
Research Article 

Amyloid Burden and White Matter Hyperintensities Mediate Age-Related Cognitive Differences 

 

Pénélope S. Dupont, PhD candidate a, b, Christian Bocti, MD c, d, Maude Joannette, PhD candidate a, 

b, Marie Maxime Lavallée, PhD candidate a, b, Jim Nikelski, PhD e, Guillaume T. Vallet, PhD g, 

Howard Chertkow, MD e, f, Sven Joubert, PhD a, b 

aDépartement de psychologie, Université de Montréal, bCentre de recherche de l’Institut universitaire 

de gériatrie de Montréal (CRIUGM), cUniversité de Sherbrooke, Service de neurologie, Départment 

of médecine, dResearch Center on Aging and Memory Clinic, CIUSS Estrie-CHUS, eLady Davis 

Institute for Medical Research, McGill University, fDepartment of Neurology and Neurosurgery, 

McGill University, gUniversité Clermont Auvergne, Laboratoire de Psychologie Sociale et Cognitive 

(CNRS, UMR6024), France 

 

Corresponding author: Pénélope Sévigny Dupont 

Corresponding author’s address: 4545 Chemin Queen Mary, Montreal, QC, Canada H3W 1W6 

Corresponding author’s phone and fax: 1 514-340-3540, ext. 4779 

Corresponding author’s e-mail address: penelope.sevigny.dupont@umontreal.ca 

  



BIOMARKERS OF COGNITIVE AGING PAGE 2 

 

 

ABSTRACT  

 

This study examined the additive vs synergistic contribution of beta-amyloid (Aβ) and white matter 

hyperintensities (WMH) across seven cognitive domains in 104 cognitively normal older adults. It 

also measured the extent to which age-related differences in cognition are driven by measurable 

brain pathology. All participants underwent neuropsychological assessment along with MRI and 

PiB-PET imaging for Aβ quantification. WMH severity was quantified using the ARWMC scale. 

Stepwise regressions, moderation and mediation modelling were performed. Our findings show that 

Aβ deposition single-handedly predicts poorer episodic memory performance, and that Aβ and 

WMH contribute additively to poorer performance in working memory and language while carrying 

synergistic associations with executive functions and attention. Through mediation modelling, we 

demonstrated that the influence of age over episodic memory, working memory, executive functions 

and language is fully mediated by brain pathology. This study permits to conclude that, in healthy 

older adults; 1) Aβ burden and WMH have synergistic associations with some cognitive domains 

and; 2) age-related differences in most cognitive domains are driven by brain pathology associated 

with dementia. 

 

Keywords: Cognitive aging; Alzheimer’s disease; Neuroimaging 

 

Abbreviations: Aβ = beta-amyloid; AD = Alzheimer’s disease; MCI = mild cognitive impairment; 

PiB = Pittsburgh Compound B; SUVR = standard uptake value ratio; WMH = white matter 

hyperintensities  
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Introduction  

Pathological changes are common in the aging brain, even in older adults who remain fully 

functional. For example, it has been consistently shown that significant cerebral beta-amyloid 

deposition (Aβ) – one of the pathological hallmarks of Alzheimer’s disease (AD) along with 

neurofibrillary tangles – is present in about a third of cognitively normal older adults (Jack et al., 

2017; Jansen et al., 2015). Longitudinal studies suggest that healthy older adults harbouring high Aβ 

burden are about fourfold more likely to convert to mild cognitive impairment (MCI) and that MCI 

individuals are also more likely to convert to AD in the following years compared to their same-aged 

peers with low Aβ (Chen et al., 2014; Doraiswamy et al., 2012; Villemagne et al., 2011). 

 

The amyloid cascade hypothesis, which posits that Aβ deposition is the initiating event in a sequence 

of neuropathological changes leading to dementia, has remained for a long time the dominant 

explanation for AD (Hardy and Selkoe, 2002; Jack et al., 2013). More recently, though, the impact 

of other pathologies coexisting with Aβ burden - especially of presumed vascular origin - is gaining 

increasing recognition in the pathogenesis of AD (Gorelick et al., 2011; Iadecola, 2013). For 

instance, in a comprehensive data-driven model of the spatiotemporal ordering of preclinical AD 

progression, vascular dysregulation was identified as the first pathological event, followed by Aβ 

deposition, metabolic dysfunction, functional impairment and cortical atrophy (Iturria-Medina et al., 

2016). 

 

White matter hyperintensities (WMH), which reflect vascular brain pathology (i.e., small vessel 

disease), have been linked to an increased risk of developing dementia, whether in combination with 

Aβ or independently (Mortamais et al., 2014). WMH and Aβ have received considerable attention as 
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potential biomarkers of preclinical dementia because: 1) they occur in a significant proportion of 

healthy older adults (Burns et al., 2005; de Leeuw et al., 2001); and 2) they are key drivers of age-

related cognitive decline in healthy older adults (Vemuri et al., 2015). Although the deleterious 

influence of WMH on cognition in healthy older adults is viewed as largely global, the bulk of 

research points towards a more direct link with executive components of cognition and processing 

speed (Hedden et al., 2012; Moon et al., 2017; Murray et al., 2010; Papp et al., 2014). In contrast, 

high Aβ burden in cognitively normal older adults has been associated with decline primarily in 

episodic memory, although some studies have shown decline in semantic memory, working 

memory, executive functions and visuospatial functions as well (Baker et al., 2017; Duke Han et al., 

2017; Hedden et al., 2013). 

 

The specific nature of age-associated changes across specific cognitive domains remains to be better 

understood, however, since many studies have used relatively rudimentary neuropsychological 

testing.  Finer discrimination between multiple cognitive domains in the context of preclinical 

dementia is valuable in order to distinguish subtle changes in cognition most suggestive of 

underlying pathology from those which are more likely benign in nature. In the same way, the 

question as to whether the effects of Aβ burden and WMH on cognition are independent or 

interactive also remains open. Some authors have advanced that Aβ and WMH yield an additive 

effect on cognition in healthy older adults (Lo et al., 2012; Vemuri et al., 2015), while others have 

suggested a synergistic interaction, whereby cognitive deterioration associated with coexisting 

pathologies is greater than the sum of their distinctive effects (Iadecola, 2010; Zekry et al., 2002). A 

more comprehensive view of the interrelationships between AD and cerebrovascular disease 

pathophysiology and how they relate to specific cognitive changes in aging is needed to improve 
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early identification of at-risk individuals. So far, clinical trials targeting Aβ have shown very limited 

success in altering the clinical course of AD, which may be attributable to treatment being 

administered tardily in the disease course, when significant neurodegeneration has already occurred 

(Gauthier et al., 2016; Mangialasche et al., 2010; Musiek and Holtzman, 2015). Thus, timely 

intervention (at the presymptomatic stage) holds a better promise of achieving therapeutic efficacy. 

For that purpose, the first step is to hone our ability to reliably recognize the earliest signs of 

pathological aging. 

 

The first objective of this study was to investigate the independent contribution of Aβ and WMH 

across seven cognitive domains, and to examine whether there was an interaction between these 

pathological biomarkers on cognition. Another main objective was to assess the extent to which age-

related differences in cognitive function may be driven by Aβ deposition and WMH using partial 

least squares path (mediation) modelling. We sought to answer these questions in a cross-sectional 

study carried out in a cohort of cognitively normal older adults. Aβ deposition was modelled on PET 

imaging with 11C-Pittsburgh Compound B ligand (PiB), and WMH were quantified with a semi-

quantitative visual rating scale.   

 

Methods 

Participants 

In this cross-sectional study, we recruited 104 participants aged 65 years and older. The majority of 

participants in our study was recruited from the CRIUGM pool of healthy older participants,  but a 

portion of our sample was also recruited through advertisements (73 and 27%, respectively), because 

we wanted to recruit participants across a broader range of educational achievement (i.e., 
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overrepresentation of educated participants in the CRIUGM pool). All participants underwent a 

detailed neuropsychological assessment, an MRI scan and a PiB-PET scan. Volunteers with 

untreated diabetes or heart disease, and other health conditions known to adversely impact cognition 

including untreated mental health disorders were excluded. A history of moderate to severe 

traumatic brain injury, substance abuse or neurological disorders, as well as general anaesthesia in 

the last six months, were also criteria for exclusion. Participants expressed no significant cognitive 

complaint and were judged to be free of dementia or MCI at the time of their participation, using the 

following criteria. Participants had to perform within 2 SD of the mean on a self-reported memory 

questionnaire (van der Linden et al., 1989). Two specific domains of the questionnaire were used for 

screening, “Conversations” and “Movies and books”, which have been shown to be particularly 

sensitive to objective memory decline (Clement et al., 2008). We further screened for general 

cognitive decline using the Montreal Cognitive Assessment (MoCA), on which participants had to 

score ≥23. This cut-off has been deemed optimal in a recent meta-analysis (Carson et al., 2018). 

Additionally, performance of participants had to be > -1.5 SD when compared to the mean of age-

matched controls on at least one of two learning tasks used for screening, the Logical Memory 

subtest of the Wechsler Memory Scale (WMS-III; delayed recall) and the Delayed Matching-to-

Sample - 48 items (DMS-48; 2 min. delay). In an effort to screen for depressive symptoms, 

participants had to score < 11/30 on the Geriatric Depression Scale (GDS). This study protocol was 

reviewed and approved by the CRIUGM and the Montreal Neurological Institute and Hospital 

(MNIH) Research Ethics Boards. All participants provided written informed consent prior to their 

participation in the study.  

 

Measures of Cognition 
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Participants underwent detailed neuropsychological testing covering the following cognitive 

domains: episodic memory, working memory, executive functions, language, attention, processing 

speed and visuospatial abilities. Composite scores were calculated for each of these cognitive 

domains. In order to do so, we computed correlation matrices including all performance indices of 

subtests related to a specific cognitive domain based on their theoretical framework. For each matrix 

(or cognitive domain), all performance scores significantly intercorrelated at r ≥ 0.30 were selected, 

thereby ensuring internal validity of our composite measures (this cut-off corresponds to a medium 

effect size according to accepted standards) (Cohen, 1988). These raw scores were then converted 

into standardized z-scores (based on our sample’s mean and SD). Cognitive measures for which a 

higher score indicates a poorer performance (such as z-scores reflecting errors or execution times) 

were reversed scored. The z-scores were then averaged together to produce composite cognitive 

scores, which were themselves converted into z-scores to facilitate data interpretation. When only 

one test score was available in a participant for a specific cognitive domain, a composite score was 

not calculated. This resulted respectively in 3 and 4 missing values for executive functions and 

attention. Outliers were defined as z ± 3.29 (P < 0.001); and then two extreme scores (z < -3.29) 

were replaced with the minimum threshold value (-3.29). The distribution normality of the 

composite cognitive scores was verified upon visual inspection of frequency distributions and 

normal probability plots. Detailed information on the neuropsychological battery and the list of 

performance indices (by cognitive domain) are shown in Supplemental Table S1. Matrices showing 

correlation coefficients between composite cognitive scores and between performance scores 

included in the composites are provided in Supplemental Tables S2. and S3.  

Brain Imaging  

PET imaging of cerebral Aβ was done with 11C- PiB, which is the most widely used radiotracer for 
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Aβ quantification in individuals without dementia (Mintun et al., 2006). PET images of Aβ were 

acquired on a Siemens/CTI ECAT HR+ scanner in 3D imaging mode at the McConnell Brain 

Imaging Centre. Each scanning session yielded a collection of 7 dynamic fames comprised of 63 

axial slices, using a 128x128 matrix (voxel dimensions: x,y = 2.059 mm, z = 2.425 mm). In order to 

minimize in-scanner time, scanning was started 50 minutes following bolus injection, during which 

time 7 frames (6x300 sec, 1x600 sec) were collected. Global standard uptake value ratios (SUVR) 

were computed by creating a region-weighted average of PiB ratio values, which, in turn, were 

derived by normalizing cortical tissue radioactivity concentration to cerebellar grey matter counts. 

Cerebellar grey matter was used as a reference region because it is largely spared from Aβ 

deposition (Klunk et al., 2004). These SUVR units were regarded as a continuous measure of Aβ 

burden in this study. PiB PET and MRI imaging each took place within an average of 85.12 days 

(SD = 73.26) and 5.62 days (SD = 34.11) of the last neuropsychological testing date. 

MRI scans were obtained on a 3T Siemens Trio MRI at the Unité de Neuroimagerie Fonctionnelle. 

High resolution anatomical images were acquired using an optimized MPRAGE protocol 

(TR = 2.3 s, TE = 2.94 ms, TI = 900 ms, flip angle = 9, FOV = 256×240, voxel 

1mm×1mm×1.2mm). This MPRAGE protocol allowed co-registration of PiB PET to each subject's 

MRI image. In addition to this sequence, an Axial Proton Density (PD)/T2 weighted protocol (TR 

3000 ms, TE 12ms and 99 ms, FOV 240 mm, matrix 228 x 256, 48 slices, slice thickness 3mm) and 

a FLAIR protocol (TR 9000ms, TE 105 ms, T1 2500 ms, FOV 220 mm, matrix 256 x 256, slice 

thickness 4mm) was used for quantification of WMH in participants.  

Severity of WMH was assessed by a certified neurologist in our team (C.B.) using the ARWMC 

scale, a semi-quantitative visual rating tool yielding a 4-point scale (0 = no lesion; 1 = focal 

lesion(s); 2 = confluent lesions; 3 = diffuse lesions) over five cerebral regions (frontal, parieto-
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occipital, temporal, infratentorial and basal ganglia) for the right and left hemispheres separately 

(Wahlund et al., 2001). A global brain measure of WMH was calculated by summing scores on all 

five regions bilaterally and was treated as a continuous variable in our analyses. 

Statistical Analysis 

Pearson correlations were calculated between age and all studied variables. We used partial 

correlations adjusted for age in a first attempt to explore associations between Aβ burden, WMH and 

cognitive domains. Independent samples t-tests were also conducted to assess possible sex 

differences in biomarkers, cognitive abilities and number of years of education. Independence 

between Aβ and WMH was verified and confirmed prior to carrying out the main analyses. 

We then employed a stepwise multiple regression approach to estimate the additive and distinctive 

contribution of different potential predictors on cognition. A stepwise regression analysis was 

conducted for each cognitive domain by entering age, sex, Aβ and WMH as independent variables 

and cognitive composite score as the outcome. The same regression analyses were then repeated 

including number of years of education as an independent variable. The stepwise procedure allowed 

for the selection of predictor variables in a step-by-step iterative manner, adding variables in order of 

their additive contribution to the model while simultaneously removing variables no longer reaching 

significance levels, until no variable could be further added or removed. Statistical criteria for the 

inclusion and removal of predictor variables in the final model were set to an F probability (P-value) 

≤ 0.050 and ≥ 0.051, respectively. Potential multicollinearity issues were tested using the tolerance 

(1-R2) and the Variance Inflation Factor (VIF) diagnostic indexes. Normality of the residuals was 

verified using normal probability plots.  
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In order to verify the presence of an interaction between Aβ and WMH pathologies on cognitive 

abilities, we used multiple regression models with an added interaction term. A significant 

interaction could be of two types: 1) one (more plausible) synergistic, whereby Aβ and WMH’s 

combined effects on cognition are greater than the sum of their individual effects; 2) and the other 

antagonistic, where both biomarkers cancel out each other’s effects, either partially or completely. 

To answer that question, simple linear moderation models were computed based on the following 

equation:  Ŷ = i1 + b1X + b2M + b3XM, where X represents WMH and M represents Aβ. The 

function of such a model is to determine whether the effect of a one-unit change in X on Ŷ is 

dependent upon M (or conditional). Otherwise stated, the moderation analysis establishes whether 

WMH’s effect on cognitive performance varies across different values of Aβ (or vice-versa). In our 

analyses, Aβ was selected as the moderator variable (M) and WMH as the independent variable (X), 

but this choice was arbitrary as interchanging the position of X and M would not affect the 

interaction term. Age, sex and education were entered as covariates in the moderated regressions. An 

interaction was deemed significant at P < 0.05. The moderated regression models were built using 

Hayes’ PROCESS macro for SPSS (model 1) (Hayes, 2013). 

As one of our main objectives was to test whether age’s influence on cognition was driven by Aβ 

deposition and WMH, we constructed parallel multiple mediation models using ordinary least 

squares path analysis with the PROCESS macro (model 4). In these structural equation models, Aβ 

burden and WMH were entered as potential mediators of the relationship between age (independent 

variable) and each composite cognitive score (outcome). In order to control for potential spurious or 

epiphenomenal associations, sex and education were included in the path models as covariates, thus 

statistically removing their influence on the mediation paths. Bias-corrected bootstrap confidence 

intervals for the indirect effect (based on 10,000 bootstrap samples) were used to assess the 
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significance of mediation effects. A significant mediation effect is indicated when the bootstrapped 

confidence interval does not contain zero with 95% confidence. Full mediation occurs when path c’ 

(direct effect) is non-significant whereas path a (independent variable’s effect on mediator), path b 

(mediator’s effect on outcome) and path c (total effect) are significant at P < 0.050. The indirect 

mediation effect of age on cognitive performance through the mediator variable(s) is obtained from 

the product of paths a and b (a x b). The direct effect of age on cognition is calculated by subtracting 

the indirect effect from the total effect [c’ = c - (a x b)]. All statistical analyses in this study were 

conducted with IBM SPSS Statistics (version 24.0; Armonk, NY). False discovery rate (FDR)-

corrected P-values accounting for multiple testing across the 7 cognitive domains for the 

standardized regression coefficients (β), moderation interaction terms and indirect (mediation) 

effects are displayed in Supplemental Table S4. 

Results 

Characteristics of participants included in the analyses are displayed in Table 1. Unsurprisingly, age 

was associated with greater Aβ deposition (r = 0.388, P < 0.001) and WMH severity (r = 0.399, 

P < 0.001), and with poorer cognitive performance across all cognitive domains: episodic memory (r 

= -0.223, P = 0.023), working memory (r = -0.286, P = 0.003), executive functions (r = -0.360, 

P < 0.001), language (r = -0.282, P = 0.004), attention (r = -0.399, P < 0.001), processing speed (r = 

-0.538, P < 0.001) and visuospatial abilities (r = -0.320, P = 0.001). There was no significant 

correlation between age and education (P = 0.759). Importantly, Aβ burden and WMH were not 

correlated with one another (P = 0.342) when controlling for age; therefore, they were interpreted as 

independent variables in our statistical analyses. Controlling for age, education correlated marginally 

and negatively with Aβ (r = -0.186, P = 0.059) but not with WMH (P = 0.732).  

When we applied age-corrected partial correlations between biomarkers and cognitive composite 
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scores, Aβ burden was inversely associated with episodic memory (r = -0.359, P < 0.001), working 

memory (r = -0.248, P = 0.012), attention (r = -0.296, P = 0.003) and marginally with executive 

functions (r = -0.182, P = 0.070), while WMH were inversely associated with working memory (r = 

-0.284, P = 0.004), executive functions (r = -0.272, P = 0.006), language (r = -0.326, P = 0.001) and 

attention (r = -0.206, P = 0.041). Independent samples t-tests revealed a male advantage in working 

memory (t(102) = -2.146, P = 0.034) and visuospatial abilities (t(102) = -3.585, P < 0.001). Men 

were also slightly more educated than women in our sample; t(102) = -2.099, P = 0.042. There were 

no significant sex differences in age (P = 0.770), Aβ burden (P = 0.673) or WMH severity (P = 

0.377). 

Testing the independent and additive contribution of Aβ burden and WMH on cognition 

Age, sex, Aβ and WMH were entered as potential predictors of cognitive composite scores in 

stepwise regression analyses. As a trend was observed for an inverse relationship between Aβ and 

education, the same regressions were repeated in separate analyses this time including education, so 

as not to overlook Aβ associations due to the shared variance with education (see Table 2 for 

detailed stepwise regressions results with and without education). In the first set of analyses (without 

education), Aβ burden was the only predictor retained in the stepwise model for episodic memory. 

Working memory was best predicted by the combination of WMH, Aβ and sex. Similarly, both 

biomarkers – but not age and sex – made an additive contribution in the stepwise regression models 

for executive functions, attention and language. Age did not contribute in predicting episodic 

memory, working memory, executive functions, attention and language in the stepwise models. In 

contrast, processing speed was best predicted by age alone, while visuospatial abilities were best 

predicted by sex and age. 
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When education was included in the stepwise regression analysis, Aβ burden was no longer a 

significant predictor of executive functions and language. Rather, executive functions were best 

predicted by WMH, education and age, while language was best predicted by WMH and education. 

Age, Aβ, WMH and education (that is, all independent variables except for sex) were found to be 

significant predictors of attention when considering education as a potential predictor. Education 

was also a significant predictor of visuospatial abilities after sex and age in the stepwise model. 

However, education made no distinctive contribution to episodic memory, working memory and 

processing speed.  

Consistent with the correlational analyses, Aβ burden, WMH and age were negative predictors of 

cognitive performance when selected in the stepwise models. Inversely, education was a positive 

predictor of cognition when significant. Among collinearity statistics, all tolerance values were well 

above 0.100 (min = 0.648) and all VIF values were well below 5.00 (max = 1.543), indicating that 

multicollinearity was not a concern for the regressions. The residuals of the regressions were 

normally distributed.  

Testing the synergistic interaction between Aβ burden and WMH on cognition 

To test the possibility of synergy (or antagonism) between Aβ burden and WMH on cognition, 

moderated regressions were run for each composite cognitive score, controlling for age, sex and 

education. The moderation analysis revealed a significant interaction term between biomarkers on 

executive functions (F(1,94) = 14.334, P < 0.001) and attention (F(1,93) = 11.556 , P = 0.001). 

More specifically, a one-unit SUVR increase in Aβ pathology potentiated WMH’s deleterious 

influence on executive functions and attention by 0.390 SD and 0.298 SD, respectively. The 

(regression) slopes representing WMH’s negative associations with executive functions and attention 
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for three levels of Aβ burden and WMH (-1, 0 and 1 SD using sample’s mean) are portrayed in Fig. 

1. Besides, there was a marginally significant interaction effect between Aβ burden and WMH for 

language (F(1,97) = 2.77, P = 0.0995) and processing speed (F(1,97) = 2, P = 0.097). WMH’s 

negative effects on cognition increased by 0.169 SD for language and 0.167 SD for processing speed 

consequently to a one unit increase in Aβ SUVR. The moderation analyses detected no interaction 

between biomarkers for episodic memory (P = 0.576), working memory (P = 0.582) and visuospatial 

abilities (P = 0.432). Detailed results of the moderation analyses are provided in Table 3. 

Taken together, results from the stepwise and moderated regressions indicate that Aβ and WMH 

yield superadditive (synergistic) effects on executive functions and attention, whereas their shared 

effects on working memory and language are additive in nature. 

Mediation of age-related cognitive differences by Aβ burden and WMH 

Mediation analyses were conducted to assess whether Aβ burden and WMH act as potential 

mediators of the relationship between age and cognition. Path models with a significant mediation 

effect are presented in Fig. 2. The path analysis revealed that Aβ deposition fully mediates the 

relationship between age and episodic memory (see Fig. 2A). The bootstrap confidence interval for 

the indirect effect (a1 x b1 = -0.023) was entirely under zero (CI1: -0.051, -0.008), indicating that the 

indirect effect of age on episodic memory performance through Aβ burden was significant. Both Aβ 

and WMH pathologies mediated the effect of age on working memory and attention (see Fig. 2B and 

2D). The confidence intervals for the indirect mediation effects of age on working memory through 

Aβ [(a1 x b1 = -0.017) and WMH (a2 x b2 = -0.020) did not contain zero [(CI1: -0.038, -0.005), (CI2: -

0.035, -0.010)] and were thus significant. Similarly, the mediation effects on attention were 

significant for Aβ [(a1 x b1 = -0.015), (CI1: -0.040, -0.001)] and WMH [(a2 x b2 = -0.015), (CI2: -0.029, 
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-0.005)]. However, while Aβ burden and WMH together fully mediated the influence of age on 

working memory, the mediation effect was only partial for attention. The indirect mediation effect of 

age through WMH was significant for executive functions [(a2 x b2 = -0.020); (CI2: -0.04, -0.005)] 

and for language [(a2 x b2 = -0.023), (CI2: -0.041, -0.010)]; complete mediation by WMH was 

observed in both cognitive domains (see Fig. 2C and 2E). In contrast, there was no significant 

mediation effect by either biomarker for processing speed or visuospatial abilities. 

 

Discussion  

One of the main findings of this study, as demonstrated through mediation modelling, is that age-

dependent differences in episodic memory, working memory, executive functions and language were 

explained either fully or partially – as is the case for attention – by the presence of brain pathologies 

associated with AD (Aβ burden) and cerebrovascular disease (WMH). Changes in other domains 

such as processing speed and visuospatial skills, however, were explained only by age and/or sex. 

These results are important because they suggest that the extent of age-dependent changes in specific 

domains in healthy older individuals is related to the extent of underlying brain pathology. Another 

significant finding was that Aβ and WMH were found to contribute additively to decreased 

performance in working memory and language, while they were found to contribute synergistically 

to decreased performance in executive functions and attention. Evidence for the existence of a 

synergistic interaction between both brain pathologies on functions dependent upon frontal-

subcortical circuitry contributes in attaining a clearer understanding of the specific role of brain 

pathology in cognitive aging. 

It must be pointed out that episodic memory stood out as the only cognitive domain to be explained 

solely by Aβ deposition, and that Aβ single-handedly predicted episodic memory performance in our 
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study. This distinctive contribution of Aβ burden to episodic memory is in agreement with a meta-

analysis showing that AD pathology has closer and more robust associations with episodic memory 

decline than any other cognitive domains in healthy older adults (Hedden et al., 2013). It is 

noteworthy that Aβ-dependent memory decline in healthy older adults, as in MCI participants, has 

been considered to be a signature of preclinical dementia (Pike et al., 2007; Sliwinski et al., 2003). It 

should also be noted, however, that episodic memory – as a hallmark of AD - has been more 

systematically investigated than other cognition domains, and this may introduce a bias.  Hence, 

associations between Aβ and other cognitive skills may have been overlooked in initial studies. In 

fact, a recent meta-analysis has linked positive Aβ status in cognitively intact older adults to poorer 

performance not only in episodic memory, but also in global cognitive functioning, language, 

visuospatial abilities, processing speed, working memory, attention and executive functions (Duke 

Han et al., 2017). In the current study, beyond its role in episodic memory performance, Aβ burden 

also mediated age-related differences in working memory and attention, along with WMH. 

Moreover, Aβ burden and WMH were negatively and synergistically associated with executive 

functions and attention, which rely to a significant extent on frontal lobe function (Tsuchida and 

Fellows, 2013). Although mixed findings have been reported previously, some researchers have 

suggested that specific components of executive functioning (especially switching and inhibition) 

(Doherty et al., 2015; Kantarci et al., 2012; Mielke et al., 2016) and working memory (Lim et al., 

2012) are vulnerable to Aβ deposition. Our findings are consistent with this view, especially 

considering that our composite measure of executive functions was composed primarily of tasks 

assessing switching and inhibition.  

The role of WMH in driving age-related differences in working memory, executive functions and 

attention is also in accordance with previous work relating cerebrovascular pathology and cognition 
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in normal older adults (Hedden et al., 2012; Moon et al., 2017; Murray et al., 2010; Papp et al., 

2014). These particular cognitive functions are thought to be vulnerable to WMH because they 

depend on prefrontal and subcortical loops, which are more vulnerable to disruption by widespread 

microvascular lesions (Prins and Scheltens, 2015). Vascular cognitive impairment may also occur 

through cortical atrophy (Kloppenborg et al., 2012; Rizvi et al., 2018) or other less studied 

pathophysiological mechanisms, such as damage to the cholinergic neuronal system (Bocti et al., 

2005; Richter et al., 2017; Roman and Kalaria, 2006). 

More surprisingly, adverse effects of age on language and semantic-related tasks were fully 

mediated by WMH severity. The current literature reviewing the impact of WMH on verbal abilities 

in normal aging remains scarce, as most studies have focused primarily on executive functions and 

processing speed. Lexical and semantic difficulties in AD and even mild cognitive impairment are 

well documented (Benoit et al., 2017; Joubert et al., 2010; Joubert et al., 2008; Langlois et al., 2016) 

and have been associated with structural and functional alteration within regions of the semantic 

network (Barbeau et al., 2012; Joubert et al., 2010; Pineault et al., 2018). There is some evidence for 

the role of white matter alterations in developmental language disorders such as dyslexia (Zhao et 

al., 2016). The language-semantic network is complex and involves a wide range of interconnected 

brain regions, and it is possible that widespread axonal damage may compromise the connectivity of 

this network. A recent study with a cohort of healthy older participants showed that executive 

control required to access representations of stored lexical-semantic knowledge relied on the 

integrity of the arcuate fasciculus, a major language-related white matter pathway (Hoffman et al., 

2017). Our results do not allow distinguishing between storage vs access difficulties in language-

semantics, but the notion that the integrity of white matter pathways is necessary for executive 

components of language and efficient communication between distributed cortical regions forming 
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the language-semantic network is an interesting avenue and deserves future investigation. 

In agreement with previous studies in cognitively normal older adults and in individuals with MCI, 

there was no significant correlation between these two biomarkers when controlling for age, 

supporting the prevailing notion that Aβ and vascular pathologies reflect distinct pathological 

pathways of independent aetiology (Haight et al., 2013; Hedden et al., 2012; Vemuri et al., 2015; 

Villeneuve and Jagust, 2015). Further, Aβ and cerebrovascular pathologies also appear to occur 

independently in preclinical older adults (Knopman et al., 2013). In individuals with AD, however, 

those with high Aβ deposition also tend to harbour greater WMH volume; hence, it has been 

hypothesized that WMH may impart a “second hit” to already existent AD pathology, thus 

precipitating the clinical expression of the disease (Provenzano et al., 2013). Consistent with this 

view, there is some evidence suggesting that AD may induce WMH through degenerative, non-

vascular processes. Although the pathophysiological mechanisms of interaction between Aβ and 

cerebrovascular burden remain elusive, several tentative explanations have been put forward. For 

instance, accumulation of tau protein in the cortex secondary to Aβ deposition may promote WMH 

development (and axonal loss) directly via neuronal death and more indirectly by disrupting fast 

anterograde axonal transport mechanism (McAleese et al., 2015). WMH, in turn, are thought to 

potentiate the deleterious impact of AD pathology and accelerate neurodegeneration through various 

processes including oxidative stress, inflammation and impaired cerebral perfusion (Iadecola, 2010). 

An alternative hypothesis is that vascular brain damage disrupts lymphatic drainage of vessels 

located in the periventricular tissue and prevent proper clearance of waste material such as Aβ 

peptides (Ramirez et al., 2016; Weller et al., 2009). 
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It could be reasonably contended that these mechanisms of interaction between AD and vascular 

pathways may not yet be detectable in asymptomatic individuals because they emerge later in the 

course of the disease. Challenging this proposition, however, recent work has provided evidence that 

Aβ deposition and total WMH volume in healthy older adults have synergistic associations with grey 

matter neurometabolic alterations typically associated with AD, especially in the posterior cingulate 

and precuneus (Schreiner et al., 2018). Therefore, AD and cerebrovascular disease pathophysiology 

may yield mutually potentiating effects which, albeit subtle, are detectable even in the absence of 

objective cognitive impairment (i.e. in the hypothetical preclinical stage of dementia). Pertaining to 

cognitive effects of Aβ deposition and WMH in normal older adults, our results advocate the 

existence of both additive and synergistic associations, depending on the cognitive domains. It is 

worth noting that the presence of synergy in several cognitive domains lends support to the notion 

that Aβ and WMH interact at a physiological level through one or several of the aforementioned 

mechanisms. Thus, despite reflecting initially independent disease pathways, Aβ and WMH 

pathologies appear to exert interactive effects on cognition in healthy older adults. This finding 

strongly suggests that AD and cerebrovascular disease pathways converge at some point in time in 

preclinical individuals, and that their interactive effects and co-occurrence are likely to increase with 

the disease progression.  

 

In contrast with the results reported above, Aβ burden and WMH did not significantly predict 

performance in processing speed and visuospatial abilities when age was accounted for in the 

regression models. Therefore, other factors or pathogenic mechanisms may be responsible for age-

related differences in processing speed and visuospatial function. The lack of an association between 

biomarkers and processing speed, while not entirely unexpected regarding Aβ burden, stands against 
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a body of work suggesting that processing speed is particularly vulnerable to early white matter 

changes and cerebral small vessel disease (Gunning-Dixon and Raz, 2000; Prins et al., 2005; van den 

Heuvel et al., 2006; Wright et al., 2008). It could be that other surrogates of cerebrovascular damage, 

such as vascular risk factors or brain infarcts, would be more readily responsible for slowed 

information processing with age than WMH (Benjamin et al., 2014; Knopman et al., 2001; 

Saczynski et al., 2009; Viswanathan et al., 2015). Alternatively, the failure to link higher WMH with 

reduced processing speed could also be attributable to relatively low WMH severity in our sample. 

Nonetheless, our findings are fairly in line with those of a recent meta-analysis in which progression 

of WMH was associated with decline in global cognitive functioning with markedly greater effects 

for attention and executive functions as opposed to memory and processing speed (Kloppenborg et 

al., 2014). 

On the whole, our results appear quite robust when compared to analogous cross-sectional studies of 

similar sample size on cognitively normal older adults. One likely explanation is that our carefully 

selected neuropsychological assessment included the most sensitive and relevant tests specific to 

each cognitive domain. For instance, we avoided neuropsychological tests with ceiling effects in 

healthy older adults (e.g. we chose the RAVTL instead of the CVLT for assessing verbal memory). 

Indeed, many studies have relied on a global cognitive composite score or a single measure of 

memory, and few studies have sought to assess the distinctive contribution of Aβ and 

cerebrovascular pathologies across a wide range of cognitive domains. Another strength to the 

current study is that in addition to controlling for education in our analyses, we also recruited 

participants with different levels of education, thus avoiding the common pitfall of recruiting only 

highly educated participants. Education is often a source of bias because; 1) highly educated adults 

are more likely to volunteer in cognitive aging studies and; 2) higher education, which is a proxy of 
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cognitive reserve, may mask associations between brain pathologies and cognition (Stern, 2012). 

The use of continuous measures of Aβ burden and WMH is more statistically powerful and a better 

reflection of reality than dichotomous measures based on a threshold, which can be viewed as more 

arbitrary (Farrell et al., 2017). 

A few limitations to this study should also be noted. First of all, the cross-sectional nature of the 

current results limits the scope of interpretation of our findings, as well as our sample size which is 

relatively modest when compared with some other cohorts. However, we compensated by recruiting 

participants from a wider spectrum of educational achievement and by using more sensitive 

neuropsychological tests. Visual rating of WMH severity may prove to be less sensitive to early 

white matter changes in healthy individuals than automated volumetric assessment of WMH because 

of potential floor or ceiling effects and does not as readily lend itself to regional characterization.  

Conclusions 

Altogether, our results demonstrate that age-related changes in multiple components of cognitive 

functioning are driven by specific neuropathological biomarkers of dementia in healthy older adults. 

Furthermore, we argue that pathological aging is a multifaceted and insidious process occurring over 

a continuum of severity rather than a discrete entity. In particular, the present study demonstrates 

that Aβ and cerebrovascular pathologies can yield synergistic effects on cognition, especially for 

functions that rely on frontal-subcortical circuits (i.e., executive functions and attention). Although 

many have speculated on the existence of superadditive cognitive effects of Aβ and WMH in healthy 

older adults, this notion had never, to our knowledge, received tangible empirical support before this 

study. Most research effort in that direction has failed to find a significant interaction between Aβ 

and WMH on cognition, thus pointing towards additive effects (Gordon et al., 2015; Lo et al., 2012; 
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Vemuri et al., 2015). While it is difficult to pinpoint why our findings differ from those of previous 

work in this regard, this could be partly imputable to important discrepancies in cognitive 

assessment, such as reliance on a single composite measure or rating scale in some studies. In 

another study on this matter, a trend was noticed for worse cognition in healthy older adults 

harboring significant levels of both AD and cerebrovascular pathologies as compared to other 

groups, although there was no significant interaction effect (Marchant et al., 2012). Most 

importantly, our primary finding that brain pathology mediates age-related differences in cognitive 

performance of older adults has significant implications for future research on cognitive aging and 

may serve as a leverage for the development of interventions to mitigate cognitive decline associated 

with aging in individuals without objective cognitive deficits. In light of the current study findings, 

what truly remains a challenge is to define cognitive aging in the absence of significant brain 

pathology associated with AD and cerebrovascular disease.  
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TABLES 

TABLE 1. Characteristics of Participants  

77F/27M 
Range Mean (SD) Median (interquartile range) 

Age (years) 65.00-92.92 73.31 (6.17) 72.67 (9.48) 

Education (years) 9-24 13.72 (3.27) 13.00 (5.00) 

MoCA 23-30 27.32 (1.95) 27.50 (3.00) 

Aβ burden (SUVR) 1.04-2.03 1.24 (0.17) 1.19 (0.11) 

WMH (ARWMC) 0-18 3.17 (3.70) 2.00 (6.00) 
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TABLE 2. Stepwise regressions models by cognitive domain  

 
 Significant  

Predictors  

Std. β (p-value) 

 

F (p-value) R2 

Episodic Memory     

 Aβ burden  -0.409 (<0.001) 20.513 (<0.001) 0.167 

Working Memory     

 WMH  -0.323 (<0.001) 11.870 (<0.001) 0.132 

 Aβ burden -0.316 (0.001)  0.224 

 Sex  0.196 (0.025)  0.263 

Executive Functions     

a (without education) WMH  -0.339 (<0.001) 13.565 (<0.001) 0.143 

 Aβ burden -0.275 (0.003)  0.217 

b (with education) WMH -0.287 (0.003) 14.515 (<0.001) 0.143 

 Education 0.341 (<0.001)  0.257 

 Age -0.253 (0.007)  0.310 

Attention     

a (without education) Aβ burden  -0.381 (<0.001) 16.458 (<0.001) 0.158 

 WMH -0.309 (0.001)  0.253 

b (with education) Age -0.209 (0.039) 11.002 (<0.001) 0.159 

 Aβ burden -0.276 (0.004)  0.233 

 WMH -0.244 (0.010)  0.280 

 Education 0.195 (0.026)  0.317 

Language     

a (without education) WMH -0.385 (<0.001) 12.425 (<0.001) 0.160 

 Aβ burden  -0.195 (0.032)  0.197 

b (with education) WMH -0.413 (<0.001) 16.797 (<0.001) 0.160 

 Education 0.300 (0.001)  0.250 

Processing Speed     

 Age -0.538 (<0.001) 41.578 (<0.001) 0.290 

Visuospatial Abilities     

a (without education) Sex 0.325 (<0.001) 13.304 (<0.001) 0.112 

 Age -0.311 (0.001)  0.209 

b (with education) Sex 0.272 (0.003) 11.834 (<0.001) 0.112 

 Age -0.320 (<0.001)  0.209 

 Education 0.238 (0.008)  0.262 

 

Outcomes (cognitive domains) are identified in the first column of the table. Predictors included in 

the final model are listed in order of their additive contribution in the stepwise regression model. 

Results of the stepwise regressions are shown without education (a) and with education (b) 

separately when inclusion of education as a potential predictor influenced the final model. R2*100 

represents the cumulative % of variance explained by each predictor.  
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TABLE 3. Moderation models by cognitive domain  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WMH, Aβ burden and composite cognitive scores are expressed in standardized z-scores (derived 

from the sample’s mean and SD). For simplicity, covariates (age, sex and education) are not shown 

in this table but were accounted for in all models. The interaction term for the moderation analysis 

(WMH x Aβ burden) is shown in the fourth row for each model.  

  Coeff. SE t p-value 

Episodic Memory 

Intercept 0.541 1.309 0.413 0.680 

WMH (X) -0.068 0.100 -0.678 0.500 

Aβ burden (M) -0.347 0.102 -3.400 0.001 

WMH x Aβ burden (XM) 0.061 0.108 0.562 0.576 

Working Memory 

Intercept -0.106 1.238 -0.086 0.932 

WMH (X) -0.310 0.094 -3.281 0.001 

Aβ burden (M) -0.274 0.096 -2.843 0.005 

WMH x Aβ burden (XM) -0.056 0.102 -0.552 0.582 

Executive Functions 

Intercept 1.122 1.203 0.932 0.354 

WMH (X) -0.268 0.086 -3.111 0.003 

Aβ burden (M) -0.125 0.106 -1.180 0.241 

WMH x Aβ burden (XM) -0.390 0.103 -3.786 0.000 

Attention 

Intercept 1.460 1.050 1.391 0.168 

WMH (X) -0.219 0.080 -2.732 0.008 

Aβ burden (M) -0.282 0.082 -3.443 0.001 

WMH x Aβ burden (XM) -0.298 0.088 -3.400 0.001 

Language 

Intercept -0.068 1.227 -0.055 0.956 

WMH (X) -0.345 0.094 -3.691 0.000 

Aβ burden (M) -0.140 0.096 -1.466 0.146 

WMH x Aβ burden (XM) -0.169 0.101 -1.663 0.010 

Processing Speed 

Intercept 5.645 1.204 4.690 0.000 

WMH (X) -0.042 0.092 -0.455 0.650 

Aβ burden (M) -0.003 0.094 -0.033 0.974 

WMH x Aβ burden (XM) -0.167 0.099 -1.675 0.097 

Visuospatial Abilities 

Intercept 1.925 1.250 1.540 0.127 

WMH (X) -0.075 0.095 -0.782 0.436 

Aβ burden (M) -0.081 0.097 -0.833 0.407 

WMH x Aβ burden (XM) -0.082 0.103 -0.790 0.432 
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Figure 1. Cognitive performance at low (-1 SD), moderate (0 SD) and high (1 SD) levels of 

Aβ burden and WMH (adjusted for age, sex and education) 

 

The regression slopes show WMH associations with executive functions (A) and attention (B) at 

three levels of Aβ burden and WMH (-1.00 SD, 0.00 SD and 1.00 SD based on our sample’s 

statistics). Differences of slopes illustrate the synergistic interaction between WMH and Aβ over 

these cognitive domains. The moderated regression analyses were corrected for age, sex and 

education. 
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Figure 2. Path models with a significant mediation effect of the biomarkers  

 

Aβ, WMH and cognitive composite scores are expressed in z-scores (SD units). Age and education 

are expressed in years. As such, path a is expressed in SD increment of Aβ (a1) and WMH (a2) 

associated with an increment of one year of age, while path b is expressed in SD decrement of 

cognitive performance associated with an increment of one SD in Aβ (b1) and WMH (b2). Path c 

(total effect) is expressed in SD decrement in performance associated with an increment of one year 

of age regardless of Aβ and WMH. Significant mediators are highlighted by grey shading. 

Significant paths are designated by a solid line and non-significant paths by dashed lines. In all the 

pictured cognitive domains except for attention, the direct effect of age on cognition (c’) was non-

significant, indicating complete mediation. The mediation effect is only partial for attention. Sex and 

education were included as covariates in all mediation models. The reported mediations paths (i.e., a, 

b and c’) are adjusted for these covariates. Significant paths between covariates and other variables 

derived from the mediation analysis are indicated by light lines while non-significant paths are not 

shown on the figure for simplicity.  

 

 


