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SOMMAIRE

Nous étudions dans cette thèse comment les réseaux de neurones profonds peuvent être util-
isés dans différents domaines de la vision artificielle. La vision artificielle est un domaine
interdisciplinaire qui traite de la compréhension d’images et de vidéos numériques. Les prob-
lèmes de ce domaine ont traditionnellement été adressés avec des méthodes ad-hoc nécessi-
tant beaucoup de réglages manuels. En effet, ces systèmes de vision artificiels comprenaient
jusqu’à récemment une série de modules optimisés indépendamment. Cette approche est
très raisonnable dans la mesure où, avec peu de données, elle bénéficient autant que possible
des connaissances du chercheur. Mais cette avantage peut se révéler être une limitation si
certaines données d’entré n’ont pas été considérées dans la conception de l’algorithme. Avec
des volumes et une diversité de données toujours plus grands, ainsi que des capacités de
calcul plus rapides et économiques, les réseaux de neurones profonds optimisés d’un bout à
l’autre sont devenus une alternative attrayante. Nous démontrons leur avantage avec une
série d’articles de recherche, chacun d’entre eux trouvant une solution à base de réseaux de
neurones profonds à un problème d’analyse ou de synthèse visuelle particulier.

Dans le premier article, nous considérons un problème de vision classique: la détection
de bords et de contours. Nous partons de l’approche classique et la rendons plus ‘neurale’
en combinant deux étapes, la détection et la description de motifs visuels, en un seul réseau
convolutionnel. Cette méthode, qui peut ainsi s’adapter à de nouveaux ensembles de don-
nées, s’avère être au moins aussi précis que les méthodes conventionnelles quand il s’agit de
domaines qui leur sont favorables, tout en étant beaucoup plus robuste dans des domaines
plus générales. Dans le deuxième article, nous construisons une nouvelle architecture pour
la manipulation d’images qui utilise l’idée que la majorité des pixels produits peuvent d’être
copiés de l’image d’entrée. Cette technique bénéficie de plusieurs avantages majeurs par rap-
port à l’approche conventionnelle en apprentissage profond. En effet, elle conserve les détails
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de l’image d’origine, n’introduit pas d’aberrations grâce à la capacité limitée du réseau sous-
jacent et simplifie l’apprentissage. Nous démontrons l’efficacité de cette architecture dans le
cadre d’une tâche de correction du regard, où notre système produit d’excellents résultats.

Dans le troisième article, nous nous éclipsons de la vision artificielle pour étudier le
problème plus générale de l’adaptation à de nouveaux domaines. Nous développons un nouvel
algorithme d’apprentissage, qui assure l’adaptation avec un objectif auxiliaire à la tâche
principale. Nous cherchons ainsi à extraire des motifs qui permettent d’accomplir la tâche
mais qui ne permettent pas à un réseau dédié de reconnaître le domaine. Ce réseau est
optimisé de manière simultané avec les motifs en question, et a pour tâche de reconnaître
le domaine de provenance des motifs. Cette technique est simple à implémenter, et conduit
pourtant à l’état de l’art sur toutes les tâches de référence.

Enfin, le quatrième article présente un nouveau type de modèle génératif d’images. À
l’opposé des approches conventionnels à base de réseaux de neurones convolutionnels, notre
système baptisé SPIRAL décrit les images en termes de programmes bas-niveau qui sont
exécutés par un logiciel de graphisme ordinaire. Entre autres, ceci permet à l’algorithme de
ne pas s’attarder sur les détails de l’image, et de se concentrer plutôt sur sa structure globale.
L’espace latent de notre modèle est, par construction, interprétable et permet de manipuler
des images de façon prévisible. Nous montrons la capacité et l’agilité de cette approche sur
plusieurs bases de données de référence.

Mots clés: apprentissage profond, vision artificielle, réseaux de neurones, réseaux de neu-
rones convolutionnels, détections de bords, correction du regard, transformateurs spati-
aux, adaptation de domaine, adversaire, modèles génératifs, apprentissage par renforcement,
graphisme inverse

iv



SUMMARY

In the present thesis, we study how deep neural networks can be applied to various tasks in
computer vision. Computer vision is an interdisciplinary field that deals with understanding
of digital images and video. Traditionally, the problems arising in this domain were tackled
using heavily hand-engineered adhoc methods. A typical computer vision system up until
recently consisted of a sequence of independent modules which barely talked to each other.
Such an approach is quite reasonable in the case of limited data as it takes major advantage
of the researcher’s domain expertise. This strength turns into a weakness if some of the input
scenarios are overlooked in the algorithm design process.

With the rapidly increasing volumes and varieties of data and the advent of cheaper and
faster computational resources end-to-end deep neural networks have become an appealing
alternative to the traditional computer vision pipelines. We demonstrate this in a series of
research articles, each of which considers a particular task of either image analysis or synthesis
and presenting a solution based on a “deep” backbone.

In the first article, we deal with a classic low-level vision problem of edge detection.
Inspired by a top-performing non-neural approach, we take a step towards building an end-
to-end system by combining feature extraction and description in a single convolutional
network. The resulting fully data-driven method matches or surpasses the detection quality
of the existing conventional approaches in the settings for which they were designed while
being significantly more usable in the out-of-domain situations.

In our second article, we introduce a custom architecture for image manipulation based
on the idea that most of the pixels in the output image can be directly copied from the
input. This technique bears several significant advantages over the naive black-box neural
approach. It retains the level of detail of the original images, does not introduce artifacts due
to insufficient capacity of the underlying neural network and simplifies training process, to
name a few. We demonstrate the efficiency of the proposed architecture on the challenging
gaze correction task where our system achieves excellent results.
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In the third article, we slightly diverge from pure computer vision and study a more
general problem of domain adaption. There, we introduce a novel training-time algorithm
(i.e., adaptation is attained by using an auxilliary objective in addition to the main one). We
seek to extract features that maximally confuse a dedicated network called domain classifier
while being useful for the task at hand. The domain classifier is learned simultaneosly with the
features and attempts to tell whether those features are coming from the source or the target
domain. The proposed technique is easy to implement, yet results in superior performance
in all the standard benchmarks.

Finally, the fourth article presents a new kind of generative model for image data. Unlike
conventional neural network based approaches our system dubbed SPIRAL describes images
in terms of concise low-level programs executed by off-the-shelf rendering software used by
humans to create visual content. Among other things, this allows SPIRAL not to waste
its capacity on minutae of datasets and focus more on the global structure. The latent
space of our model is easily interpretable by design and provides means for predictable image
manipulation. We test our approach on several popular datasets and demonstrate its power
and flexibility.

Keywords: deep learning, computer vision, neural networks, convolutional neural networks,
edge detection, gaze correction, spatial transformers, domain adaptation, adversarial, gener-
ative models, reinforcement learning, inverse graphics
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6.5 Omniglot. (A) A SPIRAL agent is trained to draw Omniglot characters via
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conditional SPIRAL agent is trained to reconstruct using the same action
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on 100 holdout images during inference time. SPIRAL reliably processes
every image in a single pass. We ran the MCMC algorithm for thousands of
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Chapter 1

INTRODUCTION

Over the past 5-8 years deep artificial neural networks (ANNs) have become ubiquitous in
the field of computer vision (CV). Although the basic machinery behind this family of mod-
els was first introduced in the mid-1950s (McCulloch and Pitts, 1943; Rosenblatt, 1958) and
adapted for the visual domain in the early 1980s (Fukushima and Miyake, 1982), it was
not widely adopted by the research community and practitioners until several decades later.
Major challenges in training neural networks for larger-scale tasks (e.g., vanishing and ex-
ploding gradients (Hochreiter, 1991; Bengio et al., 1994; Hochreiter et al., 2001), underfitting)
outweighed the appealing promise of automatically discovered distributed representations.

Two key factors that led to the ultimate success of ANNs (recently rebranded as deep
learning) were the enormous growth of the amount of available data (Russakovsky et al.,
2015) and computational firepower (Raina et al., 2009; Krizhevsky et al., 2012; Cireşan
et al., 2012). Together with architectural (Glorot et al., 2011b; Simonyan and Zisserman,
2014; Szegedy et al., 2015; He et al., 2015a) and algorithmic (Bengio et al., 2007; Kingma
and Ba, 2014; Ioffe and Szegedy, 2015) advances, these allowed the researchers to not only
experiment with larger models but also iterate over ideas at a much faster pace.

As a result, cumbersome hand-engineered vision pipelines are rapidly becoming a thing
of the past. They are being replaced by purely data-driven end-to-end deep learning systems
that require minimal human intervention when a new task is considered. Flexible and elegant,
these new systems demonstrate state-of-the-art performance on a variety of computer vision
benchmarks (e.g., Krizhevsky et al. (2012); He et al. (2015b); Ganin and Lempitsky (2015);
Girshick (2015); Long et al. (2015); Zbontar and LeCun (2016) to name a few).

In this thesis, we show how one can use ANNs to achieve excellent results in challenging
image processing and synthesis tasks. We also present a method for leveraging large amounts
of unlabeled synthetic data in the absence of proper training annotation, which is a common
scenario in the CV domain.



1.1. Structure of the Thesis

This document is structured as follows. Chapter 2 gives a short introduction into the
relevant disciplines such as machine learning and computer vision. We pay a special atten-
tion to ANNs and particularly to convolutional neural networks (CNNs) since they are used
extensively for solving various tasks discussed in the thesis.

Chapter 3 describes a general-purpose architecture for difficult image processing opera-
tions, such as natural edge detection or thin object segmentation. The architecture is based
on a simple combination of convolutional neural networks with the nearest neighbor search.

We focus on situations when the desired image transformation is hard for a neural network
to learn explicitly. We show that in such cases, the use of a hybrid model employing nearest
neighbor search allows us to improve the results considerably and to account for underfitting
in the network. This approach is validated on three challenging benchmarks, where the
performance of the proposed method matches or exceeds the prior art.

In Chapter 4, we consider the task of synthesizing highly realistic images of a given
face with a redirected gaze. We treat this problem as a specific instance of conditional image
generation and suggest a new deep architecture that can handle this task very well as revealed
by a numerical comparison with the state-of-the-art and a user study. Our deep architecture
performs coarse-to-fine warping with an additional per-pixel intensity correction. All these
operations are stacked into a single feed-forward network, and the parameters associated
with different modules are learned jointly in an end-to-end fashion. The resulting model is
capable of synthesising images with manipulated gaze, while the redirection angle can be
selected arbitrarily from a certain range and provided as an input to the network.

Chapter 5 presents an adversarial domain adaptation framework useful for a wide variety
of machine learning tasks beyond image processing and computer vision in general.

Top-performing deep networks are usually trained on massive amounts of labeled data.
In the absence of such data, domain adaptation provides an attractive option given that
annotated data, of similar nature but from a different domain, is available. For example, one
could use training images synthesized with graphics software. Unfortunately, the resulting
non-adapted network will likely underperform on the real data it is originally intended for.
We propose a new approach to domain adaptation in deep architectures that can alleviate
this situation by training the model on a large amount of labeled data from the source domain
and a large amount of unlabeled data from the target domain.
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As the training progresses, our method promotes the emergence of “deep” features that
are both discriminative for the main learning task on the source domain and invariant to
the domain shift. We show that this adaptation behaviour can be achieved in almost any
feed-forward model by augmenting it with an additional branch. The augmented architecture
is then trained via standard backpropagation.

Overall, our approach can be implemented with little effort using any deep learning
package. The method performs very well in a series of image classification experiments,
achieving an adaptation effect in the presence of significant domain shifts and outperforming
previous state-of-the-art on the Office datasets.

In Chapter 6 we use the core principle behind our domain adaptation technique to train
a new kind of a generative model for visual data.

Advances in deep generative networks have led to impressive results in recent years. Nev-
ertheless, state-of-the-art models can often waste their capacity on the minutiae of datasets,
presumably due to weak inductive biases in their decoders. This is where graphics engines
may come in handy since they abstract away low-level details and represent images as high-
level programs.

Current methods that combine deep learning and renderers are limited by hand-crafted
likelihood or distance functions, a need for large amounts of supervision, or difficulties in
scaling their inference algorithms to richer datasets. Chapter 6 presents a new framework
that mitigates these issues. At its heart lies an adversarially trained agent, SPIRAL, that
generates a program which is executed by a graphics engine to interpret and sample images.
The goal of this agent is to fool a discriminator network that distinguishes between real
and rendered data, trained with a distributed reinforcement learning setup without any
supervision.

A surprising finding is that using the discriminator’s output as a reward signal is the key
to allow the agent to make meaningful progress at matching the desired output rendering. To
the best of our knowledge, this is the first demonstration of an end-to-end, unsupervised and
adversarial inverse graphics agent in challenging real-world (MNIST, Omniglot, CelebA)
and synthetic 3D datasets.

Finally, Chapter 7 gives several potential avenues for the future work and concludes the
thesis.
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Chapter 2

PRELIMINARIES

2.1. Machine Learning

Machine learning (shortened to ML) is a subfield of computer science dealing with algorithms
capable of learning from data. Although it is difficult come up with a clear definition of what
learning from data means, we usually restrict ourselves to the situations where there is a
specific task T and some method of obtaining a set of training experiences E which we believe
can be useful for solving T and we would like to design a computer program that improves its
performance on T (as measured by a predefined metric P ) as it consumes E (Mitchell et al.,
1997). Machine learning is often contrasted with so-called “hand-engineered” solutions which
define a sequence of interpretable steps computing the desired output for given input data
I. While the steps performed by a ML program can sometimes be interpreted by humans, it
is an optional property rather than a strict requirement. Developers of such algorithms still
write standard program code but the goal is quite different: this code defines how to modify
the algorithm given a new experience E in such a way it produces better output for I. In
order to motivate the ML approach, we present several key drawbacks of manually designed
systems:

• For some tasks it is really difficult to come up with a clear algorithm that achieves
the goal. For example, one may want to classify photos of different breeds of cats.
Even if the breeds are very different in appearence and it’s relatively easy to describe
how to distinguish between them using human language, it’s not immediately obvious
how to translate this knowledge into an executable code operating with the RGB
representation of photos (see Figure 2.1).
• Lack of robustness. In the previous example, suppose that an expert managed to
write a program that works well for several studio photos she has in her collection.
This program is likely to fail for mobile phone shots because the expert might have
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What the computer seesWhat you see What you see

Figure 2.1. Some tasks are quite easy for humans but very hard for
machines. For instance, in image classification, the computer has to deal
with a raw RGB or binary representation of visual data (shown in the middle)
that has almost no structure.

overlooked the effect of lighting conditions, viewpoint and image compression to the
appearence of the same breed.
• Lack of scalability. For any new task (even if it is related to the previous ones) we
have to manually devise a new set of rules. This makes our system unsuitable for the
scenarios when the goals are frequently changing. For instance, after we have dealt
the cat classifier somebody might ask us to develop a similar algorithm for dog breeds
and then for flowers.

Although the examples above are related to vision (which is the main focus of this thesis),
the same issues arise in other fields, e.g. natural language processing or speech recognition.

Arguably, the easiest way to grasp the essence of machine learning is to consider several
typical classes of tasks. We can roughly divide ML algorithms into three categories (Hinton
et al., 2012a): supervised, unsupervised and reinforcement learning algorithms. We are going
to briefly describe each of those types below.

2.1.1. Supervised Learning

Supervised learning is the most common type of a machine learning task. In this setting,
one is given a set of training tuples {(xi,yi)}, where xi corresponds to the input of the
algorithm and yi denotes the desired output for that particular input. Both xi and yi can be
as simple as scalars or real-valued vectors but they also may have a very rich structure (e.g.,
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images or graphs). Naturally, the goal of supervised learning is to learn a mapping x → y.
Some typical examples of such tasks include:

• Classification. In this case, the output y can be treated as a discrete class from
{1, . . . , K}, where K is the total number of classes. Our example about distiguish-
ing between different breeds of cats falls into this category. We further discuss this
problem in Section 2.2.1.
• Regression deals with prediction of continuous scalars or vectors. For example,
counting the number of cats in a given photo can be posed as a regression problem.
One distinctive feature of this task that makes it different from classification is that
target values are usually obey some kind of order (e.g., 3 cats is more than 2, 2 is
more than a half-cat trying to run away).
• In structured prediction, machine learning models predict more complex objects
like graphs or text. If we would like to find a contour of a cat in a photo, that would
be a structured prediction task.

2.1.2. Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning dealing with sequential
decision making (Sutton and Barto, 2016; Schulman, 2016). A typical RL setting is when
some agent is situated in an environment which provides a numerical reward signal that the
agent must maximize by performing various actions. A concrete example given in (Sutton
and Barto, 2016) is tic-tac-toe. Here, the agent is one of the players (let’s assume it plays
with X) and at every turn it can place its mark (it’s an action) in one of the empty cells
following some strategy that is called a policy. The environment contains everything that
is not under the agent’s control, including the other player. The reward is assumed to be
zero during the match, positive if Xs managed to win and negative otherwise. This delayed
feedback is a distinctive feature of RL making it very different from the standard supervised
learning which requires immediate feedback for every decision made by the system. In other
words, in RL, we only need to specify the ultimate goal but not the actions that lead to
that goal. This simultaneously makes reinforcement learning quite challenging but on the
other hand opens up possibilities for discovering interesting and unexpected strategies that
can even surpass human-level performance (Silver et al., 2016). Moreover, for some tasks,
collecting a ground-truth sequence of decisions is nearly impossible thus ruling out direct
application of supervised learning.

We give a short formal introduction in reinforcement learning in Section 2.4.
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2.1.3. Unsupervised Learning

Unsupervised learning differs from previously discussed categories in that the learner only
experiences inputs {xi} and has to extract useful information without any external guiding
signal. One major aim of unsupervised learning is to create an internal representation of the
input that is useful for subsequent supervised or reinforcement learning (Hinton et al., 2012a).
It can be used both to compress data into low-dimensional vectors and to extract structured
(e.g., sparse) high-dimensional descriptors. Among common unsupervised learning tasks are
the following:

• In synthesis and sampling, the goal is to generate new examples that are similar
to those in the training data, e.g., we could expand our photocollection of cats and
may be even invent new breeds by feeding the pictures that we have into a learning
algorithm.
• Density estimation. In this problem, we would like to model the probability density
function of the data distribution. Roughly speaking, given a new photo of a cat, we
want to tell how likely it is to find this photo in our collection.
• Clustering is the task of grouping objects in such a way that objects of the same
group are more similar (in some sense) than the objects from different groups. A
clustering algorithm might, for example, form clusters comprised of a single cat breed
without knowing anything about the actual breeds and only relying on the visual
data.

We will consider an example of unsupervised learning in Chapter 6.

2.1.4. Learning and Optimization

In a typical learning scenario, we aim to maximize some performance measure P for an
unseen set of examples (also called test set) that is not used to tune our algorithm. Naturally,
because we assume we don’t have an access to that set (and oftentimes, it’s physically the
case), we can only formulate the learning objective through the available training experiences
(examples) E. The most common objective is just an expectation over the training set
distribution p̂data:

J(θ) = E(x,y)∼p̂dataL(f(x; θ), y) , (2.1.1)

where θ are parameters of our learning algorithm f that we perform optimization over, and
L is some surrogate loss function which we try to minimize hoping it would maximize P (P
itself can be hard to formalize, not to mention optimize). If our p̂data is comprised of a finite
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Figure 2.2. Relationship between underfitting, overfitting and capacity.
Increasing capacity tends to reduce overfitting but increases the effect of over-
fitting. In the overfitting regime, the generalization gap is typically large so
the training error poorly reflects the performance on the test set. We seek to
find the optimal capacity (marked with a dashed red line) corresponding both
to small generalization gap and to low training error. See Section 2.1.5 for
details.

number of examples (say, N), we can rewrite (2.1.1) as

J(θ) = 1
N

N∑
i=1
L(f(x(i); θ), y(i)) . (2.1.2)

This expression is called empirical risk. Although we optimize (2.1.1), our end goal is to
obtain the lowest possible true risk J∗ (also called generalization error), i.e., expectation
over the true data generating distribution (indeed, we’d like our algorithm to perform well in
all reasonable scenarios). By evaluating f on the test set, we get an estimate of that quantity.

2.1.5. Capacity, Overfitting, Underfitting and Regularization

The difference between J and J∗ is called generalization gap. Usually, we expect the
empirical risk to be lower than the true risk, and thus, a large gap between these two values
means that our learner has figured out some peculiarities of the training set that are not really
useful in general (e.g., if the dataset is small, it could just memorize the correct outputs for
all the examples). This phenomenon is called overfitting and is closely related to the notion
of the model capacity. Capacity defines which functions can be well-approximated by the
elements from the chosen search (hypothesis) space. For example, a neural net with at
least one hidden layer is known to be a universal function approximator (see Section 2.3.1).
Overfitting normally occurs when the family of functions in which we perform search is too
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rich given the amount of training data and/or the task complexity1. At the other extreme,
we could fail to construct a model that has enough capacity to reasonably approximate the
true data generating process. This regime is called underfitting. Here, both J and J∗ are
typically large. Figure 2.2 show the relationship between all three aformentioned notions. We
note, that overfitting and underfitting are not mutually exclusive effects and can be observed
within the same model (see Section 3.3.3).

There exist several ways of controlling the model’s capacity. In the context of neural
networks that will be discussed below, capacity (which can be formally measured by the
VC dimension (Vapnik and Chervonenkis, 2015)) can be related to the number of trainable
weights. We can make our network more powerful, for example, by using wider layers or
increasing depth. Overfitting is addressed by replacing fully-connected layers with convolu-
tions, which is a smart way of reducing the number of parameters. These are all examples of
so-called model hyperparameters, i.e., knobs and dials that are used to define the hypothesis
space but not optimized during the actual training process.

Additionally, capacity is sometimes restricted by means of regularization. Regularization
is a set of techniques for giving the learning algorithm a preference for one solution over
another (Goodfellow et al., 2016). For example, widely used weight decay biases learning
algorithms towards choosing parameters with smaller `2 norms. In general, regularization
aims to reduce the generalization error without increasing the training error too much.

2.1.6. Covariate Shift and Domain Adaptation

Up until now, we have been in the setting when both the training and the test sets were
generated from a single distribution pdata. In some cases, we want our model to perform
well on the test data even if its distribution is different from what we have encountered
during training. For example, we might have large amounts of labeled synthetically rendered
images of some object types but the final model is intended for the recognition of their real
counterparts. Here, a typical assumption that we make is that ptrain and ptest are related
through the covariate shift (Shimodaira, 2000; Jiang, 2008), i.e., ptrain(x) 6= ptest(x), while
ptrain(y |x) = ptest(y |x). It may seem that the covariate shift does not significantly change
the situation comparing to what we considered above as we are often interested in learning
conditional distributions p(y |x) rather than joint. However, this becomes a problem when
we deal with misspecified parametric models (which we do most of the time). In such models,
no setting of the parameters θ reveals the true conditional and, in general, the optimal θ∗train

1Here, by the task complexity we mean the complexity of the family containing the true data generating
function.
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Image gradients Keypoint descriptor

Figure 2.3. Computation of the SIFT keypoint descriptor. Gradients for
each the small square cells are weighted by a Gaussian window (blue circle)
and accumulated into 4 histograms. The histograms are then concatenated to
form the final descriptor. See Section 2.2.1 for details. Figure credit: Lowe
(2004).

under ptrain(x) does not match θ∗test under ptest(x). Thus, we have to devise methods for
reducing the effect of the shift. Development of such methods is one of the main focuses
of the field called domain adaption. In Chapter 5, we give a more detailed overview of the
problem and also propose an effective method for solving the task in the case of deep neural
networks.

2.2. Computer Vision and Image Processing

Computer vision (CV) is an interdisciplinary field that deals with automatic understanding
of digital images and video. It is believed to have emerged in 1966 as a consequence of a
failed summer project at the MIT AI laboratory (Papert, 1966). The participants of the
project had a goal of constructing a significant part of a visual system but quickly realized
that the task was far less straight-forward than it was thought in the beginning. Since that
time CV researchers have been working on a large variety of small restricted chunks of the
original goal. Some of the typical examples of the CV tasks are: object recognition (which
we will discuss below) and detection, semantic segmentation, 3d reconstruction and depth
estimation, medical imaging and many others.

11



2.2.1. Image Classification

One of the most common computer vision tasks is undoubtedly image classification (some-
times also referred to as object recognition) which we already mentioned in Section 2.1 as an
example of a problem that can hardly be solved by conventional hand-engineering. Formally,
it is a special case of the supervised learning scenario with a training set containing images
(usually in the RGB format), each annotated with a label from some finite collection. For
example, a popular toy dataset CIFAR10 (Krizhevsky and Hinton, 2009) consists of 60,000
tiny images that are 32 pixels high and wide. Those images are associated with one of 10
classes, like “automobile”, “airplane”, “dog”, etc. As the name of the task suggests, the goal
is to assign correct classes to previously unseen images which are assumed to come from the
same distribution as the training examples.

There exist many approaches to solving image classification. One of the simplest and
naive ones is non-parametric2 nearest neighbor search (kNN). In this case, no real learning
is performed — the classifier takes a test image and compares it to every single element
of the training set using some distance measure, like L1 or L2. Since the topology of the
raw pixel space poorly reflects semantic relations between objects in the images, kNN is
rarely appropriate for direct image classification. Nonetheless, in the scenarios when data is
relatively low-dimensional, nearest neighbor can be quite effective. We demonstrate this in
the context of edge detection in Chapter 3.

Up until 2012 when convolutional neural networks (see Section 2.3.3) demonstrated ex-
cellent performance in the ILSVRC (Russakovsky et al., 2015; Krizhevsky et al., 2012), a
typical object recognition pipeline was predominantly composed of three steps (Chatfield
et al., 2011):

1. Extraction of local features;
2. Aggregation of local features into global image descriptors;
3. Classification of the resulting descriptors.

These steps were performed in isolation from each other with no information flowing from the
subsequent to the preceding stages. Moreover, local features and aggregation strategies were
mostly designed by hand. This is in contrast to neural networks which attempt to combine
all the stages into a single end-to-end learning system and thus are much more flexible.
Nevertheless, it is still important to understand how classical computer vision pipelines work
as it gives insights into the success of the modern approaches. Below, we give a short
introduction into each of the previously listed stages.

2Unlike parametric methods, non-parametric ones do not make any strong assumptions on the form of the
x→ y mapping. They can become more and more complex as the amount of training data increases.
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Local features and quantization. One the most widely used methods for computing local
image representations is SIFT (scale-invariant feature transform) developed by David Lowe
in 1999 (Lowe, 1999, 2004). Although the full algorithm includes keypoint detection and
matching, here we are only focusing on the description step as it is most relevant to the
object recognition task.

The SIFT feature is computed by surrounding the point of interest by an appropriately
rotated and scaled 8 × 8 neighborhood (see Figure 2.3). The scale and the orientation of
the point are assumed to be given. For each of the 256 cells, one calculates the gradient
magnitude and direction. This information is then aggregated into 8-bin histograms for four
non-overlapping 4 × 4 blocks constituting the neighborhood. Intuitively, those histograms
characterize how strong the gradient is for a specific quantized direction. The final descriptor
is obtaned by concatenating the aforementioned histograms. This pointwise “footprint” is
motivated by the work of Hubel & Wiesel (Hubel and Wiesel, 1959, 1962) who found that
complex cells in the primary visual cortex are sensitive to the orientation and strength of
edges but insensitive to their precise spatial location.

Some other popular keypoint descriptors are SURF (Bay et al., 2006), BRIEF (Calonder
et al., 2010) and BRISK (Leutenegger et al., 2011). In case of object recognition, descriptors
are typically extracted densely (i.e., for each pixel) for one or more prespecified scales and
then compressed using PCA (Ke and Sukthankar, 2004).

In order to gain additional robustness, we often wish to partition the local descriptor
space into informative regions whose internal structure is irrelevant to the task and can
be safely discarded or simplified. The most common way to do this is to either perform k-
means clustering or fit a mixture of Gaussians (GMM). The latter defines soft data-to-cluster
assignments (Bis, 2006):

qki = p(xi |µk,Σk)πk∑K
j p(xi |µj,Σj)πj

, k ∈ {1, . . . , K} , (2.2.1)

where {xi} is a set of extracted descriptors, {(πk, µk,Σk)} are parameters of the mixture,
and K is the number of clusters (often called visual words). In this context, k-means and
GMM are collectively called descriptor quantization.

Feature aggregation. Quantized local descriptors are then encoded into a single feature
vector for each image. In the simplest case, they are just combined into a bag-of-visual-words
(histogram). For a long time, the winning entries for such object recognition competitions
as PASCAL VOC (Everingham et al., 2007) and ILSVRC (Russakovsky et al., 2015) were
based on so-called Fisher encoding (Perronnin and Dance, 2007). The basic idea behind this
approach is to compose feature vectors out of the average first and second order differences
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Figure 2.4. Training data for the edge detection task. Images are taken
from the BSDS500 (Arbeláez et al., 2011) dataset. Each photo (on the left) has
multiple ground-truth segmentations produced by different human annotators
following the same guidelines. The ambiguity of task is reflected in a significant
disagreement in annotations. Figure credit: Arbeláez et al. (2011).

between the point descriptors and the centers of a GMM. More concretely, the encoding is
defined as:

fFisher =
[
uT1 ,vT1 , . . . ,uTK ,vTK

]T
, (2.2.2)

where

uk = 1
N
√
πk

N∑
i

qikΣ
− 1

2
k (xi − µk) , vk = 1

N
√

2πk

N∑
i

qik
[
(xi − µk)TΣ−1

k (xi − µk)− 1
]

(2.2.3)
with {qki} given by (2.2.1).

In order to introduce weak geometry into the bag-of-words representation, the aforemen-
tioned aggregation is sometimes performed within several subregions of the image (e.g., a
pyramid of spatial bins). The obtained encodings are then concatenated to form the final
feature vector.

Image descriptor classification. Descriptor classification can be performed by any ma-
chine learning algorithm such as random forests or support vector machines (SVM). We note
that for SVMs it is crucial to normalize data vectors. As feature vectors usually have high
dimensionality, it is sufficient to use linear kernels but sometimes it is possible to gain an
additional boost in performance (without sacrificing computational efficiency) by applying
special feature maps (Vedaldi and Zisserman, 2012) (e.g., Hellinger kernel).

2.2.2. Image Processing

Image processing is a family of methods and problems closely related to computer vision in
which both input and output data are images (Konushin, 2017). Formally, we are concerned
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with functions f such that

O = f(I) , I ∈ RHI×WI×CI , O ∈ RHO×WO×CO , (2.2.4)

where HI×WI are the spatial dimensions of the image we would like to process, and HO×WO

are the extents of the result. The third dimension corresponds to the number of channels
(e.g., typical photos have 3 — R(ed), G(reen) and B(blue)). It should be noted that some
algorithms that are traditionally considered as image processing (e.g., image compression)
do not exactly fit the definition above. We leave them out of the scope of the present thesis.

Image processing is often used to enchance input data so that it looks aesthetically more
pleasing or more entertaining as seen by humans. One other important application is pre-
processing for downstream machine analysis tasks. Here, we’ll briefly consider an example of
such preprocessing called edge detection. Edges are curves in the image across which bright-
ness or color changes abruptly. They are caused by shadow boundaries, countours of objects,
or changes in surface orientation or reflectance (Tomasi, 2006). Edges are considered to be
crucial for scene and object understanding and have been studied since the very formation of
the computer vision discipline (Roberts, 1963; Papert, 1966). Standard algorithms for edge
detection include Sobel and Prewitt filters as well as the famous Canny edge detector (Canny,
1986). A serious drawback of the aforementioned methods is that they only rely on low-level
cues such as color and intensity of images and don’t take semantics into account. As a result,
their outputs are usually very cluttered, containing an excessive amount of non-informative
edges which complicates the subsequent analysis.

Modern edge detection techniques attempt to solve that issue by incorporating learning
(Arbeláez et al., 2011; Dollár and Zitnick, 2013) (see (Dollár and Zitnick, 2013) for a review).
One of the most popular datasets/benchmarks for the task is BSDS500 (Arbeláez et al.,
2011). It contains several hundreds of photos along with ground-truth contours provided by
human annotators (see Figure 2.4). Each tested algorithm is required to provide a “soft” bi-
nary mask of edges which is then thresholded and compared against reference “hard” binary
masks. Different thresholding strategies give rise to different quality metrics. One possibility
is to use a fixed threshold for all images in the dataset, calibrated to provide optimal per-
formance on the training set. In this case, the metric is called optimal dataset scale (ODS).
The optimal image scale (OIS) metric is obtained when the optimal threshold is selected by
an oracle on a per-image basis (Arbeláez et al., 2011).

In Chapter 3, we present a CNN-based algorithm which is one the earliest examples of
how purely data-driven approaches can surpass hand-engineering at the edge detection task.
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Figure 2.5. Multi-layer perceptron (MLP). Each hidden neuron activa-
tion is computed as a non-linear function of a weighted sum of all neuron
activations from the previous layer (hence the dense connection patterns in the
diagram). See Section 2.3.1 for details.

2.3. Neural Networks

In this section, we describe a powerful family of machine learning models that recently gained
a lot of popularity and were behind many advancements in such fields as natural language
processing, speech recognition and, of course, computer vision.

2.3.1. Feed-forward Neural Networks

A feed-forward neural network is simply any parametrized model that can be represented
as a composition of differentiable (or sub-differentiable) functions. A special case of such
networks which used to be quite widespread in computer vision systems has a linear structure
and can be described by the following expression:

f(x; θ1, θ2, . . . , θn) = (fn ◦ fn−1 ◦ . . . ◦ f1)(x) = fn(. . . (f2(f1(x; θ1); θ2); . . . ; θn) , (2.3.1)

where θ = {θi} is a set parameters, n is called depth, while {fi} are usually referred to as
layers (with fn being an output layer and the rest being hidden). Individual components
of a vector function fi , i ∈ {1, . . . , n − 1} are called hidden units. The parameters θ are
also known as the weights of the network. This term is a reference to synaptic weigths in
biological neural nets found in living organisms. Artificial neurons, although inspired by
the real neurons, are quite different from their biological counterpart. For example, they
communicate real values rather than discrete spikes of activity. Nevertheless, ANNs have
been proven to work suprisingly well despite the idealization and simplifications.
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Probably, the simplest example of the feed-forward network with a linear structure is the
linear perceptron. It has a single affine layer of the form:

f(x;w, b) = xTw + b , (2.3.2)

where b is called bias. In order to use the perceptron above for binary classification, its
output is thresholded at 0, i.e., positive responses are associated with class 1, and negative
with class 0. Perceptrons were popularized by Rosenblatt in early 1960’s (Rosenblatt, 1958).
At first, they appeared to be a very powerful family of models, however, later, in 1969,
Minsky and Papert showed significant limitations of linear perceptrons. For instance, they
are incapable of learning the XOR-function. Linear models are still quite useful when we can
map our input into an approprite high-dimensional space. In practice, one usually computes
a large amount of non-linear hand-crafted features hoping that the resulting feature vectors
are approximately linearly separable (see Section 2.2.1).

An alternative (and admittedly, cleaner) way of solving the issue is to let the model itself
decide which features might be useful for disentangling the input. This can be achieved by
stacking several non-linear vector-valued perceptrons on top of each other, giving a concrete
form of (2.3.1):

fi(h;Wi, bi) = g(W T
i h + bi) , ∀i ∈ {1, . . . , n}, f(x) = fn ◦ . . . ◦ f1(x) , (2.3.3)

where g is an activation function (non-linearity). This model is called a multi-layer perceptron
(MLP) (see Figure 2.5). Some of the most widely used non-linearites are:

• Sigmoid. Computed element-wise as g(z) = σ(z) = 1
1+exp(−x) . This is a popular

choice for network output units as it can be interpreted as probability of presence of
some pattern. Sigmoids are also an integral part of gating mechanisms in recurrent
neural networks. One unpleasant property of such non-linearity is saturation, i.e.,
when the pre-activation z has a large absolute value, the gradient of the sigmoid
w.r.t. z becomes very small significantly slowing down learning (see Section 2.3.2 for
details on learning the ANNs).
• Hyperbolic tangent (Tanh) (LeCun et al., 1989b, 2012). Computed element-wise as
g(z) = tanh(z) = 2σ(2z)− 1. This is basically a sigmoid activation function rescaled
to have range of [−1, 1]. It is somewhat similar to the identity function in the vicinity
of 0 as g′(0) = 1 making it convenient for theoretical analysis. It is frequently used
in recurrent neural networks, such as LSTMs (Hochreiter and Schmidhuber, 1997).
• Rectified linear units (ReLUs) (Nair and Hinton, 2010; Glorot et al., 2011b). Com-
puted element-wise as g(z) = max(0, z). This seems to be the default recommendation

17



for modern neural networks. It has been shown to perform well for a wide range of
tasks (e.g., (Krizhevsky et al., 2012)) and also fairly easy to train.
• Softmax. Computed for the entire vector of pre-activations as:

g(z) = softmax(z) = exp(z)∑k
i=1 exp(zi)

, z = [z1, . . . , zk]T . (2.3.4)

Softmax is typically used as an output unit in multi-class classification problems.
As in the case of binary sigmoid, g(z) can be treated as parameters of a discrete
probability distribution (indeed, it’s easy to see that components of g(z) sum to 1).
Softmax is also used in attention (Bahdanau et al., 2014) and addressing mechanisms
(Graves et al., 2014).

It can be shown that a feed-forward network with a linear output layer and at least one
hidden layer with any “squashing” non-linearity (e.g., hyperbolic tangent) can approximate
any Borel measurable function from one finite-dimensional space to another with any desired
non-zero amount of error, provided that the network has enough hidden units (Hornik et al.,
1989).

In general, feed-forward networks are not restricted to have the linear (chain) structure
but can be an arbitrary composition of functions described by a directed acyclic computational
graph (DACG).

2.3.2. Optimization in Neural Networks

Backpropagation. Given a neural network f(·; θ) taking x and producing an output ŷ as
well as some scalar cost function J that depends on f , we wish to find θ∗ such that

θ∗ = arg min
θ
J(f(·; θ)) . (2.3.5)

One possible strategy, in this case, is to perform some kind of gradient descent, assuming that
J is a differentiable function of the network outputs and θ. It turns out that we can compute
gradients of J efficiently using a dynamic programming algorithm called backpropagation
(Rumelhart et al., 1988) (or simply backprop). This name is used to contrast with the
process of computing ŷ = f(x, θ) which is known as forward propagation (or forward pass).

In the nutshell, backpropagation is an implementation of the chain rule of calculus that
avoids unnecessary recomputations by carefully caching previously obtained intermediate
activations and executing operations in a specific order. Let’s consider a single layer fi in
(2.3.1):

hi = fi(hi−1; θi) , (2.3.6)
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where hi−1 is the layer’s input. The derivatives of J w.r.t. hi−1 and θi are expressed as
∂J

∂hi−1
= ∂J

∂hi
· ∂hi
∂hi−1

,

∂J

∂θi
= ∂J

∂hi
· ∂hi
∂θi

.

(2.3.7)

If we assume that Jacobian ∂J
∂hi is given, and the value of hi−1 is cached from the forward

pass, then both formulas above can be computed fast without the need to run through
the entire network. This suggests an efficient strategy for obtaining derivatives for all the
parameters: we start from the top layer and iteratively apply (2.3.7) until we reach the input
of the network. The same algorithm works for arbitrary DACGs if we traverse the graph in
topological order. Thus, the backward pass has the same computational complexity as the
forward pass. This algorithm is, of course, much faster and more accurate than a naive finite
differences method3 which is still handy for debugging purposes.

Stochastic gradient descent (SGD). Backpropagation only offers a way for computing
gradients but is not a full learning algorithm. In order to give a concrete example of such
algorithm, we first need to define the cost J . Typically, one considers the empirical risk
defined by (2.1.2). Stochastic gradient descent (SGD) optimizes (2.1.2) by sampling subsets of
sizem (minibatches) from {x(1), . . . ,x(N)} and iteratively performing the following parameter
update:

θ ← θ − ε ·
[

1
m

m∑
k=1
L(f(x(ik); θ), y(ik))

]
, (2.3.8)

where ε is the learning rate. There exist many variants of this algorithm: momentum (Rumel-
hart et al., 1988), RMSProp (Tieleman and Hinton, 2012), Adam (Kingma and Ba, 2014),
to name a few.

2.3.3. Convolutional Neural Networks

Convolutional neural networks (LeCun et al., 1989a) are one of the main building blocks
of many recent successful computer vision algorithms. The main component of such models
is a special layer called convolutional layer. Given an input 3-dimensional tensor of network
activations I of size H ×W × CI , the output value of such a layer at the location (i, j) for
the channel k is computed as

O(i, j, k) = (I ∗K)(i, j, k) =
HK−1∑
p=0

WK−1∑
q=0

C−1∑
r=0

I(i+ p, j + q, r) ·K(p, q, r, k) , (2.3.9)

3We can compute an approximate derivative w.r.t. θi by evaluating [J(θ+ ε ei)− J(θ)]/ε, where ei is a basis
vector corresponding the i-th component of θ and ε is a small positive scalar.
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Figure 2.6. Receptive field of a neuron in a higher layer of a convolu-
tional neural network interacts with a large portion of the input despite local
connectivity between adjacent layers.

where K is tensor of size HK×WK×CI×CO called a kernel. Here we are considering the case
of multi-channel 2D data (e.g. image domain), but the operation above is easily generalised to
higher dimensionalities. It should be noted that (2.3.9), strictly speaking, does not correspond
to a discrete finite-support convolution but rather to a cross-correlation. In order to obtain
a true convolution, one has to transpose the kernel. This loose use of terminology within the
deep learning community can be explained by the absence of any advantage of picking actual
convolution over cross-correlation – we rarely care about commutability and moreover, the
orientation of a learned K has no special meaning.

Intuitively, convolution can be seen as a feature detection mechanism. Indeed, we can
treat a slice of the kernel tensor K(·, ·, ·, k) as a specific pattern we wish to find in the input
I. The search is then performed by sliding that pattern over I and comparing it against
every spatial location by means of a dot product (unnormalized cosine distance). As a
result, O(·, ·, k) becomes a detection map with large values in positions where the feature
appears in the input. This observation is closely related to a property of convolution called
equivariance to translation. Formally, a function f(x) is equivariant to a function g(x) is
f(g(x)) = g(f(x)). It’s easy to see that applying convolution to an input I ′ with a pattern
shifted from its original location (i, j) by (∆i,∆j) yields the activation (I ∗ K)(i, j, k) at
(i+ ∆i, j + ∆j).

Due to local connectivity of neurons and weight sharing, convolutions require far less mem-
ory to store the parameters and faster to compute comparing to regular fully-connected layers.
One other interesting implication of weight sharing is that it makes the model dramatically
more statistically efficient.

One may wonder if replacing full matrix multiplications with convolutions would prevent
the model from capturing interactions between distant locations in the input. While this is a
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serious issue for shallow models, in deeper networks with many convolutions stacked on top
of each other, units at higher levels may still interact indirectly with large portions of the
input (see Figure 2.6).

In software implementations of convolution, special care has to be taken when dealing
with border pixels. In order to control the spatial dimensions of the output, one typically
enlarges the input by means of zero padding. Depending on the amount of padding, we
usually distiguish three types of convolutions:

• Valid. This is a special case with no zero padding. The output size after convolution
is (H −HK + 1)× (W −WK + 1).
• Same. In cases when one needs to preserve the spatial dimensions (i.e., get the
output of size H ×W ), a padding of (HK − 1)/2 and (WK − 1)/2 pixels is added to
the edges of y and x axes respectively.
• Full. This type of convolution is used when one needs every input pixel to influence
an equal number (i.e., HK×WK) of output pixels. This requires (HK−1)× (WK−1)
padding resulting in the output of size (H +HK − 1)× (W +WK − 1).

Sometimes it is desirable to skip over some positions of the kernel to reduce the computa-
tion cost (Goodfellow et al., 2016) and obtain more spatially compact representation of data.
In this case, convolution is said to be strided and is computed as

O(i, j, k) = (I ∗K ; s)(i, j, k) =
HK−1∑
p=0

WK−1∑
q=0

C−1∑
r=0

I(i · s+ p, j · s+ q, r) ·K(p, q, r, k) , (2.3.10)

where s is the stride. This type of convolution has recently gained a lot of popularity as a
replacement for pooling operations (Springenberg et al., 2014) (which we will discuss below)
and has been found to be important in training good generative models such as VAEs or
GANs (Radford et al., 2015).

Pooling and invariance. Much like in best performing hand-engineered features (see Sec-
tion 2.2.1), robustness and partial invariance to small translations in convolutional neural
networks are achieved by performing spatial pooling. In terms of implementation, pooling is
similar to convolution except dot product is now replaced with a special function pool, i.e.,

O(i, j, k) = pool(I ; s)(i, j, k) = pool (I([i · s] : [i · s+HK ], [j · s] : [j · s+WK ], ·)) ,
(2.3.11)

where colon denotes tensor slice. There are several popular choices for the pool function in-
cluding max (computing the maximum activation within the region), avg (average activation)
and also Lp norm. Just like convolutions, pooling can be applied in a strided fashion, i.e.,
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

Figure 2.7. The AlexNet architecture (Krizhevsky et al., 2012) used by the
researchers from the University of Toronto to win the ILSVRC2012 (Rus-
sakovsky et al., 2015). It’s a typical example of a convolutional neural network
described in Section 2.3.3. Figure credit: Krizhevsky et al. (2012).

s > 1 in (2.3.11). Usually, this does not result in a significant loss of information because
pooling responses tend to change slowly when moving from one spatial location to another.

Pooling can also be performed along the channel axis. This way, it is possible to obtain
invariances to a wider range of transformations. For example, if the network has learned to
produce several detection maps each of which dedicated to a specific orientation of the same
feature, then max pooling along the channel dimension gives a single map capturing presence
or absence of the feature irrespectively of how it is rotated. This principle is extensively
employed in maxout networks (Goodfellow et al., 2013). One other application of pooling is
discussed in Section 4.4.6 where we use it to account for imperfect alignment between inputs
and corresponding ground-truth outputs.

Convolutional networks for computer vision. Deep CNNs have recently achieved sev-
eral breakthroughs in a variety of computer vision benchmarks and keep on attracting a very
strong interest within the CV community. The most impressive results have been attained
for image (Krizhevsky et al., 2012) and pixel (Ciresan et al., 2012) classification. Krizhevsky
et al. (2012) with the architecture called AlexNet (see Figure 2.7) managed to win the
ILSVRC2012 (Russakovsky et al., 2015) beating the competitors by a large margin. This ef-
fectively ended the domination of traditional CV pipelines that we discussed in Section 2.2.1.
The CNN-based systems that have been developed over the past several years significantly
raised the bar for such tasks as object detection (Girshick, 2015; Ren et al., 2015), semantic
segmentation (Farabet et al., 2013; Long et al., 2015), depth estimation (Zbontar and LeCun,
2016), image captioning (Xu et al., 2015) and in some cases even surpassed the human per-
formance (He et al., 2015b) rendering obsolete the former beliefs of what is hard to achieve
with machine learning.
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T (G) = I(G)
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O

Figure 2.8. Two examples of transformations that can be performed by a
spatial transformer module. The regular grid (red dots) in the output O
is mapped to a sampling grid in the input I via operator T . (Left) T is the
identity. (Right) T is an affine transform.

For more references, please see Section 3.2 and Section 4.2.

Enhancing convolutional networks with special modules. Many recent state-of-the-
art CV algorithms employing CNNs go beyond standard architectures stacking convolutions
and pooling operations. Along with sophisticated wiring of layers (e.g., skip-connections,
multiple columns) (Krizhevsky et al., 2012; Cireşan et al., 2012; He et al., 2015a), a typical
practice is to add special differentiable modules (Bahdanau et al., 2014; Santoro et al., 2017)
that encode prior knowledge about the task at hand and can both speed up training and
increase the effectiveness of the network.

One example of such modules that we will use in the context of edge detection (Chapter 4)
is the spatial transformer (ST) proposed by Jaderberg et al. (2015). The main idea of the
paper is to allow spatial manipulations of data within the CNN thus facilitating greater spatial
invariance of the model. At the heart of this method lies differentiable image sampling.

Let I be the input of the ST module and O – its output. Both I and O are feature maps
with the same number of channels but possibly of different spatial dimensions. The values
of the output pixels lying on a regular H ′ ×W ′ grid G are defined as follows:

O(i, j, k) =
H−1∑
m=0

W−1∑
n=0

I(m,n, k) ·K(T (i, j)− (m,n)) , (2.3.12)

where K is a sampling kernel and T is some transformation of G (Figure 2.8). The original
work by Jaderberg et al. (2015) considers T coming from a restricted family parameterized
by a low-dimensional vector (e.g., affine or thin plate spline). In Chapter 4, we take a more
direct approach and predict a displacement for each grid node.
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Figure 2.9. An example of a simple single hidden layer RNN taking a
sequence of inputs (x1,x2, . . .) and producing a sequence of outputs (y1, y2, . . .).
(Left) The folded representation. The small hollow circle indicates a delay of
a single time step. (Right) The unfolded (unrolled) form of the same network.
The RNN becomes a feed-forward model with its weights shared across different
time steps.

A popular choice for K is a bilinear sampling kernel:

K(y, x) = max(0, 1− |y|) ·max(0, 1− |x|) . (2.3.13)

Assuming that (u, v) = T (i, j), we can compute the partial (sub-)derivatives w.r.t. both the
input features and the transformed grid locations as

∂O(i, j, k)
∂I(m,n, k) =

H−1∑
m=0

W−1∑
n=0

max(0, 1− |u−m|) ·max(0, 1− |v − n|) , (2.3.14)

∂O(i, j, k)
∂v

=
H−1∑
m=0

W−1∑
n=0

max(0, 1− |u−m|) ·


0 if |m− v| ≥ 1
1 if m ≥ v

−1 if m < v

. (2.3.15)

An analogous calculation can be done for ∂O(i,j,k)
∂u

.

2.3.4. Recurrent Neural Networks

Recurrent neural networks (RNNs) are a special kind of neural networks taylored for
processing of sequential data or performing sequential decision making. The main principle
behind RNNs is the same as in CNNs, namely, weight sharing. Unlike convolutional nets,
however, recurrent neural networks make heavy use of feedback connections between the
timesteps which simultaneously makes them more powerful but at the same time hinders
efficient parallelization of computations.
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In this section, without loss of generality we are restricting ourselves to the case of tempo-
ral sequences (i.e., indexed by time steps t ∈ {0, 1, . . .}) but the same principles are applicable
to the types of data other than time-series (Kalchbrenner et al., 2015; Oord et al., 2016; Zilly
et al., 2016). One of the most basic forms of RNNs was proposed by Elman (1990). Given
a sequence of inputs x = (x1,x2, . . .), the output y is obtained by repeatedly applying the
following rule:

ht = σ(Wxxt + Whht−1 + bh) , (2.3.16)

yt = σ(Woht + bo) , (2.3.17)

where h is a sequence of hidden states of the RNN and W,b with subscripts are learned
weights and biases of appropriate dimensionalities. A schematic representation of this net-
work is shown in Figure 2.9. Much like with perceptrons, one can increase the expressive
power of the model by stacking multiple one-layer modules described above.

Backpropagation through time (BPTT). RNNs can be converted into feed-forward
networks by means of unfolding (Goodfellow et al., 2016) (see an example of an unfolded
Elman network in Figure 2.9). This makes it possible to obtain all necessary gradients using
regular backpropagation which is, in this case, called backpropagation through time (BPTT)
(Rumelhart et al., 1986; Werbos, 1988).

There are several notable difficulties with performing BPTT for regular RNNs. The first
one is related to the computational and memory complexity of this operation — both grow
linearly with the length of the sequence. A typical strategy to mitigate this problem is to
chunk the sequence into regions of reasonable size and prevent the gradient from flowing
through the boundaries of the regions. This approach is called truncated backpropagation
through time (Williams and Peng, 1990).

The second difficulty stems from the fact that the update rule for the hidden state in
(2.3.17) resembles repeated matrix multiplication. To see why this may create problems,
consider a learning signal coming into the network at time step T , i.e. ∂J

∂hT
. Backpropagating

it all the way to the beginning of the sequence yields
∂J

∂h0
= ∂J

∂hT
· ∂hT
∂hT−1

· . . . · ∂h1

∂h0
. (2.3.18)

Taking into account (2.3.17) we get

∂J

∂h0
= ∂J

∂hT
·
T−1∏
i=0

W>
h diag(σ′(vi)) , (2.3.19)
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Figure 2.10. The architecture of an LSTM cell. The hollow circles indicate
a delay of one time step. At the heart of the architecture lies the memory state
ct which contains an aggregate of the information the has flown through the
cell so far. The gate it controls how much of the current input (xt,ht−1) is
taken into account. The forget gate ft allows to reset the memory state, and
ot limits the amount of the emitted signal.

where vi = Wxxi+1+Whhi+bh and diag(σ′(vi)) is a diagonalized derivative of the activation
function. From the expression above, it is clear that if the spectral radius of Wh is less than
4 (the derivative of the sigmoid is bounded by 1

4) the training signal decays exponentially
and eventually vanishes. The phenomenon of vanishing gradients (Hochreiter, 1991; Bengio
et al., 1994) is believed to be one of the main reasons why learning long-term dependencies
is hard in vanilla RNNs. On the other hand, if Wh has large eigenvalues one can observe
the opposite effect — exploding gradients, which are typically remedied by gradient clipping
(Mikolov, 2012; Pascanu et al., 2013).

Long short-term memory (LSTM). In order to mitigate the problem of vanishing and ex-
ploding gradients, Hochreiter and Schmidhuber (1997) proposed a special recurrent network
architecture called long short-term memory (LSTM). LSTM units employ a gating mecha-
nism that allows them to carry information over long time spans, reset hidden states as well
as selectively discard inputs. More concretely, the dynamics of such network is defined by
the following set of formulas (Zaremba et al., 2014):(

f>t , i>t ,o>t
)>

= σ(Wxxt + Whht−1 + bh) , (2.3.20)

c̃t = tanh(Wc̃,xxt + Wc̃,hht−1 + bc̃) , (2.3.21)

ct = ft � ct−1 + it � c̃t , (2.3.22)
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ht = ot � tanh(ct) , (2.3.23)

where ft, it,ot are the forget, the input, and the output gates respectively, ct is the memory
state, and ht is the output of the unit. A diagram depicting the architecture is shown in
Figure 2.10. Although there have been proposed several other variants of recurrent units
(Cho et al., 2014; Jozefowicz et al., 2015; Greff et al., 2017), LSTMs stood the test of time
(Melis et al., 2017) and are still frequently used as a default option for sequential data. For
that reason, in Chapter 6, our model employs LSTM for handling recurrent connections.

2.3.5. Adversarial Training of Neural Networks

In the adversarial framework, we seek to obtain a set of models M1, . . . ,Mk possessing
certain properties by simultaneously optimizing competing objectives L1, . . . ,Lk respectively.
One of the first machine learning works employing this principle was Arthur Samuel’s checkers
playing agent (Samuel, 1959). In the context of neural networks, Schmidhuber (1992) used
a variant of adversarial training for learning of factorial codes.

Most recently, a new surge of interest in the framework has been sparked by generative
adversarial networks (GANs)4 (Goodfellow et al., 2014). The goal of GANs is modeling of
some data distribution pd. The architecture contains two networks, G and D, that are pitted
against each other. The generator network G learns to synthesize samples that best resemble
pd, while the discriminator D is trained to distinguish between the outputs produced by G
and real data.

More formally, D and G play the following two-player minimax game with value function
V (D,G):

min
G

max
D

V (D,G) = Ex∼pd [logD(x)] +Ez∼pz [log(1−D(G(z))] , (2.3.24)

where pz is a source of randomness (usually taken to be either N (0, I) or U(0, I)), and D’s
outputs are assumed to lie in the [0, 1] range. In other words, M1 := G, M2 := D and
L1 := V (D,G), L2 := −V (D,G). It can be proven that at equillibrium, the generated
distribution pg = G(z) matches the target pd.

In practice, however, (2.3.24) may not provide sufficient gradient for G to learn well. To
mitigate this problem, Goodfellow et al. (2014) proposed a non-saturating formulation of
the game above which have the same fixed point of the dynamics of G and D but stronger
training signal for G:

L1 = Ez∼pz [− log(D(G(z))] , (2.3.25)

4In Chapter 5, we present an independent and concurrent work that shares the same foundational principles.
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L2 = −V (D,G) . (2.3.26)

Unfortunately, even in their non-saturating form GANs can be difficult to train (Arjovsky
and Bottou, 2017). Arjovsky et al. (2017) demonstrate that a slightly different adversarial
game derived from the Kantorovich-Rubinstein duality (Villani, 2008) for Wasserstein-1 dis-
tance can lead to better learning dynamics of the model:

min
G

max
D∈Lip(1)

V (D,G) = Ex∼pd [D(x)]−Ez∼pz [D(G(z))] , (2.3.27)

where Lip(1) is the set of 1-Lipshitz functions and D outputs arbitrary real numbers. We
note that this new formulation has one major drawback, namely, it involves constrained
optimization w.r.t. D. Enforcing the constraint is by no means trivial. One option is to clip
weights of the network after each training step (Arjovsky et al., 2017) but this crude trick is
shown to yield suboptimal results in several real-world scenarios (Gulrajani et al., 2017).

Gulrajani et al. (2017) proposed a more principled solution based on so-called gradient
penalty. They observed that the optimal D should have a slope of 1 along the segments
connecting optimally coupled pairs of points from pg and pd. This idea inspired the following
variation of (2.3.24) dubbed WGAN-GP:

min
G

max
D

Ex∼pd [D(x)]−Ez∼pz [D(G(z))]− λEx∼pi [(‖∇D(x)‖2 − 1)2] , (2.3.28)

where x ∼ pi is defined as

x = αxg + (1− α) xd , xg ∼ pg , xd ∼ pd , α ∼ U(0, 1) . (2.3.29)

Several sebsequent papers explored the use of the gradient penalty and its modifications for a
variety of GAN formulations and verified universal applicability of this method (Roth et al.,
2017; Kodali et al., 2018; Dai et al., 2018). Those findings suggest that proper regularization
is the key ingredient to making training of GANs stable and reliable.

In Chapter 6, we combine the WGAN-GP objective with basic techniques from reinforce-
ment learning to devise a generative model employing external graphics simulators.

2.4. Deep Reinforcement Learning Basics

In this section, we give a basic technical background on RL necessary for understanding of
the method described in Chapter 6.

As it was mentioned before, in reinforcement learning, we are usually concerned with
finding a good policy for an agent acting in some environment. Formally, the agent A and the
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Figure 2.11. The agent-environment interaction in a Markov decision pro-
cess. The agent receives the current state of the environment st and a reward
rt−1 and performs an action at that changes the state of the environment to
st+1.

environment E interact at each of a sequence of discrete time steps t ∈ {0, 1, . . .}. The agent
receives some representation of E’s state, st, and on that basis selects an action at which
leads to E changing its state to st+1 and emitting a scalar reward rt for A. In the framework
of Markov decision processes, the environment’s state is assumed to contain all necessary
information for decision making, i.e., knowing the current state makes previous states and
actions irrelevant. A sequence of triplets

(s0, a0, r0), (s1, a1, r1), . . . (2.4.1)

is called a trajectory. The performance of A is characterized in terms of expected return, i.e.,
E [Rt], where Rt = ∑T

i=t ri, where T is the length of the trajectory. We operate with the
expectation because both the agent and the environment are, in general, stochastic. In the
case of finite T , the RL task is called episodic. For the continuing tasks (T = ∞), in order
to ensure existence of Rt, we need to introduce the notion of the discounted return:

Rt =
∞∑
k=0

γkrt+k , (2.4.2)

where γ ∈ [0, 1] is the discount factor.
The agent’s policy π(a|s) is defined as a mapping from an environment’s state to proba-

bilities of selecting each possible action. If A follows some π, the following quantity:

V π(s) = Eπ [Rt|st = s] (2.4.3)

is called the value function of that policy. Similarly,

Qπ(s, a) = Eπ [Rt|st = s, at = a] (2.4.4)

is the action-value function. An access to the latter quantity for an optimal policy, Q∗ := Qπ∗ ,
gives a straight-forward way of recovering the policy itself: in each state, we just pick the
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action corresponding to the highest action-value. One of the most popular ways of obtaining
Q∗ is Q-learning (Watkins, 1989). This algorithm was a backbone of the first successful
application of deep reinforcement learning (Mnih et al., 2015).

In Chapter 6, we take a different approach. We represent π directly as a neural network
parametrized by θ. If we take J(θ) = −V π(s0) as our objective (i.e., we want to maximize
expected return from the initial state) then using the policy gradient theorem (Sutton et al.,
2000) we can establish that

∇J(θ) ∝
∑
s

µ(s)
∑
a

Qπ(s, a)∇θπ(a|s) , (2.4.5)

where µ(s) is a probability of being in state s while following policy π. Rearranging the
expression above yields:

∇J(θ) ∝ Eπ

[∑
a

Qπ(st, a)∇θπ(a|st)
]

=

= Eπ

[∑
a

π(a|st)Qπ(st, a)∇θπ(a|st)
π(a|st)

]
=

= Eπ

[
Qπ(st, at)

∇θπ(at|st)
π(at|st)

]
=

= Eπ [Rt∇θ log π(at|st)] .

(2.4.6)

We therefore can improve the agent’s policy by sampling trajectories and performing gradient
updates of the form:

θ ← θ + λRt∇θ log π(at|st) , (2.4.7)

where λ > 0 is a learning rate. Intuitively, this update increases the probability of taking
action at according to how well the agent performed afterwards (the higher the return the
larger the increase). The algorithm we have just presented is called REINFORCE and was
first proposed by Williams (1992).

In their most basic form REINFORCE updates suffer from high variance which may
significantly slow down training. The most common way to address this issue is to use a
baseline for returns, i.e., replace Rt with Rt − b(st). The baseline b can be any function,
even a random variable, as long as it does not depend on a (this ensures that the subtracted
quantity is zero on average). In practice, b is typically taken to be a value function estimate:
b(st) = V̂ π(st) ≈ V π(st).
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In order to further decrease variance (albeit by introducing some bias), we can substitute
full Monte-Carlo returns with their bootstrapped versions:

Rt =
n−1∑
k=0

γk rt + γn V̂ π(st+n) . (2.4.8)

Here, we replace the tail of the sum with its estimate. This variation of REINFORCE is called
the advantage actor-critic (A2C) algorithm (Sutton and Barto, 2016). One additional benefit
of using A2C is that we do not need to run the episode until completion therefore updating
the policy more frequently with smaller computational and memory footprint. Advantage
actor-critic serves as basis for several recent large-scale RL frameworks, e.g., A3C (Mnih
et al., 2016) and IMPALA (Espeholt et al., 2018). In Chapter 6, we use the latter to perform
efficient training of our generative model on a multi-node GPU cluster.
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PROLOGUE TO THE FIRST ARTICLE

Article Details

N4-Fields: Neural Network Nearest Neighbor Fields for Image Transforms.
Yaroslav Ganin and Victor Lempitsky, Proceedings of the 12th Asian Conference on Computer
Vision 2014 (ACCV 2014).

Personal Contributions. The idea of using a non-parametric nearest neighbor extension
for a segmentation network I was developing at the time was first discussed in a meeting
with Victor Lempitsky in the fall of 2013. I made all the design choices for the actual model
(such as network architectures, the use of ensembling and so on), implemented it and ran all
the experiments for the project. Victor Lempitsky and I worked on writing a draft of the
paper for ECCV 2014. I mostly focused on the method description, experimental section and
the related work, while Victor Lempitsky contributed the introduction and the conclusion
sections as well as did final editing of the document. For the ACCV 2014 re-submission, I
wrote a code for a fast test-time inference and ran additional baseline experiments on the
NYU RGBD (Silberman and Fergus, 2011) and the DRIVE (Staal et al., 2004) datasets.

Context

Our work on the neural network-based edge detector started in the summer of 2013. At the
time, all the existing state-of-art methods were were either prohibitively slow or required a
large amount of memory.

Shortly after we began experimenting with several ideas, Dollár and Zitnick (2013) pub-
lished a paper describing a very fast and efficient method for edge detection. Their approach
employed random forests operating on a set of hand-engineered features. The quantitative
results were excellent, and we decided to adopt some of the techniques from the paper in our



own project. As a result, we ended up with a system that relied on a specific description
of the edge maps but used approximate nearest neighbour instead of random tree traversal.
The latter allowed us to make our detector more flexible by replacing fixed data-independent
features with a learned data-driven convolutional network.

The paper was rejected from ECCV 2014. Although we improved upon the state-of-the-
art on the BSDS500 dataset (Arbeláez et al., 2011), the reviewers were not convinced with
the results. Their main concerns were the justification of the chosen CNN architecture (a
typical critique at the time) and the running time of the full pipeline. Moreover, we failed to
emphasize the advantages of our method over the algorithm proposed by Dollár and Zitnick
(2013). In the revised version of the manuscript, we addressed the latter by demonstrat-
ing poor suitability of the Structured Edge detector for the thin object segmentation task.
Ultimately, our paper was accepted to ACCV 2014 as an oral presentation.

Contributions

To our knowledge, this work is the first neural network based approach to match or surpass the
state-of-the-art on a range of standard edge detection (BSDS500, NYU RGBD) and thin
object segmentation (DRIVE) datasets. We showed how one can improve the performance
of a discriminatively trained parametric CNN by combining it with a non-parametric nearest
neighbour search. This idea is revisited in some recent deep learning papers (Bansal et al.,
2017). The key contribution, however, is that our paper demonstrates the superiority of
fully-data-driven systems over pipelines employing hand-engineered features: we use the
same architecture in all the experiments and let it extract information relevant to the task.

Recent Developments

After our paper was published in the proceedings of ACCV 2014, there has been several
attempts to use neural networks for edge detection. Shen et al. (2015) choose to build upon
ideas from a different “pre-neural” paper (Lim et al., 2013). Their approach involves two
stages. In the first stage, a set of training patches is clustered into several bins representing
different edge types. The problem is thus cast into ordinary classification which is solved by
means of a CNN. In the second stage, the resulting network is used as a feature extractor for
SE (Dollár and Zitnick, 2013).
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Bertasius et al. (2015) employ a more direct approach combining a pre-trained AlexNet
Krizhevsky et al. (2012) and a bifurcated network predicting both presence or absence of
the edge at a particular location and the fraction of human annotators marked that location
as positive. Just like N4-fields and DeepControur (Shen et al., 2015), this method is patch-
based.

The introduction of fully-convolutional networks (FCN) (Long et al., 2015) greatly ad-
vanced the performance of the edge detection and segmentation algorithms. The core idea
is to apply a CNN with no fully-connected layers to the entire image. This gives a dense
map of decisions for all the locations at once as opposed to a single decision in the case
of patch processing. Backpropagating errors for the entire image is not only more efficient
(due to reuse of computations) but also leads to faster and more robust training. The most
notable methods employing this technique are HED (Holistically-Nested Edge Detection by
Xie and Tu (2015)) and its variant developed by Kokkinos (2016). The former uses so-called
deep supervision for a series of side outputs of different spatial resolutions. Kokkinos (2016)
consider the aforementioned idea as a means of task simplification and propose gradual an-
nealing of the side losses. Two other improvements over the original HED are the modified
loss function inspired by the Multiple Instance Learning literature and multi-scale training.
We note that N4-fields also relies on multi-scale but only at inference time.

35





Chapter 3

NEURAL NETWORK NEAREST NEIGHBOR
FIELDS FOR IMAGE TRANSFORMS

3.1. Introduction

In this work, we demonstrate that convolutional neural networks can achieve state-of-the-
art results for sophisticated image processing tasks. The complexity of these tasks defies
the straightforward application of patch-based CNNs, which perform reasonably well, but
clearly below state-of-the-art. In particular, we show that by pairing convolutional networks
with a simple non-parametric transform based on nearest-neighbor search state-of-the-art
performance is achievable. This approach is evaluated on three challenging and competitive
benchmarks (edge detection on Berkeley Segmentation dataset (Arbeláez et al., 2011), edge
detection on the NYU RGBD dataset (Silberman and Fergus, 2011), retina vessel segmenta-
tion on the DRIVE dataset (Staal et al., 2004)). All the results are obtained with the same
meta-parameters, such as the configuration of a CNN, thus demonstrating the universality
of the proposed approach.

The two approaches, namely convolutional Neural Networks and Nearest Neighbor
search are applied sequentially and in a patch-by-patch manner, hence we call the archi-
tecture N4-fields. At test time, an N4-field first passes each patch through a CNN. For a
given patch, the output of the first stage is a low-dimensional vector corresponding to the
activations of the top layer in the CNN. At the second stage we use the nearest neighbor
search within the CNN activations corresponding to patches sampled from the training data.
Thus, we retrieve a patch with a known pixel-level annotation that has a similar CNN activa-
tion, and transfer its annotation to the output. By averaging the outputs of the overlapping
patches, the transformation of the input image is obtained.



Figure 3.1. N4-Fields can be applied to a range of complex image processing
tasks, such as natural edge detection (left) or vessel segmentation (right). The
proposed architecture combines the convolutional neural networks with the
nearest neighbor search and is generic. It achieves state-of-the-art performance
on standard benchmarks for these two rather different applications with very
little customization or parameter tuning.

Below, we first review the related works (Section 3.2), describe the proposed architecture
and the associated training procedures in detail (Section 3.3), and discuss the results of
applying it on sample problems (Section 3.4). We conclude with a short discussion of the
merits and the potential of the proposed approach (Section 3.5).

3.2. Related Work

There is a very large body of related approaches, as both neural networks and nearest neighbor
methods have been used heavily as components within image processing systems. Here, we
only review several works that are arguably most related to ours.

Neural Networks for Image Processing. The use of neural networks for image processing
goes back for decades (Egmont-Petersen et al., 2002). Several recent works have investigated
large-scale training of deep architectures for complex edge detection and segmentation tasks.
For instance, Mnih and Hinton (2010) have used a cascade of two deep networks to segment
roads in aerial images, while Schulz and Behnke (2012) use CNNs to perform semantic seg-
mentation on standard datasets. Kivinen et al. (2014) proposed using unsupervised features
extraction via deep belief net extension of mcRBM (Ranzato and Hinton, 2010) followed by
supervised neural net training for boundary prediction in natural images. State-of-the-art
results on several semantic segmentation datasets were obtained by Farabet et al. (2013)
by using a combination of a CNN classifier and superpixelization-based smoothing. Finally,
a large body of work, e.g., Jain et al. (2007); Ciresan et al. (2012) simply frame the seg-
mentation problem as patch classification, making generic CNN-based classification easily
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applicable and successful. Below, we compare N4-fields against such baseline and find them
to achieve better results for our applications.

Another series of works (Jain and Seung, 2008; Burger et al., 2012) investigate the use of
convolutional neural networks for image denoising. In this specific application, CNNs benefit
greatly from virtually unlimited training data that can be synthesized, while the gap between
synthetic and real data for this application is small.

Neural networks have also been applied for descriptor learning, which resembles the way
they are used within N4-fields. Chopra et al. (2005) introduced a general scheme for learning
CNNs that map input images to multi-dimensional descriptors, suitable among other things
for nearest neighbor retrieval or similarity verification. The learning in that case is performed
on a large set of pairs of matching images. N4-fields are different from this group of the
approaches in terms of their purpose (image processing) and the type of the training data
(annotated images).

Non-parametric Approaches to Image Processing. Nearest neighbor methods have
been applied to image processing with a considerable success. Most methods use nearest
neighbor relations within the same image, e.g., Dabov et al. (2008) for denoising or Criminisi
et al. (2004) for inpainting. More related to our work, Freeman et al. (2000) match patches
in a given image to a large dataset of patches from different images, to infer the missing
high-frequencies and to achieve super-resolution. All these works use the patches themselves
or their band-passed versions to perform the matching.

Another popular non-parametric framework to perform operations with patches are ran-
dom forests. Our work was in many ways inspired by the recent impressive results in (Dollár
and Zitnick, 2013), where random forests are trained on patches with structured annotations.
Their emphasis is on natural edge detection, and their system represent the state-of-the-art
for this task1. N4-fields match the accuracy of (Dollár and Zitnick, 2013) for natural edge de-
tection, and perform considerably better for the task of vessel segmentation in micrographs,
thus demonstrating the ability to adapt to new domains.
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Features Dictionary

Figure 3.2. The N4 architecture for natural edge detection. The input im-
age is processed patch-by-patch. An input patch is first passed through a
pretrained convolutional neural network (CNN). Then, the output of the CNN
is matched against the dictionary of sample CNN outputs that correspond to
training patches with known annotations. The annotation corresponding to the
nearest neighbor is transferred to the output. Overall, the output is obtained
by averaging the overlapping transferred annotations.

3.3. N 4-Fields

3.3.1. Architecture

We start by introducing the notation, and discussing the way our architecture is applied
to images. The N4-Fields transform images patch-by-patch. Given an image transform
application, we wish to map a single or multi-channel (e.g. RGB) image patch P of size
M ×M to a segmentation, an edge map, or some other semantically-meaningful annotation
A(P), which in itself is a single or multi-channel image patch of size N ×N . We take N to
be smaller than M , so that A(P) represents a desired annotation for the central part of P .
For the simplicity of comparisons, in our experiments we use the sizes proposed in (Dollár
and Zitnick, 2013), in particular, M = 34 and N = 16.

Given annotated data, we learn a mapping F that maps patches to the desired anno-
tations. At test time, the mapping is applied to all image patches and their outputs are
combined by averaging producing the final output. Formally, the resulting transformation of
the input image I at pixel (x, y) is defined as:

F(I)[x, y] = 1
N2

∑
i,j:|i−x|≤N/2
|j−y|≤N/2

F (I(i, j|M)) [x− i, y − i] , (3.3.1)

where I(i, j|M) denotes the image patch of size M × M centered at (i, j), and
F (I(i, j|M)) [x − i, y − i] is a pixel in the output patch at the position (x − i, y − j)
assuming the origin in the center of the patch.

1At the time of publication.
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Obviously, the accuracy of the transform depends on the way the transform F is defined
and learned. Convolutional neural networks (CNNs) provide a generic architecture for learn-
ing functions of the multi-channel images and patches exploiting the translational invariance
properties of natural images. The direct approach is then to learn a mapping P → A(P) in
the form of a CNN. In practice, we found the flexibility of CNNs to be insufficient to learn the
corresponding mapping even when large models were considered. For complex transforms,
e.g. natural edge detection, we observe a strong underfitting during the training, which results
in a suboptimal performance at test time.

Convolutional neural network is a parametric model, albeit with a very large number
of parameters. A straightforward way to increase the fitting capacity of the mapping is to
consider an auxhillary non-parametric model. We thus combine a simple non-parametric
mapping (nearest neighbor) and a complex parametric mapping (convolutional neural net-
work). The input patch P is first mapped to an intermediate representation CNN(P ; Θ),
where Θ denotes the parameters of the CNN. The output CNN(P ; Θ) of the CNN map-
ping (we call it a neural code) is then compared to a dictionary dataset of CNN out-
puts, computed for T patches P1,P2, . . . ,PT taken from the training images, and thus hav-
ing known annotations A(P1),A(P2), . . . ,A(PT ). The input patch is then assigned the
annotation from the dictionary patch with the closest CNN output, i.e. A(Pk), where
k = arg minTi=1 ||CNN(Pi) − CNN(P)|| (Figure 3.2). If we denote such nearest neighbor
mapping as NNB, then the full two-stage mapping is defined as:

F(P) = NNB
(
CNN(P ; Θ) | {(CNN(Pi; Θ) ; A(Pi)) | i = 1..T}

)
, (3.3.2)

where NNB(x |M = {(ai|bi)}) denotes the nearest-neighbor transform that maps x to the
value bi corresponding to the key ai that is closest to x over the dataset M . In our experi-
ments, the dimensionality of the intermediate representation (i.e. the space of CNN outputs)
is rather low (16 dimensions), which makes nearest neighbor search reasonably easy.

In the experiments, we observe that such two-stage architecture can successfully rectify
the underfitting effect of the CNN and result in better generalization and overall transform
quality compared to single stage architectures that include either CNN or nearest neighbor
search on hand-crafted features alone.

3.3.2. Training

The training procedure for an N4-field requires learning the parameters Θ of the convo-
lutional neural network. Note, that the second stage (nearest neighbor mapping) does not
require any training apart from sampling T patches from the training images.
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Figure 3.3. The CNN architecture used in our experiments. See Section 3.3.3
for details.

The CNN training is performed in a standard supervised way on the patches drawn from
the training images I1, I2, . . . IR. For that, we define a surrogate target output for each input
patch. Since for each training patch P , the desired annotation A(P) is known, it is natural
to take this annotation itself as a target (although other variants are possible as described in
Section 3.3.3), i.e., to train the network on the input-output pairs of the form (P ,A(P)). In
this case, however, the output can be rather high-dimensional (when the output patch size
is large) and vary non-smoothly w.r.t. small translations and jitter, in particular when our
model applications of edge detection or thin object segmentations are considered. To address
both problems, we perform dimensionality reduction of the output annotations using PCA.
Experimentally, we found that the target dimensionality can be taken rather small, e.g., 16
dimensions for 16× 16 patches.

Thus, the overall training process includes the following steps:
1. Learn a PCA projection on a subset of N × N patches extracted from the training

image annotations.
2. Train a convolutional neural network on the input-output pairs
{(P ,PCA(A(P))} sampled from the training images.

3. Construct a dictionary {(CNN(Pi; Θ); A(Pi))|i = 1..T} by drawing T random patches
from the training images and passing them through the trained network.

After training, the N4-field can be applied to new images as discussed above.

3.3.3. Implementation Details

Training the CNN. We use a heavily modified variant of the cuda-convnet CNN toolbox2.
The CNN architecture that was used in our experiments is loosely inspired by (Krizhevsky
et al., 2012) (it is comprised of the layers shown in Figure 3.3). We also tried a dozen of other
CNN designs (deeper ones and wider ones) but the performance always stayed roughly the
same, which suggests that our system is somewhat insensitive to the choice of the architecture
given the sufficient number of free parameters.

The model was trained on 34 × 34 patches extracted at randomly sampled locations
of the training images. Each patch is preprocessed by subtracting the per-channel mean
2 https://code.google.com/p/cuda-convnet/
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(across all images). Those patches are packed into mini-batches of size 128 (due to the
software/hardware restrictions) and presented to the network. The initial weights in the
CNN are drawn from Gaussian distribution with zero mean and σ = 10−2. They are then
updated using stochastic gradient descent with momentum set to 0.9. The starting learning
rate η is set to 10−1 (below in Section 3.4 we introduce an alternative target function which
demands smaller initial η = 10−3). As commonly done, we anneal η throughout training
when the validation error reaches its plateau.

As the amount of the training data was rather limited, we observed overfitting (valida-
tion error increasing, while training error decreasing) alongside with underfitting (training
error staying high). To reduce overfitting, we enrich the training set with various artifi-
cial transformations of input patches such as random rotations and horizontal reflections.
Those transformations are computed on-the-fly during the training procedure (new batches
are prepared in parallel with the network training).

Along with data augmentation we apply two regularization techniques which have become
quite common for CNNs, namely dropout (Hinton et al., 2012b) (we randomly discard half
of activations in the first two fully-connected layers) and `2-norm restriction of the filters in
the first layer (Hinton et al., 2012b; Zeiler, 2012).

Testing Procedure. At test time, we want to calculate activations for patches centered at
all possible locations within input images. A naive approach would be to apply a CNN in a
sliding window fashion (separate forward pass for each location). However this solution may
be computationally expensive especially in case of deep architectures. Luckily it is rather
easy to avoid redundant calculations and to make dense applications efficient by feeding the
network with a sequence of shifted test images (Sermanet et al., 2013).

After neural codes for all the patches are computed, we perform nearest-neighbor search
using of k-d trees provided as a part of VLFeat package (Vedaldi and Fulkerson, 2008). We
leave the default settings unchanged except for the maximum number of comparisons which
is set to 30.

Our proof-of-concept implementation runs reasonably fast taking about 6 seconds to
process an image of size 480× 320, although we were not focusing on speed. Computational
performance may be brought closer to the real-time by, for example, applying the system in
a strided fashion (Dollár and Zitnick, 2013) and/or finding a simpler design for the CNN.

Multi-scale Operation. Following the works (Dollár and Zitnick, 2013; Xiaofeng and Bo,
2012) we apply our scheme at different scales. For each input image we combine detections
produced at the original, half and double resolutions to get the final output. While various
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blending strategies may be employed, in our case even simple averaging gave remarkably
good results.

Committee of N4-Fields. CNNs are shown (Krizhevsky et al., 2012; Sermanet et al.,
2013; Ciresan et al., 2012) to perform better if outputs of multiple models are averaged.
We found that this technique works quite well for our system too. One rationale would be
that different instances of the neural network produce slightly different neural codes hence
nearest-neighbor search may return different annotation patches for the same input patch.
In practice we observe that averaging amplifies relevant edges and smoothens noisy regions.
The latter is especially important for the natural edge detection benchmarks, as the output
of N4-fields is passed through the non-maximum suppression.

3.4. Experiments

We evaluate our approach on three datasets. In two of them (BSDS500 and NYU RGBD), the
goal is to detect natural edges, and in the remaining case (DRIVE), the task is to segment
thin vessels in retinal micrographs. Across all the datasets, we provide comparison with
baseline methods, with the state-of-the-art on those datasets, illustrate the operation of the
method, and demonstrate characteristic results.

CNN Baselines. All three tasks correspond to binary labeling of pixels in the input pho-
tographs (boundary/not boundary, vessel/no vessel). It is therefore natural to compare our
approach to CNNs that directly predict pixel labels. Given an input patch, a CNN can
produce a decision either for the single central pixel or for multiple pixels (e.g., a central
patch of size 16 × 16) hence we have two CNN baselines. We call them CNN-central and
CNN-patch respectively. Each of the CNNs has the same architecture as the CNN we use
within N4-fields, except that the size of the last layer is no longer 16 but equals the number
of pixels we wish to produce predictions for (i.e., 1 for CNN-central and 256 for CNN-patch).
At test time, we run the baseline on every patch and annotate chosen subsets of pixels with
the output of the CNN classifier applying averaging in the overlapping regions. As with our
main system, to assess the performance of the baseline, we use a committee of three CNN
classifiers at three scales.

Nearest Neighbor Baseline. We have also evaluated a baseline that replaces the learned
neural codes with “hand-crafted” features. For this, we used SIFT vectors computed over the
input M ×M patches as descriptors and use these vectors to perform the nearest-neighbor
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Neural/Target
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Neural/Target
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Figure 3.4. Examples of nearest neighbor matchings of query patches to dic-
tionary patches. For all patches, the ground truth annotations (edge sets) of
the central parts are shown alongside. The righthand panels show the results
of the nearest neighbor searches for different combinations of the query encod-
ing and the dictionary patch encoding. "Neural" corresponds to the encoding
with top-layer activations CNN(P) of the CNN, while "Target" corresponds to
the “ground truth”’ encoding PCA(A(P)) that the CNN is being trained to
replicate. Matching neural codes to target codes (Neural/Target) works poorly
thus highlighting the gap between the neural codes and the target PCA codes
(which is the manifestation of the underfitting during the CNN training). By
using neural codes for both the queries and the dictionary patches, our ap-
proach is able to overcome such underfitting and to match many patches to
correct annotations (see Neural/Neural matching).

search in the training dataset. Since SIFT was designed mainly for natural RGB photographs,
we evaluate this baseline for the BSDS500 edge detection only.

Alternative Encoding (AE). Given the impressive results of (Dollár and Zitnick, 2013)
on edge detection, we experimented with a variation of our method inspired by their method.
We annotate each patch with a long binary vector that looks at the pairs of pixels in the
output N×N patch and assigns it 1 or 0 depending whether it belongs to the object segment.
We then apply PCA dimensionality reduction to 16 components. More formally, we define
the target annotation vector during the CNN training to be:

B(P ) = PCA((v1, v2, . . . , vL)) , (3.4.1)

where L =
(
N2

2

)
and vi is defined for i-th pair (pl, pm) of pixels in the ground truth segmen-

tation S(P) and is equal to 1 {S(P)[pl] = S(P)[pm]}. In the experiments, we observe a small
improvement for such alternative encoding.
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Figure 3.5. Performance scores for different tolerance thresholds (default
value is 0.75 · 10−2) used in the BSDS500 benchmark (Arbeláez et al., 2011).
Algorithms’ performance (ODS and OIS measures plotted as dashed and solid
lines respectively) is going down as the tolerance threshold is decreased. N4-
fields (blue lines) handles more stringent thresholds better, which suggests that
cleaner edges are produced, as is also evidenced by the qualitative results. See
Section 3.4 for details.
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Figure 3.6. The validation score (average precision) of the full N4-fields and
error rates (loss) of the underlying CNN measured throughout the training
process. The strong correlation between the values suggests the importance of
large-scale learning for the good performance of N4-fields. This experiment was
performed for the BSDS500 edge detection (hold out validation set included
20 images).

BSDS500 Experiments. The first dataset is Berkley Segmentation Dataset and Bench-
mark (BSDS500) (Arbeláez et al., 2011). It contains 500 color images divided into three
subsets: 200 for training, 100 for validation and 200 for testing. Edge detection accuracy
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ODS OIS AP

SIFT + NNB .59 .60 .60
CNN-central .72 .74 .75
CNN-patch .73 .75 .74

gPb-owt-ucm [1] .73 .76 .73
SCG [2] .74 .76 .77
SE-MS, T = 4 [4] .74 .76 .78

DeepNet [4] .74 .76 .76
PMI + sPb, MS [5] .74 .77 .78

N4-fields .75 .76 .77
N4-fields, AE .75 .77 .78

(a) BSDS500 (Any)

ODS OIS AP

SE-MS, T = 4 [3] .59 .62 .59
DeepNet [4] .61 .64 .61
PMI + sPb, MS [5] .61 .68 .56
N4-fields, AE .64 .67 .64

(b) BSDS500 (Consensus)

ODS OIS AP

CNN, central .60 .62 .55
CNN, patch .58 .59 .49

gPb [1] .53 .54 .40
SCG [2] .62 .63 .54
SE-MS, T = 4 [3] .64 .65 .59

N4-fields .61 .62 .56
N4-fields, AE .63 .64 .58

(c) NYU RGBD

Table 3. I. Edge detection results on BSDS500 (Arbeláez et al., 2011) (both
for the original ground-truth annotation and “consensus” labels) and NYU
RGBD (Silberman and Fergus, 2011). Our approach (N4-fields) achieves per-
formance which is better or comparable to the state-of-the-art. We also observe
that the relative performance of the methods in terms of perceptual quality are
not adequately reflected by the standard performance measures. The table list
the quantitative results for the following methods: [1] Arbeláez et al. (2011),
[2] Xiaofeng and Bo (2012), [3] Dollár and Zitnick (2013), [4] Kivinen et al.
(2014), [5] Isola et al. (2014).

is measured using three scores: fixed contour threshold (ODS), per-image threshold (OIS),
and average precision (AP) (Arbeláez et al., 2011; Dollár and Zitnick, 2013). In order to
be evaluated properly, test edges must be thinned to one pixel width before running the
benchmark code. We use the non-maximum suppression algorithm from (Dollár and Zitnick,
2013) for that.

In general, N4-fields perform similarly to the best previously published methods (Dollár
and Zitnick, 2013; Kivinen et al., 2014; Isola et al., 2014). In particular, the full version of the
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N4-fields Input Structured Edge

Figure 3.7. Representative results on the BSDS500 dataset. For comparison,
we give the results of the best previously published method (Dollár and Zitnick,
2013). The red numbers correspond to Recall/Precision/F-measure. We give
two examples where N4-fields perform better than (Dollár and Zitnick, 2013),
and one example (bottom row) where (Dollár and Zitnick, 2013) performs
markedly better according to the quantitative measure.

system (the committee of three N4-fields applied at three scales) matches the performance
of the mentioned algorithms , with the alternative encoding performing marginally better
(Table 3. I-A). Following Hou et al. (2013) in order to account for the inherent problems of
the dataset we also test our approach against the so-called “consensus” subset of the ground-
truth labels. Within this setting our method significantly outperforms other algorithms in
terms of ODS and AP (Table 3. I-B).

The benchmark evaluation procedure does not perform strict comparison of binary edge
masks but rather tries to find the matching between pixels within certain tolerance level
and then analyzes unmatched pixels (Arbeláez et al., 2011). We observed that the default
distance matching tolerance threshold, while accounting for natural uncertainty in the exact
position of the boundary, often ignores noticeable and unnatural segmentation mistakes such
as spurious boundary pixels. Therefore, in addition to the accuracy evaluated for the default
matching threshold, we report results for more stringent thresholds (Figure 3.5a-left).
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It is also insightful to see whether the outputs of the CNN within the N4-fields, i.e.
CNN(P) are reasonably close to the codes PCA(A(P)) that were used as target during the
learning. To show this, in Figure 3.4 we give several representative results of the nearest
neighbor searches where different types of codes are used on the query and on the dictionary
dataset sides (alongside the corresponding patches). It can be seen, that there are very accu-
rate matches (in terms of similarity between true annotations) between PCA codes on both
sides, and reasonably good matches between neural (CNN) codes on both sides. However,
when matching the neural code of an input patch to PCA codes on the dataset side the re-
sults are poor. This is especially noticeable for patches without natural boundaries in them
as we force our neural network to map all such patches into one point (empty annotation is
always encoded with the same vector). This qualitative performance results in a notoriously
bad quantitative performance of the system that uses such matching (from the neural codes
in the test image to the PCA codes in the training dataset).

While CNN is clearly unable to learn to reproduce the target codes closely, there is still a
strong correlation between the training error (the value of the loss function within the CNN)
and the performance of the N4-fields (Figure 3.6). The efficiency of the learned codes and
its importance for the good performance of N4-fields is also highlighted by the fact that the
nearest neighbor baseline using SIFT codes performs very poorly. Thus, optimizing the loss
functions introduced above really makes edge maps produced by our algorithm agree with
ground truth annotations.

NYU RGBD Experiments. We also show results for the NYU Depth dataset (v2) (Sil-
berman and Fergus, 2011). It contains 1,449 RGBD images with corresponding semantic
segmentations. We use a script (Xiaofeng and Bo, 2012) to translate the data into BSDS500
format and use the same evaluation procedure, following training/testing split proposed by
Xiaofeng and Bo (2012). The CNN architecture stays the same except for the number of
input channels which is now equal to four (RGBD) instead of three (RGB).

The results are summarized in Table 3. I-C. Our approach almost ties the state-of-the-art
method by Dollár and Zitnick (2013) for the default matching threshold. However, just like in
the case of the BSDS500 dataset this difference in scores may be due to the peculiarity of the
benchmark. Indeed, Figure 3.5b-right shows that for smaller values of matching thresholds,
N4-fields match or outperform the accuracy of Structured Edge detector (Dollár and Zitnick,
2013).

Note on the Quantitative Performance. During the experiments, we observed a clear
disconnect between the relative performance of the methods according to the quantitative
measures, and according to the actual perceptual quality. This was especially noticeable for
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Input N4-fields CNN, patch CNN, central SE

Figure 3.8. Results on the NYU RGBD dataset. For comparison, we give the
results of the best previously published method (SE) (Dollár and Zitnick, 2013)
and the CNN baseline. We show a representative result where the N4-fields
perform better (top), similarly (middle), or worse (bottom) than the baseline,
according to the numberic measures shown in red (recall/precision/F-measure
format). We argue that the numerical measures do not adequately reflect the
relative perceptual performance of the methods.

the NYU RGBD dataset (Figure 3.8). We provide extended uniformly-sampled qualitative
results at the project website3.

DRIVE Dataset. In order to demonstrate wide applicability of our method, we evaluate
it on the DRIVE dataset (Staal et al., 2004) containing micrographs obtained in a diabetic
retinopathy screening program. It includes forty 768 × 584 images split evenly into a training
and a test sets. Ground truth annotations include manually segmented vasculature as well
as ROI masks.

We use exactly the same CNN architecture as in the BSDS500 experiment. Without any
further tuning our system achieves state-of-the-art performance comparable to the algorithm
proposed by Becker et al. (2013). Precision/recall curves for both approaches as well as for
the baseline neural networks and (Dollár and Zitnick, 2013) (obtained using the authors’
code) are shown in Figure 3.10. Notably, there is once again a clear advantage over the CNN
baselines. Poor performance of (Dollár and Zitnick, 2013) is likely to be due to the use of
default features that are not suitable for this particular imaging modality. This provides an
extra evidence for the benefits of fully data-driven approach.
3 http://sites.skoltech.ru/compvision/projects/n4/ at the moment of publication.
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Input Expert N4-fields SE

Figure 3.9. Representative results on the DRIVE dataset. A close match to
the human expert annotation is observed. The last column corresponds to the
algorithm proposed in (Dollár and Zitnick, 2013).
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Figure 3.10. Results for the DRIVE dataset (Staal et al., 2004) in the form
of the recall/precision curves. Our approach matches the performance of the
current state-of-the-art method by SFLCSS (Becker et al., 2013) and performs
much better than baselines and (Dollár and Zitnick, 2013).

3.5. Conclusion

We have presented a new approach to machine-learning based image processing. We have
demonstrated how convolutional neural networks can be efficiently combined with the nearest
neighbor search, and how such combination can improve the performance of standalone CNNs
in the situation when CNN training underfits due to the complexity of a problem at hand.

51



State-of-the-art results4 are demonstrated for natural edge detection in RGB and RGBD
images, as well as for thin object (vessel) segmentation. Compared to the structured forests
method (Dollár and Zitnick, 2013), the proposed approach is slower, but can be adapted to
new domains (e.g., micrographs) without manual retuning.

The future work may concern the fact that we employ PCA compression to define direct
targets during the CNN training. It’s easy to see, that for the the nearest neighbor search
we don’t really care about the actual values but rather about the topology (i.e., distances
between vectors). This suggests that we could replace naive regression with relative distance
matching. It remains to be seen whether this approach will bring any improvements to the
overall performance of the system.

4At the time of publication.
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PROLOGUE TO THE SECOND ARTICLE

3.6. Article Details

DeepWarp: Photorealistic Image Resynthesis for Gaze Manipulation. Yaroslav
Ganin, Daniil Kononenko, Diana Sungatullina, and Victor Lempitsky. Proceedings of the
14th European Conference on Computer Vision (ECCV 2016).

Personal Contributions. The idea of using differential bilinear warping of the input for
obtaining redirected gaze came to me during one of the Computer Vision Group meetings
(at Skoltech) in the fall of 2015. I quickly implemented an initial version of the model and
verified that it was working well. Victor Lempitsky suggested that I should train a unified
model for arbitrary redirection angles in both vertical and horizontal directions. The latter
variation which was also designed and implemented by me became the core of our ECCV 2016
submission. Daniil Kononenko and Diana Sungatullina provided the data (initially collected
for a different project). They were also responsible for the user study that can be found in
the experimental section of the paper. I conducted the rest of the experiments and wrote the
initial draft of the submission. Daniil Kononenko and Diana Sungatullina contributed to the
related work and to the experimental sections. Victor Lempitsky focused on the introduction
and the conclusion as well as general editing of the manuscript. I did the final editing for
the camera-ready version of the paper after it was accepted to the conference.

3.7. Context

We first started discussing applying neural networks for gaze correction back in the summer
of 2013. Victor Lempitsky deemed that task as very important since solving it could have
a big impact on how people communicate on the internet. Video conferences lacked the feel



of real conversations partly because the participants would gaze at the screen instead of the
camera and therefore appear not to be looking at the interlocutor.

Later in 2013, Daniil Kononenko took the lead of the project. The idea to use NNs was
dropped in favor of random forests which were a better fit for real-time processing (Kononenko
and Lempitsky, 2015). Having accomplished two successful deep learning efforts, I was natu-
rally interested in seeing how a neural approach would compare to random forests. Following
the philosophy of (Kononenko and Lempitsky, 2015), I developed a fully-convolutional ar-
chitecture that predicted a per-pixel displacement field. Unlike (Kononenko and Lempitsky,
2015), my system represented each output pixel as a weighted sum of neighbouring pixels
in the input image. The main problem with this approach was that the predicted weights
were often distributed over several distinct relative locations. As a result, the output image
looked blurry. We managed to partially remedy this by applying an additional sharpening
step but that solution was not satisfactory.

After an extended break during which Jaderberg et al. (2015) released their seminal work
on STNs, I made an attempt to improve my gaze correction system by adopting that new
technique. The network was now constrained to assign each output pixel to a single location
in the input. This seemingly minor difference drastically improved the quality making it
nearly photorealistic. We felt this result was worth sharing with the research community not
only because it made gaze correction better but also because dense prediction of the flow for
an STN was a novel technique that could potentially be used in a wide range of computer
vision tasks. We summarized our observations in a paper that was eventually accepted to
ECCV 2016.

Since it was impossible to share the source code for the method (due to licensing restric-
tions), we decided to make our system available in the form of a web-service. I developed
a site (both the back and the front-end) that allowed users to upload their photos and ma-
nipulate the gaze direction. Much to our surprise, the service got a good media coverage
(Plaugic, 2017) and was used quite heavily both for fun and for interesting art/technology
fusion projects (Ulicny, 2017).

3.8. Contributions

Although the idea of using differentiable warping modules in CNNs was first explored in
(Jaderberg et al., 2015), that work was dealing with the classification task and transforma-
tions were carried out on the feature level. In contrast, our paper demonstrated how one
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can use dense displacement field prediction for direct image-level resynthesis. One appealing
property of this technique is that it makes it easy for the network to retain fine-grained details
of the input, something conventional black-box image-to-image CNN-based models struggle
with.

Two other main contributions are the multi-scale flow refinement procedure and the cor-
rection of the warped image. Both are implemented as modules of a bigger end-to-end system.
The former significantly improved the spatial coherency of the predicted field, while the latter
helped with difficult cases of occlusion and dis-occlusion which required synthesis of novel
pixel that are not present in the input image.

3.9. Recent Developments

In the context of gaze correction, the ideas from our paper were further explored by
Kononenko et al. (2017) and Wood et al. (2017). The former use a NN as a teacher for
a random forest therefore improving the running time of the system. One caveat of their
method is that it can only deal with a single redirection angle. Wood et al. (2017) take
a different approach and use a non-neural 3D-model fitting. Transformation is no longer
applied to the entire eye region but just to the eyelids.

We also made an attempt to adapt DeepWarp for more general facial expression manip-
ulation (Ganin, 2017). Since we used CelebA as our dataset, we did not have an access
to matching input-output pairs. The data was instead presented as a collection of images
with corresponding expression labels. Our preliminary experiments show that DeepWarp is
capable of learning transformations even in absence of strong supervision. A similar system
(albeit trained on matching pairs from Multi-Pie Gross et al. (2010)) was later proposed
by Yeh et al. (2016).

The differentiable image warping which is the core of our method was used in a range of
CV tasks beyond gaze correction, e.g., novel view synthesis (Zhou et al., 2016; Park et al.,
2017), super-resolution (Caballero et al., 2017) and interpolation between video frames (van
Amersfoort et al., 2017; Liu et al., 2017). Finally, concurrently with us, Yu et al. (2016)
proposed to employ STNs for weakly supervised optical flow prediction.
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Chapter 4

PHOTOREALISTIC IMAGE RESYNTHESIS FOR
GAZE MANIPULATION

4.1. Introduction

In this work, we consider the task of learning deep neural networks for image editing and
resynthesis. Generally, using deep architectures for image generation has become a very
active topic of research. While a lot of very interesting results have been reported over recent
years and even months, achieving photo-realism beyond the task of synthesizing small patches
has proven to be hard.

Previously proposed methods for deep resynthesis usually tackle the resynthesis problem
in a general form and strive for universality. Here, we take an opposite approach and focus
on a very specific image resynthesis problem (gaze manipulation) that has a long history in
the computer vision community (Okada et al., 1994; Yang and Zhang, 2002; Yip and Jin,
2003; Criminisi et al., 2003; Jones et al., 2009; Wolf et al., 2010; Kuster et al., 2012; Giger
et al., 2014; Kononenko and Lempitsky, 2015) and some important real-life applications. We
show that by restricting the scope of the method and exploiting the specifics of the task,
we are indeed able to train deep architectures that handle gaze manipulation well and can
synthesize output images of high realism (Figure 4.1).

Generally, few image parts can have such a dramatic effect on the perception of an image
like regions depicting eyes of a person in this image. Humans (and even non-humans (Wallis
et al., 2015)) can infer a lot of information about of the owner of the eyes, her intent, her
mood, and the world around her, from the appearance of the eyes and, in particular, from
the direction of the gaze. Generally, the role of gaze in human communication is long known
to be very important (Kleinke, 1986).



Figure 4.1. Gaze redirection with our model trained for vertical gaze redirec-
tion. The model takes an input image (middle row) and the desired redirection
angle (here varying between -15 and +15 degrees) and re-synthesize the new
image with the new gaze direction. Note the preservation of fine details in-
cluding specular highlights in the resynthesized images.

In some important scenarios, there is a need to digitally alter the appearance of eyes in a
way that changes the apparent direction of the gaze. These scenarios include gaze correction
in video-conferencing, as the intent and the attitude of a person engaged in a videochat is
distorted by the displacement between the face on her screen and the webcamera (e.g. while
the intent might be to gaze into the eyes of the other person, the apparent gaze direction in a
transmitted frame will be downwards). Another common scenario that needs gaze redirection
is “talking head”-type videos, where a speaker reads the text appearing alongside the camera
but it is desirable to redirect her gaze into the camera. One more example includes editing
of photos (e.g. group photos) and movies (e.g. during postproduction) in order to make gaze
direction consistent with the ideas of the photographer or the movie director.

All of these scenarios put very high demands on the realism of the result of the digital
alteration, and some of them also require real-time or near real-time operation. To meet
these challenges, we develop a new deep feed-forward architecture that combines several
principles of operation (coarse-to-fine processing, image warping, intensity correction). The
architecture is trained end-to-end in a supervised way using a specially collected dataset that
depicts the change of the appearance under gaze redirection in real life.

Qualitative and quantitative evaluation demonstrate that our deep architecture can syn-
thesize very high-quality eye images, as required by the nature of the applications, and does
so at several frames per second. Compared to several recent methods for deep image syn-
thesis, the output of our method contains larger amount of fine details (comparable to the
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Figure 4.2. Examples of reconstructions produced by a modern encoder-
decoder architecture (following the approach in (Kulkarni et al., 2015b; Reed
et al., 2015; Ghodrati et al., 2015)) trained on our data. In each pair, the left
image is the input and the right is the output. Despite our efforts, a noticeable
loss of fine-scale details and “regression-to-mean” effect make the result not
good enough for most applications of gaze manipulation. Similar problems can
be observed in (Kulkarni et al., 2015b; Reed et al., 2015; Ghodrati et al., 2015).

amount in the input image). The quality of the results also compares favorably with the
results of a random forest-based gaze redirection method (Kononenko and Lempitsky, 2015).
Our approach has thus both practical importance in the application scenarios outlined above,
and also contributes to an actively-developing field of image generation with deep models.

4.2. Related Work

4.2.1. Deep Learning and Image Synthesis.

Image synthesis using neural networks is receiving growing attention (Mahendran and
Vedaldi, 2015; Dosovitskiy et al., 2015; Goodfellow et al., 2014; Denton et al., 2015; Gatys
et al., 2015; Gregor et al., 2015). More related to our work are methods that learn to trans-
form input images in certain ways (Kulkarni et al., 2015b; Ghodrati et al., 2015; Reed et al.,
2015). These methods proceed by learning internal compact representations of images using
encoder-decoder (autoencoder) architectures, and then transforming images by changing their
internal representation in a certain way that can be trained from examples. We have con-
ducted numerous experiments following this approach combining standard autoencoders with
several ideas that have reported to improve the result (convolutional and up-convolutional
layers (Zeiler and Fergus, 2014; Dosovitskiy et al., 2015), adversarial loss (Goodfellow et al.,
2014), variational autoencoders (Kingma and Ba, 2014)). However, despite our efforts (see
Figure 4.2), we have found that for large enough image resolution, the outputs of the net-
work lacked high-frequency details and were biased towards typical mean of the training data
(“regression-to-mean” effect). This is consistent with the results demonstrated in (Kulkarni
et al., 2015b; Ghodrati et al., 2015; Reed et al., 2015) that also exhibit noticeable blurring.
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Compared to Kulkarni et al. (2015b); Ghodrati et al. (2015); Reed et al. (2015), our
approach can learn to perform a restricted set of image transformations. However, the
perceptual quality and, in particular, the amount of high-frequency details is considerably
better in the case of our method due to the fact that we deliberately avoid any input data
compression within the processing pipeline. This is crucial for the class of applications that
we consider.

Finally, the idea of spatial warping that lies in the core of the proposed system has been
previously suggested in (Jaderberg et al., 2015). In relation to (Jaderberg et al., 2015), parts
of our architecture can be seen as spatial transformers with the localization network directly
predicting a sampling grid instead of low-dimensional transformation parameters.

4.2.2. Gaze Manipulation.

An early work on monocular gaze manipulation (Wolf et al., 2010) did not use machine
learning, but relied on pre-recording a number of potential eye replacements to be copy-
pasted at test time. The idea of gaze redirection using supervised learning was suggested
in (Kononenko and Lempitsky, 2015), which also used warping fields that in their case were
predicted by machine learning. Compared to their method, we use deep convolutional net-
work as a predictor, which allows us to achieve better result quality. Furthermore, while
random forests in (Kononenko and Lempitsky, 2015) are trained for a specific angle of gaze
redirection, our architecture allows the redirection angle to be specified as an input, and to
change continuously in a certain range. Most practical applications discussed above require
such flexibility. Finally, the realism of our results is boosted by the lightness adjustment
module, which has no counterpart in the approach of Kononenko and Lempitsky (2015).

Less related to our approach are methods that aim to solve the gaze problem in video-
conferencing via synthesizing 3D rotated views of either the entire scene (Okada et al., 1994;
Criminisi et al., 2003; Yang and Zhang, 2002) or of the face (that is subsequently blended
into the unrotated head) (Kuster et al., 2012; Giger et al., 2014). Out of this works only
(Giger et al., 2014) works in a monocular setting without relying on extra imaging hardware.
The general problem with the novel view synthesis is how to fill disoccluded regions. In cases
when the 3D rotated face is blended into the image of the unrotated head (Kuster et al.,
2012; Giger et al., 2014), there is also a danger of distorting head proportions characteristic
to a person.
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Figure 4.3. The proposed system takes an input eye region, feature points
(anchors) as well as a correction angle α and sends them to the multi-scale
neural network (see Section 4.3.2) predicting a flow field. The flow field is then
applied to the input image to produce an image of a redirected eye. Finally, the
output is enhanced by processing with the lightness correction neural network
(see Section 4.3.4).

4.3. The Model

In this section, we discuss the architecture of our deep model for resynthesis. The model is
trained on pairs of images containing rectangular eye regions before and after redirection.
The redirection angle serves as an additional input parameter that is provided both during
training and at test time.

As in (Kononenko and Lempitsky, 2015), the bulk of gaze redirection is accomplished via
warping the input image (Figure 4.3). The task of the network is therefore the prediction of
the warping field. This field is constructed in two stages in a coarse-to-fine manner, where
the decisions at the fine scale are being informed by the result of the coarse stage. Beyond
coarse-to-fine warping, the photorealism of the result is improved by performing pixel-wise
brightness correction where the amount of correction is again predicted by the network.
All operations outlined above are implemented in a single feed-forward architecture and are
trained jointly end-to-end.

We now provide more details on each of the stages outlined above, starting with a de-
scription of the data used to train the architecture.

4.3.1. Data Preparation

At training time, our dataset allows us to mine pairs of images containing eyes of the same
person looking in two different directions separated by a known angle α. The head pose, the
lighting, and all other nuisance parameters are (approximately) the same between the two
images in the pair. Following Kononenko and Lempitsky (2015) (with some modifications),
we extract the image parts around each of the eye and resize them to a characteristic scale.
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For simplicity of explanation, let us assume that we need to handle left eyes only (the right
eyes can be handled at training and at test times via mirroring).

To perform the extraction, we employ an external face alignment library (Xiong and Torre,
2013) producing, among other things, N = 7 feature points {(xanchori , yanchori ) | i = 1, . . . , N}
for the eye (six points along the edge and also the pupil center). Next, we compute a tight
axis-aligned bounding box B′ of the points in the input image. We enlarge B′ to the final
bounding-box B using a characteristic radius R that equals the distance between the corners
of an eye. The size of B is set to 0.8R× 1.0R. We then cut out the interior of the estimated
box from the input image, and also from the output image of the pair (using exactly the same
bounding box coordinates). Both images are then rescaled to a fixed size (W ×H = 51× 41
in our experiments). The resulting image pair serves as a training example for the learning
procedure (Figure 4.5-Right).

4.3.2. Warping Modules

Each of the two warping modules receives the following inputs: the image, the position of
the feature points, and the redirection angle. All inputs are expressed as maps as discussed
below, and the architecture of the warping modules is thus “fully-convolutional”, including
several convolutional layers interleaved with Batch Normalization layers (Ioffe and Szegedy,
2015) and ReLU non-linearities (the actual configuration is shown in Figure 4.10). To preserve
the resolution of the input image, we use ‘SAME’-mode convolutions (with zero padding), set
all strides to one, and avoid using max-pooling.

Coarse warping. The last convolutional layer of the first (half-scale) warping module pro-
duces a pixel-flow field (a two-channel map), which is then upsampled (giving Dcoarse(I, α))
and used to warp the input image by means of a bilinear sampler S (Jaderberg et al., 2015;
Oquab, 2015) that finds the coarse estimate:

Ocoarse = S (I,Dcoarse(I, α)) . (4.3.1)

Here, the sampling procedure S is defined as:

Ocoarse(x, y, c) = I{x+ Dcoarse(I, α)(x, y, 1), y + Dcoarse(I, α)(x, y, 2), c} , (4.3.2)

where c corresponds to a color channel (R,G, or B), and the curly brackets correspond to
bilinear interpolation of I(·, ·, c) at a real-valued position. The operation (4.3.1) is piecewise
differentiable (Jaderberg et al., 2015).

Fine warping. In the fine warping module, the rough image estimate Ocoarse and the
upsampled low-resolution flow Dcoarse(I, α) are concatenated with the input data (the image,
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the angle encoding, and the feature point encoding) at the original scale and sent to the
1×-scale network which predicts another two-channel flow Dres that amends the half-scale
pixel-flow (additively (He et al., 2015a)):

D(I, α) = Dcoarse(I, α) + Dres(I, α,Ocoarse,Dcoarse(I, α)) , (4.3.3)

The amended flow is then used to obtain the final output (again, via bilinear sampler):

O = S (I,D(I, α)) . (4.3.4)

The purpose of the coarse-to-fine processing is two-fold. The half-scale (coarse) module
effectively increases the receptive field of the model resulting in a flow that moves larger
structures in a more coherent way. Secondly, the coarse module gives a rough estimate of
how a redirected eye would look like. This is useful for locating problematic regions which
can only be fixed by a neural network operating at a finer scale.

4.3.3. Input Encoding

As discussed above, alongside the raw input image, the warping modules also receive the
information about the desired redirection angle and feature points also encoded as image-
sized feature maps.

Embedding the angle. Similarly to Ghodrati et al. (2015), we treat the correction angle
as an attribute and embed it into a higher dimensional space using a multi-layer perceptron
Fangle(α) with ReLU non-linearities. The precise architecture is FC(16) → ReLU → FC(16)
→ ReLU. Unlike Ghodrati et al. (2015), we do not output separate features for each spatial
location but rather opt for a single position-independent 16-dimensional vector. The vector is
then expressed as 16 constant maps that are concatenated into the input map stack. During
learning, the embedding of the angle parameter is also updated by backpropagation.

Embedding the feature points. Although in theory a convolutional neural network of
an appropriate architecture should be able to extract necessary features from the raw input
pixels, we found it beneficial to further augment 3 color channels with additional 14 feature
maps containing information about the eye anchor points.

In order to get the anchor maps, for each previously obtained feature point located at
(xanchori , yanchori ), we compute a pair of maps:

∆i
x[x, y] = x− xanchori ,

∆i
y[x, y] = y − yanchori ,

∀(x, y) ∈ {0, . . . ,W} × {0, . . . , H} , (4.3.5)
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Input CFW + LCM Mask GT

Figure 4.4. Visualization of three challenging redirection cases where Light-
ness Correction Module helps considerably compared to the system based
solely on coarse-to-fine warping (CFW) which is having difficulties with ex-
panding the area to the left of the iris. The ‘Mask’ column shows the soft
mask corresponding to parts where lightness is increased. Lightness correc-
tion fixes problems with inpainting disoccluded eye-white, and what is more
emphasizes the specular highlight increasing the perceived realism of the result.

where W,H are width and height of the input image respectively. The embedding give
the network “local” access to similar features as used by decision trees in (Kononenko and
Lempitsky, 2015).

Ultimately, the input map stack consists of 33 maps (RGB + 16 angle embedding maps
+ 14 feature point embedding maps).

4.3.4. Lightness Correction Module

While the bulk of appearance changes associated with gaze redirection can be modeled us-
ing warping, some subtle but important transformations are more photometric than geometric
in nature and require a more general transformation. In addition, the warping approach can
struggle to fill in disoccluded areas in some cases.

To increase the generality of the transformation that can be handled by our architecture,
we add the final lightness adjustment module (see Figure 4.3). The module receives the
features computed within the coarse warping and fine warping modules (specifically, the
activations of the third convolutional layer), as well as the image produced by the fine warping
module. The output of the module is a single map M of the same size as the output image
that is used to modify the brightness of the output O using a simple element-wise transform:

Ofinal(x, y, c) = O(x, y, c) · (1−M(x, y)) +M(x, y) , (4.3.6)
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Figure 4.5. Left – dataset collection process. Right – examples of two train-
ing pairs (input image with superimposed feature points on top, output image
in the bottom).

assuming that the brightness in each channel lies in the [0, 1] range. The resulting pixel colors
can thus be regarded as blends between the colors of the warped pixels and the white color.
The actual architecture for the lightness correction module in our experiments is shown in
Figure 4.11.

This idea can be, of course, generalized further to a larger number of colors for admix-
ing, while these colors can be defined either manually or made dataset-dependent or even
image-dependent. Our initial experiments along these directions, however, have not brought
consistent improvement in photorealism in the case of the gaze redirection task.

4.4. Experiments

4.4.1. Dataset

Unfortunately, we are not aware of any publicly available datasets suitable for the gaze
correction task with continuously varying redirection angle. We therefore collect our own
dataset (Figure 4.5). In order to minimize head movement, a person was asked to place her
head in a special stand and track a moving point on the screen in front of the stand. While
the point was moving, a special software was repeatedly taking a headshots with eyes gazing
in different (but known) directions using a webcam mounted in the middle of the screen.
For each person we collected 2-10 sequences each containing about 200 photos. Different
sequences featured various head poses and light conditions. We manually excluded bad
shots, where a person was blinking or where she was not changing gaze direction smoothly
and monotonically. Most of the experiments were done on the dataset of 33 persons containg
98 sequences in total. Unless noted otherwise, we train the model for vertical gaze redirection
in the range between −30 and 30.
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4.4.2. Training Procedure

The model was trained end-to-end on 128-sized batches using Adam optimizer (Kingma
and Ba, 2014). We used regular `2-distance between the synthesized output Ooutput and the
ground-truth Ogt as the objective function. We tried to improve over this simple baseline in
several ways. First, we tried to put emphasis on the actual eye region (not the rectangular
bounding-box) by adding more weight to the corresponding pixels but were not able to get
any significant improvements. Our earlier experiments with adversarial loss (Goodfellow
et al., 2014) were also inconclusive. As the residual flow predicted by the 1×-scale module
tends to be quite noisy, we attempted to smoothen the flow-field by imposing a total variation
penalty. Unfortunately, this resulted in a slightly worse `2-loss on the test set.

Sampling training pairs. We found that biasing the selection process for more difficult
and unusual head poses and bigger redirection angles improved the results. For this reason,
we used the following sampling scheme aimed at reducing the dataset imbalance. We split
all possible correction angles (that is, the range between −30 and 30) into 15 bins. A set
of samples falling into a bin is further divided into “easy” and “hard” subsets depending on
the input’s tilt angle (an angle between the segment connecting two most distant eye feature
points and the horizontal baseline). A sample is considered to be “hard” if its tilt is > 8.
This subdivision helps to identify training pairs corresponding to the rare head poses. We
form a training batch by picking 4 correction angle bins uniformly at random and sampling
24 “easy” and 8 “hard” examples for each of the chosen bins.

4.4.3. Quantitative Evaluation

We evaluate the proposed approach on our in-house dataset. We randomly split the
initial set of subjects into a development (26 persons) and a test (7 persons) sets. Several
methods were compared using the mean square error (MSE) between the synthesized and
the ground-truth images extracted using the procedure described in Section 4.3.1.

Models. We consider 6 different models:
1. A system based on Structured Random Forests (RF) proposed in (Kononenko and

Lempitsky, 2015). We train it for 15 redirection only using the reference implemen-
tation.

2. A single-scale (SS (15 only)) version of our method with a single warping module
operating on the original image scale that is trained for 15 redirection only.

3. A single-scale (SS) version of our method with a single warping module operating at
the original image scale.
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Figure 4.6. Ordered errors for 15 redirection. Our multi-scale models (MS,
CFW, CFW+ LCM) show results that are comparable or superior the Random
Forests (RF) (Kononenko and Lempitsky, 2015).

4. A multi-scale (MS) network without coarse warping. It processes inputs at two scales
and uses features from both scales to predict the final warping transformation.

5. A coarse-to-fine warping-based system described in Section 4.3 (CFW ).
6. A coarse-to-fine warping-based system with a lightness correction module (CFW +

LCM ).
The latter four models are trained for the task of vertical gaze redirection in the range. We
call such models unified (as opposed to single angle correction systems).

15 correction. In order to have the common ground with the existing systems, we first
restrict ourselves to the case of 15 gaze correction. Following Kononenko and Lempitsky
(2015), we present a graph of sorted normalized errors (Figure 4.6), where all errors are
divided by the MSE obtained by an input image and sorted in the increasing order.

It can be seen that the unified multi-scale models are, in general, comparable or superior
to the RF-based approach in (Kononenko and Lempitsky, 2015). Interestingly, the lightness
adjustment extension (Section 4.3.4) is able to show quite significant improvements for the
samples with low MSE. Those are are mostly cases similar to shown in Figure 4.4. It is also
worth noting that the single-scale model trained for this specific correction angle consistently
outperforms (Kononenko and Lempitsky, 2015), demonstrating the power of the proposed
architecture. However, we note that results of the methods can be improved using additional
registration procedure, one example of which is described in Section 4.4.6.

Arbitrary vertical redirection. We also compare different variants of the unified networks
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Figure 4.7. Distribution of errors over different correction angles.

and plot the error distribution over different redirection angles (Figure 4.7). For small angles,
all the methods demonstrate roughly the same performance, but as we increase the amount of
correction, the task becomes much harder (which is reflected by the growing error) revealing
the difference between the models. Again, the best results are achieved by the LCM model,
which is followed by the multi-scale networks making use of the coarse warping.

4.4.4. Perceptual Quality

We demonstrate the results of redirection on 15 degrees upwards in Figure 4.8. CFW-
based systems produce the results visually closer to the ground truth than RF. The effect of
the lightness correction is pronounced: on the input image with the lack of white Random
Forest and CFW fail to get output with sufficient eye-white and copy-paste red pixels instead,
whereas CFW+LCM achieve good correspondence with the ground-truth. However, the
downside effect of the LCM could be blurring/lower contrast because of the multiplication
procedure (4.3.6).

User study. To confirm the improvement corresponding to different aspects of the proposed
models, which may not be adequately reflected by the `2-measure, we performed an informal
user study enrolling 16 subjects unrelated to computer vision and comparing four methods
(RF, SS, CFW, CFW+LCM).

A user was shown 160 quadruplets of images, each containing one image obtained with one
of the methods, and three unprocessed real images. Each of the methods in the comparison
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Input RF CFW +LCM GT Input RF CFW +LCM GT

Figure 4.8. Sample results on a hold-out. The full version of our model
(CFW+LCM) outperforms other methods.

was represented by 40 randomly sampled outputs. The task of the subject was to click on
the artificial (resynthesized) image as quickly as possible.

We present various collected statistics in the Table 4. I. Poor algorithms are quite easy to
detect and therefore the number of correct answers will be close to 40. Better systems force
the user to resort to random guessing resulting in about 10 correct clicks on average. We
also recorded the time that the subject spent deciding on the answer — one would expect
higher quality outputs to decrease the click rate.

Notably, in the conducted user study, the gap between methods is much wider then
it might seem from the MSE-based comparisons, with CFW+LCM method outperforming
others very considerably, especially when taking into account the timings.

4.4.5. Horizontal Redirection

While most of our experiments were about vertical gaze redirection, the same models
can be trained to redirect the gaze horizontally (and, with trivial generalization, by a 2D
family of angles). In Figure 4.9, we provide qualitative results of CFW+LCM for horizontal
redirection. Some examples showing the limitations of our method are given. The limitations
are concerned with cases with severe disocclusions, where large areas have to be filled by the
network.
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Table 4. I. Results of the user study. Each of the 16 test subjects was
presented with 160 quadruplets containing 3 real images and one synthesized
image. The task was to click on the latter as quickly as possible. The first
three sections of the table contain the numbers of correct guesses (the smaller
the better). The last row shows the mean time the participants spent to make
a guess (the larger the better). Our full system (coarse-to-fine warping with
lightness correction) outperforms the baselines. See Section 4.4.4 and (Ganin
et al., 2016b) for details.

RF SS CFW +LCM

Correctly guessed (out of 40)

Mean 36.1 33.8 28.8 25.3
Median 37 35 29 25
Max 40 39 38 34
Min 26 22 20 16

Correctly guessed within 2 seconds (out of 40)

Mean 26.4 21.1 11.7 8.0
Median 28.5 20.5 10 8
Max 35 33 23 17
Min 13 11 3 0

Correctly guessed within 1 second (out of 40)

Mean 8.1 4.4 1.6 1.1
Median 6 3 1 1
Max 20 15 7 5
Min 0 0 0 0

Mean time to make a guess

Mean time, sec 1.89 2.30 3.60 3.96

We provide more qualitative results on the project webpage (Ganin et al., 2016b).

4.4.6. Incorporating registration.

We found that results can be further perceptually improved (see (Ganin et al., 2016b))
if the objective is slightly modified to take into account misalignment between inputs and
ground-truth images. To that end, we enlarge the bounding-box B that we use to extract the
output image of a training pair by k = 3 pixels in all the directions. With this modification,
Ogt now has the size of (H + 2k)× (W + 2k), the new objective is defined as:

L(Ooutput, Ogt) = min
i,j

dist (Ooutput, Ogt[i : i+H, j : j +W ]) , (4.4.1)

where dist(·) can be either `2 or `1-distance (the latter giving slightly sharper results), and
Ogt[i : i+H, j : j+W ] corresponds to a H×W crop of Ogt with top left corner at the position
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Figure 4.9. Horizontal redirection with a model trained for both vertical
and horizontal gaze redirection. For the first six rows the angle varies from
−15 to 15 relative to the central (input) image. The last two rows push the
redirection to extreme angles (up to 45) breaking our model down.

(i, j). Being an alternative to the offline registration of input/ground-truth pairs (Kononenko
and Lempitsky, 2015) which is computationally prohibitive in large-scale scenarios, this small
trick greatly increases robustness of the training procedure against small misalignments in a
training set.

4.5. Discussion

We have suggested a method for realistic gaze redirection, allowing to change the gaze con-
tinuously in a certain range. At the core of our approach is the prediction of the warping
field using a deep convolutional network. We embed redirection angle and feature points
as image-sized maps and suggest “fully-convolutional” coarse-to-fine architecture of warping
modules. In addition to warping, photorealism is increased using lightness correction mod-
ule. Quantitative comparison of MSE-error, qualitative examples and a user study show the
advantage of suggested techniques and the benefit of their combination within an end-to-end
learnable framework.
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Our system is reasonably robust against different head poses (e.g., see Figure 4.4) and
deals correctly with the situations where a person wears glasses (see (Ganin et al., 2016b)).
Most of the failure modes (e.g., corresponding to extremely tilted head poses or large redi-
rection angles involving disocclusion of the different parts of an eye) are not inherent to
the model design and can be addressed by augmenting the training data with appropriate
examples.

We concentrated on gaze redirection, although our approach might be extended for other
similar tasks, e.g., resynthesis of faces. In contrast with the autoencoder-based approach,
our architecture does not compress data to a representation with lower explicit or implicit
dimension, but directly transforms the input image. Our method thus might be better suited
for fine detail preservation, and less prone to the “regression-to-mean” effect.

The computational performance of our method is up to 20 fps on a mid-range consumer
GPU (NVIDIA GeForce-750M), which is however slower than the competing method of
(Kononenko and Lempitsky, 2015) capable of achieving a similar speed on CPU. Our models
are however much more compact than forests from (Kononenko and Lempitsky, 2015) (250
Kb vs 30-60 Mb in our comparisons), while also being universal. We are currently working
on the unification of the two approaches.

Speed optimization of the proposed system is another topic for future work. Finally, we
plan to further investigate non-standard loss functions for our architectures (e.g. the one
proposed in Section 4.4.6), as the `2-loss is not closely enough related to perceptual quality
of results (as highlighted by our user study).
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Figure 4.10. The basic warping architecture Figure 4.10a takes an input
eye region augmented with eye feature points information (input) as well as
a correction angle and produces an image of the redirected eye. The model
contains three main blocks: angle embedding module (embed angle) calculat-
ing a vector representation of the correction angle and two warping modules
(process 0.5×-scale Figure 4.10b and process 1×-scale Figure 4.10c) pre-
dicting and applying pixel-flow to the input image.
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Figure 4.11. Lightness Correction Module increases lightness of selected
regions. Figure 4.11a shows the actual architecture of the module. Multi-
scale features are processed by the convolutional neural network presented in
Figure 4.11b.
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PROLOGUE TO THE THIRD ARTICLE

Article Details

Unsupervised Domain Adaptation by Backpropagation. Yaroslav Ganin and Victor
Lempitsky. Proceedings of the 32nd International Conference on Machine Learning (ICML
2015).

Domain-adversarial Training of Neural Networks. Yaroslav Ganin, Evgeniya Usti-
nova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand,
and Victor Lempitsky. The Journal of Machine Learning Research (JMLR 2016).

Personal Contributions. The idea to use two subnetworks following opposite gradient
updates in order to obtain domain-invariant features was first brought up by Victor Lempitsky
in the fall of 2013. I joined the project in the spring of 2014 after submitting the edge
detection paper. At that point, Victor Lempitsky had weak evidence that the method worked
(a marginal improvement over a non-adapted baseline on a toy dataset). I became the
lead of the project and reimplemented the algorithm for modern deep learning frameworks
(cuda-convnet and Caffe). I was responsible for the choice of network architectures and for
running all the experiments that ended up in our CVPR 2015 submission. I wrote the initial
draft and Victor Lempitsky helped with the introduction, related work and the conclusion.
He also did general editing of the text.

The paper was rejected mainly because the reviewers were not convinced with the ex-
perimental evaluation of the method. In order to address the concerns, I ran an additional
experiment on the Office dataset (Saenko et al., 2010). It turned out that the way I was
approaching other datasets did not work in this case. At that point, I came across a paper
by Tzeng et al. (2014) and adopted some of the tricks presented there. That allowed me to
obtain the state-of-the-art results beating the competitors by a large margin. An updated
version of the manuscript with new experiments and a brief theoretical justification of the



method (which I came up with after reading (Ben-David et al., 2010)) was accepted to ICML
2015.

Later, we also submitted an extended journal article in collaboration with the researchers
from Université Laval. Pascal Germain was responsible for merging the source papers, and
other co-authors (including me) did general editing. The version of the article presented in
this thesis is modified to only include the results that were obtained by me. I also addressed
the issue with the theory that was accidentally introduced during the merge process.

Context

We started this project at the time when the subfield of domain adaptation was dominated
by non-deep approaches. The only competitive neural network based system that we could
identify was DLID (Chopra et al., 2013). The idea we were working on was not based on
any existing DA algorithms and seemed conceptually simpler. Incidentally, the core of the
proposed method was later rediscovered by Goodfellow et al. in the context of generative
models. It is now commonly referred to as adversarial training.

As in the case of generative adversarial networks, it took some time for our work to
be recognized by the community. For us, the main limiting factor was the quality of the
empirical evaluation in the initial version of the paper. That was the reason for rejection
from CVPR 2015. Interestingly, when we finally managed to demonstrate major benefits
of our approach and had a chance to present the work at ICML 2015, the general audience
seemed not to notice the connection between our method and GANs. The latter was not at all
wide-spread until LapGAN (Denton et al., 2015) and DCGAN (Radford et al., 2015) models
were released. This has changed significantly over time and nowadays the DA literature is
gradually moving away from the terminology we proposed in our paper (e.g., recent works
prefer to use “discriminator” instead of “domain classifier”).

After the paper was accepted to ICML 2015, we were contacted by Hugo Larochelle who
pointed at a similar work that was done by his colleagues at Université Laval. Although that
work was published later than our project and did not have strong empirical results, we still
felt that we needed to share the credit and decided to submit a joint journal article to JMLR.
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Contributions

To our knowledge, this work was one of the first (unfortunately, not the first published) to
successfully apply adversarial training of neural networks. We devised a simple and effective
domain adaptation method that demonstrated significant improvements over the state-of-
the-art on standard DA datasets. Although in our experiments we primarily consider visual
data, the approach is general and can be extended to a wide range of modalities.

Recent Developments

Our paper paved a way for many recent advances in domain adaptation and beyond. In
this section, we are going to mention several interesting variations of the original domain-
adversarial approach.

Inspired by the work on distilling deep models (Hinton et al., 2015), Tzeng et al. (2015)
tackle the problem of class misalignment by using semi-supervised training with “soft-labels”.
They also introduce the notion of domain confusion thus expanding on the list of adversarial
objectives considered in (Ganin and Lempitsky, 2015). Bousmalis et al. (2016) hypothesize
that explicitly modeling what is unique to each domain can improve a network’s ability to
extract domain-invariant representations. Their approach implements this idea by employing
a domain-specific residual orthogonal to the features of interest. The subsequent work from
the same group of researchers (Bousmalis et al., 2017) explores DATNN in the pixel-space.
Tzeng et al. (2017) unify the existing domain-adversarial approaches in a single flexible
framework. They confirm the observation of Rozantsev et al. (2016) that using separate
feature extractors for each of the domains may significantly improve the performance.

Most recently, Shu et al. (2018) propose a two-stage procedure that exploits the cluster
assumption (Chapelle and Zien, 2005). The idea here is to push the decision boundary from
data-dense regions in the target domain. Despite the simplicity of the approach, the method
manages to achieve state-of-the-art results on all the standard datasets.

DATNN has also been successfully applied for tasks other than image classification. In
the full journal article (Ganin et al., 2016c), we present additional results on sentiment
analysis and person re-identification. We are also aware that since publication, there have
been several papers using our idea for medical data processing (Purushotham et al., 2017),
speech recognition (Serdyuk et al., 2016), training of deep recurrent networks (Lamb et al.,
2016), and sensitive information removal (Beutel et al., 2017; Feutry et al., 2018), to name a
few.
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Chapter 5

DOMAIN-ADVERSARIAL TRAINING OF NEURAL
NETWORKS

Introduction

The cost of generating labeled data for a new prediction task is often an obstacle for applying
machine learning methods. In particular, this is a limiting factor for the further progress of
deep neural network architectures. Another common problem is that, even when the training
sets are big enough for training large-scale deep models, they may that suffer from the shift in
data distribution from the actual data encountered at “test time”. One important example
is training an image classifier on synthetic or semi-synthetic images, which may come in
abundance and be fully labeled, but which inevitably have a distribution that is different
from real images.

Learning a predictor in the presence of a shift between training and test distributions is
known as domain adaptation (DA). The appeal of the domain adaptation approaches is the
ability to learn a mapping between domains in the situation when the target domain data
are either fully unlabeled (unsupervised domain annotation) or have few labeled samples
(semi-supervised domain adaptation). Below, we focus on the harder unsupervised case,
although the proposed approach (domain-adversarial learning) can be generalized to the
semi-supervised case rather straightforwardly.

Unlike many domain adaptation methods that work with fixed feature representations, we
focus on combining domain adaptation and deep feature learning within one training process.
Our goal is to embed domain adaptation into the process of learning a representation, so
that the final classification decisions are made based on features that are both discriminative
and invariant to the change of domains, i.e., have the same or very similar distributions
in the source and the target domains. In this way, the obtained feed-forward network can
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Figure 5.1. The proposed architecture includes a feature extractor (green)
and a label predictor (blue), which together form a standard feed-forward ar-
chitecture. Unsupervised domain adaptation is achieved by adding a domain
classifier (red) connected to the feature extractor via a gradient reversal layer
(GRL) that multiplies the gradient by a certain negative constant during the
backpropagation-based training. The GRL ensures that the feature distribu-
tions over the two domains are made similar (as indistinguishable as possible
for the domain classifier).

be applicable to the target domain without being hindered by the shift between the two
domains. Our approach is motivated by the theory on domain adaptation (Ben-David et al.,
2006; Blitzer et al., 2008; Ben-David et al., 2010), that suggests that a good representation
for cross-domain transfer is one for which an algorithm cannot learn to identify the domain
of origin of the input observation.

We thus focus on learning features that combine (i) discriminativeness and (ii) domain-
invariance. This is achieved by jointly optimizing the underlying features as well as two
discriminative classifiers operating on these features: (i) the label predictor that predicts
class labels and is used both during training and at test time and (ii) the domain classifier
that discriminates between the source and the target domains during training. While the
parameters of the classifiers are optimized in order to minimize their error on the training set,
the parameters of the underlying deep feature mapping are optimized in order to minimize
the loss of the label classifier and to maximize the loss of the domain classifier. The latter
update thus works adversarially to the domain classifier, and it encourages domain-invariant
features to emerge in the course of the optimization.
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Crucially, we show that all three training processes can be embedded into an appropriately
composed deep feed-forward network, called domain-adversarial neural network (DANN) (il-
lustrated by Figure 5.1) that uses standard layers and loss functions, and can be trained
using standard backpropagation algorithms based on stochastic gradient descent or its mod-
ifications (e.g., SGD with momentum). The approach is generic as a DANN version can be
created for almost any existing feed-forward architecture that is trainable by backpropaga-
tion. In practice, the only non-standard component of the proposed architecture is a rather
trivial gradient reversal layer that leaves the input unchanged during forward propagation
and reverses the gradient by multiplying it by a negative scalar during the backpropagation.

We provide an experimental evaluation of the proposed idea over a range of image clas-
sification tasks, starting with results on traditional deep learning image datasets — such as
MNIST (LeCun et al., 1998) and SVHN (Netzer et al., 2011) — and further testing the
approach against the Office benchmark (Saenko et al., 2010), where domain-adversarial
learning allows obtaining a deep architecture that considerably improves over previous state-
of-the-art accuracy.

5.1. Related work

The general approach of achieving domain adaptation has been explored under many facets.
Over the years, a large part of the literature has focused mainly on the linear hypothesis
(Blitzer et al., 2006; Bruzzone and Marconcini, 2010; Germain et al., 2013; Baktashmotlagh
et al., 2013; Cortes and Mohri, 2014). More recently, non-linear representations have become
increasingly studied, including neural network representations (Glorot et al., 2011a; Li et al.,
2014) and most notably the state-of-the-art mSDA (Chen et al., 2012). That literature has
mostly focused on exploiting the principle of robust representations, based on the denoising
autoencoder paradigm (Vincent et al., 2008).

Concurrently, multiple methods of matching the feature distributions in the source and the
target domains have been proposed for unsupervised domain adaptation. Some approaches
perform this by reweighing or selecting samples from the source domain (Borgwardt et al.,
2006; Huang et al., 2006; Gong et al., 2013), while others seek an explicit feature space
transformation that would map source distribution into the target one (Pan et al., 2011;
Gopalan et al., 2011; Baktashmotlagh et al., 2013). An important aspect of the distribution
matching approach is the way the (dis)similarity between distributions is measured. Here,
one popular choice is matching the distribution means in the kernel-reproducing Hilbert space
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(Borgwardt et al., 2006; Huang et al., 2006), whereas Gong et al. (2012) and Fernando et al.
(2013) map the principal axes associated with each of the distributions.

Our approach also attempts to match feature space distributions, however this is accom-
plished by modifying the feature representation itself rather than by reweighing or geometric
transformation. Also, our method uses a rather different way to measure the disparity be-
tween distributions based on their separability by a deep discriminatively-trained classifier.
Note also that several approaches perform transition from the source to the target domain
(Gopalan et al., 2011; Gong et al., 2012) by changing gradually the training distribution.
Among these methods, (Chopra et al., 2013) does this in a “deep” way by the layerwise
training of a sequence of deep autoencoders, while gradually replacing source-domain sam-
ples with target-domain samples. This improves over a similar approach of Glorot et al.
(2011a) that simply trains a single deep autoencoder for both domains. In both approaches,
the actual classifier/predictor is learned in a separate step using the feature representation
learned by autoencoder(s). In contrast to Glorot et al. (2011a); Chopra et al. (2013), our
approach performs feature learning, domain adaptation and classifier learning jointly, in a
unified architecture, and using a single learning algorithm (backpropagation). We therefore
argue that our approach is simpler (both conceptually and in terms of implementation). Our
method also achieves considerably better results on the popular Office benchmark.

While the above approaches perform unsupervised domain adaptation, there are ap-
proaches that perform supervised domain adaptation by exploiting labeled data from the
target domain. In the context of deep feed-forward architectures, such data can be used to
“fine-tune” the network trained on the source domain (Zeiler and Fergus, 2014; Oquab et al.,
2014; Babenko et al., 2014). Our approach does not require labeled target-domain data. At
the same time, it can easily employ such data when it is available.

An idea related to ours is described in a concurrent work by Goodfellow et al. (2014).
While their goal is quite different (building deep generative networks that can synthesize
samples), the way they measure and minimize the discrepancy between the distribution of
the training data and the distribution of the synthesized data is very similar to the way
our architecture measures and minimizes the discrepancy between feature distributions of
the two domains. Moreover, Goodfellow et al. (2014) mention the problem of saturating
sigmoids which may arise at the early stages of training due to the significant dissimilarity
of the domains. The technique they use to circumvent this issue (i.e., the “non-saturating”
objective) is directly applicable to our method.

Also, recent and concurrent reports by Tzeng et al. (2014); Long and Wang (2015) fo-
cus on domain adaptation in feed-forward networks. Their set of techniques measures and
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minimizes the distance between the data distribution means across domains (potentially, af-
ter embedding distributions into RKHS). Their approach is thus different from our idea of
matching distributions by making them indistinguishable for a discriminative classifier. Be-
low, we compare our approach to Tzeng et al. (2014); Long and Wang (2015) on the Office
benchmark. Another approach to deep domain adaptation, which is arguably more different
from ours, has been developed in parallel by Chen et al. (2015).

From a theoretical standpoint, our approach is directly derived from the seminal theo-
retical works by Ben-David et al. (Ben-David et al., 2006, 2010). Indeed, DANN directly
optimizes the notion of H∆H-divergence. We do note the work of Huang and Yates (2012),
in which HMM representations are learned for word tagging using a posterior regularizer that
is also inspired by Ben-David et al. (2010). In addition to the tasks being different — Huang
and Yates (2012) focus on word tagging problems — we argue that DANN learning objective
more closely optimizes the H∆H-divergence, with Huang and Yates (2012) relying on cruder
approximations for efficiency reasons.

5.2. Domain Adaptation

We consider classification tasks where X is the input space and Y = {0, 1, . . . , L−1} is the
set of L possible labels. Moreover, we have two different distributions over X×Y , called the
source domain DS and the target domain DT. An unsupervised domain adaptation learning
algorithm is then provided with a labeled source sample S drawn i.i.d from DS, and an
unlabeled target sample T drawn i.i.d from DXT , where DXT is the marginal distribution of DT

over X :
S = {(xsi, ysi)}ni=1 ∼ (DS)n ; T = {xti}Ni=n+1 ∼ (DXT)n′ ,

with N = n+ n′ being the total number of samples. The goal of the learning algorithm is to
build a classifier η : X → Y with a low target risk

RDT(η) def= P(xt,yt)∼DT

(
η(xt) 6= yt

)
,

while having no information about the labels of DT.

5.2.1. Domain Divergence

To tackle the challenging domain adaptation task, many approaches bound the target
error by the sum of the source error and a notion of distance between the source and the
target distributions. These methods are intuitively justified by a simple assumption: the
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source risk is expected to be a good indicator of the target risk when both distributions are
similar. Several notions of distance have been proposed for domain adaptation (Ben-David
et al., 2006; Blitzer et al., 2008; Ben-David et al., 2010; Mansour et al., 2009a,b; Germain
et al., 2013). In this paper, we focus on the H∆H-divergence used by Blitzer et al. (2008);
Ben-David et al. (2010), and based on the earlier work of Kifer et al. (2004). Note that
following Blitzer et al. (2008); Ben-David et al. (2010) we assume in Definition 5.1 below that
the hypothesis class H is a (discrete or continuous) set of binary classifiers η : X → {0, 1}.1
Definition 5.1 (Taken from (Blitzer et al., 2008; Ben-David et al., 2010)). Given two domain
distributions DXS and DXT over X , and a hypothesis class H, the H∆H-divergence between
DXS and DXT is

dH∆H(DXS ,DXT) def= 2 sup
η∈H∆H

∣∣∣∣∣Pxs∼DXS

[
η(xs) = 1

]
− Pxt∼DXT

[
η(xt) = 1

] ∣∣∣∣∣ ,
where H∆H = {η(x)⊕ η′(x) | η, η′ ∈ H} with ⊕ denoting the XOR operator.

Each hypothesis η ∈ H∆H labels as positive all points x on which a given pair of hy-
pothese in H disagree. That is, the H∆H-divergence relies on the capacity of the hypothesis
class H∆H to distinguish between examples generated by DXS from examples generated by
DXT . Blitzer et al. (2008); Ben-David et al. (2010) proved that, for a symmetric hypothesis
class H (i.e., if η ∈ H then (1 − η) ∈ H), one can compute the empirical H∆H-divergence
between two samples S ∼ (DXS )n and T ∼ (DXT)n′ by using the following formula:

d̂H∆H(S, T ) def= 2
(

1− min
η∈H∆H

[
1
n

n∑
i=1
1[η(xsi)=0] + 1

n′

N∑
i=n+1

1[η(xti)=1]
])

, (5.2.1)

where 1[a] is the indicator function.

5.2.2. Proxy Distance

Adopting ideas from (Ben-David et al., 2006), Blitzer et al. (2008); Ben-David et al.
(2010) suggested that, even if it is generally hard to compute d̂H∆H(S, T ) exactly (e.g., when
H is the space of linear classifiers on X ), we can easily approximate it by running a learning
algorithm on the problem of discriminating between source and target examples. To do so,
we construct a new dataset U = {(xsi, 0)}ni=1 ∪ {(xti, 1)}Ni=n+1, where the examples of the
source sample are labeled 0 and the examples of the target sample are labeled 1. Then, the
risk of the classifier trained on the new dataset U approximates the “min” part of (5.2.1).
Given a generalization error ε on the problem of discriminating between source and target

1As mentioned by Ben-David et al. (2006), the same analysis holds for the multiclass setting.
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examples, the H∆H-divergence is then approximated by

ζ(U) = 2 (1− 2ε) . (5.2.2)

Analogous to Ben-David et al. (2006), we call the value ζ(U) the proxy H∆H-distance.

5.2.3. Generalization Bound on the Target Risk

The work of Blitzer et al. (2008) and Ben-David et al. (2010) also showed that the H∆H-
divergence dH∆H(DXS ,DXT) is upper bounded by its empirical estimate d̂H∆H(S, T ) plus a
constant complexity term that depends on the VC dimension of H and the size of samples
S and T . By combining this result with a similar bound on the source risk, the following
theorem is obtained.
Theorem 5.1 (Blitzer et al., 2008; Ben-David et al., 2010). Let H be a hypothesis class of VC
dimension d. With probability 1 − δ over the choice of samples S ∼ (DS)n and T ∼ (DXT)n,
for every η ∈ H:

εT (η) ≤ ε̂S +
√

4
n

(
d log 2 e n

d
+ log 4

δ

)
+ 1

2 d̂H∆H(S, T ) + 4
√

1
n

(
2d log 2n+ log 2

δ

)
+ β,

with β ≥ inf
η∗∈H

[εS(η∗) + εT (η∗)], and ε̂S(η) = 1
n

∑
(x,y)∈S

1[η(x) 6=y] is the empirical source risk.

The previous result tells us that εT (η) can be low only when the β term is low, i.e., only
when there exists a classifier that can achieve a low risk on both distributions. It also tells us
that in order to find a classifier with a small εT (η) in a given class of fixed VC dimension, the
learning algorithm should minimize (in that class) a trade-off between the source risk ε̂S(η)
and the empirical H∆H-divergence between S andf T . As pointed out by Ben-David et al.
(2006), a strategy to control the H∆H-divergence is to find a representation of the examples
where both the source and the target domain are as indistinguishable as possible. Under
such a representation, a hypothesis with a low source risk will, according to Theorem 5.1,
perform well on the target data.

5.3. Domain-Adversarial Neural Networks

An original aspect of our approach is to explicitly implement the idea exhibited by Theo-
rem 5.1 into a neural network classifier. That is, to learn a model that can generalize well
from one domain to another, we ensure that the internal representation of the neural network
contains no discriminative information about the origin of the input (source or target), while
preserving a low risk on the source (labeled) examples.
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In this section, we detail the proposed approach for incorporating a “domain adaptation
component” to neural networks. We start by developing the idea for the simplest possible
case, i.e., a single hidden layer, fully connected neural network. We then describe how to
generalize the approach to arbitrary (deep) network architectures.

5.3.1. Shallow Neural Networks

Let us first consider a standard neural network (NN) architecture with a single hidden
layer. For simplicity, we suppose that the input space is formed by m-dimensional real
vectors. Thus, X = Rm. The hidden layer Gf learns a function Gf : X → RD that maps an
example into a new D-dimensional representation2, and is parametrized by a matrix-vector
pair (W,b) ∈ RD×m × RD:

Gf (x; W,b) = σ
(
Wx + b

)
, with σ(a) def=

[
1

1+exp(−ai)

]|a|
i=1

. (5.3.1)

Similarly, the prediction layer Gy learns a function Gy : RD → [0, 1]L that is parametrized
by a pair (V, c) ∈ RL×D × RL:

Gy(Gf (x); V, c) = softmax
(
VGf (x) + c

)
, with softmax(a) def=

[
exp(ai)∑|a|
j=1 exp(aj)

]|a|
i=1

.

Here we have L = |Y|. By using the softmax function, each component of vector Gy(Gf (x))
denotes the conditional probability that the neural network assigns x to the class in Y
represented by that component. Given a source example (xi, yi), the natural classifica-
tion loss to use is the negative log-probability of the correct label: Ly

(
Gy(Gf (xi)), yi

) def=
− log

[
Gy(Gf (x))yi

]
. Training the neural network then leads to the following optimization

problem on the source domain:

min
W,b,V,c

[
1
n

n∑
i=1
Liy(W,b,V, c) + λ ·R(W,b)

]
, (5.3.2)

where Liy(W,b,V, c) = Ly
(
Gy(Gf (xsi; W,b); V, c), yi

)
is a shorthand notation for the pre-

diction loss on the i-th example, and R(W,b) is an optional regularizer that is weighted by
hyper-parameter λ.

The heart of our approach is to design a domain regularizer directly derived from the
H∆H-divergence of Definition 5.1. To this end, we view the output of the hidden layer Gf

((5.3.1)) as the internal representation of the neural network. Thus, we denote the source sam-
ple representations as S(Gf ) def=

{
Gf (xs)

∣∣∣x ∈ S}. Similarly, given an unlabeled sample from

2For brevity of notation, we will sometimes drop the dependence of Gf on its parameters (W,b) and shorten
Gf (x; W,b) to Gf (x).
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the target domain we denote the corresponding representations T (Gf ) def=
{
Gf (xt)

∣∣∣x ∈ T}.
Based on (5.2.1), d̂H∆H

(
S(Gf ), T (Gf )

)
, i.e., the empirical H∆H-divergence of a symmetric

hypothesis class H between samples S(Gf ) and T (Gf ), is given by

2
(

1− min
η∈H∆H

[
1
n

n∑
i=1
I
[
η(Gf (xSi ))=0

]
+ 1
n′

N∑
i=n+1

I
[
η(Gf (xti))=1

]])
. (5.3.3)

Let us consider H as the class of hyperplanes in the representation space. Inspired by the
proxy H∆H-distance ((5.2.2)), we suggest estimating the “min” part of (5.3.3) by a domain
classification layer Gd that learns a logistic regressor Gd : RD → [0, 1], parametrized by a
vector-scalar pair (u, z) ∈ RD×R, that models the probability that a given input is from the
source domain DXS or the target domain DXT (Blitzer et al., 2008; Ben-David et al., 2010).3

Thus,
Gd(Gf (x); u, z) def= σ

(
u>Gf (x) + z

)
. (5.3.4)

Hence, the function Gd(·) is a domain regressor. We define its loss by

Ld
(
Gd(Gf (xi)), di

)
= −di log

[
d(f(xi))

]
− (1−di) log

[
1−d(f(xi))

]
.

where di denotes the binary variable (domain label) for the i-th example, which indicates
whether xi comes from the source distribution (xi ∼ DXS if di = 0) or from the target
distribution (xi ∼ DXT if di = 1).

Recall that for the examples from the source distribution (di = 0), the corresponding
labels yi ∈ Y are known at training time. For the examples from the target domains, we do
not know the labels at training time, and we want to predict such labels at test time. This
enables us to add a domain adaptation term to the objective of (5.3.2), giving the following
regularizer:

R(W,b) = max
u,z

[
− 1
n

n∑
i=1
Lid(W,b,u, z)− 1

n′

N∑
i=n+1

Lid(W,b,u, z
)]
, (5.3.5)

where Lid(W,b,u, z) = Ld
(
Gd(Gf (xsi; W,b); u, z), di). This regularizer seeks to

approximate the H∆H-divergence of (5.3.3), as 2(1 − R(W,b)) is a surrogate for
d̂H∆H

(
S(Gf ), T (Gf )

)
.

In line with Theorem 5.1, the optimization problem given by (5.3.2) and (5.3.5) im-
plements a trade-off between the minimization of the source risk ε̂(·) and the divergence
d̂H∆H(·, ·). The hyper-parameter λ is then used to tune the trade-off between these two
quantities during the learning process.

3We note that for linear Gy, H∆H contains non-linear functions (see Definition 5.1) and therefore linear Gd

may be a crude approximation. We consider non-linear domain classifiers further in the text in Section 5.3.2.
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For learning, we first note that we can rewrite the complete optimization objective of
(5.3.2) as follows:

E(W,V,b, c,u, z) = 1
n

n∑
i=1
Liy(W,b,V, c)−

λ
( 1
n

n∑
i=1
Lid(W,b,u, z) + 1

n′

N∑
i=n+1
Lid(W,b,u, z)

)
.

(5.3.6)

We are seeking the parameters Ŵ, V̂, b̂, ĉ, û, ẑ that deliver a saddle point given by

(Ŵ, V̂, b̂, ĉ) = arg min
W,V,b,c

E(W,V,b, c, û, ẑ) , with (û, ẑ) = arg max
u,z

E(Ŵ, V̂, b̂, ĉ,u, z) .

Thus, the optimization problem involves a minimization with respect to some parameters, as
well as a maximization with respect to the others.

5.3.2. Generalization to Arbitrary Architectures

It is straightforward to generalize the single hidden layer model, presented above, to other
sophisticated architectures, which might be more appropriate for the data at hand. To do so,
let us now use a more general notation for the different components of the model. Namely,
let Gf (·; θf ) be the D-dimensional neural network feature extractor, with parameters θf .
Also, let Gy(·; θy) be the part of the model that computes the network’s label prediction
output layer, with parameters θy, while Gd(·; θd) now corresponds to the computation of the
domain prediction output of the network, with parameters θd. Note that for preserving the
theoretical guarantees of Theorem 5.1, the hypothesis class Hd generated by the domain
prediction component Gd should include the hypothesis class Hy∆Hy, where Hy is induced
by the label prediction component Gy.4

We denote the prediction loss and the domain loss respectively by

Liy(θf , θy) = Ly
(
Gy(Gf (xsi; θf ); θy), yi

)
; Lid(θf , θd) = Ld

(
Gd(Gf (xsi; θf ); θd), di) .

Training DANN then parallels the single layer case and consists in optimizing

E(θf , θy, θd) = 1
n

n∑
i=1
Liy(θf , θy)− λ

( 1
n

n∑
i=1
Lid(θf , θd) + 1

n′

N∑
i=n+1
Lid(θf , θd)

)
, (5.3.7)

by finding the saddle point θ̂f , θ̂y, θ̂d such that

(θ̂f , θ̂y) = arg min
θf ,θy

E(θf , θy, θ̂d) , with θ̂d = arg max
θd

E(θ̂f , θ̂y, θd) . (5.3.8)

4For example, one can set the architecture of Gd to be a layer-by-layer concatenation of two replicas of Gy

followed by a two layer non-linear perceptron aimed to learn the XOR-function.
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A saddle point defined by (5.3.8) can be found as a stationary point of the following
gradient updates:

θf ←− θf − µ

(
∂Liy
∂θf
− λ∂L

i
d

∂θf

)
, (5.3.9)

θy ←− θy − µ
∂Liy
∂θy

, and θd ←− θd − µλ
∂Lid
∂θd

, (5.3.10)

where µ is the learning rate. We use stochastic estimates of these gradients, by sampling
examples from the dataset.

The updates of Equations (5.3.9-5.3.10) are very similar to that of stochastic gradient
descent (SGD) for a feed-forward deep model that is comprised of the feature extractor fed
into the label predictor and into the domain classifier (with loss weighted by λ). The only
difference is that in (5.3.9), the gradients from the class and domain predictors are subtracted,
instead of being summed (the difference is important, as otherwise SGD would try to make
features dissimilar across domains in order to minimize the domain classification loss). Since
SGD — and its many variants, such as Adam (Kingma and Ba, 2014) or RMSProp (Tieleman
and Hinton, 2012) — is the main learning algorithm implemented in most deep learning
libraries, it would be convenient to frame an implementation of our stochastic saddle point
search as variant of SGD.

Fortunately, such a reduction can be accomplished by introducing a special gradient rever-
sal layer (GRL), defined as follows. The gradient reversal layer has no parameters associated
with it. During the forward propagation, the GRL acts as an identity transformation. Dur-
ing the backpropagation however, the GRL takes the gradient from the subsequent level
and changes its sign, i.e., multiplies it by −1, before passing it to the preceding layer. Im-
plementing such a layer using existing object-oriented packages for deep learning is simple,
requiring only to define procedures for the forward propagation (identity transformation),
and backpropagation (multiplication by −1). The layer requires no parameter update.

The GRL as defined above is inserted between the feature extractor Gf and the domain
classifier Gd, resulting in the architecture depicted in Figure 5.1. As the backpropagation
process passes through the GRL, the partial derivatives of the loss that is downstream the
GRL (i.e., Ld) w.r.t. the layer parameters that are upstream the GRL (i.e., θf ) get multiplied
by −1, i.e., ∂Ld

∂θf
is effectively replaced with −∂Ld

∂θf
. Therefore, running SGD in the resulting

model implements the updates of Equations (5.3.9-5.3.10) and converges to a saddle point of
(5.3.7).
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Mathematically, we can treat the gradient reversal layer as a “pseudo-function” R(x)
defined by two (incompatible) equations describing its forward and backpropagation behavior:

R(x) = x , and dR
dx

= −I ,

where I is an identity matrix. Then, we define the objective “pseudo-function” of (θf , θy, θd)
that is being optimized by the gradient descent within our method:

Ẽ(θf , θy, θd) = 1
n

n∑
i=1
Ly
(
Gy(Gf (xi; θf ); θy), yi

)
− (5.3.11)

λ
( 1
n

n∑
i=1
Ld
(
Gd(R(Gf (xi; θf )); θd), di

)
+

1
n′

N∑
i=n+1
Ld
(
Gd(R(Gf (xi; θf )); θd), di

)) (5.3.12)

During training, the feature extractor and the domain regressor (classifier) are competing
against each other, in an adversarial way, over the objective of (5.3.7). For this reason, we
refer to networks trained according to this objective as domain-adversarial neural networks
(DANN). DANN will effectively attempt to learn a hidden layer Gf (·) that maps an example
(either source or target) into a representation allowing the output layer Gy(·) to accurately
classify source samples, but crippling the ability of the domain regressor Gd(·) to detect
whether each example belongs to the source or target domains.

5.4. Experiments

We now perform extensive evaluation of a deep version of DANN on a number of popular
image datasets and their modifications. These include large-scale datasets of small images
popular with deep learning methods, and the Office datasets (Saenko et al., 2010), which
are a de facto standard for domain adaptation in computer vision, but have much fewer
images.

5.4.1. Baselines

The following baselines are evaluated in the experiments of this subsection. The source-
only model is trained without consideration for target-domain data (no domain classifier
branch included into the network). The train-on-target model is trained on the target domain
with class labels revealed. This model serves as an upper bound on DA methods, assuming
that target data are abundant and the shift between the domains is considerable.
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Figure 5.2. Examples of domain pairs used in the experimental evaluation
of DANN.

In addition, we compare our approach against the recently proposed unsupervised DA
method based on subspace alignment (SA) (Fernando et al., 2013), which is simple to setup
and test on new datasets, but has also been shown to perform very well in experimental
comparisons with other “shallow” DA methods. To boost the performance of this baseline,
we pick its most important free parameter (the number of principal components) from the
range {2, . . . , 60}, so that the test performance on the target domain is maximized. To apply
SA in our setting, we train a source-only model and then consider the activations of the last
hidden layer in the label predictor (before the final linear classifier) as descriptors/features,
and learn the mapping between the source and the target domains (Fernando et al., 2013).
Since the SA baseline requires training a new classifier after adapting the features, and in
order to put all the compared settings on an equal footing, we retrain the last layer of the
label predictor using a standard linear SVM (Fan et al., 2008) for all four considered methods
(including ours; the performance on the target domain remains approximately the same after
the retraining).

For the Office dataset (Saenko et al., 2010), we directly compare the performance of
our full network (feature extractor and label predictor) against recent DA approaches using
previously published results.

5.4.2. CNN Architectures and Training Procedure

In general, we compose feature extractor from two or three convolutional layers, picking
their exact configurations from previous works. More precisely, four different architectures
were used in our experiments. The first three are shown in Figure 5.3. For the Office do-
mains, we use pre-trained AlexNet from the Caffe package (Jia et al., 2014). The adaptation
architecture is identical to (Tzeng et al., 2014).5

For the domain adaption component, we use three (x→1024→1024→2) fully connected
layers, except for MNIST where we used a simpler (x→100→2) architecture to speed up

5A 2-layer domain classifier (x→1024→1024→2) is attached to the 256-dimensional bottleneck of fc7.
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(a) MNIST architecture; inspired by the classical LeNet-5 (LeCun et al., 1998).
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(b) SVHN architecture; adopted from Srivastava et al. (2014).
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(c) GTSRB architecture; we used the single-CNN baseline from Cireşan et al. (2012) as our starting
point.

Figure 5.3. CNN architectures used in the experiments. Boxes correspond to
transformations applied to the data. Color-coding is the same as in Figure 5.1.

the experiments. Admittedly, these choices for domain classifier are arbitrary, and better
adaptation performance might be attained if this part of the architecture is tuned.

For the loss functions, we set Ly and Ld to be the logistic regression loss and the binomial
cross-entropy respectively. Following Srivastava et al. (2014) we also use dropout and `2-norm
restriction when we train the SVHN architecture. The learning rate is adjusted during the
stochastic gradient descent using the formula µp = µ0

(1+α·p)β , where p is the training progress
linearly changing from 0 to 1, µ0 = 0.01, α = 10 and β = 0.75 (the schedule was optimized
to promote convergence and low error on the source domain). A momentum term of 0.9 is
also used. The domain adaptation parameter λ is initiated at 0 and is gradually changed to
1 using the schedule λp = 2

1+exp(−γ·p) − 1, where γ was set to 10 in all experiments (the
schedule was not optimized/tweaked). This strategy allows the domain classifier to be less
sensitive to noisy signal at the early stages of the training procedure. Note however that
these λp were used only for updating the feature extractor component Gf . For updating the
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MNIST → MNIST-M:
top feature extractor layer

(a) Non-adapted (b) Adapted

Syn Numbers → SVHN:
last hidden layer of the label predictor

(a) Non-adapted (b) Adapted

Figure 5.4. The effect of adaptation on the distribution of the extracted
features (best viewed in color). The figure shows t-SNE (van der Maaten, 2013)
visualizations of the CNN’s activations (a) when no adaptation was performed
and (b) when our adaptation procedure was incorporated into training. Blue
points correspond to the source domain examples, while red ones correspond
to the target domain.

domain classification component, we used a fixed λ = 1, to ensure that the latter trains as
fast as the label predictor Gy.6

Finally, note that the model is trained on 128-sized batches (images are preprocessed by
the mean subtraction). A half of each batch is populated by the samples from the source
domain (with known labels), the rest constitutes the target domain (with labels not revealed
to the algorithms except for the train-on-target baseline).

5.4.3. Visualizations

We use t-SNE (van der Maaten, 2013) projection to visualize feature distributions at
different points of the network, while color-coding the domains (Figure 5.4). We observe a
strong correspondence between the success of the adaptation in terms of the classification
accuracy for the target domain, and the overlap between the domain distributions in such
visualizations.

5.4.4. Results On Image Datasets

We now discuss the experimental settings and the results. In each case, we train on the
source dataset and test on a different target domain dataset, with considerable shifts between
domains (see Figure 5.2). The results are summarized in Table 5. I and Table 5. II.

MNIST→MNIST-M. Our first experiment deals with the MNIST dataset (LeCun et al.,
1998) (source). In order to obtain the target domain (MNIST-M) we blend digits from the
6Equivalently, one can use the same λp for both feature extractor and domain classification components, but
use a learning rate of µ/λp for the latter.
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Method
Source MNIST Syn Numbers SVHN Syn Signs
Target MNIST-M SVHN MNIST GTSRB

Source only .5225 .8674 .5490 .7900
SA .5690 (4.1%) .8644 (−5.5%) .5932 (9.9%) .8165 (12.7%)
DANN .7666 (52.9%) .9109 (79.7%) .7385 (42.6%) .8865 (46.4%)
Train on target .9596 .9220 .9942 .9980

Table 5. I. Digit image classifications accuracies. The first row corresponds
to the lower performance bound (no adaptation is performed). The last row
corresponds to training on the target data with known labels (upper bound on
the DA performance). For each of the two DA methods (ours and by Fernando
et al. (2013)) we show how much of the gap between the lower and the upper
bounds was covered (in brackets).

Method
Source Amazon DSLR Webcam
Target Webcam Webcam DSLR

GFK(PLS, PCA) (Gong et al., 2012) .197 .497 .6631
SA* (Fernando et al., 2013) .450 .648 .699
DLID (Chopra et al., 2013) .519 .782 .899
DDC (Tzeng et al., 2014) .618 .950 .985
DAN (Long and Wang, 2015) .685 .960 .990
Source only .642 .961 .978
DANN .730 .964 .992

Table 5. II. Accuracy evaluation of different DA approaches on the standard
Office (Saenko et al., 2010) dataset. All methods (except SA) are evaluated
in the “fully-transductive” protocol (some results are reproduced from (Long
and Wang, 2015)).

original set over patches randomly extracted from color photos from BSDS500 (Arbeláez
et al., 2011). This operation is formally defined for two images I1, I2 as Ioutijk = |I1

ijk − I2
ijk|,

where i, j are the coordinates of a pixel and k is a channel index. In other words, an output
sample is produced by taking a patch from a photo and inverting its pixels at positions
corresponding to the pixels of a digit. For a human the classification task becomes only
slightly harder compared to the original dataset (the digits are still clearly distinguishable)
whereas for a CNN trained on MNIST this domain is quite distinct, as the background
and the strokes are no longer constant in intensity. Consequently, the source-only model
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performs poorly. Our approach succeeded at aligning feature distributions (Figure 5.4),
which led to successful adaptation results (considering that the adaptation is unsupervised).
At the same time, the improvement over source-only model achieved by subspace alignment
(SA) (Fernando et al., 2013) is quite modest, thus highlighting the difficulty of the adaptation
task.

Synthetic numbers→ SVHN. To address a common scenario of training on synthetic data
and testing on real data, we use Street-View House Number dataset SVHN (Netzer et al.,
2011) as the target domain and synthetic digits as the source. The latter (Syn Numbers)
consists of ≈ 500,000 images generated by ourselves from WindowsTM fonts by varying the
text (that includes different one-, two-, and three-digit numbers), positioning, orientation,
background and stroke colors, and the amount of blur. The degrees of variation were chosen
manually to simulate SVHN, however the two datasets are still rather distinct, the biggest
difference being the structured clutter in the background of SVHN images.

The proposed backpropagation-based technique works well covering almost 80% of the
gap between training with source data only and training on target domain data with known
target labels. In contrast, SA (Fernando et al., 2013) results in a slight classification accuracy
drop (probably due to the information loss during the dimensionality reduction), indicating
that the adaptation task is even more challenging than in the case of the MNIST experiment.

MNIST ↔ SVHN. In this experiment, we further increase the gap between distributions,
and test on MNIST and SVHN, which are significantly different in appearance. Training
on SVHN even without adaptation is challenging — classification error stays high during
the first 150 epochs. In order to avoid ending up in a poor local minimum we, therefore, do
not use learning rate annealing here. Obviously, the two directions (MNIST → SVHN and
SVHN → MNIST) are not equally difficult. As SVHN is more diverse, a model trained on
SVHN is expected to be more generic and to perform reasonably on the MNIST dataset.
This, indeed, turns out to be the case and is supported by the appearance of the feature
distributions. We observe a quite strong separation between the domains when we feed them
into the CNN trained solely on MNIST, whereas for the SVHN-trained network the features
are much more intermixed. This difference probably explains why our method succeeded in
improving the performance by adaptation in the SVHN→MNIST scenario (see Table 5. I)
but not in the opposite direction (SA is not able to perform adaptation in this case either).
Unsupervised adaptation from MNIST to SVHN gives a failure example for our approach:
it doesn’t manage to improve upon the performance of the non-adapted model which achieves
≈ 0.25 accuracy (at the time of publication there were no unsupervised DA methods capable
of performing such adaptation).
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Figure 5.5. Results for the traffic signs classification in the semi-supervised
setting. Syn and Real denote available labeled data (100,000 synthetic and
430 real images respectively); Adapted means that ≈ 31,000 unlabeled target
domain images were used for adaptation. The best performance is achieved
by employing both the labeled samples and the large unlabeled corpus in the
target domain.

Synthetic Signs → GTSRB. Overall, this setting is similar to the Syn Numbers →
SVHN experiment, except the distribution of the features is more complex due to the sig-
nificantly larger number of classes (43 instead of 10). For the source domain we obtained
100,000 synthetic images (which we call Syn Signs) simulating various imaging conditions.
In the target domain, we use 31,367 random training samples for unsupervised adaptation and
the rest for evaluation. Once again, our method achieves a sensible increase in performance
proving its suitability for the synthetic-to-real data adaptation.

As an additional experiment, we also evaluate the proposed algorithm for semi-supervised
domain adaptation, i.e., when one is additionally provided with a small amount of labeled
target data. Here, we reveal 430 labeled examples (10 samples per class) and add them to
the training set for the label predictor. Figure 5.5 shows the change of the validation error
throughout the training. While the graph clearly suggests that our method can be beneficial
in the semi-supervised setting, thorough verification of semi-supervised setting is left for
future work.

Office Dataset. We finally evaluate our method on Office dataset, which is a collection
of three distinct domains: Amazon, DSLR, and Webcam. Unlike previously discussed
datasets, Office is rather small-scale with only 2817 labeled images spread across 31 different
categories in the largest domain. The amount of available data is crucial for a successful
training of a deep model, hence we opted for the fine-tuning of the CNN pre-trained on the
ImageNet (AlexNet from the Caffe package (Jia et al., 2014)) as it is done in some recent
DA works (Donahue et al., 2014; Tzeng et al., 2014; Hoffman et al., 2013; Long and Wang,
2015). We make our approach more comparable with Tzeng et al. (2014) by using exactly
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the same network architecture replacing domain mean-based regularization with the domain
classifier.

Following previous works, we assess the performance of our method across three transfer
tasks most commonly used for evaluation. Our training protocol is adopted from (Gong
et al., 2013; Chopra et al., 2013; Long and Wang, 2015) as during adaptation we use all
available labeled source examples and unlabeled target examples (the premise of our method
is the abundance of unlabeled data in the target domain). Also, all source domain data are
used for training. Under this “fully-transductive” setting, our method is able to improve
previously-reported state-of-the-art accuracy for unsupervised adaptation very considerably
(Table 5. II), especially in the most challenging Amazon → Webcam scenario (the two
domains with the largest domain shift). Interestingly, in all three experiments we observe a
slight over-fitting (performance on the target domain degrades while accuracy on the source
continues to improve) as training progresses, however, it doesn’t ruin the validation accuracy.
Moreover, switching off the domain classifier branch makes this effect far more apparent, from
which we conclude that our technique serves as a regularizer.

5.5. Conclusion

We have presented a powerful approach to domain adaptation of feed-forward neural net-
works, which allows large-scale training based on large amount of annotated data in the
source domain and large amount of unannotated data in the target domain. Similarly to
many previous shallow and deep DA techniques, the adaptation is achieved through aligning
the distributions of features across the two domains. However, unlike previous approaches,
the alignment is accomplished through standard backpropagation training. Moreover, our
approach is motivated and supported by the domain adaptation theory of Ben-David et al.
(2006); Blitzer et al. (2008); Ben-David et al. (2010).

The main idea behind DANN is to enjoin a network hidden layer to learn a representation
which is predictive of the source example labels, but uninformative about the domain of the
input (source or target). We have shown that our approach is flexible and achieves state-of-
the-art results on a variety of DA benchmarks.

A convenient aspect of our approach is that the domain adaptation component can be
added to almost any neural network architecture that is trainable with backpropagation,
allowing simple implementation within virtually any deep learning package through the in-
troduction of a simple gradient reversal layer. The proposed method achieves impressive
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results in the image classification setting but can also be applied for a wide range of other
tasks both in computer vision and beyond.
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Personal Contributions. The project started with a discussion with Ali Eslami and Oriol
Vinyals in June, 2017. We decided to work on an agent controlling an external painting or
CAD environment in order to produce 2D images. I suggested using the GAN framework
for that and implemented the model for sampling from the data distribution. I also found
a suitable open-source software (libmypaint by libmypaint contributors (2018)) that could
serve as a base for the painting environment and ported it for use with Tensorflow. We
then switched our focus to the reconstruction regime and I tried several simple baselines
which did not seem to work well. As an alternative, I proposed to adapt the approach from
the successful unconditional GAN experiments. That turned out to be a break-through and
allowed to reliably train conditional models. I wrote all the corresponding code and ran a
series of experiments for both the painting environment and a MuJoCo-based environment
(which was also implemented by me).

We decided to submit the work to ICML 2018. Tejas Kulkarni and I wrote the ini-
tial draft. I focused on the method description and the experimental results, while Tejas
Kulkarni worked on the introduction and related work. He also used my code to test several
hyperparameter settings for the MuJoCo Scenes dataset. Ali Eslami contributed to the
introductory part of the paper and together with Oriol Vinyals and Igor Babuschkin did
general editing of the manuscript. I performed a significant amount of additional editing for
the arXiv preprint and for the camera-ready version of the paper.



Context

I spent some time working on GAN models for visual data during my internship at MILA
in the spring of 2016. One observation that I made at the time was that NN-based latent-
to-visible decoders often fail to capture global structure wasting their capacity on seemingly
unimportant local details. This was one of the reasons I was eager to try combining the
adversarial framework with third-party off-the-shelf renderers. Moreover, the idea of training
an agent that could control content creation tools normally used by humans (e.g., GIMP,
Photoshop or 3ds Max) was very appealing.

The ambitious goal of the project (at least, from my perspective) was to build a model
capable of creating and reproducing real paintings. We were also interested in venturing into
the domain of 3D but since I was more familiar (and fascinated) with plain drawings we
mostly focused on that type of data.

When we were planning our first steps we had two options: either start with a reconstruc-
tion model (in which case we would not need any GANs) or train an agent that can sample
random images from some target distribution. Solely because of my affinity for the adversar-
ial framework, I decided to go with the latter. This choice later turned out to be crucial for
the development of the entire project. As I mentioned above, after we verified that our GAN
variant works for unconditional generation, we attempted to use simpler objectives for the
reconstruction setting. Unfortunately, none of the non-adversarial approaches I tried seemed
to work. Since we already had a working model, albeit for a different setting, a natural idea
was to modify it so it could be used for inverse graphics. This allowed us to successfully
train our reconstruction agent for the first time. Later experiments demonstrated that the
conditional GAN was consistently outperforming naive reward signals across the board.

Despite the progress we made, the training procedure remained somewhat flaky (which is
a typical phenomenon for RL). One possible remedy to that problem was population-based
training (PBT) which improved learning stability for a range of projects at DeepMind. I was
the first one to try this technique for training GANs. It took some time to make PBT work
for our setting mainly because it was difficult to come up with a reliable fitness score for the
instances in the population.

With PBT, adversarial objectives and improved convolutional architectures, our agent
managed to achieve impressive results on several distinct datasets some of which were never
used in the context of inverse graphics. This success (although we did not quite reach some
of the initial goals) motivated us to summarize our findings in an ICML 2018 submission.
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Contributions

Two main aspects that diffirentiate our project from existing works combining RL with the
adversarial framework are the high dimensionality of the state space and the sparsity of
rewards. To the best of our knowledge, SPIRAL is the first model to successfully overcome
those challenges while being trained entirely from scratch. Compared to the inverse graphics
literature, our approach is more general as it does not rely on any domain knowledge leaving
the burden of extracting relevant information to a learned loss driven by a GAN discriminator.
This allows us to apply our framework to real-world datasets like CelebA. Moreover, as we
empirically demonstrate in the paper, the proposed method can work in absence of access
to intermediate states of the simulator which makes it suitable for the full-fledged program
synthesis.

As a generative model, SPIRAL is distinct from typical neural decoder-based approaches
since it features an interpretable latent space. This opens up a possibility of supplying prior
knowledge about the task at hand in a natural way.

We also believe that the general idea of using learned losses in similar settings can lead to
major breakthoughs. This goes beyond image-to-image comparison considered in the present
work – we give a glimpse of exciting future directions in the last section of the paper.
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Chapter 6

SYNTHESIZING PROGRAMS FOR IMAGES
USING REINFORCED ADVERSARIAL LEARNING

Figure 6.1. SPIRAL takes as input either random noise or images and
iteratively produces plausible samples or reconstructions via graphics program
synthesis. The first row depicts an unconditional run given random noise. The
second, third and fourth rows depict conditional execution given an image with
a handwritten character, the Mona Lisa, and objects arranged in a 3D scene.

6.1. Introduction

Recovering structured representations from raw sensations is an ability that humans readily
possess and frequently use. Given a picture of a hand-written character, decomposing it into
strokes can make it easier to classify or re-imagine that character, and similarly, knowing the
underlying layout of a room can aid with planning, navigation and interaction in that room.
Furthermore, this structure can be exploited for generalization, rapid learning, and even
communication with other agents. It is commonly believed that humans exploit simulations
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Figure 6.2. The SPIRAL architecture. (A) An execution trace of the
SPIRAL agent. The policy outputs program fragments which are rendered
into an image at each step via a graphics engine R. The agent can make use
of these intermediate renders to adjust its policy. The agent only receives a
reward in the final step of execution. (B) Distributed training of SPIRAL. A
collection of actors (in our experiments, up to 64), asynchronously and contin-
uously produce execution traces. This data, along with a training dataset of
ground-truth renderings, are passed to a Wasserstein discriminator on a sep-
arate GPU for adversarial training. The discriminator assesses the similarity
of the final renderings of the traces to the ground-truth. A separate off-policy
GPU learner receives batches of execution traces and trains the agent’s pa-
rameters via policy-gradients to maximize the reward assigned to them by the
discriminator, i.e., to match the distribution of the ground truth dataset.
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to learn this skill (Lake et al., 2017). By experimenting with a pen and a piece of paper we
learn how our hand movements lead to written characters, and via imagination we learn how
architectural layouts manifest themselves in reality.

In the visual domain, inversion of a renderer for the purposes of scene understanding is
typically referred to as inverse graphics (Mansinghka et al., 2013; Kulkarni et al., 2015a).
Training vision systems using the inverse graphics approach has remained a challenge. Ren-
derers typically expect as input programs that have sequential semantics, are composed of
discrete symbols (e.g., keystrokes in a CAD program), and are long (tens or hundreds of sym-
bols). Additionally, matching rendered images to real data poses an optimization problem
as black-box graphics simulators are not differentiable in general.

To address these problems, we present a new approach for interpreting and generating
images using deep reinforced adversarial learning. In this approach, an adversarially trained
agent generates visual programs which are in turn executed by a graphics engine to generate
images, either conditioned on data or unconditionally. The agent is rewarded by fooling a
discriminator network, and is trained with distributed reinforcement learning without any
extra supervision. The discriminator network itself is trained to distinguish between rendered
and real images.

Our contributions are as follows:
• An adversarially trained reinforcement learning agent that interprets and generates
images in the space of visual programs. Crucially, the architecture of our agent is
agnostic both to the semantics of the visual program and to the domain.
• Scaling inverse graphics to real world and procedural datasets without the need for
labels. In particular, our model discovers pen strokes that give rise to MNIST and
Omniglot characters, brush strokes that give rise to celebrity faces, and scene de-
scriptions that, once rendered, reconstruct an image of a 3D scene (Figure 6.1).
• Evidence that utilizing a discriminator’s output as the reward signal for reinforcement
learning is significantly better at optimizing the pixel error between renderings and
data, compared to directly optimizing pixel error.
• A showcase of state-of-the-art deep reinforcement learning techniques, which can pro-
vide a scaling path for inverse graphics, and could lead to broader implications for
program synthesis in future work.
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6.2. Related Work

The idea of inverting simulators to interpret images has been explored extensively in recent
years (Nair et al., 2008; Paysan et al., 2009; Mansinghka et al., 2013; Loper and Black,
2014; Kulkarni et al., 2015a; Jampani et al., 2015). Structured object-attribute based ‘de-
rendering’ models have been proposed for interpretation of images (Wu et al., 2017b) and
videos (Wu et al., 2017a). Concurrent work has explored the use of Constructive Solid
Geometry primitives for explaining binary images (Sharma et al., 2017). Loper and Black
(2014) proposed the idea of differentiable inverse graphics, which is efficient for optimizing
continuous variables but cannot handle discrete variables. Earlier work has also explored
using reinforcement learning for automatic generation of single brush strokes (Xie et al.,
2013). However, scaling these approaches to larger real-world datasets, particularly at test-
time, has remained a challenge.

Inferring motor programs for the reconstruction of MNIST digits was first studied in
(Nair and Hinton, 2006). The generative model is parametrized by two pairs of opposing
springs whose stiffness is controlled by a motor program. The training procedure involved
starting with a prototype program and its corresponding observation. Random noise was
then added to this prototype in order to produce new training examples until the generated
distribution stretched to cover the manifold of the training digits. In contrast, our model
automatically learns the training curriculum via the discriminator and the same agent is
suitable for a range of scene understanding problems, including those in 3D.

Visual program induction has recently been studied in the context of hand-written char-
acters on the Omniglot dataset (Lake et al., 2015). This model achieves impressive per-
formance but requires parses from a hand-crafted algorithm to initialize training and was
not demonstrated to generalize beyond hand-written characters. Ellis et al. (2017) pro-
posed a visual program induction model to infer LATEX programs for diagram understanding.
More recently, the sketch-rnn model (Ha and Eck, 2017) used sequence-to-sequence learning
(Sutskever et al., 2014) to produce impressive sketches both unconditionally and conditioned
on data. However, similar to the aforementioned works and unlike SPIRAL, the model
requires supervision in the form of sketches and corresponding sequences of strokes.

In the neural network community, there have been analogous attempts at inferring and
learning feed-forward or recurrent procedures for image generation (LeCun et al., 2015; Hin-
ton and Salakhutdinov, 2006; Goodfellow et al., 2014; Ackley et al., 1987; Kingma and
Welling, 2013; Oord et al., 2016; Kulkarni et al., 2015c; Eslami et al., 2016; Reed et al.,
2017; Gregor et al., 2015). These models demonstrate impressive image generation capabili-
ties but generally lack the ability to infer structured representations of images.
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Our approach employs adversarial training techniques, first used for generative modeling
(Goodfellow et al., 2014) and domain adaptation (Ganin and Lempitsky, 2015). Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014) were orignally used for image gener-
ation but have now been successfully applied to model audio, text and motor behaviors (Ho
and Ermon, 2016; Merel et al., 2017). Perhaps the most interesting extension in our context
is their use in domain transfer, where images from one domain (e.g., segmentations) were
mapped to another (e.g., pixels). Models such as pix2pix (Isola et al., 2017), CycleGAN (Zhu
et al., 2017) and AIGN (Tung et al., 2017) fall in this category.

The SPIRAL agent builds upon this literature, has minimal hand-crafting in its design,
requires no supervision in the form of pairs of programs and corresponding images and, as
we demonstrate in the following sections, is applicable across a wide range of domains.

6.3. The SPIRAL Agent

6.3.1. Overview

Our goal is to construct a generative model G capable of sampling from some target data
distribution pd. To that end, we propose using an external black-box rendering simulator
R that accepts a sequence of commands a = (a1, a2, . . . , aN) and transforms them into the
domain of interest, e.g., a bitmap. For example, R could be a CAD program rendering
descriptions of primitives into 3D scenes. Thus, our task is equivalent to recovering a distri-
bution pa such that pd ≈ R(pa). We model pa with a recurrent neural network π which we
call the policy network (or, somewhat sloppily, the agent). The generation process G, which
consists of a policy π and a renderer R, is illustrated in Figure 6.2a.

In order to optimize π, we employ the adversarial framework (Goodfellow et al., 2014).
In this framework, the generator (denoted as G) aims to maximally confuse a discriminator
networkD which is trained to distinguish between the samples drawn from pd and the samples
generated by the model. As a result, the distribution defined by G (denoted as pg) gradually
becomes closer to pd. Crucially, and unlike previous work, our training procedure does not
require any strong supervision in the form of aligned examples from pd and pa.

We give the concrete training objectives for G and D below.

6.3.2. Objectives

In our experiments, we found that the original minimax objective from Goodfellow et al.
(2014) was hard to optimize in the context of our model, so we opted for using a variant that
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employs Wasserstein distance as a measure of divergence between distributions (Gulrajani
et al., 2017), as it appears to handle vastly dissimilar pg and pd more gracefully. In this case,
the discriminator is considered “confused” if it assigns the same scores (in expectation) to the
inputs coming both from pd and pg. We note that our approach can be used in conjunction
with other forms of GAN objectives as well.

Discriminator. Following Gulrajani et al. (2017), we define the objective for D as:

LD = −Ex∼pd [D(x)] + Ex∼pg [D(x)] +R, (6.3.1)

where R is a regularization term softly constraining D to stay in the set of Lipschitz contin-
uous functions (for some fixed Lipschitz constant). It is worth noting that the solution to
(6.3.1) is defined up to an additive constant. Due to the nature of how we use discriminator
outputs during training of π, we found it beneficial to resolve this ambiguity by encouraging
D(x) to be close to 0 on average for x ∼ 1

2pg + 1
2pd.

Generator. We formally define π as a network that at every time step t predicts a distribu-
tion over all possible commands πt = π(at|st; θ), where st is the recurrent state of the network,
and θ is a set of learnable parameters. Given a sequence of samples (at | at ∼ πt, 1 ≤ t ≤ N),
a sample from pg is then computed as R(a1, a2, . . . , aN). Since the generator is an arbitrary
non-differentiable function, we cannot optimize

LG = −Ex∼pg [D(x)] (6.3.2)

with naive gradient descent. Therefore we pose this problem as maximization of the ex-
pected return which can be solved using standard techniques from reinforcement learning.
Specifically, we employ a variant of the REINFORCE (Williams, 1992) algorithm, advantage
actor-critic (A2C):

LG = −
∑
t

log π(at | st; θ) [Rt − V π(st)] , (6.3.3)

where V π is an approximation to the value function which is considered to be independent
of θ, and Rt = ∑N

t rt is a 1-sample Monte-Carlo estimate of the return. Optimizing (6.3.3)
recovers the solution to (6.3.2) if the rewards are set to:

rt =

0 , t < N ,

D(R(a1, a2, . . . , aN)) , t = N .
(6.3.4)

One interesting aspect of this new formulation is that we can also bias the search by intro-
ducing intermediate rewards which may depend not only on the output of R but also on
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commands used to generate that output. We present several examples of such rewards in
Section 6.4.

6.3.3. Conditional Generation

So far, we have described the case of unconditional generation, but in many situations it
is useful to condition the model on auxiliary input (Mirza and Osindero, 2014). For instance,
one might be interested in finding a specific program that generates a given image xtarget.
That could be achieved by supplying xtarget both to the policy and to the discriminator
networks. In other words,

pg = R (pa(a|xtarget)) , (6.3.5)

while pd becomes a Dirac δ-function centered at xtarget. The first two terms in (6.3.1) thus
reduce to

−D(xtarget |xtarget) + Ex∼pg [D(x|xtarget)] . (6.3.6)

It can be shown that for this particular setting of pg and pd, the `2-distance is an optimal
discriminator. However, in general it is not a unique solution to (6.3.1) and may be a poor
candidate to be used as the generator’s reward signal (see Section A.1 in the appendix for
details). In Section 6.4, we empirically evaluate both `2 and a dynamically learned D and
conclude that those two options are not equivalent in practice (for example, see Figure 6.9a).

6.3.4. Distributed Learning

Our training pipeline is outlined in Figure 6.2b. It is an extension of the recently proposed
IMPALA architecture (Espeholt et al., 2018). For training, we define three kinds of workers:

• Actors are responsible for generating the training trajectories through interaction
between the policy network and the rendering simulator. Each trajectory contains a
sequence ((πt, at) | 1 ≤ t ≤ N) as well as all intermediate renderings produced by R.
• A policy learner receives trajectories from the actors, combines them into a batch
and updates π by performing an SGD step on LG (6.3.2). Following common practice
(Mnih et al., 2016), we augment LG with an entropy penalty encouraging exploration.
• In contrast to the base IMPALA setup, we define an additional discriminator learner.
This worker consumes random examples from pd, as well as generated data (final
renders) coming from the actor workers, and optimizes LD (6.3.1).

In the original paper introducing WGAN with gradient penalty (Gulrajani et al., 2017),
the authors note that in order to obtain better performance, the discriminator has to be
updated more frequently than the generator. In our setting, generation of each model sample
is expensive since it involves multiple invocations of an external simulator. We therefore do
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not omit any trajectories in the policy learner. Instead, we decouple the D updates from
the π updates by introducing a replay buffer that serves as a communication layer between
the actors and the discriminator learner. That allows the latter to optimize D at a higher
rate than the training of the policy network due to the difference in network sizes (π is a
multi-step RNN, while D is a plain CNN). We note that even though sampling from a replay
buffer inevitably leads to smoothing of pg1, we found this setup to work well in practice.

6.4. Experiments

6.4.1. Datasets

We validate our approach on three real-world and one synthetic image dataset. The first,
MNIST (LeCun et al., 1998), is regarded as a standard sanity check for newly proposed
generative models. It contains 70 000 examples of handwritten digits, of which 10 000 con-
stitute a test set. Each example is a 28× 28 grayscale image. Although the dataset is often
considered “solved” by neural decoder-based approaches (including GANs and VAEs), these
approaches do not focus on recovering interpretable structure from the data. We, therefore,
choose not to discard MNIST from the empirical evaluation since it is likely that additional
constraints increase the difficulty of the modeling task.

The second dataset, Omniglot (Lake et al., 2015), comprises of 1623 handwritten char-
acters from 50 alphabets. Compared to MNIST, this dataset introduces three additional
challenges: higher data variability, higher complexity of symbols (e.g., disjoint subcurves)
and fewer (only 20) data points per symbol class.

Since both MNIST and Omniglot represent a restricted line drawing domain, we di-
versify our set of experiments by testing the proposed method on CelebA (Liu et al., 2015).
The dataset contains over 200 000 color headshots of celebrities with large variation in poses,
backgrounds and lighting conditions.

Lastly, we are interested in evaluating our approach on the task of unsupervised 3D scene
understanding which is a crucial precursor for manipulating and reasoning about objects
in the real world. To that end, we created a procedural dataset called MuJoCo Scenes
consisting of renders of simple 3D primitives (up to 5 objects) scattered around a square
platform (see Figure 6.8). The training set is comprised of 50 000 RGB images generated by
means of the MuJoCo environment discussed in the next section.
1The replay always contains samples from the older versions of the agent and therefore does not exactly
follow pg.
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Figure 6.3. Illustration of the agent’s action space in the libmypaint
environment. We show three different strokes (red, green, blue) that can result
from a single instruction from the agent to the renderer. Starting from a
position on the canvas, the agent selects the coordinates of the next end point,
the coordinates of the intermediate control point, as well as the brush size,
pressure and color. See Section 6.4.2 for details.

In each case, we rescale the images to 64× 64, which allows us to reuse the same network
architectures in all the experiments, demonstrating the generality of our method.

6.4.2. Environments

We introduce two new rendering environments. For MNIST, Omniglot and CelebA
generation we use an open-source painting library libmypaint (libmypaint contributors,
2018). The agent controls a brush and produces a sequence of (possibly disjoint) strokes on
a canvas C. The state of the environment is comprised of the contents of C as well as the
current brush location lt. Each action at is a tuple of 8 discrete decisions (a1

t , a
2
t , . . . , a

8
t ) (see

Figure 6.3). The first two components are the control point pc and the end point lt+1 of the
stroke, which is specified as a quadratic Bézier curve:

p(τ) = (1− τ)2 lt + 2(1− τ) τ pc + τ 2 lt+1 , (6.4.1)

where τ ∈ [0, 1]. In our experiments, we define the valid range of locations as a 32× 32 grid
imposed on C. We set l0 to the upper left corner of the canvas. The next 5 components
represent the appearance of the stroke: the pressure that the agent applies to the brush (10
levels), the brush size, and the stroke color characterized by mixture of red, green and blue
(20 bins for each color component). The last element of at is a binary flag specifying the
type of action: the agent can choose either to produce a stroke or to jump right to lt+1. For
grayscale datasets (MNIST and Omniglot), we omit the color components.

In the MuJoCo Scenes experiment, we render images using a MuJoCo-based environ-
ment (Todorov et al., 2012). At each time step, the agent has to decide on the object type (4
options), its location on a 16× 16 grid, its size (3 options) and the color (3 color components
with 4 bins each). The resulting tuple is sent to the environment, which adds an object to

111



0 25 · 106Training frames Final result

(a) MNIST unconditional generation (b) MNIST reconstruction

Figure 6.4. MNIST. (A) A SPIRAL agent is trained to draw MNIST dig-
its via a sequence of strokes in the libmypaint environment. As training
progresses, the quality of the generations increases. The final samples capture
the multi-modality of the dataset, varying brush sizes and digit styles. (B)
A conditional SPIRAL agent is trained to reconstruct using the same action
space. Reconstructions (left) match ground-truth (right) accurately.

the scene according to the specification. Additionally, the agent can decide to skip a move
or change the most recently emitted object. All three types of actions are illustrated in
Figure 6.2a.

6.4.3. MNIST

For the MNIST dataset, we conduct two sets of experiments. In the first set, we train an
unconditional agent to model the data distribution. Along with the reward provided by the
discriminator we also use auxiliary penalties expressing our inductive biases for the particular
type of data. To encourage the agent to draw a digit in a single continuous motion of the
brush, we provide a small negative reward for starting each continuous sequence of strokes.
We also found it beneficial to penalize our model for not producing any visible strokes at all.
The resulting agent manages to generate samples clearly recognizable as hand-written digits.
Examples of such generations are shown in Figure 6.4a.

In the second set of experiments, we train an agent to generate the strokes for a given
target digit, and we compare two kinds of rewards discussed in Section 6.3.3: fixed `2-distance
and the discriminator score. The results are summarized in Figure 6.9a (blue curves). We
note that the discriminator-based approach significantly speeds up training of the model and
achieves lower final `2 error. When no auxiliary rewards were employed, `2-based runs failed
to learn reasonable reconstructions. Figure 6.4b presents several conditional generations
produced by our method.
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(a) Omniglot unconditional generation (b) Omniglot reconstruction

Figure 6.5. Omniglot. (A) A SPIRAL agent is trained to draw Omniglot
characters via a sequence of strokes in the libmypaint environment. As train-
ing progresses, the quality of the generations increase. The final samples cap-
ture the multi-modality of the dataset, varying brush sizes and character styles.
(B) A conditional SPIRAL agent is trained to reconstruct using the same ac-
tion space. Reconstructions (left) match ground-truth (right) accurately.

Following Sharma et al. (2017), we also train a “blind” version of the agent, i.e., we do not
feed intermediate canvas states as an input to π. That means that the model cannot rely on
reactive behaviour since it does not “see” the immediate consequences of its decisions. The
training curve for this experiment is shown in Figure 6.9a (dotted blue line). Although the
agent does not reach the level of performance of the full model, it can still produce sensible
reconstructions which suggests that our approach could be used in the more general setting
of program synthesis, where access to intermediate states of the execution pipeline is not
assumed.

6.4.4. Omniglot

In the previous section, we showed that our approach works reasonably well for handwrit-
ten digits. In this series of experiments, we test our agent in a similar but more challenging
setting of handwritten characters. The difficulty of the dataset manifests itself in lower qual-
ity of unconditional generations (Figure 6.5a). Note that this task appears to be hard for
other neural network based approaches as well: models that do produce good samples, such
as (Rezende et al., 2016), do not do so in a manner that mimics actual strokes.

The conditional agent, on the other hand, managed to reach convincing quality of recon-
structions (Figure 6.5b). Unfortunately, we could not make the `2-based model work well in
this setting (Figure 6.9a; dashed red line). This suggests not only that discriminator rewards
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Figure 6.6. Image parsing using the SPIRAL agent trained on Omniglot.
All images from test sets. Given a rastered input (a), the agent produces a
reconstruction (b) that closely matches the input. (c) Having access to the
underlying strokes, we can render the character at a higher resolution, or in
a different stroke style. (d) The agent effectively parses the input image into
strokes. Each stroke is depicted in a separate color (we show average across
100 samples).

speed up learning, but also that they allow successful training of agents in cases where naïve
rewards like `2 do not result in sufficient exploration.

Since Omniglot contains a highly diverse set of symbols, over the course of training our
model could learn a general notion of image reproduction rather than simply memorizing
dataset-specific strokes. In order to test this, we feed a trained agent with previously unseen
line drawings. The resulting reconstructions are shown in Figure 6.6. The agent handles
out-of-domain images well, although it is slightly better at reconstructing the Omniglot
test set.

6.4.5. CelebA

Since the libmypaint environment is in principle, capable of producing complex color
paintings, we explore this direction by training a conditional agent on the CelebA dataset.
As in the previous experiments, we use 20-step episodes, and as before, the agent does
not receive any intermediate rewards. In addition to the reconstruction reward (either `2

or discriminator-based), we put a penalty on the earth mover’s distance between the color
histograms of the model’s output and xtarget. We found this relatively task-agnostic penalty
to slightly improve the performance of the method, but we would like to stress that it is by
no means necessary.

Given that we made no effort whatsoever to adapt the action space for this domain, it
is not surprising that it takes significantly more time to discover the policy that produces
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images resembling the target (Figure 6.7). As in the Omniglot experiment, the `2-based
agent demonstrates some improvement over the random policy but gets stuck and, as a result,
fails to learn sensible reconstructions (Figure 6.9b).

Although blurry, the model’s reconstruction closely matches the high-level structure of
each image. For instance the background color, the position of the face and the color of
the person’s hair. In some cases, shadows around eyes and the nose are visible. However,
we observe that our model tends to generate strokes in the first half of the episode that
are fully occluded by strokes in the second half. We hypothesize that this phenomenon is a
consequence of credit assignment being quite challenging in this task. One possible remedy
is to provide the agent with a mid-episode reward for reproducing a blurred version of the
target image. We leave this prospect for future work.

6.4.6. MuJoCo Scenes

For the MuJoCo Scenes dataset, we use our agent to construct simple CAD programs
that best explain input images. Here we are only considering the case of conditional gen-
eration. Like before, the reward function for the generator can be either the `2 score or
the discriminator output. We did not provide any auxiliary reward signals. The model is
unrolled for 20 time steps, so it has the capacity to infer and represent up to 20 objects and
their attributes. As we mentioned in Section 6.4.2, the training data consists of scenes with
at most 5 objects. The agent does not have this knowledge a priori and needs to learn to
place the right number of primitives.

As shown in Figure 6.9b, the agent trained to directly minimize `2 is unable to solve
the task and has significantly higher pixel-wise error. In comparison, the discriminator-
based variant solves the task and produces near-perfect reconstructions on a holdout set
(Figure 6.8).

We note that our agent has to deal with a high-cardinality action space intractable for a
brute-force search. Indeed, the total number of possible execution traces is MN , where M =
4 ·162 ·3 ·43 ·3 is the total number of attribute settings for a single object (see Section 6.4.2 for
details) and N = 20 is the length of an episode.2 In order to demonstrate the computational
hardness of the task, we ran a general-purpose Metropolis-Hastings inference algorithm on
a set of 100 images. The algorithm samples an execution trace defining attributes for a
maximum of 20 primitives. These attributes are treated as latent variables. During each time
step of inference, a block of attributes (including the presence/absence flag) corresponding
to a single object is flipped uniformly within appropriate ranges. The resulting trace is

2The actual number of scene configurations is smaller but still intractable.
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Figure 6.7. CelebA reconstructions.
The SPIRAL agent reconstructs human
faces in 20 strokes. Although blurry, the
reconstructions closely match the high-level
structure of each image, for instance the
background color, the position of the face
and the color of the person’s hair. In some
cases, shadows around eyes and the nose
are visible.

Figure 6.8. 3D scene reconstructions.
The SPIRAL agent is trained to reconstruct
3D scenes by emitting sequences of com-
mands for the MuJoCo environment. In
each pair, the left image corresponds to the
model’s output while the right one is the
target. Our method is capable of acurately
inferring the number of objects, their loca-
tions, sizes and colors.

rendered by the environement into an output sample which is then accepted or rejected
using the Metropolis-Hastings update rule, with a Gaussian likelihood centered around the
test image and a fixed diagonal covariance of 0.25. As shown in Figure 6.10, the MCMC
search baseline was unable to solve the task even after a large number of evaluations.

6.5. Discussion

Scaling visual program synthesis to real world and combinatorial datasets has been a chal-
lenge. We have shown that it is possible to train an adversarial generative agent employing
black-box rendering simulators. Our results indicate that using the Wasserstein discrimina-
tor’s output as a reward function with asynchronous reinforcement learning can provide a
scaling path for visual program synthesis. The current exploration strategy used in the agent
is entropy-based, but future work should address this limitation by employing sophisticated
search algorithms for policy improvement. For instance, Monte Carlo Tree Search can be
used, analogous to AlphaGo Zero Silver et al. (2017). General-purpose inference algorithms
could also be used for this purpose.
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Figure 6.9. `2-distance between reconstructions and ground truth
images over the course of training. Across all datasets, we observe that train-
ing using a discriminator leads to significantly lower `2-distances, than when
directly minimizing `2. We also show in (A) that the SPIRAL agent is capable
of reconstructing even when it does not have access to the renderer in inter-
mediate steps, however this does lead to a small degradation in performance.
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Figure 6.10. Blocked Metropolis-Hastings (MCMC) vs SPIRAL.
The MuJoCo Scenes dataset has a large combinatorial search space. We
ran a general-purpose MCMC algorithm with object based blocked proposals
and SPIRAL on 100 holdout images during inference time. SPIRAL reliably
processes every image in a single pass. We ran the MCMC algorithm for thou-
sands of evaluations but it was unable to solve the task.
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Future work should explore different parameterizations of action spaces. For instance,
the use of two arbitrary control points is perhaps not the best way to represent strokes, as
it is hard to deal with straight lines. Actions could also directly parametrize 3D surfaces,
planes and learned texture models to invert richer visual scenes. On the reward side, using
a joint image-action discriminator similar to BiGAN/ALI (Donahue et al., 2016; Dumoulin
et al., 2016) (in this case, the policy can viewed as an encoder, while the renderer becomes
a decoder) could result in a more meaningful learning signal, since D will be forced to focus
on the semantics of the image.

We hope that this paper provides an avenue to further explore inverse simulation and
program synthesis on applications ranging from vision, graphics, speech, music and scientific
simulators.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

In this thesis, we have proposed several general-purpose methods for solving image pro-
cessing and synthesis tasks. Although the problems we considered represent different (and
sometimes quite distinct) facets of the computer vision field, they are united by the fact
that until recently all of them have primarily been tackled by complicated hand-engineered
pipelines. We have contributed more evidence that a conceptually simpler alternative, deep
learning, can both reduce the amount of labor needed to design a CV system and, even more
importantly, significantly improve its performance. Our findings thus verify the superiority
of automatically learned distributed representations.

More concretely, in Chapter 3, we showed that several related early-vision tasks such as
edge detection and thin object segmentation can be solved within the same data-agnostic
framework based on convolutional neural networks. At the heart of the method lies a com-
bination of discriminative descriptor learning and subsequent nearest-neighbor search in the
obtained descriptor space. The former eliminates the need for careful design of input features
typically required by non-deep systems. The latter serves two purposes: it simultaneously
compensates for the effect of underfitting of the CNN and also ensures coherent outputs. The
resulting model can be loosely seen as a variant of an existing state-of-the-art edge detector
(Dollár and Zitnick, 2013), albeit fully data-driven and therefore much more flexible.

Chapter 4 considered a different image transformation setting – gaze correction. Here,
unlike in edge detection, both the input and the desired output come from the same domain,
i.e., images of rectangular eye regions. We proposed a system that exploited that fact by
making an assumption that the bulk of the transformation can be carried out by warping
the input. Thanks to the differentiability of binlinear sampling, the warping procedure can
be injected directly into a fully-convolutional network trained on matching pairs of images.
Compared to conventional NN-based image-to-image models, one of the advantages of the
proposed approach is that it allows the network to copy a lot of visual information directly



from the input and, as a result, the modelling capacity is concentrated on the transformation
itself. In a series of experiments, we demonstrated that our end-to-end system achieves an im-
pressive level of photorealism and outperforms existing methods employing more traditional
CV techniques.

In Chapter 5, we made a detour and presented a simple yet effective domain adaptation
technique applicable not only in the context of computer vision but in virtually any deep
learning setting where it is important to address the effect of covariate shift. One example
of such a setting would be training a CNN on synthetic data for subsequent deployment in a
real environment. We should expect a severe performance degradation due to the mismatch
between the training and the test domains. Developed concurrently with and independently
of GANs (Goodfellow et al., 2014), our method, DANN, uses an adversarial objective to
promote the emergence of domain-invariant features thus making the underlying network
robust to the covariate shift. We showed that despite the triviality of implementation (just
a few lines of code), DANN achieves excellent results on a number of standard benchmarks
beating both deep and non-deep baselines.

Recall that in our gaze correction project, we made an observation that the appearance of
the output is very close to the appearance of the input and therefore, it made sense to target
the system at modelling what is different. In Chapter 6, we used a similar principle to build
a generative model for visual data. Instead of operating at the pixel-level, we proposed to
control existing off-the-shelf simulators that already encode a lot of relevant prior knowledge
about the image structure. To that end, we developed a GAN-like architecture in which the
generator is comprised of a learnable policy network and a fixed external renderer receiving
commands from that policy. Our model trained using large-scale RL techniques is free of
any domain-specific engineering but nevertheless demonstrates impressive results on the data
notoriously hard for conventional inverse graphics systems.

We believe that the techniques we presented in this thesis are interesting, useful, and will
serve as a stepping stone for further advances in the field of computer vision and beyond. To
conclude, we would like to highlight the key findings1 of the research we have conducted so
far:

• The rapid growth of the amount of available data is gradually rendering hand-
engineered features absolete. If one aims to build a robust and flexible computer
vision system, they should consider using appropriate representations learned directly
from data.

1Note that some of the articles included in the present thesis date back to 2013 – 2014. At the time, end-to-
end neural networks still were not widely accepted as a go-to backbone for CV systems and, in particular,
for edge detection and gaze correction algorithms.
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• A preferred way of obtaining data-driven features is through the end-to-end training of
deep models. Unlike traditional stacking of disjoint processing blocks, this approach
directly optimizes all the components for the ultimate objective we care about and
thus results in better performance.
• In some scenarios, however, it is beneficial to step away from generic convolutional
models and inject more prior knowledge about the task by incorporating special com-
putational modules (e.g., warping layers) into the differentiable pipeline. The large
body of pre-neural CV literature might serve as good source of ideas for such hybrid
systems.
• The right choice of the loss function is no less important. In many cases (e.g., for
domain adaptation or inverse graphics), this choice is not trivial. Poor design of
the objective may lead to a less-than-impressive final system despite its theoretical
capabilities. The adversarial framework provides an exciting new way to construct an
adaptive loss that automatically focuses on the relevant aspects of the data and the
model being trained.

Future Work

Below, we will briefly describe several ideas for the future research efforts that build upon
the work we have discussed in the thesis.

The first one is related to domain adaptation for semantic segmentation (synthetic →
real). A common observation in the recent adversarial DA literature is that the performance
on the task of interest can be significantly improved if one imposes additional constraints
on the structure of the network. Following this idea, instead of adapting some internal
representation of a conventional segmentation network, we propose to conduct segmentation
in a special domain-invariant space Z. Just like input images, the points from that space have
spatial dimensions but potentially more feature channels. We assume that the mapping E
from the image to the domain-invariant representation is conservative and preserves the bulk
of information about the scene. In order to enforce this property, we could use an additional
decoder D to map back to the image space and ensure that reconstructions are good enough.
Instead of using two separate decoders for the source and the target data, we could employ a
single conditional model (e.g., via conditional batch normalization (Dumoulin et al., 2017)).

Having a conditional D also provides an opportunity to perform domain transfer in the
visible space. For transferred images, we need to verify that they get encoded (by E) to the
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same domain-invariant representation as their original counterparts. This gives the second
set of objectives.

The next objective is simply a segmentation loss computed for some segmentation network
S operating on the Z-space.

One of the problems with using the existing image-to-image systems (like CycleGAN (Zhu
et al., 2017)) in conjunction with segmentation is that unconditional discrimination often
results in change of semantics in the transformed image due to the mismatch of marginal
distributions of labels in the source and in the target. To mitigate this issue in our model,
we propose to adapt Z by using a discriminator conditioned on the outputs of S. This
modification allows us to have different distributions of object types in different domains
while maintaining domain-invariance within each type.

The full model is fully-differentiable and can be trained with any variant of stochastic
gradient descent.

The second idea explores the possibility of using image-to-image translation as a foun-
dation for unconditional generative models. As we discussed in Chapter 4, due to limited
modeling power, architectures based on conventional neural decoders tend to discard some
amount of fine details present in the data (i.e., samples have simplified appearence and are
easily recognizable as artificially synthesized). On the other hand, we saw that in the case of
image-to-image translation, one can adopt much of the input information almost for free thus
achieving better utilization of the network’s capacity. This suggests that posing the image
generation task as a direct traversal in the visible space (as opposed to a low-dimensional
latent space) might be beneficial.

We therefore propose to represent an image manifold as a collection of tangent planes2.
In a particular tangent plane placed at some image I, each direction a corresponds to a
transformation of that image. Similarly to DeepWarp (Ganin et al., 2016a), the core of the
method is a network T that takes I and a and performs a “hop” on the manifold landing at
I ′. The sampling is then conducted as a series of stochastic (in a) “hops” starting at some
seed image from the training set.

One can learn T by recovering geodesics between arbitrary pairs of training examples.
More concretely, we propose to use an additional encoder network E that estimates the “hop”
direction by looking at the current image and the desired target image Itarget. Optimal E
and T minimize the dissimilarity between the final output and Itarget as well as some notion
of distance covered by the model in an attempt to reach Itarget (e.g., the number of “hops”
or a learned cost that depends on the performed transformations). We might also want to

2A similar albeit non-“deep” approach is explored in (Bengio and Monperrus, 2005; Bengio et al., 2006).
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ensure that each intermediate point produced by T lies on the manifold. This can be achieved
with adversarial training. Finally, since we assume that the training set is representative of
the manifold, for any image that we encounter as we run a chain of transformations, all
directions a should be (marginally) equally probable. That gives one more term for the
training objective.

We realize that the idea we have just described may be too vague and potentially flawed.
Regardless, we believe that fusing deep learning techniques with principles of differential
geometry is an exciting and promising direction for generative modeling research.
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Appendix A

ADDITIONAL DETAILS TO CHAPTER 6

A.1. Optimal D for Conditional Generation

It turns out that in the case of conditional generation (i.e., pd is a Dirac δ-function), we
can derive an explicit form of the optimal (non-parametric) discriminator D. Indeed, (6.3.1)
corresponds to the dual representation of the Wasserstein-1 metric (Villani, 2008). The
primal form of that metric is defined as

W1(pg, pd) = inf
γ∈Γ(pg ,pd)

∫
‖x− y‖2 dγ(x,y) , (A.1.1)

where Γ(pg, pd) is a set of all couplings between pg and pd. Taking into account that the data
distribution is a point mass, we can simplify (A.1.1):

W1(pg, pd) = Ex∼pg ‖x− xtarget‖2 . (A.1.2)

The expression above gives the optimal value for LD in (6.3.1). Therefore D(x) =
‖x− xtarget‖2 is a solution of (6.3.1):

LD(‖x− xtarget‖2) =− ‖xtarget − xtarget‖2

+ Ex∼pg ‖x− xtarget‖2

+ 0 ,

(A.1.3)

where the last term (R) is zero since the Euclidean distance belongs to the set of 1-Lipschitz
functions.

This result suggests that for inverse graphics, in (6.3.4), one may use a fixed image
distance (like the Euclidean distance `2) instead of a parametric function optimized via the
WGAN objective. Note, however, that `2 is not a unique solution to (6.3.1). Consider, for
example, the case where the model distribution is also a Dirac delta centered at xg. The



· · ·

Input images (the set of x)

xtarget

(a) Data. (b) `2-distance to xtarget. (c) D(x,xtarget).

Figure A.1. A toy experiment illustrating the difference between `2 and
discriminator training in practice. (A) We collect a dataset of images with a
single solid circle in all possible locations (top) and pick one of them as a target
image (bottom). (B) The `2-distance (in the pixel space) from the input images
to the target as a function of the circle location; the surface is flat around the
borders since the circles do not overlap. (C) We train a discriminative model
D that takes a pair of images and tells whether they match or not; just like `2,
the resulting function has a pit centered at the target location, but unlike (b),
the surface now has better behaved gradients.

Wasserstein distance is equal to d = ‖xg − xtarget‖2. In order to achieve that value in (6.3.1),
we could take any D such that ∀α ∈ [0, 1]

D (αxg + (1− α) xtarget) = α · d , (A.1.4)

and Lip(D) ≤ 1. One example of such function would be a hyperplane H containing the
segment (A.1.4). Let us now consider a set of points

V =
{
x | ‖x− xg‖2 < ε, ‖x− xtarget‖2 = d

}
(A.1.5)

in an ε-vicinity of xg. By definition, ‖x− xtarget‖2 is constant for any x ∈ V . That means
that `2 expresses no preference over points that are equidistant from xtarget even though some
of them may be semantically closer to xtarget. This property may significantly slow down
learning if we are relying on `2 (or similar distance) as our training signal. Functions like H,
on the other hand, have non-zero slope in V and therefore can potentially shift the search
towards more promising subspaces.

One other reason why discriminator training is different from using a fixed image distance
is that in practice, we do not optimize the exact dual formulation of the Wasserstein distance
and, on top of that, use stochastic gradient descent methods which we do not run until
convergence. A toy example illustrating that difference is presented in Figure A.1.
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A.2. Network Architectures

The policy network (shown in Figure A.2) takes the observation (i.e., the current state of
the canvas Ct) and conditions it on a tuple corresponding to the last performed action at.
The resulting features are then downsampled to a lower-dimensional spatial resolution by
means of strided convolutions and passed through a stack of ResNet blocks (He et al., 2016)
followed by a fully-connected layer. This yields an embedding which we feed into an LSTM
(Hochreiter and Schmidhuber, 1997). The LSTM produces a hidden vector z0 serving as a
seed for the action sampling procedure described below.

In order to obtain at+1, we employ an autoregressive decoder depicted in Figure A.3. Each
component ait+1 is sampled from a categorical distribution whose parameters are computed
as a function of zi. We use two kinds of functions depending on whether ait+1 corresponds
to a scalar (e.g., brush size) or to a spatial location (e.g., a control point of a Bézier curve).
In the scalar case, zi is transformed by a fully-connected layer, otherwise we process it using
several ResNet blocks followed by a series of transpose convolutions and a final convolution.
After ait+1 is sampled, we obtain an updated hidden vector zi+1 by embedding ait+1 into a
16-dimensional code and combining it with zi. The procedure is repeated until the entire
action tuple has been generated.

For the discriminator network, we use a conventional architecture similar to DCGAN
(Radford et al., 2015).

A.3. Training Details

Following standard practice in the GAN literature, we optimize the discriminator objective
using Adam (Kingma and Ba, 2014) with a learning rate of 10−4 and β1 set to 0.5. For genera-
tor training, we employ population-based exploration of hyperparameters (PBT) (Jaderberg
et al., 2017) to find values for the entropy loss coefficient and learning rate of the policy
learner. A population contains 12 training instances with each instance running 64 CPU
actor jobs and 2 GPU jobs (1 for the policy learner and 1 for the discriminator learner). We
assume that discriminator scores are compatible across different instances and use them as
a measure of fitness in the exploitation phase of PBT.

The batch size is set to 64 on both the policy learner and discriminator learner. The
generated data is sampled uniformly from a replay buffer with a capacity of 20 batches.
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Ct
[64,64,3]

Conv 5x5
[64,64,32]

at
[1]

MLP
[16]

Concat+FC
[32]

Add
[64,64,32]

Conv 4x4
(stride=2)

[·/2,·/2,32]
3×

ResBlock 3x3
[8,8,32]8×

Flatten+FC
[256]

LSTM
[256]

Decoder
(see Figure A.3)

Last state Next state

at+1
[1]

Figure A.2. The architecture of the policy network for a single step. FC
refers to a fully-connected layer, MLP is a multilayer perceptron, Conv is a
convolutional layer and ResBlock is a residual block. We give the dimensions
of the output tensors in the square brackets. ReLU activations between the
layers have been omitted for brevity.
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Reshape
[4,4,16]

ResBlock 3x3
[8,8,32] ×8

Deconv 4x4
(stride=2)

[·*2,·*2,32]
×2

Conv 3x3
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Reshape
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FC
[N]

zi
[256]

locationscalar

Sample
[1]

ait+1
[1]

MLP
[16]

Concat+FC
[256]
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Figure A.3. The architecture of the autoregressive decoder for sampling
an element ait+1 of the action tuple. The initial hidden vector z0 is provided by
an upstream LSTM. Depending on the type of the subaction to be sampled,
we use either the scalar or the location branch of the diagram.
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