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Résumé

L’objectif principal de cette thèse est de souligner que le compromis biais-variance n’est
pas toujours vrai (p. ex. dans les réseaux neuronaux). Nous plaidons pour que ce manque
d’universalité soit reconnu dans les manuels scolaires et enseigné dans les cours d’introduction
qui couvrent le compromis.

Nous passons d’abord en revue l’historique du compromis entre les biais et les variances,
sa prévalence dans les manuels scolaires et certaines des principales a�rmations faites au
sujet du compromis entre les biais et les variances. Au moyen d’expériences et d’analyses
approfondies, nous montrons qu’il n’y a pas de compromis entre la variance et le biais dans
les réseaux de neurones lorsque la largeur du réseau augmente. Nos conclusions semblent
contredire les a�rmations de l’œuvre historique de Geman et al. (1992). Motivés par cette
contradiction, nous revisitons les mesures expérimentales dans Geman et al. (1992). Nous
discutons du fait qu’il n’y a jamais eu de preuves solides d’un compromis dans les réseaux
neuronaux lorsque le nombre de paramètres variait. Nous observons un phénomène simi-
laire au-delà de l’apprentissage supervisé, avec un ensemble d’expériences d’apprentissage de
renforcement profond.

Nous soutenons que les révisions des manuels et des cours magistraux ont pour but
de transmettre cette compréhension moderne nuancée de l’arbitrage entre les biais et les
variances.
Mots clés : compromis biais-variance, réseaux de neurones, sur-paramétrage, généralisation
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Abstract

The main goal of this thesis is to point out that the bias-variance tradeo� is not always
true (e.g. in neural networks). We advocate for this lack of universality to be acknowledged
in textbooks and taught in introductory courses that cover the tradeo�.

We first review the history of the bias-variance tradeo�, its prevalence in textbooks,
and some of the main claims made about the bias-variance tradeo�. Through extensive
experiments and analysis, we show a lack of a bias-variance tradeo� in neural networks
when increasing network width. Our findings seem to contradict the claims of the landmark
work by Geman et al. (1992). Motivated by this contradiction, we revisit the experimental
measurements in Geman et al. (1992). We discuss that there was never strong evidence
for a tradeo� in neural networks when varying the number of parameters. We observe a
similar phenomenon beyond supervised learning, with a set of deep reinforcement learning
experiments.

We argue that textbook and lecture revisions are in order to convey this nuanced modern
understanding of the bias-variance tradeo�.
Keywords: bias-variance tradeo�, neural networks, over-parameterization, generalization
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Chapter 1

Introduction

1.1. Motivation
An important dogma in machine learning has been that “the price to pay for achieving

low bias is high variance” (Geman et al., 1992). This is overwhelmingly the intuition among
machine learning practitioners, despite some notable exceptions such as boosting (Schapire
& Singer, 1999; Bühlmann & Yu, 2003). The quantities of interest here are the bias and
variance of a learned model’s prediction on an unseen input, where the randomness comes
from the sampling of the training data (see Chapter 3 for more detail). The basic idea is
that too simple a model will underfit (high bias) while too complex a model will overfit
(high variance) and that bias and variance trade o� as model complexity is varied. This is
commonly known as the bias-variance tradeo� (Figure 1.1(a) and Chapter 3).

A key consequence of the bias-variance tradeo� is that it implies that test error will be
a U-shaped curve in model complexity (Figure 1.1(a)). Statistical learning theory (Vapnik,
1998) also predicts a U-shaped test error curve for a number of classic machine learning mod-
els by identifying a notion of model capacity, understood as the main parameter controlling
this tradeo�. However, there is a growing amount of empirical evidence that wider net-
works generalize better than their smaller counterparts (Neyshabur et al., 2015; Zagoruyko
& Komodakis, 2016; Novak et al., 2018; Lee et al., 2018; Belkin et al., 2019a; Spigler et al.,
2018; Liang et al., 2017; Canziani et al., 2016). In those cases no U-shaped test error curve is
observed. In Figure 1.1(b), we depict Neyshabur et al. (2015)’s example of this phenomenon.

The lack of a U-shaped test error curve in these prominent cases suggests that there may
be something wrong with the bias-variance tradeo�. In this work, we seek to understand if
there really is a bias-variance tradeo� in neural networks when varying the network width
by explicitly measuring bias and variance. In their landmark work that highlighted the
bias-variance tradeo� in neural networks, Geman et al. (1992) claim that bias decreases and
variance increases with network size. This is one of the main claims we refute.



(a) The bias-variance tradeo� predicts a U-shaped test

error curve (Fortmann-Roe, 2012).

Accepted as a workshop contribution at ICLR 2015
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Figure 1: The training error and the test error based on different stopping criteria when 2-layer NNs with dif-
ferent number of hidden units are trained on MNIST and CIFAR-10. Images in both datasets are downsampled
to 100 pixels. The size of the training set is 50000 for MNIST and 40000 for CIFAR-10. The early stopping is
based on the error on a validation set (separate from the training and test sets) of size 10000. The training was
done using stochastic gradient descent with momentum and mini-batches of size 100. The network was ini-
tialized with weights generated randomly from the Gaussian distribution. The initial step size and momentum
were set to 0.1 and 0.5 respectively. After each epoch, we used the update rule µ(t+1) = 0.99µ(t) for the step
size andm(t+1) = min{0.9, m(t) + 0.02} for the momentum.

as we add more units. To this end, we first trained a network with a small number H0 of hidden
units (H0 = 4 on MNIST and H0 = 16 on CIFAR) on the entire dataset (train+test+validation).
This network did have some disagreements with the correct labels, but we then switched all labels
to agree with the network creating a “censored” data set. We can think of this censored data as
representing an artificial source distribution which can be exactly captured by a network with H0

hidden units. That is, the approximation error is zero for networks with at least H0 hidden units,
and so does not decrease further. Still, as can be seen in the middle row of Figure 2, the test error
continues decreasing even after reaching zero training error.

Next, we tried to force overfitting by adding random label noise to the data. We wanted to see
whether now the network will use its higher capacity to try to fit the noise, thus hurting generaliza-
tion. However, as can be seen in the bottom row of Figure 2, even with five percent random labels,
there is no significant overfitting and test error continues decreasing as network size increases past
the size required for achieving zero training error.

What is happening here? A possible explanation is that the optimization is introducing some implicit
regularization. That is, we are implicitly trying to find a solution with small “complexity”, for some
notion of complexity, perhaps norm. This can explain why we do not overfit even when the number
of parameters is huge. Furthermore, increasing the number of units might allow for solutions that
actually have lower “complexity”, and thus generalization better. Perhaps an ideal then would be an
infinite network controlled only through this hidden complexity.

We want to emphasize that we are not including any explicit regularization, neither as an explicit
penalty term nor by modifying optimization through, e.g., drop-outs, weight decay, or with one-pass
stochastic methods. We are using a stochastic method, but we are running it to convergence—
we achieve zero surrogate loss and zero training error. In fact, we also tried training using batch
conjugate gradient descent and observed almost identical behavior. But it seems that even still, we
are not getting to some random global minimum—indeed for large networks the vast majority of
the many global minima of the training error would horribly overfit. Instead, the optimization is
directing us toward a “low complexity” global minimum.

Although we do not know what this hidden notion of complexity is, as a final experiment we tried
to see the effect of adding explicit regularization in the form of weight decay. The results are shown
in the top row of figure 2. There is a slight improvement in generalization but we still see that
increasing the network size helps generalization.
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(b) Neyshabur et al. (2015) found that test error

actually decreases with neural network width.

Figure 1.1. Mismatch between test error predicted by bias-variance tradeo� and reality

1.2. Objective of this Thesis
The main objective of this thesis is to show that bias-variance tradeo� thinking can be

wrong; researchers and practitioners who assume it to always be true may make incorrect
predictions related to model selection. Therefore, we recommend that textbooks and machine
learning courses are updated to not present the bias-variance tradeo� as universally true
(though, it is accurate for some models, which we review in Section 3.4.1.1). Similarly, we
recommend researchers and practitioners update to not universally assume the bias-variance
tradeo� (see Section 4.5).

Throughout this thesis, we will reference many textbooks, often using their figures and
quoting them. This is to help illustrate what is taught in introductory machine learning
courses and to ensure that we are not arguing against strawmen.

1.3. Novel Contributions
(1) We revisit the bias-variance analysis in the modern setting for neural networks and

point out that it is not necessarily a tradeo� as both bias and variance decrease with
network width, yielding better generalization (Section 5.4).

(2) We perform a more fine-grain study of variance in neural networks by decomposing
it into variance due to initialization and variance due to sampling. Variance due
to initialization is significant in the under-parameterized regime and monotonically
decreases with width in the over-parameterized regime. There, total variance is much
lower and dominated by variance due to sampling (Section 5.4.4).
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(3) We remark that this variance phenomenon is already present in over-parameterized
linear models. In a simplified setting, inspired by linear models, we provide theoretical
analysis in support of our empirical findings (Section 5.5).

1.4. Related Work
Neyshabur et al. (2015) point out that because increasing network width does not lead to

a U-shaped test error curve, there must be some form of implicit regularization controlling
capacity. Then, the line of questioning becomes “if not number of parameters, what is the
correct measure of model complexity that, when varied, will yield a tradeo� in bias and
variance?” Neyshabur (2017); Neyshabur et al. (2019) pursue this direction by studying how
test error correlates with di�erent measures of model complexity and by developing models
in terms of those new complexity measures.

Our work is consistent with Neyshabur et al. (2015)’s finding, but rather than search for a
more appealing measure of model complexity, we study whether it is necessary to trade bias
for variance. By varying network width (the measure of model complexity that Geman et al.
(1992) claimed shows a bias-variance tradeo�), we establish that it is not necessary to trade
bias for variance when increasing model complexity. To ensure that we are studying networks
of increasing capacity, one of the experimental controls we use throughout Chapter 5 is to
verify that bias is decreasing.

In concurrent work, Spigler et al. (2018); Belkin et al. (2019a) point out that generaliza-
tion error acts according to conventional wisdom in the under-parameterized setting, that it
decreases with capacity in the over-parameterized setting, and that there is a sharp transi-
tion between the two settings. While this transition can roughly be seen as the early hump
in variance we observe in some of our graphs, we focus on the over-parameterized setting.
Geiger et al. (2019a); Neyshabur et al. (2019); Liang et al. (2017) work toward understand-
ing why increasing over-parameterization does not lead to a U-shaped test error curve. Our
work is unique in that we explicitly analyze and experimentally measure the quantities of
bias and variance. Interestingly, Belkin et al. (2019a)’s empirical study of test error provides
some evidence that our bias-variance finding might not be unique to neural networks and
might be found in other models such as decision trees.

1.5. Organization
In Chapter 2, we cover relevant background: the setting in machine learning, the concept

of generalization in machine learning, and the concept of model complexity. In Chapter 3,
we cover the bias-variance tradeo� in detail, including topics such as why the bias-variance
tradeo� is convincing and its relation to the concepts of generalization and model complexity.
Then, we argue the bias-variance tradeo� is applied too broadly in Chapter 4 and give specific
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recommendations for changes in Section 4.5. In Chapter 5, we provide evidence for this in
neural networks.
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Chapter 2

Machine Learning Background

2.1. Setting and Notation
We consider the typical supervised learning task of predicting an output y œ Y from an

input x œ X , where the pairs (x, y) are drawn from some unknown joint distribution, D. The
learning problem consists of learning a function hS : X æ Y from a finite training dataset
S of m i.i.d. samples from D. This learned function is also known as a hypothesis h œ H,
which is chosen from a hypothesis class H of possible functions allowed by the model. Then,
the learned function hS and the learning algorithm A : (X ◊ Y)m

æ H can be formalized as
hS Ω A(S). Ideally, we would learn hS = f , where f denotes the “true mapping” from X

to Y . For some loss function ¸ : Y ◊ Y æ R, the quality of a predictor h can quantified by
the risk (or expected error):

R(h) = E(x,y)≥D ¸(h(x), y) .

The goal in supervised learning is to find minhœH R(h). However, we cannot compute
R(h) because we do not know D. We only have access to the training error (a type of
empirical risk):

R̂(h) = E(x,y)≥S ¸(h(x), y) .

This naturally leads to the concept of empirical risk minimization: we learn hS by attempting
to minimize R̂(hS) as a surrogate for R(hS).

2.2. Generalization
We would like that the learned function hS generalizes well from the training set S ≥

D
m to other unseen data points drawn from D. The name “generalization” comes from

psychology; for example, if a dog is taught to sit with the verbal cue “sit” by its owner, and
then told “sit” by another person, if the dog sits, it would be generalizing. If the dog were to
only sit when it hears the exact same sound (made by its owner) it was trained on, it would
be “overfitting” and failing to generalize. Overfitting is something to take very seriously in
machine learning.



Figure 2.1. Increasingly complex models fit to sinusoidal data (EliteDataScience, 2018)

What can go wrong when minimizing the training error R̂ as a surrogate for minimizing
the true risk R? If the hypothesis class H allows for it, h can fit the data sample too closely,
leading to a higher true risk than some h

Õ that has a higher training error than h. More
precisely, h can be worse than h

Õ even when R̂(h) < R̂(hÕ) because R(h) > R(hÕ). This can
be easily visualized by an example.

In Figure 2.1, we see data coming from a noisy sinusoid task (EliteDataScience, 2018).
On the left, a linear model is fit to the data. This leads to both high training error and high
true risk. In other words, the model is not complex enough. On the right, a much more
complex model is fit to the data. This leads to zero training error, as the learned function
fits every training point. However, it will also lead to high true risk as it will not generalize
well to unseen data. This is because it is fitting the data too closely, fitting the noise in the
data, and, hence, overfitting. The linear model was too simple at the highly complex model
was too complex. In the middle, we see a model of about the right complexity that learns a
function that will generalize the best of the three.

One notion of generalization that is often seen in statistical learning theory is the gener-
alization gap. This is simply the di�erence between the true risk and the training error:

Egap(h) = R(h) ≠ R̂(h) (2.2.1)

2.3. Model Complexity
In Figure 2.1, the key concept that varies (increases from left to right) is model complexity

(i.e., the complexity of the hypothesis class H). Models that are not su�ciently complex will
underfit, while models that are too complex will overfit (see, e.g., Figure 2.1). In terms of
hypothesis classes, the larger |H| is, the more functions exist that will fit the training data,
but they might not perform well on unseen data. It is intuitive that the larger |H| is, the
more our model will overfit (see Figure 3.1 in Section 3.2 for an illustration of this in the
bias-variance framework). And indeed, there is theory that supports this intuition (Mohri
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et al., 2012, Theorem 2.2). For any ” > 0, with probability at least 1 ≠ ”,

’h œ H, R(h) Æ R̂(h) +
Û

log |H| + log 2
”

2m
. (2.3.1)

The quantity |H| is one notion of model complexity. However, for many models (e.g.
neural networks), |H| is infinite. Therefore, a better notion of model complexity is needed.
The VC dimension of H, VC(H), is a better notion of model complexity, which leads to a
finite bound with infinite models classes (Mohri et al., 2012, Chapter 3.3). For any ” > 0,
with probability at least 1 ≠ ”,

’h œ H, R(h) Æ R̂(h) +
ı̂ıÙ8VC(H) log 2em

VC(H) + 8 log 4
”

m
. (2.3.2)

This bounds grows with VC(H). For many models the VC dimension ends up being
roughly proportional to the number of parameters in the model. For example, the VC
dimension of various kinds of neural networks grows with the number of parameters (Baum
& Haussler, 1989; Karpinski & Macintyre, 1995; Bartlett et al., 1998; Harvey et al., 2017).

Rademacher complexity is another measure of model complexity. Intuitively, it measures
the capacity of a model to fit random noise. Generalization bounds in terms of Rademacher
complexity are also prevalent (Mohri et al., 2012, Theorem 3.2):

’h œ H, R(h) Æ R̂(h) + Rm(H) +
Û

log 1
”

2m
(2.3.3)

where Rm(H) denotes the Rademacher complexity of H. Known bounds on Rademacher
complexity also grow with the number of parameters (Bartlett & Mendelson, 2003).

These generalization bounds in terms of model complexity are important because of how
they are interpreted. The general idea is that the model must be complex enough to achieve
a low R̂(h), but not too complex that the complexity measures such as VC(H) and Rm(H)
will blow up, leading to high bounds on R(h). For example, when interpreting the VC-based
generalization bound, Abu-Mostafa et al. (2012, Chapter 2.2) wrote, “Although the bound
is loose, it tends to be equally loose for di�erent learning models, and hence is useful for
comparing the generalization performance of these models. [...] In real applications, learning
models with lower VC(H) tend to generalize better than those with higher VC(H). Because
of this observation, the VC analysis proves useful in practice [...] the VC bound can be used
as a guideline for generalization, relatively if not absolutely.”
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Chapter 3

The Bias-Variance Tradeo�

3.1. What are Bias and Variance?
The bias is a measure of how close the central tendency of a learner is to the true function

f . If, on average (over training sets S), the learner learns the true function f , then the learner
is unbiased. For some x ≥ D, the bias is

Bias(hS) = ES[hS(x)] ≠ f(x) .

The variance is a measure of fluctuations of a learner around its central tendency, where
the fluctuations result from di�erent samplings of the training set. By definition, a learner
that generalizes well does not learn dramatically di�erent functions, depending on sampling
of the training set. Let Y = R for simplicity; then for some x ≥ D, the variance is

Var(hS) = ES

Ë
(hS(x) ≠ ES[hS(x)])2È

.

3.2. Intuition for the Tradeo�
Similar to the idea that larger hypothesis classes lead to overfitting in Section 2.3, in

the bias-variance context, there is the idea that larger hypothesis classes lead to higher
variance. This is illustrated in Figure 3.1, which comes from Abu-Mostafa et al. (2012). Also,
illustrated is the idea that bias decreases when increasing the size of the hypothesis class
because their will be more hypotheses that are closer to the true function f . In Figure 3.1,
a hypothesis class that contains only a single hypothesis is depicted on the left; this will,
of course, lead to bias as that hypothesis does not match f , but it will also lead to zero
variance, which is a positive. In contrast, on the right, there is a larger hypothesis class
(Figure 3.1); in this example, this leads to nearly zero bias, but it comes at the expense of
incurring variance. The bottom of Figure 3.1 is shorthand that summarizes the idea that
when you increase the size of the hypothesis class, you decreases bias and increase variance.
Figure 2.1 is another example of this: the leftmost learner has high bias and low variance,
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Figure 3.1. Bias-variance in simple vs. complex hypothesis class (Abu-Mostafa et al., 2012)

Figure 3.2. Illustration of the bias-variance tradeo� (Fortmann-Roe, 2012)

the rightmost learner has low bias and high variance, and the learner in the middle has
something close to the optimal balance of bias and variance.

In their landmark paper, Geman et al. (1992) capture the essence of the bias-variance
tradeo� with the following claim: “the price to pay for achieving low bias is high variance.”
In Figure 3.2, we see the common illustration of the bias-variance tradeo� (Fortmann-Roe
(2012)). Note the important U shape of the test error curve with increasing model complexity.
The idea is that the optimal point on that U can be achieved by achieving the optimal balance
of bias and variance. This tradeo� hypothesis is ubiquitious, as we will see in Section 3.4.2.

3.3. The Bias-Variance Decomposition
Geman et al. (1992) considered the average case (over training sets) quantity ESR(hS)

with squared-loss and showed that it can be cleanly decomposed into bias and variance
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components:
ESR(hS) = Ebias(hS) + Evariance(hS) + Enoise (3.3.1)

Although a decomposition does not prove that the bias-variance tradeo� is true, it does
show that the average error is made up of a sum of bias and variance components. Then,
if the average error is held constant and bias is varied, variance must also vary (and vice
versa). This greatly added to the strong intuition of the bias-variance tradeo�, and Geman
et al. (1992) became quite highly cited for their contribution.

Note that risks computed with classification losses (e.g cross-entropy or 0-1 loss) do not
have such a clean, additive bias-variance decomposition (Domingos, 2000; James, 2003).
However, because the concept of a tradeo� is not reliant on an additive decomposition (see
Hastie & Tibshirani (1990, Chapter 3.3) for presence of the bias-variance tradeo� before the
bias-variance decomposition), the concept of the bias-variance tradeo� is applied extremely
broadly (see Section 3.4.2), including settings where an additive decomposition does not
seem possible.

3.4. Why do we believe the Bias-Variance Tradeo�?
A universal bias-variance tradeo�, without qualifications, is a mere hypothesis. Poten-

tially, its most significant appeal comes from its intuitiveness. In this section, we review
the history of the bias-variance tradeo�, the evidence in support of it, and its prevalence in
textbooks (which also seem to contain much of the authoritative evidence).

3.4.1. A History

The concept that we know as the “bias-variance tradeo�” in machine learning has a
long history, with its basis in statistics. Neural Networks and the Bias/Variance Dilemma
(Geman et al., 1992) is the most cited work largely because it introduced the bias-variance
decomposition to the machine learning community, provided convincing experiments with
nonparametric methods, and popularized the bias-variance tradeo� in the neural network
and machine learning community. However, the bias-variance tradeo� was already present in
a textbook in 1990 (Hastie & Tibshirani, 1990), and it dates back at least as far back as 1952
in statistics when Grenander (1952) referred to the concept as an “uncertainty principle.”

3.4.1.1. Experimental Evidence

Geman et al. (1992) ran experiments using two nonparametric methods (KNN and kernel
regression) and neural networks on a partially corrupted version of the handwritten digits
Guyon (1988) collected (Figure 3.3). The experiments on k-nearest neighbor (KNN) (Fig-
ure 3.3(a)) and kernel regression (Figure 3.3(b)) yield clear bias-variance tradeo� curves with
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(a) K-nearest neighbor (KNN)

(higher k is less complexity)

(b) Kernel regression (higher kernel

width ‡ is less complexity)

(c) Single hidden layer neural net-

work (higher “# Hidden Units” is

more complexity)

Figure 3.3. Geman et al. (1992)’s bias-variance experiments on handwritten digits

U-shaped test error curves in their respective complexity parameters k and ‡. The exper-
iment with neural networks (Figure 3.3(c)) is substantially less conclusive. Geman et al.
(1992) maintain their claim that there is a bias-variance tradeo� in neural networks and
explain their inconclusive experiments as a result of convergence issues:

«The basic trend is what we expect: bias falls and variance increases with
the number of hidden units. The e�ects are not perfectly demonstrated (no-
tice, for example, the dip in variance in the experiments with the largest
numbers of hidden units), presumably because the phenomenon of overfit-
ting is complicated by convergence issues and perhaps also by our decision
to stop the training prematurely. »

This is the first glimpse we see of the cracks in the bias-variance tradeo� hypothesis.
There is a fair amount of empirical evidence for the bias-variance tradeo� in di�erent

complexity parameters in a variety of methods. Wahba & Wold (1975) show a tradeo�
in complexity with cubic splines when varying their smoothing parameter. Geurts (2002,
Section 5.4.3) show a bias-variance tradeo� in decision trees when varying tree size. Hastie &
Tibshirani (1990, Chapter 3.3) show a bias-variance tradeo� with a “running-mean smoother”
(i.e. KNN, but in statistics) when varying k. Bishop (2006, Chapter 3.2) show a bias-variance
tradeo� with Gaussian basis function linear regression when varying the L2 regularization
(weight decay) parameter ⁄. Goodfellow et al. (2016, Chapters 5.2 and 5.3) show a tradeo� in
complexity with fitting polynomials when varying either the degree or the L2 regularization
parameter.
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3.4.1.2. Supporting Theory

The first main theory that supports the bias-variance tradeo� is the sample of general-
ization upper bounds presented in Section 2.3 that grow with the number of parameters.
This is simply because the bias-variance tradeo� is a clear conceptualization of one of the
common interpretations of those bounds: models that are too simple will not perform well
due to underfitting (high bias or high training error R̂) while models that are too complex
will not perform well due overfitting (high variance caused by high model complexity such
as VC(H)). However, it should be noted that these upper bounds do not guarantee that a
model with high VC(H) will actually have high variance (or high test error); a lower bound
for cases seen in practice (not worst case) would be needed for that.

Hastie et al. (2001, Chapter 7.3) show that you can derive closed-form expressions for the
variance for simple models such as KNN and linear regression in the “fixed-design” setting
where the design matrix X is fixed. In this setting, Y = f(X)+‘, where f is the true function
mapping examples x (rows in X) to y (elements in the vector Y ). Then, the randomness
in Y is determined by the zero-mean random variable ‘. In this setting, Hastie et al. (2001,
Chapter 7.3) show that variance for KNN models scales as 1

K
. Similarly, they show that

the variance for linear regression grows linearly with the number of parameters, assuming
X

T
X is invertible. Note that in the over-parameterized setting (XT

X is not invertible), we
show that the variance of linear regression does not grow with the number of parameters
(see Section 5.5.1 in Chapter 5).

Because neural networks are much more complicated models than KNN and linear regres-
sion, we must resort to bounds on the variance of a neural network. Barron (1994) derives
an upper bound on the estimation error of a single hidden layer neural network that grows
linearly with the number of hidden units. The estimation error is not the same thing as
variance, but it is analogous (see Section 3.5). This kind of bound is similar to the bounds
described in Section 2.3. Again, it should be noted that because this is an upper bound, it
does not actually imply that large neural networks will have high estimation error.

3.4.2. The Textbooks

The concept of the bias-variance tradeo� is ubiquitious, appearing in many of the text-
books that are used in machine learning education: Hastie et al. (2001, Chapters 2.9 and
7.3), Bishop (2006, Chapter 3.2), Goodfellow et al. (2016, Chapter 5.4.4)), Abu-Mostafa
et al. (2012, Chapter 2.3), James et al. (2014, Chapter 2.2.2), Hastie & Tibshirani (1990,
Chapter 3.3), Duda et al. (2001, Chapter 9.3). Here are two excerpts:

— “As a general rule, as we use more flexible methods, the variance will increase and
the bias will decrease. The relative rate of change of these two quantities determines
whether the test MSE increases or decreases. As we increase the flexibility of a class
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of methods, the bias tends to initially decrease faster than the variance increases.
Consequently, the expected test MSE declines. However, at some point increasing
flexibility has little impact on the bias but starts to significantly increase the variance.
When this happens the test MSE increases” (James et al., 2014, Chapter 2.2.2).

— “As the model complexity of our procedure is increased, the variance tends to increase
and the squared bias tends to decrease” (Hastie et al., 2001, Chapters 2.9).

3.5. Comparison to the Approximation-Estimation Tradeo�
The bias-variance tradeo� is not the only tradeo� in machine learning that is related to

generalization. For example, when hS is chosen from a hypothesis class H, R(hS) can be
decomposed into approximation error and estimation error:

R(hS) = Eapp + Eest

where Eapp = minhœH R(h) and Eest = R(hS) ≠ Eapp. Shalev-Shwartz & Ben-David (2014,
Section 5.2) present this decomposition and frame it as a tradeo�. Bottou & Bousquet (2008)
describe this as the “well known tradeo� between approximation error and estimation error”
and present it in a slightly more lucid way as a decomposition of the excess risk:

E[R(hS) ≠ R(hú)] = E[R(hú

H
) ≠ R(hú)] + E[R(hS) ≠ R(hú

H
)]

where R(hú) is the Bayes error and h
ú

H
= arg min

hœH
R(h) is the best hypothesis in H. The

approximation error can then be interpreted as the distance of the best hypothesis in H from
the Bayes classifier, and the estimation error can be interpreted as the average distance of the
learned hypothesis from the best hypothesis in H. It is common to associate larger H with
smaller approximation error and larger estimation error, just like it is common to associate
larger H with smaller bias and larger variance. While bias (variance) and approximation
error (estimation error) are qualitatively similar, they are not the exact same.

3.5.1. Universal Approximation Theorem for Neural Networks

The commonly cited universal approximation property of neural networks (Cybenko,
1989; Hornik, 1991; Leshno & Schocken, 1993) means that the approximation error goes to
0 as the network width increases; these results do not say anything about estimation error.
In other words, the universal approximation error does not imply that wider networks are
better. It implies that wider networks yield lower approximation error ; traditional thinking
suggests that this also means that wider networks yield higher estimation error.
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Chapter 4

The Lack of a Tradeo�

4.1. A Refutation of Geman et al.’s Claims
In their highly influential paper, Geman et al. (1992) make several claims of varying

specificity. We will start with their most general claim, which is simply a statement of the
bias-variance tradeo�:

«the price to pay for achieving low bias is high variance. »
However, this claim is not true in the general case. The fact that the expected risk can

be decomposed into squared bias and variance does imply that the two terms trade o�. It
is not necessary to trade bias for variance in all settings. For example, it is not necessary to
trade bias for variance in neural networks (Neal et al. (2018), Chapter 5).

As neural networks are a main focus of Geman et al. (1992)’s work, they also make a
clear claim relevant to neural networks: “bias falls and variance increases with the number
of hidden units.” We directly test this claim in Chapter 5 and show it to be false on a
variety of datasets. Both bias and variance can decrease as network width increases. In
Figure 4.1 we contrast the common intuition about the bias-variance tradeo� (left, as inspired
by Figure 3.1) with what we observe in neural networks (right). This is a specific example
of not having to pay any price of increased variance when decreasing bias.

In fact, Geman et al. (1992)’s own experiments with neural networks do not even support
their claim that “bias falls and variance increases with the number of hidden units.” Geman
et al. (1992, Figures 16 and 8) run experiments with a handwritten digit recognition dataset
(Figure 4.2(a)) and with a sinusoid dataset (Figure 4.2(b)). In both of these datasets, they
see decreasing variance when increasing the number of hidden units (Figure 4.2). Geman
et al. (1992, page 33) explain this seeming evidence against their claim as a product of
“convergence issues,” and maintain their claim: “The basic trend is what we expect: bias
falls and variance increases with the number of hidden units. The e�ects are not perfectly
demonstrated (notice, for example, the dip in variance in the experiments with the largest
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Figure 4.1. Bias-variance in simple vs. complex hypothesis class

numbers of hidden units), presumably because the phenomenon of overfitting is complicated
by convergence issues and perhaps also by our decision to stop the training prematurely.”

In their paper, Geman et al. (1992) give the following prescription for choosing the width
of a neural network: “How big a network should we employ? A small network, with say
one hidden unit, is likely to be biased, since the repertoire of available functions spanned
by f(x; w) over allowable weights will in this case be quite limited. If the true regression
is poorly approximated within this class, there will necessarily be a substantial bias. On
the other hand, if we overparameterize, via a large number of hidden units and associated
weights, then the bias will be reduced (indeed, with enough weights and hidden units, the
network will interpolate the data), but there is then the danger of a significant variance
contribution to the mean-squared error.” Although this fits the conventional wisdom laid
out in Section 2.3 and Chapter 3, we find this way of thinking to be misleading, leading
researchers to incorrect predictions.

4.2. Similar Observations in Reinforcement Learning
Neyshabur et al. (2015) found that increasing the width of a single hidden layer neural

network leads to decreasing test error on MNIST and CIFAR10 until it levels o� (never going
back up). We explore whether this phenomenon extends to deep reinforcement learning. We
provide some evidence that it does, finding that wider networks do seem to perform better
than their smaller counterparts in deep reinforcement learning as well (Neal & Mitliagkas,
2019). Combining that with the results from Chapter 5, we infer that very wide networks
do not have to su�er from high variance (in exchange for low bias) in reinforcement learning
either.
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(a) Bias, variance, and total error as

a function of number of hidden units

in Geman et al. (1992)’s handwritten

digit recognition experiment. Note that

variance is decreasing with width in

roughly the last
2
3 of the graph.

(b) Bias (o), variance (x), and total error (+) as a function of

number of hidden units in Geman et al. (1992)’s noise-free

(deterministic) and noisy (ambiguous) sinusoid classificia-

tion experiments. Note that decreasing variance is already

seen in the deterministic (top) experiment with neural net-

works as small as 7-15 hidden units.

Figure 4.2. Geman et al. (1992)’s neural network experiments

4.3. Previous Work on Boosting
Bühlmann & Yu (2003)’s work on the bias-variance tradeo� in boosting is motivated by

“boosting’s resistance to overfitting” when increasing the number of iterations. For example,
in Schapire & Singer (1999, Figures 8-10), they run experiments on many datasets, finding
that, on some datasets, test error decreases and plateaus without increasing with more
iterations of boosting. This is only the case in some of their experiments, as in roughly half
of their experiments, Schapire & Singer (1999) find that test error does eventually increase
with number of iterations of boosting. Still, because roughly half of the experiments show
“boosting’s resistance to overfitting,” Bühlmann & Yu (2003) study bias-variance in boosting.

Bühlmann & Yu (2003) find that the lack of increasing test error when increasing number
of iterations (“boosting’s resistance to overfitting”) can be explained in terms of bias and
variance. In Theorem 1, they show exponentially decaying bias and variance that grows at
an exponentially decaying rate with number of iterations. There are some specifics to this
that are related to the strength/weakness of the learner that is boosted, but this is how they
explain why monotonically decreasing test error can sometimes be seen when increasing the
number of iterations in boosting: “(2) Provided that the learner is su�ciently weak, boosting
always improves, as we show in Theorem 1” (Bühlmann & Yu, 2003, Section 3.2.2).
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(a) Test error as a function of the number

of iterations of boosting. Although it de-

creases and then increases, it increases at

a much slower rate than the classic bias-

variance tradeo� would suggest (see figure on

the right). Bühlmann & Yu (2003) call this

slower increase an “a new exponential bias-

variance tradeo�.”
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(b) Test error as a function of the amount

of smoothing in a cubic spline. This is the

test error curve that the classic bias-variance

tradeo� would suggest; test error increases

with the complexity parameter at a rate that

is at least linear.

Figure 4.3. Exponential bias-variance tradeo� in boosting (Bühlmann & Yu, 2003)

All this said, Bühlmann & Yu (2003)’s work should not be interpreted as showing a lack
of a bias-variance tradeo� in boosting. Rather, it shows a bias-variance tradeo� where the
growth of variance with the complexity parameter is exponentially smaller than that in the
traditional bias-variance tradeo� (see Figure 4.3), which implies that variance does not grow
forever when increasing the number of iterations. Their work is an important example of a
departure from the conventional bias-variance tradeo�.

4.4. The Double Descent Curve
A conjecture that has recently gained popularity is the idea the risk behaves as a “double

descent” curve in model complexity (Figure 4.4). Specifically, the idea is that the risk
behaves according to the classical bias-variance tradeo� wisdom (Chapter 3) in the under-
parameterized regime; the risk decreases with model complexity in the over-parameterized
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Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical
U-shaped risk curve arising from the bias-variance trade-o�. (b) The double descent risk curve,
which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed
behavior from using high capacity function classes (i.e., the “modern” interpolating regime), sep-
arated by the interpolation threshold. The predictors to the right of the interpolation threshold
have zero training risk.

When function class capacity is below the “interpolation threshold”, learned predictors exhibit
the classical U-shaped curve from Figure 1(a). (In this paper, function class capacity is identified
with the number of parameters needed to specify a function within the class.) The bottom of the
U is achieved at the sweet spot which balances the fit to the training data and the susceptibility
to over-fitting: to the left of the sweet spot, predictors are under-fit, and immediately to the
right, predictors are over-fit. When we increase the function class capacity high enough (e.g.,
by increasing the number of features or the size of the neural network architecture), the learned
predictors achieve (near) perfect fits to the training data—i.e., interpolation. Although the learned
predictors obtained at the interpolation threshold typically have high risk, we show that increasing
the function class capacity beyond this point leads to decreasing risk, typically going below the risk
achieved at the sweet spot in the “classical” regime.

All of the learned predictors to the right of the interpolation threshold fit the training data
perfectly and have zero empirical risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer is that the capacity of the function
class does not necessarily reflect how well the predictor matches the inductive bias appropriate for
the problem at hand. For the learning problems we consider (a range of real-world datasets as well
as synthetic data), the inductive bias that seems appropriate is the regularity or smoothness of
a function as measured by a certain function space norm. Choosing the smoothest function that
perfectly fits observed data is a form of Occam’s razor: the simplest explanation compatible with
the observations should be preferred (cf. [38, 6]). By considering larger function classes, which
contain more candidate predictors compatible with the data, we are able to find interpolating
functions that have smaller norm and are thus “simpler”. Thus increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins theory [38, 2, 35], where a larger
function class H may permit the discovery of a classifier with a larger margin. While the margins
theory can be used to study classification, it does not apply to regression, and also does not pre-
dict the second descent beyond the interpolation threshold. Recently, there has been an emerging
recognition that certain interpolating predictors (not based on ERM) can indeed be provably sta-
tistically optimal or near-optimal [3, 5], which is compatible with our empirical observations in the
interpolating regime.

In the remainder of this article, we discuss empirical evidence for the double descent curve, the

3

Figure 4.4. Double descent curve, showing U-shaped risk curve in under-parameterized
regime and decreasing curve in over-parameterized regime (Belkin et al., 2019a).

regime; and there is a sharp transition from the under-parameterized regime to the over-
parameterized regime where the training error is 0. Belkin et al. (2019a) illustrate this in
Figure 4.4.

In previous work, Advani & Saxe (2017) observed this phenomenon in linear student-
teacher 1 networks and with nonlinear networks on MNIST. In concurrent (to Chapter 5)
work, Spigler et al. (2018); Geiger et al. (2019b); Belkin et al. (2019a) also studied this
phenomenon. Spigler et al. (2018); Geiger et al. (2019b) described the cusp in the double
descent curve as corresponding to a phase transition and draw the analogy to the “jamming
transition” in particle systems. Belkin et al. (2019a) conjectured that this phenomenon is
fairly general (as opposed to just being restricted to neural networks). Belkin et al. (2019a)
showed the phenomenon in random forests, in addition to neural networks, and coined the
term “double descent.” Nakkiran et al. (2019) recently showed that this double descent
phenomenon is present in many state-of-the-art architectures such as convolutional neural
networks, ResNets, and transformers, as opposed to only being present in more toy settings.
The double descent phenomenon in simple settings such as shallow linear models can be seen
in work that dates as far back as 1995 (Opper, 1995, 2001; Bös & Opper, 1997).

Our work in Chapter 5 is consistent with the double descent curve. Although we were
not looking for the cusp in the double descent curve (can require dense sampling of model
sizes and specific experimental details), we do seem to see it in several variance figures in
Chapter 5. All the works on the double descent curve examine the risk (or test error). In order
to test the bias-variance hypothesis, it is important to actually measures bias and variance
because test error and bias can decrease while variance still increases at an exponentially
decaying rate (Section 4.3).

1. “Teacher” here refers to the fact that the data is generated by a neural network.
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4.5. The Need to Qualify Claims about the Bias-Variance Tradeo�
when Teaching

Students who take introductory machine learning courses are typically taught the bias-
variance tradeo� as a general, unavoidable truth that applies anywhere there is some notion
of increasing model complexity (see Section 3.4.2 for its prevalence and representative quotes
from textbooks). This leads machine learning experts to sometimes make incorrect inferences
about model selection with high confidence. From extensive personal communication, it
appears that most researchers unfamiliar with work like Neyshabur et al. (2015)’s react with
incredulity to the results described in Section 4.1, Section 4.2, and Chapter 5. Even among
researchers who have familiarized themselves with Neyshabur et al. (2015)’s results on test
error, one can find many who are surprised by our results. We attribute this phenomenon
to the strong influence Geman et al. (1992)’s claims have had on the research community.
In other words, a sizable portion of researchers can be dogmatic about the conventional
tradeo� wisdom described in Section 2.3 and Chapter 3. Qualifying the conventional tradeo�
wisdom in textbooks and introductory courses by noting that the tradeo� intuition is useful
sometimes and misleading other times would prevent future students from subscribing to
this intuitive dogma.

The goal in amending textbooks/lectures that teach the bias-variance tradeo� is to make
it more clear that the bias-variance tradeo� is not a universal truth. Here, we present three
simple qualifications that, if integrated, would more accurately represent the evidence we
have on the bias-variance tradeo� and would help prevent students from interpreting that
the bias-variance tradeo� is universal:

(1) Expected error can be decomposed into (squared) bias and variance, when using
squared loss (Geman et al., 1992), but this decomposition does not imply a
tradeo�. This lack of implication should be made explicit in textbooks because the
decomposition is often used in close proximity to the tradeo� as ambiguous evidence
for it.

(2) The bias-variance tradeo� should not be assumed to be universal. There
is evidence that bias and variance trade o� in certain methods (e.g. KNN) when
varying the right parameter (Section 3.4.1.1), but there are also counterexamples.
For example, there are clear examples of a lack of a bias-variance tradeo� in neural
networks (Chapter 5) and potentially other methods such as decision trees (Belkin
et al., 2019a).

(3) It should be emphasized that the PAC upper bounds on test error can be very
loose for the problems we care about in practice (see Sections 2.3 and 3.4.1.2 for
examples of upper bounds on test error and estimation error). Because these upper
bounds are so loose, their qualitative trend (e.g. as number of parameters increases)
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is not necessarily an accurate reflection of the qualitative trend of the test error in
practice.
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Résumé. Le compromis biais-variance nous indique qu’à mesure que la complexité du

modèle augmente, le biais diminue et la variance augmente, ce qui conduit à une courbe

d’erreur de test en forme de U. Cependant, les résultats empiriques récents avec des réseaux

neuronaux sur-paramétrés sont marqués par une absence frappante de la courbe d’erreur

de test classique en forme de U : l’erreur de test continue de diminuer dans les réseaux

plus larges. Cela donne à penser qu’il n’y a peut-être pas de compromis sur la variance de

biais dans les réseaux de neurones en ce qui concerne la largeur du réseau, contrairement

à ce que prétendaient, à l’origine, par exemple, Geman et al. (1992). Motivés par les

preuves incertaines utilisées à l’appui de cette a�rmation dans les réseaux de neurones,

nous mesurons les biais et la variance dans le contexte moderne. Nous constatons que le

biais d’accentuation et la variance peuvent diminuer à mesure que le nombre de paramètres

augmente. Pour mieux comprendre cela, nous introduisons une nouvelle décomposition de la

variance pour démêler les e�ets de l’optimisation et de l’échantillonnage des données. Nous

fournissons également une analyse théorique dans un cadre simplifié qui est conforme à nos

constatations empiriques.

Mots clés : compromis biais-variance, réseaux de neurones, sur-paramétrage, généralisation

Abstract. The bias-variance tradeo� tells us that as model complexity increases, bias falls

and variances increases, leading to a U-shaped test error curve. However, recent empirical

results with over-parameterized neural networks are marked by a striking absence of the

classic U-shaped test error curve: test error keeps decreasing in wider networks. This

suggests that there might not be a bias-variance tradeo� in neural networks with respect

to network width, unlike was originally claimed by, e.g., Geman et al. (1992). Motivated

by the shaky evidence used to support this claim in neural networks, we measure bias and

variance in the modern setting. We find that both bias and variance can decrease as the

number of parameters grows. To better understand this, we introduce a new decomposition

of the variance to disentangle the e�ects of optimization and data sampling. We also provide

theoretical analysis in a simplified setting that is consistent with our empirical findings.

Keywords: bias-variance tradeo�, neural networks, over-parameterization, generalization

5.1. Introduction
There is a dominant dogma in machine learning:
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«The price to pay for achieving low bias is high variance (Geman et al.,
1992). »

The quantities of interest here are the bias and variance of a learned model’s prediction
on a new input, where the randomness comes from the sampling of the training data. This
idea that bias decreases while variance increases with model capacity, leading to a U-shaped
test error curve is commonly known as the bias-variance tradeo� (Figure 5.1 (left)).

There exist experimental evidence and theory that support the idea of a tradeo�. In their
landmark paper, Geman et al. (1992) measure bias and variance in various models. They
show convincing experimental evidence for the bias-variance tradeo� in nonparametric meth-
ods such as kNN (k-nearest neighbor) and kernel regression. They also show experiments on
neural networks and claim that bias decreases and variance increases with network width.
Statistical learning theory (Vapnik, 1998) successfully predicts these U-shaped test error
curves implied by a tradeo� for a number of classic machine learning models. A key element
is identifying a notion of model capacity, understood as the main parameter controlling this
tradeo�.

Surprisingly, there is a growing amount of empirical evidence that wider networks gener-
alize better than their smaller counterparts (Neyshabur et al., 2015; Zagoruyko & Komodakis,
2016; Novak et al., 2018; Lee et al., 2018; Belkin et al., 2019a; Spigler et al., 2018; Liang
et al., 2017; Canziani et al., 2016). In those cases the classic U-shaped test error curve is not
observed.

A number of di�erent research directions have spawned in response to these findings.
Neyshabur et al. (2015) hypothesize the existence of an implicit regularization mechanism.
Some study the role that optimization plays (Soudry et al., 2018; Gunasekar et al., 2018).
Others suggest new measures of capacity (Liang et al., 2017; Neyshabur et al., 2019). All
approaches focus on test error, rather than studying bias and variance directly (Neyshabur
et al., 2019; Geiger et al., 2019a; Liang et al., 2017; Belkin et al., 2019a).

Test error analysis does not give a definitive answer on the lack of a bias-variance tradeo�.
Consider boosting: it is known that its test error often decreases with the number of rounds
(Schapire & Singer, 1999, Figures 8-10). In spite of this monotonicity in test error, Bühlmann
& Yu (2003) show that variance grows at an exponentially decaying rate, calling this an
“exponential bias-variance tradeo�” (see Section 4.3). To study the bias-variance tradeo�,
one has to isolate and measure bias and variance individually. To the best of our knowledge,
there has not been published work reporting such measurements on neural networks since
Geman et al. (1992).

We go back to basics and study bias and variance. We start by taking a closer look at
Geman et al. (1992, Figure 16 and Figure 8 (top))’s experiments with neural networks. We
notice that their experiments do not support their claim that “bias falls and variance increases
with the number of hidden units.” The authors attribute this inconsistency to convergence
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Figure 5.1. On the left is an illustration of the common intuition for the bias-variance
tradeo� (Fortmann-Roe, 2012). We find that both bias and variance decrease when we
increase network width on MNIST (right) and other datasets (Section 5.4). These results
seem to contradict the traditional intuition of a strict tradeo�.

issues and maintain their claim that the bias-variance tradeo� is universal. Motivated by this
inconsistency, we perform a set of bias-variance experiments with modern neural networks.

We measure prediction bias and variance of fully connected neural networks. These
measurements allow us to reason directly about whether there exists a tradeo� with respect
to network width. We find evidence that both bias and variance can decrease at the same
time as network width increases in common classification and regression settings (Figure 5.1
and Section 5.4).

We observe the qualitative lack of a bias-variance tradeo� in network width with a num-
ber of gradient-based optimizers. In order to take a closer look at the roles of optimization
and data sampling, we propose a simple decomposition of total prediction variance (Sec-
tion 5.3.3). We use the law of total variance to get a term that corresponds to average (over
data samplings) variance due to optimization and a term that corresponds to variance due to
training set sampling of an ensemble of di�erently initialized networks. Variance due to opti-
mization is significant in the under-parameterized regime and monotonically decreases with
width in the over-parameterized regime. There, total variance is much lower and dominated
by variance due to sampling (Figure 5.2).

We provide theoretical analysis, consistent with our empirical findings, in simplified anal-
ysis settings: i) prediction variance does not grow arbitrarily with number of parameters in
fixed-design linear models; ii) variance due to optimization diminishes with number of pa-
rameters in neural networks under strong assumptions.
Organization. The rest of this paper is organized as follows. We discuss relevant related
work in Section 5.2. Section 5.3 establishes necessary preliminaries, including our variance
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Figure 5.2. Trends of variance due to sampling and variance due to optimization with
width on CIFAR10 (left) and on SVHN (right). Variance due to optimization decreases
with width, once in the over-parameterized setting. Variance due to sampling plateaus and
remains constant. This is in contrast with what the bias-variance tradeo� would suggest.

decomposition. In Section 5.4, we empirically study the impact of network width on variance.
In Section 5.5, we present theoretical analysis in support of our findings.

5.2. Related work
Neyshabur et al. (2015); Neyshabur (2017) point out that because increasing network

width does not lead to a U-shaped test error curve, there must be some form of implicit
regularization controlling capacity. Our work is consistent with this finding, but by ap-
proaching the problem from the bias-variance perspective, we gain additional insights: 1)
We specifically address the hypothesis that decreased bias must come at the expense of in-
creased variance (see Geman et al. (1992) and Appendix E) by measuring both quantities. 2)
Our more fine-grain approach reveals that variance due to optimization vanishes with width,
while variances due to sampling increases and levels o�. This insight about variance due to
sampling is consistent with existing variance results for boosting (Bühlmann & Yu, 2003).
To ensure that we are studying networks of increasing capacity, one of the experimental
controls we use throughout the paper is to verify that bias is decreasing.

In independent concurrent work, Spigler et al. (2018); Belkin et al. (2019a) point out
that generalization error acts according to conventional wisdom in the under-parameterized
setting, that it decreases with capacity in the over-parameterized setting, and that there is
a sharp transition between the two settings. Although the phrase “bias-variance trade-o�”
appears in Belkin et al. (2019a)’s title, their work really focuses on the shape of the test
error curve: they argue it is not the simple U-shaped curve that conventional wisdom would
suggest, and it is not the decreasing curve that Neyshabur et al. (2015) found; it is “double
descent curve,” which is essentially a concatenation of the two curves. This is in contrast
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to our work, where we actually measure bias, variance, and components of variance in this
over-parameterized regime. Interestingly, Belkin et al. (2019a)’s empirical study of test error
provides some evidence that our bias-variance finding might not be unique to neural networks
and might be found in other models such as decision trees.

In subsequent work, 1 Belkin et al. (2019b); Hastie et al. (2019) perform a theoretical
analysis of student-teacher linear models (with random features), showing the double descent
curve theoretically. Advani & Saxe (2017) also performed a similar analysis. Hastie et al.
(2019) is the only one to theoretically analyze variance. Their work di�ers from ours in
that we run experiments with neural networks on complex, real data, while they carry out
a theoretical analysis of linear models in a simplified teacher (data generating distribution)
setting.

5.3. Preliminaries
5.3.1. Set-up

We consider the typical supervised learning task of predicting an output y œ Y from an
input x œ X , where the pairs (x, y) are drawn from some unknown joint distribution, D. The
learning problem consists of learning a function hS : X æ Y from a finite training dataset
S of m i.i.d. samples from D. The quality of a predictor h can quantified by the expected
error,

E(h) = E(x,y)≥D ¸(h(x), y) , (5.3.1)

for some loss function ¸ : Y ◊ Y æ R.
In this paper, predictors h◊ are parameterized by the weights ◊ œ RN of neural networks.

We consider the average performance over possible training sets (denoted by the random
variable S) of size m. This is the same quantity Geman et al. (1992) consider. While S is the
only random quantity studied in the traditional bias-variance decomposition, we also study
randomness coming from optimization. We denote the random variable for optimization
randomness (e.g. initialization) by O.

Formally, given a fixed training set S and fixed optimization randomness O, the learning
algorithm A produces ◊ = A(S, O). Randomness in optimization translates to randomness
in A(S, ·). Given a fixed training set, we encode the randomness due to O in a conditional
distribution p(◊|S). Marginalizing over the training set S of size m gives a marginal distri-
bution p(◊) = ESp(◊|S) on the weights learned by A from m samples. In this context, the
average performance of the learning algorithm using training sets of size m can be expressed

1. By “subsequent work,” we mean work that appeared on arXiv five months after our paper appeared

on arXiv.
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in the following ways:

Rm = E◊≥pE(h◊) = ESE◊≥p(·|S)E(h◊) = ESEOE(h◊) (5.3.2)

5.3.2. Bias-variance decomposition

We briefly recall the standard bias-variance decomposition in the case of squared-loss.
We work in the context of classification, where each class k œ {1 · · · K} is represented by a
one-hot vector in RK . The predictor outputs a score or probability vector in RK . In this
context, the risk in Equation (5.3.2) decomposes into three sources of error (Geman et al.,
1992):

Rm = Enoise + Ebias + Evariance (5.3.3)

The first term is an intrinsic error term independent of the predictor:

Enoise = E(x,y)
Ë
Îy ≠ ȳ(x)Î2

È
.

The second term is a bias term:

Ebias = Ex

Ë
ÎE◊[h◊(x)] ≠ ȳ(x)Î2

È
,

where ȳ(x) denotes the expectation E[y|x] of y given x. The third term is the expected
variance of the output predictions:

Evariance = ExVar(h◊(x)),

Var(h◊(x)) = E◊

Ë
Îh◊(x) ≠ E◊[h◊(x)]Î2

È
,

where the expectation over ◊ can be done as in Equation (5.3.2). Interpreting this bias-
variance decomposition as a bias-variance tradeo� is quite pervasive (see, e.g., Hastie et al.
(2001, Chapter 2.9), Goodfellow et al. (2016, 5.4.4), Bishop (2006, Chapter 3.2)). It is
generally invoked to emphasize that the model selected should be of the complexity that
achieves the optimal balance between bias and variance.

Note that risks computed with classification losses (e.g cross-entropy or 0-1 loss) do not
have such a clean bias-variance decomposition (Domingos, 2000; James, 2003). However,
it is natural to expect that bias and variance are useful indicators of the performance of
models that are not assessed with squared error. In fact, we show the classification risk
can be bounded as 4 times the regression risk in Appendix D.4. To empirically examine
this connection, in all of our graphs that have “test error” or “training error” on some
classification task, we plot the 0-1 classification error (see, e.g., Figure 5.3(b)).
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(a) Variance decreases with width,

even in the small MNIST setting.

(b) Test error trend is same as bias-

variance trend (small MNIST).

(c) Similar bias-variance trends on

sinusoid regression task.

Figure 5.3. We see the same bias-variance trends in small data settings: small MNIST
(left) and a regression setting (right).

5.3.3. Further decomposing variance into its sources

In the set-up of Section 5.3.1 the prediction is a random variable that depends on two
sources of randomness: the randomly drawn training set, S, and any optimization ran-
domness, O, encoded into the conditional p(·|S). In certain regimes, one gets significantly
di�erent predictions when using a di�erent initialization. Similarly, the output of a learned
predictor changes when we use a di�erent training set. How do we start disentangling vari-
ance caused by sampling from variance caused by optimization? There are few di�erent
ways; here we describe one of them.

Our goal is to measure prediction variance due to sampling, while controlling for the
e�ect of optimization randomness.
Definition 1 ((Ensemble) Variance due to sampling). We consider the variance of an en-
semble of infinitely many predictors with di�erent optimization randomness (e.g. random
initializations):

VarS (EO [h◊(x)|S]) .

A common practice to estimate variance due to optimization e�ects is to run multiple
seeds on a fixed training set.
Definition 2 ((Mean) Variance due to optimization). We consider the average (over training
sets) variance over optimization randomness for a fixed training set:

ES [VarO (h◊(x)|S)] .

The law of total variance naturally decomposes variance into these very terms:

Var(h◊(x)) =ES [VarO (h◊(x)|S)] + VarS (EO [h◊(x)|S]) (5.3.4)

We use this decomposition to get a finer understanding of our observations (Figure 5.2).
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5.4. Experiments
In this section, we study how variance of fully connected single hidden layer networks

varies with width. We provide evidence against Geman et al. (1992)’s important claim about
neural networks:

«“The basic trend is what we expect: bias falls and variance increases with
the number of hidden units.” »

Our main finding is that, for all tasks that we study, bias and variance both decrease as
we scale network width. We also provide a meaningful decomposition of prediction variance
into a variance due to sampling term and a variance due to optimization term.

5.4.1. Common experimental details

We run experiments on di�erent datasets: MNIST, SVHN, CIFAR10, small MNIST, and
a sinusoid regression task. Averages over data samples are performed by taking the training
set S and creating 50 bootstrap replicate training sets S

Õ by sampling with replacement
from S. We train 50 di�erent neural networks for each hidden layer size using these di�erent
training sets. Then, we estimate Ebias

2 and Evariance as in Section 5.3.2, where the population
expectation Ex is estimated with an average over the test set. To estimate the two terms from
the law of total variance (Equation 5.3.4), we use 10 random seeds for the outer expectation
and 10 for the inner expectation, resulting in a total of 100 neural networks for each hidden
layer size. Furthermore, we compute 99% confidence intervals for our bias and variance
estimates using the bootstrap (Efron, 1979).

The networks are initialized using PyTorch’s default initialization, which scales the vari-
ance of the weight initialization distribution inversely proportional to the width (LeCun
et al., 1998; Glorot & Bengio, 2010). The networks are trained using SGD with momentum
and generally run for long after 100% training set accuracy is reached (e.g. 500 epochs for
full data MNIST and 10000 epochs for small data MNIST). The overall trends we find are
robust to how long the networks are trained after the training error converges. The step size
hyperparameter is specified in each of the sections, and the momentum hyperparameter is
always set to 0.9. To make our study as general as possible, we consider networks without
regularization bells and whistles such as weight decay, dropout, or data augmentation, which
Zhang et al. (2017) found to not be necessary for good generalization.

5.4.2. Decreasing variance in full data setting

We find a clear decreasing trend in variance with width of the network in the full data
MNIST setting (Figure 5.1). We also see the same trend with CIFAR10 (Appendix B.1) and
SVHN (Appendix B.2). In these experiments, the same step size is used for all networks for

2. Because we do not have access to ȳ, we use the labels y to estimate Ebias. This is equivalent to assuming

noiseless labels and is standard procedure for estimating bias (Kohavi & Wolpert, 1996; Domingos, 2000).
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Figure 5.4. Visualization of the 100 di�erent learned functions of single hidden layer neural
networks of widths 15, 1000, and 10000 (from left to right) on the task of learning a sinusoid.
The learned functions are increasingly similar with width, suggesting decreasing variance.
More in Appendix B.7.

a given dataset (0.1 for MNIST and 0.005 for CIFAR10 and SVHN). The trend is the same
with or without early stopping, so early stopping is not necessary to see decreasing variance,
similar to how it was not necessary to see better test set performance with width in Neyshabur
et al. (2015). Wider ResNets are known to achieve lower test error (Zagoruyko & Komodakis,
2016); this likely translates to decreasing variance with width in convolutional networks as
well. Much of the over-parameterization literature focuses on over-parameterization in width;
interestingly, the variance trend is not the same when varying depth (Appendix C).

5.4.3. Testing the limits: decreasing variance in the small data setting

Decreasing the size of the dataset can only increase variance. To study the robustness
of the above observation, we decrease the size of the training set to just 100 examples. In
this small data setting, somewhat surprisingly, we still see that both bias and variance de-
crease with width (Figure 5.3(a)). The test error behaves similarly (Figure 5.3(b)). Because
performance is more sensitive to step size in the small data setting, the step size for each
network size is tuned using a validation set (see Appendix B.4 for step sizes). The training
for tuning is stopped after 1000 epochs, whereas the training for the final models is stopped
after 10000 epochs. Note that because we see decreasing bias with width, e�ective capacity
is, indeed, increasing while variance is decreasing.

One control that motivates the experimental design choice of optimal step size is that
it leads to the conventional decreasing bias trend (Figure 5.3(a)) that indicates increasing
e�ective capacity. In fact, in the corresponding experiment where step size is the same 0.01
for all network sizes, we do not see monotonically decreasing bias (Appendix B.5).

This sensitivity to step size in the small data setting is evidence that we are testing
the limits of our hypothesis. By looking at the small data setting, we are able to test our
hypothesis when the ratio of size of network to dataset size is quite large, and we still find
this decreasing trend in variance (Figure 5.3(a)).
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To see how dependent this phenomenon is on SGD, we also run these experiments using
batch gradient descent and PyTorch’s version of LBFGS. Interestingly, we find a decreasing
variance trend with those optimizers as well. These experiments are included in Appen-
dix B.6.

5.4.4. Decoupling variance due to sampling from variance due to optimization

In order to better understand this variance phenomenon in neural networks, we sepa-
rate the variance due to sampling from the variance due to optimization, according to the
law of total variance (Equation 5.3.4). Contrary to what traditional bias-variance tradeo�
intuition would suggest, we find variance due to sampling increases slowly and levels o�,
once su�ciently over-parameterized (Figure 5.2). Furthermore, we find that variance due
to optimization decreases with width, causing the total variance to decrease with width
(Figure 5.2).

A body of recent work has provided evidence that over-parameterization (in width) helps
gradient descent optimize to global minima in neural networks (Du et al., 2019; Du & Lee,
2018; Soltanolkotabi et al., 2017; Livni et al., 2014; Zhang et al., 2018). Always reaching a
global minimum implies low variance due to optimization on the training set. Our observation
of decreasing variance on the test set shows that the over-parameterization (in width) e�ect
on optimization seems to extend to generalization, on the data sets we consider.

5.4.5. Visualization with regression on sinusoid

We trained di�erent width neural networks on a noisy sinusoidal distribution with 80
independent training examples. This sinusoid regression setting also exhibits the familiar
bias-variance trends (Figure 5.3(c)) and trends of the two components of the variance and
the test error (Figure B.14 of Appendix B.7).

Because this setting is low-dimensional, we can visualize the learned functions. The clas-
sic caricature of high capacity models is that they fit the training data in a very erratic way
(example in Figure B.10 of Appendix B.7). We find that wider networks learn sinusoidal
functions that are much more similar than the functions learned by their narrower coun-
terparts (Figure 5.4). We have analogous plots for all of the other widths and ones that
visualize the variance similar to how it is commonly visualized for Gaussian processes in
Appendix B.7.

5.5. Discussion and theoretical insights
Our empirical results demonstrate that in the practical setting, variance due to opti-

mization decreases with network width while variance due to sampling increases slowly and
levels o� once su�ciently over-parameterized. In Section 5.5.1, we discuss the simple case
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of linear models and point out that non-increasing variance can already be seen in the over-
parameterized setting. In Section 5.5.2 we take inspiration from linear models to provide
arguments for the behavior of variance in increasingly wide neural networks, and we discuss
the assumptions we make.

5.5.1. Insights from linear models

In this section, we review the classic result that the variance of a linear model grows
with the number of parameters (Hastie et al., 2009, Section 7.3) and point out that variance
behaves di�erently in the over-parameterized setting.

We consider least-squares linear regression in a standard setting which assumes a noisy
linear mapping y = ◊

T
x + ‘ between input feature vectors x œ RN and real outputs, where

‘ denotes the noise random variable with E[‘] = 0 and Var(‘) = ‡
2
‘
. In this context, the

over-parameterized setting is when the dimension N of the input space is larger than the
number m of examples.

Let X denote the m ◊ N design matrix whose i
th row is the training point x

T

i
, let Y

denote the corresponding labels, and let � = X
T
X denote the empirical covariance matrix.

We consider the fixed-design setting where X is fixed, so all of the randomness due to
data sampling comes solely from ‘. A learns weights ◊̂ from (X, Y ), either by a closed-form
solution or by gradient descent, using a standard initialization ◊0 ≥ N (0,

1
N

I). The predictor
makes a prediction on x ≥ D: h(x) = ◊̂

T
x. Then, the quantity we care about is ExVar(h(x)).

5.5.1.1. Under-parameterized setting

The case where N Æ m is standard: if X has maximal rank, � is invertible; the solution
is independent of the initialization and given by ◊̂ = �≠1

X
T
Y . All of the variance is a result

of randomness in the noise ‘. For a fixed x,

Var(h(x)) = ‡
2
‘
Tr(xx

T �≠1) . (5.5.1)

This grows with the number of parameters N . For example, taking the expected value over
the empirical distribution, p̂, of the sample, we recover that the variance grows with N :

Ex≥p̂[Var(h(x))] = N

m
‡

2
‘

. (5.5.2)

We provide a reproduction of the proofs in Appendix D.1.

5.5.1.2. Over-parameterized setting

The over-parameterized case where N > m is more interesting: even if X has maximal
rank, � is not invertible. This leads to a subspace of solutions, but gradient descent yields a
unique solution from updates that belong to the span of the training points xi (row space of
X) (LeCun et al., 1991), which is of dimension r = rank(X) = rank(�). Correspondingly,
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no learning occurs in the null space of X, which is of dimension N ≠ r. Therefore, gradient
descent yields the solution that is closest to initialization: ◊̂ = P‹(◊0) + �+

X
T
Y , where P‹

projects onto the null space of X and + denotes the Moore-Penrose inverse.
The variance has two contributions: one due to initialization and one due to sampling

(here, the noise ‘), as in Equation (5.3.4). These are made explicit in Proposition 5.5.1.
Proposition 5.5.1 (Variance in over-parameterized linear models). Consider the over-
parameterized setting where N > m. For a fixed x, the variance decomposition of Equa-
tion (5.3.4) yields

Var(h(x)) = 1
N

ÎP‹(x)Î2 + ‡
2
‘
Tr(xx

T �+) . (5.5.3)

This does not grow with the number of parameters N . In fact, because �≠1 is replaced
with �+, the variance scales as the dimension of the data (i.e the rank of X), as opposed
to the number of parameters. For example, taking the expected value over the empirical
distribution, p̂, of the sample, we obtain

Ex≥p̂[Var(h(x))] = r

m
‡

2
‘

, (5.5.4)

where r = rank(X). We provide the proofs for over-parameterized linear models in Appen-
dix D.2.

5.5.2. A more general result

We will illustrate our arguments in the following simplified setting, where M, M
‹, and

d(N) are the more general analogs of rowspace(X), nullspace(X), and r (respectively):
Setting. Let N be the dimension of the parameter space. The prediction for a fixed

example x, given by a trained network parameterized by ◊ depends on:
(i) a subspace of the parameter space, M œ RN with relatively small dimension, d(N),

which depends only on the learning task.
(ii) parameter components corresponding to directions orthogonal to M. The orthogonal

M
‹ of M has dimension, N ≠ d(N), and is essentially irrelevant to the learning task.
We can write the parameter vector as a sum of these two components ◊ = ◊M + ◊M‹ .

We will further make the following assumptions.

Assumption 1 The optimization of the loss function is invariant with respect to ◊M‹.

Assumption 2 Regardless of initialization, the optimization method consistently yields
a solution with the same ◊M component (i.e. the same vector when projected onto M).
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5.5.2.1. Variance due to initialization

Given the above assumptions, the following result shows that the variance from initial-
ization 3 vanishes as we increase N . The full proof, which builds on concentration results for
Gaussians (based on Levy’s lemma (Ledoux, 2001)), is given in Appendix D.3.
Theorem 5.5.2 (Decay of variance due to initialization). Consider the setting of Sec-
tion 5.5.2 Let ◊ denote the parameters at the end of the learning process. Then, for a
fixed data set and parameters initialized as ◊0 ≥ N (0,

1
N

I), the variance of the prediction
satisfies the inequality,

Var◊0(h◊(x)) Æ C
2L

2

N
(5.5.5)

where L is the Lipschitz constant of the prediction with respect to ◊, and for some universal
constant C > O.

This result guarantees that the variance decreases to zero as N increases, provided the
Lipschitz constant L grows more slowly than the square root of dimension, L = o(

Ô
N).

5.5.2.2. Variance due to sampling

Under the above assumptions, the parameters at the end of learning take the form
◊ = ◊

ú

M
+ ◊0M‹ . For fixed initialization, the only source of variance of the prediction is

the randomness of ◊
ú

M
on the learning manifold. The variance depends on the parameter

dimensionality only through dim M = d(N), and hence remains constant if d(N) does (see
Li et al. (2018)’s “intrinsic dimension”).
Discussion on assumptions. We made strong assumptions, but there is some support for
them in the literature. The existence of a subspace M‹ in which no learning occurs was also
conjectured by Advani & Saxe (2017) and shown to hold in linear neural networks under
a simplifying assumption that decouples the dynamics of the weights in di�erent layers. Li
et al. (2018) empirically showed the existence of a critical number d(N) = d of relevant
parameters for a given learning task, independent of the size of the model. Sagun et al.
(2017) showed that the spectrum of the Hessian for over-parameterized networks splits into
(i) a bulk centered near zero and (ii) a small number of large eigenvalues; and Gur-Ari
et al. (2018) recently gave evidence that the small subspace spanned by the Hessian’s top
eigenvectors is preserved over long periods of training. These results suggest that learning
occurs mainly in a small number of directions.

3. Among the di�erent sources of optimization randomness, we focus on randomness from initialization

and do not focus on randomness from stochastic mini-batching because we found the phenomenon of de-

creasing variance with width persists when using batch gradient descent (Section 5.4.3, Appendix B.6).
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5.6. Conclusion and future work
We provide evidence against Geman et al. (1992)’s claim that “the price to pay for

achieving low bias is high variance,” finding that both bias and variance decrease with network
width. Geman et al. (1992)’s claim is found throughout machine learning and is meant to
generally apply to all of machine learning (Appendix E), and it is correct in many cases (e.g.
kNN, kernel regression, splines). Is this lack of a tradeo� specific to neural networks or is it
present in other models as well such as decision trees?

We propose a new decomposition of the variance, finding variance due to sampling (analog
of regular variance in simple settings) does not appear to be dependent on width, once
su�ciently over-parameterized, and that variance due to optimization decreases with width.
By taking inspiration from linear models, we perform a theoretical analysis of the variance
that is consistent with our empirical observations.

We view future work that uses the bias-variance lens as promising. For example, a
probabilistic notion of e�ective capacity of a model is natural when studying generalization
through this lens (Appendix A). We did not study how bias and variance change over the
course of training; that would make an interesting direction for future work. We also see
further theoretical treatment of variance as a fruitful direction for better understanding
complexity and generalization abilities of neural networks.
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Chapter 6

Conclusion and Discussion

It is time that the bias-variance tradeo� sections of textbooks are updated. We reviewed
the history of the bias-variance tradeo� (including evidence for it) and its prevalence in
textbooks in Section 3.4. We refuted Geman et al. (1992)’s influential claims in Section 4.1
by referencing recent measurements of bias and variance in neural networks (Chapter 5,
Neal et al. (2018)). We covered the emerging alternative hypothesis that the test error (risk)
actually follows a “double descent” curve (as opposed to a U-shaped curve) in Section 4.4.
Finally, we suggested specific changes to the bias-variance tradeo� section of textbooks in
Section 4.5.

The specific changes can be simple qualifications. For example, the bias-variance de-
composition (Section 3.3) is often used as evidence for the bias-variance tradeo�. However,
this is misleading, unless one assumes fixed risk, which is often not the case when increasing
model complexity. Additionally, though there seems to be clear evidence for the bias-variance
tradeo� in many nonparametric methods (Section 3.4.1.1), we should not generalize this to
all learning algorithms and assume that the bias-variance tradeo� is universal. These points
can be easily clarified in teaching by clearly pointing out that the bias-variance decomposi-
tion does not imply a tradeo� and that seeing a tradeo� in certain models does not mean
that we see a tradeo� in other models.

It remains to be seen whether there is a general shape of the risk curve that we should
expect for all models as we increase model complexity. For now, it appears that there is
not: we see clear U-shaped curves in some nonparametric methods such as KNN, kernel
regression, and splines (Section 3.4.1.1), and we see clear double descent curves in neural
networks (Nakkiran et al., 2019; Belkin et al., 2019a; Spigler et al., 2018; Geiger et al., 2019b;
Advani & Saxe, 2017), with preliminary evidence of double descent curves in random forests
(Belkin et al., 2019a).
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Appendix A

Probabilistic notion of e�ective capacity

The problem with classical complexity measures is that they do not take into account
optimization and have no notion of what will actually be learned. Arpit et al. (2017, Section
1) define a notion of an e�ective hypothesis class to take into account what functions are
possible to be learned by the learning algorithm.

However, this still has the problem of not taking into account what hypotheses are likely
to be learned. To take into account the probabilistic nature of learning, we define the
‘-hypothesis class for a data distribution D and learning algorithm A, that contains the
hypotheses which are at least ‘-likely for some ‘ > 0:

HD(A) = {h : p(h(A, S)) Ø ‘}, (A.0.1)

where S is a training set drawn from D
m, h(A, S) is a random variable drawn from

the distribution over learned functions induced by D and the randomness in A; p is the
corresponding density. Thinking about a model’s ‘-hypothesis class can lead to drastically
di�erent intuitions for the complexity of a model and its variance (Figure A.1). This is at
the core of the intuition for why the traditional view of bias-variance as a tradeo� does not
hold in all cases.



 

unbiasedbiased with
some variance

bias

high
variance

Traditional view of bias-variance

increasing number
of  parameters

Practical setting

low variance

increasing network
width

 

Worst-case analysis Measure concentrates

Figure A.1. The dotted red circle depicts a cartoon version of the ‘-hypothesis class of the
learner. The left side reflects common intuition, as informed by the bias-variance tradeo�
and worst-case analysis from statistical learning theory. The right side reflects our view that
variance can decrease with network width.
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Appendix B

Additional empirical results and discussion

B.1. CIFAR10

Figure B.1. Bias-variance plot (left) and corresponding train and test error (right) for
CIFAR10 after training for 150 epochs with step size 0.005 for all networks.



Figure B.2. Bias-variance plot (left) and corresponding train and test error (right) for
CIFAR10 after training for using early stopping with step size 0.005 for all networks.

B.2. SVHN

Figure B.3. Bias-variance plot (left) and corresponding train and test error (right) for
SVHN after training for 150 epochs with step size 0.005 for all networks.
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B.3. MNIST

Figure B.4. MNIST bias-variance plot from main paper (left) next to the corresponding
test error (right)

Figure B.5. Decomposed variance on MNIST
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B.4. Tuned learning rates for SGD

(a) Variance decreases with width, even in the small

data setting (SGD). This figure is in the main paper,

but we include it here to compare with the corre-

sponding step sizes used.

(b) Corresponding optimal learning rates found, by

random search, and used.

Figure B.6. Tuned learning rates used for small data MNIST

B.5. Fixed learning rate results for small data MNIST

Figure B.7. Variance on small data with a fixed learning rate of 0.01 for all networks.

Note that the U curve shown in Figure B.7 when we do not tune the step size is explained
by the fact that the constant step chosen is a “good” step size for some networks and “bad”
for others. Results from Keskar et al. (2017), Smith et al. (2018), and Jastrzkebski et al.
(2017) show that a step size that corresponds well to the noise structure in SGD is important
for achieving good test set accuracy. Because our networks are di�erent sizes, their stochastic
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optimization process will have a di�erent landscape and noise structure. By tuning the step
size, we are making the experimental design choice to keep optimality of step size constant
across networks, rather than keeping step size constant across networks. To us, choosing this
control makes much more sense than choosing to control for step size. Note that Park et al.
(2019) show that, as long as the network size is not too big, controlling for “optimality of step
size” and “keeping step size constant” with increasing network width actually correspond to
the same thing, as long as the networks are not too big, which fits well with the fact that
we used the same step size across network widths for almost all of our experiments.

B.6. Other optimizers for width experiment on small data MNIST

Figure B.8. Variance decreases with width in the small data setting, even when using batch
gradient descent.

Figure B.9. Variance decreases with width in the small data setting, even when using a
strong optimizer, such as PyTorch’s LBFGS, as the optimizer.
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B.7. Sinusoid regression experiments

(a) Example of the many di�erent functions learned

by a high variance learner (Bishop, 2006)

(b) Caricature of a single function learned by a high

variance learner (EliteDataScience, 2018)

Figure B.10. Caricature examples of high variance learners on sinusoid task. Below, we
find that this does not happen with increasingly wide neural networks (Figure B.12 and
Figure B.13).

Figure B.11. Target function of the noisy sinusoid regression task (in gray) and an example
of a training set (80 data points) sampled from the noisy distribution.
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Figure B.12. Visualization of 100 di�erent functions learned by the di�erent width neural
networks. Darker color indicates higher density of di�erent functions. Widths in increasing
order from left to right and top to bottom: 5, 10, 15, 17, 20, 22, 25, 35, 75, 100, 1000, 10000.
We do not observe the caricature from Figure B.10 as width is increased.
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Figure B.13. Visualization of the mean prediction and variance of the di�erent width
neural networks. Widths in increasing order from left to right and top to bottom: 5, 10, 15,
17, 20, 22, 25, 35, 75, 100, 1000, 10000.
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Figure B.14. We observe the same trends of decomposed variance (left) and test error
(right) in the sinusoid regression setting.
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Appendix C

Depth and variance

C.1. Main graphs

(a) Bias and variance trends with depth, using dy-

namical isometry

(b) Test error trends, using dynamical isometry vs.

skip connections

Figure C.1. We can see that, when using dynamical isometry, bias decreases with depth
and variance slowly increases with depth (left). This increase in variance is so small that it
only translates to a an increase in test error of about 0.1% for depth 25 to depth 200 (right).

C.2. Discussion on need for careful experimental design
Depth is an important component of deep learning. We study its e�ect on bias and vari-

ance by fixing width and varying depth. However, there are pathological problems associated
with training very deep networks such as vanishing/exploding gradient (Hochreiter, 1991;
Bengio et al., 1994; Glorot & Bengio, 2010), signal not being able to propagate through the
network (Schoenholz et al., 2017), and gradients resembling white noise (Balduzzi et al.,
2017). He et al. (2016) pointed out that very deep networks experience high test set er-
ror and argued it was due to high training set loss. However, while skip connections (He
et al., 2016), better initialization (Glorot & Bengio, 2010), and batch normalization (Io�e &



Szegedy, 2015) have largely served to facilitate low training loss in very deep networks, the
problem of high test set error still remains.

The current best practices for achieving low test error in very deep networks arose out
of trying to solve the above problems in training. An initial step was to ensure the mean
squared singular value of the input-output Jacobian, at initialization, is close to 1 (Glorot
& Bengio, 2010). More recently, there has been work on a stronger condition known as
dynamical isometry, where all singular values remain close to 1 (Saxe et al., 2014; Pennington
et al., 2017). Pennington et al. (2017) also empirically found that dynamical isometry helped
achieve low test set error. Furthermore, Xiao et al. (2018, Figure 1) found evidence that
test set performance did not degrade with depth when they lifted dynamical isometry to
CNNs. This why we settled on dynamical isometry as the best known practice to control for
as many confounding factors as possible.

We first ran experiments with vanilla full connected networks (Figure C.2). These have
clear training issues where networks of depth more than 20 take very long to train to the
target training loss of 5e-5. The bias curve is not even monotonically decreasing. Clearly,
there are important confounding factors not controlled for in this simple setting. Still, note
that variance increases roughly linearly with depth.

We then study fully connected networks with skip connections between every 2 layers
(Figure C.3). While this allows us to train deeper networks than without skip connections,
many of the same issues persist (e.g. bias still not monotonically decreasing). The bias,
variance, and test error curves are all checkmark-shaped.

C.3. Vanilla fully connected depth experiments

Figure C.2. Test error quickly degrades in fairly shallow fully connected networks, and
bias does not even monotonically decrease with depth. However, this is the first indication
that variance might increase with depth. All networks have training error 0 and are trained
to the same training loss of 5e-5.
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C.4. Skip connections depth experiments

Figure C.3. While the addition of skip connections (between every other layer) might push
the bottom of the U curve in test error out to 10 skip connections (21 layers), which is further
than where the bottom was observed without skip connections (3 layers), test error still
degrades noticeably in greater depths. Additionally, bias still does not even monotonically
decrease with depth. While skip connections appear to have helped control for the factors
we want to control, they were not completely satisfying. All networks have training error 0
and are trained to the same training loss of 5e-5.

C.5. Dynamical isometry depth experiments
The figures in this section are included in the main paper, but they are included here for

comparison to the above and for completeness.

Figure C.4. Additionally, dynamical isometry seems to cause bias to decrease monotoni-
cally with depth. While skip connections appear to have helped control for the factors we
want to control, they were not completely satisfying. All networks have training error 0 and
are trained to the same training loss of 5e-5.
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Appendix D

Some Proofs

D.1. Proof of Classic Result for Variance of Linear Model
Here, we reproduce the classic result that variance grows with the number of parameters

in a linear model. This result can be found in Hastie et al. (2009)’s book, and a similar proof
can be found in Gonzalez (2016)’s lecture slides.

Proof. For a fixed x, we have h(x) = x
T
◊̂. Taking ◊̂ = �≠1

X
T
Y to be the gradient descent

solution, and using Y = X◊ + ‘, we obtain:

h(x) = x
T �≠1

X
T (X◊ + ‘) = x

T
◊ + x

T �≠1
X

T
‘

Hence E‘[h(x)] = x
T
◊, and the variance is,

Var‘(h(x)) = E‘[(h(x) ≠ E‘[h(x)])2]

= E‘[(xT
◊ + x

T �≠1
X

T
‘ ≠ x

T
◊)2]

= E‘[(xT �≠1
X

T
‘)2]

= E‘[(xT �≠1
X

T
‘)(xT �≠1

X
T
‘)T ]

= E‘[xT �≠1
X

T
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T (xT �≠1
X

T )T ]

= ‡
2
‘
x

T �≠1��≠1
x

= ‡
2
‘
x

T �≠1��≠1
x

= ‡
2
‘
x

T �≠1
x

= ‡
2
‘
Tr(xT �≠1

x)

= ‡
2
‘
Tr(xx
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Taking the expected value over the empirical distribution, p̂, of the sample, we find an
explicit increasing dependence on N :

Ex≥p̂[Var‘(h(x))] = Ex≥p̂[‡2
‘
Tr(xx

T �≠1)]

= ‡
2
‘
Tr(Ex≥p̂[xx

T ]�≠1)

= ‡
2
‘
Tr

3 1
m

��≠1
4

= ‡
2
‘

1
m

Tr(IN)

= ‡
2
‘

N

m

⇤

D.2. Proof of Result for Variance of Over-parameterized Linear
Models

Here, we produce a variation on what was done in Appendix D.1 to show that variance
does not grow with the number of parameters in over-parameterized linear models. Recall
that we are considering the setting where N > m, where N is the number of parameters and
m is the number of training examples.

Proof. By the law of total variance,

Var(h(x)) = E‘Var◊0(h(x)) + Var‘(E◊0 [h(x)])

Here have h(x) = x
T
◊̂, where ◊̂ the gradient descent solution ◊̂ = P‹(◊0) + �+

X
T
Y , and

◊0 ≥ N (0,
1
N

I). Then,

Var◊0(h(x)) = E◊0 [(h(x) ≠ E◊0 [h(x)])2]

= E◊0 [xT (P‹(◊0) ≠ E◊0 [P‹(◊0)])2]

= Var◊0(xT
P‹(◊0))

= Var◊0(P‹(x)T
P‹(◊0))

= 1
N

ÎP‹(x)Î2

Since E◊0(h(x)) = x
T �+

X
T
Y , the calculation of Var‘(E◊0)h(x)) is similar as in D.1, where

�≠1 is replaced by �+. Thus,

Var‘(E◊0h(x)) = ‡
2
‘
Tr(xx

T �+)
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Taking the expected value over the empirical distribution, p̂, of the sample, we find an
explicit dependence on r = rank(X), not N :

Ex≥p̂[Var(h(x))] = 0 + Ex≥p̂[‡2
‘
Tr(xx

T �+)]

= ‡
2
‘
Tr(Ex≥p̂[xx

T ]�+)

= ‡
2
‘
Tr

3 1
m

��+
4

= ‡
2
‘

1
m

Tr(I+
r

)

= ‡
2
‘

r

m

where I
+
r

denotes the diagonal matrix with 1 for the first r diagonal elements and 0 for the
remaining N ≠ r elements. ⇤

D.3. Proof of Theorem 5.5.2
First we state some known concentration results (Ledoux, 2001) that we will use in the

proof.
Lemma D.3.1 (Levy). Let h : S

n

R
æ R be a function on the n-dimensional Euclidean

sphere of radius R, with Lipschitz constant L; and ◊ œ S
n

R
chosen uniformly at random for

the normalized measure. Then

P(|h(◊) ≠ E[h]| > ‘) Æ 2 exp
A

≠C
n‘

2

L2R2

B

(D.3.1)

for some universal constant C > 0.
Uniform measures on high dimensional spheres approximate Gaussian distributions

(Ledoux, 2001). Using this, Levy’s lemma yields an analogous concentration inequality
for functions of Gaussian variables:
Lemma D.3.2 (Gaussian concentration). Let h : Rn

æ R be a function on the Euclidean
space Rn, with Lipschitz constant L; and ◊ ≥ N (0, ‡In) sampled from an isotropic n-
dimensional Gaussian. Then:

P(|h(◊) ≠ E[h]| > ‘) Æ 2 exp
A

≠C
‘

2

L2‡2

B

(D.3.2)

for some universal constant C > 0.
Note that in the Gaussian case, the bound is dimension free.
In turn, concentration inequalities give variance bounds for functions of random variables.

Corollary D.3.3. Let h be a function satisfying the conditions of Theorem D.3.2, and
Var(h) = E[(h ≠ E[h])2]. Then

Var(h) Æ
2L

2
‡

2

C
(D.3.3)
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Proof. Let g = h ≠ E[h]. Then Var(h) = Var(g) and

Var(g) = E[|g|
2] = 2E

⁄
|g|

0
tdt = 2E

⁄
Œ

0
t |g|>t dt (D.3.4)

Now swapping expectation and integral (by Fubini theorem), and by using the identity
E |g|>t = P(|g| > t), we obtain

Var(g) = 2
⁄

Œ

0
t PR(|g| > t) dt

Æ 2
⁄

Œ

0
2t exp

A

≠C
t
2

L2‡2

B

dt

= 2
C

≠
L

2
‡

2

C
exp

A

≠C
t
2

L2‡2

BD
Œ

0
= 2L

2
‡

2

C

⇤

We are now ready to prove Theorem 5.5.2. We first recall our assumptions:
Assumption 1. The optimization of the loss function is invariant with respect to ◊M‹.
Assumption 2. Along M, optimization yields solutions independently of the initialization
◊0.

We add the following assumptions.
Assumption 3. The prediction h◊(x) is L-Lipschitz with respect to ◊M‹.
Assumption 4. The network parameters are initialized as

◊0 ≥ N (0,
1
N

· IN◊N). (D.3.5)

We first prove that the Gaussian concentration theorem translates into concentration of
predictions in the setting of Section 5.5.2.1.
Theorem D.3.4 (Concentration of predictions). Consider the setting of Section 5.5.2 and
Assumptions 1 and 4. Let ◊ denote the parameters at the end of the learning process. Then,
for a fixed data set, S we get concentration of the prediction, under initialization randomness,

P(|h◊(x) ≠ E[h◊(x)]| > ‘) Æ 2 exp
A

≠C
N‘

2

L2

B

(D.3.6)

for some universal constant C > 0.

Proof. In our setting, the parameters at the end of learning can be expressed as

◊ = ◊
ú

M
+ ◊M‹ (D.3.7)

where ◊
ú

M
is independent of the initialization ◊0. To simplify notation, we will assume that,

at least locally around ◊
ú

M
, M is spanned by the first d(N) standard basis vectors, and M

‹

by the remaining N ≠d(N). This will allow us, from now on, to use the same variable names
for ◊M and ◊M‹ to denote their lower-dimensional representations of dimension d(N) and
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N ≠ d(N) respectively. More generally, we can assume that there is a mapping from ◊M and
◊M‹ to those lower-dimensional representations.

From Assumptions 1 and 4 we get

◊M‹ ≥ N

3
0,

1
N

I(N≠d(N))◊(N≠d(N))

4
. (D.3.8)

Let g(◊M‹) , h◊ú
M+◊M‹ (x). By Assumption 3, g(·) is L-Lipschitz. Then, by the Gaussian

concentration theorem we get,

P(|g(◊M‹) ≠ E[g(◊M‹)]| > ‘) Æ 2 exp
A

≠C
N‘

2

L2

B

. (D.3.9)

⇤

The result of Theorem 5.5.2 immediately follows from Theorem D.3.4 and Corollary D.3.3,
with ‡

2 = 1/N :

Var◊0(h◊(x)) Æ C
2L

2

N
(D.3.10)

Provided the Lipschitz constant L of the prediction grows more slowly than the square of
dimension, L = o(

Ô
N), we conclude that the variance vanishes to zero as N grows.

D.4. Bound on classification error in terms of regression error
In this section we give a bound on classification risk Rclassif in terms of the regression risk

Rreg.
Notation. Our classifier defines a map h : X æ Rk, which outputs probability vectors

h(x) œ Rk, with q
k

y=1 h(x)y = 1. The classification loss is defined by

L(h) = Probx,y{h(x)y < max
yÕ

h(x)yÕ}

= E(x,y)I(h(x)y < max
yÕ

h(x)yÕ) (D.4.1)

where I(a) = 1 if predicate a is true and 0 otherwise. Given trained predictors hS indexed
by training dataset S, the classification and regression risks are given by,

Rclassif = ESL(hS), Rreg = ESE(x,y)||hS(x) ≠ Y ||
2
2 (D.4.2)

where Y denotes the one-hot vector representation of the class y.
Proposition D.4.1. The classification risk is bounded by four times the regression risk,
Rclassif Æ 4Rreg.

Proof. First note that, if h(x) œ Rk is a probability vector, then

h(x)y < max
yÕ

h(x)yÕ =∆ h(x)y <
1
2
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By taking the expectation over x, y, we obtain the inequality L(h) Æ ÂL(h) where

ÂL(h) = Probx,y{h(x)y <
1
2} (D.4.3)

We then have,

Rclassif := ESL(hS) Æ ESL̃(hS)

= ProbS; x,y{hS(x)
y

<
1
2}

= ProbS; x,y{|hS(x)y ≠ Yy| >
1
2}

Æ ProbS; x,y{||hS(x) ≠ Y ||2 >
1
2}

= ProbS; x,y{||hS(x) ≠ Y ||
2
2 >

1
4} Æ 4Rreg

where the last inequality follows from Markov’s inequality.
⇤
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Appendix E

Common intuitions from impactful works

“Neural Networks and the Bias/Variance Dilemma” from (Geman et al., 1992): “How
big a network should we employ? A small network, with say one hidden unit, is likely to be
biased, since the repertoire of available functions spanned by f(x; w) over allowable weights
will in this case be quite limited. If the true regression is poorly approximated within this
class, there will necessarily be a substantial bias. On the other hand, if we overparameterize,
via a large number of hidden units and associated weights, then the bias will be reduced
(indeed, with enough weights and hidden units, the network will interpolate the data), but
there is then the danger of a significant variance contribution to the mean-squared error.
(This may actually be mitigated by incomplete convergence of the minimization algorithm,
as we shall see in Section 3.5.5.)”

“An Overview of Statistical Learning Theory” from (Vapnik, 1999): “To avoid over fitting
(to get a small confidence interval) one has to construct networks with small VC-dimension.”

“Stability and Generalization” from Bousquet & Elissee� (2002): “It has long been known
that when trying to estimate an unknown function from data, one needs to find a tradeo�
between bias and variance. Indeed, on one hand, it is natural to use the largest model in
order to be able to approximate any function, while on the other hand, if the model is too
large, then the estimation of the best function in the model will be harder given a restricted
amount of data." Footnote: “We deliberately do not provide a precise definition of bias and
variance and resort to common intuition about these notions."

Pattern Recognition and Machine Learning from Bishop (2006): “Our goal is to minimize
the expected loss, which we have decomposed into the sum of a (squared) bias, a variance,
and a constant noise term. As we shall see, there is a trade-o� between bias and variance,
with very flexible models having low bias and high variance, and relatively rigid models
having high bias and low variance.”

“Understanding the Bias-Variance Tradeo�” from Fortmann-Roe (2012): “At its root,
dealing with bias and variance is really about dealing with over- and under-fitting. Bias
is reduced and variance is increased in relation to model complexity. As more and more



parameters are added to a model, the complexity of the model rises and variance becomes
our primary concern while bias steadily falls. For example, as more polynomial terms are
added to a linear regression, the greater the resulting model’s complexity will be.”

Figure E.1. Illustration of common intuition for bias-variance tradeo� (Fortmann-Roe,
2012)
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