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Résumé

Les réseaux de neurones profonds sont la pierre angulaire des systèmes à la fine pointe de
la technologie pour une vaste gamme de tâches, comme la reconnaissance d’objets, la mo-
délisation du langage et la traduction automatique. Mis à part le progrès important établi
dans les architectures et les procédures de formation des réseaux de neurones profonds, deux
facteurs ont été la clé du succès remarquable de l’apprentissage profond : la disponibilité de
grandes quantités de données étiquetées et la puissance de calcul massive. Cette thèse par
articles apporte plusieurs contributions à l’avancement de l’apprentissage profond, en parti-
culier dans les problèmes avec très peu ou pas de données étiquetées, ou avec des ressources
informatiques limitées.

Le premier article aborde la question de la rareté des données dans les systèmes de
recommandation, en apprenant les représentations distribuées des produits à partir des com-
mentaires d’évaluation de produits en langage naturel. Plus précisément, nous proposons
un cadre d’apprentissage multitâches dans lequel nous utilisons des méthodes basées sur les
réseaux de neurones pour apprendre les représentations de produits à partir de textes de
critiques de produits et de données d’évaluation. Nous démontrons que la méthode propo-
sée peut améliorer la généralisation dans les systèmes de recommandation et atteindre une
performance de pointe sur l’ensemble de données Amazon Reviews.

Le deuxième article s’attaque aux défis computationnels qui existent dans l’entraînement
des réseaux de neurones profonds à grande échelle. Nous proposons une nouvelle architecture
de réseaux de neurones conditionnels permettant d’attribuer la capacité du réseau de façon
adaptative, et donc des calculs, dans les différentes régions des entrées. Nous démontrons
l’efficacité de notre modèle sur les tâches de reconnaissance visuelle où les objets d’intérêt
sont localisés à la couche d’entrée, tout en maintenant une surcharge de calcul beaucoup plus
faible que les architectures standards des réseaux de neurones.

Le troisième article contribue au domaine de l’apprentissage non supervisé, avec l’aide du
paradigme des réseaux antagoniste génératifs. Nous introduisons un cadre fléxible pour l’en-
traînement des réseaux antagonistes génératifs, qui non seulement assure que le générateur
estime la véritable distribution des données, mais permet également au discriminateur de
conserver l’information sur la densité des données à l’optimum global. Nous validons notre
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cadre empiriquement en montrant que le discriminateur est capable de récupérer l’énergie
de la distribution des données et d’obtenir une qualité d’échantillons à la fine pointe de la
technologie.

Enfin, dans le quatrième article, nous nous attaquons au problème de l’apprentissage
non supervisé à travers différents domaines. Nous proposons un modèle qui permet
d’apprendre des transformations plusieurs à plusieurs à travers deux domaines, et ce, à
partir des données non appariées. Nous validons notre approche sur plusieurs ensembles de
données se rapportant à l’imagerie, et nous montrons que notre méthode peut être appliquée
efficacement dans des situations d’apprentissage semi-supervisé.

Mots-clés: réseaux de neurones, apprentissage automatique, apprentissage profond, ap-
prentissage supervisé, apprentissage non supervisé, apprentissage non supervisé, calcul condi-
tionnel, modèles génératifs probabilistes, réseau antagoniste génératif, synthèse d’images.
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Abstract

Deep neural networks are the cornerstone of state-of-the-art systems for a wide range of
tasks, including object recognition, language modelling and machine translation. In the last
decade, research in the field of deep learning has led to numerous key advances in designing
novel architectures and training algorithms for neural networks. However, most success
stories in deep learning heavily relied on two main factors: the availability of large amounts
of labelled data and massive computational resources. This thesis by articles makes several
contributions to advancing deep learning, specifically in problems with limited or no labelled
data, or with constrained computational resources.

The first article addresses sparsity of labelled data that emerges in the application field of
recommender systems. We propose a multi-task learning framework that leverages natural
language reviews in improving recommendation. Specifically, we apply neural-network-based
methods for learning representations of products from review text, while learning from rating
data. We demonstrate that the proposed method can achieve state-of-the-art performance
on the Amazon Reviews dataset.

The second article tackles computational challenges in training large-scale deep neural
networks. We propose a conditional computation network architecture which can adap-
tively assign its capacity, and hence computations, across different regions of the input. We
demonstrate the effectiveness of our model on visual recognition tasks where objects are
spatially localized within the input, while maintaining much lower computational overhead
than standard network architectures.

The third article contributes to the domain of unsupervised learning with the generative
adversarial networks paradigm. We introduce a flexible adversarial training framework, in
which not only the generator converges to the true data distribution, but also the discrimi-
nator recovers the relative density of the data at the optimum. We validate our framework
empirically by showing that the discriminator is able to accurately estimate the true energy
of data while obtaining state-of-the-art quality of samples.

Finally, in the fourth article, we address the problem of unsupervised domain translation.
We propose a model which can learn flexible, many-to-many mappings across domains from
unpaired data. We validate our approach on several image datasets, and we show that it
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can be effectively applied in semi-supervised learning settings.

Keywords: neural networks, machine learning, deep learning, supervised learning, un-
supervised learning, conditional computation, probabilistic generative models, generative
adversarial network, image synthesis
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Chapter 1

Background

Computers have fundamentally changed every aspect of our lives. Despite being extremely
powerful in performing computations, computers still need to be told what to do with a very
meticulous and precise set of instructions — an algorithm.

The field of Computer Science is primarily concerned with the design and analysis of ef-
ficient algorithms. Algorithms are applied to automate a wide range of our every-day tasks,
from using a calculator to reserving a flight ticket. Many tasks, however, cannot be easily
described as an unambiguous set of instructions. Consider identifying a person’s face in
an image or understanding a voice command. Such tasks are the main quest of Artificial
Intelligence (AI), and include problems such as allowing computers to see (computer vi-
sion), to understand language (natural language processing) and to recognize speech (speech
recognition).

Machine Learning is based on a simple observation: while it is challenging to specify a
precise algorithm for solving an AI task, it is usually much easier to identify a correct behavior
and provide examples for it. The core idea of machine learning is to let the machine find an
algorithm by itself through observing correct behaviour in data. This approach has proven
to be very effective and has led to many serious breakthroughs in AI tasks in the last few
decades.

In this chapter we will provide a brief overview of machine learning fundamentals, followed
by a basic review of deep learning, which constitutes the general field of research of this thesis.

1.1. Machine Learning

Machine learning is the study of designing and analyzing algorithms that can adapt or
“learn" from data. The main objective is generalization. The ability of learning algorithms to
generalize to new situations is what distinguishes them from template matching algorithms
or look-up tables.

Consider the task of recognizing handwritten digits as shown in Figure 1. Given an input
image of size 28×28 gray-scale pixels, the goal is to recognize which of the possible 10 digits



the image represents. A traditional approach for solving this task is to manually design
an algorithm which uses heuristics and hand-crafted rules to distinguish digits from their
shapes. This turns out to be highly nontrivial due to the large number of possible variations
in digit shapes.

A machine learning approach, on the other hand, would be to build an adaptive algorithm
that learns from data how to solve the handwritten digit recognition task. In the next section,
we will discuss basic elements of a machine learning algorithm. While there are many types
of machine learning algorithms, we will focus on the digit recognition task as an example of
classification, which is probably one of the most mature and widely used machine learning
tasks. We will provide a general overview of other types of machine learning in section 1.1.2.

Fig. 1. Examples from MNIST handwritten digits.

1.1.1. Elements of a Learning Algorithm

1.1.1.1. Training Data

The data used for learning is called training data. In digit classification, training data is
a set of N input-output pairs:

D = {(x(1), y(1)),(x(2), y(2)), . . . ,(x(N), y(N))},

where each training example is composed of an input image x(i) ∈ Rd and an output class
y(i) ∈ {0, . . . , 9}.

Input and output domains, X and Y , can take different forms depending on the learning
task. Generally speaking, domains can be a finite set of elements, scalars in R, vectors
in Rd, a finite sequence or a combination of all of them. Furthermore, in some learning
tasks training examples are composed of only inputs without specific outputs. This type of
learning is called unsupervised learning, in contrast to supervised learning as in our example
of digit classification. Learning paradigms are discussed further in section 1.1.2.
Data generating distribution: A common assumption imposed on training examples is that
they are identically and independently distributed, or i.i.d. for short. That is, we assume that
each example is sampled independently from some distribution PD, which is called the data
generating distribution. In digit classification, this distribution is defined over X × Y , i.e.,
PD(x,y). We generally have access to this distribution through a finite set of samples in the
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training set D. In practice, training data only comprise a tiny fraction of possible inputs,
and this is why generalization is central in machine learning. The i.i.d. assumption is also
crucial for guarantees on the generalization capability of most machine learning algorithms.

1.1.1.2. Model

A model specifies what a machine learning algorithm learns from the data. When de-
signing a learning algorithm we generally specify a family of models F , also known as the
hypothesis space, which is the set of all possible models that the algorithm can learn. Learn-
ing from data reduces to searching for the “best” member of this family – according to a
performance measure evaluated on data.

In digit classification, the model can be described as a function f : X → Y and is called
a classifier. In an “optimal" classifier f ∗, the predicted output ŷ = f ∗(x) matches the true
output y for any (x,y) ∈ D.
Parametric vs. non-parametric models: There are two main categories of models (or model
families): parametric and non-parametric. Parametric models have a fixed-size set of param-
eters, which is independent of the amount of training data. Non-parametric models, on the
other hand, have a variable number of parameters depending on observed data. 1

A parametric model is typically denoted by a function fθ, where θ are parameters that
define a specific member of the hypothesis space, i.e., fθ ∈ F . For example, linear regression
is a parametric model in which weights comprise parameters. On the other hand, k-nearest
neighbors (KNN) method is a canonical example of non-parametric methods. KNN stores
all training examples, and predictions are made by finding the k most “similar" training
examples (according to some similarity measure).
Model capacity: The notion of model capacity is central in machine learning. Informally, the
capacity of a model (or family of models) is its ability to represent or “fit" training data.
If we assume there is a true function f ∗ : X → Y , which represents the true relationship
between input and output domains, then the question of model capacity boils down to
asking how “large" F is, which is important because we would like it to be large enough
so that f ∗ ∈ F . For example, if f ∗ is a linear function, then linear models have enough
capacity to fit linear relationships in data, but they cannot fit more complex, non-linear
relationships. Generally speaking, a parametric model’s capacity grows as the number of
its parameters increases. Neural networks with an arbitrary size are known to be universal
function approximators (Hornik et al., 1989). The universal approximation theorem states
that a single hidden layer neural network can approximate any continuous function to any
desired accuracy, provided that it is given enough hidden units (i.e., enough parameters).

1Some authors consider a parametric model wrapped in a loop that increases the number of parameters as
needed (based on data) as non-parametric.
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1.1.1.3. Loss Function

In order to evaluate a model’s performance, we define a loss function `(f,x, y), which
measures the error that a model f makes on a specific example (x, y). An example of a loss
function for digit classification is the zero-one loss:

`01(f,x, y) =

 0 if f(x) = y

1 otherwise.
(1.1.1)

Using a loss function, we can define the concept of expected risk:

L(f, PD) = E(x,y)∼PD(x,y) [`(f,x,y)] . (1.1.2)

Expected risk allows us to describe the expected amount of error that a model f will
incur on the data-generating distribution. This is very important because a model with low
expected risk is expected to generalize well to a new data example (x,y), as long as it is
sampled from PD(x,y). Unfortunately, expected loss cannot be computed exactly because
we have no direct access to the true distribution PD(x,y). However, we have access to a
finite set of samples from this distribution in the training set D, which can give us a Monte
Carlo estimate of expected risk, also known as empirical risk:

L̂(f,D) = 1
N

N∑
i=1

`(f,x(i),y(i)). (1.1.3)

This concept gives us a principled framework known as empirical risk minimization (Vap-
nik, 1992) for formulating machine learning as an optimization problem.

1.1.1.4. Optimization Procedure

A key component of a machine learning algorithm is the procedure used to search for best
model within the hypothesis space, according to some objective. This can be formulated as
the following optimization problem:

fmin = arg min
f∈F

1
N

N∑
i=1

`(f,x(i),y(i)). (1.1.4)

In some instances, the solution to this optimization problem can be found in closed form.
More generally, however, it is solved using iterative optimization algorithms. One important
class of algorithms which is used frequently specifically in neural networks is gradient descent.
We will discuss it further in section 1.2.2.

We refer to this optimization process as the training phase or learning phase, as opposed
to using a trained model for making predictions, which is called the testing phase or inference
phase.
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Generalization, overfitting and underfitting: The question that remains is the following: is
there any guarantee that the solution fmin achieves our main objective of generalization to
future examples? The field of statistical learning theory investigates this question formally.
In practice, we can measure generalization of a given model by evaluating its performance
on a held-out dataset, which we call a test set. The error that a model makes on a test set
is called the test error, and can give us an estimate of the model’s performance on future
examples. This is opposed to training error which is computed on examples used for training.

There are two main learning failures that happen often in practice. The first is overfitting,
in which fmin is well tuned on training data D (low training error), but does not perform
well on unseen examples (high test error). Overfitting typically occurs when we assume a
family of models F with a very high capacity. that is, the hypothesis space is too large that
some of its members can perfectly fit to noise in training data, without capturing patterns
that help in generalizing to unseen examples. The other failure case is the opposite, and is
called underfitting. This typically happens when we use a very restricted F , such that none
of its members can even fit the training set. In this case, both training error and testing
error are high. Another form of underfitting can also happen due to optimization failures,
which means that the optimization process fails to find fmin.

Striking a balance between underfitting and overfitting is key to the success of learning,
and can be achieved with several methods as we will discuss in the following sections.

1.1.1.5. Model Selection

So far, we assumed a fixed hypothesis space F from which we choose a best member
(model) during training. But what if the capacity of this space is not suitable for our
problem? The process of controlling the capacity of a model space is referred to as model
selection. An effective method for model selection is cross-validation, in which we divide the
available data into three sets: training, validation and test sets. We perform optimization
using a training set to find fmin, and use the error that the model makes on the validation
set, which is referred to as the validation error, to measure generalization of fmin.

It is common to repeat this process multiple times in order to “tune" the model space
F based on the validation error. More generally, we use this process to tune any parameter
of the learning algorithm that is fixed during training. These parameters are called hyper-
parameters, and are distinct from parameters of the model which are adapted according to
training data. Finally, we report the test error of selected model fmin, which ensures that
the test set is not involved in any step of the learning algorithm.
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1.1.1.6. Regularization

Another form for striking a balance between underfitting and overfitting can be achieved
by choosing a flexible enough hypothesis space, but controlling its capacity through regular-
ization. Regularization can be used to bias the optimization criterion such that models with
better generalization are preferred. In the empirical risk minimization framework, regular-
ization is characterized by adding an extra term to the optimization criterion:

fmin = arg min
f∈F

1
N

N∑
i=1

`(f,x(i),y(i)) + Ω(f). (1.1.5)

The function Ω is data-independent and introduces what is known as inductive bias to the
learning algorithm. Inductive biases refer to any set of assumptions that help the induction
or generalization of the learning algorithm. Some commonly used inductive biases include:
smoothness, simplicity, similar examples have similar classes. We will discuss in section
1.2.3 some regularization methods used in the context of neural networks. In addition, one
of the contributions of this thesis presented in Chapter 3 introduces a specific technique for
improving generalization of recommender systems by leveraging additional data sources.

1.1.2. Paradigms of Machine Learning

Machine learning methods can be divided into three main paradigms: supervised learning,
unsupervised learning and reinforcement learning.

1.1.2.1. Supervised Learning

The goal in supervised learning is to recover an input-output mapping from examples of
the desired mapping. Therefore, training data is composed of a set of input-output pairs
D = {(x(i),y(i)); i = 1 . . . N}.

Supervised learning can be further classified according to the nature of target y into two
main categories: (i) Classification, which deals with predicting one of a fixed number of
discrete values, or labels, such as predicting an object identity from an image. (ii) Regression
deals with predicting real-valued targets, or more generally any ordered set of numerical
values, such as a stock price or weather temperature. Another popular form of supervised
learning is structured output prediction, which deals with more complex targets, such as a
structured collection of labels (e.g., image segmentation, where each pixel is classified into
one of a fixed set of categories) or a sequence of real values (e.g., time-series of future stock
prices).

Supervised learning can be formalized as learning a function f : X → Y , which can
be modelled by a variety of methods, such as decision trees, support vector machines or
neural networks. A probabilistic interpretation of supervised learning casts the problem as
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estimating a conditional distribution P (y | x). This is arguably a more general view which
can account for noise in labels or multimodal mappings.

One class of probabilistic algorithms estimates the conditional distribution directly, and
this is called discriminative algorithms, while another class, called generative algorithms,
takes an indirect path by modelling a full joint distribution P (y,x). This is typically done
by estimating a prior over targets P (y) and the conditional P (x | y), and then applying
Bayes rule to get the posterior P (y | x). Explicit modeling of the prior and the conditional
can be sometimes useful, especially when we have very good estimates of the prior (e.g.,
expert knowledge or using extra data resources). In addition, generative algorithms allows
sampling new data from the model, but they can be computationally more demanding than
discriminative ones.

1.1.2.2. Unsupervised learning

While supervised learning is a very general framework that can handle a wide range
of practical problems, it is limited to the availability of labelled data, i.e., input-output
examples pairs. Would it be possible to somehow leverage the massive amounts of unlabelled
data around us (images, text, sound... etc.)?

The goal of unsupervised learning is to discover latent structure in data, without requiring
direct labels. Training data in unsupervised learning problems is hence composed of a set of
input examples D = {x(i); i = 1 . . . N}.

A prominent form of unsupervised learning is density estimation, which tries to uncover
the true data generating distribution PD(x) from training examples. Structure in data can
be captured in the form of latent variables. More precisely, we can decompose the probability
of a specific observation x as P (x) = ∑

z P (x|z)P (z). Latent variables allow us to explain
factors of variations in observed data more precisely, and often assume a simple prior P (z).
This kind of information can be very helpful for dealing efficiently with limited amounts of
labelled data, and is the basis for a hybrid form of learning, called semi-supervised learning.

Other forms of unsupervised learning include clustering, where the goal is to find groups of
similar examples, which can be very useful for automatic labelling of data. Dimensionality
reduction also focuses on projecting high-dimensional data into the few most meaningful
dimensions. One important application of dimensionality reduction is data visualization.

1.1.2.3. Reinforcement learning

Reinforcement learning deals with tasks where the learning algorithm, or agent is allowed
to interact with a dynamic environment. The agent takes observations of the environment,
internalizes them as a state, performs actions, which can affect the environment, and can
possibly receive a reward for the actions it made. The goal of the agent is to learn a policy
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or a model of the behavior which maximizes the long-term expected sum of future rewards,
or return.

Contrary to supervised learning where the algorithm is given examples of correct behav-
ior, a reinforcement learning agent learns policies through indirect, and possibly very scarce,
feedback signals.

We focus in this thesis mainly on supervised and unsupervised learning tasks, but many
advances in these paradigms can be applied for reinforcement learning, as evidenced in the
recent wave of deep reinforcement learning.

1.2. Deep Learning

Machine learning can, in principle, facilitate the automation of a wide range of difficult
tasks. However, in practice, the success of traditional learning algorithms relies heavily on
extracting good features or representations of data, as they tend to be not extremely effective
when applied directly on raw data. Extracting useful features of data, also known as feature
engineering, is generally a tedious task that requires a lot of domain expertise. The goal of
representation learning is to take the automation process a step further by learning features
or representations automatically from data. This is typically performed as part of solving a
learning task, be it a supervised, unsupervised, or reinforcement learning one.

The field of deep learning is concerned with learning deep representations, i.e., hierarchical
representations composed of multiple layers of abstraction. This is generally motivated by
the nature of data itself. A lot of the data we observe can be explained in a hierarchical
form: in language, words make up sentences, which make up paragraphs of a full document.
In vision, pixels form edges, and edges form simple shapes, which in turn form more complex
shapes in a natural image. On the other hand, neuroscience evidence suggests that the brain
processes signals in multiple stages (Bengio, 2009).

While in deep learning there are generally very little assumptions about the learned
representation, a cornerstone concept is learning distributed representations (Hinton et al.,
1986) of data, as opposed to local representations. The basic idea is to distribute informa-
tion about data observations across several dimensions of the feature space, as opposed to
assigning a specific dimension for each symbolic concept. As a simple example, we can think
of the binary representation of a set of N integers as a distributed representation (log2 N

space), while a one-hot vector representation is a local representation (N space). A more
concrete example is representing words in a vocabulary as vectors in Rd, also called word
embeddings, where each dimension contributes to the word meaning (distributed representa-
tion), as opposed to a one-hot vectors where dimensions are independent of each other (local
representation).

A classic example of deep learning models is a feedforward neural network, also called
multi-layer perceptron (MLP). MLPs apply multiple layers of nonlinear transformations on
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the input to produce the desired output. Each consecutive transformation can be seen as
providing a distributed data representation with a higher level of abstraction. What makes
these representations appealing is that they are learned, i.e., optimized according to some
training criterion, as opposed to being hand-crafted and fixed a priori. This, in principle,
allows a system to learn powerful data representations with very little prior assumptions.

In the remainder of this section we will review some fundamentals of the field of deep
learning that are specifically relevant to the work presented in this thesis. A more compre-
hensive treatment of deep learning can be found in (Goodfellow et al., 2016).

1.2.1. Feedforward Neural Networks

The basic building block of a feedforward or a fully-connected neural network is an affine
transformation applied to an input vector x ∈ Rn followed by a simple non-linearity φ:

h = φ (Wx + b) , (1.2.1)

where W ∈ Rm×n is a weight matrix and b ∈ Rm is a bias vector. The function φ is applied
element-wise, and typical choices for it include:

• hyperbolic tangent: tanh(z) = ez−e−z
ez+e−z

• logistic or sigmoid: sigmoid(z) = 1
1+e−z

• rectified linear : ReLU(z) = max(0,z)
This building block composes one hidden layer in a neural network, and a network is generally
composed of multiple hidden layers followed by a final output layer. The choice of output
layer is very much task dependent. Generally speaking, simple linear models (either for
classification or regression) are used as output layers, since the last hidden layer can be
viewed as providing a highly nonlinear representation of the input.

A typical choice for the output layer in binary classification tasks is the logistic regression
classifier:

o = sigmoid(Vh + c), (1.2.2)

where V, c, o is the weight vector, bias scalar and output scalar, respectively. Since the
output o ∈ [0, 1], we can interpret it as a probability of a class, i.e., P (y = 1 | x). It is
customary to give a probabilistic interpretation to the output of neural networks. In this
example, the network is used to model or parametrize a (conditional) Bernoulli distribution.

An example of the computation done in a simple MLP with two hidden layers (using
tanh nonlinearities) and a logistic regression output layer is the following:

h1 = tanh
(
W1x + b1

)
(1.2.3)

h2 = tanh
(
W2h1 + b2

)
(1.2.4)

o = sigmoid
(
Vh2 + c

)
, (1.2.5)
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where θ = {W1,W2,V,b1,b2,c} are the parameters of the network. More precisely, a neural
network architecture defines a family of parametric functions F = {fθ | θ ∈ Θ}, where Θ
is a parameter space and θ is a specific configuration for the parameters. Optimization,
or training a neural network, amounts to finding the configuration of the parameters that
minimizes the training criterion. As we discussed earlier, the training criterion is defined in
terms of the loss function and the choice of regularization. One typical choice for the loss
function for binary classification is the cross-entropy loss function:

`(fθ(x),y) = −y log fθ(x)− (1− y) log (1− fθ(x)) . (1.2.6)

Notably, this is equivalent to the negative log-likelihood of a Bernoulli with p = fθ(x).
Minimizing the negative log-likelihood function (or, equivalently, maximizing log-likelihood)
is one of the most common learning methods known as maximum likelihood.

We can define the training loss for a binary classification network as follows:

L(θ,D) = 1
N

N∑
i=1
−y(i) log fθ(x(i))− (1− y(i)) log

(
1− fθ(x(i))

)
. (1.2.7)

For multi-class classification tasks, the sigmoid function is replaced with the softmax
function to provide probabilities for each class. The softmax function takes an arbitrary
vector, a, and returns a stochastic vector p = softmax(a), i.e., pi ∈ [0,1] for all i and∑
i pi = 1. Each element pi is computed as:

pi = eai∑
j e

aj
. (1.2.8)

The output vector p of the softmax function can be interpreted as the parameters of a
Multinomial(p,n) distribution (with number of trials n = 1), also known as the Multinoulli
distribution.

In regression tasks, one can use a simple linear regression output layer:

o = Vh + c, (1.2.9)

and a standard loss function in this case is the mean-squared error (MSE):

`(fθ(x),y) = (y − fθ(x))2 . (1.2.10)

A probabilistic interpretation of this network is given by interpreting the network’s output
o as the mean of a Gaussian distribution. Minimizing MSE here corresponds to minimizing
negative log-likelihood of N (o,σ2), where σ2 is a fixed variance (e.g., σ = 1).

1.2.2. Optimization in Neural Networks

Optimization in deep neural networks is hard because the training loss L(θ,D) is a
highly non-linear and non-convex function of the parameters. Nevertheless, the training loss
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is differentiable with respect to parameters θ, which makes first-order optimization methods,
such as gradient descent, an appealing choice for deep neural networks.

Gradient descent is an iterative algorithm. Let θt be the value of parameters at some
learning step t, we start with some initial values θ0 and update the parameters at each
learning step t with the following update rule:

θt ← θt−1 − α∂L(θt−1,D)
∂θt−1 , (1.2.11)

where α is a scalar known as the learning rate that controls the amount of change in the
parameters each learning step. Training steps are repeated until we reach a satisfactory
learning performance.

Computing the gradient of the training loss ∂L(θ,D)
∂θ

can be done efficiently using the
back-propagation algorithm (Rumelhart et al., 1986). Back-propagation is a dynamic pro-
gramming algorithm that applies the chain rule of calculus for finding derivatives in the most
efficient order: starting from the output, it computes gradients by going backwards to each
hidden layer until it reaches the input. More specifically, for a given hidden layer:

h(i) = φ
(
a(i)

)
a(i) = W(i)h(i−1) + b(i),

we can compute the gradients of the loss (denoted as L to avoid notation clutter):

∂L
∂a(i) = ∂L

∂h(i)
∂h(i)

∂a(i)

∂L
∂h(i−1) = ∂L

∂a(i)
∂a(i)

∂h(i−1) .

This gives us a recursive definition for computing gradients for each hidden layer. We can
compute gradients with respect to parameters in each hidden layer as follows:

∂L
∂W(i) = ∂L

∂a(i)
∂a(i)

∂W(i)

∂L
∂b(i) = ∂L

∂a(i)
∂a(i)

∂b(i) .

Many software packages support computing gradients based on back-propagation, including
Theano (Al-Rfou et al., 2016), Pytorch (Paszke et al., 2017) and Tensorflow (Abadi et al.,
2016).

In principle, each gradient computation, and correspondingly each update of the param-
eters, requires computing gradients over all training examples. This is called batch gradient
descent (BGD). In practice, however, BGD can be extremely inefficient, because each up-
date requires scanning through the whole training set, which is generally very large. A more
efficient approach is to compute an estimate of the gradient of the training loss for a single or
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few training examples (i.e., a mini-batch), which is referred to as stochastic gradient descent
(SGD). SGD is generally much more efficient in practice, especially with modern hardware
which allows for parallel computation of gradients over a mini-batch.

One challenge in gradient based learning is how much signal can be back-propagated as
we increase the number of layers in the network. This issue is known as vanishing gradi-
ents (Bengio et al., 1994), and has been one of the main hurdles for training deep neural
networks. A lot of the recent success in deep learning can be attributed to important ad-
vances for mitigating this issue including:

• Introducing activation functions, namely rectified linear units and their variants (Glo-
rot et al., 2011; Xu et al., 2015a; Clevert et al., 2016), which allow gradients to flow
more smoothly compared to other activations, such as tanh and sigmoid.
• Better parameter initialization techniques (Glorot and Bengio, 2010; Saxe et al.,
2013), which allow for better gradient flow especially in the beginning of training.
• Adaptive learning rates (Sutskever et al., 2013; Schaul et al., 2013; Kingma and Ba,
2014), which help in automatically adjusting learning rate and avoiding too large
values (possible divergence) or too small values (very slow convergence).
• Normalization techniques for network activations, such as batch normalization (Ioffe
and Szegedy, 2015), weight normalization (Salimans and Kingma, 2016), and layer
normalization (Ba et al., 2016). The main idea is to normalize the distribution of
activations across layers (e.g., zero mean and unit variance), which proves to be highly
effective for training very deep networks.
• Architectural innovations, such as skip connections between layers to propagate gra-
dient more easily through the network. Models that implement skip connections
include long-short term memory (Hochreiter and Schmidhuber, 1997), highway net-
works (Srivastava et al., 2015) and residual networks (He et al., 2016).

1.2.3. Regularization in Neural Networks

There is a wide range of techniques for regularizing neural networks:
• Weight norm penalty is the most basic regularization technique. This is based on
computing an L1 or L2 norm of the network’s weights, and minimizing it with the
training objective. This regularization technique has a nice probabilistic interpre-
tation, where L1 and L2 penalties correspond to Laplace and Gaussian priors over
weights, respectively.
• Dropout is a very successful technique introduced by Hinton et al. (2012), and was
behind one of the great successes of deep learning in object recognition (Krizhevsky
et al., 2012). The idea is to randomly drop (set to zero) units in hidden layers during
training with some predefined probability (e.g., p = 0.5).
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• Data augmentation is a family of techniques in which we try to add fake data to
the original training set. Creating fake data in some tasks, such as image classifica-
tion, can be easy, because we know the classifier should be invariant to a variety of
transformations, such as translation and scaling.
• Multi-task learning introduced by Caruana (1997) is a form of regularization in neural
networks in which we train networks on multiple related tasks simultaneously. This
can be viewed as training multiple networks which share parameters. It forces hidden
representation to explain a variety of related tasks – serving as an inductive bias for
the main task of interest. Multi-task learning can be especially useful when related
tasks provide missing information from the original task, and this is the basis of our
contribution in Chapter 3.

In general, the best way to improve generalization is to get more labelled data. Since this
is typically very challenging, a lot of research has been focused on improving unsupervised
learning in order to leverage the huge amounts of unlabelled data available. The promise
of unsupervised learning is to allow learning good representations of data, which can be
used for downstream tasks. Semi-supervised learning aims at enforcing representations from
unlabelled data to align with the supervised task. Another very promising research direction
is generative modelling, in which the main focus is to learn models that can generate realistic
data. We will give a general overview of generative models in deep learning in Section 1.3.

1.2.4. Convolutional Neural Networks

A powerful class of neural network models is the convolutional neural network (CNN).
CNNs take advantage of the topological structure of input data, which allows the learning of
more powerful representations with much more efficient (computationally and statistically)
architectures. While CNNs are especially popular for 2D image data, they have been exten-
sively applied to other types of data (e.g., text and video). In the following we will focus on
2D CNNs.

The main distinction of a CNN from a typical fully-connected network is that it uses two
special types of layers: convolutional and pooling layers. The 2D convolutional layer can be
characterized as follows: given a 2D input x ∈ Rn×m (e.g., an image with width n and height
m), the convolutional layer uses a kernel or filter K ∈ Rp×p, where typically p � n,m, and
computes a feature map f ∈ R(n−p+1)×(m−p+1) as follows:

fi,j = φ
(
vec(K)Tvec(xi,j)

)
, (1.2.12)

where xi,j is an input patch of size p× p centered at the location (i,j), fi,j is the result of the
dot product of the vectorized matrices at the location (i,j) of the feature map, and φ is a
typical nonlinearity. This means that the feature map is computed by convolving the kernel
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on the full input. It is worth noting here that convolutional layers generally use several
kernels and are applied to inputs with multiple channels.

The convolutional layer has two main advantages: first, it allows for parameter shar-
ing across many spatial locations, which results in using much fewer parameters and much
sparser connectivity compared to a fully connected layer. Second, it produces outputs (rep-
resentations) that are equivariant to input translations. This is especially useful in image
representation, because it means that a specific input feature (e.g., an edge) can be detected
regardless of its location in the input.

Pooling layers are generally applied after a convolutional layer to subsample the resulting
feature map. Subsampling is performed by replacing a local neighborhood in the feature map
with a summary statistic, such as the maximum or average value. Pooling helps in achieving
invariance of the resulting representation with respect to particular changes in the input.

CNNs are basic building blocks for many state-of-the-art models for visual object recog-
nition and detection (Simonyan and Zisserman, 2014; Szegedy et al., 2014; He et al., 2016).
Convolutional models have also been successful in other data types which enjoy specific topo-
logical structure, such as speech (Abdel-Hamid et al., 2012) and text (Kalchbrenner et al.,
2014; Zhang et al., 2015).

1.2.5. Recurrent Neural Networks

Standard feedforward neural networks assume that inputs can be modeled as fixed-size
vectors. This is not the case in sequential data, such as word sequences and speech signals.
Recurrent neural networks (RNN) provide an extension to neural networks for variable-size
inputs. It is worth noting that in principle even CNNs can handle variable size inputs, but
they require aggressive sub-sampling to account for long sequences. The question of which
model is more suitable for sequential data is still debated (Bai et al., 2018), but RNNs remain
the most popular choice for modelling sequences.

Recurrent neural networks preserve the global structure of data by the means of recurrent
connections. More formally, given an input sequence of vectors s = x1,x2, . . . ,xT , an RNN
defines the following recurrence:

ht+1 = fRNN (xt,ht) , (1.2.13)

where ht is the hidden state of the RNN at time t, and typically h0 is initialized to some
predefined value (e.g., zeros). What makes an RNN model powerful is that the hidden state
at time t theoretically encodes information from all previous inputs in order. Achieving this
in practice depends largely on how the function fRNN is parameterized. The “vanilla” RNN
model defines it as follows:

ht+1 = tanh (Vxt + Wht + b) , (1.2.14)
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where V, W, and b are learned parameters. The main problem with this parametrization
is that in practice it does not capture long-term dependencies very well, which is largely
due to the vanishing gradient problem (Bengio et al., 1994). Several other parametrizations
have been studied in the literature to overcome this issue, including LSTM (Hochreiter and
Schmidhuber, 1997) and GRU (Cho et al., 2014) units.

Assuming an appropriate parametrization for fRNN, we can use RNNs for a wide range
of tasks. In a supervised learning setting, one class of problems is to map the input sequence
to another sequence of the same length. For example, given a sequence of words, we want to
predict the part-of-speech tags for each word. In general, we can define an output for each
time step as follows:

ŷt = fout(ht), (1.2.15)

where the function fout can be parameterized using a simple linear model or an MLP. The
loss of one training example (full sequence) is the sum of losses of all time steps.

Generative modeling is where RNNs have recently had the most impact, for example in
language modeling (Mikolov, 2012a) and handwriting generation (Graves, 2013). We can
factorize the joint distribution of any sequence s as follows:

P (x1,x2, . . . ,xT ) = P (x1)P (x2 | x1) . . . P (xT | x1,x2, . . . ,xT−1). (1.2.16)

An RNN can model each conditional as an output function of the current hidden state, i.e.:

P (xt | x1,x2, . . . ,xt−1) = fout(ht). (1.2.17)

RNNs are typically trained by maximizing the log-likelihood of the training sequences, also
known as teacher forcing.

1.3. Deep Generative Models

1.3.1. Overview

Generative models represent a class of probabilistic models, which estimate the true data
generating distribution PD (data distribution) with an estimate Pθ (model distribution).2

They are called generative to emphasize their capabilities in synthesizing data by sampling
from Pθ.

In an unsupervised learning setting3, generative models are given a set of i.i.d. samples
{x1,x2, . . .xN} from PD(x), which they use to estimate Pθ(x). One of the most standard

2This can be done explicitly or implicitly.
3Generative models can also be used in supervised learning settings, in which we typically estimate conditional
distributions Pθ(y | x).

37



estimation principles is maximum likelihood estimation, in which we maximize the objective:

L(Pθ(x), PD(x)) = Ex∼PD(x) [log (Pθ(x))] . (1.3.1)

This objective is equivalent to minimizing the Kullback-Leibler divergence (KL divergence)
between data and model distributions:

KL (PD(x)‖Pθ(x)) = Ex∼PD(x)

[
log PD(x)

Pθ(x)

]
= Ex∼PD(x) [logPD(x)]− Ex∼PD(x) [logPθ(x)]

= −H(PD(x))− Ex∼PD(x) [logPθ(x)] , (1.3.2)

where H(PD(x)) is the entropy of PD(x) and is independent of parameters θ. Beside max-
imum likelihood, there are many other estimation methods such as Bayesian estimation
methods (e.g., maximum a posteriori), and implicit density estimation methods, such as
noise-contrastive estimation (Gutmann and Hyvärinen, 2010) and generative adversarial
methods (Goodfellow et al., 2014).

Deep generative models were developed to harness the power of deep neural networks in
generative modelling. This allows for capturing complex relationships in data, but at the
same time imposes challenges in learning.
Operations: In generative modelling, we are typically interested in learning models that
describe high dimensional data, and perform one or more of the following operations:

• Sampling: produce a sample from Pθ(x). Samples can be useful for synthesis tasks,
such as image, language or speech synthesis. They can also give an insight into the
estimated distribution.
• Likelihood evaluation: given a sample x, compute the model likelihood Pθ(x), or a
proxy for it (e.g., energy values). This can be especially useful for applications like
outlier detection or as a data-based evaluation metric.
• Inference: describe an observed sample x with a latent code or representation z.
Typically, z is assumed to have a simpler structure than x, e.g., lower dimensionality,
independence, sparsity, etc. Latent codes can be useful to explain factors of vari-
ation in observed data, and have potential applications in representation learning,
dimensionality reduction and semi-supervised learning.

1.3.2. Dominating Methods

Most recently, three classes of methods in deep generative models have proven to be
mostly successful: generative adversarial networks, variational autoencoders, and autoregres-
sive models. In the following we will provide a quick review of each approach.
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1.3.2.1. Generative Adversarial Networks

Generative adversarial networks (GAN) (Goodfellow et al., 2014) learn the data gener-
ating distribution by setting up a minimax game between two neural networks: a generator
and a discriminator. The generator, which generates data samples by mapping random noise
to the data domain, tries to “fool" the discriminator. The discriminator tries to distinguish
between real data samples and generator samples.

More formally, let X be the data domain, PD(x) the data distribution and Pg(x) the
generator distribution, which is implicitly defined by the sampling process:

x = G(z), z ∼ P (z), (1.3.3)

where z is a random noise sample and P (z) is its distribution (e.g., isotropic Gaussian), and
G is the generator network.

The discriminator D is a binary classifier D : X → [0,1], where D(x) can be interpreted
as the probability of x being a “real" sample (from data distribution).

Finally, the minimax game is defined by optimizing the following value function:

max
D

min
G

V (D,G) = Ex∼PD(x) [logD(x)] + Ez∼P (z) [log(1−D(G(z)))] . (1.3.4)

Notably, the fixed-point solution to this game is attained when Pg(x) = PD(x) for all x. In
addition, Goodfellow et al. (2014) show that given an optimal discriminator D, minimizing
V (D,G) w.r.t. G amounts to minimizing the Jensen-Shannon divergence between Pg(x) and
PD(x).

In practice, the objective 1.3.5 leads to vanishing gradients as the discriminator satu-
rates. Goodfellow et al. (2014) propose the following heuristic training objective, also known
as non-saturating GAN objective:

max
D

Ex∼PD(x) [logD(x)] + Ez∼P (z) [log(1−D(G(z)))]

min
G

Ez∼P (z) [− logD(G(z))] (1.3.5)

GAN is an appealing generative modelling framework specifically because of its efficient
sampling (parallelizable across data dimensions), and simple training with gradient-based
methods. It has arguably produced the best samples among competing frameworks, espe-
cially in image domains. The main downside of GANs is the difficulty of training them,
which is still a very active area of research. In addition, the standard GAN formulation does
not provide inference and likelihood estimation capabilities.

1.3.2.2. Variational Autoencoders

A variational autoencoder (Kingma and Welling, 2013; Rezende et al., 2014) (VAE) is a
probabilistic model which assumes observed data x is explained by the means of continuous
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latent codes z. That is, the estimated data distribution Pθ(x) is described as:

Pθ(x) =
∫

z
Pθ(x | z)p(z)dz, (1.3.6)

where we typically assume p(z) to be a simple isotropic Gaussian prior over latent space.
In practice, a VAE is composed of two networks: a decoder, which parameterizes a

conditional probability Pθ(x | z), and an encoder or inference network, which parameterizes
a conditional probability over latent space Qφ(z | x).

Generating a sample from a VAE is also very simple:

x ∼ Pθ(x | z), z ∼ p(z). (1.3.7)

For real-valued data, Pθ(x | z) can be a multivariate Gaussian distribution:

x ∼ N (µθ(z),Σθ(z)), (1.3.8)

where µθ(z) and Σθ(z)) are the mean and covariance matrix, parameterized by the decoder
network.

Inference is done in a similar fashion. Given a data sample x:

z ∼ N (µφ(x),Σφ(x)), (1.3.9)

where we assume Qφ(z | x) to be a multivariate Gaussian distribution over latent space, for
which the encoder network is used to parameterize its mean and covariance.

Learning follows the maximum likelihood principle, but since the integral in Eq. 1.3.6
is intractable, we maximize a variational lower bound or an evidence lower bound (ELBO)
on the likelihood function, in which the conditional Qφ(z | x) is used as an approximate
posterior.

In general, VAE offers exact and efficient sampling. Inference is also a key feature of
VAE, and has been exploited in applications like semi-supervised learning (Kingma et al.,
2014). Exact likelihood computation is still not possible, but the model offers a lower bound
on it which can possibly be made tighter (Burda et al., 2015).

1.3.2.3. Autoregressive Models

Autoregressive models do not rely on a latent space, and directly describe the joint
distribution over N -dimensional observed data x using the chain rule of probability:

Pθ(x) = Pθ(x1)
N∏
k=1

Pθ(xk | x<k), (1.3.10)

where Pθ(xk | x<k) denotes the conditional distribution of xk given all previous dimensions
x<k.

These models leverage the power of deep neural networks in modelling conditionals.
One fundamental issue that arises here is how to scale these models to high-dimensional
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data. A key solution to this problem is parameter sharing between networks parameterizing
conditionals (Bengio and Bengio, 2000; Bengio et al., 2003).

These models have gained popularity in sequential data modelling, such as language mod-
elling (Bengio et al., 2003), especially with the use of RNNs and their LSTM variant (Mikolov
et al., 2013; Graves, 2013).

Autoregressive models have also proved to be effective in image domains, where the
dimensionality can be on the order of tens or even hundreds of thousands (Larochelle and
Murray, 2011; Germain et al., 2015; Van Oord et al., 2016).

The main advantage of these models is that they can be trained with an exact maximum
likelihood objective with gradient-based methods. However, sampling is not efficient as it
has to be done sequentially for each input variable xk.
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Chapter 2

Prologue to First Article

2.1. Article Details

Learning distributed representations from reviews for collaborative filtering.
Amjad Almahairi, Kyle Kastner, Kyunghyun Cho, and Aaron Courville. Proceedings of the
9th ACM Conference on Recommender Systems (RecSys 2015).

Personal Contribution. I am the main contributor to this work with regards to designing
and carrying out experiments, analyzing results and writing the manuscript.

2.2. Context

This work was initially motivated by finding an effective method for evaluating unsuper-
vised learning of distributed representations for natural language. In addition, at the time of
publishing this work, there were very few publications which used deep learning in improv-
ing recommender systems. Our work builds on the work of McAuley and Leskovec (2013),
who introduced the Amazon Reviews dataset which provides a large number of user-product
rating data accompanied with natural language reviews. They were also first to show that
review text is a rich source of information, which can be leveraged in reducing data sparsity
in recommender systems. Their approach was based on learning a topic-model of review text
using Latent Dirichlet Allocation (LDA) (Blei et al., 2003), which can be used to regularize
representations of users or products. One main question which was not studied in their work
is whether learning a more flexible language model, e.g, based on neural networks, can lead to
“better" regularization of user or product representations, i.e., lead to further improvements
in the recommendation task.

2.3. Contributions

We studied two alternative approaches for modelling review text, and compared them
to prior state-of-the-art LDA-based approaches, mainly with respect to improving recom-
mendation. The first is based on a bag-of-words, product-of-experts model and the other is



based on RNNs. We performed comprehensive experiments, which show that the product-
of-experts models consistently outperform the LDA-based ones. We show, however, that
the flexibility offered by the RNN-based model does not necessarily lead to further improve-
ments in this context. We also made a methodological contribution by highlighting the
importance of defining a fixed train / test split in the Amazon Reviews dataset for attaining
fair comparisons across published results.

2.4. Recent Developments

Since review text is typically available only at training time, our work focused on learning
a language model of reviews as a related task which can help in regularizing representations of
products used for recommendation. Several follow-up papers explored alternative neural net-
work based approaches for leveraging review text for recommendations. Chen et al. (2016a);
Zheng et al. (2017) use all reviews of a target user and a target product to learn their em-
beddings in a supervised rating prediction task. Catherine and Cohen (2017) shows that the
predictive value of these embeddings mainly comes from reviews of the target user-item pair,
which is not available at test time. They propose a knowledge distillation approach (Bucilua
et al., 2006; Hinton et al., 2015) to alleviate this problem.

In general, deep learning techniques have gained a lot of popularity especially for learning
user/product embeddings from additional sources of information (Barkan and Koenigstein,
2016; Vasile et al., 2016; Nedelec et al., 2017). Another tangential line of work has been fo-
cusing on leveraging sequential deep learning models (e.g, RNNs) for incorporating temporal
dynamics in recommendations (Hidasi et al., 2016; Wu et al., 2016, 2017).

Evaluating learned representations of sentences, especially from unlabelled data remains
an open problem. Hill et al. (2016) conducted a thorough comparison of a wide range of un-
supervised approaches for learning sentence representations. Their evaluation was based on
computing semantic relatedness of two sentence pairs by computing cosine distance between
their embeddings, and correlating these distances with gold-standard human judgments. In-
terestingly, their experiments confirm our results that sentence representations learned by
complex models, whose training cost is based on non-linear decoding of the representation,
do not perform well when evaluation is based on a simple or linear evaluation method.
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Chapter 3

Learning Distributed Representations from Reviews
for Collaborative Filtering

3.1. Introduction

Recommendation systems are a crucial component of many e-commerce enterprises, pro-
viding businesses with metrics to direct consumers to items they may find appealing. A
general goal of these systems is to predict a user’s preference for a certain product, often
represented as an integer-valued rating, e.g., between 1 (unsatisfied) and 5 (satisfied).

In order to predict the user’s preference for a product, it is often beneficial to consider
as many sources of information as possible, including the preference of the user for other
products, the preferences of other users, as well as any side information such as characteristics
of each user and product. A data-driven approach based on this idea is called collaborative
filtering.

Collaborative filtering has been successfully used for recommendation systems (see, e.g.,
(Ricci et al., 2011)). A typical approach to using collaborative filtering for recommendation
systems is to consider all the observed ratings given by a set of users to a set of products
as elements in a matrix, where the row and column of this matrix correspond to users
and products, respectively. As the observed ratings are typically only a small subset of the
possible ratings (all users rating all products), this matrix is sparse. The goal of collaborative
filtering is to fill in the missing values of this matrix: to predict, for each user, the rating
of products the user has not rated. In this setting, collaborative filtering is usually cast
as a problem of matrix factorization with missing values (Ilin and Raiko, 2010; Mnih and
Salakhutdinov, 2007; Salakhutdinov and Mnih, 2008). The sparse matrix is factorized into
a product of two matrices of lower rank representing a user matrix and a product matrix.
Once these matrices are estimated, a missing observation can be trivially reconstructed by
taking a dot product of a corresponding user vector (or representation) and a product vector
(or representation).



In this formulation of collaborative filtering, an important issue of data sparsity arises.
For instance, the dataset provided as a part of the Netflix Challenge1 had only 100,480,507
observed ratings out of more than 8 billion possible ratings2 (user / product pairs) mean-
ing that 99% of the values were missing. This data sparsity easily leads to naive matrix
factorization overfitting the training set of observed ratings (Ilin and Raiko, 2010).

In this work, we are interested in regularizing the collaborative filtering matrix factoriza-
tion using an additional source of information: reviews written by users in natural language.
Recent work has shown that better rating prediction can be achieved by incorporating this
kind of text-based side information (McAuley and Leskovec, 2013; Ling et al., 2014; Bao
et al., 2014). Motivated by these recent successes, here we explore alternative approaches to
exploiting this side information. Specifically, we study how different models of reviews can
impact the performance of the regularization.

We introduce two approaches to modeling reviews and compare these to the current
state-of-the-art LDA-based approaches (McAuley and Leskovec, 2013; Ling et al., 2014).
Both models have previously been studied as neural-network-based document models. One
is based on the Bag-of-Words Paragraph Vector (Le and Mikolov, 2014). This model is
similar to the existing LDA-based model, but, as we argue, it offers a more flexible natural
language model. The other is a recurrent neural network (RNN) based approach. RNNs
have recently become very popular models of natural language for a wide array of tasks (Le
and Mikolov, 2014). Here we will find that despite the considerable additional modelling
power brought by the RNN, it does not offer better performance when used as a regularizer
in this context.

The proposed approaches are empirically evaluated on the Amazon Reviews Dataset
(McAuley and Leskovec, 2013). We observe that the proposed bag-of-words language model
outperforms the existing approach based on latent Dirichlet allocation (LDA) (Blei et al.,
2003). We also confirm that the use of an RNN language model does not lead to improved
performance. Overall, our experiments demonstrate that, in this particular application where
we rely on the document model to regularize the collaborative filtering matrix factorization,
controlling the model flexibility is very important.

We also make methodological contributions in studying the effect of the train / test
splits used in experimentation. Previous works on this subject, e.g, (McAuley and Leskovec,
2013), (Ling et al., 2014) and (Bao et al., 2014), do not clearly identify how the data was
split into train and test sets. Here we empirically demonstrate the importance of doing
so. We show that for a given fixed split, conclusions regarding the relative performance
of competing approaches do generalize to other splits, but comparing absolute performance
across difference splits is highly problematic.

1http://www.netflixprize.com/
2480,189 users and 17,770 movies
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3.2. Matrix Factorization for Collaborative Filtering

Given a set of users U = {1, · · · , N} and a set of products (items) I = {1, · · · ,M}, let
ru,i ∈ {1, 2, · · · , 5} be the rating given by user u to product i. Let us assume that we are
given the ratings of a set of observed user-product pairs OR ⊂ U × I. Collaborative filtering
aims at building a model that is able to predict the rating of an unobserved user-product
pair, i.e., ru,i where (u,i) /∈ OR.

In collaborative filtering based on matrix factorization, we estimate each user-product
rating as

ru,i ≈ r̂u,i = µ+ βu + βi + γ>u γi, (3.2.1)

where µ, βi and βu are a global bias, a user-specific bias for the user u and a product-specific
bias for the product i, respectively. The vectors γu and γi are the latent factors of the user
u and the product i, respectively.

We estimate all the parameters in the r.h.s of Eq. (3.2.1) by minimizing the mean-squared
error between the predicted ratings and the observed, true ratings:

CR(θ) = 1

|OR|
∑

(u,i)∈OR

(r̂u,i − ru,i)2 , (3.2.2)

where θ =
{
µ, {βu}Nu=1 , {βi}

M
i=1 , {γu}

N
u=1 , {γi}

M
i=1

}
.

Once the parameters θ are estimated by minimizing CR, it is straightforward to predict
the rating of an unobserved user-product pair (u,i) using Eq. (3.2.1).

3.2.1. Taming the Curse of Data Sparsity

It has been observed earlier, for instance in (Ilin and Raiko, 2010), that this matrix
factorization approach easily overfits the observed ratings, leading to poor generalization
performance on the held-out set, or unseen user-product pairs. This issue is especially serious
in the case of recommendation systems, as it is highly likely that each user purchases/watches
only a fraction of all the available products. For instance, in the Amazon Reviews Dataset
more than 99.999% of ratings, or elements in the rating matrix are missing.

The issue of overfitting is often addressed by adding a regularization term Ω to the cost
CR in Eq. (3.2.2). One of the most widely used regularization term is a simple weight decay

Ω(θ) =
∑
θ∈θ

‖θ‖2 .

Hence parameters are estimated by minimizing CR(θ) + λΩ(θ), where λ is a regularization
coefficient.

Another approach is to interpret matrix factorization in a probabilistic framework (Ilin
and Raiko, 2010; Mnih and Salakhutdinov, 2007; Salakhutdinov and Mnih, 2008). In this
approach, all the parameters such as the user and product representations are considered as
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latent random variables on which the distribution of the rating, an observed random variable,
is conditioned. This probabilistic matrix factorization can automatically regularize itself by
maintaining the confidence of the estimates/predictions based on the observations.

On the other hand, we can improve generalization, hence reduce overfitting, by simulta-
neously estimating the parameters θ of the matrix factorization to perform well on another
related task (Caruana, 1997). With a model predicting a rating by a user on a product, we
can consider letting the model also try to account for the product review given by the user.
This seems like a useful side task as users often write reviews that justify their ratings and
describe features that affected their opinions.

We explore this approach of exploiting extra tasks to improve generalization performance
of collaborative filtering based on matrix factorization.

3.3. Regularizing with Extra Data

3.3.1. Reviews as Extra Data

In many e-commerce systems, each rating is often accompanied with a user’s review of the
product. As mentioned earlier, it is natural to expect that the accompanying review is used
by the user to justify her/his rating or opinion. Hence, we expect that a prediction model
for ratings can be improved by taking into account user reviews (McAuley and Leskovec,
2013). As an illustrating example, a user, who wrote “this is a great adventure movie that
children and adults alike would love!” for the movie “Free Willy”, is likely to give a high
rating to this movie.3

In this section, we will propose two approaches to utilizing this type of review data
for improving the generalization performance of a rating prediction model based on matrix
factorization.

3.3.2. Natural Language Review Modeling

More technically, let us suppose that we have access to the reviews for a set of user-
product pairs OD ⊆ OR. Each review du,i =

(
w

(1)
u,i , · · · , w

(nu,i)
u,i

)
is a piece of natural language

text written by a user u about an item i, which we represent as a sequence of words.
Following the multitask learning framework (Caruana, 1997), we build a model that

jointly predicts the rating given by a user u to a product i and models the review written
by the user u on the product i. The model has two components; matrix factorization in
Eq. (3.2.1) and review modeling, which shares some of the parameters θ from the rating
prediction model.

3This is an actual sample from the Amazon Reviews datatset.
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Here, we follow the approach from (McAuley and Leskovec, 2013) by modeling the con-
ditional probability of each review given the corresponding product γi:

p
(
du,i =

(
w

(1)
u,i , · · · , w

(nu,i)
u,i

)
| γi,θD

)
, (3.3.1)

where θD is a set of parameters specific for this review model.4

We estimate the parameters of this review model (θD and γi’s) by minimizing the negative
log-likelihood:

arg min
θD,{γi}

M
i=1

CD(θD, {γi}
M
i=1),

where

CD(θD, {γi}
M
i=1) = − 1

|OD|
∑

(u,i)∈OD

log p
(
du,i =

(
w

(1)
u,i , · · · , w

(nu,i)
u,i

)
| γi,θD

)
. (3.3.2)

We jointly optimize the rating prediction model in Eq. (3.2.1) and the review model in
Eq. (3.3.1) by minimizing the convex combination of CR in Eq. (3.2.2) and CD in Eq. (3.3.2):

arg min
θ,θD

αCR(θ) + (1− α)CD(θD, {γi}
M
i=1), (3.3.3)

where the coefficient α is a hyperparmeter.

3.3.2.1. BoWLF: Distributed Bag-of-Word

The first model we propose to use is a distributed bag-of-words prediction. In this case,
we represent each review as a bag of words, meaning

du,i =
(
w

(1)
u,i , · · · , w

(nu,i)
u,i

)
≈
{
w

(1)
u,i , · · · , w

(nu,i)
u,i

}
. (3.3.4)

This leads to

p(du,i | γi,θD) =
nu,i∏
t=1

p(w(t)
u,i | γi,θD).

We model p(w(t)
u,i | γi,θD) as an affine transformation of the product representation γi

followed by, so-called softmax, normalization:

p(w(t)
u,i = j | γi,θD) = exp {yj}∑|V |

l=1 exp {yl}
, (3.3.5)

where

y = Wγi + b

and V , W and b are the vocabulary, a weight matrix and a bias vector. The parameters θD

of this review model include W and b.
4Note that in principle we could also condition on the user factors γu, but our initial experiments show that
this can hurt generalization performance.
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When we use this distributed bag-of-words together with matrix factorization for pre-
dicting ratings, we call this joint model the bag-of-words regularized latent factor model
(BoWLF).

3.3.2.2. LMLF: Recurrent Neural Network

The second model of reviews we propose to use is a recurrent neural network (RNN)
language model (LM) (Mikolov, 2012b). Unlike the distributed bag-of-words model, this
RNN-LM does not make any assumption on how each review is represented, but takes a
sequence of words as it is, preserving the order of the words.

In this case, we model the probability over a review which is a variable-length sequence
of words by rewriting the probability as

p(du,i | γi,θD) = p
(
w

(1)
u,i | γi,θD

) nu,i∏
t=2

p
(
w

(t)
u,i | w

(1)
u,i , · · · , w

(t−1)
u,i ,γi,θD

)
,

We approximate each conditional distribution with

p
(
w

(t)
u,i = j | w(<t)

u,i ,γi,θD
)

=
exp

{
y

(t)
j

}
∑|V |
l=1 exp

{
y

(t)
l

} ,
where

y(t) = Wh(t) + b

and

h(t) = φ
(
h(t−1), w

(t−1)
u,i ,γi

)
.

There are a number of choices available for implementing the recurrent function φ. Here,
we use a long short-term memory (LSTM, (Hochreiter and Schmidhuber, 1997)) which has
recently been applied successfully to natural language-related tasks (Graves, 2013).

In the case of the LSTM, the recurrent function φ returns, in addition to its hidden state
h(t), the memory cell c(t) such that[

h(t); c(t)
]

= φ
(
h(t−1), c(t−1), w

(t−1)
u,i ,γi

)
,

where

h(t) = o(t) � tanh(c(t))

c(t) = f (t) � c(t−1) + i(t) � c̃(t).
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The output o, forget f and input i gates are computed by
o(t)

f (t)

i(t)

 = σ(VgE
[
w

(t−1)
u,i

]
+ Wgh(t−1) + Ugc(t−1) + Agγi + bg), (3.3.6)

and the new memory content c̃(t) by

c̃(t) = tanh(VcE
[
w

(t−1)
u,i

]
+ Wch(t−1) + Ucc(t−1) + Acγi + bc), (3.3.7)

where E, Vg, Wg, Ug, bg, Vc, Wc, Uc, bc, Ag and Ac are the parameters of the RNN-LM.
Note that E [w] denotes a row indexing by the word index w of the matrix E.

Similarly to the BoWLF, we call the joint model of matrix factorization and this RNN-LM
the language model regularized latent factor model (LMLF).

3.3.3. Related Work: LDA-based Approach

Similar approaches of modeling reviews to regularize matrix factorization have recently
been proposed, however, with different review models such as LDA (McAuley and Leskovec,
2013; Ling et al., 2014) and non-negative matrix factorization (Bao et al., 2014). Here, we
describe “Hidden Factors as Topics” (HFT) recently proposed in (McAuley and Leskovec,
2013), and discuss it with respect to the proposed approaches.

The HFT model is based on latent Dirichlet allocation (LDA, (Blei et al., 2003)), and
similarly to the distributed bag-of-word model in Sec. 3.3.2.1, considers each review as a
bag of words (see Eq. (3.3.4).) Thus, we start by describing how LDA models a review du,i.
LDA is a generative model of a review/document. It starts by sampling a so-called topic
proportion τ from a Dirichlet distribution. The topic proportion τ is used as a parameter to a
multinomial topic distribution from which a topic is sampled, for each word in the document.
The sampled topic defines a probability distribution over the words in a vocabulary. In other
words, given a topic proportion, the LDA models a review with a mixture of multinomial
distributions.

Instead of sampling the topic proportion from the top-level Dirichlet distribution in LDA,
HFT replaces it with

τ = 1
‖exp {κγi}‖1

exp {κγi} ,
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where κ is a free parameter estimated along with all the other parameters of the model. In
this case, the probability over a single review du,i given an item γi becomes

p(du,i | γi,θD) =
nu,i∏
t=1

dim(γi)∑
k=1

p(w(t)
u,i | zk = 1)p(zk = 1 | γi) (3.3.8)

=
nu,i∏
t=1

dim(γi)∑
k=1

τkp(w(t)
u,i | zk = 1)

where zk is an indicator variable of the k-th topic out of dim(γi), and τk is the k-th element
of τ . The conditional probability over words given a topic is modeled with a matrix W∗ =[
w∗j,k

]
|V |×dim(γi)

, in which each column sums to 1. The conditional probability over words
given a product γi can be written as

p(w(t)
u,i = j | γi,θD) =

dim(γi)∑
k=1

w∗j,k
exp {κγi,k}
‖exp {κγi}‖1

. (3.3.9)

The matrix W∗ is often parametrized by w∗j,k = exp{qj,k}∑
l
exp{ql,k} , where Q = [qj,k] is an uncon-

strained matrix of the same size as W∗. In practice, a bias term is added to the formulation
above to handle frequent words.

3.3.4. Comparing HFT and BoWLF

From Eq. (3.3.5) and Eq. (3.3.9), we can see that the HFT and the proposed BoWLF (see
Sec. 3.3.2.1) are closely related. Most importantly, both of them consider a review as a bag of
words and parametrize the conditional probability of a word given a product representation
with a single affine transformation (weight matrix plus offset vector).

The main difference is in how the product representation and the weight matrix interact
to form a point on the |V |-dimensional simplex. In the case of HFT, both the product
representation γi and the projection matrix W∗ are separately stochastic (i.e., each γi and
each column of W∗ are interpretable as a probability distribution), while the BoWLF projects
the result of the matrix-vector product Wγi onto the probability simplex.

This can be understood as the difference between a mixture of experts and a product of
experts (Hinton, 1999). On a per word basis, the BoWLF in Eq. (3.3.5) can be re-written
as a (conditional) product of experts by

p(w = j | γi) = 1
Z(γi)

dim(γi)∏
k=1

exp {wj,kγi,k + bj} ,

where wj,k and bj are the element at the j-th row and k-th column of W and the j-th element
of b, respectively. On the other hand, an inspection of Eq. (3.3.8) reveals that, on a per
word basis, the HFT model is clearly a mixture model, with the topics playing the role of
the mixture components.
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As argued in (Hinton, 1999), a product of experts can more easily model a peaky distri-
bution, especially, in a high-dimensional space.5 The reviews of each product tend to contain
a small common subset of the whole vocabulary, while those subsets vastly differ from each
other depending on the product. In other words, the conditional distribution of words given
a product puts most of its probability mass on only a few product-specific words, while leav-
ing most other words with nearly zero probabilities. Product of experts are naturally better
suited to modeling peaky distributions rather than mixture models.

A more concrete way of understanding the difference between HFT and BoWLF may
be to consider how the product representation and the weight matrix interact. In the case
of the BoWLF, this is a simple matrix-vector product with no restrictions on the weight
matrix. This means that both the product representation elements as well as the elements
of the weight matrix are free to assume negative values. Thus, it is possible that an element
of the product representation could exercise a strong influence suppressing the expression of
a given set of words. Alternatively, with HFT model, as the model interprets the elements
of the product representation as mixture components, these elements have no mechanism
of suppressing probability mass assigned to words by the other elements of the product
representation.

We suggest that this difference allows the BoWLF to better model reviews compared to
the HFT, or any other LDA-based model by offering a mechanism for negative correlations
between words to be explicitly expressed by elements of the product representation. By
offering a more flexible and natural model of reviews, the BoWLF model can improve the
rating prediction generalization performance. As we will see in Sec. 3.4, our experimental
results support this proposition.

The proposed LMLF takes one step further by modeling each review with a chain of
products of experts taking into account the order of words. This may seem an obvious
benefit at first sight. However, it is not clear whether modelling word order in reviews would
result in learning better latent factors for items or simply learn a better language model
of reviews. Indeed, as we show in the following section, we observe that the LMLF can
model model reviews very well, but does not necessarily do better than BoWLF at rating
prediction.

3.4. Experiments

3.4.1. Dataset

We evaluate the proposed approaches on the Amazon Reviews dataset (McAuley and
Leskovec, 2013).6 There are approximate 35 million ratings and accompanying reviews from
5Note that the size of a usual vocabulary of reviews is on the order of thousands.
6https://snap.stanford.edu/data/web-Amazon.html
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6,643,669 users and 2,441,053 products. The products are divided into 28 categories such as
music and books. The reviews are on average 110 words long. We refer the reader to (Ling
et al., 2014) for more detailed statistics.

3.4.2. Experimental Setup

Data Preparation. We closely follow the procedure from (McAuley and Leskovec, 2013) and
(Ling et al., 2014), where the evaluation is done per category. We randomly select 80% of
ratings, up to two million samples, as a training set, and split the rest evenly into validation
and test sets, for each category. We preprocess reviews only by tokenizing them using a
script from Moses7, after which we build a vocabulary of 5000 most frequent words.
Evaluation Criteria. We use mean squared error (MSE) of the rating prediction to evaluate
each approach. For assessing the performance on review modeling, we use the average
negative log-likelihood.
Baseline. We compare the two proposed approaches, BoWLF (see Sec. 3.3.2.1) and LMLF
(see Sec. 3.3.2.2), against three baseline methods; matrix factorization with L2 regularization
(MF, see Eqs. (3.2.1)–(3.2.2)), the HFT model from (McAuley and Leskovec, 2013) (see
Sec. 3.3.3) and the RMR model from (Ling et al., 2014). In the case of HFT, we report
the performance both by evaluating the model ourselves8 and by reporting the results from
(McAuley and Leskovec, 2013) directly. For RMR, we only report the results from (Ling
et al., 2014).
Hyper-parameters. Both user γu and product γi vectors in Eq. (3.2.1) are five dimensional
for all the experiments in this section. This choice was made mainly to make the results
comparable to the previously reported ones in (McAuley and Leskovec, 2013) and (Ling et al.,
2014). We initialize all the user and product representations by sampling each element from
a zero-mean Gaussian distribution with its standard deviation set to 0.01. The biases, µ,
βu and βi are all initialized to 0. All the parameters in BoWLF and LMLF are initialized
similarly except for the recurrent weights of the RNN-LM in LMLF which were initialized
to be orthogonal.
Training Procedure. When training MF, BoWLF and LMLF, we use minibatch RMSProp
with the learning rate, momentum coefficient and the size of minibatch set to 0.01, 0.9 and
128, respectively. We trained each model at most 200 epochs, while monitoring the validation
performance. For HFT, we follow (McAuley and Leskovec, 2013) which uses the Expectation
Maximization algorithm together with L-BFGS. In all cases, we early-stop each training run
based on the validation set performance. In the preliminary experiments, we found the
choice of α in Eq. (3.3.3), which balances matrix factorization and review modeling, to be

7https://github.com/moses-smt/mosesdecoder/
8The code was kindly provided by the authors of (McAuley and Leskovec, 2013).
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important. We searched for the α that maximizes the validation performance, in the range
of [0.1, 0.01].

3.4.3. Rating Prediction Results

Dataset (a) (b) (c) (d) BoWLF improvement
Dataset Size MF HFT BoWLF LMLF over (a) over (b) HFT* RMR**

Arts 27K 1.434 (0.04) 1.425 (0.04) 1.413 (0.04) 1.426 (0.04) 2.15% 1.18% 1.388 1.371
Jewelry 58K 1.227 (0.04) 1.208 (0.03) 1.214 (0.03) 1.218 (0.03) 1.24% -0.59% 1.178 1.160
Watches 68K 1.511 (0.03) 1.468 (0.03) 1.466 (0.03) 1.473 (0.03) 4.52% 0.20% 1.486 1.458
Cell Phones 78K 2.133 (0.03) 2.082 (0.02) 2.076 (0.02) 2.077 (0.02) 5.76% 0.66% N/A 2.085
Musical Inst. 85K 1.426 (0.02) 1.382 (0.02) 1.375 (0.02) 1.388 (0.02) 5.12% 0.75% 1.396 1.374
Software 95K 2.241 (0.02) 2.194 (0.02) 2.174 (0.02) 2.203 (0.02) 6.70% 2.06% 2.197 2.173
Industrial 137K 0.360 (0.01) 0.354 (0.01) 0.352 (0.01) 0.356 (0.01) 0.76% 0.24% 0.357 0.362
Office Products 138K 1.662 (0.02) 1.656 (0.02) 1.629 (0.02) 1.646 (0.02) 3.32% 2.72% 1.680 1.638
Gourmet Foods 154K 1.517 (0.02) 1.486 (0.02) 1.464 (0.02) 1.478 (0.02) 5.36% 2.22% 1.431 1.465
Automotive 188K 1.460 (0.01) 1.429 (0.01) 1.419 (0.01) 1.428 (0.01) 4.17% 1.03% 1.428 1.403
Kindle Store 160K 1.496 (0.01) 1.435 (0.01) 1.418 (0.01) 1.437 (0.01) 7.83% 1.76% N/A 1.412
Baby 184K 1.492 (0.01) 1.437 (0.01) 1.432 (0.01) 1.443 (0.01) 5.95% 0.48% 1.442 N/A
Patio 206K 1.725 (0.01) 1.687 (0.01) 1.674 (0.01) 1.680 (0.01) 5.10% 1.24% N/A 1.669
Pet Supplies 217K 1.583 (0.01) 1.554 (0.01) 1.536 (0.01) 1.544 (0.01) 4.74% 1.78% 1.582 1.562
Beauty 252K 1.378 (0.01) 1.373 (0.01) 1.335 (0.01) 1.370 (0.01) 4.33% 3.82% 1.347 1.334
Shoes 389K 0.226 (0.00) 0.231 (0.00) 0.224 (0.00) 0.225 (0.00) 0.23% 0.72% 0.226 0.251
Tools & Home 409K 1.535 (0.01) 1.498 (0.01) 1.477 (0.01) 1.490 (0.01) 5.78% 2.15% 1.499 1.491
Health 428K 1.535 (0.01) 1.509 (0.01) 1.481 (0.01) 1.499 (0.01) 5.35% 2.82% 1.528 1.512
Toys & Games 435K 1.411 (0.01) 1.372 (0.01) 1.363 (0.01) 1.367 (0.01) 4.71% 0.89% 1.366 1.372
Video Games 463K 1.566 (0.01) 1.501 (0.01) 1.481 (0.01) 1.490 (0.01) 8.47% 2.00% 1.511 1.510
Sports 510K 1.144 (0.01) 1.137 (0.01) 1.115 (0.01) 1.127 (0.01) 2.94% 2.19% 1.136 1.129
Clothing 581K 0.339 (0.00) 0.343 (0.00) 0.333 (0.00) 0.344 (0.00) 0.60% 1.01% 0.327 0.336
Amazon Video 717K 1.317 (0.01) 1.239 (0.01) 1.184 (0.01) 1.206 (0.01) 13.33% 5.47% N/A 1.270
Home 991K 1.587 (0.00) 1.541 (0.00) 1.513 (0.00) 1.535 (0.01) 7.41% 2.79% 1.527 1.501
Electronics 1.2M 1.754 (0.00) 1.694 (0.00) 1.671 (0.00) 1.698 (0.00) 8.29% 2.30% 1.724 1.722
Music 6.3M 1.112 (0.00) 0.970 (0.00) 0.920 (0.00) 0.924 (0.00) 19.15% 4.94% 0.969 0.959
Movies & Tv 7.8M 1.379 (0.00) 1.089 (0.00) 0.999 (0.00) 1.022 (0.00) 37.95% 9.01% 1.119 1.120
Books 12.8M 1.272 (0.00) 1.141 (0.00) 1.080 (0.00) 1.110 (0.00) 19.21% 6.12% 1.135 1.113

All categories 35.3M 1.289 1.143 1.086 1.107 20.29% 5.64%

Table 1. Prediction Mean Squared Error results on test data. Standard error of mean in
parenthesis. Dimensionality of latent factors dim(γi) = 5 for all models. Best results for
each dataset in bold. HFT* and RMR** represent original paper results over different data
splits (McAuley and Leskovec, 2013; Ling et al., 2014).

We list results of the experiments in Table 1 for the 28 categories in terms of MSE with
the standard error of mean shown in parentheses. From this table, we can see that except for
a single category of “Jewelry”, the proposed BoWLF outperforms all the other models with
an improvement of 20.29% over MF and 5.64% over HFT across all categories.9 In general,
we note better performance of BoWLF and LMLF models over other methods especially as
the size of the dataset grows, which is evident from Figs. 1 and 2.
9Due to the use of different splits, the results by HFT reported in (McAuley and Leskovec, 2013) and RMR
in (Ling et al., 2014) are not directly comparable.
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Fig. 1. Scatterplot showing performance improvement over the number of samples. We see
a performance improvement of BoWLF over HFT as dataset size increases.

Fig. 2. Scatterplot showing performance improvement over the number of samples. We see
a modest performance improvement of LMLF over HFT as dataset size increases.

Interestingly, BoWLF always outperforms LMLF. These results indicate that the complex
language model, which the LMLF learns using an LSTM network, does not seem to improve
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over a simple bag-of-word representation, which the BoWLF learns, in terms of the learned
product representations.

This can be understood from how the product representation, which is used linearly by
the rating prediction model, is handled by each model. The word distribution modeled by
the BoWLF depends linearly on the product representation, which requires the product-
related structure underlying reviews be encoded linearly as well. On the other hand, LMLF
nonlinearly manipulates the product representation to approximate the distribution over
reviews. In other words, the LMLF does not necessarily encode the underlying product-
related structure inside the product representation in the way the rating prediction model
can easily decode (Mikolov et al., 2013).

Fig. 3. Box and whisker plot showing K-fold (K = 5) experiments. Point represents the
mean over all folds. Center line represents median. Box extents represent 25th and 75th

percentile. Whisker extents show minimum and maximum values.

3.4.4. Impact of Training / Test Data Split

Comparing the results of the original HFT paper with the results we get training over
the same split, it becomes clear that models trained on different splits are not directly
comparable. To further explore the importance of the chosen split for model selection, we
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Fig. 4. Bar chart showing showing K-fold (K = 5) experiments. Although values across
folds vary, relative performance is consistent.

Fig. 5. Bar chart showing showing negative log-likelihood (NLL) on test data for several
datasets. LMLF is superior in NLL but does not improve rating prediction over BoWLF.
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perform experiments over five randomly selected folds and compare each model on every
fold.

One of the challenges in pursuing empirical work on the Amazon review dataset is the
current absence of a standard train / test split of the data. Here we evaluate the importance
of establishing a standard data split.

Fig. 3 shows the results of experiments comparing the performance of each model over
different splits. We perform 5-fold validation. That is, each model is trained 5 times, each
on 80% of the data and we report performance on the remaining 20%. The result on the test
reveal several important points. First, we note that the variance over splits can be large,
meaning that comparing across different splits could be misleading when performing model
selection. On the other hand, as shown in Fig 4, the relative performance of each model
is consistent over the different splits. This implies that a single random split can be used
for model selection and evaluation as long as this split is held constant over all evaluated
models.10

Taken together, Figs. 3 and 4 illustrate the importance of standardizing the dataset
splits. Without standardization, performance measured between different research groups
becomes incomparable and the use of this dataset as a benchmark is rendered difficult or
even impossible.

3.4.5. Effect of Language Model

One way to analyze models which use text information is to compare their negative log-
likelihood (NLL) scores on the same test dataset. We find BoWLF has a stronger language
model than HFT, which is reflected in the NLL results, and in this case it appears to
contribute to a better rating prediction. As shown in Fig. 5, LMLF has a much better
language model than both HFT and BoWLF, but as discussed earlier, LMLF does not lead
to better rating predictions than BoWLF. LMLF appears to be largely equivalent to HFT
in prediction strength, despite having a much better language model. As discussed above in
Sec. 3.4.3, this suggests that the strong nonlinearity in the LSTM helps modeling reviews,
but not necessarily result in the linearly-decodable product representation, leading to less
improvement in rating prediction.

Contrary to LDA-based approaches, the latent dimensions of the product representa-
tions learned by BoWLF do not necessarily have clear interpretations as topics. However,
the neighborhoods learned by BoWLF are interpretable, where we use the cosine distance
between two product representations, i.e., 1 − γ>i γj

‖γi‖2‖γj‖2
. The BoWLF product space neigh-

bors seem qualitatively superior to the neighbors given by HFT as seen in Table 2. Note
in particular the association of “MTR Simply Tomato Soup” with other soups by BoWLF,
while HFT neighbors seem much broader, including crackers, noodles, and gummy bears.
10Averaging results over multiple splits (shared by all models) would further reduce the variance in results.
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This observation is consistent with the interpretation of the differences in the mathemat-
ical form of HFT and BoWLF (as argued in Sec. 3.3.4). The ability of BoWLF to form
peakier distributions over words, given the product representation, allows the model to be
more discriminating and more closely group similar products. Furthermore, we can see that
the neighbors based on the product representations from the LMLF are qualitatively worse
than those from the BoWLF, which indirectly confirms that the underlying product-related
structure encoded by the LMLF is more difficult to extract linearly.

While drawing firm conclusions from this small set of neighbors is obviously ill-advised,
the general trend appears to hold in more extensive testing. Broadly speaking, this further
strengthens the idea that stronger product representations lead to improvements in rating
prediction.

Product HFT BoWLF LMLF
Extra Spearmint Hong Kong Fu Xiang Yuan Moon Cakes Dubble Bubble Gum Gumballs Special Assorted
Sugarfree Gum French Chew - Vanilla Trident Sugarless White Gum Bazooka Bubble Gum

Peck’s Anchovette Gold Mine Nugget Bubble Gum Gourmet Spicy Beef Jerky

Dark Chocolate Tastykake Kreamies Kakes Ceam .. Ritter Sport Corn Flakes Chocolate Fantis Grape Leaves
Truffle Miko - Awase Miso Soyabean Paste Chocolate Dobosh Torte Grape Flavoring

Haribo Berries Gummi Candy Sugar Free, Milk Chocolate Pecan Turtles Tutti Fruitti Flavoring

MTR Simply Wellington Cracked Pepper Crackers MTR Mulligatawny Soup Muir Glen Organic Soup
Tomato Soup Maggi Instant Noodles hai Kitchen Coconut Ginger Soup Soy Ginger Saba Noodles

Haribo Gummi Candy Miko - Awase Miso Soyabean Paste Alessi Soup
Table 2. Nearest neighbors (cosine similarity) based on product representations estimated
by HFT, BoWLF and LMLF, for Gourmet Foods dataset. Qualitatively, the ability to
regularize the product representations seems to correlate well with the quality of the neigh-
bourhoods formed in product representation space.

3.5. Conclusion

We develop two new models (BoWLF and LMLF) which exploit text reviews to regularize
rating prediction on the Amazon Reviews datasets. BoWLF achieves state of the art results
on 27 of the 28 datasets, while LMLF outperforms HFT (but not BoWLF) as dataset size
increases. Additionally, we explore the methodology behind the choice of data split, clearly
demonstrating that models trained on different data subsets cannot be directly compared.
Performing K-fold cross-validation (K = 5), we confirm that BoWLF achieves superior
performance across dataset splits. The resulting product neighborhoods measured by cosine
similarity between product representations are intuitive, and correspond with human analysis
of the data. Overall we find that BoWLF has a 20.29% average improvement over basic
matrix factorization and a 5.64% average improvement over HFT.

We found that the proposed LMLF slightly lagged behind the BoWLF. As we discuss
above, we believe this could be due to the nonlinear nature of language model based on
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a recurrent neural network. This nonlinearity results in the product-related structure un-
derlying reviews being nonlinearly encoded in the product representation, which cannot be
easily extracted by the linear rating prediction model. However, this will need to be further
investigated in addition to analyzing the exact effect of language modeling on prediction
performance.
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Chapter 4

Prologue to Second Article

4.1. Article Details

Dynamic Capacity Networks. Amjad Almahairi, Nicolas Ballas, Tim Cooijmans,
Yin Zheng, Hugo Larochelle and Aaron Courville. Proceedings of the 33 rd International
Conference on Machine Learning (ICML 2016).

Personal Contribution. I am the main contributor to this work with regards to designing
and carrying out experiments, analyzing results and writing the manuscript.

4.2. Context

Scaling up the size of learning models has been key to many remarkable successes of deep
learning (Krizhevsky et al., 2012; Szegedy et al., 2014; He et al., 2016). In typical neural
network architectures all parameters are “activated" for all regions of a given input, which
leads to computational cost scaling quadratically in terms of data dimensionality and model
parameters.

Conditional computation (Bengio et al., 2013) proposes to solve this problem by activat-
ing only a fraction of the model parameters for a given input sample, and thus allowing for
increasing model size without proportional increase in computations. Bengio et al. (2013)
proposed learning stochastic gating units (Bengio et al., 2013) to guide activating subsets of
the model. This approach, however, did not yield substantial computational advantages due
to several technical difficulties, such as effective branching in GPUs.

On the other hand, hard-attention models (Mnih et al., 2014; Xu et al., 2015b) have
gained a lot popularity at the time of publishing this work. These models were shown to
learn effective policies for deciding which portion of the input is worth focusing or “attending"
to. One drawback of these models is that they were difficult to train. Our work was inspired
by these papers to perform conditional computation with a simple, yet effective attention
mechanism.



4.3. Contributions

This work introduces Dynamic Capacity Network (DCN), a novel conditional computa-
tion model, which can adaptively assign computation across different regions of the input.
This is achieved by combining modules of two types: low-capacity sub-networks and high-
capacity sub-networks. The low-capacity sub-networks are applied across most of the input,
but also provide a guide to select a few portions of the input on which to apply the high-
capacity sub-networks. The selection is made using an efficient, saliency-based attention
mechanism, and can be trained end-to-end with back-propagation. The model achieves
state-of-the-art results on Cluttered MNIST benchmark (Mnih et al., 2014), and can attain
significant computational advantages over standard convolutional architectures. We apply
the model on a real-world scenario of recognizing sequences of multi-digit house numbers in
images from Street View House Numbers (SVHN) (Netzer et al., 2011), for which we assume
almost no data pre-processing on test data.

4.4. Recent Developments

Our approach relies on a fixed heuristic for selecting salient input regions to focus com-
putations on. While this attention mechanism can be effective, especially when the object of
interest is localized within the input, it does not adapt to input data. Several follow-up papers
focused on learning different strategies for controlling model capacity/computations (Bengio
et al., 2015; Liu and Deng, 2017; McGill and Perona, 2017; Lin et al., 2017). Most no-
tably, Lin et al. (2017) learns an agent that decides the importance of each convolutional
kernel and performs channel-wise pruning depending on the input. Their approach was
applied on several off-the-shelf convolutional models with compelling results.

While our work was more focused on CNNs, a lot of recent developments focused on
reducing computational overhead in RNNs. Graves (2016) proposed Adaptive Computation
Time (ACT) to dynamically decide the number of computation steps an RNN processes
inputs at each time step. Figurnov et al. (2017) applied the same approach for dynamically
deciding the depth of a Residual Network (He et al., 2016). Other works reduce computation
in RNNs by updating only a subset of the hidden state at each time step (Jernite et al.,
2016), or skipping the hidden state entirely and thus reducing the effective depth of the
RNNs computational graph (Campos et al., 2018).

Shazeer et al. (2017) propose a method which can significantly increase the number
of parameters in a single layer while keeping computation on par with (or even less than)
than in standard architectures. The idea is based on using a large mixture of experts (small
networks), where only a few of them are activated via a gating network. Their work suits well
modern GPU clusters, and achieves impressive speedups and results in language modelling
and machine translation.
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Chapter 5

Dynamic Capacity Networks

5.1. Introduction

Deep neural networks have recently exhibited state-of-the-art performance across a wide
range of tasks, including object recognition (Szegedy et al., 2014) and speech recogni-
tion (Graves and Jaitly, 2014). Top-performing systems, however, are based on very deep
and wide networks that are computationally intensive. One underlying assumption of many
deep models is that all input regions contain the same amount of information. Indeed,
convolutional neural networks apply the same set of filters uniformly across the spatial
input (Szegedy et al., 2014), while recurrent neural networks apply the same transforma-
tion at every time step (Graves and Jaitly, 2014). Those networks lead to time-consuming
training and inference (prediction), in large part because they require a large number of
weight/activation multiplications.

Task-relevant information, however, is often not uniformly distributed across input data.
For example, objects in images are spatially localized, i.e. they exist only in specific re-
gions of the image. This observation has been exploited in attention-based systems (Mnih
et al., 2014), which can reduce computations significantly by learning to selectively focus or
“attend” to few, task-relevant, input regions. Attention employed in such systems is often
referred to as “hard-attention”, as opposed to “soft-attention” which integrates smoothly all
input regions. Models of hard-attention proposed so far, however, require defining an explicit
predictive model, whose training can pose challenges due to its non-differentiable cost.

In this work we introduce the Dynamic Capacity Network (DCN) that can adaptively as-
sign its capacity across different portions of the input, using a gradient-based hard-attention
process. The DCN combines two types of modules: small, low-capacity sub-networks, and
large, high-capacity sub-networks. The low-capacity sub-networks are active on the whole
input, but are used to direct the high-capacity sub-networks, via our attention mechanism,
to task-relevant regions of the input.



A key property of the DCN’s hard-attention mechanism is that it does not require a
policy network trained by reinforcement learning. Instead, we can train DCNs end-to-end
with backpropagation. We evaluate a DCN model on the attention benchmark task Cluttered
MNIST (Mnih et al., 2014), and show that it outperforms the state of the art.

In addition, we show that the DCN’s attention mechanism can deal with situations where
it is difficult to learn a task-specific attention policy due to the lack of appropriate data. This
is often the case when training data is mostly canonicalized, while at test-time the system is
effectively required to perform transfer learning and deal with substantially different, noisy
real-world images. The Street View House Numbers (SVHN) dataset (Netzer et al., 2011)
is an example of such a dataset. The task here is to recognize multi-digit sequences from
real-world pictures of house fronts; however, most digit sequences in training images are
well-centred and tightly cropped, while digit sequences of test images are surrounded by
large and cluttered backgrounds. Learning an attention policy that focuses only on a small
portion of the input can be challenging in this case, unless test images are pre-processed to
deal with this discrepancy 1. DCNs, on the other hand, can be leveraged in such transfer
learning scenarios, where we learn low and high capacity modules independently and only
combine them using our attention mechanism at test-time. In particular, we show that a
DCN model is able to efficiently recognize multi-digit sequences, directly from the original
images, without using any prior information on the location of the digits.

Finally, we show that DCNs can perform efficient region selection, in both Cluttered
MNIST and SVHN, which leads to significant computational advantages over standard con-
volutional models.

5.2. Dynamic Capacity Networks

In this section, we describe the Dynamic Capacity Network (DCN) that dynamically
distributes its network capacity across an input.

We consider a deep neural network h, which we decompose into two parts: h(x) = g(f(x))
where f and g represent respectively the bottom layers and top layers of the network h

while x is some input data. Bottom layers f operate directly on the input and output a
representation, which is composed of a collection of vectors each of which represents a region
in the input. For example, f can output a feature map, i.e. vectors of features each with a
specific spatial location, or a probability map outputting probability distributions at each
different spatial location. Top layers g consider as input the bottom layers’ representations
f(x) and output a distribution over labels.

DCN introduces the use of two alternative sub-networks for the bottom layers f : the
coarse layers fc or the fine layers ff , which differ in their capacity. The fine layers correspond
1This is the common practice in previous work on this dataset, e.g, (Goodfellow et al., 2013; Ba et al., 2014;
Jaderberg et al., 2015)
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Fig. 1. DCN overview. Our model applies the coarse layers on the whole image to get fc(x),
chooses a set of salient patches Xs, applies the fine layers only on the salient patches Xs to
obtain a set of few fine representation vectors ff (Xs), and finally combines them to make
its prediction.

to a high-capacity sub-network which has a high-computational requirement, while the coarse
layers constitute a low-capacity sub-network. Consider applying the top layers only on the
fine representation, i.e. hf (x) = g(ff (x)). We refer to the composition hf = g ◦ ff as
the fine model. We assume that the fine model can achieve very good performance, but
is computationally expensive. Alternatively, consider applying the top layers only on the
coarse representation, i.e. hc(x) = g(fc(x)). We refer to this composition hc = g ◦ fc as the
coarse model. Conceptually, the coarse model can be much more computationally efficient,
but is expected to have worse performance than the fine model.

The key idea behind DCN is to have g use representations from either the coarse or fine
layers in an adaptive, dynamic way. Specifically, we apply the coarse layers fc on the whole
input x, and leverage the fine layers ff only at a few “important” input regions. This way,
the DCN can leverage the capacity of ff , but at a lower computational cost, by applying the
fine layers only on a small portion of the input. To achieve this, DCN requires an attentional
mechanism, whose task is to identify good input locations on which to apply ff . In the
remainder of this section, we focus on 2-dimensional inputs. However, our DCN model can
be easily extended to be applied to any type of N-dimensional data.

5.2.1. Attention-based Inference

In DCN, we would like to obtain better predictions than those made by the coarse model
fc while keeping the computational requirement reasonable. This can be done by selecting a
few salient input regions on which we use the fine representations instead of the coarse ones.
DCN inference therefore needs to identify the important regions in the input with respect to
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the task at hand. For this, we use a novel approach for attention that uses backpropagation
in the coarse model hc to identify few vectors in the coarse representation to which the
distribution over the class label is most sensitive. These vectors correspond to input regions
which we identify as salient or task-relevant.

Given an input image x, we first apply the coarse layers on all input regions to compute
the coarse representation vectors:

fc(x) = {ci,j | (i,j) ∈ [1, s1]× [1, s2]}, (5.2.1)

where s1 and s2 are spatial dimensions that depend on the image size, and ci,j = fc(xi,j) ∈ RD

is a representation vector associated with the input region (i,j) in x, i.e. corresponds to a
specific receptive field or a patch in the input image. We then compute the output of
the model based completely on the coarse vectors, i.e. the coarse model’s output hc(x) =
g(fc(x)).

Next, we identify a few salient input regions using an attentional mechanism that exploits
a saliency map generated using the coarse model’s output. The specific measure of saliency
we choose is based on the entropy of the coarse model’s output, defined as:

H = −
C∑
l=1

o(l)
c log o(l)

c , (5.2.2)

where we denote oc = hc(x) as the vector output of the coarse model and C is the number
of class labels. The saliency M of an input region position (i,j) is given by the norm of the
gradient of the entropy H with respect to the coarse vector ci,j:

Mi,j = ||∇ci,jH||2 =

√√√√√ D∑
r=1

 ∂

∂c(r)
i,j

−
C∑
l=1

o(l)
c log o(l)

c

2

, (5.2.3)

where M ∈ Rs1×s2 . The use of the entropy gradient as a saliency measure encourages
selecting input regions that could affect the uncertainty in the model’s predictions the most.
In addition, computing the entropy of the output distribution does not require observing the
true label, hence the measure is available at inference time. Note that computing all entries
in matrix M can be done using a single backward pass of backpropagation through the top
layers and is thus efficient and simple to implement.

Using the saliency map M, we select a set of k input region positions with the highest
saliency values. We denote the selected set of positions by Is ⊆ [1, s1] × [1, s2], such that
|Is| = k. We denote the set of selected input regions by Xs = {xi,j | (i,j) ∈ Is} where each
xi,j is a patch in x. Next we apply the fine layers ff only on the selected patches and obtain
a small set of fine representation vectors:

ff (Xs) = {fi,j | (i,j) ∈ Is}, (5.2.4)
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where fi,j = ff (xi,j). This requires that fi,j ∈ RD, i.e. the fine vectors have the same
dimensionality as the coarse vectors, allowing the model to use both of them interchangeably.

We denote the representation resulting from combining vectors from both fc(x) and
ff (Xs) as the refined representation fr(x). We discuss in Section 5.4 different ways in which
they can be combined in practice. Finally, the DCN output is obtained by feeding the refined
representation into the top layers, g(fr(x)). We denote the composition g ◦ fr by the refined
model.

5.2.2. End-to-End Training

In this section, we describe an end-to-end procedure for training the DCN model that
leverages our attention mechanism to learn ff and fc jointly. We emphasize, however, that
DCN modules can be trained independently, by training a coarse and a fine model inde-
pendently and combining them only at test-time using our attention based inference. In
Section 5.4.2 we show an example of how this modular training can be used for transfer
learning.

In the context of image classification, suppose we have a training set D = {(x(i),y(i)); i =
1 . . .m}, where each x(i) ∈ Rh×w is an image, and y(i) ∈ {1, . . . ,C} is its corresponding label.
We denote the parameters of the coarse, fine and top layers by θc, θf , and θt respectively.
We learn all of these parameters (denoted as θ) by minimizing the cross-entropy objective
function (which is equivalent to maximizing the log-likelihood of the correct labels):

J = −
m∑
i=1

log p
(
y(i) | x(i); θ

)
, (5.2.5)

where p(· | x(i); θ) = g(fr(x(i))) is the conditional multinomial distribution defined over the
C labels given by the refined model (Figure 1). Gradients are computed by standard back-
propagation through the refined model, i.e. propagating gradients at each position into either
the coarse or fine features, depending on which was used.

An important aspect of the DCN model is that the final prediction is based on combining
representations from two different sets of layers, namely the coarse layers fc and the fine
layers ff . Intuitively, we would like those representations to have close values such that
they can be interchangeable. This is important for two reasons. First, we expect the top
layers to have more success in correctly classifying the input if the transition from coarse
to fine representations is smooth. The second is that, since the saliency map is based on
the gradient at the coarse representation values and since the gradient is a local measure of
variation, it is less likely to reflect the benefit of using the fine features if the latter is very
different from the former.

To encourage similarity between the coarse and fine representations while training, we
use a hint-based training approach inspired by Romero et al. (2014). Specifically, we add
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an additional term to the training objective that minimizes the squared distance between
coarse and fine representations: ∑

xi,j∈Xs

‖fc(xi,j)− ff (xi,j)‖2
2. (5.2.6)

There are two important points to note here. First, we use this term to optimize only the
coarse layers θc. That is, we encourage the coarse layers to mimic the fine ones, and let the
fine layers focus only on the signal coming from the top layers. Secondly, computing the above
hint objective over representations at all positions would be as expensive as computing the
full fine model; therefore, we encourage in this term similarity only over the selected salient
patches.

5.3. Related Work

This work can be classified as a conditional computation approach. The goal of condi-
tional computation, as put forward by Bengio (2013), is to train very large models for the
same computational cost as smaller ones, by avoiding certain computation paths depending
on the input. There have been several contributions in this direction. Bengio et al. (2013)
use stochastic neurons as gating units that activate specific parts of a neural network. Our
approach, on the other hand, uses a hard-attention mechanism that helps the model to focus
its computationally expensive paths only on important input regions, which helps in both
scaling to larger effective models and larger input sizes.

Several recent contributions use attention mechanisms to capture visual structure with
biologically inspired, foveation-like methods, e.g. (Larochelle and Hinton, 2010; Denil et al.,
2012; Ranzato, 2014; Mnih et al., 2014; Ba et al., 2014; Gregor et al., 2015). In Mnih et al.
(2014); Ba et al. (2014), a learned sequential attention model is used to make a hard decision
as to where to look in the image, i.e. which region of the image is considered in each time
step. This so-called “hard-attention” mechanism can reduce computation for inference. The
attention mechanism is trained by reinforcement learning using policy search. In practice,
this approach can be computationally expensive during training, due to the need to sam-
ple multiple interaction sequences with the environment. On the other hand, the DRAW
model (Gregor et al., 2015) uses a “soft-attention” mechanism that is fully differentiable,
but requires processing the whole input at each time step. Our approach provides a simpler
hard-attention mechanism with computational advantages in both inference and learning.

The saliency measure employed by DCN’s attention mechanism is related to pixel-wise
saliency measures used in visualizing neural networks (Simonyan et al., 2013). These mea-
sures, however, are based on the gradient of the classification loss, which is not applicable
at test-time. Moreover, our saliency measure is defined over contiguous regions of the input

70



rather than on individual pixels. It is also task-dependent, as a result of defining it using a
coarse model trained on the same task.

Other works such as matrix factorization (Jaderberg et al., 2014; Denton et al., 2014)
and quantization schemes (Chen et al., 2010; Jégou et al., 2011; Gong et al., 2014) take the
same computational shortcuts for all instances of the data. In contrast, the shortcuts taken
by DCN specialize to the input, avoiding costly computation except where needed. However,
the two approaches are orthogonal and could be combined to yield further savings.

Our use of a regression cost for enforcing representations to be similar is related to
previous work on model compression (Bucilua et al., 2006; Hinton et al., 2015; Romero
et al., 2014). The goal of model compression is to train a small model (which is faster in
deployment) to imitate a much larger model or an ensemble of models. Furthermore, Romero
et al. (2014) have shown that middle layer hints can improve learning in deep and thin neural
networks. Our DCN model can be interpreted as performing model compression on the fly,
without the need to train a large model up front.

5.4. Experiments

In this section, we present an experimental evaluation of the proposed DCN model.
To validate the effectiveness of our approach, we first investigate the Cluttered MNIST
dataset (Mnih et al., 2014). We then apply our model in a transfer learning setting to a real-
world object recognition task using the Street View House Numbers (SVHN) dataset (Netzer
et al., 2011).

5.4.1. Cluttered MNIST

We use the 100 × 100 Cluttered MNIST digit classification dataset (Mnih et al., 2014).
Each image in this dataset is a hand-written MNIST digit located randomly on a 100× 100
black canvas and cluttered with digit-like fragments. Therefore, the dataset has the same
size of MNIST: 60000 images for training and 10000 for testing.

5.4.1.1. Model Specification

In this experiment we train a DCN model end-to-end, where we learn coarse and fine
layers jointly. We use 2 convolutional layers as coarse layers, 5 convolutional layers as fine
layers and one convolutional layer followed by global max pooling and a softmax as the top
layers. The coarse and fine layers produce feature maps, i.e. feature vectors each with a
specific spatial location. The set of selected patches Xs is composed of eight patches of size
14 × 14 pixels. We use here a refined representation of the full input fr(x) in which fine
feature vectors are swapped in place of coarse ones:
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Model Test Error

RAM 8.11%
DRAW 3.36%
Coarse Model 3.69%
Fine Model 1.70%
DCN w/o hints 1.71%
DCN with hints 1.39%

Table 1. Results on Cluttered MNIST

Fig. 2. The effect of using the hints objective. We show the squared distance between coarse
and fine features over salient regions during training in two cases: with and without using
the hints objective. We observe that this regularizer helps in minimizing the distance and
improves the model’s generalization.

fr(x) = {ri,j | (i,j) ∈ [1, s1]× [1, s2]} (5.4.1)

ri,j =

ff (xi,j), if xi,j ∈ Xs

fc(xi,j), otherwise.
(5.4.2)

5.4.1.2. Baselines

We use as baselines for our evaluation the coarse model (top layers applied only on coarse
representations), the fine model (top layers applied only on fine representations), and we
compare with previous attention-based models RAM (Mnih et al., 2014) and DRAW (Gregor
et al., 2015).
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Fig. 3. Sample of selected patches in
Cluttered MNIST

Fig. 4. Test error vs. number of selected
patches: taking more patches yields lower
error, but with diminishing returns.

5.4.1.3. Empirical Evaluation

Results of our experiments are shown in Table 1. We get our best DCN result when
we add the hint term in Eq. (5.2.6) in the training objective, which we observe to have
a regularization effect on DCN. We can see that the DCN model performs significantly
better than the previous state-of-the-art result achieved by RAM and DRAW models. It
also outperforms the fine model, which is a result of being able to focus only on the digit
and ignore clutter. In Figure 2 we explore more the effect of the hint objective during
training, and confirm that it can indeed minimize the squared distance between coarse and
fine representations. To show how the attention mechanism of the DCN model can help it
focus on the digit, we plot in Figure 3 the patches it finds in some images from the validation
set, after only 9 epochs of training.

The DCN model is also more computationally efficient. A forward pass of the fine model
requires the computation of the fine layers representations on whole inputs and a forward pass
of the top layers leading to 84.5M multiplications. On the other hand, DCN applies only the
coarse layers on the whole input. It also requires the computation of the fine representations
for 8 input patches and a forward pass of the top layers. The attention mechanism of the
DCN model requires an additional forward and backward pass through the top layers which
leads to approximately 27.7M multiplications in total. As a result, the DCN model here has 3
times fewer multiplications than the fine model. In practice we observed a time speed-up by
a factor of about 2.9. Figure 4 shows how the test error behaves when we increase the number
of patches. While taking additional patches improves accuracy, the marginal improvement
becomes insignificant beyond 10 or so patches. The number of patches effectively controls a
trade-off between accuracy and computational cost.
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5.4.2. SVHN

We tackle in this section a more challenging task of transcribing multi-digit sequences
from natural images using the Street View House Numbers (SVHN) dataset (Netzer et al.,
2011). SVHN is composed of real-world pictures containing house numbers and taken from
house fronts. The task is to recognize the full digit sequence corresponding to a house
number, which can be of length 1 to 5 digits. The dataset has three subsets: train (33k),
extra (202k) and test (13k). In the following, we trained our models on 230k images from
both the train and extra subsets, where we take a 5k random sample as a validation set for
choosing hyper-parameters.

The typical experimental setting in previous literature, e.g. (Goodfellow et al., 2013;
Ba et al., 2014; Jaderberg et al., 2015), uses the location of digit bounding boxes as extra
information. Input images are generally cropped, such that digit sequences are centred
and most of the background and clutter information is pruned. We argue that our DCN
model can deal effectively with real-world noisy images having large portions of clutter or
background information. To demonstrate this ability, we investigate a more general problem
setting where the images are uncropped and the digits locations are unknown. We apply
our models on SVHN images in their original sizes, and without any extra bounding box
information. 2

An important property of the SVHN dataset is the large discrepancy between the
train/extra sets and the test set. Most of the extra subset images (which dominate the
training data) have their digits well-centred with little cluttered background, while test im-
ages have more variety in terms of digit location and background clutter. Figure 5 shows
samples of these images. We can tackle this training/test dataset discrepancy by training a
DCN model in a transfer learning setting. We train the coarse and fine layers of the DCN
independently on the training images that have little background-clutter, and then combine
them using our attention mechanism, which does not require explicit training, to decide on
which subsets of the input to apply the fine layers.

5.4.2.1. Multi-Digit Recognition Model

We follow the model proposed in (Goodfellow et al., 2013) for learning a probabilistic
model of the digit sequence given an input image x. The output sequence S is defined using
a collection of N random variables, S1, . . . , SN , representing the elements of the sequence
and an extra random variable S0 representing its length. The probability of a given sequence
s = {s1, . . . , sn} is given by:

p(S = s | x) = p(S0 = n | x)
n∏
i=1

p(Si = si | x), (5.4.3)

2The only pre-processing we perform on the data is converting images to grayscale.
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Fig. 5. The 4 left images are samples from the extra subset, and the 4 right images are
samples from the test subset. We notice that extra images are well-centred and have much
less background compared to test images.

where p(S0 = n | x) is the conditional distribution of the sequence length and p(Si = si | x)
is the conditional distribution of the i-th digit in the sequence. In particular, our model
on SVHN has 6 softmaxes: 1 for the length of the sequence (from 1 to 5), and 5 for the
identity of each digit or a null character if no digit is present (11 categories). Note that
while the conditional independence assumption is valid for modelling sequences of digits in
house numbers, an alternative, and probably more general approach, would be to model the
probability of sequences with an RNN, which does not rely on any independence assumption.

5.4.2.2. Model Specification

The coarse and fine bottom layers, fc and ff , are fully-convolutional, composed of re-
spectively 7 and 11 layers. The representation, produced by either the fine or coarse layers,
is a probability map, which is a collection of independent full-sequence prediction vectors,
each vector corresponding to a specific region of the input. We denote the prediction for the
i-th output at position (j,k) by p(j,k)(Si | x).

The top layer g is composed of one global average pooling layer which combines predic-
tions from various spatial locations to produce the final prediction p(S | x).

Since we have multiple outputs in this task, we modify the saliency measure used by the
DCN’s attention mechanism to be the sum of the entropy of the 5 digit softmaxes:

H = −
5∑
i=1

11∑
j=1

p(Si = sj | x) log p(Si = sj | x). (5.4.4)
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When constructing the saliency, instead of using the gradient with respect to the proba-
bility map, we use the gradient with respect to the feature map below it. This is necessary
to avoid identical gradients as g, the top function, is composed by only one average pooling.

We also use a refined model that computes its output by applying the pooling top layer
g only on the k independent predictions from fine layers, ignoring the coarse layers. We have
found empirically that this results in a better model, and suspect that otherwise the predic-
tions from the salient regions are drowned out by the noisy predictions from uninformative
regions.

We train the coarse and fine layers of DCN independently in this experiment, minimizing
log p(S | x) using SGD. For the purposes of training only, we resize images to 64× 128.

5.4.2.3. Baselines

As mentioned in the previous section, each of the coarse representation vectors in this
experiment corresponds to multi-digit recognition probabilities computed at a given region,
which the top layer g simply averages to obtain the baseline coarse model:

p(Si | x) = 1
d1 × d2

∑
j,k

p(j,k)(Si | x). (5.4.5)

The baseline fine model is defined similarly.
As an additional baseline, we consider a “soft-attention” coarse model, which takes the

coarse representation vectors over all input regions, but uses a top layer that performs a
weighted average of the resulting location-specific predictions. We leverage the entropy to
define a weighting scheme which emphasizes important locations:

p(Si | x) =
∑
j,k

wi,j,kp
(j,k)(Si | x). (5.4.6)

The weight wi,j,k is defined as the normalized inverse entropy of the i-th prediction by the
(j,k)-th vector, i.e. :

wi,j,k =
∑
q,r

H−1
i,j,k

H−1
i,q,r

, (5.4.7)

where Hi,j,k is defined as:

Hi,j,k = −
C∑
l=1

pj,k(Si = sl | x) log pj,k(Si = sl | x), (5.4.8)

and C is either 5 for S0 or 11 for all other Si. As we will see, this weighting improves the
coarse model’s performance in our SVHN experiments. We incorporate this weighting in
DCN to aggregate predictions from the salient regions.

To address scale variations in the data, we extend all models to multi-scale by processing
each image several times at multiple resolutions. Predictions made at different scales are
considered independent and averaged to produce the final prediction.
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Model Test Error

Coarse model, 1 scale 40.6%
Coarse model, 2 scales 40.0%
Coarse model, 3 scales 40.0%

Fine model, 1 scale 25.2%
Fine model, 2 scales 23.7%
Fine model, 3 scales 23.3%

Soft-attention, 1 scale 31.4%
Soft-attention, 2 scales 31.1%
Soft-attention, 3 scales 30.8%

DCN, 6 patches, 1 scale 20.0%
DCN, 6 patches, 2 scales 18.2%
DCN, 9 patches, 3 scales 16.6%

Table 2. Results on SVHN dataset without using bounding box information.

Fig. 6. Number of multiplications of the coarse, fine and DCN architectures on SVHN
experiment given different image input sizes.

It is worth noting that all previous literature on SVHN dealt with a simpler task where
images are cropped and resized. In this experiment we deal with a more general setting, and
our results cannot be directly compared with these results.

5.4.2.4. Empirical Evaluation

Table 2 shows results of our experiment on SVHN. The coarse model has an error rate of
40.6%, while by using our proposed soft-attention mechanism, we decrease the error rate to
31.4%. This confirms that the entropy is a good measure for identifying important regions
when task-relevant information is not uniformly distributed across input data.
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Fig. 7. A sample of the selected patches in SVHN images. The images are processed by
the DCN inference procedure in their original sizes. They are resized here for illustration
purposes.

The fine model, on the other hand, achieves a better error rate of 25.2%, but is more
computationally expensive. Our DCN model, which selects only 6 regions on which to
apply the high-capacity fine layers, achieves an error rate of 20.0%. The DCN model can
therefore outperform, in terms of classification accuracy, the other baselines. This verifies our
assumption that by applying high capacity sub-networks only on the input’s most informative
regions, we are able to obtain high classification performance. Figure 7 shows a sample of
the selected patches by our attention mechanism.

An additional decrease of the test errors can be obtained by increasing the number of
processed scales. In the DCN model, taking 3 patches at 2 scales (original and 0.75 scales),
leads to 18.2% error, while taking 3 patches at 3 scales (original, 0.75 and 0.5 scales) leads to
an error rate of 16.6%. Our DCN model can reach its best performance of 11.6% by taking
all possible patches at 3 scales, but it does not offer any computational benefit over the fine
model.

We also investigate the computational benefits of the DCN approach as the dimensions
of the input data increase. Figure 6 reports the total number of multiplications as a function
of the image size, which each of the fine, coarse and DCN models incur. We compute these
numbers based on the architectures we use in the SVHN experiment. We can see that as
the input size increases, the DCN’s number of multiplications grows at the same rate as the
coarse model, because the number of computations devoted to the “high-capacity” modules
remains constant as the input size grows. We also verify the actual computational time of
these models by taking the largest 100 images in the SVHN test set, and computing the
average inference time taken by all the models. 3 The smallest of these images has a size of
363×735 pixels, while the largest has a size of 442×1083 pixels. On average, the coarse and
the soft-attention models take 8.6 milliseconds, while the fine model takes 62.6 milliseconds.

3We evaluate all models on an NVIDIA Titan Black GPU card.
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On the largest 100 SVHN test images, the DCN requires on average 10.8 milliseconds for
inference.

5.5. Conclusion

We have presented the DCN model, which is a novel approach for conditional computa-
tion. We have shown that using our visual attention mechanism, our network can adaptively
assign its capacity across different portions of the input data, focusing on important regions
of the input. Our model achieved state-of-the-art performance on the Cluttered MNIST
digit classification task, and provided computational benefits over traditional convolutional
network architectures. We have also validated our model in a transfer learning setting using
the SVHN dataset, where we tackled the multi-digit recognition problem without using any
a priori information on the digits’ location. We have shown that our model outperforms
other baselines, yet remains tractable for inputs with large spatial dimensions.
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Chapter 6

Prologue to Third Article

6.1. Article Details

Calibrating Energy-based Generative Adversarial Networks. Zihang Dai, Amjad
Almahairi, Philip Bachman, Eduard Hovy and Aaron Courville. Proceedings of the 4 th

International Conference on Learning Representations (ICLR 2017).
Personal Contribution. Zihang Dai wrote the mathematical analysis of this work, and

both of us worked jointly on the implementation, including the parametric instantiations of
Sec. 7.4, conducting experiments and analyzing results. I co-wrote the manuscript with the
other authors.

6.2. Context

This work was motivated by the objective of learning a general-purpose probabilistic gen-
erative model, which not only can generate compelling samples efficiently, but also produce
point-wise likelihood estimates which can be used as a data-driven evaluation metric. Our
work is inspired by the work of Kim and Bengio (2016), which also proposed using generative
adversarial networks (GANs) in learning energy-based models.

GANs have proven to be an expressive class of probabilistic generative models which can
produce state-of-the-art samples, especially in image generation tasks. Nevertheless, they
lack the capability of producing point-wise likelihood estimates, or even unnormalized energy
values.

6.3. Contributions

We propose equipping GANs with the ability to produce direct energy estimates for
samples. Specifically, we develop a flexible adversarial training framework, and prove this
framework not only ensures the generator converges to the true data distribution, but also
enables the discriminator to retain the density information at the global optimum. We derive
the analytic form of the induced solution, and analyze its properties. As it turns out, our



framework is based on two key ideas: (i) using a real-valued discriminator (ii) adding a
regularization term that maximizes the entropy of the generator’s distribution. In order
to make the proposed framework trainable in practice, we introduce two approximation
techniques for entropy maximization of generator’s distribution. Empirically, the experiment
results closely match our theoretical analysis, verifying that the discriminator is able to
recover the energy of data distribution. In addition, we show that our framework can produce
state-of-the-art samples.

6.4. Recent Developments

Our proposed framework tackles one of the limitations of GANs with respect to providing
point-wise likelihood estimates. GANs remain, as of the writing of this thesis, one of the
most active research areas in machine learning.

One of the important contributions of this work is providing practical methods for max-
imizing entropy of generator distribution. These methods have been shown to be effective
in other GAN frameworks, such as StackGAN (Huang et al., 2017) which produces state-of-
the-art conditional generation samples. In addition, Dai et al. (2017) show that it can very
effective in semi-supervised learning settings with GANs. A more recent work (Kumar et al.,
2019) proposed using mutual information estimators to maximize the generator’s entropy.

Another important limitation of standard GAN framework is the lack of an inference
mechanism. This was addressed in ALI (Dumoulin et al., 2016)) and BiGAN (Donahue et al.,
2016) frameworks, where they add an inference network to the model and the discriminator
distinguishes between joints distribution of latent codes and data. Liu et al. (2017) propose
adding a regularization term to ALI that minimizes conditional entropy, as a way to increases
mutual information between latent codes and data and reduce non-identifiability in ALI.

Stabilizing training of GANs, which is arguably their biggest downside, has been the focus
of much research recently. One of the most notable advances in this front is WGAN (Arjovsky
et al., 2017), which proposes to replace the Jensen-Shannon divergence of standard GAN
with Wasserstein-1 distance between data and generator distributions. The follow-up model
WGAN-GP (Gulrajani et al., 2017) introduces the gradient penalty formulation, in order to
bound the Lipschitz constant of the discriminator. Gradient penalties, however, proved to
be useful even with standard GAN formulation (Roth et al., 2017; Fedus et al., 2018).
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Chapter 7

Calibrating Energy-based Generative Adversarial
Networks

7.1. Introduction

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) represent an impor-
tant milestone on the path towards more effective generative models. GANs cast generative
model training as a minimax game between a generative network (generator), which maps a
random vector into the data space, and a discriminative network (discriminator), whose ob-
jective is to distinguish generated samples from real samples. Multiple researchers (Radford
et al., 2015; Salimans et al., 2016; Zhao et al., 2016) have shown that the adversarial inter-
action with the discriminator can result in a generator that produces compelling samples.
The empirical successes of the GAN framework were also supported by the theoretical anal-
ysis of Goodfellow et al. (2014), who showed that, under certain conditions, the distribution
produced by the generator converges to the true data distribution, while the discriminator
converges to a degenerate uniform solution.

While GANs have excelled as compelling sample generators, their use as general purpose
probabilistic generative models has been limited by the difficulty in using them to provide
density estimates or even unnormalized energy values for sample evaluation. It is tempting
to consider the GAN discriminator as a candidate for providing this sort of scoring function.
Conceptually, it is a trainable sample evaluation mechanism that – owing to GAN training
paradigm – could be closely calibrated to the distribution modeled by the generator. If
the discriminator could retain fine-grained information of the relative quality of samples,
measured for instance by probability density or unnormalized energy, it could be used as an
evaluation metric. Such data-driven evaluators would be highly desirable for problems where
it is difficult to define evaluation criteria that correlate well with human judgment. Indeed,
the real-valued discriminator of the recently introduced energy-based GANs (Zhao et al.,
2016) might seem like an ideal candidate energy function. Unfortunately, as we will show,



the degenerate fate of the GAN discriminator at the optimum equally afflicts the energy-
based GAN of Zhao et al. (2016). Our work is inspired by the work of Kim and Bengio
(2016), who propose maximizing the entropy of the generator’s output.

We consider the questions: (i) does there exists an adversarial framework that induces
a non-degenerate discriminator, and (ii) if so, what form will the resulting discriminator
take? We introduce an adversarial learning formulation, which leads to a non-degenerate
discriminator while ensuring the generator distribution matches the data distribution at
the global optimum. We derive a general analytic form of the optimal discriminator, and
discuss its properties and their relationship to the specific form of the training objective.
We also discuss the connection between the proposed formulation and the similar approach
of (Kim and Bengio, 2016). Finally, for a specific instantiation of the general formulation,
we investigate two approximation techniques to optimize the training objective, and verify
our results empirically.

7.2. Related Work

Following a similar motivation, the field of Inverse Reinforcement Learning (IRL) (Ng and
Russell, 2000) has been exploring ways to recover the “intrinsic” reward function (analogous
to the discriminator) from observed expert trajectories (real samples). Taking this idea one
step further, apprenticeship learning or imitation learning (Abbeel and Ng, 2004; Ziebart
et al., 2008) aims at learning a policy (analogous to the generator) using the reward signals
recovered by IRL. Notably, Ho and Ermon (2016) draw a connection between imitation
learning and GAN by showing that the GAN formulation can be derived by imposing a
specific regularization on the reward function. Also, under a special case of their formulation,
Ho and Ermon (2016) provide a duality-based interpretation of the problem, which inspires
our theoretical analysis. However, as the focus of (Ho and Ermon, 2016) is only on the
policy, the authors explicitly propose to bypass the intermediate IRL step, and thus provide
no analysis of the learned reward function.

The GAN models most closely related to our proposed framework are energy-based GAN
models of Zhao et al. (2016) and Kim and Bengio (2016). In the next section, We show how
one can derive both of these approaches from different assumptions regarding regularization
of the generative model.

7.3. Alternative Formulation of Adversarial Training

7.3.1. Background

Before presenting the proposed formulation, we first state some basic assumptions re-
quired by the analysis, and introduce notations used throughout this chapter. Following the
original work on GANs (Goodfellow et al., 2014), our analysis focuses on the non-parametric
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case, where all models are assumed to have infinite capacities. While many of the non-
parametric intuitions can directly transfer to the parametric case, we will point out cases
where this transfer fails. We assume a finite data space throughout the analysis, to avoid
technical machinery out of the scope of this work. Our results, however, can be extended to
continuous data spaces, and our experiments are indeed performed on continuous data.

Let X be the data space under consideration, and P = {p | p(x) ≥ 0,∀x ∈
X ,∑x∈X p(x) = 1} be the set of all proper distributions defined on X . Then, pdata ∈
P : X → R and pgen ∈ P : X → R will denote the true data distribution and the generator
distribution. Ex∼pf(x) denotes the expectation of the quantity f(x) w.r.t. x drawn from p.
Finally, the term “discriminator” will refer to any structure that provides training signals to
the generator based on some measure of difference between the generator distribution and
the real data distribution, which which includes but is not limited to f -divergence.

7.3.2. Proposed Formulation

In order to understand the motivation of the proposed approach, it is helpful to analyze
the optimization dynamics near convergence in GANs first. When the generator distribution
matches the data distribution, the training signal (gradient) w.r.t. the discriminator vanishes.
At this point, assume the discriminator still retains density information, and views some
samples as more real and others as less. This discriminator will produce a training signal
(gradient) w.r.t. the generator, pushing the generator to generate samples that appear more
real to the discriminator. Critically, this training signal is the sole driver of the generator’s
training. Hence, the generator distribution will diverge from the data distribution. In
other words, as long as the discriminator retains relative density information, the generator
distribution cannot stably match the data distribution. Thus, in order to keep the generator
stationary at the data distribution, the discriminator must assign flat (exactly the same)
density to all samples at the optimal.

From the analysis above, the fundamental difficulty is that the generator only receives
a single training signal (gradient) from the discriminator, which it has to follow. To keep
the generator stationary, this single training signal (gradient) must vanish, which requires
a degenerate discriminator, i.e., a discriminator which assigns the same probability/score to
all inputs. In this work, we propose to tackle this single training signal constraint directly.
Specifically, we describe an adversarial learning formulation which incorporates an additional
training signal to the generator, such that this additional signal can

• balance (cancel out) the discriminator signal at the optimum, so that the generator
can stay stationary even if the discriminator assigns non-flat density to samples
• cooperate with the discriminator signal to make sure the generator converges to the
data distribution, and the discriminator retains the correct relative density informa-
tion
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The proposed formulation can be written as the following minimax training objective,

max
c

min
pgen∈P

Ex∼pgen

[
c(x)

]
− Ex∼pdata

[
c(x)

]
+K(pgen), (7.3.1)

where c(x) : X → R is the discriminator that assigns each data point an unbounded scalar
cost, and K(pgen) : P → R is some (functionally) differentiable, convex function of pgen.
Compared to the original GAN, despite the similar minimax surface form, the proposed
fomulation has two crucial distinctions.

Firstly, while the GAN discriminator tries to distinguish “fake” samples from real ones
using binary classification, the proposed discriminator achieves that by assigning lower cost
to real samples and higher cost to “fake” one. This distinction can be seen from the first two
terms of Eqn. (7.3.1), where the discriminator c(x) is trained to widen the expected cost gap
between “fake” and real samples, while the generator is adversarially trained to minimize it.
In addition to the different adversarial mechanism, a calibrating term K(pgen) is introduced
to provide a countervailing source of training signal for pgen as we motivated above. For now,
the form of K(pgen) has not been specified. But as we will see later, its choice will directly
decide the form of the optimal discriminator c∗(x).

With the specific optimization objective, we next provide theoretical characterization of
both the generator and the discriminator at the global optimum. Define

L(pgen, c) = Ex∼pgen

[
c(x)

]
− Ex∼pdata

[
c(x)

]
+K(pgen), (7.3.2)

then L(pgen, c) is the Lagrange dual function of the following optimization problem

min
pgen∈P

K(pgen)

s.t. pgen(x)− pdata(x) = 0,∀x ∈ X
(7.3.3)

where c(x),∀x appears in L(pgen, c) as the dual variables introduced for the equality con-
straints. This duality relationship has been observed previously in (Ho and Ermon, 2016,
equation (7)) under the adversarial imitation learning setting. However, in their case, the
focus was fully on the generator side (induced policy), and no analysis was provided for the
discriminator (reward function).

In order to characterize c∗, we first expand the set constraint on pgen into explicit equality
and inequality constraints:

min
pgen

K(pgen)

s.t. pgen(x)− pdata(x) = 0,∀x

− pgen(x) ≤ 0,∀x∑
x∈X

pgen(x)− 1 = 0.

(7.3.4)
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Notice that K(pgen) is a convex function of pgen(x) by definition, and both the equality
and inequality constraints are affine functions of pgen(x). Thus, problem (7.3.3) is a convex
optimization problem. Furthermore, since (i) domK is open, and (ii) there exists a feasible
solution pgen = pdata to (7.3.4), by the refined Slater’s condition (Boyd and Vandenberghe,
2004, page 226), we can further verify that strong duality holds for (7.3.4). With strong
duality, a typical approach to characterizing the optimal solution is to apply the Karush-
Kuhn-Tucker (KKT) conditions, which gives rise to this theorem:
Proposition 7.3.1. By the KKT conditions of the convex problem (7.3.4), at the global
optimum, the optimal generator distribution p∗gen matches the true data distribution pdata,
and the optimal discriminator c∗(x) has the following form:

c∗(x) = −∂K(pgen)
∂pgen(x)

∣∣∣∣∣
pgen=pdata

− λ∗ + µ∗(x),∀x ∈ X ,

where µ∗(x) =

0, pdata(x) > 0
ux, pdata(x) = 0

,

λ∗ ∈ R, is an under-determined real number independent of x,

ux ∈ R≥0, is an under-determined non-negative real number.

(7.3.5)

The detailed proof of proposition 7.3.1 is provided in Section 7.7.1. From (7.3.5), we
can see the exact form of the optimal discriminator depends on the term K(pgen), or more
specifically its gradient. But, before we instantiate K(pgen) with specific choices and show
the corresponding forms of c∗(x), we first discuss some general properties of c∗(x) that do
not depend on the choice of K.
Weak Support Discriminator. As part of the optimal discriminator function, the term µ∗(x)
plays the role of support discriminator. That is, it tries to distinguish the support of the data
distribution, i.e., supp(pdata) = {x ∈ X | pdata(x) > 0}, from its complement set with zero-
probability, i.e., supp(pdata){ = {x ∈ X | pdata(x) = 0}. Specifically, for any x ∈ supp(pdata)
and x′ ∈ supp(pdata){, it is guaranteed that µ∗(x) ≤ µ∗(x′). However, because µ∗(·) is under-
determined, there is nothing preventing the inequality from degenerating into an equality.
Therefore, we name it the weak support discriminator. But, in all cases, µ∗(·) assigns zero cost
to all data points within the support. As a result, it does not possess any fine-grained density
information inside of the data support. It is worth pointing out that, in the parametric case,
because of the smoothness and the generalization properties of the parametric model, the
learned discriminator may generalize beyond the data support.
Global Bias. In (7.3.5), the term λ∗ is a scalar value shared for all x. As a result, it does
not affect the relative cost among data points, and only serves as a global bias for the
discriminator function.
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Having discussed general properties, we now consider some specific cases of the convex
function K, and analyze the resulting optimal discriminator c∗(x) in detail.
(1) First, let us consider the case where K is the negative entropy of the generator distri-

bution, i.e., K(pgen) = −H(pgen). Taking the derivative of the negative entropy w.r.t.
pgen(x), we have

c∗ent(x) = − log pdata(x)− 1− λ∗ + µ∗(x),∀x ∈ X , (7.3.6)

where µ∗(x) and λ∗ have the same definitions as in (7.3.5).
Up to a constant, this form of c∗ent(x) is exactly the energy function of the data distribution
pdata(x). This elegant result has deep connections to several existing formulations, which
include max-entropy imitation learning (Ziebart et al., 2008) and the directed-generator-
trained energy-based model (Kim and Bengio, 2016). With an explicit minimax formu-
lation we can develop a better understanding of the induced solution. For example, the
global bias λ∗ suggests that there exists more than one stable equilibrium the optimal
discriminator can actually reach. Further, µ∗(x) can be understood as a support discrim-
inator that poses extra cost on generator samples which fall in zero-probability regions of
data space.

(2) When K(pgen) = 1
2
∑
x∈X pgen(x)2 = 1

2‖pgen‖2
2, which can be understood as posing `2

regularization on pgen, we have ∂K(pgen)
∂pgen(x)

∣∣∣
pgen=pdata

= pdata(x), and it follows

c∗`2(x) = −pdata(x)− λ∗ + µ∗(x),∀x ∈ X , (7.3.7)

with µ∗(x), λ∗ similarly defined as in (7.3.5).
Surprisingly, the result suggests that the optimal discriminator c∗`2(x) directly recovers
the negative probability −pdata(x), shifted by a constant. Thus, similar to the entropy
solution (7.3.6), it fully retains the relative density information of data points within the
support.
However, because of the under-determined term µ∗(x), we cannot recover the distribution
density pdata exactly from either c∗`2 or c∗ent if the data support is finite. Whether this
ambiguity can be resolved is beyond the scope of this
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but poses an interesting research problem.
(3) Finally, let’s consider consider a degenerate case, where K(pgen) is a constant. That is,

we don’t provide any additional training signal for pgen at all. With K(pgen) = const, we
simply have

c∗cst(x) = −λ∗ + µ∗(x), ∀x ∈ X , (0.8)

whose discriminative power is fully controlled by the weak support discriminator µ∗(x).
Thus, it follows that c∗cst(x) won’t be able to discriminate data points within the support
of pdata, and its power to distinguish data from supp(pdata) and supp(pdata){ is weak.
This closely matches the intuitive argument in the beginning of this section.
Note that when K(pgen) is a constant, the objective function (7.3.1) simplifies to:

max
c

min
pgen∈P

Ex∼pgen

[
c(x)

]
− Ex∼pdata

[
c(x)

]
, (0.9)

which is very similar to the EBGAN objective (Zhao et al., 2016, equation (2) and (4)).
As we show in Section 7.7.2, compared to the objective in (0.9), the EBGAN objective
puts extra constraints on the allowed discriminator function. In spite of that, the EBGAN
objective suffers from the single-training-signal problem and does not guarantee that the
discriminator will recover the real energy function (see Section 7.7.2 for detailed analysis).
As we finish the theoretical analysis of the proposed formulation, we want to point out

that simply adding the same term K(pgen) to the original GAN formulation will not lead to
both a generator that matches the data distribution, and a discriminator that retains the
density information (see Section 7.7.3 for detailed analysis).

7.4. Parametric Instantiation with Entropy Approximation

While the discussion in previous sections focused on the non-parametric case, in practice
we are limited to a finite amount of data, and the actual problem involves high dimensional
continuous spaces. Thus, we resort to parametric representations for both the generator and
the discriminator. In order to train the generator using standard back-propagation, we do
not parametrize the generator distribution directly. Instead, we parametrize a directed gen-
erator network that transforms random noise z ∼ pz(z) to samples from a continuous data
space Rn. Consequently, we do not have an analytical form for the generator distribution,
which is defined implicitly by the generator network’s noise→data mapping. However, the
regularization term K(pgen) in the training objective (7.3.1) requires the generator distribu-
tion. Faced with this problem, we focus on the max-entropy formulation, and exploit two
different approximations of the regularization term K(pgen) = −H(pgen).



7.4.1. Nearest-Neighbor Entropy Gradient Approximation

The first proposed solution is built upon an intuitive interpretation of the entropy gradi-
ent. Firstly, since we construct pgen by applying a deterministic, differentiable transform gθ

to samples z from a fixed distribution pz, we can write the gradient of H(pgen) with respect
to the generator parameters θ as follows:

−∇θH(pgen) = Ez∼pz [∇θ log pgen(gθ(z))] = Ez∼pz

[
∂gθ(z)
∂θ

∂ log pgen(gθ(z))
∂gθ(z)

]
, (7.4.1)

where the first equality relies on the “reparametrization trick”. Equation 7.4.1 implies that,
if we can compute the gradient of the generator log-density log pgen(x) w.r.t. any x = gθ(z),
then we can directly construct the Monte-Carlo estimation of the entropy gradient∇θH(pgen)
using samples from the generator.

Intuitively, for any generated data x = gθ(z), the term ∂ log pgen(x)
∂x

essentially describes the
direction of local change in the sample space that will increase the log-density. Motivated by
this intuition, we propose to form a local Gaussian approximation pigen of pgen around each
point xi in a batch of samples {x1, ..., xn} from the generator, and then compute the gradient
∂ log pgen(xi)

∂xi
based on the Gaussian approximation. Specifically, each local Gaussian approxi-

mation pigen is formed by finding the k nearest neighbors of xi in the batch {x1, ..., xn}, and
then placing an isotropic Gaussian distribution at their mean (i.e., maximimum likelihood).
Based on the isotropic Gaussian approximation, the resulting gradient has the following form
∂ log pgen(xi)

∂xi
≈ µi − xi, where µi = 1

k

∑
x′∈KNN(xi)

x′ is the mean of the Gaussian (7.4.2)

Finally, note the scale of this gradient approximation may not be reliable. To fix this problem,
we normalize the approximated gradient into unit norm, and use a single hyper-parameter
to model the scale for all x, leading to the following entropy gradient approximation

−∇θH(pgen) ≈ α
1
k

∑
xi=gθ(zi)

µi − xi
‖µi − xi‖2

(7.4.3)

where α is the hyper-parameter and µi is defined as in equation (7.4.2).
An obvious weakness of this approximation is that it relies on Euclidean distance to find

the k nearest neighbors. However, Euclidean distance is usually not the proper metric to use
when the effective dimension is very high. As the problem is highly challenging, we leave it
for future work.

7.4.2. Variational Lower bound on the Entropy

Another approach we consider relies on defining and maximizing a variational lower bound
on the entropy H(pgen(x)) of the generator distribution. We can define the joint distribution
over observed data and the noise variables as pgen(x,z) = pgen(x | z)pgen(z), where simply
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pgen(z) = pz(z) is a fixed prior. Using the joint, we can also define the marginal pgen(x) and
the posterior pgen(z | x). We can also write the mutual information between the observed
data and noise variables as:

I(pgen(x); pgen(z)) = H(pgen(x))−H(pgen(x | z))

= H(pgen(z))−H(pgen(z | x)),
(7.4.4)

where H(pgen(. | .)) denotes the conditional entropy. By reorganizing terms in this definition,
we can write the entropy H(pgen(x)) as:

H(pgen(x)) = H(pgen(z))−H(pgen(z | x)) +H(pgen(x | z)) (7.4.5)

We can think of pgen(x | z) as a peaked Gaussian with a fixed, diagonal covariance, and
hence its conditional entropy is constant and can be dropped. Furthermore, H(pgen(z)) is
also assumed to be fixed a priori. Hence, we can maximize H(pgen(x)) by minimizing the
conditional entropy:

H(pgen(z | x)) = Ex∼pgen(x)
[
Ez∼pgen(z|x) [− log pgen(z | x)]

]
(7.4.6)

Optimizing this term is still problematic, because (i) we do not have access to the posterior
pgen(z | x), and (ii) we cannot sample from it. Therefore, we instead minimize a variational
upper bound defined by an approximate posterior qgen(z | x):

H(pgen(z | x)) = Ex∼pgen(x)
[
Ez∼pgen(z|x) [− log qgen(z | x)]−KL(pgen(z | x)‖qgen(z | x))

]
≤ Ex∼pgen(x)

[
Ez∼pgen(z|x) [− log qgen(z | x)]

]
= U(qgen).

(7.4.7)
We can also rewrite the variational upper bound as:

U(qgen) = Ex,z∼pgen(x,z) [− log qgen(z | x)] = Ez∼pgen(z)
[
Ex∼pgen(x|z) [− log qgen(z | x)]

]
, (7.4.8)

which can be optimized efficiently with standard back-propagation and Monte Carlo inte-
gration of the relevant expectations based on independent samples drawn from the joint
pgen(x, z). By minimizing this upper bound on the conditional entropy H(pgen(z | x)), we
are effectively maximizing a variational lower bound on the entropy H(pgen(x)).

7.5. Experiments

In this section, we verify our theoretical results empirically on several synthetic and real
datasets. In particular, we evaluate whether the discriminator obtained from the entropy-
regularized adversarial training can capture the density information (in the form of energy),
while making sure the generator distribution matches the data distribution. For convenience,
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we refer to the obtained models as EGAN-Ent. Our experimental setting follows closely rec-
ommendations from (Radford et al., 2015), except in Sec. 7.5.1 where we use fully-connected
models. 1

7.5.1. Synthetic low-dimensional data

First, we consider three synthetic datasets in 2-dimensional space, which are drawn from
the following distributions: (i) Mixture of 4 Gaussians with equal mixture weights, (ii) Mix-
ture of 200 Gaussians arranged as two spirals (100 components each spiral), and (iii) Mixture
of 2 Gaussians with highly biased mixture weights, P (c1) = 0.9, P (c2) = 0.1. We visualize
the ground-truth energy of these distributions along with 100K training samples in Figure
1.

Since the data lies in 2D space, we can easily visualize both the learned generator (by
drawing samples) and the discriminator for direct comparison and evaluation. We evaluate
here our EGAN-Ent model using both approximations: the nearest-neighbor based approx-
imation (EGAN-Ent-NN) and the variational-inference based approximation (EGAN-Ent-
VI), and compare them with two baselines: the original GAN and the energy based GAN
with no regularization (EGAN-Const).

Experiment results are summarized in Figures 2, 3 for baseline models, and Figures 4, 5
for the proposed models. As we can see, all four models can generate perfect samples. How-
ever, both GAN and EGAN-Const lead to a degenerate discriminator’s solution, assigning
flat energy inside the empirical data support. In comparison, EGAN-Ent-VI and EGAN-
Ent-NN clearly capture the density information, though to different degrees. Specifically, on
the equally weighted Gaussian mixture and the two-spiral mixture datasets, EGAN-Ent-NN
tends to give more accurate and fine-grained solutions compared to EGAN-Ent-VI. However,
on the biased weighted Gaussian mixture dataset, EGAN-Ent-VI actually fails to captures
the correct mixture weights of the two modes, incorrectly assigning lower energy to the mode
with lower probability (smaller weight). In contrast, EGAN-Ent-NN perfectly captures the
bias in mixture weight, and obtains a contour very close to the ground truth.

1For more details on experimental settings, please refer to https://github.com/zihangdai/cegan_
iclr2017.
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Fig. 1. True energy functions and samples from synthetic distributions. Green dots in the
sample plots indicate the mean of each Gaussian component.
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Fig. 2. Learned energies and samples from standard GAN, whose discriminator cannot
retain density information at the optimum. In the sample plots, blue dots indicate generated
samples, and red dots indicate real ones.
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Fig. 3. Learned energies and samples from Energy GAN without regularization (EGAN-
Const), whose discriminator cannot retain density information at the optimum. In the
sample plots, blue dots indicate generated samples, and red dots indicate real ones.
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Fig. 4. Learned energies and samples from Entropy regularized Energy GAN with varia-
tional inference approximation (EGAN-Ent-VI), whose discriminator can retain density
information at the optimum. Blue dots are generated samples, and red dots are real ones.
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Fig. 5. Learned energies and samples from Entropy regularized Energy GAN with nearest
neighbor approximation (EGAN-Ent-NN), whose discriminator can retain density infor-
mation at the optimum. Blue dots are generated samples, and red dots are real ones.
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Gaussian Mixture: KL(pdata‖pemp) = 0.0291, KL(pemp‖pdata) = 0.0159

KL Divergence pgen‖pemp pemp‖pgen pgen‖pdata pdata‖pgen pdisc‖pemp pemp‖pdisc pdisc‖pdata pdata‖pdisc pgen‖pdisc pdisc‖pgen

GAN 0.3034 0.5024 0.2498 0.4807 6.7587 2.0648 6.2020 2.0553 2.4596 7.0895
EGAN-Const 0.2711 0.4888 0.2239 0.4735 6.7916 2.1243 6.2159 2.1149 2.5062 7.0553
EGAN-Ent-VI 0.1422 0.1367 0.0896 0.1214 0.8866 0.6532 0.7215 0.6442 0.7711 1.0638
EGAN-Ent-NN 0.1131 0.1006 0.0621 0.0862 0.0993 0.1356 0.0901 0.1187 0.1905 0.1208

Biased Gaussian Mixture: KL(pdata‖pemp) = 0.0273, KL(pemp‖pdata) = 0.0144

KL Divergence pgen‖pemp pemp‖pgen pgen‖pdata pdata‖pgen pdisc‖pemp pemp‖pdisc pdisc‖pdata pdata‖pdisc pgen‖pdisc pdisc‖pgen

GAN 0.0788 0.0705 0.0413 0.0547 7.1539 2.5230 6.4927 2.5018 2.5205 7.1140
EGAN-Const 0.1545 0.1649 0.1211 0.1519 7.1568 2.5269 6.4969 2.5057 2.5860 7.1995
EGAN-Ent-VI 0.0576 0.0668 0.0303 0.0518 3.9151 1.3574 2.9894 1.3365 1.4052 4.0632
EGAN-Ent-NN 0.0784 0.0574 0.0334 0.0422 0.8505 0.3480 0.5199 0.3299 0.3250 0.7835

Two-spiral Gaussian Mixture: KL(pdata‖pemp) = 0.3892, KL(pemp‖pdata) = 1.2349

KL Divergence pgen‖pemp pemp‖pgen pgen‖pdata pdata‖pgen pdisc‖pemp pemp‖pdisc pdisc‖pdata pdata‖pdisc pgen‖pdisc pdisc‖pgen

GAN 0.5297 0.2701 0.3758 0.7240 6.3507 1.7180 4.3818 1.0866 1.6519 5.7694
EGAN-Const 0.7473 1.0325 0.7152 1.6703 5.9930 1.5732 3.9749 0.9703 1.8380 6.0471
EGAN-Ent-VI 0.2014 0.1260 0.4283 0.8399 1.1099 0.3508 0.3061 0.4037 0.4324 0.9917
EGAN-Ent-NN 0.1246 0.1147 0.4475 1.2435 0.1036 0.0857 0.4086 0.7917 0.1365 0.1686

Table 1. Quantitative evaluation on 2D data using pairwise KL divergence between distri-
butions. Bold face indicate the lowest divergence within group.

7.5.1.1. Quantitative comparison of different models

In order to quantify the quality of recovered distributions, we compute the pairwise KL
divergence of the following four distributions:

• The real data distribution with analytic form, denoted as pdata

• The empirical data distribution approximated from the 100K training data, denoted
as pemp

• The generator distribution approximated from 100K generated data, denoted as pgen

• The discriminator distribution re-normalized from the learned energy, denoted as pdisc

Since the synthetic datasets are two dimensional, we approximate both the empirical data
distribution and the generator distribution using the simple histogram estimation. Specifi-
cally, we divide the canvas into a 100-by-100 grid, and assign each sample into its nearest
grid cell based on euclidean distance. Then, we normalize the number of samples in each cell
into a proper distribution. When recovering the discriminator distribution from the learned
energy, we assume that µ∗(x) = 0 (i.e. infinite data support), and discretize the distribution
into the same grid cells

pdisc(x) = exp(−c∗(x))∑
x′∈Grid exp(−c∗(x′)) ,∀x ∈ Grid
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Based on these approximation, Table 1 summarizes the results. For all measures related
to the discriminator distribution, EGAN-Ent-VI and EGAN-Ent-NN significantly outper-
form the other two baseline models, which matches our visual assessment in Figure 4 and 5.
Meanwhile, the generator distributions learned from our proposed framework also achieve
relatively lower divergence to both the empirical data distribution and the true data distri-
bution.

7.5.1.2. Comparison of the entropy (gradient) approximation methods

In order to understand the performance difference between EGAN-Ent-VI and EGAN-
Ent-NN, we analyze the quality of the entropy gradient approximation during training. To
do that, we visualize some detailed training information in Figures 6 and 7. As we can see
in Figure 6, the viarational entropy gradient approximation w.r.t. samples is not accurate:

• It is inaccurate in terms of gradient direction. Ideally, the direction of the entropy
gradient should be pointing from the center of its closest mode towards the surround-
ings, with the direction orthogonal to the implicit contour in Figure 6-(a). However,
the direction of gradients in the Figure 6-(e) does not match this.
• It is inaccurate in magnitude. As we can see, the entropy approximation gradient
(Figure 6-(e)) has much larger norm than the discriminator gradient (Figure 6-(d)).
As a result, the total gradient (Figure 6-(f)) is fully dominated by the entropy ap-
proximation gradient. Thus, it usually takes much longer for the generator to learn
to generate rare samples, and the training also proceeds much slower compared to
the nearest neighbor based approximation.

In comparison, the nearest neighbor based gradient approximation is much more accurate
as shown in Figure 7. As a result, it leads to more accurate energy contour, as well as faster
training. Furthermore, from Figure 7-(e), we can see the entropy gradient does have the
cancel-out effect on the discriminator gradient, which again matches our theory.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Training details under variational inference entropy approximation. (a) Current
energy plot. (b) Frequency map of generated samples. (c) Frequency map of real samples.
(d) Discriminator’s gradient w.r.t. each training sample. (e) VI Entropy gradient w.r.t. each
training samples. (f) All gradient (discriminator + entropy) w.r.t. each training sample.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Training details under nearest neighbor entropy approximation. (a) Current energy
plot. (b) Frequency map of generated samples. (c) Frequency map of real samples. (d)
Discriminator’s gradient w.r.t. each training sample. (e) NN Entropy gradient w.r.t. each
training samples. (f) All gradient (discriminator + entropy) w.r.t. each training sample.
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7.5.2. Ranking NIST digits

In this experiment, we verify that the results in synthetic datasets can translate into
data with higher dimensions. While visualizing the learned energy function is not feasible
in high-dimensional space, we can verify whether the learned energy function learns relative
densities by inspecting the ranking of samples according to their assigned energies. We train
on 28 × 28 images of a single handwritten digit from the NIST dataset. 2 We compare
the ability of EGAN-Ent-NN with both EGAN-Const and GAN on ranking a set of 1,000
images, half of which are generated samples and the rest are real test images. We show in
Figure 8a the mean of all training samples, which can give a sense of a “canonical" or the
most common style (i.e., highest density) of digit 1 in NIST. Figure 8 shows the ranking of
all 1000 generated and real images (from the test set) for the three models. We can clearly
notice that in EGAN-Ent-NN the top-ranked digits look very similar to the mean digit.
From the upper-left corner to the lower-right corner, the transition trend is: the rotation
degree increases, and the digits become increasingly thick or thin compared to the mean.
In addition, samples in the last few rows do diverge away from the mean image: either
highly diagonal to the right or left, or have different shape: very thin or thick, or typewriter
script. Other models are not able to achieve a similar clear distinction for high versus low
probability images. We note that we observe the same trend in modeling other digits.

7.5.2.1. Classifier performance using discriminator features

In order to provide more quantitative intuitions on the learned discriminator at con-
vergence, we adopt a proxy measure using discriminator features. Specifically, we take the
last-layer activations of a converged discriminator network as fixed pretrained features, and
build a linear classifier on top of them. Hypothetically, if the discriminator does not degen-
erate, the extracted last-layer features should maintain more information about each data
point than degenerated discriminators. Following this idea, we first train EGAN-Ent-NN,
EGAN-Const, and GAN on the MNIST till convergence, and then extract the last-layer
activations from their discriminator networks as fixed input features. Based on these fixed
features, we train a randomly initialized linear classifier to on the task of classification of
MNIST digits. Based on 10 runs (with different initialization) of each of the three models,
the test classification performance is summarized in Table 2. For comparison purpose, we
also include a baseline where the input features are extracted from a discriminator network
with random weights.

Based on the proxy measure, EGAN-Ent-NN seems to maintain more information of data,
which suggests that the discriminator from our proposed formulation is more informative.

2https://www.nist.gov/srd/nist-special-database-19, which is an extended version of MNIST with
an average of over 74K examples per digit.
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(a) Mean of all digit-1 in NIST

(b) EGAN-Ent-NN

(c) EGAN-Const

(d) GAN

Fig. 8. (a) Mean 1’s in NIST. (b)-(d) 1000 generated and test images (bounding box) ranked
according their assigned energies by each model.
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Test error (%) EGAN-Ent-NN EGAN-Const GAN Random
Min 1.160 1.280 1.220 3.260
Mean 1.190 1.338 1.259 3.409
Std. 0.024 0.044 0.032 0.124

Table 2. Test performance of linear classifiers based on last-layer discriminator features.

Despite the positive result, it is important to point out that maintaining information about
categories does not necessarily mean maintaining information about the energy (density).
Thus, this proxy measure should be understood cautiously.

7.5.3. Sample quality on natural image datasets

In this last set of experiments, we evaluate the visual quality of samples generated by
our model in two datasets of natural images, namely CIFAR-10 and CelebA. We employ
here the variational-based approximation for entropy regularization, which can scale well to
high-dimensional data. Figure 9 shows samples generated by EGAN-Ent-VI. We can see
that despite the noisy gradients provided by the variational approximation, our model is
able to generate high-quality samples in both CIFAR-10 and CelebA datasets.

(a) CIFAR-10 (b) CelebA

Fig. 9. Samples generated from our model.

We futher validate the quality of our model’s samples using the Inception score proposed
by (Salimans et al., 2016) 3 on CIFAR-10. Table 3 shows the scores of our EGAN-Ent-VI,
the best GAN model from (Salimans et al., 2016) which uses only unlabeled data, and an
EGAN-Const model which has the same architecture as our model. We notice that even
3Using the evaluation script released in https://github.com/openai/improved-gan/
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Model Our model Improved GAN† EGAN-Const
Score ± std. 7.07 ± .10 6.86 ± .06 6.7447 ± 0.09

Table 3. Inception scores on CIFAR-10. † As reported in (Salimans et al., 2016) without
using labeled data.

without employing suggested techniques in (Salimans et al., 2016), energy-based models
perform quite similarly to the GAN model. Furthermore, the fact that our model scores
higher than EGAN-Const highlights the importance of entropy regularization in obtaining
good quality samples.

7.6. Conclusion

In this chapter, we have introduced an adversarial learning approach that is able to
provide sensible energy estimates for samples. Our formulation results in a discriminator
function that recovers the true data energy. We provided a rigorous characterization of the
learned discriminator in the non-parametric setting, and proposed two methods for instan-
tiating it in the typical parametric setting. Our experimental results verify our theoretical
analysis about the discriminator properties, and show that we can also obtain samples of
state-of-the-art quality.

Future research directions include developing better entropy approximations, which can
scale better on harder tasks. In addition, this framework has very promising applications in
sequence generation tasks (e.g., language generation), which, as of writing this thesis, remains
to be one of the most challenging research problems for generative adversarial networks.

7.7. Additional Theoretical Analysis

7.7.1. Optimal discriminator form under the proposed formulation

Proof of proposition 7.3.1. Refining the Lagrange L(pgen, c) by introducing additional
dual variables for the probability constraints (the second and third), the new Lagrange
function has the form

L(pgen, c, µ, λ) =K(pgen) +
∑
x∈X

c(x)
(
pgen(x)− pdata(x)

)
−
∑
x∈X

µ(x)pgen(x) + λ(
∑
x∈X

pgen(x)− 1) (7.7.1)
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where c(x) ∈ R, ∀x, µ(x) ∈ R+,∀x, and λ ∈ R are the dual variables. The KKT conditions
for the optimal primal and dual variables are as follows

∂K(pgen)
∂pgen(x)

∣∣∣∣∣
pgen=pdata

+ c∗(x)− µ∗(x) + λ∗ = 0, ∀x (stationarity)

µ∗(x)p∗gen(x) = 0, ∀x (complement slackness)

µ∗(x) ≥ 0, ∀x (dual feasibility)

p∗gen(x) ≥ 0, p∗gen(x) = pdata(x), ∀x (primal feasibility)∑
x∈X

pgen(x) = 1 (primal feasibility)

(7.7.2)

Rearranging the conditions above, we get p∗gen(x) = pdata(x),∀x ∈ X as well as equation
(7.3.5), which concludes the proof. �

7.7.2. Optimal conditions of EBGAN

In (Zhao et al., 2016), the training objectives of the generator and the discriminator can-
not be written as a single minimax optimization problem since the margin structure is only
applied to the objective of the discriminator. In addition, the discriminator is designed to
produce the mean squared reconstruction error of an auto-encoder structure. This restricted
the range of the discriminator output to be non-negative, which is equivalent to posing a set
constraint on the discriminator under the non-parametric setting.

Thus, to characterize the optimal generator and discriminator, we adapt the same analyz-
ing logic used in the proof sketch of the original GAN (Goodfellow et al., 2014). Specifically,
given a specific generator distribution pgen, the optimal discriminator function given the gen-
erator distribution c∗(x; pgen) can be derived by examining the objective of the discriminator.
Then, the conditional optimal discriminator function is substituted into the training objec-
tive of pgen, simplifying the “adversarial” training as a minimizing problem only w.r.t. pgen,
which can be well analyzed.

Firstly, given any generator distribution pgen, the EBGAN training objective for the
discriminator can be written as the following form

c∗(x; pgen) = arg max
c∈C

−Epgen max(0,m− c(x))− Epdatac(x)

= arg max
c∈C

Epgen min(0, c(x)−m)− Epdatac(x)
(7.7.3)

where C = {c : c(x) ≥ 0,∀x ∈ X} is the set of allowed non-negative discriminator func-
tions. Note this set constraint comes from the fact the mean squared reconstruction error as
discussed above.
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Since the problem (7.7.3) is independent w.r.t. each x, the optimal solution can be easily
derived as

c∗(x; pgen) =



0, pgen(x) < pdata(x)
m, pgen(x) > pdata(x)
αx, pgen(x) = pdata(x) > 0
βx, pgen(x) = pdata(x) = 0

(7.7.4)

where αx ∈ [0,m] is an under-determined number, a βx ∈ [0,∞) is another under-determined
non-negative real number, and the subscripts in m,αx, βx reflect that fact that these under-
determined values can be distinct for different x.

This way, the overall training objective can be cast into a minimization problem w.r.t.
pgen,

p∗gen = arg min
pgen∈P

Ex∼pgenc
∗(x; pgen)− Ex∼pdatac

∗(x; pgen)

= arg min
pgen∈P

∑
x∈X

[
pgen(x)− pdata(x)

]
c∗(x; pgen)

(7.7.5)

where the second term of the first line is implicitly defined as the problem is an adversarial
game between pgen and c.
Proposition 7.7.1. The global optimal of the EBGAN training objective is achieved if and
only if pgen = pdata. At that point, c∗(x) is fully under-determined.

Proof. The proof is established by showing contradiction.
Firstly, assume the optimal p∗gen 6= pdata. Thus, there must exist a non-equal set X 6= =

{x | pdata(x) 6= p∗gen(x)}, which can be further splitted into two subsets, the greater-than set
X> = {x | p∗gen(x) > pdata(x)}, and the less-than set X< = {x | p∗gen(x) < pdata(x)}. Similarly,
we define the equal set X= = {x : p∗gen(x) = pdata(x)}. Obviously, X>

⋃X<⋃X= = X .
Let L(pgen) = ∑

x∈X

[
pgen(x)− pdata(x)

]
c∗(x; pgen), substituting the results from equation

(7.7.4) into (7.7.5), the L(pgen)∗ can be written as

L(p∗gen) =
∑

x∈X<
⋃
X<
⋃
X=

[
p∗gen(x)− pdata(x)

]
c∗(x; p∗gen)

=
∑
x∈X<

[
p∗gen(x)− pdata(x)

]
c∗(x; p∗gen) +

∑
x∈X>

[
p∗gen(x)− pdata(x)

]
c∗(x; p∗gen)

= m
∑
x∈X>

p∗gen(x)− pdata(x)

> 0

(7.7.6)

However, when p′gen = pdata, we have

L(p′gen) = 0 < L(p∗gen) (7.7.7)
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which contradicts the optimal (miminum) assumption of p∗gen. Hence, the contradiction
concludes that at the global optimal, p∗gen = pdata. By equation (7.7.4), it directly follows
that c∗(x; p∗gen) = αx, which completes the proof. �

7.7.3. Analysis of adding additional training signal to GAN formulation

To show that simply adding the same training signal to GAN will not lead to the same
result, it is more convenient to directly work with the formulation of f -GAN (Nowozin et al.,
2016, equation (6)) family, which include the original GAN formulation as a special case.

Specifically, the general f -GAN formulation takes the following form

max
c

min
pgen∈P

Ex∼pgen

[
f ?(c(x))

]
− Ex∼pdata

[
c(x)

]
, (7.7.8)

where the f ?(·) denotes the convex conjugate (Boyd and Vandenberghe, 2004) of the f -
divergence function. The optimal condition of the discriminator can be found by taking the
variation w.r.t. c, which gives the optimal discriminator

c∗(x) = f ′(pdata(x)
pgen(x) ) (7.7.9)

where f ′(·) is the first-order derivative of f(·). Note that, even when we add an extra term
L(pgen) to equation (7.7.8), since the term K(pgen) is a constant w.r.t. the discriminator, it
does not change the result given by equation (7.7.9) about the optimal discriminator. As a
consequence, for the optimal discriminator to retain the density information, it effectively
means pgen 6= pdata. Hence, there will be a contradiction if both c∗(x) retains the density
information, and the generator matches the data distribution.

Intuitively, this problem roots in the fact that f -divergence is quite “rigid” in the sense
that given the pgen(x) it only allows one fixed point for the discriminator. In comparison,
the divergence used in our proposed formulation, which is the expected cost gap, is much
more flexible. By the expected cost gap itself, i.e., without the K(pgen) term, the optimal
discriminator is actually under-determined.

108



Chapter 8

Prologue to Fourth Article

8.1. Article Details

Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired
Data. Amjad Almahairi, Sai Rajeswar, Alessandro Sordoni, Philip Bachman and Aaron
Courville. Proceedings of the 35 rd International Conference on Machine Learning (ICML
2018).

Personal Contribution. I am the main contributor to this work with regards to designing
and carrying out experiments, analyzing results and writing the manuscript.

8.2. Context

Obtaining large amounts of labelled data for structured prediction tasks, such as image
segmentation and translation, can be very difficult and expensive. Learning inter-domain
mappings from unpaired data has huge potential in improving performance in structured
prediction tasks by reducing the need for paired data.

CycleGAN (Zhu et al., 2017a) was proposed for learning image-to-image translation using
unpaired data, but critically assumes the underlying inter-domain mapping is approximately
deterministic and one-to-one. This assumption renders the model ineffective for tasks re-
quiring flexible, many-to-many mappings.

8.3. Contributions

We propose a new model, called Augmented CycleGAN, which learns many-to-many
mappings between domains. We examine Augmented CycleGAN qualitatively and quanti-
tatively on several image datasets. In addition, we show that Augmented CycleGAN can be
effectively applied in a semi-supervised learning settings.



8.4. Recent Developments

Two concurrent works, appeared on arXiv only few weeks after our work, and proposed
methods similar to Augmented CycleGAN for learning many-to-many mappings between
image domains (Huang et al., 2018; Lee et al., 2018). Both approaches explicitly encode
an image in two latent spaces: content and style, where content space is shared between
domains, and style is specific to each domain. A minor technical difference in Huang et al.
(2018) is the addition of a reconstruction cost for content codes, while in Lee et al. (2018)
a KL-divergence term is used to regularize style codes. In addition, Gonzalez-Garcia et al.
(2018) follow a similar approach but propose a cross-domain autoencoder to achieve cross-
domain disentanglement.

The potential of learning flexible inter-domain mappings from unpaired data extends be-
yond image domains. There has been a lot of progress recently in the area of unsupervised
machine translation (Lample et al., 2018a; Artetxe et al., 2018; Yang et al., 2018; Lample
et al., 2018b). These approaches share some similarities to image-to-image translation mod-
els with regards to mapping both languages to codes in a shared space using shared encoders,
and employing adversarial methods to match distributions of codes, and using reconstruction
losses. However, they critically rely on powerful autoregressive RNN decoders that can cap-
ture diversity in language reasonably well. Another promising research direction is domain
transfer of audio signal. Recently, Mor et al. (2018) propose a method for translating music
across different musical features, such as instruments and genres. Their method relies on a
shared WaveNet (Oord et al., 2016) encoder and multiple WaveNet decoders.
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Chapter 9

Augmented CycleGAN: Learning Many-to-Many
Mappings from Unpaired Data

9.1. Introduction

The problem of learning mappings between domains from unpaired data has recently
received increasing attention, especially in the context of image-to-image translation (Zhu
et al., 2017a; Kim et al., 2017; Liu et al., 2017). This problem is important because, in
some cases, paired information may be scarce or otherwise difficult to obtain. For example,
consider tasks like face transfiguration (male to female), where obtaining explicit pairs would
be difficult as it would require artistic authoring. An effective unsupervised model may help
when learning from relatively few paired examples, as compared to training strictly from the
paired examples. Intuitively, forcing inter-domain mappings to be (approximately) invertible
by a model of limited capacity acts as a strong regularizer.

Motivated by the success of Generative Adversarial Networks (GANs) in image genera-
tion (Goodfellow et al., 2014; Radford et al., 2015), existing unsupervised mapping methods
such as CycleGAN (Zhu et al., 2017a) learn a generator which produces images in one domain
given images from the other. Without the use of pairing information, there are many possible
mappings that could be inferred. To reduce the space of the possible mappings, these models
are typically trained with a cycle-consistency constraint which enforces a strong connection
across domains, by requiring that mapping an image from the source domain to the target
domain and then back to source will result in the same starting image. This framework has
been shown to learn convincing mappings across image domains and proved successful in a
variety of related applications (Tung et al., 2017; Wolf et al., 2017; Hoffman et al., 2017).

One major limitation of CycleGAN is that it only learns one-to-one mappings, i.e., the
model associates each input image with a single output image. We believe that most re-
lationships across domains are more complex, and better characterized as many-to-many.
For example, consider mapping silhouettes of shoes to images of shoes. While the mapping
that CycleGAN learns can be superficially convincing (e.g. it produces a single reasonable
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(b) Augmented CycleGAN

Fig. 1. (a) Original CycleGAN model. (b) We propose to learn many-to-many mappings by
cycling over the original domains augmented with auxiliary latent spaces. By marginalizing
out auxiliary variables, we can model many-to-many mappings in between the domains.

shoe with a particular style), we would like to learn a mapping that can capture diversity
of the output (e.g. produces multiple shoes with different styles). The limits of one-to-one
mappings are more dramatic when the source domain and target domain substantially differ.
For instance, it would be difficult to learn a CycleGAN model when the two domains are
descriptive facial attributes and images of faces.

We propose a model for learning many-to-many mappings between domains from un-
paired data. Specifically, we “augment” each domain with auxiliary latent variables and
extend CycleGAN’s training procedure to the augmented spaces. The mappings in our
model take as input a sample from the source domain and a latent variable, and output
both a sample in the target domain and a latent variable (Fig. 1b). The learned mappings
are one-to-one in the augmented space, but many-to-many in the original domains after
marginalizing over the latent variables.

Our contributions are as follows. (i) We introduce the Augmented CycleGAN model
for learning many-to-many mappings across domains in an unsupervised way. (ii) We show
that our model can learn mappings which produce a diverse set of outputs for each input.
(iii) We show that our model can learn mappings across substantially different domains,
and we apply it in a semi-supervised setting for mapping between faces and attributes with
competitive results.

9.2. Unsupervised Learning of Mappings Between Domains

9.2.1. Problem Setting

Given two domains A and B, we assume there exists a mapping, potentially many-to-
many, between their elements. The objective is to recover this mapping using unpaired
samples from distributions pd(a) and pd(b) in each domain. This can be formulated as a
conditional generative modeling task where we try to estimate the true conditionals p(a|b)
and p(b|a) using samples from the true marginals. An important assumption here is that
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elements in domains A and B are highly dependent; otherwise, it is unlikely that the model
would uncover a meaningful relationship without any pairing information.

9.2.2. CycleGAN Model

The CycleGANmodel (Zhu et al., 2017a) estimates these conditionals using two mappings
GAB : A → B and GBA : B → A, parameterized by neural networks, which satisfy the
following constraints:

(1) Marginal matching: The output of each mapping should match the empirical
distribution of the target domain, when marginalized over the source domain.

(2) Cycle-consistency: Mapping an element from one domain to the other, and then
back, should produce a sample close to the original element.

Marginal matching in CycleGAN is achieved using the generative adversarial networks
framework (GAN) (Goodfellow et al., 2014). Mappings GAB and GBA are given by neural
networks trained to fool adversarial discriminators DB and DA, respectively. Enforcing mar-
ginal matching on target domain B, marginalized over source domain A, involves minimizing
an adversarial objective with respect to GAB:

LBGAN(GAB, DB) = Eb∼pd(b)

[
logDB(b)

]
+ Ea∼pd(a)

[
log(1−DB(GAB(a)))

]
, (9.2.1)

while the discriminator DB is trained to maximize it. A similar adversarial loss
LAGAN(GBA, DA) is defined for marginal matching in the reverse direction.

Cycle-consistency enforces that, when starting from a sample a from A, the reconstruction
a′ = GBA(GAB(a)) remains close to the original a. For image domains, closeness between a
and a′ is typically measured with L1 or L2 norms. When using the L1 norm, cycle-consistency
starting from A can be formulated as:

LACYC(GAB, GBA) = Ea∼pd(a)

∥∥∥GBA(GAB(a))− a
∥∥∥

1
. (9.2.2)

And similarly for cycle-consistency starting from B. The full CycleGAN objective is given
by:

LAGAN(GBA, DA) + LBGAN(GAB, DB) + γLACYC(GAB, GBA) + γLBCYC(GAB, GBA), (9.2.3)

where γ is a hyper-parameter that balances between marginal matching and cycle-
consistency.

The success of CycleGAN can be attributed to the complementary roles of marginal
matching and cycle-consistency in its objective. Marginal matching encourages generating
realistic samples in each domain. Cycle-consistency encourages a tight relationship between
domains. It may also help prevent multiple items from one domain mapping to a single item
from the other, analogous to the troublesome mode collapse in adversarial generators (Li
et al., 2017).
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9.2.3. Limitations of CycleGAN

A fundamental weakness of the CycleGAN model is that it learns deterministic mappings.
In CycleGAN, and in other similar models (Kim et al., 2017; Yi et al., 2017), the conditionals
between domains correspond to delta functions: p̂(a|b) = δ(GBA(b)) and p̂(b|a) = δ(GAB(a)),
and cycle-consistency forces the learned mappings to be inverses of each other. When faced
with complex cross-domain relationships, this results in CycleGAN learning an arbitrary
one-to-one mapping instead of capturing the true, structured conditional distribution more
faithfully. Deterministic mappings are also an obstacle to optimizing cycle-consistency when
the domains differ substantially in complexity, in which case mapping from one domain (e.g.,
class labels) to the other (e.g., real images) is generally one-to-many. Next, we discuss how
to extend CycleGAN to capture more expressive relationships across domains.

9.2.4. CycleGAN with Stochastic Mappings

A straightforward approach for extending CycleGAN to model many-to-many relation-
ships is to equip it with stochastic mappings between A and B. Let Z be a latent space with
a standard Gaussian prior p(z) over its elements. We define mappings GAB : A × Z → B

and GBA : B × Z → A1. Each mapping takes as input a vector of auxiliary noise and a
sample from the source domain, and generates a sample in the target domain. Therefore, by
sampling different z ∼ p(z), we could in principle generate multiple b’s conditioned on the
same a and vice-versa. We can write the marginal matching loss on domain B as:

LBGAN(GAB, DB) = Eb∼pd(b)

[
logDB(b)

]
+ Ea∼pd(a)

z∼p(z)

[
log(1−DB(GAB(a,z)))

]
. (9.2.4)

Cycle-consistency starting from A is now given by:
LACYC(GAB, GBA) = E a∼pd(a)

z1,z2∼p(z)

∥∥GBA(GAB(a, z1), z2)− a
∥∥

1 (9.2.5)

The full training loss is similar to the objective in Eqn. 9.2.3. We refer to this model as
Stochastic CycleGAN.

In principle, stochastic mappings can model multi-modal conditionals, and hence generate
a richer set of outputs than deterministic mappings. However, Stochastic CycleGAN suffers
from a fundamental flaw: the cycle-consistency in Eq. 9.2.5 encourages the mappings to
ignore the latent z. Specifically, the unimodality assumption implicit in the reconstruction
error from Eq. 9.2.5 forces the mapping GBA to be many-to-one when cycling A→ B → A′,
since any b generated for a given a must map to a′ = GBA(b, z) ≈ a, for all z. For the
cycle B → A → B′, GAB is similarly forced to be many-to-one. The only way for to GBA

and GAB to be both many-to-one and mutual inverses is if they collapse to being (roughly)
one-to-one. We could possibly mitigate this degeneracy by introducing a VAE-like encoder
1To avoid clutter in notation, we reuse the same symbols of deterministic mappings.
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Fig. 2. Cycles starting from augmented spaces in Augmented CycleGAN. Model compo-
nents identified with color coding.

and exchanging the L1 error in Eq. 9.2.5 for a more complex variational bound on conditional
log-likelihood. In the next section, we discuss an alternative approach to learning complex,
stochastic mappings between domains.

9.3. Approach

In order to learn many-to-many mappings across domains, we propose to learn to map
between pairs of items (a, zb) ∈ A × Zb and (b, za) ∈ B × Za, where Za and Zb are latent
spaces that capture any missing information when transforming an element from A to B,
and vice-versa. For example, when generating a female face (b ∈ B) which resembles a male
face (a ∈ A), the latent code zb ∈ Zb can capture female face variations (e.g., hair length
or style) independent from a. Similarly, za ∈ Za captures variations in a generated male
face independent from the given female face. This approach can be described as learning
mappings between augmented spaces A × Zb and B × Za (Figure 1b); hence, we call it
Augmented CycleGAN. By learning to map a pair (a, zb) ∈ A×Zb to (b, za) ∈ B×Za, we can
(i) learn a stochastic mapping from a to multiple items in B by sampling different zb ∈ Zb,
and (ii) infer latent codes za containing information about a not captured in the generated
b, which allows for doing proper reconstruction of a. As a result, we are able to optimize
both marginal matching and cycle consistency while using stochastic mappings. We present
details of our approach in the next sections. 2

9.3.1. Augmented CycleGAN

Our proposed model has four components. First, the two mappings GAB : A × Zb → B

and GBA : B × Za → A, which are the conditional generators of items in each domain.
These models are similar to those used in Stochastic CycleGAN. We also have two encoders
EA : A×B → Za and EB : A×B → Zb, which enable optimization of cycle-consistency with
2Our model captures many-to-many relationships because it captures both one-to-many and many-to-one:
one item in A maps to many items in B, and many items in B map to one item in A (cycle). The same is
true in the other direction.
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stochastic, structured mappings. All components are parameterized with neural networks –
see Fig. 2. We define mappings over augmented spaces in our model as follows. Let pz(za)
and pz(zb) be standard Gaussian priors over Za and Zb, which are independent from pd(b)
and pd(a). Given a pair (a, zb) ∼ pd(a)pz(zb), we generate a pair (b̃, z̃a) as follows:

b̃ = GAB(a, zb), z̃a = EA(a, b̃). (9.3.1)

That is, we first generate a sample in domain B, then we use it along with a to generate
latent code z̃a. Note here that by sampling different zb ∼ pz(zb), we can generate multiple
b̃’s conditioned on the same a. In addition, given the pair (a, b̃), we can recover information
about a which is not captured in b̃, via z̃a. Similarly, given a pair (b, za) ∼ pd(b)pz(za), we
generate a pair (ã, z̃b) as follows:

ã = GBA(b, za), z̃b = EB(b, ã). (9.3.2)

Learning in Augmented CycleGAN follows a similar approach to CycleGAN – optimizing
both marginal matching and cycle-consistency losses, albeit over augmented spaces.
Marginal Matching Loss. We adopt an adversarial approach for marginal matching over
B×Za where we use two independent discriminators DB and DZa to match generated pairs
to real samples from the independent priors pd(b) and pz(za), respectively. Marginal matching
loss over B is defined as in Eqn 9.2.4. Marginal matching over Za is given by:

LZaGAN(EA, GAB, DZa) = Eza∼pz(za)

[
logDZa(za)

]
+ E a∼pd(a)

zb∼pz(zb)

[
log(1−DZa(z̃a))

]
, (9.3.3)

where z̃a is defined by Eqn 9.3.1. As in CycleGAN, the goal of marginal matching over B
is to insure that generated samples b̃ are realistic. For latent codes z̃a, marginal matching
acts as a regularizer for the encoder, encouraging the marginalized encoding distribution to
match a simple prior pz(za). This is similar to adversarial regularization of latent codes in
adversarial autoencoders (Makhzani et al., 2016). We define similar losses LAGAN(GBA, DA)
and LZbGAN(EB, GBA, DZb) for marginal matching over A× Zb.
Cycle Consistency Loss. We define two cycle-consistency constraints in Augmented Cycle-
GAN starting from each of the two augmented spaces, as shown in Fig. 2. In cycle-consistency
starting from A× Zb, we ensure that given a pair (a,zb) ∼ pd(a)pz(zb), the model is able to
produce a faithful reconstruction of it after being mapped to (b̃, z̃a). This is achieved with
two losses; first for reconstructing a ∼ pd(a):

LACYC(GAB, GBA, EA) = E a∼pd(a)
zb∼pz(zb)

∥∥∥a′ − a∥∥∥
1
,

b̃ = GAB(a, zb), z̃a = EA(a, b̃), a′ = GBA(b̃, z̃a). (9.3.4)
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Fig. 3. Augmented CycleGAN when pairs (a, b) ∼ pd(a, b) from the true joint distribu-
tion are observed. Instead of producing b̃ and ã, the model uses samples from the joint
distribution.

The second is for reconstructing zb ∼ pz(zb):

LZbCYC(GAB, EB) = E a∼pd(a)
zb∼pz(zb)

∥∥∥z′b − zb∥∥∥1
,

z′b = EB(a, b̃), b̃ = GAB(a, zb). (9.3.5)

These reconstruction costs represent an autoregressive decomposition of the basic Cycle-
GAN cycle-consistency cost from Eq. 9.2.2, after extending it to the augmented domains.
Specifically, we decompose the required reconstruction distribution p(b, za|a, zb) into the con-
ditionals p(b|a, zb) and p(za|a, zb, b).

Just like in CycleGAN, the cycle loss in Eqn. 9.3.4 enforces the dependency of generated
samples in B on samples of A. Thanks to the encoder EA, the model is able to reconstruct
a because it can recover information loss in generated b̃ through z̃a. On the other hand, the
cycle loss in Eqn. 9.3.5 enforces the dependency of a generated sample b̃ on the given latent
code zb. In effect, it increases the mutual information between zb and b conditioned on a,
i.e., I(b,zb|a) (Chen et al., 2016b; Li et al., 2017).

Training Augmented CycleGAN in the direction A×Zb to B×Za is done by optimizing:

LBGAN(DB, GAB) + LzaGAN(DZa , EA, GAB) + γ1LACYC(GAB, GBA, EA) + γ2LzbCYC(GAB, EB),
(9.3.6)

where γ1 and γ2 are a hyper-parameters used to balance objectives. We define a similar
objective for the direction going from B × Za to A × Zb, and train the model on both
objectives simultaneously.

9.3.2. Semi-supervised Learning with Augmented CycleGAN

In cases where we have access to paired data, we can leverage it to train our model in a
semi-supervised setting (Fig. 3). Given pairs sampled from the true joint, i.e., (a, b) ∼ pd(a,b),
we can define a supervision cost for the mapping GAB as follows:

LASUP(GBA, EA) =E(a,b)∼pd(a,b)

∥∥∥GBA(b, z̃a)− a
∥∥∥

1
, (9.3.7)
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where z̃a = EA(a, b) infers a latent code which can produce a given b via GBA(b, z̃a). We also
apply an adversarial regularization cost on the encoder, in the form of Eqn. 9.3.3. Similar
supervision and regularization costs can be defined for GBA and EB, respectively.

9.3.3. Modeling Stochastic Mappings

We note here some design choices that we found important for training our stochastic
mappings. We discuss architectural and training details further in Sec. 9.5. In order to allow
the latent codes to capture diversity in generated samples, we found it crucial to condition
multiple layers of the network with latent codes (i.e., using latent codes as additional input
to the layers), especially lower-dimensional ones that capture high-level information. This
allows the latent codes to capture high-level variations of the output. On the contrary, when
we condition lower-level layers (high-dimensional layers, close to the output) we find that
latent codes can capture only low-level, pixel-wise variations. We also found that Conditional
Normalization (CN) (Dumoulin et al., 2017; Perez et al., 2017) for conditioning layers can
be more effective than concatenation, which is more commonly used (Radford et al., 2015;
Zhu et al., 2017b). The basic idea of CN is to replace parameters of affine transformations in
normalization layers (Ioffe and Szegedy, 2015) of a neural network with a learned function of
the conditioning information. We apply CN by learning two linear functions f and g which
take a latent code z as input and output scale and shift parameters of normalization layers
in intermediate layers, i.e., γ = f(z) and β = g(z). When activations are normalized over
spatial dimensions only, we get Conditional Instance Normalization (CIN), and when they
are also normalized over batch dimension, we get Conditional Batch Normalization (CBN).

9.4. Related Work

There has been a surge of interest recently in unsupervised learning of cross-domain map-
pings, especially for image translation tasks. Previous attempts for image-to-image transla-
tion have unanimously relied on GANs to learn mappings that produce compelling images.
In order to constrain learned mappings, some methods have relied on cycle-consistency based
constraints similar to CycleGAN (Kim et al., 2017; Yi et al., 2017; Royer et al., 2017), while
others relied on weight sharing constraints (Liu and Tuzel, 2016; Liu et al., 2017). However,
the focus in all of these methods was on learning conditional image generators that produce
single output images given the input image. Notably, Liu et al. (2015) propose to map inputs
from both domains into a shared latent space. This approach may constrain too much the
space of learnable mappings, for example in cases where the domains differ substantially
(class labels and images).

Unsupervised learning of mappings have also been addressed recently in language trans-
lation, especially for machine translation (Lample et al., 2018a) and text style transfer (Shen
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Model (Paired %) Avg. L1

CycleGAN (0%) 0.1837
StochCGAN (0%) 0.0794
∆-GAN† (10%) 0.0748

AugCGAN (0%) 0.0698
AugCGAN (10%) 0.0562

Table 1. Reconstruction error for shoes
given edges in the test set. †Same archi-
tecture as our model.

Model (Paired %) MSE

∆-GAN? (10%) 0.0102
∆-GAN† (10%) 0.0096
∆-GAN? (20%) 0.0092

AugCGAN (0%) 0.0079
AugCGAN (10%) 0.0052

Table 2. MSE on edges given shoes in
the test set. ? From (Gan et al., 2017).
†Same architecture as our model.

et al., 2017). These methods also rely on some notion of cycle-consistency over domains in
order to constrain the learned mappings. They rely heavily on the power of the RNN-based
decoders to capture complex relationships across domains while we propose to use auxil-
iary latent variables. The two approaches may be synergistic, as it was recently suggested
in (Gulrajani et al., 2016).

Recently, Zhu et al. (2017b) proposed the BiCycleGAN model for learning multi-modal
mappings but in fully supervised setting. This model extends the pix2pix framework in (Isola
et al., 2017) by learning a stochastic mapping from the source to the target, and shows
interesting diversity in the generated samples. Several modeling choices in BiCycleGAN
resemble our proposed model, including the use of stochastic mappings and an encoder to
handle multi-modal targets. However, our approach focuses on unsupervised many-to-many
mappings, which allows it to handle domains with no or very little paired data.

9.5. Experiments

9.5.1. Edges-to-Photos

We first study a one-to-many image translation task between edges (domain A) and
photos of shoes (domain B).3 Training data is composed of almost 50K shoe images with
corresponding edges (Yu and Grauman, 2014; Zhu et al., 2016; Isola et al., 2017), but as in
previous approaches (e.g., (Kim et al., 2017)), we assume no pairing information while train-
ing unsupervised models. Stochastic mappings in our Augmented CycleGAN (AugCGAN)
model are based on ResNet conditional image generators of (Zhu et al., 2017a), where we
inject noise with CIN to all intermediate layers. As baselines, we train: CycleGAN, Stochas-
tic CycleGAN (StochCGAN) and Triangle-GAN (∆-GAN) of (Gan et al., 2017) which share
the same architectures and training procedure for fair comparison. 4

3Public code available at: https://github.com/aalmah/augmented_cyclegan
4∆-GAN architecture differs only in the two discriminators, which match conditionals/joints instead of
marginals.
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Quantitative Results. First, we evaluate conditionals learned by each model by measuring
the ability of the model of generating a specific edge-shoe pair from a test set. We follow the
same evaluation methodology adopted in (Metz et al., 2016; Xiang and Li, 2017), which opt
for an inference-via-optimization approach to estimate the reconstruction error of a specific
shoe given an edge. Specifically, given a trained model with mapping GAB and an edge-shoe
pair (a,b) in the test set, we solve the optimization task z∗b = arg minzb ‖GAB(a,zb) − b‖1

and compute reconstruction error ‖GAB(a,z∗b ) − b‖1. Optimization is done with RMSProp
as in (Xiang and Li, 2017). We show the average errors over a predefined test set of 200
samples in Table 1 for: AugCGAN (unsupervised and semi-supervised with 10% paired data),
unsupervised CycleGAN and StochCGAN, and a semi-supervised ∆-GAN, all sharing the
same architecture. Our unsupervised AugCGAN model outperforms all baselines including
semi-supervised ∆-GAN, which indicates that reconstruction-based cycle-consistency is more
effective in learning conditionals than the adversarial approach of ∆-GAN. As expected,
adding 10% supervision to AugCGAN improves shoe predictions further. In addition, we
evaluate edge predictions given real shoes from test set as well. We report mean squared
error (MSE) similar to (Gan et al., 2017), where we normalize over all edge pixels. The
∆-GAN model with our architecture outperforms the one reported in (Gan et al., 2017), but
is outperformed by our unsupervised AugCGAN model. Again, adding 10% supervision to
AugCGAN reduces MSE even further.
Qualitative Results. We qualitatively compare the mappings learned by our model AugC-
GAN and StochCGAN. Fig. 5 shows generated images of shoes given an edge a ∼ pd(a) (row)
and zb ∼ p(zb) (column) from both model, and Fig. 4 shows cycles starting from edges and
shoes. Note that here the edges are sampled from the data distribution and not produced
by the learnt stochastic mapping GBA. In this case, both models can (i) generate diverse set
of shoes with color variations mostly defined by zb, and (ii) perform reconstructions of both
edges and shoes.

While we expect our model to achieve these results, the fact that StochCGAN can re-
construct shoes perfectly without an inference model may seem at first surprising. However,
this can be explained by the “steganography" behavior of CycleGAN (Chu et al., 2017): the
model hides in the generated edge ã imperceptible information about a given shoe b (e.g.,
its color), in order to satisfy cycle-consistency without being penalized by the discriminator
on A. A good model of the true conditionals p(b|a), p(a|b) should reproduce the hidden
joint distribution and consequently the marginals by alternatively sampling from condition-
als. Therefore, we examine the behavior of the models when edges are generated from the
model itself (instead of the empirical data distribution). In Fig. 6, we plot multiple generated
shoes given an edge generated by the model, i.e., ã, and 5 different zb sampled from p(zb).
In StochCGAN, the mapping GBA(ã, zb) collapses to a deterministic function generating a
single shoe for every zb. This distinction between behaviour on real and synthetic data is
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undesirable, e.g., regularization benefits of using unpaired data may be reduced if the model
slips into this “regime switching” style. In AugCGAN, on the other hand, the mapping
seem to closely capture the diversity in the conditional distribution of shoes given edges.
Furthermore, in Fig. 7, we run a Markov chain by generating from the learned mappings
multiple times, starting from a real shoe. Again AugCGAN produces diverse samples while
StochCGAN seems to collapse to a single mode.

We investigate “steganography” behavior in both AugCGAN and StochCGAN using a
similar approach to (Chu et al., 2017), where we corrupt generated edges with noise sampled
from N (0,ε2), and compute reconstruction error of shoes. Fig. 8 shows L1 reconstruction
error as we increase ε. AugCGAN seems more robust to corruption of edges than in StochC-
GAN, which confirms that information is being stored in the latent codes instead of being
completely hidden in generated edges.

9.5.2. Male-to-Female

We study another image translation task of translating between male and female faces.
Data is based on CelebA dataset (Liu et al., 2015) where we split it into two separate
domains using provided attributes. Several key features distinguish this task from other
image-translation tasks: (i) there is no predefined correspondence in real data of each do-
main, (ii) the relationship is many-to-many between domains, as we can map a male to
female face, and vice-versa, in many possible ways, and (iii) capturing realistic variations in
generated faces requires transformations that go beyond simple color and texture changes.
The architecture of stochastic mappings are based on U-NET conditional image generators
of (Isola et al., 2017), and again with noise injected to all intermediate layers. Fig. 9 shows
results of applying our model to this task on 128 × 128 resolution CelebA images. We can
see that our model depicts meaningful variations in generated faces without compromising
their realistic appearance. In Fig. 10 we show 64 × 64 generated samples in both domains
from our model ((a) and (b)), and compare them to both: (c) our model but with noise
injected noise only in last 3 layers of the GAB’s network, and (d) StochCGAN with the same
architecture. We can see that in Fig. 10-(c) variations are very limited, which highlights
the importance of processing latent code with multiple layers. StochCGAN in this task pro-
duces almost no variations at all, which highlights the importance of proper optimization of
cycle-consistency for capturing meaningful variations. We verify these results quantitatively
using LPIPS distance (Zhang et al., 2018), where we average distance between 1000 pairs
of generated female faces (10 random pairs from 100 male faces). AugCGAN (Fig. 10-(b))
achieves highest LPIPS diversity score with 0.108 ± 0.003, while AugCGAN with z in low-
level layers (Fig. 10-(c)) gets 0.059 +/- 0.001, and finally StochCGAN (Fig. 10-(d)) gets
0.008 +/- 0.000, i.e., severe mode collapse.
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Model P@10 / NDCG@10
s = 1% s = 10%

Triple-GAN† 40.97 / 50.74 62.13 / 73.56
∆-GAN† 53.21 / 58.39 63.68 / 75.22

Baseline Classifier 63.36 / 79.25 67.34 / 84.21
AugCGAN 64.38 / 80.59 68.83 / 85.51

Table 3. CelebA semi-supervised attribute prediction with supervision s = 1% and 10% .
† From (Gan et al., 2017).

9.5.3. Attributes-to-Faces

In this task, we make use of the CelebA dataset in order map from descriptive facial
attributes A to images of faces B and vice-versa. We report both quantitative and qualitative
results. For the quantitative results, we follow (Gan et al., 2017) and test our models in a
semi-supervised attribute prediction setting. We let the model train on all the available
data without the pairing information and only train with a small amount of paired data as
described in Sec. 3.2. We report Precision (P) and normalized Discounted Cumulative Gain
(nDCG) as the two metrics for multi-label classification problems. As an additional baseline,
we also train a supervised classifier (which has the same architecture as GBA) on the paired
subset. The results are reported in Table 3. In Fig. 11, we show some generation obtained
from the model in the direction attributes to faces. We can see that the model generates
reasonable diverse faces for the same set of attributes.

9.6. Conclusion

In this chapter, we have introduced the Augmented CycleGAN model for learning many-
to-many cross-domain mappings in unsupervised fashion. This model can learn stochastic
mappings which leverage auxiliary noise to capture multi-modal conditionals. Our exper-
imental results verify quantitatively and qualitatively the effectiveness of our approach in
image translation tasks. Furthermore, we apply our model in a challenging task of learning to
map across attributes and faces, and show that it can be used effectively in a semi-supervised
learning setting.
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(a) AugCGAN (b) StochCGAN

Fig. 4. Given an edge from the data distribution (leftmost column), we generate shoes by
sampling five zb ∼ pz(zb). Models generate diverse shoes when edges are from the data
distribution.

(a) AugCGAN (b) StochCGAN

Fig. 5. Cycles from both models starting from a real edge and a real shoe (left and right
respectively in each subfigure). The ability for StochCGAN to reconstruct shoes is surprising
and is due to the “steganography” effect (see text).
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(a) AugCGAN (b) StochCGAN

Fig. 6. Given a shoe from the data distribution (leftmost column), we generate an edge
using the model (second column). Then, we generate shoes by sampling five zb ∼ p(zb).
When edges are generated by the model, StochCGAN collapses to a single mode of the shoes
distribution and generate the same shoe.
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(a) AugCGAN (b) StochCGAN

Fig. 7. We perform multiple generation cycles from the model by applying the learned
mappings in turn. StochCGAN cycles collapse to the same shoe at each step which indicates
that it doesn’t capture the data distribution.
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Fig. 8. Shoes reconstruction error given a generated edge as a function of the Gaussian
noise ε injected in the generated edge.
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Fig. 9. Given a male face from the data distribution (leftmost column), we generate 8,
128×128 female faces with AugCGAN by sampling zb ∼ p(zb).
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(a) AugCGAN Female-to-Male (b) AugCGAN Male-to-Female

(c) AugCGAN – z in last 3 layers only (d) StochCGAN

Fig. 10. Generated 64×64 faces given a real face image from the other domain and multiple
latent codes from prior.
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Fig. 11. Conditional generation given attributes learned by our model in the Attributes-
to-Faces task. We sample a set of attributes from the data distribution and generate 4 faces
by sampling latent codes from zb ∼ p(zb).
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