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Summary: Persons with multidrug-resistant tuberculosis (MDR-TB) have a disease resulting from a strain of

tuberculosis (TB) that does not respond to at least isoniazid and rifampicin, the two most effective anti-TB drugs.

MDR-TB is always treated with multiple antimicrobial agents. Our data consist of individual patient data from

31 international observational studies with varying prescription practices, access to medications, and distributions

of antibiotic resistance. In this study, we develop identifiability criteria for the estimation of a global treatment

importance metric in the context where not all medications are observed in all studies. With stronger causal

assumptions, this treatment importance metric can be interpreted as the effect of adding a medication to the existing

treatments. We then use this metric to rank 15 observed antimicrobial agents in terms of their estimated add-on value.

Using the concept of transportability, we propose an implementation of targeted maximum likelihood estimation

(TMLE), a doubly robust and locally efficient plug-in estimator, to estimate the treatment importance metric. A

clustered sandwich estimator is adopted to compute variance estimates and produce confidence intervals. Simulation
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studies are conducted to assess the performance of our estimator, verify the double robustness property, and assess

the appropriateness of the variance estimation approach.

Key words: Double robustness; Individual patient data; Meta-analysis; Multidrug-resistant tuberculosis; Targeted

maximum likelihood estimation; Transportability; Treatment importance.
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1. Introduction

Tuberculosis (TB) is an infectious disease caused by bacteria belonging to Mycobacterium

tuberculosis complex that predominantly attack the lungs. Multidrug-resistant tuberculosis

(MDR-TB) is a type of TB that is resistant to at least isoniazid and rifampin, the two most

commonly prescribed TB drugs (Nathanson et al., 2010). MDR-TB is more challenging

to treat than drug sensitive TB, requiring a combination of multiple antimicrobial agents,

many of which cause serious side effects. The World Health Organization (2018) estimated

that 490,000 people worldwide developed MDR-TB in 2016. It was also predicted that the

percentage of MDR-TB among incident cases of tuberculosis will increase (Sharma et al.,

2017). Therefore, identification of the most effective drug combinations for MDR-TB is

urgently needed.

In this setting, statistical analysis of observational data is complicated because patients

with MDR-TB usually take multiple treatments and each patient’s MDR-TB infection may

be resistant to various drugs. Previous work investigating treatment effectiveness in MDR-TB

(e.g. Sotgiu et al., 2012; Koh et al., 2013) were small-sample observational studies contrasting

a small number of antimicrobial agents.

Meta-analysis is often employed to obtain a global conclusion from numerous studies.

In particular, network meta-analysis refers to the synthesis of studies making comparisons

between multiple treatments (Mills et al., 2012). When combining multiple studies’ individual

patient data (IPD), one can obtain additional power and external validity. A comprehensive

study by Ahuja et al. (2012) compiled the IPD from 31 observational studies of the relative ef-

fectiveness of antimicrobial agents in MDR-TB. Their meta-analysis suggested that the use of

later generation quinolones, ofloxacin, and ethionamide/prothionamide as part of multi-drug

regimens were associated with treatment success from MDR-TB. They used a random effects

model conditional on potential confounders to estimate the adjusted odds ratios and 95%
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confidence intervals of treatment success associated with different treatments (Ahuja et al.,

2012). However, the parametric models used assumed the absence of treatment interactions,

and did not take into consideration possible selection bias arising from the usage of only the

subset of studies where the treatment was present to evaluate each antimicrobial agent. We

are interested in developing methods to investigate associations between antimicrobial agent

usage and treatment success while relaxing the implicit parametric and random treatment

availability assumptions of the previous analyses.

In this paper, we apply Targeted Maximum Likelihood Estimation (TMLE), a class of

methods proposed by van der Laan and Rubin (2006). TMLE, like its semiparametric

contemporaries (Robins et al., 1994; Robins, 2000), allows for the relaxation of the strong

assumptions made by parametric models. Flexible prediction methods, in particular the

ensemble learner called “Super Learner” (van der Laan et al., 2007), are often recommended

for the estimation of nuisance components (such as the propensity score and conditional

expectation of the outcome) in TMLE (van der Laan and Rose, 2011). If these components

are consistently estimated – at a fast-enough rate and with some regularity conditions –

then for a given, typically nonparametric, model space (van der Laan and Rose, 2011,

Section 1.3.1) the TMLE can be constructed to have the lowest asymptotic variance amongst

regular asymptotically linear semiparametric estimators (van der Laan and Rubin, 2006). In

addition, TMLE for the estimation of causal or censored data parameters can be made

doubly robust, meaning that if either of two nuisance components is consistently estimated,

the estimator of the parameter of interest is consistent (van der Laan and Rose, 2011).

In this analysis, we use the IPD from Ahuja et al. (2012) consisting of over 9000 patients

from 31 studies. In this data, not all antimicrobial agents were used in every study. Therefore

data pooling to estimate a parameter defined on a general population requires assumptions

relating the available data (where model fitting is carried out) to the target population
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(where inference is desired) (Bareinboim and Pearl, 2016). How to conduct transportability

analysis from multiple populations has been discussed by Pearl et al. (2014); Bareinboim

and Pearl (2014). Rudolph and van der Laan (2017) developed a TMLE for transporting

intervention effects from a fully observed population to a target population.

We aim to estimate a treatment importance metric (van der Laan, 2006) defined as the

difference in adjusted probability of treatment success between the patients who used the

treatment and the entire population. We develop identifiability (transport) criteria and

apply TMLE methods in the setting where not all treatments are available in every study.

We conduct a simulation study to test our approach. Finally, we estimate the treatment

importance for each of the 15 observed antimicrobial agents used to treat MDR-TB, ad-

justing for confounding and concurrent treatments. With stronger causal assumptions, the

treatment importance could be interpreted as the effect of adding a medication to the existing

treatments.

2. Fused Observational Studies of Patients with MDR-TB

The application data consist of IPD from international observational studies evaluating

treatment effectiveness in MDR-TB, as identified in a systematic review (Ahuja et al., 2012).

In particular, studies were identified from three previous systematic reviews (Akçakır, 2009;

Orenstein et al., 2009; Johnston et al., 2009) and requests for the IPD were sent to the

authors of each study. Web Figure 1 contains details of the data inclusion and exclusion.

2.1 Data Structure

The combined dataset contains the IPD from 31 observational studies and a total of 9290

patients. We define the binary outcome Y as treatment success: cure vs. treatment failure,

relapse, or death (Falzon et al., 2011). A patient’s realization is defined using lowercase yij

where the index (i, j) represents a patient i ∈ Sj in study j ∈ (1, ..., 31) where Sj is the set of
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indices of patients in study j. We also define 15 indicator variables A(k) representing the use

of each antimicrobial agent, where k ∈ (1, . . . , 15) indexes the antimicrobial agent. Patients

may take multiple agents concurrently. We consider 2 study-level covariates: the start year

of MDR-TB treatment and the income group of countries of the study, and jointly denote

them as V. There are 6 individual-level covariates, namely age, sex, HIV status, acid fast

bacilli (AFB) smear status at start of MDR-TB treatment, past history of TB, and cavitation

status on X-ray, jointly denoted W. Resistance status R(k) denotes whether a patient had an

infection that was tested and determined to be resistant to medication k. We define treatment

availability (or treatment access) D(k) as follows: we say that the treatment k is available to

individual i in study j if at least one of the patients in study j used the treatment k so that

d
(k)
ij =1, and otherwise d

(k)
ij =0. Given the presence of missing data in the outcome Y , we define

an indicator C such that if the outcome is missing, we assign cij = 1, and otherwise 0. Thus,

we define our data structure as O =
[
Y (1− C),V,W, C, {A(k), R(k), D(k); k = 1, . . . , 15}

]
.

Note that Y is only observed when C = 0.

For ease of notation, we define the adjustment set to be used for the estimation of the

variable importance of treatment k as X(k) = [V,W, {A(k∗); ∀ k∗ ∈ (1, ..., 15) s.t. k∗ 6= k}].

In particular, because patients may take multiple treatments, we include all other treatments

as “confounders” when evaluating the treatment importance of antimicrobial agent k. We

also adjust for study-level covariates that may confound comparisons (Schnitzer et al., 2016).

As noted above, different medications were available across studies. In order to define

variable importance on the global population we develop potential outcome notation under

the counterfactual availability of a given treatment. We respectively define an individual’s

counterfactual outcome and exposure to treatment as Y {d(k) = 1} and A(k){d(k) = 1)} as

the outcome and treatment that would have been observed had the patient had access to
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treatment k and if the outcome had not been censored (i.e. setting C = 0). We provide more

intuition for this notation in Web Appendix A.

2.2 Parameter of Interest & Assumptions

As in Schnitzer et al. (2016), we consider a hypothetical infinite number of independent

studies from which we assume our sample of studies is randomly drawn. Each study then

samples patients independently from a possibly distinct study-specific super population.

Our target population of interest is the “meta” (or global) population, the combination

of all study-specific super populations. We allow for heterogeneity of the treatment effects

and assignments, and clustering of covariates and outcomes by study due to measured and

unmeasured characteristics of the study-specific populations. The parameters of interest are

defined at the individual level over the meta population. We provide more details in Web

Appendix B, where we define a non-parametric structural equation model (NPSEM) that

encodes the assumed time-ordered data generating structure. In equation (3) of the Web

Appendix we derive the counterfactual probability density function (pdf) under the NPSEM.

We are interested in estimating a treatment importance metric for each of the 15 antimi-

crobial agents observed in the pooled studies. We define these treatment-specific parameters

in the subpopulations of patients whose infections were not known to be resistant to the

given treatment in order to evaluate treatments in the subpopulations where they may be

effective. Under the counterfactual pdf, the treatment importance ψ(k) is defined as

ψ(k) =E
(
E
[
Y {d(k) = 1} | X(k), R(k) = 0, A(k){d(k) = 1} = 1

]
| R(k) = 0

)
− E

{
Y | R(k) = 0

}

=τ (k) − µ(k). (1)

This is a contrast between τ (k), the adjusted probability of treatment success of patients

taking treatment k had all patients had access to the treatment k, and µ(k), the probability

of treatment success, among the patients whose infections were not known to be resistant

to treatment k. Both parameters also implicitly impose observed outcomes (no censoring),
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though notation indicating this is suppressed. The contrast is expressed on the risk difference

scale and reflects the adjusted improvement in outcomes in those who were taking medication

k if it were made available relative to the average outcome.

Identifiability of this parameter requires a list of strong assumptions that allow us to write

the parameter of interest in terms of the distribution of the observed data. We list the major

assumptions (A1 – A3) in this section and briefly discuss their plausibility.

A1 Consistency: (Needed only for τ (k).) We assume that the counterfactual treatment

and outcome of the individual — had the treatment been available to the individual —

are the same when we observe that the treatment was in fact available in their study. I.e.,

Y {d(k) = 1} = Y when D(k) = 1. We assume the same for the counterfactual treatment, i.e.,

A(k){d(k) = 1} = A(k) when D(k) = 1. The second consistency assumption may fail if not

all patients in the same study had access to the same treatments (due to the studies being

conducted across multiple centers or over long periods of time).

A2 Positivity: (a) (Needed only for τ (k).) There must be a positive probability of receiving

treatment k, had the treatment k been available in study j, over all possible realizations x(k)

of X(k) among patients whose infections are not known to be resistant to the treatment k,

i.e., Pr[A(k){d(k) = 1} = 1|X(k) = x(k), R(k) = 0] > 0. Given that not all resistance infor-

mation was captured in all studies, misclassification of resistance may result in unobserved

positivity violations where some included patients whose infections were actually resistant

were therefore not eligible to be treated by a given medication.

(b) (Needed only for τ (k).) There is a positive probability for every study (given any

possible characteristic v) to have had access to treatment k, i.e., Pr{D(k) = 1|V = v} > 0.

This assumption will be used to balance out the study-level covariates so that we remove

the study-level confounding. This assumption is most likely false as, due to the evolution

of practice, certain antimicrobial agents are only observed during certain time frames. The
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small number of studies made this assumption difficult to verify empirically. Failures of the

positivity assumptions mean that we are relying on an extrapolation of the outcome model

to provide estimates of our parameter of interest.

(c) For all possible values of x(k), there is a positive probability of observing all outcomes

among the patients taking treatment k and whose infections are not known to be resistant

to treatment k. For τ (k) the assumption is Pr{C = 0|A(k) = 1,X(k) = x(k), R(k) = 0} > 0.

For µ(k) the probabilities are instead evaluated at the observed A(k) = a
(k)
ij . This probability

would fail if patients with certain covariate strata never had observed outcomes. We did not

detect any empirical evidence that this assumption was violated.

A3. Conditional exchangeability (transportability): (a) (Needed only for τ (k).) The coun-

terfactual outcomes are independent of treatment availability conditional on confounders

in the subset of [R(k) = 0, A(k){d(k) = 1} = 1], i.e. Y {d(k) = 1} ⊥⊥ D(k)|X(k), R(k) =

0, A(k){d(k) = 1} = 1. This assumption may fail if a study-level variable was correlated with

the outcome and the treatment availability simultaneously, and was not accounted for. For

example, measures of the study populations’ access to health care such as the country’s

income group or per capita health budget should be included in the adjustment set. It

similarly fails if the potential outcomes in studies without access to treatment k are not

well represented by the observed outcomes of patients in other studies who did have access

to treatment k, conditional on covariates. While this assumption is tenuous, it is necessary

to estimate parameters interpreted on the union of study populations, which is the goal of

obtaining a global measure of effect in meta-analysis.

(b) The censoring is independent of the outcome conditional on the confounders and

treatment assignment in the subset of patients whose infections were not known to be

resistant to treatment k, i.e. C ⊥⊥ Y |X(k), R(k) = 0, A(k). This assumption corresponds with

the ignorability of censoring and would fail if censoring is related to the unobserved outcome
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beyond the observed covariates. Given the small amount of censoring in our study (2.8%)

we are not overly concerned about violations of this assumption.

Under the assumptions A1 – A3 above, we rewrite our parameter of interest (1) as:

ψ(k) =E
[
E
{
Y |X(k), R(k) = 0, A(k) = 1, C = 0

}
|R(k) = 0

]

− E
[
E
{
Y |X(k), R(k) = 0, A(k), C = 0

}
|R(k) = 0

]

=τ (k) − µ(k).

(2)

A proof is provided in Web Appendix C. Because τ (k) and µ(k) are both estimable from the

observed data under the pdf in Web Appendix B equation (2), ψ(k) is identifiable.

With different (sometimes stronger) assumptions, our parameter of interest may be inter-

preted as a causal parameter: the “add-on” effect independently attributed to treatment k in

a fully causal framework. More specifically, this add-on effect would correspond to treatment

k’s independent contribution to the probability of treatment success in the population of

individuals whose MDR-TB is not resistant to treatment k, had all these patients used

this treatment in addition to all other treatments they were already taking. Due to the

connection between treatment importance and the add-on effect, one might hypothesize that

if an antimicrobial agent possesses a large treatment importance, it is possibly an effective

add-on medication.

3. Models & Algorithm

In this section, we introduce three estimators of τ (k), the last of which is the TMLE.

Almost identical procedures can be applied to estimate µ(k). The first estimator requires

the estimation of a quantity Q, the conditional expectation of the outcome. The second

requires the estimation of g, the propensity score. The TMLE requires the estimation of

both of these quantities.
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3.1 Outcome Model

For the estimation of τ (k), we define Q(τk) = Pr[Y {d(k) = 1} = 1|A(k){d(k) = 1} =

1,X(k), R(k) = 0], which is the probability of having a successful counterfactual outcome

conditional on the counterfactual treatment exposure and covariates among the patients

whose infections were not known to be resistant to treatment k. Under the assumptions

made above, we show that Q(τk) = Pr{Y = 1|X(k), R(k) = 0, A(k) = 1, C = 0} in the Web

Appendix C. This probability may be estimated by fitting a model using only patients whose

infections were not known to be resistant to treatment k (the subset where R(k) = 0) and

who were taking the treatment k (the subset where A(k) = 1). Since treatment k is not

observed in all studies we use a working assumption that the outcome model estimated on

the subset of patients with D(k) = 1 applies to patients in all studies conditional on measured

covariates. Even if assumption A3 holds, this modeling assumption may fail if underlying

care is substantially different between studies with different medication availabilities because

the marginal model conditional only on observables would not be common in this case.

In the application, we use the R SuperLearner package (van der Laan et al., 2007) to fit a

model for Q(τk) using the data of patients in the subset where {r
(k)
ij = 0, a

(k)
ij = 1, cij = 0}.

We then predict values of Q(τk) for patients in the subset where {r
(k)
ij = 0} using this model

fit. In the simulation study, we use logistic regression (corresponding with the simple data-

generating model) instead of Super Learner. The predicted values are denoted as Q
(τk)
ij,n , which

are the estimates of Q(τk) at the observed value x
(k)
ij .

Finally, we use G-computation (Robins, 1986) to estimate τ (k).

τ
(k)
Gcomp,n =

1

n(k)

31∑

j=1

∑

i∈Sj :r
(k)
ij =0

Q
(τk)
ij,n ,

where n(k) is the number of patients whose infections were not known to be resistant to

treatment k, and τ
(k)
Gcomp,n is the G-computation estimation of τ (k).
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3.2 Propensity Score Model

The propensity score, defined below, is used in Inverse Probability Weighting (IPW) and

TMLE to estimate τ (k). Here, we define the propensity score as: g(τk) = Pr{A(k) = 1, C =

0 | X(k), R(k) = 0}, that is, the probability of being treated according to k and having an

uncensored outcome. Under the assumptions described, we decompose g(τk) into three parts:

g(τk) =Pr{A(k) = 1|D(k) = 1,X(k), R(k) = 0}
︸ ︷︷ ︸

g
(τk)
1

Pr{D(k) = 1|V}
︸ ︷︷ ︸

g
(τk)
2

Pr{C = 0|X(k), R(k) = 0, A(k) = 1}
︸ ︷︷ ︸

g
(τk)
3

.

Details are provided in Web Appendix D. The first and third components represent the

conditional probabilities of being treated according to k and being uncensored, respectively.

The second component g
(τk)
2 represents the probability of the treatment k being available in

study j and can be estimated by regression using the studies as the unit of analysis. This

estimated probability can then be assigned to all patients in study j. The IPW estimate is

τ
(k)
IPW,n =

1

n(k)

31∑

j=1

∑

i∈Sj :r
(k)
ij=0

yij
1{a

(k)
ij = 1, cij = 0}

g
(τk)
ij,n

where 1{·} denotes the indicator function and g
(τk)
ij,n is the estimated propensity score. We

prove that the IPW estimator is consistent for τ (k) in Web Appendix E.

3.3 TMLE Algorithm

The TMLE of τ (k) is doubly robust in the sense that it will be consistent when the estimation

of either Q(τk) or g(τk) would produce a consistent G-computation or IPTW estimator,

respectively. Thus, it may have lower bias compared to the singly robust approaches in

some circumstances. van der Laan and Rubin (2006) and van der Laan and Rose (2011)

describe the asymptotic properties of general TMLEs thoroughly. We briefly outline a TMLE

algorithm for our setting below, with full details in Web Appendix F.

We first estimate the componentsQ(τk) and g(τk). TMLE takes the initial estimateQ
(τk)
ij,n and

“updates” it by borrowing information from the estimated propensity score g
(τk)
ij,n . We follow

the procedure that fits a logistic regression in the subset of patients whose infections were
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not known to be resistant to medication k, and who have observed outcomes. This regression

has outcome Y , no intercept term, offset logit{Q(τk)}, and single covariate A(k)/g(τk). We

take predictions from this regression fit while setting A(k) = 1 for all patients not known to

be resistant, which we define as the updated values Q
(τk)*
ij,n . We then take the average over

patients such that τ
(k)
TMLE,n = 1/n(k)

∑31
j=1

∑

i∈Sj :r
(k)
ij =0

Q
(τk)*
ij,n is the TMLE estimate.

Following similar steps, we can obtain the TMLE estimate for µ, i.e. µ
(k)
TMLE,n. For this

case we use Q(µk) = Pr{Y = 1 | X(k), A(k), R(k) = 0, C = 0}, and g(µk) = Pr{C = 0 |

X(k), A(k), R(k) = 0}. We fit an intercept-free logistic regression with the unresistant patients

with observed outcomes, offset logit{Q(µk)} and single covariate 1/g(µk). This fit is used

to predict outcomes for all unresistant patients and these predictions are averaged over

to get µ
(k)
TMLE,n. Finally, the TMLE estimate of the parameter of interest is: ψ

(k)
TMLE,n =

τ
(k)
TMLE,n − µ

(k)
TMLE,n.

Clustering by study is taken into consideration in the estimation of the variance where

studies are assumed to be the independent units. We use the influence curve approach

described in Schnitzer et al. (2014), which is only valid when both Q and g components

are consistently estimated and when the number of studies (clusters) is sufficiently large.

Details of the variance estimation are available in Web Appendix F.2.

3.4 Simulation Study

We performed a simulation study where we applied our estimator to simulated IPD demon-

strating 1) the consistency and double robustness of the estimator under study heterogeneity

(including treatment effects that vary by study), 2) the appropriateness of the variance

estimation and the coverage of the Wald-type confidence intervals based on the influence

curve approach for different sample sizes, and 3) the potential importance of considering

treatment availability (transportability) in our setting. Details and results are available in

the Web Appendix G.
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4. Results of Analysis of MDR-TB Data

IPD were obtained from multiple observational studies that investigated associations between

drugs taken and treatment success in patients with MDR-TB. Study level information

including the numbers of patients and treatments used in each cohort is presented in Table

1. Patient-level summaries for each covariate and outcome are given in Web Table 7.

[Table 1 about here.]

The year of study ranged between 1995 and 2009. Of the pooled data, 404 (4.4%) and

3106 (33.4%) of patients came from low middle income group countries and upper middle

income group countries respectively, and the remaining 5780 (62.2%) patients came from high

income group countries. Study-specific sample sizes ranged between 25 and 2211 patients.

Some studies only observed 3 drugs used on their population while others observed all 15

drugs. The range of the mean age across studies was 31.1 to 47.6, except for one pediatric

study; 26 studies included pediatric patients, totalling 255 overall. The inclusion of patients

coinfected with HIV varied substantially between studies as did the distributions of the other

covariates. In terms of outcome, 4847 (52.2%) patients had a clinically successful outcome,

while no outcome was reported for 260 patients (2.8%).

In Table 2 we provide the number of patients prescribed and the number of patients

whose infections were resistant to each treatment. Ofloxacin, pyrazinamide, cycloserine, and

kanamycin were each prescribed to a majority of patients and a large number of infections

were resistant to ethambutol, streptomycin, and pyrazinamide.

[Table 2 about here.]

In the data analysis, we dropped the few observations with missing sex and age information

(0.065% and 0.301% respectively). To pragmatically handle missingness in the other binary

covariates, we set the missing values to zero, created binary indicators (dummy variables)

for missingness, and included these as covariates in the models. Following the procedures
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described in Section 3, the treatment importance of all 15 treatments was estimated with

the TMLE algorithm, for which Super Learner was used to estimate the Q component. Super

Learner, which uses cross-validation to combine predictions across a library of methods, was

implemented with k-nearest neighbors, random forests (Liaw and Wiener, 2002), logistic

regression, and LASSO (Friedman et al., 2010). Logistic regressions were used to fit the

propensity score models and a LASSO penalty was added when the model otherwise failed

to converge. Table 3 shows the estimates, ordered by estimated treatment importance, with

their associated clustered influence curve based standard errors and confidence intervals.

[Table 3 about here.]

As shown in the table, ciprofloxacin had the greatest estimated treatment importance of

0.134 (95%CI: 0.024,0.243) meaning that those taking ciprofloxacin had an average prob-

ability of treatment success that was 0.134 higher than the general population, after ad-

justing for confounding and differential treatment access. Other treatments with at least

moderately large positive treatment importance were amikacin, High-generation quinolones,

capreomycin, ethionamide, streptomycin, and cycloserine. Among these, hypothesis tests

for the treatment importance of streptomycin and cycloserine also rejected the null (zero

importance). Therefore, with strong assumptions, we may infer that ciprofloxacin would

contribute the most to the average improvement in treatment success in the context of

multiple treatment usage. There is also evidence that streptomycin and cycloserine both

have positive treatment importance. In contrast, para-aminosalicylic acid, pyrazinamide and

Group 5 level drugs had negative estimated importance though the confidence intervals

included the null. Further, in order to see whether the consideration of transportability

made a practical difference, we compared the results of a standard TMLE which ignores

treatment availability (Web Table 8) and thus ignores the extrapolation over studies that do

not have access to the given treatment. The conclusions changed substantially – in particular,
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we see that ciproflaxin, our top treatment in the primary analysis, no longer appeared to

be important. Ethionamide now appears important, as it did in the study by Ahuja et al.

(2012) and rifabutin appears harmful (negative treatment importance). The standard errors

were almost always smaller when ignoring treatment availability.

Finally, we compared the results of this analysis with a standard logistic regression model

with random study-specific intercepts which pooled over all of the data ignoring treatment

availability. We chose this comparator as mixed effects regression analysis is a typical ap-

proach to one-stage network meta-analysis with IPD (Thomas et al., 2014). In order to

fit the model, we removed all observations with missing outcomes. The model included all

treatment main terms and adjusted for the same covariates as the primary analysis (as

main terms). The estimates are provided in the Web Table 9. The results were generally

not consistent with our primary results; streptomycin and ethionamide did not appear as

important; prothionamide and ofloxacin were significantly and negatively associated with

the outcome, suggesting harm, while kanamycin was significantly and positively associated

with the outcome despite sparsity of this treatment. Ciprofloxacin was positively associated

with the outcome in both analyses.

5. Discussion

Our study derived sufficient assumptions and TMLE methodology for the consistent es-

timation of a treatment importance parameter under a nonparametric model in the IPD

meta-analytical context. In particular, this formalized the extrapolation assumptions that

may be necessary to aggregate results over studies when there are many treatment options.

Our perspective and analysis deviated from a traditional meta-analysis. One-stage network

meta-analysis typically applies parametric outcome modeling where the patient is the unit

of analysis in order to synthesize multiple studies that are each contrasting different sets of

treatments (Mills et al., 2012). Two-stage approaches first summarize each study’s treatment
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contrasts and then employ an aggregate meta-analysis technique to estimate population

average treatment effects. These approaches typically allow for treatment effect heterogeneity

across study populations (Thomas et al., 2014) but are limited in their reliance on parametric

modeling and do not explicitly consider the estimation of causal quantities nor of transporta-

bility (Schnitzer et al., 2016). In our application we found that a simpler mixed model analysis

changed the study conclusions substantially. Our one-stage approach explicitly allows for the

common setting where treatments are informatively distributed across studies and allows for

between-study heterogeneity of the treatment effects. Additional strengths of our methods

include the double robustness of TMLE and the handling of missing-at-random outcomes.

Our methods can be implemented non-parametrically (e.g. with Super Learner) which may

avoid model misspecification. A limitation of our approach is that it is difficult to implement

for very small numbers of studies. In particular, we take study as the unit of measurement

in the second propensity score model which limits the ability to adjust for study-specific

covariates. In this study we used a LASSO penalty when the model for g
(τk)
2 did not converge.

Previous work used standard outcome regression methods to estimate adjusted odds ratios

of MDR-TB treatment success separately for each medication (Ahuja et al., 2012). Our anal-

ysis focused on the nonparametrically defined treatment importance of each antimicrobial

agent, allowing for the identification of medications associated with treatment success. We

did not focus on a parameter involving an intervention on treatment usage a priori because

we felt that the required causal identifiability assumptions would not be not credible in our

setting. Rather than use a standard risk difference which contrasts outcomes in those taking

versus not taking a medication, we chose to contrast the adjusted probability of treatment

success in those taking each medication with the probability under observed usage. Our

chosen parameter approximates the expected improvement in outcomes if a medication were

to be added on to all regimens where it was not already included. The alternative contrast
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would instead approximate the comparison of outcomes under adding on versus potentially

removing a medication, which we found to be less clinically relevant. It may also be of interest

to directly compare the importance of two different medications. Because we evaluated each

treatment in the subpopulation with infections not known to be resistant to the antimicrobial

agent (Lew et al., 2008), the target populations are not common for each medication. For

direct comparisons between medications, one may consider a variable importance parameter

evaluated on the relative risk scale. Other studies, including our past work, reported the

success of regimens/combinations of treatments, rather than individual treatments (Siddique

et al., 2018; Masjedi et al., 2008; Kuaban et al., 2015).

While the goal of our analysis was to estimate a global treatment importance parameter,

substantial heterogeneity in treatment effects across studies may make this parameter less

clinically relevant. Future work in our group will involve investigation of treatment effect

modification and optimal regimens based on clinical baseline covariates.

In practice, investigators may be inclined to conduct their systematic reviews based on

studies that evaluated a specific treatment of interest. In the simulation study, we showed

that ignoring studies with only alternative treatments for the same condition may lead

to bias. An important conclusion is that, when estimating population average effects and

parameters, analyses should not be restricted to only data from studies that included a

given treatment without adjustment for selection bias.
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Table 1: Study Information.aIG: Income group of the country of each study. b N.: The number of patients in each study. c We use letters to present
the treatments. a: Ethambutol; b:Amikacin; c:Capreomycin; d:Ciprofloxacin; e:Cycloserine; f:Ethionamide/Prothionamide; g:Ofloxacin; h:Para-Aminosalicylic Acid;
i:Protionamide; j:Rifabutin; k:Streptomycin; l:Pyrazinamide; m:Kanamycin n:High- generation quinolones; o:Group 5 level drugs respectively. d Male N(%): Number
and percentage of males in each study. e HIV N(%): Number and percentage of HIV positive patients in each study. f Smear N(%): Number and percentage of
patients with positive Acid fast bacilli smear in each study. g TB N(%): Number and percentage of patients with past positive TB strains in each study. h Cav.
N(%): Number and percentage of patients with positive cavitation on X Ray in each study.

Author name Year IGa Nb Trts. usedc Age mean (SD) Male N(%)d HIV N(%)e Smear N(%)f TB N(%)g Cav. N(%)h

Ahuja 1997 High 823 a-h,j-o 41.4 (12.0) 561 (68.2) 488 (59.3) 509 (61.8) 0 (0.0) 0 (0.0)
Avendano 2009 High 72 a-h,j-o 36.3 (15.3) 43 (59.7) 1 (1.4) 67 (93.1) 39 (54.2) 0 (0.0)
Burgos 2000 High 48 a-h,j-o 47.2 (14.8) 32 (66.7) 11 (22.9) 36 (75.0) 31 (64.6) 21 (43.8)
Chan 1998 High 203 a,c-h,j-o 42.0 (14.3) 116 (57.1) 0 (0.0) 203 (100.0) 196 (64.4) 120 (59.1)
Chiang 1996 High 125 a,e,g-m,o 46.1 (15.2) 90 (72.0) 0 (0.0) 109 (87.2) 114 (91.2) 0 (0.0)
Cox 2005 Lower Middle 77 a,c,e-h,j-m,0 36.9 (11.2) 47 (61.0) 0 (0.0) 76 (98.7) 77 (100.0) 0 (0.0)
Garcia 2009 Upper Middle 47 a,j-o 47.6 (16.4) 26 (55.3) 0 (0.0) 42 (89.4) 14 (29.8) 20 (42.6)
Granich 2006 High 104 a-h,j-m 40.3 (19.5) 61 (58.7) 1 (1.0) 75 (72.1) 62 (59.6) 0 (0.0)
Koh 2005 High 155 a,c-e,g-i,k-o 40.9 (14.4) 82 (52.9) 0 (0.0) 131 (84.5) 137 (88.4) 0 (0.0)
Leung 1997 High 99 e,g,l-m 46.1 (16.2) 74 (74.7) 0 (0.0) 78 (78.8) 62 (62.6) 46 (46.5)
Migliori 2004 High 101 a-i,k-o 39.4 (14.7) 61 (60.4) 6 (5.9) 80 (79.2) 58 (57.4) 48 (47.5)
Mitnick 2002 Upper Middle 732 a-o 31.1 (12.0) 436 (59.6) 8 (1.1) 508 (69.4) 720 (98.4) 550 (75.1)
Narita 1997 High 81 a-h,j-m,o 40.2 (11.8) 55 (67.9) 41 (50.6) 0 (0.0) 53 (65.4) 33 (40.7)
Palmero 1999 High 114 a,c-i,k-m,o 35.3 (13.3) 54 (47.4) 0 (0.0) 108 (94.7) 76 (66.7) 103 (90.4)
Pasvol 2004 High 45 a,b,d,e,g-o 36.9 (15.9) 21 (51.2) 0 (0.0) 29 (70.7) 24 (58.5) 0 (0.0)
Pena 2000 High 25 a,h,o 41.2 (13.3) 24 (96.0) 0 (0.0) 25 (100.0) 22 (88.0) 16 (64.0)
Perez 1995 Upper Middle 34 a,b,d,g,i,k-m,o 42.1 (12.4) 21 (61.8) 0 (0.0) 34 (100.0) 34 (100.0) 22 (64.7)
Quy 2000 Lower Middle 157 a,j-l 39.5 (11.4) 121 (77.1) 4 (2.5) 157 (100.0) 102 (65.0) 0 (0.0)
Riekstina 2004 High 1027 a-c,e,g-i,k-o 42.3 (12.7) 780 (75.9) 32 (3.1) 269 (26.2) 648 (63.1) 704 (68.5)
Robert 1999 High 45 a,e-h,j-m,o 41.7 (15.6) 24 (53.3) 9 (20.0) 33 (73.3) 24 (53.3) 31 (68.9)
Schaaf 2002 Upper Middle 39 a,b,e-g,j-m,o 7.0 (5.4) 20 (51.3) 6 (15.4) 9 (23.1) 12 (30.8) 14 (35.9)
Seung 2002 High 142 a,e,g-i,k-m, 43.9 (15.4) 117 (82.4) 0 (0.0) 142 (100.0) 142 (100.0) 86 (60.6)
Shim 2002 High 1364 a,e,g-o 42.8 (14.9) 1014 (74.3) 1 (0.1) 927 (68.0) 977 (71.6) 569 (41.7)
Shin 2004 High 608 a-c,e-i,l-o 35.8 (11.3) 506 (83.2) 5 (0.8) 497 (81.7) 592 (97.4) 368 (60.5)
Shiraishi 2007 High 61 a,c-f,h,j-o 46.4 (11.9) 46 (75.4) 0 (0.0) 0 (0.0) 0 (0.0) 61 (100.0)
Tabarsi 2006 Upper Middle 43 a,b,e,g-i,l,m,o 44.4 (19.1) 27 (62.8) 0 (0.0) 42 (97.7) 43 (100.0) 43 (100.0)
Tupasi 2003 Lower middle 170 a-o 39.2 (12.4) 106 (62.3) 0 (0.0) 107 (62.9) 164 (96.5) 138 (181.2)
Van der Werf 2008 High 43 a,b,d-h,j,l-m,o 32.9 (18.3) 31 (73.8) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
Van der Walt 2004 Upper Middle 2211 a,e-g,l,m 36.6 (10.9) 13965 (62.5) 565 (25.9) 1376 (63.0) 1963 (89.9) 1247 (57.1)
Viiklepp 2002 High 284 a-c,e,g-m,o 43.0 (13.6) 201 (70.8) 9 (3.2) 153 (53.9) 0 (0.0) 206 (72.5)
Yim 2007 High 211 a-c,e,g-o 39.3 (15.8) 124 (58.8) 0 (0.0) 0 (0.0) 84 (39.8) 160 (75.8)
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Table 2: Number using each treatment and with infections resistant to each treatment. * res:
patients’ infections are resistant to the given treatment. The %s are taken over the entire
sample.

Treatment N used (%) N res* & used (%) N res & unused (%)

High-generation quinolones 930 (10.0)
Ciprofloxacin 1031 (11.1)
Prothionamide 3341 (36.1)
Amikacin 605 (6.5)
Cycloserine 5729 (61.9) 299 (3.2) 180 (1.9)
Kanamycin 5093 (55.0) 458 (4.9) 1362 (14.7)
Ofloxacin 6538 (70.6)
Group 5 level drugs 2205 (23.8)
Pyrazinamide 6263 (67.6) 962 (10.4) 1806 (19.5)
Ethambutol 4325 (46.7) 1075 (11.6) 3052 (33.0)
Para-Aminosalicylic Acid 4005 (43.3) 446 (4.8) 646 (7.0)
Capreomycin 1956 (21.1) 286 (3.1) 344 (3.7)
Ethionamide 4005 (43.3) 493 (5.3) 1268 (13.7)
Streptomycin 1418 (15.3) 425 (4.6) 3728 (40.3)
Rifabutin 1371 (14.8)
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Table 3: Treatment importance, associated standard error and confidence interval of 15
treatment.

Treatment Estimate Standard Error 95% Confidence Interval

Ciprofloxacin 0.134 0.056 (0.024, 0.243)
Amikacin 0.091 0.056 (-0.018, 0.200)
High-generation quinolones 0.084 0.102 (-0.116, 0.283)
Capreomycin 0.070 0.064 (-0.055, 0.196)
Ethionamide 0.068 0.040 (-0.011, 0.147)
Streptomycin 0.063 0.027 (0.011, 0.116)
Cycloserine 0.054 0.028 (0.000, 0.109)
Prothionamide 0.047 0.154 (-0.255, 0.348)
Ofloxacin 0.023 0.032 (-0.040, 0.085)
Ethambutol 0.020 0.022 (-0.022, 0.063)
Kanamycin 0.020 0.024 (-0.027, 0.067)
Rifabutin 0.014 0.071 (-0.125, 0.153)
Para-aminosalicylic acid -0.002 0.019 (-0.038, 0.035)
Pyrazinamide -0.005 0.017 (-0.038, 0.028)
Group 5 level drugs -0.035 0.037 (-0.108 ,0.038)


