
Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé:

Towards Understanding Generalization in Gradient-Based
Meta-Learning

présenté par:

Simon Guiroy

a été évalué par un jury composé des personnes suivantes:

Emma Frejinger, président-rapporteur

Christopher Pal, directeur de recherche

Guillaume Rabusseau, membre du jury

Mémoire accepté le: 30 août 2019

Résumé
Dans ce mémoire, nous étudions la généralisation des réseaux de neurones dans

le contexte du méta-apprentissage, en analysant divers priopriétés des surface leurs
fonctions objectifs. La recherche en apprentissage automatique portant sur les
surfaces de fonctions objectifs des réseaux de neurones ayant aidé à comprendre leur
généralisation en apprentissage supervisé standard, nous proposons l’étude de telles
surfaces dans le but d’approfondir nos connaissances sur la généralisation en méta-
apprentissage. Nous introduisons d’abord la littérature sur les fonctions objectifs des
réseaux de neurones à la Section 1.2, puis celle portant sur le méta-apprentissage à
la Section 1.3, pour enfin terminer notre introduction avec le méta-apprentissage
par descente de gradient, très similaire à l’entrâınement des réseaux de neurones par
descente de gradient stochastique et pour une tâche unique. Nous présentons par la
suite notre travail sur les fonctions objectifs en méta-apprentissage au Chapitre 2,
lequel nous avons soumis à la conférence NeurIPS 2019 en tant qu’article scientifique.
Au moment d’écrire ce mémoire, et au meilleur de notre connaissance, ce travail
est le premier à étudier empiriquement les surfaces des fonctions objectifs en méta-
apprentissage dans le contexte de l’apprentissage profond, mettant en lumière
certaines propriétés de ces surfaces qui apparaissent liées à la généralisation des
réseaux de neurones à de nouvelles tâches. Nous démontrons qu’alors que progresse
le méta-entrâınement, pour les solutions aux nouvelles tâches obtenues via quelques
itérations de descente de gradient, la courbure de la fonction objective décroit
monotoniquement, la valeur de la fonction objective diminue, tandis que la distance
euclidienne avec la solution “méta-entrâınement” augmente. Nous observons que la
courbure des minima continue de décrôıtre même lorsque le sur-apprentissage devient
apparent et que la généralisation commence à se dégrader, indiquant que la courbure
des minima semble peu corélée à la généralisation en méta-apprentissage par descente
de gradient. De plus, nous montrons que la généralisation aux nouvelles tâches
semble plutôt liée à la cohérence de leurs trajectoires d’adaptation dans l’espace
des paramètres, mesurée par la similarité cosinus moyenne entre les trajectoires.
Nous montrons également que la cohérence des gradients “meta-test”, mesurée par
le produit scalaire moyen entre les vecteurs de gradients spécifiques aux nouvelles
tâches, evalué à solution meta-entrâınement, est également corélée à la généralisation.
Nous basant sur ces observations, nous proposons un nouveau terme de régularisation
pour l’algorithme de méta-apprentissage Model Agnostic Meta-Learning (MAML).

Mots-clés: apprentissage profond, méta-apprentissage, fonction objectif, géné-
ralisation, apprentissage via peu d’exemples

ii

Summary
In this master’s thesis, we study the generalization of neural networks in gradient-

based meta-learning by analyzing various properties of the objective landscapes.
Meta-learning, a challenging paradigm where models not only have to learn a task
but beyond that, are trained for “learning to learn” as they must adapt to new
tasks and environments with very limited data about them. With research on the
objective landscapes of neural networks in classical supervised having provided some
answers regarding their ability to generalize for new data points, we propose similar
analyses aimed at understanding generalization in meta-learning. We first introduce
the literature on objective landscapes of neural networks in Section 1.2. We then
introduce the literature of meta-learning in Section 2, concluding our introduction
with the approach of gradient-based meta-learning, a meta-learning setup that bears
strong similarities to the traditional supervised learning setup through stochastic
gradient-based optimization. At the time of writing of this thesis, and to the best of
our knowledge, this is the first work to empirically study the objective landscapes in
gradient-based meta-learning, especially in the context of deep learning. We notably
provide some insights on some properties of those landscapes that appear correlated
to the generalization to new tasks.

We experimentally demonstrate that as meta-training progresses, the meta-test
solutions, obtained after adapting the meta-train solution of the model, to new
tasks via few steps of gradient-based fine-tuning, become flatter, lower in loss, and
further away from the meta-train solution. We also show that those meta-test
solutions become flatter even as generalization starts to degrade, thus providing
experimental evidence against the correlation between generalization and flat mi-
nima in the paradigm of gradient-based meta-leaning. Furthermore, we provide
empirical evidence that generalization to new tasks is correlated with the cohe-
rence between their adaptation trajectories in parameter space, measured by the
average cosine similarity between task-specific trajectory directions, starting from
a same meta-train solution. We also show that coherence of meta-test gradients,
measured by the average inner product between the task-specific gradient vectors
evaluated at meta-train solution, is also correlated with generalization. Based on
these observations, we propose a novel regularizer for the Model Agnostic Meta-
Learning (MAML) algorithm and provide experimental evidence for its effectiveness.

Keywords: deep learning, meta-learning, objective landscapes, generalization,
few-shot learning

iii

Table des matières

Résumé . ii

Summary . iii

Contents . iv

List of Figures . vi

List of Abbreviations . ix

Acknowledgments . x

1 Introduction . 1
1.1 Overview . 1
1.2 Objective Landscapes of Neural Networks 2

1.2.1 Properties of solutions . 4
1.2.2 Properties of optimization trajectories 8
1.2.3 General properties of the objective landscapes 14

1.3 Meta-Learning . 20
1.3.1 Introduction . 20
1.3.2 Early Works . 20
1.3.3 Generalizing from few-examples: the next step for deep lear-

ning towards general artificial intelligence 20
1.3.4 Definition of few-shot learning 21
1.3.5 Learning a metric space . 22
1.3.6 Learning to optimize . 24
1.3.7 Learning the hyperparameters 27
1.3.8 External memory, attention and temporal convolution 28
1.3.9 Gradient-Based Meta-Learning 29

2 On the Properties of the Objective Landscapes and Generaliza-
tion of Gradient-Based Meta-Learning 32
2.1 Introduction . 33
2.2 Related work . 34
2.3 Gradient-based meta-learning . 34

iv

2.3.1 Model-Agnostic Meta-Learning (MAML) 35
2.3.2 Finetuning baseline . 35

2.4 Analyzing the objective landscapes 36
2.4.1 Flatness of minima . 37
2.4.2 Coherence of adaptation trajectories 38
2.4.3 Characterizing meta-train solutions by the average inner pro-

duct between meta-test gradients 39
2.5 Experiments . 40

2.5.1 Flatness of meta-test solutions 41
2.5.2 Coherence of adaptation trajectories 42
2.5.3 Characterizing meta-train solutions by the average inner pro-

duct between meta-test gradients 43
2.6 Regularizing MAML . 45
2.7 Additional Experimental Details . 46

2.7.1 Model Architectures . 46
2.7.2 Meta-Learning datasets . 47
2.7.3 Hyperparameters used in meta-training and meta-testing . . 47

2.8 Additional Experimental Results 48
2.8.1 Performance of models trained with MAML and First-Order

MAML, on the few-shot learning settings 48
2.8.2 Coherence of adaptation trajectories 48
2.8.3 Average inner product between meta-test gradients 48

3 Conclusion . 51

Bibliography . 52

v

Table des figures

1.1 Solutions found at convergence of optimization 4
1.2 Curvature of minimam: (left) Flatter minimum ; (right) Sharper

minimum. For a same small displacement δθ in parameter space, the
increase in level of loss δL is greater for a sharper minimum than for
a flatter minimum. 5

1.3 Critical points of optimization: (left) Minimum ; (right) Saddle-point 7
1.4 Optimization trajectories from initialization to point of convergence 8
1.5 Illustrative example of the projection of a parameter update Δθ from

a 3-dimensional parameter space, onto a 2-dimensional subspace Ψ. 12
1.6 General properties of the objective landscapes 14
1.7 Recurrent Neural Network . 25
1.8 Learning to Learn by Gradient Descent by Gradient Descent: Gradient

flows backward through the solid arrows. Image from [Andrychowicz
et al., 2016]. 26

1.9 Long-Short Term Memory (LSTM) cell 27

2.1 Visualizations of metrics measuring properties of objective loss landscapes.

The black arrows represent the descent on the support loss and the dotted

lines represent the corresponding displacement in the parameter space.

(1): Curvature of the loss for an adapted meta-test solution θ̃i (for a task

Ti), is measured as the spectral norm of the hessian matrix of the loss.

(2): Coherence of adaptation trajectories to different meta-test tasks is

measured as the average cosine similarity for pairs of trajectory directions.

A direction vector is obtained by dividing a trajectory displacement vector

(from meta-train solution θs to meta-test solution θ̃i) by its Euclidean

norm, i.e. �θi = (θ̃i−θs)/‖θ̃i−θs‖2. (3): Characterizing a meta-train solution

by the coherence of the meta-test gradients, measured by the average

inner product for pairs of meta-test gradient vectors gi = −∇θL(f(Di; θ
s)). 36

2.2 Flatness of meta-test solutions for MAML and First-Order MAML,
on Omniglot and MiniImagenet . 41
(a) Omniglot 5-way . 41
(b) Omniglot 20-way . 41
(c) MiniImagenet

5-way, 1-shot . 41

vi

(d) MiniImagenet
5-way, 5-shot . 41

2.3 MAML: Characterization of meta-test solutions 42
(a) Target Accuracy . 42
(b) Support loss . 42
(c) Curvature of solutions . 42

2.4 Finetune baseline : Characterization of meta-test solutions 42
(a) Target accuracy . 42
(b) Support loss . 42
(c) Curvature of solutions . 42

2.5 Comparison between average inner product between meta-test tra-
jectory direction vectors (orange), and average target accuracy on
meta-test tasks (blue), MAML First-Order and Second-Order, MiniI-
magenet 5-way 1-shot. See Figure 2.10 in Appendix 2.8.2 for full set
of experiments. 42
(a) MiniImagenet, 5-way, 1-shot, First-Order 42
(b) MiniImagenet, 5-way, 1-shot, Second-Order 42

2.6 (a): Average inner product between meta-test adaptation direction
vectors, for Finetuning baseline on MiniImagenet. (b): Average inner
product between meta-test gradients, for Finetuning baseline on
MiniImagenet. Average l2 norm of meta-test adaptation trajectories,
all algorithms on MiniImagenet, (c): 1-shot learning, (d): 5-shot
learning. 43
(a) Trajectories coherence . 43
(b) Gradients coherence . 43
(c) l2 norm of trajectories (1-shot) 43
(d) l2 norm of trajectories (5-shot) 43

2.7 Comparison between average inner product between meta-test gra-
dient vectors, evaluated at meta-train solution, and average target
accuracy on meta-test tasks, with higher average inner product being
linked to better generalization. See Figure 2.11 in Appendix 2.8.3 for
full set of experiments. 44
(a) MiniImagenet, 5-way, 5-shot, First-Order 44
(b) MiniImagenet, 5-way, 5-shot, Second-Order 44

2.8 Average target accuracy on meta-test tasks using our proposed re-
gularizer on MAML, for Omniglot 20-way 1-shot learning, with
regularization coefficient γ = 0.5 . 45

2.9 MAML: Accuracies on training and testing tasks 48
(a) Meta-Train Accuracy . 48
(b) Meta-Test Accuracy . 48

vii

2.10 Comparison between average inner product between trajectory di-
rections and average target accuracy on meta-test tasks. Full set of
experiments. 49
(a) MiniImagenet, 5-way, 1-shot, First-Order 49
(b) MiniImagenet, 5-way, 1-shot, Second-Order 49
(c) Omniglot, 5-way, 5-shot, Second-Order 49
(d) Omniglot, 20-way, 5-shot, Second-Order 49

2.11 Comparison between average inner product between trajectory dis-
placement vectors, and average target accuracy on meta-test tasks.
Full set of experiments. 50
(a) MiniImagenet, 5-way, 5-shot, First-Order 50
(b) MiniImagenet, 5-way, 5-shot, Second-Order 50
(c) MiniImagenet, 5-way, 1-shot, First-Order 50
(d) MiniImagenet, 5-way, 1-shot, Second-Order 50
(e) Omniglot, 20-way, 1-shot, Second-Order 50
(f) Omniglot, 20-way, 5-shot, Second-Order 50

viii

List of Abbreviations
CNN Convolutional Neural Network

DNN Deep Neural Network

MAML Model Agnostic Meta-Learning

ML Machine Learning

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

ix

Acknowledgments
I want to express my profound gratitude to my advisor and co-author Chris-

topher Pal, who encouraged me in pursuing my research interests, as well as my
passion, who trusted me. I also want to thank him for his supervision and precious
advice. I want to thank Yoshua Bengio for his vision and determination in helping
flourish, in Montréal, our vibrant research community. I want to thank as well my
co-author Vikas Verma, who from early on has believed in the endeavor of the work
presented in this thesis.

I would like to thank my mother Johanne Vermette and father Alain Guiroy, for
their support, coaching, encouragement and their love. I would like to thank my
friends Olivier Rousseau and Charles-Émile Trudel, my little brothers Antoine and
Mathieu, for all their support. I would also like to thank the following colleagues,
friends, and professors with whom I enjoyed very insightful discussions and precious
feedback: Tristan Deleu, Valentin Thomas, Brady Neal, Jie Fu, Hugo Larochelle,
Xavier Bouthiller.

Finally, the work reported in this thesis would not have been possible without
the financial support from the following institutions: Ubisoft, Google, Samsung,
IBM, NSERC, Calcul Quebec, Compute Canada, the Canada Research Chairs and
CIFAR

x

1 Introduction

1.1 Overview

The work that we present in Chapter 2 of this thesis proposes to study the

generalization of neural networks in gradient-based meta-learning, by empirically

analyzing the properties of the objective landscapes involved in the optimization

of those neural networks. At the time of writing this thesis and to the best of

our knowledge, there had been no prior work empirically analyzing the objective

landscapes involved in gradient-based meta-learning. In this chapter, we first intro-

duce in Section 1.2 the literature that studied the objective landscapes in standard,

supervised machine learning. This rich body of literature, with the various topics

that were studied and with the results that it provides, constituted a valuable

reference for crafting our questions and inquiries about the objective landscapes of

gradient-based meta-learning. We then introduce Meta-Learning in Section 1.3, a

subfield of machine learning where the goal is not simply to design a model that can

learn some task but rather, to design algorithms for models to “learn how to learn”.

We summarize the different approaches to meta-learning, ending with the approach

of gradient-based meta-learning, which is part of the central focus of this work.

With these two research areas introduced, we then present our work in Chapter 2.

1

1.2 Objective Landscapes of Neural Networks

To understand the phenomenons involved in the optimization of neural networks

to their learning problems, but also in a hope to understand the underlying factors

behind their generalization, researchers in the machine learning community have

studied the training objective landscapes of neural networks, giving rise to a rich

body of literature.

Traditionally, the goal of machine learning is to train a function f that learns a

task, for example, an image classification task and f is parametrized by its parameter

vector θ where θ ∈ R
d. The model f takes as input a sample x ∈ R

P and outputs a

class prediction vector among m classes. In supervised learning, we compare this

vector and the ground truth vector y ∈ R
m, which tells us if the model succeeded

in classifying the sample, but also allows us to compute a loss for this classification

via a loss function, which is usually the cross-entropy between f(x; θ) and y. To

learn a function f that has a high expected accuracy for the task, we usually want

to minimize the expectation of some loss function L(f(x; θ),y) with respect to the

model parameters θ. This expectation Ex,yL(f(xi; θ),yi) is the population risk, but

when training f we don’t have access to the whole population nor do we know

the true data generating distribution. We thus train the model by minimizing the

empirical risk over the data from a training set Dtrain:

Empirical Risk :=
1

|Dtrain|
∑

(xi,yi)∈Dtrain

L(f(xi; θ),yi) (1.1)

obtaining a solution θ̃. Generalization is measured by the ability of the trained

model f(·; θ̃) to reach a high accuracy on test samples from Dtest that weren’t seen

during training but that belong to the same task (generated by the same data

generating distribution as for Dtrain), and we thus care about maximizing this test

accuracy:

Acc(f(Dtest; θ̃)) :=
1

|Dtest|
∑

(xi,yi)∈Dtest

1{argmax f(xi;θ̃) = argmaxyi} (1.2)

We note that good generalization is often defined as having a small gap between

the training and testing accuracies, but ultimately we want the model to reach

a high testing accuracy (for example, a small gap between training and testing

2

accuracy both at random chance, shouldn’t be considered as good generalization).

Since the loss landscape of neural networks (the empirical risk) on real world

problems being of high dimension and, more importantly, non-convex, optimization

is normally performed by a gradient descent method where the parameters are

iteratively updated:

θs+1 = θs − α
1

|Dtrain|
∑

(xi,yi)∈Dtrain

∇θL(f(xi; θ
s),yi) (1.3)

In practice, neural networks are trained via stochastic gradient descent (SGD),

where at each time step s we minimize the loss over a randomly sampled subset of

Dtrain of size n, called a mini-batch:

θs+1 = θs − α
1

n

n∑
i=1

∇θL(f(xi; θ
s),yi) (1.4)

where α is the optimization step-size, also called the learning rate. Optimization

continues until reaching a critical point ∇θL(f(x; θ̃),y) ≤ ε (or solution) where

we hope the loss to be minimal L(f(xi; θ̃),yi) ≈ 0. Most of the literature that

deals with the objective landscapes of neural networks has focused on objective

landscapes obtained from optimization via SGD. The theoretical contributions for

deep neural networks are still relatively modest, with many works dealing with linear

or shallow networks, but some were able to provide theoretical results for deeper,

nonlinear neural architectures. Experimentally, most works use either standard

fully-connected neural networks (MLP) or convolutional neural networks (CNN or

ConvNet) [Lecun et al., 1998], often as variants of a popular deep CNN architecture,

the VGG network [Simonyan and Zisserman, 2014]. Most of these works deal with

the objective landscape for a classification task, and thus use cross-entropy as their

loss function, and often use MNIST or Cifar10 [Krizhevsky, 2009] as their dataset,

but some dealt with regression and thus Mean Square Error as their loss function.

These experimental design choices in the literature, as well as the mathematical

objects of interest (minima and their curvature, optimization trajectories, etc),

served as a reference for the different research and experimental decisions we made

for our work that we present in Chapter 2.

In this section we review a good portion of the results that stemmed from

3

that literature, and divide it into three subsections: 1) Properties of solutions,

where the optimization minima or points of convergence are being analyzed ; 2)

Properties of optimization trajectories, where the optimization trajectory between

network initialization and solution is analyzed ; and 3) General properties of objective

landscapes, which concerns properties of the landscapes more generally across the

parameter space, and not necessarily only where lies the point of convergence nor

the optimization trajectory.

Throughout those subsections, we cover multiple questions that have generated

great interest and debate among the machine learning community. This review of

literature helped orient our approach of conducting our analyses of the objective

landscapes in gradient-based meta-learning that we present in Chapter 2, where we

focus on the local properties of solutions as well as the optimization trajectories

involved in meta-learning.

1.2.1 Properties of solutions

Figure 1.1 – Solutions found at convergence of optimization

In this subsection about the objective landscape of minima or solutions found

by SGD, where ∂
∂θj

L(f(x; θ̃),y) ≤ ε, ∀j ∈ [1, .., p], we cover two major questions

regarding local properties of the landscapes around those points, the first being

4

the curvature of such minima and whether their flatness is indicative of better

generalization, and secondly, whether those minima found by SGD are actually

minima or if they are in fact, most often, saddle points.

Figure 1.2 – Curvature of minimam: (left) Flatter minimum ; (right) Sharper minimum. For a
same small displacement δθ in parameter space, the increase in level of loss δL is greater for a
sharper minimum than for a flatter minimum.

Curvature of minima The notion of curvature of minima usually refers to

how much the loss may vary in the vicinity of the minima, with flatter minima

demonstrating less variation of their loss around them. For flatter minima, a small

displacement in parameter space Δθ would thus result in a smaller increase in loss

ΔL, compared to a minimum with a sharper curvature. Thus if we consider the

training loss landscape to be an approximation of the testing loss landscape, where

the test landscape has the same shape as its training counterpart but shifted by a

small displacement Δθ in parameter space, then a flatter training minimum would

lead to a smaller gab L(f(Dtest; θ̃))− L(f(Dtrain; θ̃)) between train and test loss,

compared to a sharper minimum [Keskar et al., 2016], and would also lead to a lower

test loss. The notion of flatness of minima obtained by training neural networks

via stochastic gradient descent, and its hypothesized relation to generalization, was

first proposed by [Hochreiter and Schmidhuber, 1997a]. In their work, the authors

define the region of flatness of a minimum through a sensibility measure, limited by

a hypervolume in parameter space where the loss variation is bounded by a small

quantity ε, and show a correlation between generalization and their measure of

flatness.

5

In more recent years, many authors have since revisited this notion of flat minima,

in light of the progresses made by deep neural networks. For most authors, the

flatness of minima is directly measured by the curvature of the loss surface at that

particular point, through the second-order derivatives of the loss, with respect to

the model parameters. First defining the average loss over some subset D of the

training dataset for f evaluated at a solution θ̃, as L(f(D; θ̃)), we define the hessian

matrix of that loss as Hθ(D; θ̃)
.
= ∇2

θL(f(D; θ̃)). Most authors use, as an estimate

of the curvature, the spectral norm of the hessian matrix of the loss, at a given

point in parameter space:

∥∥∥Hθ(D; θ̃)
∥∥∥
σ
=

√
λmax

(
Hθ(D; θ̃)HHθ(D; θ̃)

)
= λmax(Hθ(D; θ̃)) (1.5)

where the spectral norm of the hessian being equal to its first eigenvalue, since it

is a real and symmetric matrix. Some authors rely instead on the determinant of

the hessian. Most work in the literature found flatter minima to be correlated with

better generalization [Hochreiter and Schmidhuber, 1997a], [Keskar et al., 2016],

[Xing et al., 2018], [Li et al., 2017], [Smith and Le, 2017], [Jastrzebski et al., 2017].

Moreover, it had been observed empirically that when training neural nets

with SGD, using a larger batch size usually leads to poorer generalization. [Keskar

et al., 2016] showed experimentally that training with larger batches leads to

sharper minima, which in turn led to poorer generalization. In contrast, their

results show that small-batch methods lead to flatter minima associated with better

generalization.

In a similar fashion, [Jastrzebski et al., 2017] identify three factors influencing

minima found by SGD, namely the learning rate, the batch-size and the inherent

variance of the loss gradients, all factors which control the trade-off between the

depth and width of the minima found by SGD, with flatter minima favoured by a

higher ratio of learning rate to batch size α/n, demonstrate better generalization

compared to sharper minima.

However, the work of [Dinh et al., 2017] provided a theoretical argument against

the classical notion of flatness of minima and its correlation to generalization. They

showed that because of the symmetries within the architecture of neural networks,

where neurons can be permuted and thus so can be the weights, it is possible,

when having a flat minimum that generalize well, to find a reparametrization of the

6

model that defines the exact same function (mapping inputs to outputs), with an

arbitrarily sharper minimum, yet this reparametrization will generalize just as well,

as it defines the same function as the one defined by the original flat minimum.

While most research points to the correlation between flat minima and generali-

zation, this topic is still in debate, which also motivated our decision to analyze

this property in the objective landscapes of gradient-based meta-learning, as the

first part of our work presented in Chapter 2.

Local minima vs. saddle points Let’s recall that a minimum is a critical point

on the loss landscape where the curvature is positive in all directions, i.e.

λj

(
∂2

∂θ2
L(f(D; θ̃))

)
> 0, ∀j ∈ [1, .., p] (1.6)

where directions are defined by the eigenvectors of the hessian matrix of the loss. A

saddle-point is a point where there is a change of sign of curvature in at least one

direction, in this case, a negative curvature. It had long been believed that what

hindered neural network training, as optimization occurs in a highly non-convex

loss landscape, was the presence of local minima, where SGD gets trapped and is

therefore prevented from reaching solutions of lower loss value. However, the works

of [Pascanu et al., 2014] [Dauphin et al., 2014] highlight that there are exponentially

more saddle points than local minima in high dimensions, emphasizing that saddle

points are much more important to focus on than local minima.

Figure 1.3 – Critical points of optimization: (left) Minimum ; (right) Saddle-point

7

1.2.2 Properties of optimization trajectories

Figure 1.4 – Optimization trajectories from initialization to point of convergence

Apart from studying properties of the objective landscapes around solutions

found by SGD, researchers have also extensively studied phenomenons happening

during the course of optimization, where they investigated the properties of the

optimization trajectories (θ0, θ1, θ2, ..., θ̃) between initialization to the final solution.

Here we first address the works that studied the distance ‖θ̃− θ0‖ travelled by those

trajectories, usually measured by Euclidean distance l2(·) = ‖ · ‖2 in parameter

space. We thus cover those works that, in part at least, attempt to answer the

question where does SGD end up, with respect to the initialization. We then address

the works that deal with the smoothness of the optimization trajectory, or more

generally, how does the landscape varies during the course of optimization, may

it be in terms of variation of the loss, its gradients, even its curvature, as well as

the variation of direction that those landscapes give to the optimization trajectory.

Finally, we address the works dealing with the dimensionality of the optimization

trajectory, often pointing out that learning actually happens in a subspace of the

parameter space, often of much lower dimensionality.

8

Norm of trajectories Some authors have studied the norm of solutions attained

by training neural networks, often in relation to the notion of model complexity,

to explain the generalization abilities of neural networks. Notably, weight decay

is a popular regularization technique that constraints the l2 norm of θ during

optimization, to control for model complexity, and thus reducing overfitting.

[Zhang et al., 2016] studied the norm of solutions, in the context of model

complexity and regularization, and their effect on generalization. One common metric

for measuring model complexity is the Rademacher complexity, which measures the

richness of a family of functions with respect to a probability distribution. Given

a dataset S = (x1, x2, ..., xn) ∈ Zn, a family of real-valued functions F defined

over the domain space Z, the Rademacher random variables σ1, σ2, ..., σn where

σi ∈ {±1}, σi
iid∼ Pr(σ) and Pr(σi = −1) = Pr(σi = +1) = 1

2
, we obtain the

empirical Rademacher complexity for this family of functions:

	̂S(F) =
1

n
Eσ

[
sup
f∈F

n∑
i=n

σif(xi)

]
(1.7)

The Rademacher complexity basically measures the ability of a family of function

to fit random data. Here we would define F as the family of functions achievable by

training deep neural networks of a given architecture via SGD. The basic idea is that,

although the original, unregularized family of function is too complex to generalize

well (and thus may lead to functions that overfit on the training data), adding

explicit regularization, for example, restricting the norm of the optimal solution θ̃

(weight decay, also called l2 regularization), the effective Rademacher complexity

is dramatically reduced, and this should lead to solutions that generalize better.

However, even when optimizing with weight decay, models are able to perfectly fit

randomly labeled data, thus exhibiting Rademacher complexity approaching the

highest possible value such that 	̂S(F) ≈ 1, yet those same models showed small

gaps between training and testing error (high generalization). The importance of

their result posed a conceptual challenge to statistical learning theory as traditional

measures of model complexity struggle to explain the generalization ability in the

case of deep neural networks. Moreover, even when turning off explicit regularization,

models were still able to generalize well. This suggests that explicit generalization

relying on constraining the norm of the network parameters, while helpful, probably

aren’t fundamental factors responsible for generalization. Investigating the possible

9

causes of generalization, the authors showed that, for linear models, SGD always

converges to a solution with small norm, therefore acting as an implicit regularizer,

compared to full-batch gradient descent.

Additionally, [Xing et al., 2018] show empirically that training neural networks

until the training loss saturates, achieves solutions with smaller norms when training

with SGD, than when training with Gradient Descent (GD), i.e., when n = |Dtrain|.
When measuring ‖θt − θ0‖2, for only the initial 40 training iterations, they observe

a higher distance traveled for SGD than for GD, where SGD “quickly moves away

from initialization”, to later on evolve in flatter loss plateaus, corresponding to better

generalization. They also show that training with a smaller batch-size n allows SGD

to travel further away from initialization (we will cover their explanation in the

next paragraph). Those solutions of higher l2 norm obtained from training with

smaller batch size n end up in flatter regions that authors show to correlate with

better generalization.

Variance of trajectories Here we address the works that cover the different

types of variance occurring in the optimization trajectories of neural networks,

namely the variance in magnitude of the loss L(f(Dtrain
t ; θt)) (where Dtrain

t is the

mini-batch at time t), the gradient of the loss and the curvature of the loss, which

are related to the smoothness of the landscape along optimization trajectory, as

well as variance in gradient direction.

As we mentioned above, [Xing et al., 2018] showed different results regarding

the optimization trajectory norm, in different scenarios and taking into account

stochasticity of the gradients, batch size and learning rate. As another metric,

they also tracked the cosine similarity between consecutive gradient vectors gt =

∇θL(f(Dtrain
t ; θt)) as training progresses for the first 40 iterations. We’ll define this

cosine similarity as:

cos(gt+1, gt) =
gt+1

Tgt
‖gt+1‖2‖gt‖2

(1.8)

They show that for gradient descent (GD), the value of cos(gt+1, gt) gradually

decreases to eventually be ∼ −1, implying that optimization bounces off between

“walls”of high loss. For SGD, cosine similarity decreases but stays above 0, suggesting

that instead of oscillating in the same region, SGD is quickly moving away from its

previous position. They also show that when training with SGD, cos(gt+1, gt) is more

10

negative when using a larger batch size n, and suggest that the noise from a small

mini-batch size facilitates exploration that may lead to better minima. Additionally,

they also interpolate the loss between iterates of SGD to see if any significant loss

barriers are crossed, i.e., interpolating the loss between θt and θt+1 and observing

a loss L(f(·; θ)) higher than both L(f(·; θt)) and L(f(·; θt+1)). They observe that

SGD never encounters any significant barrier, if the learning rate α is high enough.

[Goodfellow and Vinyals, 2014] also observed that the exploration of SGD isn’t

hindered by the crossing of high-loss barriers.

Regarding the smoothness of the optimization trajectory, [Santurkar et al., 2018]

notably showed that Batch Normalization [Ioffe and Szegedy, 2015], perhaps the

most widely used normalization technique when training deep neural networks, has

the effect of smoothing the loss landscape, as well as its gradients, along the SGD

trajectory. More precisely, they show that the introduction of Batch Normalization

increases the Lipschitz constant for the loss along the optimization trajectory, as

well as for the gradient of the loss along the optimization trajectory. A function f

is said to be L-Lipschitz if there is a positive real constant L such that

|f(θt)− f(θt+1)| ≤ L‖θt − θt+1‖ (1.9)

The advantages of Batch Norm were earlier believed to be caused by a control

over the distributional shift in the layer’s inputs, something that was referred to

as Internat Covariate Shift, but that [Ioffe and Szegedy, 2015] showed not only

wasn’t affected by Batch Norm, but that there is actually no clear indication that

this phenomenon is actually happening when training deep neural nets. They also

showed that other normalization schemes, such as l1 and l2 regularization, cause

this landscape smoothing.

Regarding optimization by full-batch gradient descent, [Lee et al., 2016] proved,

using the theoretical framework of dynamical systems, that Gradient Descent

converges to a local minimum, almost surely, when using random initialization. [Du

et al., 2017] show that while GD almost always escapes saddle points asymptotically,

it can be significantly slowed down by saddle points, taking exponential time to

escape, even when using fairly natural random initialization schemes and dealing

with non-pathological loss functions. However, they show that gradient descent with

perturbations ([Jin et al., 2017]), isn’t slowed down by saddle points, and can find

11

an approximate local minimum in polynomial time, thus justifying the importance

of adding perturbations when using gradient descent in non-convex optimization.

Dimensionality of trajectories With their very high number of trainable para-

meters, analyzing properties and patterns of the optimization trajectories of neural

networks can be a very tedious task. Partly for this reason, techniques have been

developed to help analyze and visualize the objective landscapes, along optimization

trajectory, in a subspace of lower dimension. Moreover, it has been observed that

deep neural networks are overparametrized for their learning problems, but that this

overparametrization helps generalization [Freeman and Bruna, 2016], [Venturi et al.,

2018], [Arora et al., 2018], [Zhang et al., 2016], [Safran and Shamir, 2017], [Garipov

et al., 2018], [Draxler et al., 2018]. By overparametrization we mean that there are

more parameters than required for obtaining a training minimum/solution. This

fueled further inquiry into the actual dimensionality of the optimization process, and

whether neural networks actually explore a smaller subspace of the parameter space

when they are trained. See Figure 1.5 for an illustrative example of the projection of

a parameter update Δθ from a 3-dimensional parameter space, onto a 2-dimensional

subspace Ψ.

Figure 1.5 – Illustrative example of the projection of a parameter update Δθ from a 3-dimensional
parameter space, onto a 2-dimensional subspace Ψ.

One popular technique to visualize the optimization trajectory uses Principal

Component Analysis (PCA) and project the trajectory in the subspace spanned

12

by its first few principal components. In this technique, the trajectory iterates are

saved in a data matrix, on which is PCA is then performed, obtaining a set of

principal components made of their eigenvectors and corresponding eigenvalues.

The trajectory is then projected into the subspace spanned by the lowest PCA

components.

For the PCA, each parameter iterate θt is stored as a row in the data matrix X,

such that

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

θ0
T

θ1
T

...

θ̃ T

⎤
⎥⎥⎥⎥⎥⎥⎦

for a trajectory of T steps (θ̃ = θT). We then subtract the mean vector θμ (computed

colomn-wise) from each row of X, obtaining the matrix X̂. We then compute the

covariance matrix C = X̂ T X̂, then compute the eigenvectors and eigenvalues of C

to obtain the principal components of the optimization trajectory. Those component

are often approximated with power iteration.

Exploiting this technique, [Li et al., 2017] observed that most of the variance of

the SGD optimization trajectory is in the first two PCA components, meaning that

the optimization trajectory actually lives in a subspace of very low dimension.

Considering the theory behind this visualization technique, [Antognini and

Sohl-Dickstein, 2018] show that when projecting the trajectory of SGD for deep

neural networks on its first few principal components, we qualitatively obtain the

same projections as for an discrete Ornstein-Uhlenbeck process in high dimension,

namely a random walk in high dimension, in a quadratic potential (but instead of

being mean-reverting, here for the case of high dimensions and a long trajectory,

the authors proved that the mean of the walk eventually gets trapped at a fixed

distance from the origin of the walk).

[Li et al., 2018] take a different approach towards the dimensionality of the

training of neural networks. Rather than measuring a so-called intrinsic dimension

on the optimization trajectory a posteriori, they show that for deep neural networks,

this optimization can be projected to a random subspace of the parameter space,

of much lower dimensionality, thus constrained in its exploration, while attaining

generalization performances similar to the unconstrained optimization. With θ ∈ R
d,

13

they initialize the network to θ
(d)
0 in the original parameter space, then generate a

random projection matrix P to project in subspace of dimension D where D < d,

such that P ∈ R
d×D. They thus train f in the random subspace, and obtain the

equivalent parametrization in R
d such that:

θ(d) = θ
(d)
0 + Pθ(D) (1.10)

Note that after initialization, θ
(d)
0 and P are fixed, and the columns of P are

normalized so that steps of unit length of θ(D) correspond to steps of unit length

of θ(d). One important fact that they also report is that, as they want to achieve

generalization, for the optimization with intrinsic dimensionality, that approaches

that of the standard optimization, this intrinsic dimensionality grows to eventually

reach that of the whole parameter space.

1.2.3 General properties of the objective landscapes

Figure 1.6 – General properties of the objective landscapes

In this subsection, we finally review the body of work which is concerned with

properties of the landscapes more generally across the parameter space, and not

necessarily only where lies the point of convergence nor the optimization trajectory.

14

We first review the works dealing with the non-convexities of the objective landscapes

globally and what makes them smoother. Second, we address the works that are

concerned with properties of the basins of attraction, or the regions of parameter

space where solutions lie, with topics including the loss barriers between different

solutions. Finally, we cover the works that deal with the question of whether minima

present in the objective landscapes are local or global minima.

Non-convexities of the objective landscape Training neural networks in-

volves optimizing high dimensional non-convex objective loss functions. These

non-convexities may influence the quality of solutions found by the optimization

and their generalization properties, but also the characteristics of the optimization

trajectories between initialization and final solution.

However, [Goodfellow and Vinyals, 2014] empirically showed that when interpo-

lating the loss landscape between the initialization θ0 and final solution θ̃, the loss

decreases monotonically and is roughly convex, meaning that if this initial direction

was known, the final solution could be found via a coarse line search.

Introducing their technique for visualizing objective landscapes of deep neural

networks, [Li et al., 2017] observed the effect of different hyperparameter and

architecture choices, on landscape convexity. They observe that as network depth

increases, the loss surface transitions from nearly convex to chaotic, having many

non-convexities. When analyzing the effect of network width, by varying the number

of filters per convolution layer, they observe that wider networks, hence more

overparametrized, have loss landscapes with significantly less chaotic behavior,

resulting in flat minima and wide regions of apparent convexity. They further

analyze the effect of skip connection [He et al., 2015], which are intended to alleviate

the problems of vanishing gradient and exploding gradient in deep architectures

and thus facilitate their optimization. They show that the introduction of skip

connections resulted in significantly smoother loss surfaces for deep networks.

In a theoretical work where they study Gaussian random fields, [Bray and Dean,

2007] show that the eigenvalues of the hessian at a critical point are distributed

according to a Wigner semicircle distribution, except that the spectrum is shifted

by an amount dependent on the loss. In one dimension, the Wigner probability

distribution is supported on the interval [−R,R] and the probability density function

f is a semicircle of radius R centered at the origin, and suitably normalized, such

15

that:

f(x) =
2

πR2

√
R2 − x2 .

The authors show that for the global minimum, the spectrum of eigenvalues is

shifted so that there are no negative eigenvalues. As the loss increases, the spectrum

shifts resulting in more null eigenvalues and negative eigenvalues (i.e., as the loss

increases, the index increases). In a later work, [Dauphin et al., 2014] showed that

this theory qualitatively holds for the loss of neural networks, where the spectrum

of eigenvalues of the hessian of the loss shifts to the left when the loss increases.

Studying theoretically the geometry of the sublevel sets in the objective land-

scapes of deep neural networks, [Freeman and Bruna, 2016] shed light on fundamental

topological differences of those landscapes, between linear and nonlinear networks.

For deep linear networks, the sublevel sets are connected while for deep nonlinear

networks, they are not connected. Connected sublevel sets imply that optimizers

converge to a global minimum. However, the maximum energy of the barrier (uphill

loss) decreases with increasing overparameterization. Their finding provided some

theoretic argument supporting the emerging realization that overparametrization

helps generalization.

Properties of basins of attraction Here we cover some of the different works

that analyzed the properties of the objective landscapes in their basins of attractions,

or regions of the landscapes where solutions lie.

Simultaneously, and independently, [Garipov et al., 2018] and [Draxler et al.,

2018] discovered that for minima found by SGD, despite the loss landscape of

deep neural networks being complex high-dimensional non-convex functions, their

minima are in fact connected by simple paths along which the loss remains nearly

constant, thus having no significant loss barriers along those paths. They show this

to be true for the training loss, as well as for the test loss. Their work extends

the work of [Freeman and Bruna, 2016], which had built their theory for shallow

networks of one hidden layer with ReLU activations, and showed their result to

hold experimentally for a CNN architecture on the MNIST dataset, and an LSTM

architecture [Hochreiter and Schmidhuber, 1997b] on the Penn Treebank dataset

(PTB, a widely used dataset in Natural Language Processing, or NLP) [Marcus

et al., 1993]. However, [Freeman and Bruna, 2016] didn’t deal with more practical

architectures. Here [Garipov et al., 2018] and [Draxler et al., 2018] showed their

16

results to hold experimentally with practical neural architectures, such as ResNet

[He et al., 2015], on the more challenging problem of classifying the Cifar10 dataset.

[Sagun et al., 2017] study the curvature of minima residing in the low loss

basins of attraction that SGD leads to. More precisely, they inspect the spectrum of

eigenvalues of the hessian matrix of the loss. They notably show that the spectrum

is essentially made of two parts: 1) the bulk of the spectrum is made of eigenvalues

around zero, and 2) a few eigenvalues of high magnitude (named outliers), with

minima being essentially flat in almost all directions, except for a very few directions

of relatively high curvature. They notably show that overparametrization scales

the bulk of low eigenvalues, while increasing the complexity of the data (making

it less separable) increases the number of high eigenvalues or outliers (shifts the

spectrum to the left). They also show that small batch and large batch methods

(between online stochastic gradient descent where n = 1 to full batch gradient

descent) both lead to the same number of outliers, but those outliers have larger

magnitudes for large batch methods. Finally, their results motivate rethinking our

interpretations of basins of attraction, as they observe that small and large batch

gradient descent appear to converge to different basins of attraction, yet they appear

in fact connected through their flat region, thus belonging the same basin.

Minima: local vs global Finally, one important question that has been of

interest to the machine learning community is the existence of local minima versus

global minima, in the optimization landscapes of neural networks.

Developing theory for deep linear networks of arbitrary depth and arbitrary

width, trained to minimize a squared loss function, [Kawaguchi, 2016] proved that

the loss function is non-convex and non-concave, that every local minimum is a global

minimum, and every critical point that is not a global minimum is a saddle point.

They also prove that there exist ”bad” saddle points, when models are deep enough

(more than 3 layers), in the sense that their hessian has no negative eigenvalue, and

thus optimization gets trapped, even when using second-order methods, whereas,

for shallower networks, there are no such bad saddle points.

Studying theoretically the non-convex loss landscape of fully-connected ReLU

networks (nonlinear), [Safran and Shamir, 2015] identify ”favorable conditions for

optimization”, namely those 1) favoring the probability of (randomly) initializing at

a point θ0 from which there is a monotonically decreasing path to a global minimum

17

θ̃ ; and 2) high probability of initializing at a basin of low loss. Their results converge

to the fact that overparametrization is beneficial for those properties.

[Safran and Shamir, 2017] consider the optimization of a simple yet non-trivial

nonlinear network, a two-layered ReLU network trained with a squared loss for a

regression problem, in the form:

x �→
k∑

i=1

max{0,wi
Tx}

Proposing a computer-assisted proof, they show, for an arbitrary network width k,

that even if the input is distributed by a standard Gaussian, and even if the targets

are generated with a network of the same architecture and dimension (that maps

x to targets, so that the two-layered ReLU network can be the same function as

the data generating function), the objective landscape of such network can still

have spurious local minima, when the network width is 6 ≤ k ≤ 20 (both for the

discriminator and the network generating the data). Moreover, they show that the

probability of hitting such local minimum increases with network width. On the

other hand, they show that overparametrization (namely when k is greater for the

discriminator network, i.e. the one being trained, than for the generator network),

reduces drastically the presence of such local minima.

In another theoretical contribution, [Zhou and Feng, 2018] study the convergence

behavior of the empirical risk to its population counterpart (the loss coming from

the unknown, true data generating distribution). They study this convergence rate

for the stationary points of the loss, the gradients of loss, and the loss landscape

itself, for deep linear neural networks minimizing a squared loss and trained with

SGD. They then show similar results for deep nonlinear networks with sigmoid

activations. The authors show that the depth of the architecture, the number of

nonzero weights (their sparsity), the norm of the parameter vector, the total number

of weights, and the width of a network are critical to the convergence rates. One of

their main result is that, as long as the training dataset size |Dtrain| is sufficiently

large, any stationary point of the empirical risk, i.e., where ∇θL(f(Dtrain; θ)) ≤ ε,

is also a stationary point of the population risk, a one-to-one correspondence which

they then prove.

As another work supporting overparametrization as a critical factor helping

generalization, [Nguyen and Hein, 2017] analyze a special case of overparametrized

18

deep neural networks, for a fully connected network with squared loss, with analytical

activation functions. In their approach, they show that if there exists a very wide

layer where the number of hidden units is larger than the number of samples in the

training dataset, then almost all local minima are globally optimal.

19

1.3 Meta-Learning

1.3.1 Introduction

Most of the recent successes of deep learning, whether in supervised learning,

unsupervised learning, or reinforcement, implied a system that we require to master

only a single task. However, real-world situations would require an AI system to

being able to adapt what it has previously learned, to its changing environment.

Moreover, adaptation and versatility are considered by some to be the next necessary

step, for machine learning algorithms, towards achieving general artificial intelligence.

These notions call for machine learning algorithms to not only having the faculty

to learn but also, that of “learning to learn”, which we equivalently refer to as

“meta-learning”.

1.3.2 Early Works

For machine learning researchers, the topic of meta-learning has been of interest

since the late 1980s, with Jürgen Schmidhuber’s master’s thesis being among the first

works addressing it, within the framework of genetic programming [Schmidhuber,

1987]. Subsequent works explored using networks that learn how to modify their own

weights ([Schmidhuber, 1992], [Schmidhuber, 1993]). The updating of the weights is

defined in a parametric form that allows the prediction and weight-change process

to be differentiable end-to-end.

The work of [Bengio et al., 1991] and [Bengio et al., 1995] and [Bengio, 1993]

considered learning update rules for neural networks that are biologically plausible.

This property is enforced by allowing the parametric form of the update to only

have, as input, local information at each hidden unit to determine the weight

change. Different optimization methods, such as genetic programming or simulated

annealing, are used to train the learning rule.

1.3.3 Generalizing from few-examples: the next step for

deep learning towards general artificial intelligence

While the topic of meta-learning remained of interest for the ML research

community, the numerous successes that occurred over the recent years from the deep

20

learning approaches, mostly in the first half the 2010s, primarily concerned models

learning a single task. And while deep learning approaches achieved impressive

generalization performances, the issue of sample efficiency, namely the need for

vast amounts of labeled data to train deep neural networks, became an apparent

drawback of deep learning.

The work of [Lake et al., 2015] later challenged modern machine learning methods

to be able to learn new concepts from one or a few instances of that concept, with

the example of models being able to correctly recognize and classify a new class of

images, after having learned that class with only one example image. The authors

pointed out the fact that people, when learning new concepts, can often generalize

successfully from just a single example, while machine learning algorithms typically

require tens or hundreds of examples to perform with similar accuracy. This work

introduced the Omniglot dataset, which consists of 1623 handwritten characters

classes from 50 alphabets, with each class comprising 20 examples. The Omniglot

dataset thus became the de facto equivalent of MNIST for few-shot learning, and

remained one of the two most widely used benchmark datasets of meta-learning,

especially in the image classification domain.

The authors proposed to tackle this few-shot learning problem using Bayesian

program learning, which is able to learn a hierarchical, non-parametric generative

model of handwritten characters. Their approach incorporates specific knowledge

of how strokes are formed and how they are combined to produce characters

of different types. The model represents concepts as simple programs that best

explain observed examples under a Bayesian criterion. On a challenging one-shot

classification task, the model achieves human-level performance while outperforming

recent deep learning approaches.

Subsequently, the work of [Rezende et al., 2016] proposed deep generative models

for one-shot generalization, that combine the representational power of deep neural

networks, with Bayesian reasoning for inference.

1.3.4 Definition of few-shot learning

In few-shot learning for classification, we have a distribution over classification

tasks p(T), and a model f (parametrized by θ), that must learn to adapt to tasks

Ti sampled from p(T). The model is trained on a set of training tasks {Ti}train and

21

evaluated on a set of testing tasks {Ti}test, all drawn from p(T), and {Ti}train and

{Ti}test using disjoint sets of classes to constitute their tasks. In the setting of k-shot

learning, when f adapts to a task T test
i , it only has access to a set of few support

samples Di = {(x(1)
i ,y

(1)
i), ..., (x

(k)
i ,y

(k)
i)} drawn from T test

i . We then evaluate the

model’s performance on T test
i using a new set of target samples D′

i.

In this context, we define generalization as the model’s ability to reach high

accuracy on a testing task T test
i , evaluated with a set of target samples D′

i, for

several testing tasks. In most cases, after training is complete, the model f will

adapt to the test tasks T test
i using their support sets Di before we evaluate the

model on their target sets Di. We thus care about the average accuracy

ET test
i ∼p(T)[Acc(f(D′

i; θ̃
test
i)] (1.11)

The different approaches to few-shot learning can vary in how they perform the

training phase, but also in how they adapt to the new tasks at meta-test time.

1.3.5 Learning a metric space

With the meta-learning application of few-shot classification, discriminating

among samples from new classes requires to quickly learn what differentiates those

new classes in order to generalize well. One may thus wonder, instead of simply

learning a fixed classification dataset, could we train the models to learn to classify ?

One approach to this is to learn a metric space in which classification or discrimina-

tion among samples from different classes, when embedded in that space, can be

easily computed by means of a distance, or metric.

One good example of this approach is the Prototypical Network proposed by

[Snell et al., 2017]. The central idea is that there exists an embedding space in

which points cluster around a single prototype representation of their class. A neural

network learns a non-linear mapping, from the input space to that embedding space:

fφ : RP → R
M (1.12)

with input samples originally being x ∈ R
P . In the space obtained by fφ(x), we can

then learn the prototype of a class m as the mean representation (cluster mean) cm,

22

having access of a set of samples Dm all belonging to class m:

cm =
1

|Dm|
∑

(xi,yi)∈Dm

fφ(xi) (1.13)

Given a distance function d : RM × R
M → [0,+∞), Prototypical Networks produce

a distribution over classes for a query point x based on a softmax over distances to

the prototypes in the embedding space:

pφ(y = m|x) = exp(−d(fφ(x, cm)))∑
m′ exp(−d(fφ(x, cm′)))

(1.14)

In this work, the squared Euclidean distance d(z, z′) = ‖z− z′‖2 is primarily

used. Learning is performed by minimizing the negative log-probability J(φ) =

−log pφ(y = m|x) of the true class m via SGD. Training episodes are formed by

randomly selecting a subset of classes from the training set, then choosing a subset

of examples within each class to act as the support set and a subset of the remainder

to serve as query points. At meta-test time, we form test tasks T test
i each made of m

new classes, with say k support samples per class, the m prototypes cm are obtained

by computing the class means in fφ(x). To evaluate generalization (accuracy on

target samples of the test tasks), class probabilities are computed with pφ(y = m|x).
The training procedure, where tasks T train

i are sampled with their few-shot

support set Di and their target set D′
i, was based on the prior work of [Vinyals et al.,

2016]. This training procedure has since been prevalent in few-shot classification

literature. Their authors made two other significant contributions. First, they

introduced the MiniImagenet dataset, a subset of Imagenet [Russakovsky et al.,

2014] tailored for few-shot classification, having a total of 100 real image classes

with 600 instances each. Mini-Imagenet and Omniglot have since been the two most

widely used datasets in meta-learning for few-shot classification. The authors also

proposed the Matching Network, which is also based on the idea of learning a metric

space for few-shot classification and which inspired the approach for Prototypical

Networks.

Another prominent approach to learning a metric space for few-shot classification

was the work of [Koch et al., 2015], where the authors propose to use deep Siamese

Networks, which train a convolutional network to embed examples so that items in

the same class are close while items in different classes are far away, according to

23

some distance metric. Siamese networks were first introduced in the early 1990s to

solve signature verification as an image matching problem [Bromley et al., 1993].

A siamese neural network consists of twin networks f1(x; θ1) and f2(x; θ2), which

accept distinct inputs x1 and x2 but are joined by an distance function d(z1, z2)

at the top. This function computes some metric between the highest level feature

representations on each of the twin networks. The twin networks f1 and f2 have

the same architecture and parameters are shared between them (θ1 = θ2), the

whole model thus being symmetric and the two twins having the same parameter

values at all time and are trained conjointly. With both networks computing the

same function that maps inputs to outputs, two extremely similar images could not

possibly be mapped by their respective networks to very different locations z1 and

z2 in the feature space, thus allowing discrimination based on a distance computed

in that feature space.

1.3.6 Learning to optimize

Neural networks are in practice, for the most part, trained through some sto-

chastic optimization process. Thus, since the learning process is, in essence, an

optimization process, one natural approach to learning to learn is to cast it as

learning to optimize. [Hochreiter et al.] proposed the approach of Learning to Learn

Using Gradient Descent, where a meta-learner model, parametrized by a recurrent

neural (more precisely, a Long-Short Term Memory, or LSTM [Hochreiter and

Schmidhuber, 1997b]), learns to derive learning algorithms that are able to approxi-

mate quadratic functions after seeing a relatively small amount of examples. More

recently, and in a similar spirit, [Andrychowicz et al., 2016] show that the design

of an optimization algorithm can be itself cast as a learning problem. The goal

of training a machine learning model often being of minimizing a differentiable

function f(θ) through gradient descent, with the resulting parameter update rule:

θt+1 = θt − αt∇θf(θt) (1.15)

the authors recast this parameter update as:

θt+1 = θt + ot(∇θf(θt), φ) (1.16)

24

Figure 1.7 – Recurrent Neural Network

where ot is the output of an optimizer model m, parametrized by φ, which learns

the parameter update rule, and f is referred as the optimizee function, parametrized

by θ, that we which to optimize. Here again, the optimizer, or meta-learner model,

is a recurrent neural network, the approach building upon [Hochreiter et al.] by

modifying the network architecture of the optimizer in order to scale this approach

to larger neural network optimization problems. A recurrent network at time-step t

takes an input vector xt and outputs a vector ot, just like a feed-forward network,

but also has an internal state ht which is a function of the current input xt and of

the previous internal state ht, as illustrated in Figure 1.7.

The goal is thus to train the optimizer m(·;φ) such that on expectation, for

a given function f to be optimized, it leads to a final parameter vector θ̃ that

minimizes this function f . We can therefore see the loss of the optimizer as:

L(m(· ;φ)) = Ef [f(θ̃)] (1.17)

At every time step t, the recurrent network m has an internal state ht that is a

function of the current input xt = ∇θf(θt), which is the current gradient of f , and

of its previous internal state ht−1, and m also outputs a vector ot, which is the

current parameter update, leading to the next parameter vector θt+1 = θt+ ot. With

an optimization trajectory of fixed horizon T (fixed number of time steps), the final

parameter vector of f is thus:

θ̃ = θ0 +
T∑
t=1

ot (1.18)

25

Figure 1.8 – Learning to Learn by Gradient Descent by Gradient Descent: Gradient flows
backward through the solid arrows. Image from [Andrychowicz et al., 2016].

Instead of having the loss of the optimizer depend solely on the final parameters θ̃,

the authors make it depend on the parameters of the entire optimization trajectory,

such that:

L(φ) = Ef

[
T∑
t=1

f(θt)

]
(1.19)

Thus for a given parametrization φ and an optimization trajectory of T steps of a

randomly sampled function f , the optimizer model m(·;φ) can thus be trained by

performing gradient descent on the loss L(m(· ;φ)), where the gradient estimate
∂L(φ)
∂φ

is computed by Backpropagation Through Time (see Figure 1.8).

Building upon [Andrychowicz et al., 2016], who were interested in learning a

general optimization algorithm to train neural networks for large-scale classification

rather than in few-shot learning, the work [Ravi and Larochelle, 2017] revisits this

approach in the context of few-shot classification. Here again, taking the parameter

update rule of a model, parametrized by θ, such as the minimization of its empirical

loss L through gradient descent:

θt = θt−1 − αt∇θt−1Lt (1.20)

the authors make the key observation is that this update resembles the update for

the cell state in an LSTM network:

ct = ft � ct−1 + it � c̃t (1.21)

if ft = 1, ct−1 = θt−1, it = αt and c̃t = −∇θt−1Lt, and where it is the input gate, ft

is the forget gate, ct−1 is the previous cell state of the LSTM cell, c̃t is the candidate

26

Figure 1.9 – Long-Short Term Memory (LSTM) cell

state, and ct is the output and current cell state of the LSTM (see Figure 1.9 for

illustration of the LSTM cell). They then define parametric forms for the input

and forget gates it and ft and make them more general, so that they are function

of the previous parameters θt−1, the current loss and its gradient, as well as their

respective previous values it−1 and ft−1, such that:

it = σ(WI · [∇θt−1Lt,Lt, θt−1, it−1] + bI) (1.22)

ft = σ(WF · [∇θt−1Lt,Lt, θt−1, ft−1] + bF) (1.23)

where WI and WF are the weight matrices of the input and forget gate respectively,

while bI and bI are the bias vectors of the input and forget gate respectively.

1.3.7 Learning the hyperparameters

Another approach to meta-learning is to automate the optimization of hyper-

parameters and other design choices for the model, that are normally handmade

by the researcher. In [Maclaurin et al., 2015], the authors propose to automati-

cally learn hyperparameters of neural networks by computing exact gradients of

cross-validation performance with respect to all hyperparameters. They achieve

this by chaining the derivatives backwards through the entire training procedure,

allowing to optimize for thousands of hyperparameters of networks trained by SGD

with momentum [Nesterov, 1983], including the learning step-size α, scheduling

of the momentum ρ, weight initialization distributions, as well as some aspects of

27

architecture configuration. Those gradients are computing by exactly reversing the

dynamics of SGD with momentum.

Pushing this approach further, [Zoph and Le, 2016] use a recurrent neural

network to generate the description of the neural network architecture, and train

this meta-learner RNN with reinforcement learning to maximize the expected

validation accuracy of the generated models, on a set of validation tasks.

1.3.8 External memory, attention and temporal convolu-

tion

Other approaches to meta-learning making use of novel developments in the

field of deep learning, including the use of external memory, attention mechanism,

and temporal convolution, which have been recently proposed.

[Santoro et al., 2016] use a memory-augmented neural network that is trained

to learn how to store and retrieve memories to use for each classification task.

This approach builds upon the proposed Neural Turing Machine (NTM) of [Graves

et al., 2014]. An NTM consists of a controller (modeled either as an MLP or LSTM)

interacting with an external memory module via read and write heads. The encoding

and retrieval of memory, stored as vector representation, is rapid, making an NTM

a viable candidate for meta-learning in the few-shot regime, thanks to its ability for

long term retention of memory via the slow updates of its weights, and the short

term storage of new memories using its external memory module.

[Mishra et al., 2017] propose a meta-learning architecture called Simple Neural

Attentive Meta-Learner (SNAIL), that use a combination of temporal convolutions

[van den Oord et al., 2016] and soft attention [Vaswani et al., 2017]. The temporal

convolution serves to aggregate information from past experience, to produce

what is called a context. The soft attention mechanism pinpoints specific pieces

of information, from a potentially infinitely-large context, which is treated as an

unordered key-value store, which it can query based on the content of each element.

The SNAIL architecture interleaves temporal convolution layers with soft attention

layers, and being trained end-to-end, it learns how to pick up specific pieces of

information from the experience it has accumulated and also learns a feature

representation that is well suited for this selection of past experiences.

28

1.3.9 Gradient-Based Meta-Learning

The final approach that we cover is perhaps the closest analog to the standard

regime of supervised learning of neural network with stochastic, gradient-based

optimization. In gradient-based meta-learning, the aim is to conceive a training

procedure for a model f that will favor generalization to new tasks, by finding a

good parametrization θ (sometimes called a ”good initialization”). Generally this

approach also aims to be independent of any architecture choice or from learning a

meta-learner that updates a learner model, but really views generalization to new

tasks as the learning problem itself for which we train a model end-to-end, akin to

supervised learning where the goal is to train the model to favor generalization to

new data points.

One of the most natural ways to approach gradient-based meta-learning is to

pretrain a model f on a task or dataset that shares similarities with the distribution

of the target/test tasks, which we ultimately wish to learn with few examples and

generalize well. For image classification, pre-training models on Imagenet (a large

and diversified dataset of real images, comprising one thousand classes and more

than five hundred samples per class) before finetuning the pre-trained model on the

target tasks. [Donahue et al., 2013] have analyzed this approach for a multi-task

framework with deep convolutional networks. They showed that the learned features,

obtained from supervised image classification, have good representational power and

can be adapted to vision tasks from other domains (e.g. scene recognition) while

demonstrating good generalization.

More recently, [Finn et al., 2017] introduced the Model Agnostic Meta-Learning

(MAML) algorithm. Inspired by the training procedure of [Vinyals et al., 2016], they

directly train a model f to generalize on few-shot classification tasks T train
i . MAML

learns a set of parameters θ such that on average, given a new task T test
i , only a

few samples are required for f to learn and generalize well to that task. During a

meta-training iteration s, where the current parametrization of f is θs, a batch of n

training tasks is sampled from p(T). For each task Ti, a set of support samples Di

is drawn and f adapts to Ti by performing T steps of full batch gradient descent on

L(f(Di; θ)) w.r.t. θ, obtaining the adapted solution θ̃i:

θ̃i = θs − α
T−1∑
t=0

∇θL(f(Di; θ
(t)
i)) (1.24)

29

where θ
(t)
i = θ

(t−1)
i − α∇θL(f(Di; θ

(t−1)
i)) and all adaptations are independent and

start from θs, i.e. θ
(0)
i = θs,∀i. Then from each Ti, a set of target samples D′

i is

drawn, and the adapted meta-training solution θs+1 is obtained by averaging the

target gradients, such that:

θs+1 = θs − β
1

n

n∑
i=1

∇θL(f(D′
i; θ̃i)) . (1.25)

As one can see in Eq.1.24 and Eq.1.25, deriving the meta-gradients implies computing

second-order derivatives, which can come at a significant computational expense. The

authors introduced a first-order approximation of MAML, where these second-order

derivatives are omitted:

∇θL(f(D′
i; θ̃i)) =

∂

∂θ̃i
L(f(D′

i; θ̃i))
∂

∂θ
θ̃i

=

(
∂

∂θ̃i
L(f(D′

i; θ̃i))

)T
(
1− α

T−1∑
t=0

���
0

∇2
θL(f(Di, θ

(t)
i))

)

=
∂

∂θ̃i
L(f(D′

i; θ̃i))

(1.26)

and we refer to that other algorithm as First-Order MAML. As another first-order

approximation of MAML, [Nichol et al., 2018] proposed Reptile, where instead of

computing losses on target samples before computing the meta-gradient, the meta-

gradient is simply the average of the individual adaptation trajectory displacement

vectors:

θs+1 = θs + β
1

n

n∑
i=1

(θ̃i − θs) (1.27)

where θ̃i is obtained just like in equation 2.1, and here we don’t sample any set of

target samples D′
i.

Also building on top of MAML, [Zintgraf et al., 2018] proposed CAML, a meta-

learning method for few-shot adaptation to new tasks. In this approach, the model

parameters are partitioned into two parts. The first part consists of the shared

parameters θ which are meta-trained using the meta-training tasks T train
i and shared

across tasks, and φ can be viewed as the trunk of the network. The second part of

the network consists of the context parameters φ, which are adapted on individual

tasks, and at test time, they are updated by performing a few gradient descent

30

steps on a task-specific loss that is backpropagated through the shared part of the

network. In a meta-training iteration, we first learn in the inner loop, task-specific

context parameters, for each task in a batch:

φ̃i = φ0 − α
T−1∑
t=0

∇φL(f(Di; θ
s, φ

(t)
i)) (1.28)

where φ0 is usually chosen to be 0. We then compute the meta-update by updating

the shared parameters:

θs+1 = θs − β
1

n

n∑
i=1

∇θL(f(D′
i; θ

s, φ̃i)) (1.29)

The work [Finn et al., 2017] has also been reformulated as a method for pro-

babilistic inference in a hierarchical Bayesian model, called LLAMA [Grant et al.,

2018]. MAML has also been recasted as a probabilistic meta-learning algorithm for

few-shot classification tasks [Finn et al., 2018]. In addition, various recent work have

built on top of MAML for other meta-learning paradigms, with notable examples

in topics such as meta-reinforcement learning [Rothfuss et al., 2018] and continual

learning [Finn et al., 2019].

Because of the simplicity of the general approach of gradient-based meta-learning

and of its similarity to supervised learning through stochastic gradient-based opti-

mization, we selected this approach to meta-learning in the work that we present in

Chapter 2. We selected Model Agnostic Meta-Learning as our base meta-learning al-

gorithm, because it also bears strong resemblance to traditional supervised learning.

Moreover, we also selected this algorithm because of the major impact it has had on

the field, its generalization performance for few-shot learning, as well of its indepen-

dence of the underlying architecture. We selected the original MAML formulation

since many subsequently proposed algorithms were built on it. Along with MAML

we also analyze its first-order variant, as well as the finetuning approach (where the

model is pre-trained in a supervised way, which was covered at the beginning of this

section) since it is the most natural baseline algorithm to compare with the other

meta-learning algorithms, and to analyze the fundamental differences in properties

of objective landscapes.

31

2

On the Properties of the
Objective Landscapes and
Generalization of
Gradient-Based
Meta-Learning

Authors: Simon Guiroy, Vikas Verma, Christopher Pal

This chapter presents a joint work with Vikas Verma and Christopher Pal. It is

submitted to Neural Information Processing Systems (NeurIPS 2019) - Conference

Track.

Contribution: Simon Guiroy: First author. Work done primarily on an individual

basis. Elaborated the research question, literature review, analyses, and experiments

to run, wrote the code, ran the experiments, wrote the paper. Vikas Verma: Helped

with the writing of the paper, participated in discussions, provided advice, ran some

experiments. Christopher Pal: Helped with the writing of the paper, participated in

discussions and provided advice regarding directions for the project and its research

questions and analyses.

Affiliation

— Simon Guiroy, Mila, University of Montreal

— Vikas Verma, Mila, Aalto University Finland

— Christopher Pal, Mila, University of Montreal, Polytechnique Montreal,

ElementAI Montreal

32

2.1 Introduction

To address the problem of the few-shot learning, many meta-learning approaches

have been proposed recently [Finn et al., 2017], [Ravi and Larochelle, 2017], [Rothfuss

et al., 2018], [Oreshkin et al., 2018] and [Snell et al., 2017] among others. In this

work, we take steps towards understanding the characteristics of the objective

landscapes of the loss functions, and their relation to generalization, in the context of

gradient-based few-shot meta-learning. While we are interested in understanding the

properties of optimization landscapes that are linked to generalization in gradient-

based meta-learning in general, we focus our experimental work here within a

setup that follows the recently proposed Model Agnostic Meta-Learning (MAML)

algorithm [Finn et al., 2017]. The MAML algorithm is a good candidate for studying

gradient-based meta-learning because of its independence from the underlying

network architecture.

Our main insights and contributions can be summarized as follows:

1. As gradient-based meta-training progresses:

— the adapted meta-test solutions become flatter on average, while the

opposite occurs when using a finetuning baseline.

— the adapted final solutions reach lower average support loss values, which

never increases, while the opposite occurs when using a finetuning baseline.

2. When generalization starts to degrade due to overtraining, meta-test solutions

keep getting flatter, implying that, in the context of gradient-based meta-

learning, flatness of minima is not correlated with generalization to new

tasks.

3. We empirically show that generalization to new tasks is correlated with the

coherence between their adaptation trajectories, measured by the average

cosine similarity between trajectory directions. Also correlated with generali-

zation is the coherence between meta-test gradients, measured by the average

inner product between meta-test gradient vectors evaluated at meta-train

solution.

4. Based on this observation on coherence of adaptation trajectories , we propose

a novel regularizer for gradient-based meta-learning and experimentally

demonstrate its effectiveness in regularizing MAML.

33

2.2 Related work

There has been extensive research efforts on studying the optimization landscapes

of neural networks in the standard supervised learning setup. Such work has focused

on the presence of saddle points versus local minima in high dimensional landscapes

[Pascanu et al., 2014],[Dauphin et al., 2014], the role of overparametrization in

generalization [Freeman and Bruna, 2016], loss barriers between minima and their

connectivity along low loss paths, [Garipov et al., 2018] ; [Draxler et al., 2018], to

name a few examples.

One hypothesis that has gained popularity is that the flatness of minima of the

loss function found by stochastic gradient-based methods results in good generaliza-

tion, [Hochreiter and Schmidhuber, 1997a] ; [Keskar et al., 2016]. [Xing et al., 2018]

and [Li et al., 2017] measure the flatness by the spectral norm of the hessian of the

loss, with respect to the parameters, at a given point in the parameter space. Both

[Smith and Le, 2017] and [Jastrzebski et al., 2017] consider the determinant of the

hessian of the loss, with respect to the parameters, for the measure of flatness. For

all of the work on flatness of minima cited above, authors have found that flatter

minima correlate with better generalization.

In contrast to previous work on understanding the objective landscapes of neural

networks in the classical supervised learning paradigm, in our work, we explore the

properties of objective landscapes in the setting of gradient-based meta-learning.

2.3 Gradient-based meta-learning

We consider the meta-learning scenario where we have a distribution over tasks

p(T), and a model f parametrized by θ, that must learn to adapt to tasks Ti

sampled from p(T). The model is trained on a set of training tasks {Ti}train and

evaluated on a set of testing tasks {Ti}test, all drawn from p(T). In this work we

only consider classification tasks, with {Ti}train and {Ti}test using disjoint sets of

classes to constitute their tasks. Here we consider the setting of k-shot learning, that

is, when f adapts to a task T test
i , it only has access to a set of few support samples

Di = {(x(1)
i ,y

(1)
i), ..., (x

(k)
i ,y

(k)
i)} drawn from T test

i . We then evaluate the model’s

performance on T test
i using a new set of target samples D′

i. By gradient-based

34

meta-learning, we imply that f is trained using information about the gradient

of a certain loss function L(f(Di; θ)) on the tasks. Throughout this work the loss

function is the cross-entropy between the predicted and true class.

2.3.1 Model-Agnostic Meta-Learning (MAML)

MAML learns an initial set of parameters θ such that on average, given a new

task T test
i , only a few samples are required for f to learn and generalize well to that

task. During a meta-training iteration s, where the current parametrization of f

is θs, a batch of n training tasks is sampled from p(T). For each task Ti, a set of

support samples Di is drawn and f adapts to Ti by performing T steps of full batch

gradient descent on L(f(Di; θ)) w.r.t. θ, obtaining the adapted solution θ̃i:

θ̃i = θs − α
T−1∑
t=0

∇θL(f(Di; θ
(t)
i)) (2.1)

where θ
(t)
i = θ

(t−1)
i − α∇θL(f(Di; θ

(t−1)
i)) and all adaptations are independent and

start from θs, i.e., θ
(0)
i = θs,∀i. Then from each Ti, a set of target samples D′

i is

drawn, and the adapted meta-training solution θs+1 is obtained by averaging the

target gradients, such that:

θs+1 = θs − β
1

n

n∑
i=1

∇θL(f(D′
i; θ̃i)) (2.2)

As one can see in Eq.2.1 and Eq.2.2, deriving the meta-gradients implies computing

second-order derivatives, which can come at a significant computational expense.

The authors introduced a first-order approximation of MAML, where these second-

order derivatives are ommited, and we refer to that other algorithm as First-Order

MAML.

2.3.2 Finetuning baseline

For the finetuning baseline, the model is trained in a standard supervised learning

setup: the model is trained to classify all the classes from the training split using a

stochastic gradient-based optimization algorithm, its output layer size being equal to

the number of meta-train classes. During evaluation on meta-test tasks, the model’s

35

final layer (fully-connected) is replaced by a layer with the appropriate size for the

given meta-test task (e.g. if 5-way classification, the output layer has five logits),

with its parameter values initialized to random values or with another initialization

algorithm, then all the model parameters are optimized to the meta-test task, just

like for the other meta-learning algorithms.

2.4 Analyzing the objective landscapes

Figure 2.1 – Visualizations of metrics measuring properties of objective loss landscapes.
The black arrows represent the descent on the support loss and the dotted lines represent
the corresponding displacement in the parameter space. (1): Curvature of the loss for an
adapted meta-test solution θ̃i (for a task Ti), is measured as the spectral norm of the
hessian matrix of the loss. (2): Coherence of adaptation trajectories to different meta-test
tasks is measured as the average cosine similarity for pairs of trajectory directions. A
direction vector is obtained by dividing a trajectory displacement vector (from meta-train
solution θs to meta-test solution θ̃i) by its Euclidean norm, i.e. �θi = (θ̃i−θs)/‖θ̃i−θs‖2. (3):
Characterizing a meta-train solution by the coherence of the meta-test gradients, measured
by the average inner product for pairs of meta-test gradient vectors gi = −∇θL(f(Di; θ

s)).

In the context of gradient-based meta-learning, we define generalization as the

model’s ability to reach a high accuracy on a testing task T test
i , evaluated with

a set of target samples D′
i, for several testing tasks. This accuracy is computed

after f , starting from a given meta-training parametrization θs, has optimized its

parameters to the task T test
i using only a small set of support samples Di, resulting

in the adapted solution θ̃testi (minima). We thus care about the average accuracy

ET test
i ∼p(T)[Acc(f(D′

i; θ̃
test
i)]. With these definitions in mind, for many meta-test

tasks T test
i , we consider the optimization landscapes L(f(Di; θ)), and the properties

36

of these loss landscapes evaluated at the solutions θ̃testi ; the adaptation trajectories

when f , starting from θs, adapts to those solutions ; as well as properties of those

landscapes evaluated at the meta-train solutions θs. See Figure 2.1 for a visualization

of our different metrics. We follow the evolution of the metrics as meta-training

progresses: after each epoch, which results in a different parametrization θs, we

adapt f to several meta-test tasks, compute the metrics averaged over those tasks,

and compare with E[Acc(f(D′
i; θ̃

test
i)]. We do not deal with the objective landscapes

involved during meta-training, as this is beyond the scope of this work. From here

on, we drop the superscript test from our notation, as we exclusively deal with

objective landscapes involving meta-test tasks Ti, unless specified otherwise.

2.4.1 Flatness of minima

We start our analysis of the objective loss landscapes by measuring properties of

the landscapes at the adapted meta-test solutions θ̃i. More concretely, we measure

the curvature of the loss at those minima, and whether flatter minima are indicative

of better generalization for the meta-test tasks.

After s meta-training iterations, we have a model f parametrized by θs. During

the meta-test, f must adapt to several meta-test tasks Ti independently. For a

given Ti, f adapts by performing a few steps of full-batch gradient descent on the

objective landscape L(f(Di; θ)), using the set of support samples Di, and reaches an

adapted solution θ̃i. Here we are interested in the curvature of L(f(Di; θ̃i)), that is,

the objective landscape when evaluated at such solution, and whether on average,

flatter solutions favour better generalization. Considering the hessian matrix of this

loss w.r.t the model parameters, defined as Hθ(Di; θ̃i)
.
= ∇2

θL(f(Di; θ̃i)), we measure

the curvature of the loss surface around θ̃i using the spectral norm ‖ · ‖σ of this

hessian matrix:

∥∥∥Hθ(Di; θ̃i)
∥∥∥
σ
=

√
λmax

(
Hθ(Di; θ̃i)HHθ(Di; θ̃i)

)
= λmax(Hθ(Di; θ̃i)) (2.3)

as illustrated in Figure 2.1 (1). (We get ‖Hθ(Di; θ̃i)‖σ = λmax(Hθ(Di; θ̃i)) since

Hθ(Di; θ̃i) is real and symmetric.)

We define the average loss curvature for meta-test solutions θ̃i, obtained from a

37

meta-train solution θs, as:

ETi∼p(T)[‖Hθ(Di; θ̃i)‖σ] (2.4)

Note that we do not measure curvature of the loss at θs, since θs is not a point

of convergence of f for the meta-test tasks. In fact, at θs, since the model has not

been adapted to the unseen meta-test classes, the target accuracy for the meta-test

tasks is random chance on average. Thus, measuring the curvature of the meta-test

support loss at θs does not relate to the notion of flatness of minima. Instead, in

this work we characterize the meta-train solution θs by measuring the average inner

product between the meta-test gradients, as explained later in Section 2.4.3.

2.4.2 Coherence of adaptation trajectories

Other than analyzing the objective landscapes at the different minima reached

when f adapts to new tasks, we also analyze the adaptation trajectories to those

new tasks, and whether some similarity between them can be indicative of good

generalization. Let’s consider a model f adapting to a task Ti by starting from θs,

moving in parameter space by performing T steps of full-batch gradient descent

with ∇θL(f(Di; θ)) until reaching θ̃i. We define the adaptation trajectory to a

task Ti starting from θs as the sequence of iterates (θs, θ
(1)
i , θ

(2)
i , ..., θ̃i). To simplify

the analyses and alleviate some of the challenges in dealing with trajectories of

multiple steps in a parameter space of very high dimension, we define the trajectory

displacement vector (θ̃i − θs). We define a trajectory direction vector �θi as the unit

vector: �θi
.
= (θ̃i − θs)/‖θ̃i − θs‖2.

We define a metric for the coherence of adaptation trajectories to meta-test tasks

Ti, starting from a meta-train solution θs, as the average inner product between

their direction vectors:

ETi,Tj∼p(T)[�θ
T

i
�θj] (2.5)

The inner product between two meta-test trajectory direction vectors is illustra-

ted in Figure 2.1 (2).

38

2.4.3 Characterizing meta-train solutions by the average

inner product between meta-test gradients

In addition to characterizing the adaptation trajectories at meta-test time, we

characterize the objective landscapes at the meta-train solutions θs. More concretely,

we measure the coherence of the meta-test gradients ∇θL(f(Di; θ
s)) evaluated at θs.

The coherence between the meta-test gradients can be viewed in relation to the

metric for coherence of adaptation trajectories of Eq. 2.5 from Section 2.4.2. Even

after simplifying an adaptation trajectory by its displacement vector, measuring

distances between trajectories of multiple steps in the parameter space can be proble-

matic: because of the symmetries within the architectures of neural networks, where

neurons can be permuted, different parameterizations θ can represent identically the

same function f that maps inputs to outputs. This problem is even more prevalent

for networks with higher number of parameters. Since here we ultimately care about

the functional differences that f undergoes in the adaptation trajectories, measuring

distances between functions in the parameter space, either using Euclidean norm

or cosine similarity between direction vectors, can be problematic [Benjamin et al.,

2018].

Thus to further simplify the analyses on adaptation trajectories, we can measure

coherence between trajectories of only one step (T = 1). Since we are interested in

the relation between such trajectories and the generalization performance of the

models, we measure the target accuracy at those meta-test solutions obtained after

only one step of gradient descent. We define those solutions as: θs + α · gi, with

meta-test gradient gi = −∇θL(f(Di; θ
s)). To make meta-training consistent with

meta-testing, for the meta-learning algorithms we also use T = 1 for the inner loop

updates of Eq. 2.1.

We thus measure coherence between the meta-test gradient vectors gi that lead

to those solutions. Note that the learning rate α is constant and is the same for all

experiments on a same dataset. In contrast to Section 2.4.2, here we observed in

practice that the average inner product between meta-test gradient vectors, and

not just their direction vectors, is more correlated to the average target accuracy.

The resulting metric is thus the average inner product between meta-test gradients

evaluated at θs.

We define the average inner product between meta-test gradient vectors gi,

39

evaluated at a meta-train solution θs, as:

ETi,Tj∼p(T)[g
T
i gj] (2.6)

The inner product between two meta-test gradients, evaluated at θs, is illustrated

in Figure 2.1 (3). We show in the experimental results in Section 2.5.2 and 2.5.3 that

the coherence of the adaptation trajectories, as well as of the meta-test gradients,

correlate with generalization on the meta-test tasks.

2.5 Experiments

We apply our analyses to the two most widely used benchmark datasets for

few-shot classification problems: Omniglot and MiniImagenet datasets. We use the

standardized CNN architecture used by [Vinyals et al., 2016] and [Finn et al., 2017].

We perform our experiments using three different gradient-based meta-learning

algorithms: MAML, First-Order MAML and a Finetuning baseline. For more details

on the meta-learning datasets, architecture and meta-learning hyperparameters, see

Appendix 2.7

We closely follow the experimental setup of [Finn et al., 2017]. Except for the

Finetune baseline, the meta-learning algorithms use during meta-training the same

number of ways and shots as during meta-testing. For our experiments, we follow the

setting of [Vinyals et al., 2016]: for MiniImagenet, training and testing our models

on 5-way classification 1-shot learning, as well as 5-way 5-shot, and for Omniglot,

5-way 1-shot ; 5-way 5-shot ; 20-way 1-shot ; 20-way 5-shot. Each experiment was

repeated for five independent runs. For the meta-learning algorithms, the choice of

hyperparameters closely follows [Finn et al., 2017]. For our finetuning baseline, most

of the original MAML hyperparameters were left unchanged, as we want to compare

the effect of the pre-training procedure, thus are kept fixed the architecture and

meta-test procedures. We kept the same optimizer as for the meta-update of MAML

(ADAM), and performed hyperparameter search on the mini-batch size to use, for

each setting that we present. (For our reproduction results on the meta-train and

meta-test accuracy, see Figure 2.9a and 2.9b in 2.8.1.)

40

2.5.1 Flatness of meta-test solutions

(a) Omniglot 5-way (b) Omniglot 20-way (c) MiniImagenet
5-way, 1-shot

(d) MiniImagenet
5-way, 5-shot

Figure 2.2 – Flatness of meta-test solutions for MAML and First-Order MAML, on Omniglot
and MiniImagenet

After each training epoch, we compute E[‖Hθ(Di; θ̃i)‖σ] using a fixed set of 60

randomly sampled meta-test tasks Ti. Across all settings, we observe that MAML

first finds sharper solutions θ̃i until reaching a peak, then as the number of epoch

grows, those solutions become flatter, as seen in Figure 2.2. To verify the correlation

between E[‖Hθ(Di; θ̃i)‖σ] and E[Acc(f(D′
i; θ̃i))], we trained for an extra 100 epochs,

the model that appeared the most likely to overfit in a noticeable way, that is,

First-Order MAML, with 5-way 1-shot learning on MiniImagenet, hoping that its

decrease in E[Acc(f(D′
i; θ̃i))] would be reflected by an increase in E[‖Hθ(Di; θ̃i)‖σ]

after a certain point. On the contrary, and remarkably, even as f starts to show

poorer generalization (see Figure 2.3a), the solutions keep getting flatter, as shown in

Figure 2.3c. Thus for the case of gradient-based meta-learning, our finding directly

contradicts the argument that flatter minima favour better generalization. We

performed the same analysis for our finetuning baseline (Figures 2.4a, 2.4c), with

results suggesting that flatness of solutions might be more linked with E[L(f(Di; θ̃i))],

the average level of support loss attained by the solutions θ̃i (see Figures 2.4b and

2.3b), which is not an indicator for generalization. We also noted that across all

settings involving MAML and First-Order MAML, this average meta-test support

loss E[L(f(Di; θ̃i))] decreases monotonically as meta-training progresses.

41

(a) Target Accuracy (b) Support loss (c) Curvature of solutions

Figure 2.3 – MAML: Characterization of meta-test solutions

(a) Target accuracy (b) Support loss (c) Curvature of solutions

Figure 2.4 – Finetune baseline : Characterization of meta-test solutions

2.5.2 Coherence of adaptation trajectories

(a) MiniImagenet, 5-way, 1-shot, First-Order (b) MiniImagenet, 5-way, 1-shot, Second-Order

Figure 2.5 – Comparison between average inner product between meta-test trajectory direction
vectors (orange), and average target accuracy on meta-test tasks (blue), MAML First-Order
and Second-Order, MiniImagenet 5-way 1-shot. See Figure 2.10 in Appendix 2.8.2 for full set of
experiments.

In this section, we use the same experimental setup as in Section 2.5.1, except

here we measure E[�θ T
i
�θj]. To reduce the variance on our results, we sample 500

tasks after each meta-training epoch. Also for experiments on Omniglot, we drop

the analyses with First-Order MAML, since it yields performance very similar

42

to that of the Second-Order MAML. We start our analyses with the setting of

”MiniImagenet, First-Order MAML, 5-way 1-shot”, as it allowed us to test and

invalidate the correlation between flatness of solutions and generalization, earlier in

Section 2.5.1.

We clearly observe a correlation between the coherence of adaptation trajectories

and generalization to new tasks, with higher average inner product between trajec-

tory directions, thus smaller angles, being linked to higher average target accuracy

on those new tasks, as shown in Figure 2.5a. We then performed the analysis on

the other settings, with the same observations (see Figure 2.5b and Figure 2.10 in

Appendix 2.8.2 for full set of experiments). We also perform the analysis on the

Finetuning baselines, which reach much lower target accuracies, and where we see

that E[�θ T
i
�θj] remains much closer to zero, meaning that trajectory directions are

roughly orthogonal to each other, akin to random vectors in high dimension (see

Figure 2.6a).

(a) Trajectories cohe-
rence

(b) Gradients coherence(c) l2 norm of trajecto-
ries (1-shot)

(d) l2 norm of trajecto-
ries (5-shot)

Figure 2.6 – (a): Average inner product between meta-test adaptation direction vectors, for
Finetuning baseline on MiniImagenet. (b): Average inner product between meta-test gradients, for
Finetuning baseline on MiniImagenet. Average l2 norm of meta-test adaptation trajectories, all
algorithms on MiniImagenet, (c): 1-shot learning, (d): 5-shot learning.

2.5.3 Characterizing meta-train solutions by the average

inner product between meta-test gradients

Despite the clear correlation between E[�θ T
i
�θj] and generalization for the settings

that we show in Figure 2.5 and 2.10, we observed that for some other settings, this

relationship appears less linear. We conjecture that such behavior might arise from

the difficulties of measuring distances between networks in the parameter space, as

explained in Section 2.4.3. Here we present our results on the characterization of

43

(a) MiniImagenet, 5-way, 5-shot, First-Order (b) MiniImagenet, 5-way, 5-shot, Second-Order

Figure 2.7 – Comparison between average inner product between meta-test gradient vectors,
evaluated at meta-train solution, and average target accuracy on meta-test tasks, with higher
average inner product being linked to better generalization. See Figure 2.11 in Appendix 2.8.3 for
full set of experiments.

the objective landscapes at the meta-train solutions θs, by measuring the average

inner product between meta-test gradient vectors gi.

We observe that coherence between meta-test gradients is correlated to generali-

zation, which is consistent with the observations on the coherence of adaptation

trajectories from Section 2.5.2. In Figure 2.7, we compare E[g T
i gj] to the target

accuracy (here we show results for individual model runs rather than the averages

over the runs). See Figure 2.11 in Appendix 2.8.3 for the full set of experiments. This

metric consistently correlates with generalization across the different settings. Simi-

larly as in Section 2.5.2, for our finetuning baselines we observe very low coherence

between meta-test gradients (see Figure 2.6b).

Based on the observations we make in Section 2.5.2 and 2.5.3, we propose to

regularize gradient-based meta-learning as described in Section 2.6. As an added

observation, here we include our experimental results on the average meta-test

trajectory norm E[‖θ̃i − θs‖2] (where we used T = 5), in Figure 2.6c and 2.6d,

where E[‖θ̃i − θs‖2] grows as meta-training progresses when f is meta-trained with

MAML, as opposed to the Finetune baseline, and note that this norm does not

reflect generalization.

44

Figure 2.8 – Average target accuracy on meta-test tasks using our proposed regularizer on
MAML, for Omniglot 20-way 1-shot learning, with regularization coefficient γ = 0.5

2.6 Regularizing MAML

Based on our observations on the coherence of adaptation trajectories, we

propose a modification of the MAML algorithm by adding a regularization term

based on E[�θ T
i
�θj]. Within a meta-training iteration, we first let f adapt to the n

training tasks Ti following Eq 2.1. We then compute the average direction vector
�θμ = 1

n

∑n
i=1

�θi. From this point, we consider �θμ to be fixed, such that ∇θ
�θμ = 0.

For each task, we want to reduce the angle defined by �θ T
i
�θμ, and thus introduce the

penalty on Ω(θ) = −�θ T
i
�θμ, obtaining the regularized solutions θ̂i. The outer loop

gradients are then computed, just like in MAML following Eq 2.2, but using these

regularized solutions θ̂i instead of θ̃i. Note that after adding the regularizer, we

consider it constant to avoid additional gradient computation overhead. We obtain

the variant of MAML with regularized inner loop updates, as detailed in Algorithm

1.

We used this regularizer with MAML (Second-Order), for “Omniglot 20-way

1-shot”, thereby tackling the most challenging few-shot classification setting for

Omniglot. As shown in Figure 2.8, we observed an increase in meta-test target

45

Algorithm 1 Regularized MAML: Added penalty on angles between inner loop
updates
During a meta-training iteration:

1: Sample a batch of n tasks Ti ∼ p(T)
2: for all Ti do
3: Perform the inner loop adaptation as in Eq. 2.1: θ̃i = θs −

α
∑T−1

t=0 ∇θL(f(Di; θ
(t)
i))

4: end for
5: Compute the average direction vector: �θμ = 1

n

∑n
i=1

�θi
Compute the corrected inner loop updates:

6: for all Ti do
7: θ̂i = θ̃i − γ∇θΩ(θ), where Ω(θ) = −�θ T

i
�θμ

8: end for
9: Perform the meta-update as in Eq. 2.2, but using the corrected solutions:

θs+1 = θs − β 1
n

∑n
i=1 ∇θL(f(D′

i; θ̂i))

accuracy: the performance increases from 94.05% to 95.38% (average over five trials,

600 test tasks each), providing ∼ 23% relative reduction in meta-test target error.

2.7 Additional Experimental Details

2.7.1 Model Architectures

We use the architecture proposed by [Vinyals et al., 2016] which is used by [Finn

et al., 2017], consisting of 4 modules stacked on each other, each being composed of

64 filters of of 3 × 3 convolution, followed by a batch normalization layer, a ReLU

activation layer, and a 2 × 2 max-pooling layer. With Omniglot, strided convolution

is used instead of max-pooling, and images are downsampled to 28 × 28. With

MiniImagenet, we used fewer filters to reduce overfitting, but used 48 while MAML

used 32. As a loss function to minimize, we use cross-entropy between the predicted

classes and the target classes.

46

2.7.2 Meta-Learning datasets

The Omniglot dataset consists of a total of 1623 classes, each comprising 20

instances. The classes correspond to distinct characters, taken from 50 different

datasets, but the taxonomy among characters isn’t used. The MiniImagenet dataset

comprises 64 training classes, 12 validation classes and 24 test classes. Each of those

classes was randomly sampled from the original Imagenet dataset, and each contains

600 instances with a reduced size of 84 × 84.

2.7.3 Hyperparameters used in meta-training and meta-

testing

We follow the same experimental setup as [Finn et al., 2017] for training and

testing the models using MAML and First-Order MAML. During meta-training, the

inner loop updates are performed via five steps of full batch gradient descent (except

for Section 2.5.3 where T = 1), with a fixed learning rate α of 0.1 for Omniglot and

0.01 for MiniImagenet, while ADAM is used as the optimizer for the meta-update,

without any learning rate scheduling, using a meta-learning rate β of 0.001. At

meta-test time, adaptation to meta-test task is always performed by performing

the same number of steps as for the meta-training inner loop updates. We use a

mini-batch of 16 and 8 tasks for the 1-shot and 5-shot settings respectively, while

for the MiniImagenet experiments, we use batches of 4 and 2 tasks for the 1-shot

and 5-shots settings respectively. Let’s also precise that, in k-shot learning for an

m-way classification task Ti, the set of support samples Di comprises k×m samples.

Each meta-training epoch comprises 500 meta-training iterations.

For the finetuning baseline, we kept the same hyperparameters for the ADAM

optimizer during meta-training, and for the adaptation during meta-test. We sear-

ched the training hyperparameter values for the mini-batch size and the number of

iterations per epoch. Experiments are run for a 100 epochs each. In order to limit

meta-overfitting and maximize the highest average meta-test target accuracy, the

finetuning models see roughly 100 times less training data per epoch compared to a

MAML training epoch. In order to evaluate the baseline on the 1-shot and 5-shot

meta-test tasks, during training we used mini-batches of 64 images with 25 iterations

per epoch for 1-shot learning, and mini-batches of 128 images with 12 iterations per

epoch, for 5-shot learning. At meta-test time, we use Xavier initialization [Glorot

47

and Bengio, 2010] to initialize the weights of the final layer.

2.8 Additional Experimental Results

2.8.1 Performance of models trained with MAML and First-

Order MAML, on the few-shot learning settings

(a) Meta-Train Accuracy (b) Meta-Test Accuracy

Figure 2.9 – MAML: Accuracies on training and testing tasks

2.8.2 Coherence of adaptation trajectories

The relation between target accuracy on meta-test tasks, and angles between

trajectory directions is presented in Figure 2.10.

2.8.3 Average inner product between meta-test gradients

The relation between target accuracy on meta-test tasks, and average inner

product between meta-test gradients evaluated at meta-train solution, is presented

in Figure 2.11.

48

(a) MiniImagenet, 5-way, 1-shot, First-Order (b) MiniImagenet, 5-way, 1-shot, Second-Order

(c) Omniglot, 5-way, 5-shot, Second-Order (d) Omniglot, 20-way, 5-shot, Second-Order

Figure 2.10 – Comparison between average inner product between trajectory directions and
average target accuracy on meta-test tasks. Full set of experiments.

49

(a) MiniImagenet, 5-way, 5-shot, First-Order (b) MiniImagenet, 5-way, 5-shot, Second-Order

(c) MiniImagenet, 5-way, 1-shot, First-Order (d) MiniImagenet, 5-way, 1-shot, Second-Order

(e) Omniglot, 20-way, 1-shot, Second-Order (f) Omniglot, 20-way, 5-shot, Second-Order

Figure 2.11 – Comparison between average inner product between trajectory displacement
vectors, and average target accuracy on meta-test tasks. Full set of experiments.

50

3 Conclusion

We experimentally demonstrate that when using gradient-based meta-learning

algorithms such as MAML, meta-test solutions, obtained after adapting neural

networks to new tasks via few-shot learning, become flatter, lower in loss, and

further away from the meta-train solution, as meta-training progresses. We also

show that those meta-test solutions keep getting flatter even when generalization

starts to degrade, thus providing an experimental argument against the correlation

between generalization and flat minima. More importantly, we empirically show

that generalization to new tasks is correlated with the coherence between their

adaptation trajectories, measured by the average cosine similarity between the

adaptation trajectory directions, but also correlated with the coherence between

the meta-test gradients, measured by the average inner product between meta-test

gradient vectors evaluated at meta-train solution. Based on these observations, we

propose a novel regularizer for MAML.

As future work, we plan to test the effectiveness of this regularizer on various

datasets and meta-learning domains, architectures, and gradient-based meta-learning

algorithms. Furthermore, based on our results, we believe that further inquiry into

the phenomenon of coherence of meta-test updates and its relation to generalization

to new tasks, ought to be pursued. Further understanding the underlying phenomena,

understanding why this coherence leads to better generalization, researching more

thoroughly how this insight about coherence can help in designing meta-learning

algorithms that generalize well, are all questions that we believe to be relevant for

the advancement of deep learning the context of ”learning to learn”.

51

Bibliography

Marcin Andrychowicz, Misha Denil, Sergio Gomez Colmenarejo, Matthew W. Hoff-

man, David Pfau, Tom Schaul, and Nando de Freitas. Learning to learn by

gradient descent by gradient descent. CoRR, abs/1606.04474, 2016. URL

http://arxiv.org/abs/1606.04474.

Joseph M. Antognini and Jascha Sohl-Dickstein. PCA of high dimensional random

walks with comparison to neural network training. CoRR, abs/1806.08805, 2018.

URL https://arxiv.org/abs/1806.08805.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep

networks: Implicit acceleration by overparameterization. CoRR, abs/1802.06509,

2018. URL http://arxiv.org/abs/1802.06509.

Samy Bengio. Optimisation d’une règle d’apprentissage pour réseaux de neurones

artificiels. PhD thesis, Département d’Informatique et Recherche Opérationnelle.

Université de Montréal, 1993.

Samy Bengio, Y Bengio, and Jocelyn Cloutier. On the search for new learning rules

for anns. Neural Processing Letters, 2:26–30, 07 1995. doi: 10.1007/BF02279935.

Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning

rule. IJCNN-91-Seattle International Joint Conference on Neural Networks, ii:

969 vol.2–, 1991.

Ari S. Benjamin, David Rolnick, and Konrad P. Körding. Measuring and regularizing

networks in function space. CoRR, abs/1805.08289, 2018. URL http://arxiv.

org/abs/1805.08289.

Alan J. Bray and David S. Dean. Statistics of Critical Points of Gaussian Fields on

Large-Dimensional Spaces. Physical Review Letters, 98(15):150201, April 2007.

doi: 10.1103/PhysRevLett.98.150201.

52

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.

Signature verification using a ”siamese” time delay neural network. In Proceedings

of the 6th International Conference on Neural Information Processing Systems,

NIPS’93, pages 737–744, San Francisco, CA, USA, 1993. Morgan Kaufmann

Publishers Inc. URL http://dl.acm.org/citation.cfm?id=2987189.2987282.

Yann Dauphin, Razvan Pascanu, Çaglar Gülçehre, Kyunghyun Cho, Surya Ganguli,

and Yoshua Bengio. Identifying and attacking the saddle point problem in

high-dimensional non-convex optimization. CoRR, abs/1406.2572, 2014. URL

http://arxiv.org/abs/1406.2572.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima

can generalize for deep nets. CoRR, abs/1703.04933, 2017. URL http://arxiv.

org/abs/1703.04933.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng,

and Trevor Darrell. Decaf: A deep convolutional activation feature for generic

visual recognition. CoRR, abs/1310.1531, 2013. URL http://arxiv.org/abs/

1310.1531.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred A. Hamprecht. Essen-

tially No Barriers in Neural Network Energy Landscape. CoRR, abs/1803.00885,

2018. URL https://arxiv.org/abs/1803.00885.

Simon S. Du, Chi Jin, Jason D. Lee, Michael I. Jordan, Barnabas Poczos, and Aarti

Singh. Gradient Descent Can Take Exponential Time to Escape Saddle Points.

CoRR, abs/1705.10412, 2017. URL https://arxiv.org/abs/1705.10412.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning

for fast adaptation of deep networks. CoRR, abs/1703.03400, 2017. URL http:

//arxiv.org/abs/1703.03400.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-

learning. CoRR, abs/1806.02817, 2018. URL http://arxiv.org/abs/1806.

02817.

Chelsea Finn, Aravind Rajeswaran, Sham M. Kakade, and Sergey Levine. Online

53

meta-learning. CoRR, abs/1902.08438, 2019. URL http://arxiv.org/abs/

1902.08438.

Daniel Freeman and Joan Bruna. Topology and Geometry of Half-Rectified Network

Optimization. CoRR, abs/1611.01540, 2016. URL https://arxiv.org/abs/

1611.01540.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry Vetrov, and Andrew G.

Wilson. Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs. CoRR,

abs/1802.10026, 2018. URL https://arxiv.org/abs/1802.10026.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Yee Whye Teh and Mike Titterington, editors,

Proceedings of the Thirteenth International Conference on Artificial Intelligence

and Statistics, volume 9 of Proceedings of Machine Learning Research, pages

249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL

http://proceedings.mlr.press/v9/glorot10a.html.

Ian J. Goodfellow and Oriol Vinyals. Qualitatively characterizing neural network

optimization problems. CoRR, abs/1412.6544, 2014. URL http://arxiv.org/

abs/1412.6544.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas L. Grif-

fiths. Recasting gradient-based meta-learning as hierarchical bayes. CoRR,

abs/1801.08930, 2018. URL http://arxiv.org/abs/1801.08930.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR,

abs/1410.5401, 2014. URL http://arxiv.org/abs/1410.5401.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/

abs/1512.03385.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Comput., 9(1):

1–42, January 1997a. ISSN 0899-7667. doi: 10.1162/neco.1997.9.1.1. URL

http://dx.doi.org/10.1162/neco.1997.9.1.1.

54

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

Comput., 9(8):1735–1780, November 1997b. ISSN 0899-7667. doi: 10.1162/neco.

1997.9.8.1735. URL http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Sepp Hochreiter, A. Steven Younger, and Peter R. Conwell. Learning to learn

using gradient descent. In In: Dorffner G., Bischof H., Hornik K. (eds) Artificial

Neural Networks — ICANN 2001. Lecture Notes in Computer Science, vol 2130.

Springer, Berlin, Heidelberg, pages 87–94.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL

http://arxiv.org/abs/1502.03167.

Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer,

Yoshua Bengio, and Amos J. Storkey. Three factors influencing minima in SGD.

CoRR, abs/1711.04623, 2017. URL http://arxiv.org/abs/1711.04623.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan.

How to escape saddle points efficiently. CoRR, abs/1703.00887, 2017. URL

http://arxiv.org/abs/1703.00887.

Kenji Kawaguchi. Deep Learning without Poor Local Minima. CoRR,

abs/1605.07110, 2016. URL https://arxiv.org/abs/1605.07110.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and

Ping Tak Peter Tang. On large-batch training for deep learning: Generalization

gap and sharp minima. CoRR, abs/1609.04836, 2016. URL http://arxiv.org/

abs/1609.04836.

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese Neural Net-

works for One-Shot Image Recognition. In Proceedings of the 32nd International

Conference on Machine Learning, volume 37 of Proceedings of Machine Learning

Research. PMLR, 2015. URL https://www.cs.cmu.edu/~rsalakhu/papers/

oneshot1.pdf.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical

Report, TR-2009 University of Toronto, 2009. URL https://www.cs.toronto.

edu/~kriz/learning-features-2009-TR.pdf.

55

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level

concept learning through probabilistic program induction. Science, 350:1332–1338,

2015.

Yann Lecun, Leon Bottou, Y Bengio, and Patrick Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86:2278 – 2324, 12

1998. doi: 10.1109/5.726791.

Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. Gradient

Descent Converges to Minimizers. CoRR, abs/1602.04915, 2016. URL https:

//arxiv.org/abs/1602.04915.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the

intrinsic dimension of objective landscapes. CoRR, abs/1804.08838, 2018. URL

http://arxiv.org/abs/1804.08838.

Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. Visualizing the loss landscape

of neural nets. CoRR, abs/1712.09913, 2017. URL http://arxiv.org/abs/1712.

09913.

Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. Gradient-based hy-

perparameter optimization through reversible learning. In Proceedings of

the 32Nd International Conference on International Conference on Machine

Learning - Volume 37, ICML’15, pages 2113–2122. JMLR.org, 2015. URL

http://dl.acm.org/citation.cfm?id=3045118.3045343.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building

a large annotated corpus of english: The penn treebank. Comput. Linguist., 19

(2):313–330, June 1993. ISSN 0891-2017. URL http://dl.acm.org/citation.

cfm?id=972470.972475.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural

attentive meta-learner. CoRR, abs/1707.03141, 2017. URL http://arxiv.org/

abs/1707.03141.

Yurii Nesterov. A method for solving the convex programming problem with

convergence rate O(1/kˆ2). Dokl. Akad. Nauk SSSR, 269:543–547, 1983. URL

https://ci.nii.ac.jp/naid/10029946121/en/.

56

Quynh N. Nguyen and Matthias Hein. The loss surface of deep and wide neural

networks. CoRR, abs/1704.08045, 2017. URL http://arxiv.org/abs/1704.

08045.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning

algorithms. CoRR, abs/1803.02999, 2018. URL http://arxiv.org/abs/1803.

02999.

Boris N. Oreshkin, Pau Rodŕıguez López, and Alexandre Lacoste. TADAM: task

dependent adaptive metric for improved few-shot learning. CoRR, abs/1805.10123,

2018. URL http://arxiv.org/abs/1805.10123.

Razvan Pascanu, Yann N. Dauphin, Surya Ganguli, and Yoshua Bengio. On the

saddle point problem for non-convex optimization. CoRR, abs/1405.4604, 2014.

URL http://arxiv.org/abs/1405.4604.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In

5th International Conference on Learning Representations, ICLR 2017, Toulon,

France, April 24-26, 2017, Conference Track Proceedings, 2017. URL https:

//openreview.net/forum?id=rJY0-Kcll.

Danilo J. Rezende, Shakir Mohamed, Ivo Danihelka, Karol Gregor, and Daan

Wierstra. One-shot generalization in deep generative models. In Proceedings

of the 33rd International Conference on International Conference on Machine

Learning - Volume 48, ICML’16, pages 1521–1529. JMLR.org, 2016. URL http:

//dl.acm.org/citation.cfm?id=3045390.3045551.

Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel.

Promp: Proximal meta-policy search. CoRR, abs/1810.06784, 2018. URL http:

//arxiv.org/abs/1810.06784.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein,

Alexander C. Berg, and Fei-Fei Li. Imagenet large scale visual recognition challenge.

CoRR, abs/1409.0575, 2014. URL http://arxiv.org/abs/1409.0575.

Itay Safran and Ohad Shamir. On the quality of the initial basin in overspecified

57

neural networks. CoRR, abs/1511.04210, 2015. URL http://arxiv.org/abs/

1511.04210.

Itay Safran and Ohad Shamir. Spurious local minima are common in two-layer relu

neural networks. CoRR, abs/1712.08968, 2017. URL http://arxiv.org/abs/

1712.08968.

Levent Sagun, Utku Evci, V. Ugur Güney, Yann Dauphin, and Léon Bottou. Em-

pirical analysis of the hessian of over-parametrized neural networks. CoRR,

abs/1706.04454, 2017. URL http://arxiv.org/abs/1706.04454.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Ti-

mothy Lillicrap. Meta-learning with memory-augmented neural networks. In

Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd

International Conference on Machine Learning, volume 48 of Proceedings of Ma-

chine Learning Research, pages 1842–1850, New York, New York, USA, 20–22 Jun

2016. PMLR. URL http://proceedings.mlr.press/v48/santoro16.html.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How

Does Batch Normalization Help Optimization ? (No, It Is Not About Internal

Covariate Shift). CoRR, abs/1805.11604, 2018. URL https://arxiv.org/abs/

1805.11604.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning. on learning

now to learn: The meta-meta-meta...-hook. Diploma thesis, Technische Universi-

tat Munchen, Germany, 14 May 1987. URL http://www.idsia.ch/~juergen/

diploma.html.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to

dynamic recurrent networks. Neural Computation, 4(1):131–139, 1992. doi: 10.

1162/neco.1992.4.1.131. URL https://doi.org/10.1162/neco.1992.4.1.131.

Jürgen Schmidhuber. A neural network that embeds its own meta-levels. In In

Proc. of the International Conference on Neural Networks ’93. IEEE, 1993.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. CoRR, abs/1409.1556, 2014. URL https://arxiv.

org/abs/1409.1556.

58

Samuel L. Smith and Quoc V. Le. A bayesian perspective on generalization

and stochastic gradient descent. CoRR, abs/1710.06451, 2017. URL http:

//arxiv.org/abs/1710.06451.

Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-

shot learning. CoRR, abs/1703.05175, 2017. URL http://arxiv.org/abs/1703.

05175.

Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,

Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu.

Wavenet: A generative model for raw audio. CoRR, abs/1609.03499, 2016. URL

http://arxiv.org/abs/1609.03499.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR,

abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762.

Luca Venturi, Afonso S. Bandeira, and Joan Bruna. Neural Networks with Finite

Intrinsic Dimension have no Spurious Valleys. CoRR, abs/1802.06384, 2018. URL

https://arxiv.org/abs/1802.06384.

Oriol Vinyals, Charles Blundell, Timothy P. Lillicrap, Koray Kavukcuoglu, and

Daan Wierstra. Matching networks for one shot learning. CoRR, abs/1606.04080,

2016. URL http://arxiv.org/abs/1606.04080.

Chen Xing, Devansh Arpit, Christos Tsirigotis, and Yoshua Bengio. A Walk with

SGD. CoRR, abs/1802.08770, 2018. URL https://arxiv.org/abs/1802.08770.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vi-

nyals. Understanding deep learning requires rethinking generalization. CoRR,

abs/1611.03530, 2016. URL http://arxiv.org/abs/1611.03530.

Pan Zhou and Jiashi Feng. Empirical risk landscape analysis for understanding

deep neural networks. In International Conference on Learning Representations,

2018. URL https://openreview.net/forum?id=B1QgVti6Z.

Luisa M. Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, and Shimon Whi-

teson. CAML: fast context adaptation via meta-learning. CoRR, abs/1810.03642,

2018. URL http://arxiv.org/abs/1810.03642.

59

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning.

CoRR, abs/1611.01578, 2016. URL http://arxiv.org/abs/1611.01578.

60

