.

In this work, we leverage recent advances in self-supervision that rely on scalable

estimation of mutual information [Belghazi et al., 2018, van den Oord et al., 2018,

Hjelm et al., 2019, Veličković et al., 2018], and propose a new contrastive state

representation learning method named Spatiotemporal Deep Infomax (ST-DIM),

which maximizes the mutual information across both the spatial and temporal axes.
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Figure 3.1 – We use a collection of 22 Atari 2600 games to evaluate state representations.
We leveraged the source code of the games to annotate the RAM states with important state
variables such as the location of various objects in the game. We compare various unsupervised
representation learning techniques based on how well the representations linearly-separate the
state variables. Shown above are examples of state variables annotated for Montezuma’s Revenge
and MsPacman.

To systematically evaluate the ability of different representation learning methods

at capturing the true underlying factors of variation, we propose a benchmark based

on Atari 2600 games using the Arcade Learning Environment [ALE, Bellemare

et al., 2013]. A simulated environment provides access to the underlying generative

factors of the data, which we extract using the source code of the games. These

factors include variables such as the location of the player character, location of
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various items of interest (keys, doors, etc.), and various non-player characters, such

as enemies (see figure 3.1). Performance of a representation learning technique in

the Atari representation learning benchmark is then evaluated using linear probing

[Alain and Bengio, 2017], i.e. the accuracy of linear classifiers trained to predict the

latent generative factors from the learned representations.

Our contributions are the following

1. We propose a new self-supervised state representation learning technique

which exploits the spatial-temporal nature of visual observations in a reinfor-

cement learning setting.

2. We propose a new state representation learning benchmark using 22 Atari

2600 games based on the Arcade Learning Environment (ALE).

3. We conduct extensive evaluations of existing representation learning tech-

niques on the proposed benchmark and compare with our proposed method.

3.3 Related Work

Unsupervised representation learning via mutual information estima-

tion: Recent works in unsupervised representation learning have focused on extrac-

ting latent representations by maximizing a lower bound on the mutual information

between the representation and the input. Belghazi et al. [2018] estimate the mutual

information with neural networks using the Donsker-Varadhan representation of

the KL divergence [Donsker and Varadhan, 1983], while Chen et al. [2016] use the

variational bound from Barber and Agakov [2003] to learn discrete latent represen-

tations. Hjelm et al. [2019] learn representations by maximizing the Jensen-Shannon

divergence between joint and product of marginals of an image and its patches.

van den Oord et al. [2018] maximize mutual information using a multi-sample

version of noise contrastive estimation [Gutmann and Hyvärinen, 2010, Ma and

Collins, 2018]. See [Poole et al., 2019] for a review of different variational bounds

for mutual information.
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State representation learning: Learning better state representations is an

active area of research within robotics and reinforcement learning. Jonschkowski and

Brock [2015] and Jonschkowski et al. [2017] propose to learn representations using a

set of handcrafted robotic priors. Several prior works use a VAE and its variations

to learn a mapping from observations to state representations [Higgins et al., 2018,

Watter et al., 2015, van Hoof et al., 2016]. Thomas et al. [2017] aims to learn

the representations that maximize the causal relationship between the distributed

policies and the representation of changes in the state. Recently, Cuccu et al.

[2019] shows that visual processing and policy learning can be effectively decoupled

in Atari games. Nachum et al. [2019] connects mutual information estimators to

representation learning in hierarchical RL. Our work is also closely related to recent

work in learning object-oriented representations [Burgess et al., 2019].

Evaluation frameworks of representations: Evaluating representations is an

open problem, and doing so is usually domain specific. In vision tasks, it is common

to evaluate based on the presence of linearly separable label-relevant information,

either in the domain the representation was learned on [Coates et al., 2011] or in

transfer learning tasks [Xian et al., 2018, Triantafillou et al., 2017]. In NLP, the

SentEval [Conneau and Kiela, 2018] and GLUE [Wang et al., 2019] benchmarks

provide a means of providing a more linguistic-specific understanding of what the

model has learned, and these have become a standard tool in NLP research. Our

evaluation framework can be thought of as a GLUE-like benchmarking tool for

RL, providing a fine-grained understanding of how well the RL agent perceives

the objects in the scene. Analogous to GLUE in NLP, we anticipate that our

benchmarking tool will be useful in RL research for better designing components of

agent learning.

3.4 Spatiotemporal Deep Infomax

We assume a setting where an agent interacts with an environment and observes

a set of high-dimensional observations X = {x1, x2, . . . , xN} across several episodes.

Our goal is to learn an abstract representation of the observation that captures the

underlying latent generative factors of the environment.
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This representations should focus on high-level semantics (e.g., the concept of

agents, enemies, objects, score, etc.) and ignore the low-level details such as the

precise texture of the background, which warrants a departure from the class of

methods that rely on a generative decoding of the full observation. Prior work in

neuroscience [Friston, 2005, Rao and Ballard, 1999] has suggested that the brain

maximizes predictive information [Bialek and Tishby, 1999] at an abstract level to

avoid sensory overload. Predictive information, or the mutual information between

consecutive states, has also been shown to be the organizing principle of retinal

ganglion cells in salamander brains [Palmer et al., 2015]. Thus our representation

learning approach relies on maximizing an estimate based on a lower bound on the

mutual information over consecutive observations xt and xt+1.

3.4.1 Maximizing mutual information across space and time

local infomax global infomax

conv layers

conv layers

dense layers

(a)

xt

Positive Sample  
(consecutive obs.)

Negative Sample
(non-consecutive obs.)

Discriminator

xt

CNN

Bilinear

local featureslocal / global
 features

CNN CNN

Bilinear

local featureslocal / global
 features

CNN

(b)

Figure 3.2 – A schematic overview of SpatioTemporal DeepInfoMax (ST-DIM). (a) shows the two
different mutual information objectives: local infomax and global infomax. (b) shows a simplified
version of the contrastive task we use to estimate mutual information. In practice, we use multiple
negative samples.

Given a mutual information estimator, we follow DIM [Hjelm et al., 2019] and

maximize a sum of patch-level mutual information objectives. The global objectives

maximize the mutual information between the full observation at time t with small

patches of the observation at time t + 1. The representations of the small image

patches are taken to be the hidden activations of the convolutional encoder applied

to the full observation. The layer is picked appropriately to ensure that the hidden
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activations only have a limited receptive field corresponding to 1/16th the size of the

full observations. The local objective maximizes the mutual information between

the local feature at time t with the corresponding local feature at time t+ 1. Figure

3.2 is a visual depiction of our model which we call Spatiotemporal Deep Infomax

(ST-DIM).

It has been shown that mutual information bounds can be loose for large values

of the mutual information [McAllester and Statos, 2018] and in practice fail to

capture all the relevant features in the data [Ozair et al., 2019] when used to learn

representations. To alleviate this issue, our approach constructs multiple small

mutual information objectives (rather than a single large one) which are easier to

estimate via lower bounds, which has been concurrently found to work well in the

context of semi-supervised learning [Bachman et al., 2019].

For the mutual information estimator, we use infoNCE [van den Oord et al., 2018],

a multi-sample variant of noise-contrastive estimation [Gutmann and Hyvärinen,

2010] that was also shown to work well with DIM. Let {(xi, yi)}Ni=1 be a paired

dataset of N samples from some joint distribution p(x, y). For any index i, (xi, yi)

is a sample from the joint p(x, y) which we refer to as positive examples, and for any

i 6= j, (xi, yj) is a sample from the product of marginals p(x)p(y), which we refer to

as negative examples. The InfoNCE objective learns a score function f(x, y) which

assigns large values to positive examples and small values to negative examples by

maximizing the following bound [see van den Oord et al., 2018, Poole et al., 2019,

for more details on this bound],

INCE({(xi, yi)}Ni=1) =
N∑
i=1

log
exp f(xi, yi)∑N
j=1 exp f(xi, yj)

(3.1)

The above objective has also been referred to as multi-class n-pair loss [Sohn, 2016,

Sermanet et al., 2018] and ranking-based NCE [Ma and Collins, 2018], and is similar

to MINE [Belghazi et al., 2018] and the JSD-variant of DIM [Hjelm et al., 2019].

Following van den Oord et al. [2018] we use a bilinear model for the score

function f(x, y) = φ(x)TWφ(y), where φ is the representation encoder. The bilinear

model combined with the InfoNCE objective forces the encoder to learn linearly

predictable representations, which we believe helps in learning representations at

the semantic level. In our context, the positive examples correspond to pairs of

consecutive observations (xt, xt+1) and negative samples correspond to pair to pair
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of non-consecutive observations (xt, xt∗), where t∗ is a randomly sampled time index

from the episode. For ST-DIM, the final score function for the global objective is

fg(xt, xt+1) = φ(xt)
TWgφl,m,n(xt+1) and the score function of the local objective is

fl(xt, xt+1) = φl,m,n(xt)
TWlφl,m,n(xt+1), where φl,m,n is the feature map at the lth

layer at the (m,n) spatial location.

3.5 The Atari Annotated RAM Interface

(AtariARI)

Measuring the usefulness of a representation is still an open problem, as a core

utility of representations is their use as feature extractors in tasks that are different

from those used for training (e.g., transfer learning). Measuring classification per-

formance, for example, may only reveal the amount of class-relevant information

in a representation, but may not reveal other information useful for segmentation.

It would be useful, then, to have a more general set of measures on the usefulness

of a representation, such as ones that may indicate more general utility across

numerous real-world tasks. In this vein, we assert that in the context of dynamic,

visual, interactive environments, the capability of a representation to capture the

underlying high-level factors of the state of an environment will be generally useful

for a variety of downstream tasks such as prediction, control, and tracking.

We find video games to be a useful candidate for evaluating visual representation

learning algorithms primarily because they are spatiotemporal in nature, which is

(1) more realistic compared to static i.i.d. datasets and (2) prior work Hyvärinen

et al. [2004], Locatello et al. [2019] have argued that without temporal structure,

recovering the true underlying latent factors is undecidable. Apart from this, video

games also provide ready access to the underlying ground truth states, unlike

real-world datasets, which we need to evaluate performance of different techniques.

Annotating Atari RAM: ALE does not explicitly expose any ground truth state

information. However, ALE does expose the RAM state (128 bytes per timestep)

which are used by the game programmer to store important state information such

as the location of sprites, the state of the clock, or the current room the agent is
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in. To extract these variables, we consulted commented disassemblies [Whalen and

Taylor, 2008] (or source code) of Atari 2600 games which were made available by

Engelhardt [2019] and Jentzsch and CPUWIZ [2019]. We were able to find and verify

important state variables for a total of 22 games. Once this information is acquired,

combining it with the ALE interface produces a wrapper that can automatically

output a state label for every example frame generated from the game. We make

this available with an easy-to-use gym wrapper, which returns this information with

no change to existing code using gym interfaces. Table 3.1 lists the 22 games along

with the categories of variables for each game. We describe the meaning of each

category in the next section.

State variable categories: We categorize the state variables of all the games

among six major categories: agent localization, small object localization, other

localization, score/clock/lives/display, and miscellaneous. Agent Loc. (agent locali-

zation) refers to state variables that represent the x or y coordinates on the screen of

any sprite controllable by actions. Small Loc. (small object localization) variables

refer to the x or y screen position of small objects, like balls or missiles. Prominent

examples include the ball in Breakout and Pong, and the torpedo in Seaquest.

Other Loc. (other localization) denotes the x or y location of any other sprites,

including enemies or large objects to pick up. For example, the location of ghosts in

Ms Pacman or the ice floes in Frostbite. Score/Clock/Lives/Display refers to

variables that track the score of the game, the clock, or the number of remaining

lives the agent has, or some other display variable, like the oxygen meter in Seaquest.

Misc. (Miscellaneous) consists of state variables that are largely specific to a game,

and don’t fall within one of the above mentioned categories. Examples include

the existence of each block or pin in Breakout and Bowling, the room number in

Montezuma’s Revenge, or Ms. Pacman’s facing direction.

Probing: Evaluating representation learning methods is a challenging open pro-

blem. The notion of disentanglement [Bengio, 2009, Bengio et al., 2013] has emerged

as a way to measure the usefulness of a representation [Eastwood and Williams, 2018,

Higgins et al., 2018]. In this work, we focus only on explicitness, i.e the degree to

which underlying generative factors can be recovered using a linear transformation

from the learned representation. This is standard methodology in the self-supervised
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representation learning literature [Doersch and Zisserman, 2017, van den Oord et al.,

2018, Caron et al., 2018, Kolesnikov et al., 2019, Hjelm et al., 2019]. Specifically, to

evaluate a representation we train linear classifiers predicting each state variable,

and we report the mean F1 score.

3.6 Experimental Setup

We evaluate the performance of different representation learning methods on our

benchmark. Our experimental pipeline consists of first training an encoder, then

freezing its weights and evaluating its performance on linear probing tasks. For each

identified generative factor in each game, we construct a linear probing task where

the representation is trained to predict the ground truth value of that factor. Note

that the gradients are not backpropagated through the encoder network, and only

used to train the linear classifier on top of the representation.

3.6.1 Data preprocessing and acquisition

We consider two different modes for collecting the data: (1) using a random

agent (steps through the environment by selecting actions randomly), and (2) using

a PPO [Schulman et al., 2017] agent trained for 50M timesteps. For both these

modes, we ensure there is enough data diversity by collecting data using 8 differently

initialized workers. We also add additional stochasticity to the pretrained PPO

agent by using an ε-greedy like mechanism wherein at each timestep we take a

random action with probability ε 2.

3.6.2 Methods

In our evaluations, we compare the following methods:

1. Randomly-initialized CNN encoder (random-cnn).

2. Variational autoencoder (vae) [Kingma and Welling, 2013] on raw observa-

tions.

2. For all our experiments, we used ε = 0.2.
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3. Next-step pixel prediction model (pixel-pred) inspired by the ”No-action

Feedforward” model from Oh et al. [2015].

4. Contrastive Predictive Coding (cpc) [van den Oord et al., 2018], which

maximizes the mutual information between current latents and latents at a

future timestep.

5. supervised model which learns the encoder and the linear probe using the

labels. The gradients are backpropagated through the encoder in this case,

so this provides a best-case performance bound.

All methods use the same base encoder architecture, which is the CNN from [Mnih

et al., 2013], but adapted for the full 160x210 Atari frame size. To ensure a fair

comparison, we use a representation size of 256 for each method. As a sanity check,

we include a blind majority classifier (maj-clf), which predicts label values based

on the mode of the train set. More details in Appendix, section 3.9.

3.6.3 Probing

We train a different 256-way 3 linear classifier with the representation under

consideration as input. We ensure the distribution of realizations of each state

variable has high entropy by pruning any variable with entropy less than 0.6. We

also ensure there are no duplicates between the train and test set. We train each

linear probe with 35,000 frames and use 5,000 and 10,000 frames each for validation

and test respectively. We use early stopping and a learning rate scheduler based on

plateaus in the validation loss.

3.7 Results

We report the F1 averaged across all categories for each method and for each

game in Table 3.2 for data collected by random agent. In addition, we provide

a breakdown of probe results in each category, such as small object localization

or score/lives classification in Table 3.3 for the random agent. We include the

corresponding tables for these results with data collected by a pretrained PPO agent

3. Each RAM variable is a single byte thus has 256 possible values ranging from 0 to 255.
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in tables 3.6 and 3.7. The results in table 3.2 show that ST-DIM largely outperforms

other methods in terms of mean F1 score. In general, contrastive methods (ST-DIM

and CPC) methods seem to perform better than generative methods (VAE and

PIXEL-PRED) at these probing tasks. We find that RandomCNN is a strong prior

in Atari games as has been observed before [Burda et al., 2018a], possibly due to the

inductive bias captured by the CNN architecture empirically observed in [Ulyanov

et al., 2018]. We find similar trends to hold on results with data collected by a

PPO agent. Despite contrastive methods performing well, there is still a sizable gap

between ST-DIM and the fully supervised approach, leaving room for improvement

from new unsupervised representation learning techniques for the benchmark.

3.8 Discussion

Ablations: We investigate two ablations of our ST-DIM model: Global-T-DIM,

which only maximizes the mutual information between the global representations

and JSD-ST-DIM, which uses the NCE loss Hyvärinen and Pajunen [1999] instead of

the InfoNCE loss, which is equivalent to maximizing the Jensen Shannon Divergence

between representations. We report results from these ablations in Figure 3.3. We

see from the results in that 1) the InfoNCE loss performs better than the JSD loss

and 2) contrasting spatiotemporally (and not just temporally) is important across

the board for capturing all categories of latent factors.

We found ST-DIM has two main advantages which explain its superior perfor-

mance over other methods and over its own ablations. It captures small objects much

better than other methods, and is more robust to the presence of easy-to-exploit

features which hurts other contrastive methods. Both these advantages are due to

ST-DIM maximizing mutual information of patch representations.

Capturing small objects: As we can see in Table 3.3, ST-DIM performs better

at capturing small objects than other methods, especially generative models like

VAE and pixel prediction methods. This is likely because generative models try to

model every pixel, so they are not penalized much if they fail to model the few pixels

that make up a small object. Similarly, ST-DIM holds this same advantage over

Global-T-DIM (see Table 3.9), which is likely due to the fact that Global-T-DIM is
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not penalized if its global representation fails to capture features from some patches

of the frame.

Robust to presence of easy-to-exploit features: Representation learning

with mutual information or contrastive losses often fail to capture all salient fea-

tures if a few easy-to-learn features are sufficient to saturate the objective. This

phenomenon has been linked to the looseness of mutual information lower bounds

[McAllester and Statos, 2018, Ozair et al., 2019] and gradient starvation [Combes

et al., 2018]. We see the most prominent example of this phenomenon in Boxing.

The observations in Boxing have a clock showing the time remaining in the round. A

representation which encodes the shown time can perform near-perfect predictions

without learning any other salient features in the observation. Table 3.4 shows that

CPC, Global T-DIM, and ST-DIM perform well at predicting the clock variable.

However only ST-DIM does well on encoding the other variables such as the score

and the position of the boxers.

We also observe that the best generative model (PIXEL-PRED) does not suffer

from this problem. It performs its worst on high-entropy features such as the

clock and player score (where ST-DIM excels), and does slightly better than ST-

DIM on low-entropy features which have a large contribution in the pixel space

such as player and enemy locations. This sheds light on the qualitative difference

between contrastive and generative methods: contrastive methods prefer capturing

high-entropy features (irrespective of contribution to pixel space) while generative

methods do not, and generative methods prefer capturing large objects which have

low entropy. This complementary nature suggests hybrid models as an exciting

direction of future work.

3.9 Architecture Details

All architectures below use the same encoder architecture as a base, which is

the one used in Mnih et al. [2013] adapted to work for the full 160x210 frame size

as shown in figure 3.4.
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Figure 3.3 – Different ablations for the ST-DIM model

1. Linear Probe:

The linear probe is a linear layer of width 256 with a softmax activation and

trained with a cross-entropy loss.

2. Majority Classifier (maj-clsf):

The majority classifier is parameterless and just uses the mode of the dis-

tribution of classes from the training set for each state variable and guesses

that mode for every example on the test set at test time.

3. Random-CNN:

The Random-CNN is the base encoder with randomly initialized weights and

no training

4. VAE and Pixel-Pred:

The VAE and Pixel Prediction model use the base encoder plus each have an

extra 256 wide fully connected layer to parameterize the log variance for the

VAE and to more closely resemble the No Action Feed Forward model from

Oh et al. [2015]. In addition bith models have a deconvolutional network as

a decoder, which is the exact transpose of the base encoder in figure 3.4.

5. CPC:

CPC uses the same architecture as described in van den Oord et al. [2018]

with our base encoder from figure 3.4 being used as the image encoder genc.
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6. ST-DIM (and its ablations):

ST-DIM and the two ablations, JSD-ST-DIM and Global-T-DIM, all use the

same architecture which is the base encoder plus a 1x256x256 bilinear layer.

7. Supervised:

The supervised model is our base encoder plus our linear probe trained

end-to-end with the ground truth labels.

8. PPO Features (section 3.13):

The PPO model is our base encoder plus two linear layers for the policy and

the value function, respectively.

/255

Conv. 8 * 8, stride 4 

ReLU

160 * 210

Conv. 4 * 4, stride 2 

ReLU

Conv. 4 * 4, stride 2 

ReLU

Conv. 3 *3, stride 1 

ReLU

FC 256

32

64

128

64

Figure 3.4 – The base encoder architecture used for all models in this work
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3.10 Preprocessing and Hyperparameters

We preprocess frames primarily in the same way as described in Mnih et al.

[2013], with the key difference being we use the full 160x210 images for all our

experiments instead of downsampling to 84x84. Table 3.5 lists the hyper-parameters

we use across all games. For all our experiments, we use a learning rate scheduler

based on plateaus in the validation loss (for both contrastive training and probing).

Compute infrastructure: We run our experiments on a autoscaling-cluster with

multiple P100 and V100 GPUs. We use 8 cores per machines to distribute data

collection across different workers.

3.11 Results with Probes Trained on Data

Collected By a Pretrained RL agent

In addition to evaluating on data collected by a random agent, we also evaluate

different representation learning methods on data collected by a pretrained PPO

[Schulman et al., 2017] agent. Specifically, we use a PPO agent trained for 50M

steps on each game. We choose actions stochastically by sampling from the PPO

agent’s action distribution at every time step, and inject additional stochasticity

by using an ε-greedy mechanism with ε = 0.2. Table 3.6 shows the game-by-game

breakdown of mean F1 probe scores obtained by each method in this evaluation

setting. Table 3.7 additionally shows the category-wise breakdown of results for

each method. We observe a similar trend in performance as observed earlier with a

random agent.

3.12 More Detailed Ablation Results

We expand on the results reported on different ablations (JSD-ST-DIM and

Global-T-DIM) of STDIM in the main text, and provide a game by game breakdown

of results in Table 3.8, and a category-wise breakdown in Table 3.9.
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3.13 Probing Pretrained RL Agents

We make a first attempt at examining the features that RL agents learn. Speci-

fically, we train linear probes on the representations from PPO agents that were

trained for 50 million frames. The architecture of the PPO agent is described in sec-

tion 3.9. As we see from table 3.10, the features perform poorly in the probing tasks

compared to the baselines. Kansky et al. [2017], Zhang et al. [2018] have also argued

that model-free agents have trouble encoding high level state information. However,

we note that these are preliminary results and require thorough investigation over

different policies and models.

3.14 Conclusion

We present a new representation learning technique which maximizes the mutual

information of representations across spatial and temporal axes. We also propose a

new benchmark for state representation learning based on the Atari 2600 suite of

games to emphasize learning multiple generative factors. We demonstrate that the

proposed method excels at capturing the underlying latent factors of a state even for

small objects or when a large number of objects are present, which prove difficult for

generative and other contrastive techniques, respectively. We have shown that our

proposed benchmark can be used to study qualitative and quantitative differences

between representation learning techniques, and hope that it will encourage more

research in the problem of state representation learning.
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Table 3.1 – Number of ground truth labels available in the benchmark for each game across each
category. Localization is shortened for local. See section 3.5 for descriptions and examples for each
category.

small score/clock

agent object other lives

game local. local. local. display misc overall

asteroids 2 4 30 3 3 41

berzerk 2 4 19 4 5 34

bowling 2 2 0 2 10 16

boxing 2 0 2 3 0 7

breakout 1 2 0 1 31 35

demonattack 1 1 6 1 1 10

freeway 1 0 10 1 0 12

frostbite 2 0 9 4 2 17

hero 2 0 0 3 3 8

montezumarevenge 2 0 4 4 5 15

mspacman 2 0 10 2 3 17

pitfall 2 0 3 0 0 5

pong 1 2 1 2 0 6

privateeye 2 0 2 4 2 10

qbert 3 0 2 0 0 5

riverraid 1 2 0 2 0 5

seaquest 2 1 8 4 3 18

spaceinvaders 1 1 2 2 1 7

tennis 2 2 2 2 0 8

venture 2 0 12 3 1 18

videopinball 2 2 0 2 0 6

yarsrevenge 2 4 2 0 0 8

total 39 27 124 49 70 308
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Table 3.2 – Probe F1 scores averaged across categories for each game (data collected by random
agents)

Game maj-clf random-cnn vae pixel-pred cpc st-dim supervised

asteroids 0.28 0.34 0.36 0.34 0.42 0.49 0.52

berzerk 0.18 0.43 0.45 0.55 0.56 0.53 0.68

bowling 0.33 0.48 0.50 0.81 0.90 0.96 0.95

boxing 0.01 0.19 0.20 0.44 0.29 0.58 0.83

breakout 0.17 0.51 0.57 0.70 0.74 0.88 0.94

demonattack 0.16 0.26 0.26 0.32 0.57 0.69 0.83

freeway 0.01 0.50 0.01 0.81 0.47 0.81 0.98

frostbite 0.08 0.57 0.51 0.72 0.76 0.75 0.85

hero 0.22 0.75 0.69 0.74 0.90 0.93 0.98

montezumarevenge 0.08 0.68 0.38 0.74 0.75 0.78 0.87

mspacman 0.10 0.49 0.56 0.74 0.65 0.72 0.87

pitfall 0.07 0.34 0.35 0.44 0.46 0.60 0.83

pong 0.10 0.17 0.09 0.70 0.71 0.81 0.87

privateeye 0.23 0.70 0.71 0.83 0.81 0.91 0.97

qbert 0.29 0.49 0.49 0.52 0.65 0.73 0.76

riverraid 0.04 0.34 0.26 0.41 0.40 0.36 0.57

seaquest 0.29 0.57 0.56 0.62 0.66 0.67 0.85

spaceinvaders 0.14 0.41 0.52 0.57 0.54 0.57 0.75

tennis 0.09 0.41 0.29 0.57 0.60 0.60 0.81

venture 0.09 0.36 0.38 0.46 0.51 0.58 0.68

videopinball 0.09 0.37 0.45 0.57 0.58 0.61 0.82

yarsrevenge 0.01 0.22 0.08 0.19 0.39 0.42 0.74

mean 0.14 0.44 0.40 0.58 0.61 0.68 0.82

Table 3.3 – Probe F1 scores for different methods averaged across all games for each category
(data collected by random agents)

random

Category maj-clf cnn vae pixel-pred cpc st-dim supervised

Small Loc. 0.14 0.19 0.18 0.31 0.42 0.51 0.66

Agent Loc. 0.12 0.31 0.32 0.48 0.43 0.58 0.81

Other Loc. 0.14 0.50 0.39 0.61 0.66 0.69 0.80

Score/Clock/Lives/Display 0.13 0.58 0.54 0.76 0.83 0.87 0.91

Misc. 0.26 0.59 0.63 0.70 0.71 0.75 0.83
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Table 3.4 – Breakdown of F1 Scores for every state variable in Boxing for ST-DIM, CPC, and
Global-T-DIM, an ablation of ST-DIM that removes the spatial contrastive constraint, for the
game Boxing

method vae pixel-pred cpc global-t-dim st-dim

clock 0.03 0.27 0.79 0.81 0.92

enemy score 0.19 0.58 0.59 0.74 0.70

enemy x 0.32 0.49 0.15 0.17 0.51

enemy y 0.22 0.42 0.04 0.16 0.38

player score 0.08 0.32 0.56 0.45 0.88

player x 0.33 0.54 0.19 0.13 0.56

player y 0.16 0.43 0.04 0.14 0.37

Table 3.5 – Preprocessing steps and hyperparameters

Parameter Value

Image Width 160

Image Height 210

Grayscaling Yes

Action Repetitions 4

Max-pool over last N action repeat frames 2

Frame Stacking None

End of episode when life lost Yes

No-Op action reset Yes

Batch size 64

Sequence Length (CPC) 100

Learning Rate (Training) 3e-4

Learning Rate (Probing, non supervised) 5e-2

Learning Rate (Probing, supervised) 3e-4

Entropy Threshold 0.6

Encoder training steps 70000

Probe training steps 35000

Probe test steps 10000
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Table 3.6 – Probe F1 scores for all games for data collected by a pretrained PPO (50M steps)
agent

game mean agent rewards maj-clf random-cnn vae pixel-pred cpc st-dim supervised

asteroids 489862.00 0.23 0.31 0.35 0.31 0.38 0.40 0.56

berzerk 1913.00 0.13 0.33 0.35 0.39 0.38 0.43 0.61

bowling 29.80 0.23 0.61 0.51 0.81 0.90 0.98 0.98

boxing 93.30 0.05 0.30 0.32 0.57 0.32 0.66 0.87

breakout 580.40 0.09 0.34 0.59 0.47 0.55 0.66 0.87

demonattack 428165.00 0.03 0.19 0.18 0.26 0.43 0.58 0.76

freeway 33.50 0.01 0.36 0.02 0.60 0.38 0.60 0.76

frostbite 3561.00 0.13 0.57 0.46 0.70 0.74 0.69 0.85

hero 44999.00 0.12 0.54 0.60 0.68 0.86 0.77 0.96

mzrevenge 0.00 0.08 0.68 0.58 0.72 0.77 0.76 0.88

mspacman 4588.00 0.07 0.34 0.36 0.52 0.45 0.49 0.71

pitfall 0.00 0.16 0.39 0.37 0.53 0.69 0.74 0.92

pong 21.00 0.02 0.10 0.24 0.67 0.63 0.79 0.87

privateeye -10.00 0.24 0.71 0.69 0.87 0.83 0.91 0.99

qbert 30590.00 0.06 0.36 0.38 0.39 0.51 0.48 0.65

riverraid 20632.00 0.04 0.25 0.21 0.34 0.31 0.22 0.59

seaquest 1620.00 0.29 0.64 0.58 0.75 0.69 0.75 0.90

spaceinvaders 2892.50 0.02 0.28 0.30 0.41 0.32 0.41 0.65

tennis -4.30 0.15 0.25 0.13 0.65 0.63 0.65 0.61

venture 0.00 0.05 0.32 0.36 0.37 0.50 0.59 0.69

videopinball 356362.00 0.13 0.36 0.42 0.56 0.57 0.54 0.79

yarsrevenge 5520.00 0.03 0.14 0.26 0.23 0.38 0.43 0.74

mean - 0.11 0.38 0.38 0.54 0.56 0.62 0.78

Table 3.7 – Probe F1 scores for different methods averaged across all games for each category
(data collected by a pretrained PPO (50M steps) agent

category maj-clf random-cnn vae pixel-pred cpc st-dim supervised

Small Loc. 0.10 0.13 0.14 0.27 0.31 0.41 0.65

Agent Loc. 0.11 0.34 0.34 0.48 0.45 0.54 0.83

Other Loc. 0.14 0.47 0.38 0.56 0.58 0.61 0.74

Score/Clock/Lives/Display 0.05 0.44 0.50 0.71 0.74 0.80 0.90

Misc. 0.19 0.53 0.57 0.62 0.65 0.67 0.83
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Table 3.8 – Probe F1 scores for different ablations of ST-DIM for all games averaged across each
category (data collected by random agents)

jsd-st-dim global-t-dim st-dim

asteroids 0.44 0.38 0.49

berzerk 0.49 0.49 0.53

bowling 0.91 0.77 0.96

boxing 0.61 0.32 0.58

breakout 0.85 0.71 0.88

demonattack 0.44 0.43 0.69

freeway 0.70 0.76 0.81

frostbite 0.52 0.68 0.75

hero 0.85 0.87 0.93

montezumarevenge 0.55 0.67 0.78

mspacman 0.70 0.53 0.70

pitfall 0.47 0.44 0.60

pong 0.80 0.65 0.81

privateeye 0.79 0.81 0.91

qbert 0.59 0.57 0.73

riverraid 0.28 0.33 0.36

seaquest 0.55 0.59 0.67

spaceinvaders 0.44 0.44 0.57

tennis 0.57 0.52 0.60

venture 0.40 0.47 0.58

videopinball 0.54 0.53 0.61

yarsrevenge 0.32 0.18 0.42

mean 0.58 0.55 0.68

Table 3.9 – Different ablations of ST-DIM. F1 scores for for each category averaged across all
games (data collected by random agents)

jsd-st-dim global-t-dim st-dim

Small Loc. 0.44 0.37 0.51

Agent Loc. 0.47 0.43 0.58

Other Loc. 0.64 0.53 0.69

Score/Clock/Lives/Display 0.69 0.76 0.86

Misc. 0.64 0.66 0.74
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Table 3.10 – Probe results on features from a PPO agent trained on 50 million timesteps
compared with a majority classifier and random-cnn baseline. The probes for all three methods
are trained with data from the PPO agent that was trained for 50M frames

maj-clf random-cnn pretrained-rl-agent

asteroids 0.23 0.31 0.31

berzerk 0.13 0.33 0.30

bowling 0.23 0.61 0.48

boxing 0.05 0.30 0.12

breakout 0.09 0.34 0.23

demonattack 0.03 0.19 0.16

freeway 0.01 0.36 0.26

frostbite 0.13 0.57 0.43

hero 0.12 0.54 0.42

montezumarevenge 0.08 0.68 0.07

mspacman 0.06 0.34 0.26

pitfall 0.16 0.39 0.23

pong 0.02 0.10 0.09

privateeye 0.24 0.71 0.31

qbert 0.06 0.36 0.34

riverraid 0.04 0.25 0.10

seaquest 0.29 0.64 0.50

spaceinvaders 0.02 0.28 0.19

tennis 0.15 0.25 0.66

venture 0.05 0.32 0.08

videopinball 0.13 0.36 0.21

yarsrevenge 0.03 0.14 0.09

mean 0.11 0.38 0.27
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4 Conclusion

In this work we first introduced the field of unsupervised representation learning

and we talked about why representation learning is important for machine learning

in general. Moreover, we discussed its potential for use in reinforcement learning.

We then discussed several common approaches for representation learning, namely

generative methods and discriminative methods. We also touched on an emerging

subfield in representation learning: self-supervised learning. Furthermore, we focused

on a special subset of self-supervised techniques called contrastive unsupervised

representation learning (CURL) methods. Lastly, we closed the background section

by discussing approaches for evaluating the utility of a representation.

In our first article, Supervise Thyself, we took several off-the-shelf self-supervised

methods, applied them to reinforcement learning problems, learned representations

and then evaluated them. We discovered that in some cases self-supervised techniques

can learn very useful representations. However, we realized that not only was each

self-supervised technique only good at representing one concept, but that their

success and what they represented depended heavily on the dynamics and graphics

of the environment. We concluded that we needed to look at a larger, more general

suite of environments as well as a general class of methods.

Our second article, Unsupervised State Representation Learning in Atari, exten-

ded the work of the first paper in several ways. First, we proposed a large benchmark

of 22 Atari games with labels for all the high-level factors in order to allow for

a more thorough evaluation of representations learned by these representation

learning methods. Furthermore, we decided to focus on a more general class of

self-supervised methods: contrastive methods, instead of a random collection of

off-the-shelf self-supervised methods. This allowed us to appropriately ablate our

methods and make more general conclusions. Lastly, we identified a common failure

mode in contrastive unsupervised representation learning (CURL) and contributed

a new CURL method that empirically did not suffer this limitation.

Representation learning has the potential to be a very powerful tool for machine
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learning. Exactly how to learn and measure these representations is still a challenge.

In this work we have shown some promising methods of extracting and evaluating

these representations. However, representation learning is still in its infancy. Parti-

cularly, there is still no agreement in the community on the best way to evaluate

representations nor is there a unified agreed upon definition for key terms like

self-supervision or disentangling. Representation learning specifically for RL is even

less mature as it has yet to be definitively shown that pretrained self-supervised

representations are competitive with model-free reinforcement learning approaches,

which optimize the sum of rewards end-to-end. We hope that future work can build

upon our promising results by refining not only contrastive methods, but evaluating

them by more thoroughly testing them to ensure they facilitate high performance

on downstream tasks that we care about.
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and David Filliat. S-rl toolbox: Environments, datasets and evaluation metrics

for state representation learning. arXiv preprint arXiv:1809.09369, 2018.

Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a

functional interpretation of some extra-classical receptive-field effects. Nature

neuroscience, 2(1):79, 1999.

Karl Ridgeway and Michael C Mozer. Learning deep disentangled embeddings with

the f-statistic loss. In Advances in Neural Information Processing Systems, pages

185–194, 2018.

69



Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient

neural reinforcement learning method. In European Conference on Machine

Learning, pages 317–328. Springer, 2005.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach.

Malaysia ; Pearson Education Limited
”

2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-

tam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep

networks via gradient-based localization. In Proceedings of the IEEE International

Conference on Computer Vision, pages 618–626, 2017.

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan

Schaal, and Sergey Levine. Time-contrastive networks: Self-supervised learning

from video. arXiv preprint arXiv:1704.06888, 2017.

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Ste-

fan Schaal, Sergey Levine, and Google Brain. Time-contrastive networks: Self-

supervised learning from video. In 2018 IEEE International Conference on

Robotics and Automation (ICRA), pages 1134–1141. IEEE, 2018.

Evan Shelhamer, Parsa Mahmoudieh, Max Argus, and Trevor Darrell. Loss is

its own reward: Self-supervision for reinforcement learning. arXiv preprint

arXiv:1612.07307, 2016.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,

Marc Lanctot, et al. Mastering the game of go with deep neural networks and

tree search. nature, 529(7587):484, 2016.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective.

In Advances in Neural Information Processing Systems, pages 1857–1865, 2016.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller.

Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806,

2014.

70



Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised

learning of video representations using lstms. In International conference on

machine learning, pages 843–852, 2015.

Sandeep Subramanian, Adam Trischler, Yoshua Bengio, and Christopher J Pal.

Learning general purpose distributed sentence representations via large scale

multi-task learning. arXiv preprint arXiv:1804.00079, 2018.

Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning,

volume 2. MIT press Cambridge, 1998.

Norman Tasfi. Pygame learning environment. https://github.com/ntasfi/

PyGame-Learning-Environment, 2016.

Valentin Thomas, Jules Pondard, Emmanuel Bengio, Marc Sarfati, Philippe Beau-

doin, Marie-Jean Meurs, Joelle Pineau, Doina Precup, and Yoshua Bengio. Inde-

pendently controllable factors. arXiv preprint arXiv:1708.01289, 2017.

Eleni Triantafillou, Richard Zemel, and Raquel Urtasun. Few-shot learning through

an information retrieval lens, 2017.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 9446–9454, 2018.
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