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Abstract 
 
Capsaicin is the most abundant pungent molecule identified in red chili peppers, and it is 

widely used for food flavoring, in pepper spray for self-defense devices and recently in 

ointments for the relief of neuropathic pain. Capsaicin and several other related vanilloid 

compounds are secondary plant metabolites. Capsaicin is a selective agonist of the transient 

receptor potential channel, vanilloid subfamily member 1 (TRPV1). After exposition to 

vanilloid solution, C. elegans wild type (N2) and mutants were placed on petri dishes 

divided in quadrants for heat stimulation. Thermal avoidance index was used to phenotype 

each tested C. elegans experimental groups. The data revealed for the first-time that 

capsaicin can impede nocifensive response of C. elegans to noxious heat (32°C – 35°C) 

following a sustained exposition. The effect was reversed 6h post capsaicin exposition. 

Additionally, we identified the capsaicin target, the C. elegans transient receptor potential 

channel OCR-2 and not OSM-9. Further experiments also undoubtedly revealed anti-

nociceptive effect for capsaicin analogues, including olvanil, gingerol, shogaol and 

curcumin.  



 3 

Introduction 
 
 
Capsaicin is the most abundant pungent molecule identified in chili peppers, and it is 

widely used for food flavoring, for pepper spray in self-defense devices and recently in 

ointments for the relief of neuropathic pain (1,2). Capsaicin and several other related 

vanilloid compounds are secondary plant metabolites (3). Capsaicin is a selective agonist 

of the transient receptor potential channel, vanilloid subfamily member 1 (TRPV1) (4-6). 

Other vanilloids displayed similar properties (7,8). Upon sustained stimulation, TRPV1 

agonists elicit receptor desensitization, leading to alleviation of pain, a consequence of 

receptor conformational changes and subsequent decrease of the release of pro-

inflammatory molecules and neurotransmitters following exposures to noxious stimuli (9). 

Interestingly, these effects have not yet been reported in Caenorhabditis elegans (C. 

elegans). Adult C. elegans consists of 959 cells, of which 302 are neurons, which make 

this model attractive to study nociception at physiological levels (10). C. elegans is 

especially convenient for the study of nociception as it presents a well-defined and 

reproducible nocifensive behavior, involving a reversal and change in direction away from 

the noxious stimuli (10). Bioinformatic analysis following the genome sequencing of C. 

elegans, identified genes encoding TRP ion channels with important sequence homologies 

to mammalian TRP channels including TRPVs (11). Seven TRP subfamilies including 

TRPV analogs (e.g. OSM-9 and OCR-1-4) were identified and characterized. Furthermore, 

it has been established that C. elegans TRP channels are associated with behavioral and 

physiological processes, including sensory transduction of noxious heat [(12,13). Many C. 

elegans TRP channels share similar activation and regulatory mechanisms with their 

mammal counterparts. Preliminary results suggest that the thermal avoidance response of 
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C. elegans is increased by the application of the TRPV1 agonist capsaicin compatible with 

the characteristic pungent effect but did not appear to attenuate the perceived intensity of 

noxious heat under the experimental conditions used during these studies (10,14). Though, 

the duration of exposure and the actual exposition levels could explain these results.  

Consequently, we hypothesized that a sustained stimulation with capsaicin and other 

vanilloid analogs will lead to receptor desensitization and will impede nocifensive response 

to noxious heat. The objective of this study is to characterize the capsaicin exposure–

response relationship using C. elegans and heat avoidance behavior analysis (15). Selected 

capsaicin analogs and known TRPV1 agonists displayed in Figure 1 will be tested, 

including olvanil (16), curcumin (17), 6-gingerol and  6-shogoal (18) as well as the TRPV1 

antagonist capsazepine (19). Curcumin, 6-gingerol, 6-shogoal are plant secondary 

metabolites containing the vanillyl group suspected of being essential for vanilloid receptor 

interactions (17,18). These secondary plant metabolites have known anti-inflammatory, 

analgesics, antioxidant and anti-cancer properties (20,21).  
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Materials and Methods 
 
Chemicals and reagents 

All chemicals and reagents were obtained from Fisher Scientific (Fair Lawn, NJ, USA) or 

MilliporeSigma (St-Louis, MO, USA). Capsaicin, olvanil, [6]-gingerol, [6]-shogaol, 

curcumin and capsazepine were purchased from Toronto Research Chemicals (North York, 

ON, CAN).  

 

C. elegans strains 

The N2 (Bristol) isolate of C. elegans was used as a reference strain. Mutant strains used 

in this work included: CX4534 [ocr-1(ak46)], JY243 [ocr-2(yz5)], RB1374 [ocr-

3(ok1559)], LX950 [ocr-4(vs137)] and JY190 [osm-9(yz6)]. N2 (Bistrol) and other strains 

were obtained from the Caenorhabditis Genetics Center (CGC), University of Minnesota 

(Minneapolis, MN, USA). Strains were maintained and manipulated under standard 

conditions as described [23,34]. Nematodes were grown and kept on Nematode Growth 

Medium (NGM) agar at 22˚C in a Thermo Scientific Heratherm refrigerated incubator.  

Analyses were performed at room temperature unless otherwise noted.  

 

C. elegans pharmacological manipulations 

Capsaicin was dissolved in Type 1 Ultrapure Water at a concentration of 50 µM. The 

solution was warmed for brief periods combined with vortexing and sonication for several 

minutes to completely dissolve capsaicin.  Further dilution at 25 µM, 10 µM and 2 µM in 

Type 1 Ultrapure Water was performed by serial dilution. Olvanil, [6]-gingerol, [6]-

shogaol, curcumin and capsazepine solutions were prepared using the same protocol. C. 
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elegans were isolated and washed according to the protocol outlined by Margie et al. (22). 

After 72 hours of feeding and growing on 92 x 16 mm petri dishes with NGM, the 

nematodes were off food and were exposed to capsaicin solution. An aliquot of 7 mL of 

capsaicin or other tested solutions was added producing a 2-3 mm solution film (solution 

is partly absorbed by NGM), consequently, nematodes are swimming in solution. C. 

elegans were exposed for specific times, isolated and washed thoroughly prior behavior 

experiments. For the residual effect (i.e. 6h latency) evaluation, after exposition to 

capsaicin solutions, nematodes were isolated, carefully washed and deposit on NGM free 

of capsaicin for 6h prior testing.  

 

Thermal avoidance assays 

The principle behind evaluating the C. elegans response to a stimulus (i.e. thermal or 

chemical) is to observe and quantify the movement evoked in response to a specific 

stimulus. The method proposed in this manuscript for the evaluation of thermal avoidance 

was modified from the four quadrants strategies previously described (22,23). The 

experimental schematics are illustrated in Figure 2. Experiments were performed on 92 x 

16 mm petri dishes divided into four quadrants. A middle circle delimited (i.e. 1 cm 

diameter) an area where C. elegans were not considered. The quadrants create an 

alternating configuration of thermal stimuli areas and control areas to prevent any bias that 

may appear resulting from the original position of the nematodes. Petri dishes were divided 

into quadrants; two stimulus areas (A and D) and two control areas (B and C). Sodium 

azide (i.e. 0.5M) was used in all quadrants to paralyze the nematodes. Noxious heat was 

generated with an electronically heated metal tip (0.8 mm diameter; 25W/120V) as 
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similarly described by Wittenburg and Baumeister (10), producing a radial temperature 

gradient (e.g. 32-35˚C on the NGM agar at 2 mm from the tip measured with an infrared 

thermometer). Nematodes were isolated and washed according to protocol outline by 

Margie et al. (22). At this point, all nematodes tested were off food during all 

experimentations. The nematodes (i.e. 50 to 300 young adult worms) were placed at the 

center of a marked petri dish and after 30 minutes, they were counted per quadrant. Note 

that nematode that did not cross the inner circle were not considered. The derived Thermal 

avoidance Index (TI) formula is shown in Figure 2. Both TI and the animal avoidance 

percentage were used to phenotype each tested C. elegans experimental groups. The 

selection of quadrant temperature was based on previous experiments (10).  

 

Statistical analysis 

Behavior data were analyzed using a one-way ANOVA followed by Dunnett multiple 

comparison test (e.g. WT(N2) was the control group used) or an ANOVA followed by a 

Tukey-Kramer Multiple Comparison Test. Data presented in Fig 4C were analyzed using 

a two-tailed Student's t-test (pairwise comparison). Significance was set a priori to p < 0.05. 

The statistical analyses were performed using PRISM (version 8.3). 

 

Results and discussion 
 
Thermal avoidance assays are widely used as a model to study nociception in C. elegans 

(10,12). Noxious temperatures (> 30˚C) trigger a temperature avoidance response in C. 

elegans that can be quantified using a standard assay (10,12,15,22). Detailed studies have 

shown that AFD neurons are the main thermosensors in C. elegans (24,25). Besides, FLP 
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neurons located in the head and PHC neurons in the tail act as thermal nociceptive neurons 

and both express heat- and capsaicin-sensitive TRPV channels, OCR-2 and OSM-9 (12, 

26). The thermal avoidance assay we have performed is described in Figure 2 and was 

specifically used to assess if capsaicin can impede nocifensive response to noxious heat 

and we tested specific C. elegans mutants to identify capsaicin targets.  The initial 

experiment involved an assessment of the mobility and bias of WT (N2) and mutants ocr-

1, ocr-2, ocr-3, ocr-4 and osm-9 nematodes in absence or in presence of capsaicin. 

Nematodes were placed in the center of plates divided into quadrants conserved at constant 

temperature (i.e. 22˚C) and no heat stimulus was applied (negative control). As presented 

in Figure 3, there was no quadrant selection bias observed for all C. elegans experimental 

groups or genotypes tested with or without capsaicin exposition (50 µM). The nematodes 

were not preferably selecting any quadrant and were uniformly distributed after 30 minutes 

following the initial placement at the center of the marked petri dish.  

 

Preliminary results have suggested that the thermal avoidance response of C. elegans is 

increased following C. elegans exposition to capsaicin (10). As it is well described in the 

literature, TRPV1 agonists (e.g. capsaicin, resiniferatoxin and vanilloids) activate the 

TRPV1. Upon sustained stimulation, TRPV1 agonists elicit receptor desensitization, 

leading to alleviation of pain, which results from conformational changes, along with 

subsequent decrease of the release of pro-inflammatory molecules and neurotransmitters 

following exposures to noxious stimuli. Up to now, these effects were not reported in C. 

elegans most likely due to uncontrolled capsaicin exposition levels and time during these 

studies. Thus, we have exposed nematodes to capsaicin in solution and consequently had 
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complete control of time and exposition levels. As shown in Figure 4A, data revealed a 

dose–response relationship with a significant anti-nociceptive effect following a 1h 

exposition to capsaicin at concentration ranging from 2 µM to 50 µM when compared with 

the WT (CTL) group. Significant differences in response was observed between 2µM and 

dose of 25 and 50µM (p < 0.05). However, the behavior method used does not allowed to 

perform a conventional dose–response relationship experiment. Following capsaicin 

exposition, nematodes were thoroughly washed and transferred on NGM agar kept at 22˚C 

in an incubator for 6h (i.e. residual effect/latency test) and thermal avoidance response was 

retested. Data suggest that after 6h post exposition, C. elegans thermal avoidance response 

returned to normal. Thus, no residual anti-nociceptive effects of capsaicin were observed 

after 6h. Capsaicin sustained exposition is an important factor to observe vanilloid receptor 

desensitization, therefore exposition time can be a determining variable. As presented in 

Figure 4B, capsaicin anti-nociceptive effects were observed at all exposition time tested at 

50 µM when compared with unexposed nematodes (CTL) group (p < 0.0001). Despite the 

fact that we do not observe significant differences between exposition time due most likely 

to the inherent variability of the experiment, we observed maximum antinociceptive effect 

following a 60 min exposition at 50 µM. We can conclude that capsaicin anti-nociceptive 

effects appear time and concentration dependent in C. elegans. Also, other experiments 

were conducted on specific C. elegans mutants (i.e. ocr-1, ocr-2, ocr-3, ocr-4 and osm-9) 

to identify capsaicin target receptors. C. elegans mutants were exposed at a capsaicin 

concentration of 50 µM for 60 min prior behavior experiments. As seen in Figure 4C, 

capsaicin anti-nociceptive effects were quantifiable in ocr-1, ocr-3, ocr-4 and osm-9 

mutants. However, no significant capsaicin effects (p > 0.05) were observed in ocr-2 
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mutant suggesting that capsaicin targets ORC-2, a transient receptor potential channel, 

vanilloid subfamily and a mammalian capsaicin receptor-like channel. Thermal 

nociceptive neurons express heat- and capsaicin-sensitive TRPV channels, OCR-2 and 

OSM-9 (12,26) but our data strongly indicates that capsaicin exerts anti-nociceptive effects 

through a sustained stimulation with capsaicin leading to OCR-2 receptor desensitization 

and not the OSM-9 receptor impeding nocifensive response to noxious heat. These data 

sets clearly demonstrate, for the first time anti-nociceptive effects of capsaicin in C. 

elegans. 

 

[6]-Gingerol and [6]-shogaol are major pungent components of ginger (Zingiber 

officinale), a plant commonly used as a spice in a variety of food preparations and 

beverages, and as a drug in traditional Chinese medicine (27). Curcumin, the active 

ingredient of turmeric (Curcuma longa), has a wide range of beneficial effects including 

anti-nociceptive effects in animal models and in humans (17). It has been suggested that 

curcumin or curcuminoid anti-nociceptive effects involved interaction with the TRPV1 

receptors [28]. [6]-Gingerol, [6]-shogaol and curcumin are structural analogs of capsaicin, 

and molecular modeling studies indicate that the vanillyl moiety, as well as the long 

unsaturated acyl chain, have significant impacts on relative binding affinities with the 

TRPV1 receptor (29). Thus, the chemical structure similarities of [6]-gingerol, [6]-shogaol 

and curcumin with capsaicin suggest that it could be a good ligand of the capsaicin-

sensitive TRPV channels and produce anti-nociceptive effects in C. elegans. Olvanil is a 

potent agonist of the TRPV1 and it is 10-fold more potent agonist compared to capsaicin 

(16). Capsazepine, a well-studied TRPV1 antagonist, attenuates nocifensive responses but 
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its efficacy strongly varies depending on the experimental model used (19, 30). Thermal 

avoidance response of C. elegans was tested following a 1h exposition to [6]-gingerol, [6]-

shogaol and curcumin as well as olvanil and the antagonist, capsazepine all at 50 µM. The 

initial experiment involved an assessment of the mobility and bias of WT (N2) nematodes 

in absence or in presence of [6]-gingerol, [6]-shogaol and curcumin as well as olvanil and 

the antagonist, capsazepine all at 50 µM without noxious heat stimulation. As shown in 

Figure 5A, nematodes were not preferably selecting any quadrant and were uniformly 

distributed after 30 minutes following the initial placement at the center of the marked petri 

dish for all tested group. Thus, we performed the thermal avoidance test since these 

molecules had no impact on normal nematode behavior. The data shown in Figure 5B, 

revealed that all capsaicin analogues (p < 0.0001) and capsazepine (p < 0.0001) hamper 

nocifensive response of C. elegans to noxious heat. The anti-nociceptive effects observed 

following a 1h exposition at 50 µM is comparable to capsaicin. Anti-nociceptive effects or 

analgesia was observed in animal models of pain or in human for all these capsaicin 

analogues (17, 27, 31-33).  

 
Conclusion 
 
This study has shown for the first-time capsaicin anti-nociceptive effect in C. elegans 

following a controlled and prolonged exposition. Additionally, we have identified the 

capsaicin target, OCR-2. Further experiments also undoubtedly revealed anti-nociceptive 

effect for capsaicin analogues, including olvanil, gingerol, shogaol and curcumin. The 

usage of capsaicin as a clinically viable drug is limited by its unpleasant side effects, such 

as burning sensation, gastric irritation and stomach cramps. The rapid growing 

technological advancements allow the synthesis and isolation of a large number of new 
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chemical entities containing the vanillyl group as a template. C. elegans offer an 

opportunity for screening large vanilloid libraries for anti-nociceptive activity and better 

rank compound for further in vivo testing using experimental models of pain.  
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List of Figures 
 
Figure 1. Molecular structure of capsaicin and analogues, secondary metabolites found in 
various peppers and spices and known TRPV1 ligands. Ligand-receptor interactions are 
typically associated with the pharmacophore features and vanillyl group play a central role 
in capsaicin and analogues specific interaction with the TRPV1. 
 
Figure 2.  A schematic of the four quadrants assay adapted from Margie et al. (2013).  For 
head avoidance assay, plates were divided into quadrants two test (A and D) and two 
controls (B and C). Sodium azide was added to all four quadrants to paralyze nematodes. 
C.elegans were added at the center of the plate (n=50 to 300) and after 30 minutes, animals 
were counted on each quadrant. Only animals outside the inner circle were scored. The 
thermal decay schematized was based on temperatures measured at 0, 0.25 and 0.5 cm from 
the heated metal tip. The calculation of thermal avoidance index was performed as 
described.  
 
Figure 3. Comparison of the mobility and bias for WT (N2) and mutants ocr-1, ocr-2, ocr-
3, ocr-4 and osm-9 nematodes in plates divided into quadrants conserved at constant 
temperature (22˚C) and no stimulus was applied (negative control). Display values (mean 
± SD) were calculated from at least 12 independent experiments for each genotype. No 
quadrant selection bias was observed for all C. elegans genotype tested in absence or 
presence of capsaicin at 50 µM. 
 
Figure 4. Assessment of the pharmacological effect of capsaicin on thermal avoidance in 
C. elegans. Display values (mean ± SD) were calculated from at least 12 independent 
experiments for each experimental group. A) Capsaicin (Cap) dose-response assessment. 
Nematodes were exposed to capsaicin for 60 min prior behavior experimentations. The 
observed capsaicin effect is dose-dependent and noticeably impedes thermal avoidance in 
C. elegans. **** p < 0.0001, ** p < 0.01, * p < 0.05 (ANOVA - Tukey-Kramer Multiple 
Comparison Test). No residual anti-nociceptive effects 6h post-exposition (ANOVA - 
Dunnett's Multiple Comparison versus CTL group). B) Capsaicin (Cap) time-dependent 
response evaluation. Nematodes were exposed to 50 µM of capsaicin in solution for various 
time periods prior behavior experimentations. The decrease thermal avoidance was 
plateaued following a 60 min exposition. **** p < 0.0001 (ANOVA - Tukey-Kramer 
Multiple Comparison Test). C) Identification of TRPV orthologs responsible for capsaicin-
induced anti-nociceptive effect.  Data strongly suggest that capsaicin exerts anti-
nociceptive effects through the ORC-2 C. elegans TRPV ortholog. **** p < 0.0001 (two-
tailed Student’s t-test) 
 
Figure 5. Assessment of the anti-nociceptive and desensitizing effects of vanilloid 
analogues of capsaicin. Display values (mean ± SD) were calculated from at least 12 
independent experiments for each experimental group. All tested analogues (50 µM) and 
capsaicin (50 µM) produced significant anti-nociceptive and desensitizing effects in C. 
elegans. Moreover, capsazepine (50 µM), a known antagonist of the TRPV1, hampered the 
heat avoidance behavior in C. elegans. **** p < 0.0001 (ANOVA - Dunnett's Multiple 
Comparison versus CTL group)  
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