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Résumé 

Les comportements non-stimulés pour évaluer la douleur chez les animaux suscitent un 

intérêt grandissant. Un exemple est la « Rat Grimace Scale » (RGS), une échelle de douleur 

basée sur 4 unités d’action d’expressions faciales: resserrement orbital, aplatissement nez / joue, 

changements d’oreilles et vibrisses. Le potentiel de cette échelle et ses limites demeurent à 

déterminer. 

La RGS standard est laborieuse à compléter (enregistrement de vidéos et extraction 

manuelle des images). Par conséquent, cette thèse a évalué si l'application en temps réel était 

possible. En comparant les résultats obtenus en temps réel à la méthode standard, il a été constaté 

que les résultats étaient similaires. Ainsi, la fiabilité de la RGS en temps réel élargit grandement 

son applicabilité en tant qu’outil clinique et de bien-être.  

Toutefois, l'applicabilité de la RGS dans la douleur viscérale aiguë et chronique 

demeurent inexplorée. Par conséquent, cette thèse a évalué si la RGS pouvait évaluer la douleur 

à partir d'un modèle de colite aiguë et chronique de « dextran sulfate sodium » (DSS). Deux 

autres outils comportementaux (enfouissage et « Composite Behaviour Score » [CBS]) ont 

également été évalués. Ils ont été comparés au « Disease Activity Index » (DAI), un outil 

commun d'évaluation de la sévérité de la maladie. La RGS et l’enfouissage ont augmenté et 

diminué respectivement lorsque le DAI a augmenté. De futures études sont nécessaires pour 

valider le CBS. Cette étude démontre que le RGS peut évaluer la douleur viscérale et 

potentiellement plusieurs types de douleur. 

La nécessité d'une formation avant la notation RGS a également été investiguée en 

évaluant la fiabilité de l'évaluateur après avoir reçu une formation ou aucune formation. Il a été 

constaté que la formation était bénéfique pour améliorer la fiabilité en plus de réduire la 

variabilité alors que la notation de plusieurs images seulement ne l’était pas. En outre, les 

évaluateurs obtenaient des résultats fiables après une période d'inactivité. Cette étude démontre 

donc le besoin de former les nouveaux évaluateurs. 
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Par ailleurs, cette thèse a également étudié si la publication des directives ARRIVE « 

Animal Research: Reporting of In Vivo Experiments » avait entraîné une amélioration des 

normes de déclaration. Cette étude a montré que les normes de déclaration ne s’étaient pas 

améliorées de manière significative, mais aussi que les articles publiés dans des revues qui 

soutiennent les directives ARRIVE n’ont pas de meilleurs standards. Par conséquent, cette étude 

souligne la nécessité d'imposer les directives ARRIVE pour assurer une amélioration 

significative. 

Dans l'ensemble, cette thèse a démontré l'utilité de la RGS en temps réel comme outil 

d'évaluation clinique de la douleur viscérale chronique ainsi qu’en recherche. Elle souligne 

également le besoin de former les évaluateurs avant la notation RGS. Enfin, il a été démontré 

que les normes de déclaration restent faibles et que les directives ARRIVE doivent être 

imposées. Il est à espérer que ces études encourageront la progression de la recherche sur la 

douleur par l’amélioration des standards de déclaration ainsi que par l’utilisation de la RGS et 

autres comportements spontanés pour évaluer la douleur. 

Mots-clés : échelles de grimace, expression faciale, douleur, comportements animaux, 

développement d'outils, état affectif, rats, modèles animaux, directives ARRIVE, normes de 

déclaration 
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Abstract 

There is growing interest in the use of non-evoked spontaneous behaviours to assess pain 

in animals. A tool that measures such behaviours is the Rat Grimace Scale (RGS), a validated 

facial expression pain scale consisting of four “action units”: orbital tightening, nose/cheek 

flattening, ear changes and whisker changes.  

The strengths and limitations of the RGS are not fully explored. One limitation of the 

RGS (using the standard scoring method) is its time- and labour-intensive nature (video 

recording and manual image extraction are required). A primary goal of my research was to 

evaluate the feasibility of real-time RGS scoring. To accomplish this, the standard and real-time 

assessment methods were compared. It was found that both scoring methods were comparable 

and demonstrated the utility of real-time RGS scoring. This provides evidence that the RGS may 

be utilised not only as a research tool, but a useful clinical and welfare tool as well. 

A further goal was to explore the use of the RGS in a visceral and chronic pain model. 

The RGS was hence tested in a dextran sulfate sodium (DSS) colitis model. Two other 

behavioural tools (burrowing and the composite behaviour score [CBS]) were also evaluated. 

These behavioural tools were compared to the Disease Activity Index (DAI), a common tool 

assessing disease severity in colitis models. The RGS and DAI scores increased and decreased 

concurrently. This study demonstrates that the RGS can be applied to assess chronic visceral 

pain and may be used to assess the mechanisms of different pain types. 

The need for training prior to RGS scoring was explored by assessing the rater reliability 

after receiving training or no training (scoring of multiple images only). This study demonstrates 

that training is beneficial; training improved scoring reliability and reduced variability. This was 

not observed in raters who received no training. Additionally, trained raters could still score 

reliably four years later. Therefore, this study demonstrates the need for new raters to be trained 

in RGS use to improve reliability. 

Lastly, this thesis explores whether the publication of the ARRIVE (Animal Research: 

Reporting of In Vivo Experiments) guidelines improved the reporting standards of animal 



 

vi 

studies. This study found that reporting standards had not improved meaningfully, and the 

standard of reporting was no better in papers published in journals that support the ARRIVE 

guidelines. Therefore, this highlights the need for the enforcement or refinement of ARRIVE 

guidelines to ensure meaningful improvement of reporting standards. 

Overall, this thesis demonstrates the utility of the RGS as a practical pain assessment 

tool, with real-time application and the ability to assess chronic visceral pain. It highlights the 

need for raters to be trained prior to RGS scoring. Lastly, it demonstrates that the 

implementation of reporting standards in line with the ARRIVE guidelines are low, and 

enforcement may be required to ensure widespread application. It is the hope that these studies 

will encourage the use of the RGS and other non-evoked spontaneous behavioural pain 

assessment tools and will improve reporting standards in medical literature that advance pain 

research. 

Keywords : Grimace Scale, Facial Expression, Pain, Animal Behaviour, Tool Development, 

Affective State, Rat, Animal Models, ARRIVE Guidelines, Reporting Standard 
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1. Introduction 

Pain is a sensation that everyone experiences at some point in their lives. In humans, the 

gold standard of pain assessment is by direct verbal report. We can communicate with one 

another and the medical staff when we are in pain and provide feedback regarding treatment 

efficacy. This gold standard in pain assessment reporting is not possible in animals as they 

cannot communicate with us directly. Therefore, pain assessment in animals has largely relied 

on inferences from their behaviours. Traditionally, pain assessment in preclinical animal 

research has largely relied on nociceptive tests which assess an animal’s reflexive response to 

an external stimulus. These nociceptive tests are favoured for their practicality: they can be 

replicated easily and reliably (Mogil and Crager, 2004). However, when the novel analgesics 

that had been reported as efficacious in preclinical animal trials failed during human clinical 

trials, it was proposed that nociceptive tests were not the appropriate pain measurement tools 

they were thought to be (Mogil and Crager, 2004; Rice et al., 2008 and Mogil et al., 2010). This 

is because nociceptive tests only assess the sensory component of pain and are unable to evaluate 

the affective component of pain, the primary concern reported by human patients (Backonja and 

Stacey, 2004; Mogil and Crager, 2004; Rice et al., 2008 and Mogil et al., 2010). This means 

that there is a mismatch of pain type assessed during animal and human trials (i.e. animal trials 

assess evoked-reflexive responses to nociceptive tests while human trials assess ongoing pain 

via verbal report). Therefore, it has been proposed that non-evoked spontaneous behaviours 

from animals should be used to assess the ongoing pain experienced (affective pain) by the 

animal (Mogil and Crager, 2004). Other issues with preclinical research have also been 

identified, one of which is the deficiencies in reporting standards in published papers (Kilkenny 

et al., 2009). The consequences of poorly reported published papers are the obstruction of study 

replication and validation of findings and will adversely skew systematic reviews and meta-

analysis (Kilkenny et al., 2009; MacCallum 2010; du Sert, 2011 and Freedman et al., 2015).  

At the beginning of this PhD, the Rat Grimace Scale, had just been developed by Sotocinal 

et al. (2011). This pain assessment tool is a promising method which utilises spontaneous 

changes in facial expression to assess ongoing pain experienced by rats. The studies described 

in this thesis explore the strengths and limitations of the RGS. Specifically, the studies explore: 
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1) if real-time application of the RGS is feasible, if so this would drastically reduce the time and 

labour required to obtain pain scores and also expand the usefulness of RGS from a research 

tool to a clinical tool; 2) if the RGS can be utilised to assess more pain types than originally 

thought (i.e. acute and chronic visceral pain); and 3) if training in RGS use prior to RGS scoring 

is beneficial by improving reliability. 

A study was published by Kilkenny et al. (2009) which highlighted the deficiencies of 

reporting standards in published animal studies. This subsequently prompted the publication of 

the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines a year later by 

Kilkenny et al. (2010) which contained 20 key items that all papers should include for a paper 

to be well reported and accurate. This thesis will also assess: 1) if reporting standards have 

improved since the publication of the ARRIVE guidelines and 2) if journals that support the 

ARRIVE guidelines publish papers with higher reporting standards than journals that do not 

support the ARRIVE guidelines. 
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1.1. What is pain? 

Pain has been defined by the International Association for the Study of Pain as ‘an 

unpleasant sensory and emotional experience associated with actual or potential tissue damage 

or described in terms of such damage’. Pain is an adaptive and protective response to tissue 

damage and maintains body integrity by preventing further contact with a noxious stimulus 

(nociceptive pain) that increases tissue damage (inflammatory pain; Woolf, 2010). An injured 

area is more sensitive to external stimuli and ongoing pain is present, making the injured 

individual aware of the damage and encouraging protection of the injured area to allow healing. 

This adaptive pain response dissipates when the injury is healed, and the protective function is 

no longer needed. However, pain can also be maladaptive (pathological pain) where the 

sensation of pain outlasts the injury due to structural damages or changes to the nervous system. 

1.1.1. The basic mechanism of pain 

After an injury, various inflammatory agents are released which activate and sensitise 

nociceptors (peripheral sensitisation; Coutaux et al., 2005). There are also alterations to neuron 

properties and nociceptive pathways within the central nervous system that enhance the 

nociceptive response (central sensitisation; Latremoliere and Woolf, 2009).  

Peripheral sensitisation is mediated by nociceptors: Aδ and C fibers. Aδ fibers are lightly 

myelinated, small in diameter and conduct action potentials slowly (4 – 30 m/s). C fibers are 

unmyelinated, smaller in diameter and conduct action potentials even more slowly (0.3 – 1.5 

m/s). Both fiber types have a high activation threshold and respond to both thermal and 

mechanical stimuli. C fibers can also be polymodal, allowing them to respond to all stimuli 

types (thermal, mechanical and chemical). After an injury, damaged cells, platelets, mast cells, 

macrophages and nerves release neuropeptides and pro-inflammatory cytokines at the injury site 

and within the central nervous system. This results in a cascade of events that lead to primary 

hyperalgesia. Damaged cells release H+ and adenosine triphosphate (ATP) which interact with 

ASIC-1 (acid-sensing ionic channel), VR-1 (vanilloid receptor) and ATP receptors. These 

interactions cause cation channels to open and depolarise the nociceptor. Inflammatory agents 

(i.e. bradykinin, prostaglandins, leukotrienes, proinflammatory agents and nerve growth factor 
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(NGF)) sensitise other receptors, resulting in primary hyperalgesia. During platelet aggregation 

and mastocyte degranulation, 5-HT and histamine are released and as their concentration 

increases, pain develops. At the nociceptor, the inflammatory substances bind to their respective 

receptors and induce the phosphorylation of protein kinases A and C (PKA and PKC). This 

enhances the efficiency of tetrodotoxin-resistant sodium channels and lowers the thresholds of 

other receptors (e.g. VR-1). NGF forms a complex with TrkA (tropomyosin receptor kinase A) 

and, within the nociceptor, induces protein synthesis of more tetrodotoxin-resistant sodium 

channels. The nociceptor itself also releases substance P and calcitonin gene-related peptide 

(CGRP) which further activates nociceptors. Additionally, substance P induces mastocyte 

granules to release histamine. The histamine release causes vasodilation, resulting in further 

mastocyte degranulation and the release of more histamine. The increased release of histamine 

increases vasodilation and sensitises the nociceptors near the damaged tissues as well as in the 

surrounding healthy tissues (secondary or spreading hyperalgesia). Overall, there is an amplified 

response to a stimulus from lower thresholds resulting in the opening of voltage dependent 

sodium channels open and depolarising of the nociceptors.  

The action potential generated spreads through the cell bodies of the nociceptors to the dorsal 

root ganglion (Mello and Dickenson, 2008). Most Aδ and C fibers terminate in laminae I-II and 

V and transmit impulses to nociceptive specific cells (in laminae I-II) and to wide- dynamic 

range neurones (laminae V; Mello and Dickenson, 2008). These impulses are transmitted by 

releasing glutamate which diffuses across the synapse to activate the AMPA (α-animo-3-

hydroxy 5-methyl-4-isoxazeloproprionic acid) and NMDA (N-methyl-D-aspartate) receptors of 

nociceptive specific cells and wide-dynamic range neurones (Mello and Dickenson, 2008). The 

acute stimulation of fibers results in the activation of AMPA receptors which set the initial 

response to noxious and tactile stimuli or the first pain response. The influx of Ca2+ into dorsal 

horn neurons activates PKC and CaMKII (calmodulin-depending protein kinase II), both of 

which are major effectors of central sensitisation. Repetitive and high-frequency stimulation of 

C fibers will cause nociceptors to release more glutamate, substance P and CGRP, causing a 

slow depolarisation of the neurones and removal of the Mg2+ NMDA block (long term 

potentiation). Activation of the NMDA receptors with other receptors (i.e. G-coupled MGluR 

(metabotropic glutamate receptor), NK1 (neurokinin-1), B2 (bradykinin-2) and CGRP1 
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receptors) result in an increased influx of Ca2+ that amplifies and prolongs the spinal dorsal horn 

neurons to subsequent input – the wind-up phenomenon. The wind-up phenomenon continues 

for as long as the wide dynamic range neurones receive input, resulting in elevated activation 

and responsiveness of the dorsal horn neurones. This is the second pain response to the ongoing 

unpleasant pain sensation. 

The spinal neurones in laminae I-II then convey the signal to the parabrachial area, the 

amygdala and hypothalamus, the periaqueductal grey and the rostral ventromedial medulla, in 

that order. The affective component of pain (unpleasant ongoing emotional experience) is 

processed in the amygdala and hypothalamus. Neurones from laminae V in the spinal cord 

dorsal horn transmit the signal to the thalamus, then to the somatosensory cortex where the 

sensory component of pain is processed (location and duration of the injury). These effects can 

be either facilitated or inhibited. In the facilitatory pathway, there is a release of 5HT-3 from the 

rostral ventromedial medulla which activates 5HT-3 receptors, exerting a pronociceptive effect 

at the spinal cord level by allowing an influx of Na+ (Mello and Dickenson, 2008). The 

inhibitory pathway begins from the release of norepinephrine into the spinal cord from the brain 

stem nuclei, resulting in the inhibition of transmitter releases from primary afferent terminals 

and the suppressed firing of projection neurones in the dorsal horn (Mello and Dickenson, 2008). 

Inhibition also occurs at the level of the spinal cord when inhibitory neurones in the spinal cord 

dorsal horn release GABA (gamma-aminobutyric acid) and glycine. These bind to their 

respective receptors to re-polarise the nociceptors via opening ion channels that allow 

negatively-charged Cl- and bicarbonate ions to go through the plasma membrane. 

Pain may also be modulated via central sensitisation. This is the abnormal enhancement of 

neurone properties and nociceptive pathways within the central nervous system that results in 

increased membrane excitability, synaptic efficacy or reduced inhibition (Latremoliere and 

Woolf, 2009). This may only be triggered if the stimulus is intense, of a long duration and 

repeated. During this time, phosphorylation by protein kinases (i.e. PKA, PKC, CaMKII and 

ERK [extracellular signal-regulated kinases]) increases synaptic efficacy and membrane 

excitability by reducing the depolarization threshold and activation of NMDA and AMPA 

receptors. These protein kinases also recruit and insert more AMPA receptors at the membrane 



 

6 

and reduce the outflow of K+. Lastly, these kinases mediate transcription factors drive gene 

expression (e.g. c-fos, NK1, TrkB [tropomyosin receptor kinase B], Cox2 [cyclooxygenase-2]) 

which causes the strengthening of the synapse to last longer. The resultant effect is an increased 

pain response due to increases in spontaneous activity in action potential firing, a reduction in 

threshold to external stimuli and the enlargement of receptive fields. 

1.1.2. Behavioural pain assessment methods in rodents 

Laboratory rats are frequently used in pain research as models for human pain. However, it 

is difficult to assess pain in animals because, unlike humans, they cannot provide verbal 

feedback to indicate if they experience pain or if a novel analgesic treatment is working. 

Therefore, pain evaluation in animals is based on inferences from their behaviours. Pain 

assessments in animals range from the use of nociceptive tests, reflexive responses to an external 

stimulus (e.g. von Frey testing), to specific and non-specific pain behaviours, behaviours that 

increase or decrease in response to pain or analgesic administration (e.g. grimacing). A few of 

these assessment methods with an emphasis on rodents are described below. 

1.1.2.1. Nociceptive tests 

1.1.2.1.1. von Frey test 

The von Frey test is considered the gold standard method for assessing someone’s 

mechanical threshold (Deuis et al., 2017). It was originally designed to assess the itching 

sensation in humans and has now been standardised to assess mechanical sensitivity in both 

humans and animals (von Frey, 1922 as cited by Bove, 2006). This method involves manually 

applying a nylon monofilament at a right angle to the area of interest, such as the hind paw of a 

rat, until the filament bends (Barrot, 2012). The monofilaments are of varying diameter; a 

thicker filament is stiffer and applies a greater force than a thinner filament. During the test, rats 

are placed on a platform with a mesh bottom that allows them to move about freely, the von 

Frey filament is applied when the rats are stationary. Filaments of increasing force are applied 

until the animal withdraws its hind paw or licks or shakes its hind paw (Deuis et al., 2017). The 

force that evoked the response is noted as the mechanical threshold of the rat. This is performed 
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multiple times to ensure reliability and consistency. This usually results in 5-10 applications of 

von Frey filaments (Deuis et al., 2017).  

The advantages of the von Frey test is that it is simple to use and inexpensive (Bove, 2006). 

However, the force generated by the application of a von Frey filament can be affected by 

differences in protocol (speed of application, degree of bending, number of applications) and 

biases (experimenter and environmental; Bove, 2006). The speed of application can affect the 

force applied. A quicker application applies the maximum force sooner or may even overshoot 

the intended force, thus prompting a greater response and underestimates the actual mechanical 

threshold. The applied mechanical threshold may also be reduced if the filament is flexed too 

far with over application of strength (filament tip applied at an angle) as the filament tip will 

apply less force. Repeated applications of the von Frey filaments may also sensitise the area and 

result in a reduced threshold with more applications. Experimenter bias may also be an issue 

when experimenters need to make a judgement about whether an observed response is a true 

positive because they usually know the paw that is affected and will expect a positive response 

(Wallas et al., 2003 and Bove, 2006). Tested animals may also be affected by environmental 

factors (e.g. stress) resulting in an increase of the threshold which reduces the response. Another 

factor that may affect the force applied is tissue compliance at the site of application because it 

affects the way the filament bends and the reaction may be affected by the rat’s shift in weight 

from its inflamed paw to the healthy one, resulting in a systematic error of requiring a greater 

force to evoke a response on the healthy paw (Bove, 2006). 

The von Frey test may also be assessed with an electronic von Frey system. An electronic 

von Frey system consists of a single filament that applies an increasing force until a paw 

withdrawal is observed (Deuis et al., 2017). The machine records the force applied automatically 

and sets it as the paw withdrawal threshold. This requires fewer applications (3-4 applications) 

compared to the manual von Frey method. The electronic von Frey systems can also analyse the 

rate at which the force was applied to ensure consistency between applications (Deuis et al., 

2017). Overall, the electronic von Frey test method produces fewer data variabilities and may 

be able to counteract many of the flaws of the manual von Frey method. However, the electronic 
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systems produce different values from the manual von Frey test and comparisons between the 

two methods is difficult.  

1.1.2.1.2. Tail flick test 

The tail flick test was first proposed to assess thermal nociception by D’amour and Smith 

(1941) by applying a radiant heat source on the tip of the rat’s tail. The heat source was turned 

on and the latency for the rat to twitch or move its tail (called a tail flick) was noted. An increased 

latency of a tail flick was described as analgesia. The intensity of the radiant heat source was 

set up so that the tail flick was observed after 5s at baseline. The authors performed the test 

10,000 times on hundreds of rats and found individual variability to be low. The authors used 

this test to assess the analgesic properties of various drugs (hydromorphone, heroin, morphine, 

codeine and pantopon) and observed that increasing doses resulted in an increased latency to 

tail flick. The tail flick behaviour did not occur at higher doses (4 mg/kg hydomorphone; 4 

mg/kg heroin; 12 mg/kg morphine; 30 mg/kg codeine and 24 mg/kg pantopon) even when the 

tails became burnt. This was described as a loss of reaction to pain by the authors. The latency 

to perform a tail flick is also affected by heat intensity and the area being stimulated (e.g. 

sensitivity increases when the most distal part of the rat’s tail is stimulated and when the heating 

rate is high; Le Bars et al., 2001). Interestingly, when the rate of heating was slow, the tail flick 

response did not occur even when the tail was burnt. Therefore, when conducting a tail flick 

test, a cut-off time of 10-20s must be set to avoid skin burns.  

An advantage of this test is the effectiveness of assessing the activity of opioid analgesics 

with increasing sensitivity when the heat is applied more distally (Le Bars et al., 2001). A 

disadvantage of the test is that the tail flick response is considered a spinal reflex and may be 

affected by motor processing changes (Deuis et al., 2017). Additionally, the latency to perform 

the tail flick behaviour is impacted by stress and requires proper habituation and acclimatisation 

to ensure reliable and repeatable testing (Le Bars et al., 2001). This test is also affected by the 

ambient temperature during testing as the rat’s tail is important for thermoregulation and 

responsible for dissipating up to 20% of the rat’s body heat (Berge et al., 1988; Le Bars et al., 

2001). Consequently, it has been found that a higher ambient temperature increases the 

temperature of the tail and reduces the tail flick latency. 
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1.1.2.1.3. Paw withdrawal test/ Hargreaves test 

Hargreaves et al. first proposed this test in 1988. A rat was placed in a plastic box with a 

glass floor and a radiant heat source was aimed at the rat’s hind paws from below. The following 

four measurements were assessed: 1) paw withdrawal latency, 2) whether the withdrawal reflex 

was completed within a second; 3) licking behaviour and 4) duration of hind paw withdrawal. 

The authors observed that there was a decreased latency after the rat was treated with an intra-

plantar carrageenan injection (decreasing from around 10s to 4s) at 1, 2.5 and 4 hours later. It 

was also observed that a higher carrageenan dose of 2 mg/kg had a shorter latency compared to 

0.5 or 1 mg/kg of carrageenan. Withdrawal latencies returned to baseline levels when the rats 

were administered 3 mg/kg of morphine. It was also observed that the carrageenan-injected rats 

had a slower withdrawal movement, were more likely to lick their hind paw and withdraw their 

hind paws for a longer period of time in comparison to the saline-injected rats. The test was 

unaffected by repeated testing as the latency of paw withdrawal on the contralateral paw and in 

saline injected animals remained stable. When the heat was applied quickly (6.5 °C/s), the paw 

withdrawal reaction time was short and the skin surface temperature reached a higher level (Le 

Bars et al., 2001). This suggests that the Aδ fibers are activated when heat was applied quickly. 

However, when the heating process was slow, the reaction time was longer and the skin 

temperature increased less, thus activating only the C fibers. The effects of morphine were more 

evident during the second phase compared to the first phase (Le Bars et al., 2001). When the 

temperature increased slowly (1 °C/min) the paw and plate temperatures were close and paw 

withdrawal was observed at around 39-40 ˚C, which corresponds to the temperature at which 

thermo-nociceptors are activated (Yeomans and Proudfit, 1996). 

This test is useful for assessing unilateral models of pain. The inflamed and contralateral 

hind paws can be compared allowing each animal to act as its own control, thus reducing 

variability (Barrot, 2012 and Deuis et al., 2017). Furthermore, this test allows animals to be free 

ranging (within the testing apparatus) and therefore reduces the possibility of stress-induced 

analgesia (Barrot, 2012 and Deuis et al., 2017). The disadvantage of this test is the need for the 

animal to acclimatise to the testing apparatus to minimise exploratory behaviours. Also, 

behavioural responses can differ between species and strains (Barrot, 2012 and Deuis et al., 
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2017). An alternative to this test has been proposed where the radiant applied heat is increased 

by 2.5 °C increments every 10s until a paw withdrawal is observed (Banik and Kabadi, 2013). 

However, this method takes a longer time and is not available commercially (Deuis et al., 2017).  

1.1.2.1.4. Hot plate test 

This test was first proposed by Woolfe and MacDonald (1944). Mice were placed on a hot 

metal plate by trapping them within an overturned glass beaker. The mice were observed for a 

series of behaviours that were performed chronologically: the mice sat on their hind paws, licked 

their hind paws, kicked up their hind paws, and then attempted to escape. The first behaviour of 

paw licking was observed 30s after placement on the hot plate. When increasing doses of 

analgesics were administered, fewer and fewer animals reacted after 30s on the hot plate: the 

authors described this as analgesia. At temperatures below 50 °C, there was a large variation - 

some mice presented signs of discomfort while others appeared comfortable and did not attempt 

to escape. It was at the higher temperatures (55 °C) that all the mice reacted consistently within 

30s and latency of reactions was shorter. Unlike mice, rats did not display a predictable chain 

of behaviour. Therefore, the sensitivity to assess the analgesic efficacy can be improved by 

assessing the rats’ latency to perform any behaviour (sniffing, grooming, stamping, freezing, 

licking and jumping; Plone et al., 1996). Further improvements in sensitivity are achieved if 

lower temperatures (50 °C vs 55 °C) are used (Plone et al., 1996). An alternative procedure is 

the dynamic hot plate test where a rat is placed on a hot plate at a comfortable temperature (< 

42 °C) and the temperature is increased consistently until the licking behaviour is observed 

(Ogren and Berge, 1984). The temperature at which the response is observed is designated as 

the response temperature. This is affected by the temperature at the beginning of the study, the 

room temperature and the heating rate (Tjolsen et al., 1991). Overall, a variety of behaviours 

has been observed during the conduct of this test (sniffing, grooming, stamping, freezing, 

licking, leaning and jumping). However, the data was less variable if assessment simply 

consisted of assessing the latency to perform any of the behaviours mentioned above, and if 

lower temperatures were utilised (Plone et al., 1996). The licking and jumping behaviours were 

considered to be supraspinally mediated responses because the rats no longer performed these 

behaviours after a spinal transection (Le Bars et al., 2001 and Giglio et al., 2016). It was also 
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observed that different types of analgesics affected different behaviours (i.e. the increased 

latency to licking was observed with opioid administration, and the latency to jump was 

observed with less potent analgesics like acetylsalicylic acid or paracetamol; Le Bars et al., 

2001). While these behaviours were fairly stereotypical in mice, the behaviours of rats were 

more irregular and did not seem to follow a specific pattern (Le Bars et al., 2001). The 

disadvantages of this test are the variability observed in the data generated even within a single 

laboratory, and that the animals learn over multiple testing sessions that the performance of 

certain behaviours result in their removal from the apparatus (Plone et al., 1996; Le Bars et al., 

2001 and Barrot, 2012). 

1.1.2.2. Non-evoked spontaneous behaviours 

1.1.2.2.1. Conditioned place preference 

Conditioned place preference (CPP) has traditionally been used to assess the reinforcing and 

associated rewarding effects of drugs (Sufka, 1994). It was proposed as an assessment for the 

rewarding effects of analgesics during pain by Sufka (1994). This test utilises the idea that pain 

is an unpleasant sensation and that alleviation of that pain with analgesia is rewarding. In this 

test, rats are placed in an apparatus with three compartments: two stimuli-distinct compartments 

that usually differ by colour (black and white) and could also differ by floor type and bedding 

(Sufka, 1994). The third compartment is built in between two distinct stimuli-compartments. 

This compartment tends to be grey in colour with doors leading to the stimuli-distinct 

compartments. During this test, the pain model is induced in the animals and they go through 

three conditioning and testing trials: 1) pre-conditioning – the rats are allowed to explore all 

three compartments freely for 15 minutes; 2) drug conditioning trials – the animals are 

administered the drug immediately before being confined to the animal’s non-preferred 

compartment (usually the white compartment) for 60 minutes and this is repeated with the 

vehicle control, but with the black compartment. These drug conditioning trials are repeated 

four times for each drug and vehicle control and a trial is only performed once per day. Lastly, 

3) testing trials – the animals are confined in the neutral compartment and allowed to explore 

all the compartments. Two assessments are made: 1) time assessment – measuring the duration 

the animals spend in the drug or vehicle associated compartment and 2) choice assessment – 
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assessing the compartment that is entered first by the rat when it is allowed to leave the middle 

neutral compartment (Sufka, 1994). In a subsequent study, it was found that a single drug 

conditioning trial was sufficient to assess the efficacy of various analgesics (King et al., 2009). 

Animals could associate the analgesic or vehicle controls with their respective stimuli distinct 

compartments after one drug conditioning trial of 15 minutes for each analgesic and vehicle 

control. These drug conditioning trials can also be conducted on the same day and this greatly 

reduced the time required to perform this test. 

During the initial study by Sufka (1994), rats were administered an intra-plantar CFA 

(complete Freund’s adjuvant) injection on day 1. They then went through the drug conditioning 

trials on days 2-9 and were assessed on days 10-13. It was expected that CFA-treated animals 

would prefer the compartments associated with the drugs (morphine, MK-801 (an NMDA 

receptor antagonist) and indomethacin (a non-steroidal anti-inflammatory drug)) and non-CFA 

treated animals would show no preference. However, it was found that CFA-treated animals 

were more likely to enter and preferred to spend more time in the drug associated compartment 

with a low dose of MK-801 (0.03 mg/kg) while non-CFA-treated animals showed no preference 

at this dose. Interestingly, when a high dose of MK-801 (0.3 mg/kg) was administered, both 

CFA- and non-CFA treated animals entered the vehicle associated compartment and also spent 

more time in there. This suggests that MK-801 is aversive at this dose and that any analgesic 

property is insufficient to offset this aversiveness. When rats were administered a high dose of 

morphine (10 mg/kg) both CFA- and non-CFA-treated animals entered the drug-associated 

compartment first and spent more time there. While CFA-treated animals were more likely to 

enter the morphine-associated compartment at a lower dose (3 mg/kg), they did not spend 

significantly more time in this compartment, and non-CFA-treated animals did not prefer this 

compartment. This suggests that at a high dose, morphine has rewarding effects that are not 

associated with its analgesic properties as non-CFA-treated animals also found it rewarding. At 

a lower dose, CFA-treated animals may find it rewarding enough to enter that compartment, but 

it was not rewarding enough for them to remain in there. When animals were administered 

indomethacin, a preference for the drug-paired compartment was not observed in either CFA or 

non-CFA-treated animals. From these results, the author concluded that assessing the animal’s 

choice of which compartment to enter first was more sensitive than assessing how long the 
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animals spent in each compartment as the animal may be influenced by other factors when 

choosing whether to remain in the drug-associated compartment (Sufka, 1994). However, the 

observed negative result with morphine and indomethacin is probably better explained by the 

chosen assessment times. Ongoing pain was observed to peak at 6 hours after an intra-plantar 

CFA injection; it decreased to below an intervention threshold 48 hours later; and it returned to 

baseline levels 7 days later when assessed with the Rat Grimace Scale (Sotocinal et al., 2011 

and De Rantere et al., 2016). Furthermore, it was demonstrated that morphine alleviated ongoing 

pain at 2 and 5 mg/kg doses (Sotocinal et al., 2011). Therefore, when the CPP assessments were 

performed by Sufka (1994), ongoing pain was likely no longer present and therefore, the 

analgesic properties of drugs were not rewarding enough to keep the animals in the drug-

associated compartment. This is further supported by later CPP studies that also utilised the 

intra-plantar CFA pain model where the animals were tested on the same day the CFA was 

administered. These animals consistently spent more time in the drug (lidocaine and clonidine) 

paired compartment (Okun et al., 2011 and He et al., 2012). 

A variety of chronic pain models has since been assessed with this test (spared nerve ligation, 

spinal lesion, osteoarthritis via intra-articular injections of MIA (monoiodoacetate), sciatic 

nerve axotomy; King et al., 2009; Davoody et al., 2011; Liu et al., 2011; Qu et al., 2011; He et 

al., 2012 and Okun et al., 2012). The animals consistently spent more time in the drug paired 

compartment at doses of analgesic drugs that alleviate mechanical hyperalgesia (Clonidine, 

conotoxin, lidocaine; King et al., 2009). Interestingly, rats did not prefer the compartment 

associated with adenosine, a drug which was demonstrated to reduce hyperalgesia but not for 

ongoing pain in humans (King et al., 2009). Additionally, CPP no longer occurred when neurons 

from the rostral anterior cingulate cortex (the part of the brain that processes ongoing pain) were 

severed (Johansen et al., 2001). These results demonstrate that CPP is motivated by ongoing 

pain.  

The use of CPP for pain assessment is advantageous because it is relatively reliable, can be 

performed readily, is quite easy to interpret, and may also assess movement-evoked pain since 

voluntary limb movement is required to travel within the apparatus (Li, 2013). This test is not 

only able to assess if a potential new drug is able to alleviate pain, it is also able to assess the 
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possible aversive, rewarding, or potentially abusive effects (Sufka, 1994 and Li, 2013). 

However, this test is quite time consuming as rats need to be trained to associate a compartment 

with a drug or its vehicle. Furthermore, this test requires the presence of ongoing aversive pain 

to assess the rewarding effects of an analgesic (Li, 2013). Lastly, this test may be useful for pain 

assessment in nerve injury models, but not for pain models that are short and paroxysmal (Li, 

2013).  

1.1.2.2.2. Composite behaviour score 

The composite behaviour score (CBS) is a rat ethogram composed of multiple behaviours 

that are present after a laparotomy and which subside with analgesics. This pain assessment 

score was developed in 2000 by Roughan and Flecknell by observing the frequency and duration 

of 150 behaviours in rats which were moved to the surgery room and placed in an induction box 

with oxygen only or with oxygen and isoflurane. Rats were also observed after they were 

administered subcutaneous injections of saline, ketoprofen (5 mg/kg) or buprenorphine (0.05 

mg/kg).  Observations were over 24-hour intervals. The 150 behaviours were then reduced to 

40 by identifying behaviours that were different after the above-mentioned procedures. These 

40 behaviours were then categorised as: active, inactive, attentive, grooming and sleeping 

behaviours. At baseline, the rats displayed similar patterns of behaviours and spent a similar 

proportion of time performing the different categories of behaviours throughout the day. Each 

procedure affected how the rats spent the next 24 hours. After being moved to the surgery room 

with or without exposure to anesthesia, the rats displayed less active, inactive and grooming 

behaviours and slept more compared to their baseline. These activities were further affected by 

analgesics: the animals which were administered ketoprofen performed less attentive and 

grooming behaviours compared to the baseline; and the animals which were administered 

buprenorphine displayed an increase in inactive, active and attentive behaviour and a decrease 

in sleep behaviour compared to the other groups and to their own baseline. Animals that 

underwent a laparotomy surgery and administered saline performed more inactive behaviours 

compared to animals that received ketoprofen prior to the laparotomy procedure. When animals 

received buprenorphine prior to surgery, they displayed more attentive behaviours, decreased 

sleep and grooming behaviours compared to their baseline behaviours and to rats which received 
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saline or ketoprofen prior to surgery. Overall, the authors concluded that the move to the surgery 

room and the preparation for surgery were stressful and resulted in an alteration of behavioural 

patterns. They also concluded that buprenorphine caused behavioural changes in rats and that it 

was likely to affect any behaviour related to pain and, therefore, NSAIDs (non-steroidal anti-

inflammatory drugs) like ketoprofen were probably better as they did not affect the rats’ 

behaviour. 

In subsequent studies, many behaviours were again observed and assessed if they increased 

after a laparotomy surgery and decreased with analgesic administration (Roughan and Flecknell, 

2001). Five key behaviours were identified: twitch, stagger, back arch, writhing and belly 

pressing (Roughan and Flecknell, 2001; 2003; 2006 and Thomas et al., 2016). However, 

behaviours were excluded if they were found to be absent (e.g. back arch) or were too variable 

(e.g. twitch) within a particular study (Roughan and Flecknell, 2003 and Thomas et al., 2016). 

In general, these behaviours were observed to increase after a laparotomy and decreased or 

occurred at a lower frequency when an analgesic was administered (ketoprofen (5, 10, 15 

mg/kg), carprofen (5, 10, 15 mg/kg) or meloxicam (1 or 2 mg/kg)). The alteration in behaviours 

lasted 4-5 hours after the laparotomy surgery (Roughan and Flecknell, 2001; 2003). The 

frequency of these behaviours also decreased with a dose of analgesia, thus displaying a dose 

dependent change which could be identified with a 5- or 10-minute observation time (Roughan 

and Flecknell, 2003). The observers were also able to accurately distinguish if the animals 

received an analgesic (buprenorphine 0.05 mg/kg or carprofen 5 mg/kg) 90% of the time 

(Roughan and Flecknell, 2004). This is a practical approach to the assessment of pain as these 

behaviours are distinct and a 5-minute observation period is sufficient to differentiate between 

groups (Roughan and Flecknell, 2003). It is also user-friendly as inexperienced observers were 

able to recognise these behaviours after a short training session (Roughan and Flecknell, 2006). 

Lastly, there is no need to train the rats as the behaviours occur naturally. The limitations of this 

ethogram are that there is no single behaviour that can predict analgesic dosage or pain severity 

(Roughan and Flecknell, 2003); and it is has been criticized as complicated, time-consuming 

and impractical (Waite et al., 2015). Additionally, while some of the behaviours identified were 

also observed in a ureteral calculosi and an intestinal mucositis model (Giamberardino et al., 

1995 and Whittaker et al., 2014), they were not consistently observed in a bladder cancer model 
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(Roughan et al., 2004). The authors did observe twitching and back arching behaviours in the 

bladder cancer model, but these behaviours did not decrease following analgesic administration 

(carprofen (5 mg/kg) or meloxicam (2 mg/kg)). Instead, behaviours that could differentiate 

between the groups were: abdominal licking, circulatory ambulation, digging, coprophagy and 

shaking. However, the frequency of these behaviours was very variable. The authors attributed 

the ineffectiveness of their scale to the severe pain that prevented the animals from performing 

the behaviours because the animals were inactive during observation (Roughan et al., 2004).  

1.1.2.2.3. Grimace scales 

Grimace scales utilise the facial expressions of animals to assess the severity of pain 

experienced. This is not a novel idea as facial expressions have been well defined in humans 

with “action units” (AUs; Cohn et al., 2007) and have been used to assess pain in patients who 

cannot verbally communicate (i.e. infants and dementia patients; Williams, 2002, Kunz et al., 

2007 and Kohut et al., 2012). This is possible as facial expressions are innate and usually occur 

spontaneously. Therefore, observation of someone’s facial expressions allow others to perceive 

his emotions or pain severity (Williams, 2002). The use of facial expressions to assess pain in 

animals was first proposed by Langford et al. (2010) with the creation of the Mouse Grimace 

Scale (MGS). 

The MGS was first assessed by first video recording the mice for 30 minutes (baseline/ no 

‘pain’ videos) followed by an acetic acid abdominal constriction test (i.e. acetic acid injected 

intraperitoneally) and a video recording again (‘pain videos’). Ten images of the faces of the 

mice were extracted from the videos and sent to human facial pain expression experts. The 

experts then identified five AUs that were most likely to assess pain: orbital tightening – tightly 

closed eye squeeze, nose bulge – rounded appearance of the nose pad, cheek bulge – rounded 

appearance of the cheeks, ear position – ears pulled away from the front of the face, and whisker 

changes – whiskers clumped together and pulled towards the cheeks. Each of these AUs were 

then assigned a score of either 0, 1 or 2 to indicate the degree of its presence. The authors noted 

three similar AUs were present in mice and in humans (i.e. orbital tightening and nose and cheek 

bulge; Prkachin, 1992 and Langford et al., 2010). This provided evidence that facial expressions 

of pain are evolutionarily conserved.  
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The MGS was applied to a variety of pain models varying by intensity, duration and pain 

type. Photos of mice were compared before and after each pain model. The following 

observations were made: 1) the MGS scores were more likely to increase when noxious stimuli 

was of moderate duration (10 min to 4 hours) but did not increase in pain lasting more than a 

day or in neuropathic pain models; 2) the MGS scores were higher when noxious stimuli was 

applied more deeply compared to superficial stimulus (joint and viscera compared to 

subcutaneous); 3) the MGS scores increased in a dose dependent manner to the inflammatory 

stimulus administered; and 4) the MGS scores decreased in a dose dependent manner with 

morphine administration. The MGS was considered ineffective for the assessment of chronic 

pain because the MGS scores did not increase in the neuropathic pain model assessed (spared 

nerve injury and chronic constriction model) up to 14 days after surgery. However, the authors 

commented that the MGS scores might be confounded by the paroxysmal nature of pain and by 

stress induced analgesia. Later studies reported increases in the MGS scores after other types of 

neuropathic pain models (Wu et al., 2016 and Akintola et al., 2017). In one such study, MGS 

scores  increase 21 to 24 days after the surgery (chronic constriction of the infraorbital nerve; 

Akintola et al., 2017). The authors suggested that the differences in the results to the original 

MGS paper were probably due to the differences in pain intensity and the involvement of 

different mechanisms and brain structure.  

Overall, the MGS demonstrates good face, content and construct validity as well as good 

inter-rater reliability (intra-class correlations (ICC; average) = 0.90; Langford et al., 2010). The 

AUs display good internal consistency (Cronbach’s α = 0.89) and high accuracy to discriminate 

between ‘pain’ and ‘no pain’ animals (accuracy = 72%; Langford et al., 2010).  

After the development of the MGS, the Rat Grimace Scale (RGS) was developed by 

Sotocinal et al. (2011). The RGS was developed with acute inflammatory pain models (intra-

plantar CFA, intra-plantar carrageenan/kaolin and laparotomy model). Like the MGS, the RGS 

consisted of similar AUs: orbital tightening, ear and whisker changes. However, in the RGS, the 

nose and cheeks were observed to flatten simultaneously when rats were in pain. These two 

action units were merged to form a single AU: nose/cheek flattening. In the tested models, the 

RGS scores increased over time before decreasing, displaying changes in pain intensity over 
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time. The RGS scores also decreased in a dose dependent manner to morphine administration. 

Like the MGS, the RGS displayed construct validity, good reliability between raters (ICC = 

0.90) and a high accuracy to discriminate ‘pain’ and ‘no pain’ animals (accuracy = 82%; 

Sotocinal et al., 2011). 

Since then, facial grimace scales in animals have been a promising method to assess pain 

and many complete or partial grimace scales have been developed for different species of 

animals (i.e. rabbits, horses, lamb, sheep, piglets, cats, ferrets and seals; Keating et al., 2012; 

Dalla Costa et al., 2014; Holden et al., 2014; Di Giminiani et al., 2016; Guesgen et al., 2016; 

McLennan et al., 2016; Hager et al., 2017; Mullard et al., 2017; Reijgwart et al., 2017; Viscardi 

et al., 2017 and MacRae et al., 2018). The AUs for each grimace scale and the pain model used 

to develop the scales as well as the validation methods have been summarised in Appendix A.  

Construct validity was demonstrated for the majority of the grimace scales with scores 

increasing after a painful procedure or during a painful disease process (Appendix A). However, 

some scales have not been successfully completed or validated, such as the piglet and ferret 

grimace scales, with only an observed increase in a single AU (orbital tightening; Di Giminiani 

et al., 2016 and Reijgwart et al., 2017). Therefore, more work is evidently required for some 

grimace scales. In general, scoring is found to be difficult when performed in low lighting, with 

low quality photos and with dark-coated animals. Furthermore, confounding factors that may 

influence changes in facial expressions must be taken into consideration. This has been observed 

in some non-painful situations (e.g. fear, aggression and stress; Defensor et al., 2012; Boissy et 

al., 2014; Sorge et al., 2014; Dalla Costa et al., 2017 and Senko et al., 2017). 

1.1.2.3. Non-specific behaviours/welfare measures 

1.1.2.3.1. Burrowing 

Burrowing is an evolutionarily conserved behaviour observed in many laboratory rodent 

species (Deacon 2006; 2009). Burrowing functions as protection from predators, the weather 

and for food storage in wild rodents (Deacon, 2006). Burrowing is no longer a functional 

behaviour in laboratory rodents because they have a steady supply of food and are not exposed 

to predators. However, they will still burrow even when they are provided with shelters or pre-
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existing burrows but will not utilise the burrows (i.e. for sleeping or food stashing; Sherwin et 

al., 2004; Stryjek et al., 2012; Makowska and Weary, 2016 and Gould et al., 2016). Therefore, 

burrowing seems to be a self-motivating and self-rewarding behaviour in laboratory rodents. 

Burrowing behaviour has been suggested as the rodent’s equivalent to the human activities of 

daily living (ADL; i.e. working, performing chores; Deacon, 2009). Burrowing may, therefore, 

be described as a measure of well-being in rodents (Deacon, 2006). While burrowing is not input 

specific to pain (i.e. pain is not the only factor that affects burrowing), it has a pain specific 

component (Bryden et al., 2015). Burrowing behaviour is quantified by measuring the weight 

of the substrate remaining in the burrowing tube (e.g. 2.5 kg of gravel) or by measuring the 

latency to initiate burrowing (Deacon, 2006; Jirkof et al., 2010 and Andrews et al., 2012).  

So far, alterations in burrowing behaviour have primarily been used to assess models of 

inflammatory and neuropathic pain that occur in a rodent’s limb (Andrews et al., 2012; Lau et 

al., 2013; Rutten et al., 2014ab; Bryden et al., 2015; Gould et al., 2016; Muralidharan et al., 

2016 and Wodarski et al., 2016) and one model of generalised neuropathic pain from HIV 

(Human Immunodeficiency Virus) drug treatment (Huang et al., 2013). Other pain models not 

localised to the limbs have observed limited success in quantifying pain with burrowing 

behaviour (i.e. chemotherapy induced mucositis and migraine pain model; Whittaker et al., 2015 

and Christensen et al., 2016). The use of burrowing as an indicator of pain cannot be discounted 

from these pain models as it was possibly confounded by the study design. In the migraine 

model, the authors commented that the model may not have been severe enough because they 

administered a lower dose (Christensen et al., 2016). In the mucositis model, large variations 

within the data during baseline assessments may have masked any differences from baseline 

(Whittaker et al., 2015). Burrowing behaviour at baseline was observed to increase with 

exposure to the burrowing tube, and therefore, selection of the number of baseline days is vital 

(Deacon, 2006 and Whittaker et al., 2015). This can be potentially corrected by averaging the 

amounts burrowed over the baseline days (Andrews et al., 2012). Additionally, it has been 

reported that while the variability within individual rats is low, the variability between rats is 

high, therefore, rats should be used as their own controls (Andrews et al., 2012 and Bryden et 

al., 2015). Although the motivation to burrow is not motivated by anxiety/stress or shelter 

seeking (Gould et al., 2016) it may still be affected by stress (Whittaker et al., 2015). 
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Additionally, burrowing behaviour in female rats is dependent on their estrous cycle where rats 

in proestrus burrow significantly less than female rats in their estrous or diestrus phase 

(Christensen et al., 2016).  

Burrowing was demonstrated to have good face validity as a measure of pain as it is a 

spontaneous and self-rewarding behaviour (Deacon, 2006) and decreases following an injury, 

similar to a patient’s avoidance of ADL when in pain (Andrews et al., 2012). It also 

demonstrates good construct validity as burrowing decreases with pain model severity, and 

recovers following analgesic administration (Andrews et al., 2012; Lau et al., 2013; Rutten et 

al., 2014ab and Gould et al., 2016). Interestingly, because indication of analgesic efficacy is 

dependent on recovering burrowing behaviour and not on depressing responses (e.g. reflex 

response with nociceptive threshold testing), burrowing behaviour is not susceptible to false 

positives from drugs that cause motor impairment or sedative effects (Andrews et al., 2012; 

Bryden et al., 2015; Rutten et al., 2014ab and Gould et al., 2016). It may also be unique as a 

pain assessment tool because it may encompass both affective (pain on motivation) and sensory 

(pain from burrowing) components of pain (Bryden et al., 2015). It has demonstrated good 

repeatability in different laboratories and is a robust assessment of pain (Andrews et al., 2012 

and Wodarski et al., 2016). While no strain differences have been observed, it has only been 

assessed in two strains of rats to date (Sprague Dawley and Wistar rats; Wodarski et al., 2016).  

Despite this, burrowing proficiency varied between laboratory mice strains and wild rats 

burrowed more than Wistar rats (Deacon, 2009 and Stryjek et al., 2012). 

A disadvantage of burrowing as an assessment of pain is that it does not correlate with 

nociception threshold testing (Muralidharan et al., 2016 and Lau et al., 2013). Therefore, it 

requires comparison to other behavioural assessments methods to ascertain criterion validity 

(Wodarski et al, 2016). 

1.1.2.3.2. Nest building 

Much like burrowing, nest building is an innate and a highly motivated behaviour in rodents 

(i.e. mice will work to obtain nesting materials) and is considered an ADL event (Roper, 1973). 

This behaviour is well characterised in laboratory mice who will build complex nests from any 
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materials available (Van der Weerd et al., 1998). Mice that have undergone an invasive or 

painful procedure will be unable to build nests or will trample and destroy nests (Deacon et al., 

2002, Arras et al., 2007, Jirkof et al., 2013, Hager et al., 2015 and Negus et al., 2015). Injured 

mice also took a longer time to initiate nest building behaviour (Jirkof et al., 2013 and Rock et 

al., 2014). Nest building behaviour recovered or was maintained if analgesics were administered 

(Arras et al., 2007, Negus et al., 2015).  

Mice are highly motivated to engage in nest building behaviour and will consistently 

perform this behaviour. Nest building behaviour is more variable in laboratory rats. Laboratory 

rats do not usually build nests unless pregnant. Denenberg et al. (1968) found that, if pregnant, 

the females were highly motivated to build a nest and this behaviour increased when they were 

close to parturition. This behaviour by pregnant females is likely to reduce environmental 

fluctuations. Nest building behaviour has also been reported in 10-week old male rats of various 

strains who will utilise nesting materials and incorporate it into a nesting box (Jegstrup et al., 

2005). In another study, it was reported that rats of both sexes only displayed nest building 

behaviour if exposed to nesting materials at 4 weeks of age (Van Loo and Baumans, 2004). If 

the exposure was delayed until 8 weeks of age, this behaviour was not observed (Van Loo and 

Baumans, 2004). Shredding and utilisation of nesting material was observed in castrated males 

and ovariectomized females, especially when the ambient temperature was low (13 °C) but not 

when it was high (22 °C; Deneberg et al., 1968). This suggests that rats are not highly motivated 

to engage in nest building behaviour but under certain conditions or stimuli, rats will make use 

of nesting materials. 

Nest building behaviour in mice has been assessed three ways: 1) naturalistic nest scoring 

method, 2) time to integrate nest test (TINT) and 3) nest consolidation test (Hess et al., 2008; 

Rock et al., 2014; Negus et al., 2015). With the naturalistic nest scoring method, the quality of 

the nest is scored from 0 to 5, from untouched nesting materials to a fully built nest with an 

enclosed dome (Hess et al., 2008). The TINT method assesses the latency for mice to initiate 

the nest building behaviour and mice will usually initiate nest building behaviour minutes after 

being presented with nesting materials (Jirkof et al., 2013 and Rock et al., 2014). Lastly, nest 

building behaviour can also be assessed by dividing the cage floor equally by six, separating 



 

22 

nesting materials into each area and assessing the number of pieces of nesting materials 

incorporated into a nest (Negus et al., 2015).  

This behaviour decreases with pain, increases with analgesic administration and has been 

demonstrated as a more sensitive measure of pain compared to weight loss and the von Frey test 

(Oliver et al., 2018). This behaviour can be used as an initial assessment of pain with the TINT 

method because it can be performed quickly. It can also be used as a follow up pain assessment 

method as nest quality can be assessed a few hours later. It was demonstrated that if nesting 

materials were given in the morning, assessments of the nest can be performed at the end of the 

day and the condition of the mice assessed retrospectively (Jirkof et al., 2013). The requirement 

to wait hours for mice to construct their nest before assessments is disadvantageous as the mice 

might experience pain during those hours between assessments. Another disadvantage is that 

nest building behaviour is affected by a variety of factors such as strain, type of nesting materials 

given and exposure to anesthesia (Hess et al., 2008; Jirkof et al., 2013 and Rock et al., 2014). 

1.1.2.3.3. Grooming 

Grooming behaviour is another innate behaviour frequently performed by rodents, and 

rats spend around 40% of their waking moments grooming (Bolles, 1960). Grooming consists 

of fur licking, scratching with hind legs and face washing (Bolles, 1960). Grooming is 

performed to clean the fur, for thermoregulation, and as a stress displacement activity (Jolles et 

al., 1979, Cohn and Price, 1979 and Denmark et al., 2010). Grooming behaviour can be 

modulated by experimental manipulation, dopaminergic drugs, genetic mutations and 

psychological stress (Kalueff et al., 2016). Grooming behaviour is a highly stereotyped 

behaviour which follows a fixed action pattern which will be completed without sensory 

feedback once initiated (Kalueff et al., 2016).  

For pain assessment, grooming behaviour has been assessed two ways: 1) frequency or 

duration spent grooming after a procedure and 2) the pattern of grooming performed. In general, 

rats groomed more after a painful procedure (i.e. laparotomy surgery, spinal cord injury and 

facial pain via injection of formalin; Clavelou et al., 1989; Roughan and Flecknell, 2000; 

Gorman et al., 2001) and grooming decreases in a dose dependent manner with analgesic 

administration (i.e. buprenorphine, IL-10, memantine (an NMDA-antagonist), morphine, 
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acetysalic acid and paracetamol; Eisenberg et al., 1993; Roughan and Flecknell, 2000; Clavelou 

et al 1989). Grooming duration or intensity may be assessed by direct observation or assessment 

of hair loss and subcutaneous damage (Roughan and Flecknell, 2000 and Plunkett et al., 2001). 

Interestingly, in a model of facial pain by injection of formalin into the muzzle, a biphasic facial 

grooming response (phasic and tonic phase) was observed (Eisenberg et al., 1993). During the 

tonic phase, rats groomed during the first six minutes followed by a period of no grooming 

before grooming more intensely and for a longer period for 12-42 minutes after formalin 

injection.  

Pain can also be assessed by observing the pattern or type of grooming performed. For 

example, directed asymmetrical grooming was observed after formalin injection in one muzzle 

pad or chronic constriction to the infraorbital nerve (i.e. grooming focused on injured side; 

Eisenberg et al., 1993; Vos et al., 1994; 1998). Under non-painful conditions, rats groom 

primarily with small strokes (i.e. grooming focused only on muzzle area) but with pain (e.g. 

after formalin injection or chronic constriction of the infraorbital nerve) grooming is directed 

over a larger area (from below the eye area to muzzle; Vos et al., 1994; 1998). Conversely, 

when rats were exposed to non-painful stimuli (i.e. mineral oil dripped on whiskers, whisker 

clipping or injection of bupivacaine to muzzle) grooming with small strokes on both sides of the 

face occurred (Vos et al., 1998). More recently, grooming behaviour after a painful laparotomy 

procedure was assessed by the grooming transfer method in mice (Oliver et al., 2018). This 

method took advantage of the predictable pattern of grooming by observing the transfer of a 

fluorescent liquid (first applied to the head, between the ears) during grooming. The transfer of 

the fluorescent substance was assessed in the dark with an ultraviolet light. With this method, 

mice were found to have lower grooming transfer scores at 8 and 12 hours after the laparotomy 

procedure compared to their baseline scores. This study also reported strain (CD-1 and C57BL/6 

mice) differences but this was negligible within group and between sex. These scores differed 

temporally from nesting scores: pain depressed nesting scores for up to 24 hours after the 

laparotomy procedure but for up to 48 hours in the case of grooming transfer scores. The 

differences between the two methods were also evident with analgesic treatment: buprenorphine 

(0.1 mg/kg s.c.) alone or in combination with carprofen (30 mg/kg p.o.). This analgesic protocol 

improved grooming transfer scores but did not affect nesting scores. The authors attributed this 



 

24 

difference to the two assessment methods potentially assessing different aspects of pain or 

motivations to perform these behaviours. 

The advantage of this method is its innate nature and the frequency it is performed by 

rodents. Using the grooming transfer method, it is easily quantifiable and identifiable. However, 

to reduce variability, baseline scores must be obtained. Additionally, because the frequency at 

which rodents groom varies over the course of a day (Bolles, 1960 and Oliver et al., 2018), 

baseline scores must be obtained over a similar time frame as the experimental days. This 

reduces the practicality of the method. Furthermore, grooming behaviour is affected by external 

factors (i.e. stress and drugs), which may confound the scores. Lastly, while reliability to asses 

pain with the grooming transfer method was reportedly excellent, inter-rater reliability scores 

were poor (Oliver et al., 2018). Therefore, the rater performing the assessment should be 

consistent throughout the study or additional training may be required to improve inter-rater 

reliability. 

1.1.2.3.4. Ultrasonic vocalisation 

Ultrasonic vocalisations are emitted by rats during play, mating, agonistic behaviour and to 

warn conspecifics of danger (Thomas and Barfield, 1985; Blanchard et al., 1991; Haney and 

Miczek, 1993; Vivian and Miczek, 1993; Jourdan et al., 1995 and Knutson et al., 1998). In 

general, ultrasonic vocalizations in the range between 22 – 28 kHz are associated with a negative 

affective state (i.e. during stressful or painful situations; Calvino et al., 1996) while vocalisations 

in the range of 50-55 kHz are associated with a positive affective state (i.e. during play; Knutson 

et al., 1998 and Cloutier et al., 2012)).  

Ultrasonic vocalisations are recorded with a microphone and bat detector and processed with 

a computer program before being measured manually by an experimenter. Rats with adjuvant-

induced arthritis vocalised ultrasonically when approached by a healthy and heavier conspecific 

but were silent when alone (Calvino et al., 1996). The duration of ultrasonic vocalisations 

decreased when analgesics (aspirin and morphine) were administered to the painful rats. 

However, the occurrence of these ultrasonic vocalisations were observed in some studies (Han 

et al., 2005; Naito et al., 2006 and Kurejova et al., 2010) but not in others (Jourdan et al., 2002; 

Wallace et al., 2005; Williams et al., 2008). This disparity of results was observed in both rats 
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and mice studies and with different types of pain models: acute or chronic inflammatory and 

neuropathic pain (i.e. ultrasonic vocalisations were observed in acute arthritis via 

kaolin/carrageenan injection, adjuvant-induced arthritis and spared nerve injury models but not 

after ear notching and tail snipping, or in CFA induced arthritis, partial sciatic nerve ligation 

and neuropathic diabetic models). Some concluded that ultrasonic vocalisation cannot reliably 

assess pain in rodents and the differences observed could be related to protocol differences 

(Kurejova et al., 2010). Some modifications were suggested, such as the acclimatisation to the 

recording chamber to reduce stress induced analgesia, exclusion of recordings if rodents were 

moving, the assessment of rodents individually and the careful adjustments of bat detectors 

while recording (i.e. minimise the number of bat detectors and reduce ultrasonic noises; 

Kurejova et al., 2010). The recording at higher frequencies (at 50 and 37 kHz) has also been 

suggested, however, this has only been reported by one study so far (Blanchard et al., 1991). 

The possibility of strain differences also needs to be accounted for because certain strains may 

be more vocal (Schwarting, 2018). Overall, the usage of ultrasonic vocalisations to assess pain 

in rodents requires further validation and standardisation of protocols before it can be used as a 

pain assessment tool in rodents. 

1.1.2.4. What should be used to assess pain? 

Traditionally, the most commonly accepted and favoured measurement of pain in 

animals has been nociceptive threshold or evoked testing because it is practical, highly reliable, 

repeatable and has also been reported in human patients (Mogil and Crager, 2004). It was 

reported that 90% of pain studies utilised evoked tests of either mechanical or thermal stimuli, 

and only 10% utilised behavioural measurements (Mogil and Crager, 2004). The use of 

Quantitative Sensory Testing (QST) has also been suggested. This consists of utilising multiple 

nociceptive tests in a standardised manner to assess the sensory profile of patients (i.e. loss or 

gain of function in response to different types of stimuli; Backonja et al., 2013). Due to the 

standardised nature, this method is useful to quantify and observe changes in the patient’s 

sensory profile over time, diagnose diseases and identify patients who are at risk of further 

sensory loss (Backonja et al., 2013). The use of QST to identify abnormal mechanisms behind 

neuropathic diseases may improve predictions of therapeutic efficacy (Attal et al., 2011). In a 

retrospective analysis of 902 QST profiles of chronic pain patients, it was found that patients 
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could generally be grouped into one of three clusters: 1) sensory loss with loss of small and 

larger fiber function; 2) thermal hyperalgesia but with preserved small and large fiber sensory 

function; and 3) mechanical hyperalgesia with loss of thermal sensitive small fiber function 

(Baron et al., 2017). It was also noted that certain analgesics were associated with higher 

efficacy in certain patient clusters (e.g. patients within the first cluster had higher efficacy with 

opioids but not oxcarbazepine). Additionally, all three types of sensory profiles were present in 

patients with the same type of neuropathic disease (Baron et al., 2017 and Vollert et al., 2017). 

These studies demonstrate that similar mechanisms may be at play across different neuropathic 

diseases, therefore, developing novel analgesics by understanding the mechanisms behind 

abnormal sensory profiles may yield more efficacious therapies. As a result, it was recently 

proposed that back translation of identified sensory profiles into animal models should be 

performed (Rice et al., 2018). This involves redeploying traditional nociceptive assessments 

into a sensory profiling protocol that reflects one used for humans, and the development of 

animal pain models that accurately reflect the identified sensory profiles in neuropathic patients.  

While nociceptive assessment methods can be highly standardized, allow direct comparisons 

between animal and human studies and are useful for sensory profiling, they are limited to 

assessing nociception and not the assessment of ongoing “spontaneous” pain (Backonja et al., 

2013). It has been reported that the greatest and most prominent complaint of pain in patients 

was “spontaneous pain” (the ongoing unpleasant sensation that is not evoked by an external 

stimulus; reported by 96% of patients) while increased mechanical or thermal hypersensitivity 

was reported significantly less frequently by patients, 64% and 38% respectively (Backonja and 

Stacey, 2004). Therefore, the overreliance on nociceptive evoked tests has been attributed as 

one of the major reasons for the lack of successful novel analgesic developments in translational 

pain research (Mogil and Crager et al., 2004; Rice et al., 2008 and Mogil et al., 2010).  

To recap, pain is defined as ‘an unpleasant sensory and emotional experience associated 

with actual or potential tissue damage or described in terms of such damage’ (International 

Association for the Study of Pain, 1979). This definition breaks down the pain experience into 

two parts: the sensory and the emotional components. Nociceptive evoked tests only assess the 

sensory component of pain by assessing a response to an external stimulus. These tests are 
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unable to assess the ongoing emotional experience of pain and are therefore, unable to fully 

capture the whole pain experience. Furthermore, it seems that the more relevant component of 

pain, particularly in humans and most likely in animals as well, would be the affective 

component rather than the sensory component assessed by nociceptive evoked testing. This 

results in a disproportionate number of pain studies that focused on sensory pain, which is of 

less clinical relevance. It has been suggested that nociceptive evoked testing may be utilised as 

a substitute measurement of ongoing pain experienced by animals. However, differences 

between ongoing pain (as assessed with the RGS) and mechanical allodynia (as assessed with 

von Frey filaments) has been demonstrated (De Rantere et al., 2016). Both measurements 

increase and peak similarly, but the duration of mechanical allodynia outlasted the ongoing pain. 

This phenomenon of mechanical allodynia outlasting the ongoing pain has also been 

corroborated by a human account (a researcher documented his experience after an accidental 

self-injection of CFA; Gould, 2000), thus suggesting that the two pain experiences are separate 

in humans as well. Therefore, the emotional component and the sensory component of pain are 

distinct mechanistically. Also, the emotional and sensory components of pain are processed in 

different parts of the central nervous system: ongoing pain is processed in the higher centers of 

the brain and the reflex withdrawal assessed in most nociceptive evoked testing is only a spinal 

response. Therefore, measures of nociceptive evoked testing cannot be used as a substitute for 

the assessment of ongoing pain and should not be used as the sole assessment of pain. The 

overreliance on nociceptive evoked testing is likely the reason some drugs (e.g. neurokinin-1 

antagonists) which showed promise in animal trials failed in human clinical trials (Goldstein et 

al., 2001 and Pitcher and Henry, 2004). These analgesics were most likely effective in the 

modulation of the sensory aspect of pain (hypersensitivity) but not in ongoing pain (Mogil and 

Crager, 2004).  

Consequently, critical evaluation of these pain assessment methods has led to a search for 

outcome measures that account for “spontaneous” pain. To address these issues, it was proposed 

that spontaneous and non-evoked behaviours should be assessed (i.e. behaviours that animals 

voluntarily display without an external stimulus; Mogil et al., 2010). The spontaneous 

behaviours utilised in pain assessments should have the following characteristics: be frequently 

observed, specific to pain, not related to comorbidities, consistent across a variety of pain 
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models, repeatable across rodent strains and be sufficiently sensitive to detect changes in types 

and doses of analgesic medications. Finally, the results should correlate well with the results 

from nociceptive evoked tests (Mogil and Crager, 2004).  

The use of spontaneous behaviours to assess pain may be difficult in rodents as they are prey 

species, and as such, will instinctively camouflage signs of distress or pain. Some behaviours 

have been proposed to directly assess pain in rodents, three such behavioural tools have been 

described above: the CPP, the CBS and the grimace scales. Each of these behavioural tools can 

be useful in pain assessments, however, each has their own shortcomings. The CPP test is useful 

for pain assessment as the unpleasant sensation of pain is naturally aversive and analgesics are 

unsurprisingly positively reinforcing. However, the CPP test assesses the animal’s motivation 

to remain in one of two compartments. Pain or alleviation from pain can be a powerful 

motivator, this motivation can also be affected by confounding factors (e.g. positive 

reinforcement from certain drugs and activity levels). Additionally, animals are only able to pick 

between two options and demonstration of a dose dependent analgesic effect requires repeated 

trials with multiple animals. The CBS is also able to assess pain as the behaviours in the 

ethogram were observed to increase after a laparotomy surgery and decreased with analgesia. 

However, so far, the behaviours displayed are most likely specific to visceral pain as all 

behaviours are centered around the animal’s abdomen. Therefore, this ethogram is of limited 

use for other types of pain. Lastly, the grimace scales have demonstrated utility across multiple 

types of pain models at least in the application of the MGS and RGS and may be useful for 

assessing ongoing pain. However, these scales are influenced by stress induced analgesia and 

changes in facial expressions may also occur in non-painful situations. 

General measures of well-being may also be utilised to assess pain in animals as a decrease 

of well-being is generally observed in patients experiencing pain. Measures of burrowing, nest-

building and grooming behaviours are ADL activities as under non-painful conditions, rodents 

are highly motivated to perform these behaviours. These behaviours are generally observed to 

decrease when animals are believed to be in pain and improve when analgesics are administered. 

However, unless latency to initiate burrowing or nest building activity is used as the assessment, 

assessment of animals can only be performed hours later and during that time animals may be 
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in pain. Furthermore, latency to perform these behaviours are probably affected by exposure to 

anesthesia and varies between animals. These behaviours are also affected by the types of 

burrowing substrate and nesting materials and may vary between strains and species. Ultrasonic 

vocalisations may also be useful for pain assessments, however, ultrasonic vocalisations due to 

pain has not been a consistent finding in published studies. Therefore, unless ultrasonic 

vocalisation can be consistently observed from rodents while in pain, this method will not be 

useful for pain assessment. 

Overall, there are a variety of pain assessment methods that are available for use as 

translational pain and animal welfare assessments. No single assessment method may be 

classified as the gold-standard. Instead, the most appropriate pain assessment method depends 

on the specific type of pain that one is trying to assess. For example, does a researcher want to 

assess the sensory or affective component of pain? If it is the sensory component of pain, does 

the researcher want to assess mechanical, thermal or cold allodynia? These may be assessed 

with the von Frey, hot plate and acetone tests respectively. If the researcher wishes to assess the 

affective component of pain, does the researcher wish to assess ongoing pain (pain from a 

constant stimulation by inflammatory stimuli), inflammatory pain (ongoing pain in addition to 

allodynia and hyperalgesia), spontaneous pain (internal pain that is self-contained and caused 

by changes to neurons) or summated pain (pain caused by the accumulating stimuli from 

activities of daily life; Bennett, 2012)? Ongoing, inflammatory and spontaneous pain may be 

assessed with the CPP, CBS, RGS and grooming behaviour while summated pain may be 

assessed with the CPP, burrowing, nest building and grooming behaviours. In addition to 

considering the appropriate pain assessment method for the desired pain type, one must also 

consider what is practical. Nociceptive evoked tests, the RGS and CBS may be assessed within 

a short duration of time (around 10 minutes) but requires personnel to be present during the 

entire assessment period. The time required by the personnel to assess each animal can quickly 

add up as each animal needs to be tested individually. On the other hand, burrowing, nest 

building, and grooming behaviour do not require personnel to be present during the entire 

duration, personnel can simply begin the process (i.e. provide burrowing tube, nesting materials 

or apply the fluorescent substance) and return at the appropriate times. Lastly, the CPP is the 
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most time and labour intensive as personnel are required to train the animals and are required to 

be present during the entire assessment period. 

To further illustrate this, consider if a researcher wants to assess the analgesic efficacy of a 

novel analgesic in a rat model of arthritis. They would be interested in the analgesic efficacy, 

duration of analgesic action, if mobility improves with analgesic administration and if there are 

any negative or abusive potentials of the analgesics. Analgesic efficacy and duration of analgesic 

action may be assessed with the RGS and von Frey test to assess ongoing pain and mechanical 

hypersensitivity respectively. Both assessments may be assessed rapidly and allow for repeated 

assessments of pain at set intervals after analgesic administration. These two measurements 

allow for a chronological assessment of analgesic efficacy and the maintenance of efficacy to 

reduce ongoing and hypersensitivity pain. These assessments may also be utilised to assess the 

dose required to achieve analgesia. Assessment for improvements in summated pain or mobility 

may be assessed with the burrowing test. Rats administered the novel analgesic would be 

expected to burrow more than rats that did not because rats that received the analgesic should 

retain their ability and motivation to burrow. Lastly, any negative or potentially abusive 

properties of the novel analgesic can be assessed with the CPP test.  Animals with arthritis 

should prefer the compartment paired with the analgesic and non-arthritic animals should have 

no preference. However, if they avoid the drug-paired compartment, the researcher will know 

that the novel analgesic causes an aversive reaction.  

Another example would be a veterinary technician or researcher who wants to ensure the 

welfare of mice after a laparotomy surgery. They would likely be interested in ensuring that the 

mice received proper analgesia and were able to perform normal activities after the surgery. 

However, they would have little time to monitor the animal throughout the day and therefore, 

would want to utilise assessments that can be performed quickly and allow for reassessment 

before the end of the day. Therefore, they could utilise the MGS, nest building and grooming 

behaviour. After surgery, they can quickly assess the animals with the MGS and assess the 

latency for the mice to initiate nest building activities. Analgesic interventions may be decided 

at this time or animals suspected as experiencing pain reassessed a few hours later. At the end 

of the day, they may also assess the willingness of the mice to perform nest building or grooming 
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behaviour by examining the quality of the nests and spread of the fluorescent substance on the 

mouse. They can then decide if additional analgesia should be administered. 

In conclusion, multiple assessment methods should be utilised to assess the different 

modalities of pain, be it hypersensitivity, ongoing pain, the unpleasant aversive component or 

the disincentive to perform normal activities. The types of assessment tools used should 

correspond with what is most relevant for the type of pain being assessed, for what reason it is 

being assessed and how practical it is to perform the assessment type. 

1.1.2.5. What about biomarkers of pain? 

It has also been proposed that cellular or genetic biological markers of pain will be useful to 

objectively assess pain and used as the target for novel analgesics (Mao, 2009). While the idea 

of biological markers as an objective measure is appealing, to date no such biomarker has been 

found that is sensitive and specific (Mogil, 2009; 2010). For example, four spinal neuropeptides 

(substance P [a tachykinin neuropeptide that acts as a neurotransmitter and neuromodulator], 

CGRP [a peptide vasodilator involved in nociceptive transmission], somatostatin [an inhibitory 

neuromodulator] and bradykinin [an inflammatory mediator]) were assessed in a commonly 

used MIA induced model of osteoarthritis (Otis et al., 2017). These neuropeptides are evidently 

involved in central sensitisation as they increased after induction of the pain model and the 

increase coincides with mechanical hypersensitivity. However, if these neuropeptides are 

directly related to pain, they should also display a dose dependent increase after the MIA 

injection and should decrease when analgesic is administered. In this study, only one 

neuropeptide, somatostatin, displayed a dose dependent increase, however, it did not decrease 

significantly when lidocaine, an analgesic, was administered. Alternatively, substance P and 

bradykinin decreased with lidocaine administration but did not increase in a dose dependent 

manner to the injected MIA dose. Interestingly, CGRP levels and mechanical hypersensitivity 

were higher in sham rats (rats administered saline injection instead of MIA) compared to naïve 

rats. It would have been interesting if the spinal neuropeptides assessed in this study had also 

been compared to non-evoked spontaneous behaviours that assess ongoing pain. For example, 

RGS scores and CGRP levels were observed to increase simultaneously after an experimental 

tooth movement model and both remained low when a CGRP antagonist was administered 
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(Long et al., 2015). Therefore, the currently identified biomarkers are evidently associated with 

pain and central sensitisation, however, these biomarkers on an individual basis do not increase 

or decrease in a dose dependent manner to stimulus intensity and analgesia respectively. As 

such, it cannot be stated that these biomarkers are sensitive to pain, nor may they be used to 

capture the entire pain experience. 

Furthermore, the achievement of such a feat is complicated by the fact that multiple cellular 

and genetic mechanisms are likely involved in a single type of pain and patients tend to suffer 

from multiple types of pain at any given time (Hill, 2000; Mao, 2009 and Mogil, 2010). 

Comorbidities of pain and changes in neural plasticity during chronic pain conditions will likely 

affect the processing and the modulation of pain (Hill, 2000; Mao, 2009; Mogil, 2010). 

Neuroimaging via fMRI (function Magnetic Resonance Imaging) and PET (Positron Emission 

Tomography) have also been proposed as objective measures of pain as these methods have 

provided significant information on the processing of pain by the brain (Mao, 2009). However, 

these methods are unable to provide real-time information on pain and are difficult and costly 

to perform (Chizh et al., 2008 and Mao, 2009). Nonetheless, even if possible, biomarkers of 

pain still need to be validated and confirmed with spontaneous measurements of pain (Mogil, 

2010) 

1.1.3. The ethics of pain assessments and creation of pain scales 

Before any research study can begin, researchers are ethically obligated to ensure that 

pain or distress is minimized or averted (Griffin et al., 2014). However, when pain is the subject 

matter studied, this is difficult to achieve. Researchers need to induce measurable pain in order 

to study its effects and be able to quantify it. Therefore, pain researchers are ethically required 

to minimise the pain experienced by the animals in terms of intensity and duration. This includes 

the use of appropriate endpoints assessed with appropriate pain assessment methods and the use 

of appropriate analgesics which do not interfere with the study’s objectives. Researchers should 

always apply the 3Rs when planning studies: 1) Replacement of the animal model whenever 

possible, 2) Reduction of the number of animals used and 3) Refinement of the study design to 

minimise pain and suffering. 
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The replacement of animal models for the study of pain has been proposed with the use 

of human neuroimaging with fMRIs and the study of human genes related to pain (Mogil et al., 

2010). However, it must first be recognized that pain is a complex phenomenon that only occurs 

in a living conscious creature. Therefore, whole animal models are required to capture and assess 

the pain experience. Additionally, the use of animal models allows for the standardization of the 

subject (i.e. genetic and environmental factors). This reduces data variability as the human 

population is more genetically diverse with different lifestyles and potential comorbidities that 

could interfere with understanding complex pain mechanisms. As such, animal models are also 

more practical, economical and ethical (than experimenting on human subjects, Mogil et al., 

2010). Instead, of opting for the complete replacement of animal models, data from animal 

models should be used to complement human studies and vice versa. 

The reduction of animal use can be accomplished by re-using animals that were 

previously used in another study if the previous study performed does not interfere with the 

objectives of the new study (e.g. use of animals scheduled for euthanasia in a study to assess 

pain during euthanasia) or the use of animals already undergoing a painful procedure (e.g. the 

assessment of the CBS in a bladder cancer model; Roughan et al., 2004). Furthermore, use of 

surplus animals that would otherwise be euthanized without being enrolled in a study is also a 

possibility. The performance of power calculations to estimate necessary sample size before a 

study ensures the optimal number of animals are included in the study to appropriately meet the 

study objectives. Lastly, when possible, the study design chosen can be carefully selected to 

minimise animal numbers (e.g. use of a factorial design with animals acting as their own 

controls).  

Refinement of a pain study can be accomplished in many ways. Firstly, researchers can 

utilise routine husbandry procedures that are known to be painful as their pain model (e.g. the 

Horse Grimace Scale was developed with horses undergoing castration; Dalla Costa et al., 2014) 

or utilise animals that are experiencing naturally occurring painful diseases (e.g. the sheep pain 

facial expression scale was developed with naturally occurring mastitis and foot rot, McLennan 

et al., 2016). Refinement of the study design is also possible with careful consideration of the 

type of pain model utilised in order to minimise the intensity and duration of the pain stimulus. 

For example, the RGS was created with acute pain models that lasted for less than a day (i.e. 

intra-plantar carrageenan/kaolin and CFA injection and the laparotomy model; Sotocinal et al., 
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2011). Another example was the choice to utilise a colitis model instead of a cancer model to 

assess the utility of the RGS in this thesis. The colitis model was favoured as it was not terminal, 

and the severity of the model could be controlled with the concentration of the stimulant. This 

is discussed further in chapter 1.3. Lastly, pain studies may be refined by the inclusion of more 

sensitive endpoints as well as the administration of analgesics during non-testing periods or 

immediately after testing. 

To conclude, in order to minimise, prevent or understand pain that animals experience 

during research, pain in animals needs to be recognised and quantified. Without a validated pain 

assessment method, researchers are reliant upon non-specific, potentially insensitive, 

physiologic responses to pain (e.g. weight loss and food and water consumption). Therefore, 

research to create and validate pain assessment scales that are sensitive and specific to pain is 

necessary. These pain assessment methods may also aid in identifying efficacious analgesics, 

their optimal doses and duration of action for different species and strains of research animals. 

Additionally, use of validated pain scales can inform researchers of the duration of pain expected 

with painful procedures (e.g. pain from a laparotomy surgery in rats lasts 4-6 hours as assessed 

with the RGS and CBS; Roughan and Flecknell, 2004 and Sotocinal et al., 2004) thus allowing 

researchers to make informed choices on the requirement for analgesic intervention. Finally, 

validated pain assessment methods will more accurately quantify the experience of pain in 

animal models of human pain, increasing the success of developing novel analgesics and 

understanding of pain mechanisms.  

1.1.4. Other factors to consider during pain research 

There are several other factors that should be considered as well, these include: ensuring the 

experimenters are properly trained to use the assessment tool. The practicality of an assessment 

tool will decide if it will be utilised by many researchers or if it is too cumbersome to be utilised. 

Proper training of experimenters is important to ensure accurate and reliable interpretation and 

collection of data. Lastly, accurate reporting of all parts of a study is important to ensure the 

legitimacy of a study’s results by allowing study replication and critical evaluation of methods. 

These topics will be discussed further in the following chapters. 
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1.2. The Rat Grimace Scale 

After the development of the RGS by Sotocinal et al. (2011; Fig. 1.2), the RGS has been 

utilised in many studies which can be broadly categorised into three types: 1) to refine laboratory 

rat welfare; 2) to assess different pain types and processes and 3) to improve the practicality and 

utility of the RGS. These studies have been summarised in Table 1.2. 

Fig. 1.2: Cartoon of the Rat Grimace Scale. 

 

Legend: The ‘pain’ rat (left) has 1) ears folded and angled outwards; 2) partial eye closure; 3) 

nose flattens and elongates and 4) whiskers bunched and directed away from the face. The ‘no 

pain’ rat (right) has 1) ear round and facing forward; 2) no eye squeeze; 3) nose rounded and 

slightly puffed out and 4) whiskers relaxed and droopy. 
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1.2.1. Applications of the RGS 

1.2.1.1. RGS as a welfare refinement tool 

Use of the RGS as a welfare refinement tool has manifested two ways, by: 1) reassessing 

efficacy of different analgesic protocols and 2) assessment and characterising of pain associated 

with different pain models. Analgesic efficacy assessments were undertaken by utilising the 

RGS with other pain assessment methods (Waite et al., 2015; Thomas et al., 2016; Philips et 

al., 2017 and Nunamaker et al., 2018) or by including the RGS in addition to physiological 

assessment methods (Korat and Kupupara et al., 2017; Gao et al., 2017; Jeger et al., 2017 and 

Chaves et al., 2018). These studies have also assessed the efficacy of singular or multi-modal 

analgesic protocols. For example, one study assessed the efficacy of various analgesics 

(buprenorphine, ketoprofen, acetaminophen, ibuprofen and carprofen) to treat pain after a 

laparotomy procedure (Waite et al., 2015). These different types of analgesics were 

administered at various doses and at different times points (15 minutes before surgery or during 

surgery).  It was found that certain analgesics were effective at lower doses if administered 15 

minutes prior to a laparotomy surgery (0.01 mg/kg buprenorphine and 25 mg/kg ketoprofen) 

and higher doses were required (0.025 mg/kg buprenorphine and ketoprofen were ineffective at 

5-25 mg/kg) if administered during the surgical procedure. Interestingly, the opposite was 

observed for acetaminophen whereby RGS scores only decreased significantly if a dose of 100 

mg/kg was administered before surgery and 50 mg/kg was administered after surgery. It was 

also found that ibuprofen administered at 15 mg/kg was similarly effective if administered 

before or after surgery while carprofen at 5-25 mg/kg was ineffective no matter what time it was 

administered at. This study also concurrently assessed analgesic efficacy with a hot plate test. 

With the hot plate test, analgesic efficacy was demonstrated at similar doses (0.025 mg/kg 

buprenorphine and 50 mg/kg acetaminophen) while others required an increased dose (30 mg/kg 

ibuprofen). Therefore, this study demonstrated that previously derived analgesic efficacy doses 

that were assessed with nociceptive evoked testing methods may require re-assessment. A 

limitation of this study was that it only assessed analgesic efficacy at a single time point, it 

would have been interesting if the authors had also assessed the RGS 2.5-4.5h after laparotomy 

surgery as it has been demonstrated that RGS scores and the frequency of pain behaviours peak 
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during this time (Roughan and Flecknell, 2004 and Sotocinal et al., 2011). Assessment at later 

time points would also have allowed for the assessment of the duration of action for each 

analgesic which can inform researchers if re-administration is required. Later studies have also 

assessed if buprenorphine, meloxicam, nalbuphine or morphine could effectively reduce RGS 

scores (Sotocinal et al., 2011; Jeger et al., 2017; Philips et al., 2017; Thomas et al., 2016; 

Nunamaker et al., 2018). These studies demonstrated that the use of a single analgesic can 

effectively reduce RGS scores, however, the RGS scores were usually elevated above baseline 

levels. This indicates that these analgesics are unable to completely abolish the pain experience 

and a multi-modal analgesic protocol may be required. A few studies have assessed the efficacy 

of multiple analgesics protocols with the RGS (Gao et al., 2017; Korat and Kupupara, 2017 and 

Chaves et al., 2018). However, none of these studies assessed if the use of the analgesics 

separately was also effective. This prevents readers from assessing if the administration of 

multiple analgesics was truly more effective than the administration of only one. 

The RGS has also been used to assess pain in different procedures, such as the comparison 

of pain that may result after a laparoscopy procedure and laparotomy (Prefontaine et al., 2015). 

This study demonstrated that the less invasive laparoscopy procedure resulted in a lower RGS 

score when compared to a laparotomy procedure. This suggests that a laparoscopy procedure is 

less painful and should be considered over a laparotomy procedure whenever possible. The RGS 

was also used to characterise pain from a procedure to inject viral vectors into rats (Long et al., 

2017). The RGS scores increased after the procedure which suggests that analgesic 

administration should accompany this procedure. Another endeavour to employ the RGS to 

refine laboratory rat welfare was the assessment for pain during euthanasia with intraperitoneal 

pentobarbital (Khoo et al., 2018). In this study, the RGS scores did not increase after 

pentobarbital injection but writhing behaviour did increase and was reduced if lidocaine or 

bupivacaine was also administered. It is unknown if the lack of an increase in RGS scores was 

truly due to a lack of pain or the sedative effects of the pentobarbital injection. The effectiveness 

of two methods of morphine administration (intrathecal and subcutaneous) were compared and 

pain was assessed with the application for the RGS after a laparotomy surgery (Thomas et al., 

2016). However, the RGS data in this study was too variable to draw any conclusions and the 

authors themselves admitted that the sedative side effects of morphine may have been the cause. 
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Additionally, their RGS scores may have been confounded by the presence of an observer in the 

room who was taking pictures. The presence of an observer has been observed to affect the 

display of pain behaviours in mice and guinea pigs (Sorge et al., 2014 and Oliver et al., 2017). 

In general, the RGS has been demonstrated to be a useful tool for the re-assessment of 

analgesic protocols routinely used to reduce the experience of pain in laboratory rats. It has also 

been used to characterise and compare the different pain levels that may be caused by different 

types of husbandry and experimental procedures. The information gained from these studies 

may inform researchers if certain analgesic protocols are effective and if the level of pain 

experienced by certain procedures require analgesic treatment. These improved analgesic 

protocols and ability to assess pain after various procedures will improve the ability of 

researchers to treat pain effectively in laboratory rats. 

1.2.1.2. RGS to assess different pain types  

The RGS was originally developed in acute inflammatory pain models (i.e. intra-plantar 

CFA and kaolin/carrageenan and laparotomy model; Sotocinal et al., 2011) and has since been 

used to characterise acute and chronic neuropathic pain (Akintola et al., 2017; Philips et al., 

2017; Schneider et al., 2017), orofacial pain (experimental tooth movement, Liao et al., 2014; 

temporomandibular joint pain, Sperry et al., 2018) and several other painful models (i.e. muscle 

pain, Asgar et al., 2015; chronic migraine, Harris et al., 2017; intracerebral hemorrhage, Saine 

et al., 2016; sepsis, Jeger et al., 2017; traumatic brain injury, Studlack et al., 2018; Table 1.2). 

All these studies observed an increase in RGS scores after the painful stimulus was initiated, 

demonstrating that the RGS could be used to discriminate between painful and nonpainful 

animals in these models. 

However, while the RGS seems to be an effective pain assessment method for many 

different pain types, there are conflicting reports on the effectiveness of grimace scales for 

neuropathic pain assessment. In the original MGS study, it was observed that MGS scores did 

not increase 14 days after chronic neuropathic pain models (i.e. spared nerve injury or chronic 

constriction injury; Langford et al., 2010). It was assumed that the grimace scales may be 

unusable for pain lasting for more than a day or for neuropathic pain, limiting their usefulness. 
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However, subsequent studies have demonstrated that the RGS and MGS scores increase after 

different acute and chronic neuropathic pain models (i.e. chronic constriction injury, cervical 

spinal cord injury or nerve root compression; Akintola et al., 2017; Philips et al., 2017; 

Schneider et al., 2017). In one such study, it was observed that RGS and MGS scores were 

elevated 10 to 27 days or 21 to 24 days respectively after a chronic constriction of the infraorbital 

nerve (Akintola et al., 2017). The authors attributed the different results from Langford et al. 

(2010) to the differences in the pain intensities induced, differing pain pathophysiology and 

alterations in brain pathways induced by the differing neuropathic pain models (Akintola et al., 

2017). These studies demonstrate that the RGS may not be useful in certain pain models and the 

continued evaluation of the applicability of the RGS is needed. 

The RGS has also been assessed alongside many other pain assessment methods: evoked 

nociceptive tests (De Rantere et al., 2016; Waite et al., 2015; Kawano et al., 2016; Akintola et 

al., 2017; Philips et al., 2017; Schneider et al., 2017 and Fujita et al., 2018; Khoo et al., 2018; 

Sperry et al., 2018; Studlack et al., 2018), behavioural measurements (Prefontaine et al., 2015; 

Whittaker et al., 2016; Thomas et al., 2016 and Jeger et al., 2017; Nunamaker et al., 2018) and 

expressed levels of various pain biomarkers (Asgar et al., 2015; Long et al., 2015; Gao et al., 

2016 and Long et al., 2017). When compared to nociceptive tests, it was found that the RGS 

scores tended to increase and peak at the same time (De Rantere et al., 2016; Kawano et al., 

2016; Akintola et al., 2017 and Philips et al., 2017). However, mechanical hypersensitivity 

increased before RGS scores increased and remained elevated when RGS scores returned to 

baseline levels (De Rantere et al., 2016). Furthermore, results from nociceptive evoked tests and 

RGS scoring may conflict when the efficacy of novel analgesics are tested (i.e. 

allogregnanolone, a neurosteroid, reduces von Frey test scores but not RGS; Fujita et al., 2018). 

These studies demonstrate that RGS scores tend to increase with hypersensitivity, however, the 

presence of hypersensitivity does not necessitate an increase in RGS scores and therefore, the 

presence of ongoing pain. These studies also highlight that the different components of pain, 

nociception and ongoing pain (as assessed with the RGS), are fundamentally different and need 

to be assessed with specific pain assessment methods. When compared to other behavioural 

assessments, it has been demonstrated that the RGS may be confounded by factors unrelated to 

pain such as the sedative effects of morphine (Thomas et al., 2016 and Khoo et al., 2018). These 
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studies have also demonstrated that the RGS may not be as suitable as other behavioural 

methods for pain assessment in certain pain models, such as an intestinal mucositis model 

(Whittaker et al., 2016 and Khoo et al., 2018). Therefore, more studies are needed to assess the 

possible confounding factors that will affect RGS scores and models that the RGS may not be 

applicable for. 

The RGS was also compared to various molecular pain biomarkers where an observed 

increase in expressed levels of various biomarkers also resulted in an increase in RGS scores 

(Asgar et al., 2015; Long et al., 2015; Gao et al., 2016 and Long et al., 2017). For example, the 

direct relationship of CGRP to pain was observed when increased CGRP levels were 

accompanied by increased RGS scores (Long et al., 2015). In these rats, it was observed that 

tooth movement increased from day 1 to day 14, however, CGRP levels and RGS scores peaked 

on day 3 then decreased to baseline levels on day 14. The direct injection of CGRP into the 

periodontal tissues of rats already experiencing pain from the tooth movement model resulted 

in exacerbated RGS scores (Long et al., 2015). Furthermore, RGS scores decreased when rats 

were administered olcegepant, a CGRP antagonist (Long et al., 2015). Taken together, it seems 

that CGRP levels and not tooth movement was associated with pain from a tooth movement 

model. The RGS has also demonstrated a relationship between ongoing pain with TRPA1 

(Transient Receptor Potential Ankyrin 1) and acid sensing ion channel expression levels (Asgar 

et al., 2015 and Gao et al., 2016). 

The RGS has also been utilised as a translational research tool to assess if certain analgesics 

may improve cognitive function in elderly patients (i.e. elderly rats were used as models of 

elderly patients; Chi et al., 2013 and Kawano et al., 2014; Saine et al., 2016 and Guo and Hu, 

2017), to identify if novel analgesics are efficacious for post-operation pain (Fujita et al., 2018) 

and to compare two different medical techniques (i.e. nerve reconstruction via nerve lengthening 

or nerve autografting, Yousef et al., 2015). 

It seems the RGS is a robust pain assessment method for the assessment of different types 

of pain. It has been compared with other pain assessment methods such as nociceptive threshold 

testing, other behavioural ethograms and molecular biomarkers. The observed differences of 

pain duration and the effectiveness of certain analgesics when assessed with both the RGS and 
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a nociceptive evoked test demonstrate that these assessment methods measure different 

components of pain. Therefore, discernment and consideration of different pain assessment 

methods are required before the beginning of a new study. The use of the RGS in the study of 

pain mechanisms and molecular biomarkers is also highlighted with the concurrent increase of 

pain biomarkers and the RGS observed in some studies. Overall, the RGS seems to be a useful 

tool for pain assessment of different pain types and the study of pain mechanisms. 

1.2.1.3. Refinement of the RGS as a research and welfare refinement tool 

The RGS has proven to be a useful and a viable pain assessment method, has important 

implications in translational research and is an important welfare refinement tool in rodents. 

However, the standard method of collecting images for the RGS and other grimace scales is 

very labour intensive. A researcher must first video tape the animal for 10 minutes and then 

watch the videos to manually extract and crop images before any scoring can be accomplished 

(Sotocinal et al., 2011). This causes a time delay of hours to days before a pain score may be 

generated. Therefore, the standard method of RGS scoring is only useful as a research tool and 

not appropriate for clinical application. Two refinements to the RGS and other grimace scales 

have been developed and proposed to reduce the labour intensiveness of these scales: The 

Rodent Face Finder (RFF) and the aMGS (automatic Mouse Grimace Scale, Sotocinal et al., 

2011 and Tuttle et al., 2018). The RFF is a program that can automatically collect images of 

rodent faces by detection of the eyes and ears of rodents (Sotocinal et al., 2011). The program 

is then able to extract and crop images in preparation for scoring by a human rater. This program 

can also exclude images that may be blurred due to movement. However, if no image was 

captured for an interval, manual extraction by a researcher is still required. The aMGS is a 

computer program that can classify pictures of mice into ‘pain’ or ‘no pain’ categories (Tuttle 

et al., 2018). The aMGS has a high accuracy and reliability to human raters. The high accuracy 

of 94% is only possible if images of low confidence, usually images of intermediate MGS score, 

are removed. The authors justified the removal of these images by deeming the images of 

intermediate scores to be of limited clinical value. The removal of these images reduces the 

sensitivity of the aMGS, as intermediate MGS scores may indicate that the mice are 

experiencing low levels of pain and may require analgesic intervention in the near future. Given 
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this, the aMGS cannot discriminate mice with low or moderate levels of pain or those 

demonstrating subtle signs of pain. Additionally, the current version of aMGS is only able to 

categorise images binarily as ‘pain’ or no ‘pain’ and as such, it cannot be used to monitor 

changes in pain intensity over time. Still, the RFF and the aMGS demonstrate the capabilities 

of technology to reduce the labour intensiveness of the grimace scales. Both advancements will 

allow large data sets of animals to be scored automatically. This reduces the labour intensiveness 

of the RGS and vastly improves it as a research tool, however, it will still be limited as a clinical 

tool because these tools cannot identify animals with low pain intensities and animals that 

require rescue analgesia. 

Other developments related to the use of the RGS has been the development of an analgesic 

intervention threshold which may guide when analgesics should be administered (Oliver et al., 

2014). There has also been the development of a ‘classifier’ to assess if individual AUs within 

a grimace scale should be given more weight (Dalla Costa et al., 2018). This ‘classifier’ may be 

useful for pain models or experimental conditions that confound the scores of individual AUs 

and should be excluded if they are not specific to pain. For example, the ears of horses, sheep 

and rats have been shown to change when the animals are experiencing negative emotional 

states like fear and/or aggression (Defensor et al., 2012; Boissy et al., 2014 and Dalla Costa et 

al., 2017). Taken together, these developments in the grimace scales will allow researchers and 

clinicians to better utilise the RGS and other grimace scales to determine the pain intensity an 

animal is experiencing. 

Lastly, studies have been performed to assess if there are confounding factors that may affect 

RGS scores. One study found that long and repeated exposures to isoflurane will increase RGS 

scores when rats are assessed 15 minutes after exposure to isoflurane (Miller et al., 2016). It has 

also been observed that restraint stress will inflate RGS scores (Senko et al., 2016).  

Overall, the RGS appears to be a robust tool for pain assessment in a research setting. 

Various developments have also increased the practicality of the RGS by reducing the manual 

labour required to score animals. However, it is still difficult to utilise the RGS in a clinical 

setting as animals cannot be assessed immediately. Real-time application of the RGS would 

allow researchers or animal technicians to observe the animal and decide if a humane endpoint 
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has been reached. Furthermore, even when automated scoring is utilised, an observer will still 

be required to decide if the animal requires an analgesic intervention. Real-time application of 

the RGS has previously been proposed (Sotocinal et al., 2011 and Waite et al., 2015), however, 

it has not yet been assessed or applied in rats. 

1.2.2. Real-time application of the RGS and potential challenges 

Real-time application of the MGS was previously attempted in various strains of 

laboratory mice; however, no pain model was used (Miller and Leach, 2015). The aim of this 

study was to assess if different strains of mice displayed different grimace scores at baseline. 

The authors found that MGS scores from real-time scoring were lower than scores from the 

standard method. This suggests that real-time application of rodent grimace scales may not be 

possible as mice tend to display lower MGS scores in the presence of an observer (Sorge et al., 

2014). However, it should also be noted that in this study, the observer only had three separate 

5s windows to score the mice (Miller and Leach., 2015). These three 5s windows may have been 

too short of a duration to competently score the mice. Furthermore, an observer effect may have 

been present as the animals were only habituated to the observation chamber and not to the 

observer. Therefore, real-time application of the RGS may require a longer observation time 

and the animals may need to be habituated to the observer. 

Other potential challenges associated with real-time scoring include the fact that scoring 

is no longer performed on static and tightly cropped images that only reveal the rat’s face. With 

the standard method of scoring images, the observer can muse over each image and consult the 

RGS manual if required. The standard method also allows for the observer to be blinded to other 

factors that may influence scoring (e.g. body posture and visible tissue damage/trauma). In real-

time, the observer will have to score quickly while the animal may be mobile and changing its 

facial expression. Also, the observer is privy to seeing the whole rat and the presence of other 

behaviours or signs of injury which may bias scoring (e.g. a rat with a heavily inflamed swollen 

foot may look more painful than a rat that has no foot swelling). Secondly, it is largely preferable 

to only score frontal images of rats as all AUs are clearly displayed. This is possible for image 

scoring as only one image is grabbed every three minutes and two cameras are placed on either 

side of the rat to maximise the chances of obtaining a good quality frontal image. However, 
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during real-time scoring, the observer is only able to see the rat from a single angle and will not 

be able to obtain a score if the rat has its face turned away. Thirdly, during real-time scoring the 

observer will not be blinded to the time point. This increases the risk of bias if certain levels of 

pain are expected. Lastly, with real-time scoring, it is difficult to assess reliability. With the 

standard method of scoring, the images can be easily re-scored by the same observer or another 

person to check intra- and inter-rater reliability respectively. In real-time, the observer cannot 

go back in time to re-score the rat at that exact point in time. It is, however, possible to rescore 

videos playing at normal speed. Inter-rater reliability may also be potentially tested in the same 

way or two observers may enter the room simultaneously. However, the rat may react differently 

with two people in the room and it may be difficult to ensure a similar viewing angle with two 

observers. 

Therefore, if possible, real-time application of the RGS will allow pain assessments to 

be performed quickly. This will increase the practicality of the RGS as a research tool and allows 

the RGS to be applied in a clinical setting. However, real-time application of the RGS has many 

potential challenges that must be considered.



 

45 

Table 1.2: Summary of all RGS papers published to date 

Pain model Other assessments Key findings References 

Studies that focused on the refinement of the RGS 

Intraplantar CFA 

Intraplantar carrageenan/kaolin 

Laparotomy 

- Aim: Develop the RGS and quantify pain in 
three pain models and develop the Rodent 
Face Finder 

• RGS developed with four action units 
(orbital tightening, nose cheek 
flattening, ear and whisker changes) 

• RGS scores increase after each model 
is induced and reduces in a dose 
dependent manner to morphine (1-5 
mg/kg) 

• Development of the RFF which 
automatically captures images of rats 
from videos 

Sotocinal et al., 
2011 

Implantation of telemetry - Aim: assess reliability of RGS and identify an 
analgesic intervention threshold 

• Intervention threshold identified at 
RGS score of 0.67 (sensitivity = 84.6%; 
specificity = 88.6%) 

• Very good intra-rater reliability 
possible after 6 months of disuse (ICC 
= 0.83) 

Oliver et al., 
2014 

Exposure to isoflurane - Aim: assess if duration of exposure and 
repeated exposure to isoflurane influences 
RGS scores 

• Repeated exposure of short duration 
of isoflurane exposure (2 minutes 

Miller et al., 
2016 
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duration, induction at 5%, 2.4L/min; 
maintenance at 2%, 2.4L/min) did not 
significantly increase RGS scores 

• Repeated and long exposure to 
isoflurane (12 minutes) increased RGS 
scores 

Restraint stress Defecation during open 
field test 
Elevated plus maze 

(both assesses anxiety) 
 

Aim: assess how prenatal exposure to 
elevated levels of angiotensin II (Ang II) 
influences the rats’ emotionality 

• RGS scores were lower in Ang II 
animals compared to controls when in 
home cage 

• Both Ang II and control rats displayed 
increased RGS scores from restraint 
stress. The RGS scores during stress 
was similar between groups 

• Increase in RGS scores was greater in 
Ang II compared to control rats 
(interpreted as greater emotional 
reactivity) 

• Ang II rats were more likely to 
defecate and spend time in the closed 
arms of the elevated plus maze  

Senko et al., 
2017 

Studies that focused on the refinement of laboratory rat welfare 

Laparotomy Hot plate assay Aim: assess effective dose for various drugs 
administered before or during surgery 

• Drugs that decreased RGS scores when 
administered before surgery: 
buprenorphine (0.01 mg/kg), 
acetaminophen (100 mg/kg), 

Waite et al., 
2015 
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ibuprofen (15 mg/kg), ketoprofen (25 
mg/kg). 

• Drugs that decreased RGS scores when 
administered during surgery: 
buprenorphine (0.025 mg/kg), 
acetaminophen (50 mg/kg), ibuprofen 
(15 mg/kg) 

• Carprofen (5-25 mg/kg) did not 
decrease RGS scores 

• Drugs that increased time spent on hot 
plate: buprenorphine (0.025 mg/kg), 
acetaminophen (50 mg/kg), ibuprofen 
(30 mg/kg). Ketoprofen (10-25 mg/kg) 
and carprofen (5-25 mg/kg) did not 
increase time spent on hot plate. 

Laparotomy 

Laparoscopy 

Behaviour ethogram Aim: compare pain from rats after a 
laparotomy or a laparoscopy procedure 

• Rats were more likely to have lower 
RGS’ action unit scores and display 
other pain behaviours after a 
laparoscopy compared to a 
laparotomy procedure 

Prefontaine et 
al., 2015 

Caudal laparotomy with bladder 
wall injection 

Composite Pain 
Behavioural Scale 

Activity 

Aim: assess if intrathecal administration of 
morphine (0.2 mg/kg) was more effective 
than subcutaneous administration (3 mg/kg) 

• RGS scores of rats administered saline 
or morphine were significantly 
different from baseline 1-8h after 
administration 

Thomas et al., 
2016 
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• Rat without pain displayed lower 
frequency of rearing, walking and 
climbing behaviours and were more 
inactive after intrathecal morphine 
administration 

• Up to 4h after surgery, RGS scores 
from rats administered intrathecal 
morphine remained similar to 
baseline; however, RGS scores of 
saline controlled rats were similar to 
baseline up to 8h. 

• After surgery, rats displayed a lower 
frequency of pain behaviours up to 8h 
with intrathecal and subcutaneous 
morphine administration 

• Authors concluded that side effects of 
morphine may have confounded RGS 
scoring and results in large variability 
of scores 

Laparotomy Histopathology 

Tensile strength of 
wound 

Aim: assess if a combination of intravenously 
administered analgesics administered during 
surgery reduced pain and improved healing 

• Intravenous administration of 
levobupivacaine (0.25% v/v), 
dexibuprofen (0.2 mg/mL), 
norepinephrine (0.1 mg/mL) decreases 
RGS scores after surgery 

• Analgesic combination if administered 
subcutaneously during surgery or a 

Gao et al., 2017 
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10x dose administered intravenously 
increases RGS scores 

• Rats that received the analgesic 
combination had better tensile 
strength and wound healing 

Faecal peritonitis (sepsis) Heart rate 

Clinical scoring 
(behavioural ethogram) 

Aim: assess behavioural and cardiovascular 
effects of nalbuphine in a sepsis model 

• RGS scores increase after sepsis model 

• Treatment with nalbuphine (1 
mg/kg/h, intravenous) reduces RGS 
scores at 24h 

• The heart rate of septic and control 
animals was similar 

• Clinical scores did not decrease after 
24h 

Jeger et al 2017 

Laparotomy Tensile strength of 
wound 

Histopathology  

Aim: assess if administration of an analgesic 
combination reduced pain after surgery and if 
tensile strength improves with healing 

• The combination administration of 
levobupivacaine (50 μL 0.3% w/v 
mg/ml), ibuprofen (2 mg/mL) and 
epinephrine (8 mg/mL) was effective 
at keeping RGS scores low 

• Rats that received the analgesic 
combination had better tensile 
strength and wound healing three 
weeks later 

Korat and 
Kupupara 2017 

Trigeminal injections to 
transduce viral vectors  
(orofacial pain) 

CGRP expression level Aim: assess the pain from a novel technique 
of delivering viral vectors to rat trigeminal 
ganglia 

Long et al., 2017 
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• RGS scores and CGRP expression levels 
increase after vector injections 

• The trigeminal injection technique is 
painful with or without the viral 
vectors as evidenced by increased RGS 
scores 

• RGS scores decreased to baseline 
levels 7 days later 

Cervical radiculopathy/cervical 
nerve root compression 

Von Frey Aim: assess the effects of meloxicam after 
nerve root compression 

• RGS scores increase after dorsal root 
compression 

• Meloxicam (2 mg/kg) treatment 
decreases RGS scores 

• Mechanical hypersensitivity threshold 
decreases after dorsal root 
compression but increases if 
meloxicam is administered 

Philips et al., 
2017 

Acute spinal cord injury Basso, Beattie, Bresnahan 
(BBB) scale – visual 
assessment of hindlimb 
movement 

Aim: Assess the effect of tramadol on 
recovery 

• Recovery of hindlimb movement was 
linear with no differences between 
rats that received tramadol or saline 

• The RGS scores of rats that received 
tramadol remained consistently lower 
than rats treated with saline 

Chaves et al., 
2018 

Euthanasia via pentobarbital Abdominal writhing 

Defecation 

Ultrasonic vocalisation 

 

Aim: compare the effects of lidocaine and 
bupivacaine on pain during pentobarbital 
euthanasia 

Khoo et al., 
2018 
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• RGS scores did not increase after 
pentobarbital injection 

• Addition of lidocaine to pentobarbital 
reduced the duration of writhing and 
the number of feces produced 

• Rats administered lidocaine performed 
fewer writhing behaviours compared 
to bupivacaine 

Ovariohysterectomy Weight loss 
Cage-side behaviours 
Exploratory activity 
Number of vertical rises 

Aim: Evaluate the efficacy of post-operative 
treatment with buprenorphine and 
meloxicam 

• Weight loss could not differentiate 
between rats that received analgesics 
or saline 

• Cage-side behaviours and real-time 
RGS scoring differentiated between 
rats that received analgesic or saline 

• Observation of exploratory activity and 
number of vertical rises did not 
differentiate treatment effects 

Nunamaker et 
al., 2018 

Studies that focused on the assessment of different pain processes and pain types 

Tooth movement - Aim: assess the pain from experimental tooth 
movement model 

• RGS scores increases after 
experimental tooth movement is 
induced  

• RGS scores are higher when a greater 
force is used 

• Treatment with morphine decreases 
RGS scores 

Liao et al., 2014 
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CFA induced masseter 
inflammation Craniofacial 
muscle pain 

Electronic and manual 
von Frey 

RT-PCR 

Aim: assess if TRPA1 is involved in increasing 
mechanical hypersensitivity and pain induced 
by ATP, NMDA and CFA 

• RGS scores increase after CFA induced 
masseter inflammation and reduces at 
1h if AP18, a TRPA1 antagonist, is 
administered 

• Mechanical threshold decreases in 
ATP-, NMDA- and CFA-induced pain 
which increases when rats are 
administered AP18 

• TRPA1 mRNA increases after CFA 
administration 

Asgar et al., 
2015 

Intraplantar CFA 

Intraplantar carrageenan 

Intraplantar incision 

von Frey Aim: assess relationship between RGS and von 
Frey 

• Mechanical hypersensitivity increases 
before RGS increase 

• RGS scores peaks at the same time as 
mechanical hypersensitivity increases  

• Mechanical hypersensitivity remained 
elevated long after RGS returned to 
baseline 

De Rantere et 
al., 2016 

Tooth movement CGRP expression levels Aim: assess if periodontal CGRP contributes to 
pain during experimental tooth movement 

• RGS scores and CGRP expression levels 
increase and peaks on day 3 before 
decreasing to baseline levels on day 14 

• When rats are treated with 
olcegepant, a CGRP antagonist, RGS 

Long et al., 2015 
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scores and expression levels of CGRP 
reduced 

• RGS scores increases when CGRP was 
injected directly 

Tooth movement Acid-sensing ion channel 
expression levels 

Aim: assess the roles of acid-sensing ion 
channel 3 in an orofacial pain model 

• The amount of tooth movement 
increases daily (from day 1 to 14) 

• RGS scores and expression levels of 
acid-sensing ion channels increase and 
peak on day 3 before decreases to 
baseline levels on days 14 and 7 
respectively 

Gao et al., 2016 

Chronic migraine Light/dark box activity 

Time spent in light 
Distance travelled 

Aim: assess the effect of repeated migraine 
episodes on photophobia, motor activity and 
RGS scores 

• RGS scores increase after each 
migraine episode 

• RGS scores of saline and vehicle 
controls remain low 

• Light/dark box activity was not 
discernable between migraine and 
vehicle control rats 

• Time spent in light and reduced 
activity was only evident after five 
daily migraine episodes 

Harris et al., 
2017 

Intra-plantar incisional model  Von Frey 

Single fiber recording 

Aim: assess the effects and mechanism of 
endotoxin on post-operative pain  

• RGS scores increased after surgery and 
decreased when treated with 

Kawano et al., 
2016 
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ketoprofen (15 mg/kg), morphine (0.5 
mg/kg) and ropivacaine (300 μL at 
0.2%). 

• RGS scores were higher in rats 
administered endotoxin with surgery 
and higher doses of analgesics were 
needed to reduce RGS scores 
(ketoprofen (30 mg/kg), morphine (1.5 
mg/kg) 

• Mechanical hypersensitivity and 
activity of Aδ- and C-fiber increased 
similarly and over a similar time frame 
in rats treated with or without 
endotoxins 

Intestinal Mucositis via 
intraperitoneal chemotherapy 

Behavioural ethogram 
assessment 
Enrichment interaction 

Social interaction test 

Aim: characterise pain from an intestinal 
mucositis model with various behaviours 

• RGS scores did not increase at any 
time points 

• Frequency of back-arching, twitching, 
writhing behaviours increased from 
baseline levels 

• During spent sleeping was decreased 
from baseline levels 

• Treated rats gnawed on their Nyla 
bone enrichment more than control 
rats 

• Rats were more likely to spend time 
exploring, investigating, following, 
grooming after the pain model was 
induced 

Whittaker et al., 
2016 
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Chronic constriction injury of 
infraorbital nerve 

von Frey Aim: assess if the RGS and MGS can assess 
ongoing chronic neuropathic pain 

• RGS scores increased post-CCI (10 to 
27 days later) and reduced with 
treatment of 24μg/kg of fentanyl 

• MGS scores increased post-CCI (21 to 
24 days later) 

• von Frey scores decrease post-CCI 

Akintola et al., 
2017 

Cervical spinal cord injury Acetone test Aim: characterise pain from cervical spinal 
cord injury and relationship between ongoing 
pain and paw withdrawal from acetone test 

• RGS increases in animals with spinal 
cord injury 

• RGS can be used as an indicator of 
supraspinal sensation 

Schneider et al., 
2017 

Intra-plantar incisional pain 
model 

- Aim: assess the effects of dexmedetomidine 
on endotoxin-induced pain in an incisional 
model 

• RGS scores increased after surgery 

• Rats administered endotoxin after 
surgery had exacerbated RGS scores 
compared to saline animals 

• Administration of dexmedetomidine 
decreased endotoxin exacerbated 
post-operative pain 

• Attenuation of RGS scores by 
dexmedetomidine eliminated with 
atipamezole 

Yamanaka et al., 
2017 

Studies that focused on the effects of analgesics and novel techniques for translational research 



 

56 

Laparotomy Radial maze 

Locomotion 

Aim: assess impact of post-operative pain on 
cognitive function in aged rats 

• RGS increases with laparotomy but 
attenuates with administration of 
ropivacaine (300 μL at 0.2%) and 
morphine (0.8 mg/kg) 

• Rats that did not receive analgesia 
were more likely to make errors in the 
maze 

• Rats administered memantine, an 
NMDA-antagonist, performed better 
on memory tests even when RGS 
scores did not decrease 

• Locomotor activity is unaffected by all 
treatments 

Chi et al., 2013 

Laparotomy Open field test (to assess 
locomotion) 
12-radial arm maze 

Aim: assess effects of post-surgery 
administration of ketoprofen or morphine on 
cognitive function in aged rats 

• Ketoprofen (40 mg/kg) and morphine 
(0.8 mg/kg) were effective at keeping 
RGS scores low from 2-12h after 
surgery 

• Locomotion activity was unchanged in 
rats where analgesia was withheld or 
administered 

• Rats performed fewer errors in the 
maze when they were provided 
analgesia 

Kawano et al., 
(2014) 

Lengthening of the sciatic nerve 
with novel device 

Electrophysiology Aim: assess effectiveness of a novel device for 
reconstructing sciatic nerves compared to 

Yousef et al., 
2015 
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Sciatic nerve index 
(footprint assessment to 
assess functional 
recovery) 
histology 

nerve autografting and to assess the pain 
involved 

• RGS does not increase after nerve 
lengthening and remains low days 
after 

• Footprints and histology of rats 
indicated that rats treated with novel 
device recovered better than rats 
treated with the nerve autografting 
method 

Intracerebral hemorrhage 
(Stereotaxic surgery) 

Rotarod test Aim: assess pain and motor behaviours with 
different doses of fentanyl in this model 

• RGS scores increase on day 1 after 
intracerebral hemorrhage model is 
induced and reduces in a time 
dependent manner to baseline levels 
day 6 

• Treatment with 10 μg/kg fentanyl 
significantly decreased RGS scores 

• Rotarod test was not an appropriate 
test as it was physically too demanding 
on the rats 

Saine et al., 
2016 

Laparotomy Performance error in 
radial arm maze 

locomotion 

Aim: assess the effects of thalidomide, an anti-
inflammatory analgesic, in aged rats 

• Administration of thalidomide (20 and 
50 mg/kg) attenuated RGS scores and 
reduce performance errors in a dose 
dependent manner 

• Locomotion was unaffected 

Guo and Hu, 
2017 
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Intra-plantar incisional pain 
model 

Weight bearing 

von Frey test 
Aim: assess the effects of allopregnanolone, a 
neurosteroid, in an incisional pain model 

• Administration of allopregnanolone, a 
neurosteroid, attenuated mechanical 
threshold but not RGS and weight 
bearing scores 

Fujita et al., 
2018 

Temporomandibular joint pain 
(through daily jaw loading) 

von Frey test 
Mankin scoring 
(assessment of cartilage 
degradation) 

Aim: assess if the RGS can detect pain in this 
model 

• RGS scores increased during loading 
days but decreased when procedure 
stopped 

• Mechanical threshold reduced 
continuously during loading days and 
remained reduced days after 
procedure stopped 

• Cartilage degradation scores increased 
even when procedure was stopped 

Sperry et al., 
2018 

Traumatic brain injury Beam walk  
Accelerating rotarod 
Open field 
Elevated plus maze 
Light-dark box 
von Frey test 
Immunohistochemistry 
Neuroimaging  
 

Aim: assess if rats with this injury will display 
pain and anxiety behaviour 

• Experimental group displayed poorer 
balance compared to control group but 
did not display more anxiety behaviour 

• Experimental group displayed higher 
RGS scores and lower mechanical 
threshold than control group 

• Injury was likely caused by microglia-
mediated inflammation 

Studlack et al., 
2018 

Legend: Table summarizing all RGS papers published to date. Listed are the pain models and other assessments performed 

concurrently with the RGS. Included is also the aim of the study as well as a summary of its main findings.
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1.3. Utilising the RGS in an untested pain model 

The RGS has been used to assess many different types of pain (refer to previous chapter 1.2), 

however, there are still many questions that remain unanswered in the application of the RGS. One 

such question is the applicability of the RGS to detect different types of pain such as acute and 

chronic visceral pain where the injury and pain is not external and cannot be directly stimulated. 

Therefore, if the RGS demonstrates its utility in the assessment of pain in such models, it will 

further establish the RGS as a relevant tool for translational pain research in these disease models 

and for laboratory rat welfare. Therefore, the criteria for selecting a novel untested pain model 

were as follows: 

1. Clinical relevance: the model should be relevant to the human disease it is supposed to 

replicate  

2. Well-recognised and frequently used: a model frequently used by researchers would be 

ideal as use of the RGS will be more quickly accepted and used if the model is relevant to 

the researchers  

3. Acute: the model should have a short duration of onset and resolution for practicality and 

to ensure animals do not suffer for long periods of time 

4. Chronicity: many human diseases are chronic; therefore, the model should also be chronic 

in nature 

5. Assessment tools already available: the model should have an already established and 

validated assessment method that can assess pain or disease severity so that the RGS can 

be compared to it 

6. No procedure-related mortality: the model should ideally not be terminal, nor should it 

cause too much pain  

7. Practical: the model should be easy to perform and, therefore, easily reproducible 

8. Visceral: visceral pain is difficult to assess as the pain and damage is internal and cannot 

be stimulated externally 
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1.3.1. Cancer type pain 

Cancer is a painful disease and the pain increases as the disease becomes terminal resulting 

in a drastic decrease in the patient’s quality of life (Pacharinsak and Beitz, 2008 and Currie et al., 

2013). Cancer pain has been generalised into three types: 1) spontaneous ongoing pain, 2) evoked 

or weight bearing pain and 3) breakthrough pain (sudden rapid onset of extreme pain; Pacharinsak 

and Beitz, 2008 and Currie et al., 2013). The pain experienced depends on the cancer type and 

tumour location (Pacharinsak and Beitz, 2008). 

1.3.1.1. Bladder cancer pain 

As a disease, bladder cancer is the most common cancer type in the urogenital system and 

ranks 7th and 17th respectively for males and females worldwide as the most common type of cancer 

(Zhang et al., 2015). The quickest and most common way to induce a bladder cancer model is to 

implant cancer cells either via injection of cancer cells into the targeted organ through a small 

incision over the bladder (Ibrahiem et al., 1963; Roughan et al., 2004) or by introducing cancer 

cells into the bladder through a catheter after an acid wash (Xiao et al., 1999; Roughan et al., 

2014). The success of the cancer model via injection of cancer cells directly into the bladder can 

be as high as 100% (Ibrahiem et al., 1963; Roughan et al., 2004 and Zhang et al., 2015) while 

introduction of cancer cells through the urethra with a catheter has an inoculation success rate of 

around 75% (Roughan et al., 2015). Other methods include exposure to carcinogens or a 

genetically engineered animal model, however, the success rates in these models are more variable 

and require more time to develop clinical signs (Zhang et al., 2015). 

An orthotopic bladder cancer model would potentially be a good follow up to Roughan et 

al. (2004)’s study. The authors attempted to apply their previously validated CBS method 

(Roughan and Flecknell, 2004) to a bladder cancer model in rats. However, they were unsuccessful 

as none of the behaviours previously identified (twitching, loss of balance, back arching, writhing) 

reduced significantly when rats were treated with analgesics (meloxicam 2 mg/kg, s.c. or carprofen 

5 mg/kg, s.c.). These analgesics were previously observed to be successful in mitigating pain after 

a laparotomy surgery model (Roughan and Flecknell, 2003). The authors attributed this failure to 

the rats’ inactivity, which was potentially caused by the severe pain the rats experienced from the 

model. There have been no other papers describing behavioural or nociceptive tests to assess pain 
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in the bladder cancer model in rats. However, a conditioned place paradigm, behavioural (i.e. 

locomotion, rearing, active behaviours, grooming, and resting) and nociception test (Hargreaves) 

were applied in a mouse bladder cancer model (Roughan et al., 2014). As the mice approached the 

day of euthanasia (euthanized when presence of palpable tumour >15% of body weight with 

haematuria detected), they displayed an increasing preference for the morphine (2 mg/kg, s.c.) 

paired chamber. This chamber preference was correlated with tumour burden post-mortem as well 

as decreased locomotion, activity levels, rearing behaviours and hyperalgesia compared to control 

mice. One other method to assess disease progress was to track tumour development with physical 

examination (palpation) or transurethral cystoscope, hematuria formation, imaging systems such 

as ultrasound and magnetic resonance imaging system (MRI; Roughan et al., 2004; Satoh et al., 

2007 and Zhang et al., 2015). However, once tumours were detectable, the animals usually had to 

be euthanized as they were in the terminal stages of the disease (Roughan et al., 2014). Overall, 

this cancer model appears to induce a high intensity of pain in animals.  

There are no assessment tools that can track the development of this type of cancer until 

the animal develops palpable tumours and haematuria (Roughan et al., 2004; 2014); however, once 

these symptoms appear, the authors report that animals rapidly decline past their humane endpoints 

as observed from clinical and behavioural signs and need to be euthanized (Pacharinsak and Beitz, 

2008; Roughan et al., 2014). Furthermore, there seems to be a large inter-animal variability in the 

development of the tumours, for example, in the above-mentioned study (Roughan et al., 2004) 

the time it took for the tumour to be palpable ranged from 13-21 days, haematuria development 

ranged from 9-21 days and the total time animals were in the study ranged from 29-43 days. Due 

to the significant amount of variation observed, the authors had difficulty in quantifying and 

reporting their data. They eventually settled on comparing at two time points: five and fourteen 

days before euthanasia (Roughan et al., 2004; 2014). 

1.3.1.2. Bone cancer pain 

Another type of cancer pain that might be interesting to assess with the RGS is bone cancer 

pain. Pain associated with bone cancers is the most prevalent type of cancer pain. It tends to present 

when there is a secondary cancer site in 70% of patients with terminal breast or prostate cancer 

(Currie et al., 2013). The first model of bone cancer pain was developed by Medhurst et al. (2002) 
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via intra-tibia injections of 3x103 or 3x104 MRMT-1 rat mammary gland cancer cells. Various 

other models of bone cancer pain have since been developed with different cancer cells however 

all have been created with a similar protocol of injecting cancer cells into the tibia or femur (Dore-

Savard et al., 2010 and Remeniuk et al., 2015). This model appears to induce pain in rats as 

demonstrated in a CPP test when the affected rats preferred the chamber paired with an analgesic 

(lidocaine or morphine). Bone damage from this model may be assessed with radiographs and MRI 

(Medhurst et al., 2002 and Dore-Savard et al., 2010). In general, this type of pain model induces 

progressive damage to the bone by day 10-15 and bone integrity is compromised at day 20-21. At 

which time, humane euthanasia of the animal is required (Medhurst et al., 2002 and Dore-Savard 

et al., 2010).  

The degree of damage to the bone correlates well with measurements of hypersensitivity. In 

one study, comparisons were performed between the rat’s mechanical withdrawal threshold and 

bone damage as assessed by bone remodeling by MRI (percentage of bone volume/tissue volume; 

Dore-Savard et al., 2010). In this study, lower mechanical threshold (assessed with von Frey on 

the affected hind paw), weight bearing and surface area of affected hind paw in contact with the 

ground was significantly different from controls or contralateral hind paws starting on day 14 and 

the decreased mechanical threshold correlated with the degrees of bone remodeling. The affected 

hind paw had a progressively lower mechanical threshold as the days progressed from days 14 

(36g), 18 (30.9g) and 21 (23g) while control animals demonstrated a steady mechanical threshold 

(~42g). The animals’ weight bearing on the hind paws was also affected as the affected hind paw 

could only bear 15-20% of their body weight, while the hind paw of control animals could bear 

40% of their body weight from days 14-21. The surface area of the affected hind paw in contact 

with the ground also decreased (~40-50 mm2) compared to the contralateral hind paw (90-

100mm2). These measurements correlated well with bone degradation, whereby rats with increased 

bone destruction had a reduced mechanical threshold and decreased weight bearing compared to 

control animals (Medhurst et al., 2002). Activity (characterised by running wheel revolutions) also 

decreased compared to control animals (days 1-5 after inoculation: MRMT-1: 15000; control: 

17500; days 6-10: MRMT-1: 17500; controls: 30000; days 11-15: MRMT-1: 27500; control: 

37500). Results from these studies support the notion that bone cancer models are painful, as 

indicated by the increased hypersensitivity and decreased activity levels as the disease progressed.  
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It was concerning that the administration of morphine (at 3 mg/kg), did not increase mechanical 

threshold (Medhurts et al., 2002 and Dore-Savard et al., 2010). It was only at a higher dose of 10 

mg/kg of morphine did the mechanical threshold increase (Medhurst et al., 2002). However, as the 

authors themselves commented, their data may have been confounded by the sedative effects from 

a high dose of morphine that caused the rats to be nonresponsive to stimuli. It was concluded that 

bone cancer models may result in such severe pain that morphine was ineffective. However, it may 

also be possible that opioids are ineffective for this type of pain and other analgesics may be more 

efficacious. It may also be possible that the presence of the tumour in the hind limb resulted in 

lameness but did not induce any pain and therefore, the administration of morphine had no effect. 

Interestingly, the body weights and body temperatures were unaffected as the disease progressed 

(Medhurst et al., 2002). 

1.3.2. Inflammatory bowel disease 

Inflammatory bowel diseases (IBD) are diseases characterised by chronic inflammation in the 

gastrointestinal tract of unknown origin but are presumed to be affected by environmental and 

genetic factors (Nyuyki and Pittman, 2015; Gasparetto and Guariso, 2013). IBD is estimated to 

affect 1 out of every 1000 people in Western countries and the number of people affected has been 

rising for the past 50 years, it will become a prominent global disease in the future (Gasparetto and 

Guariso, 2013). There are two main types of IBD: 1) Ulcerative Colitis and 2) Crohn’s Disease; 

the two types are differentiated by the location of the inflammation. Inflammation in ulcerative 

colitis is confined to the rectum and colon while Crohn’s disease consists of patchy inflammation 

along the whole gastrointestinal tract, from mouth to colon. Common symptoms of both types of 

IBD are abdominal pain, diarrhea and rectal bleeding (Shi et al., 2011). IBD is a vastly complicated 

disease believed to alter the central nervous system permanently and has implications in 

neurological (i.e. seizure disorders, cerebrovascular accidents) and behavioural issues (i.e. 

depression; Nyuyki and Pittman, 2015). For example, a study found that people with IBD had a 

higher probability of suffering from depression and anxiety (Kurina et al., 2001). The relationship 

between these intestinal inflammatory diseases and other systemic issues is unclear and remains 

speculative (Zois et al., 2010). 
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Animal models are commonly used to assess the complex inflammatory processes of the 

gastrointestinal tract during colitis and to assess novel medications to treat the disease. Colitis 

models are commonly created by two methods 1) an intra-rectal injection of the chemical 2, 4, 6-

Trinitrobenzenesulfonic acid (TNBS) and 2) supplying water infused with dextran sulfate sodium 

(DSS) ad libitum (Okayasu et al., 1990 and Randhawa et al., 2014). TNBS- and DSS- colitis 

models are among two of the most popular methods of inducing colitis and are well documented. 

Mortality will occur unless the dose, and consequently the disease severity, are carefully 

controlled. Common methods to assess disease severity of these colitis models include the Disease 

Activity Index (DAI; measurement of: weight loss, stool consistency, occult blood or gross 

bleeding), histology, macroscopic assessments and myeloperoxidase activity (MPO: an expression 

of neutrophil activity; Zhou et al., 2008). However, other than the DAI scoring method, all other 

methods require animals to be sacrificed at various time points to assess the severity of the colitis 

models. Endoscopy or MRI have been suggested as alternate assessment methods as animals do 

not need to be sacrificed and the animals can be used as their own controls (Pohlman et al., 2009 

and Brenna et al., 2013).  

Visceral hypersensitivity is commonly assessed with colorectal distension (CRD) followed 

by assessment of the visceromotor reflex (VMR) or abdominal withdrawal reflex (AWR). 

Colorectal distention is performed via insertion of a balloon into the anus of a rat while it is 

anesthetised (Ness and Gebhart, 1987). VMR assessment is then performed in awake rats and this 

consists of monitoring abdominal muscle contractions measured via electrodes implanted into the 

peritoneal cavity (Ness and Gebhart, 1987 and Larauche et al., 2012). The AWR is a refinement 

of the VMR method. It simply assesses when the abdominal muscles of the rat contracts; it 

foregoes the need for surgical implantation of electrodes which may sensitise the rat to pain and 

confound the results (Al-Chaer et al., 2000 and Yang et al., 2006). Another assessment frequently 

used to assess IBD pain is ‘referred hypersensitivity’. It is believed that pain originating from the 

viscera is often referred to other parts of the body due to an alteration within the central nervous 

system where there is an overlap between the visceral and somatic pathways (Farrell et al., 2014). 

The use of von Frey filaments on the hind paws of animals has consistently shown decreased 

withdrawal thresholds in these colitis models (Millecamps et al., 2004; Zhou et al., 2008 and 

Farrell et al., 2014). Other indirect forms of measuring pain have also been employed. For 
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example, in one study, rats with colitis displayed decreased attention levels (time exploring an 

unfamiliar object) compared to normal rats (Millecamps et al., 2004). Rats were able to 

demonstrate similar attention levels to normal non-colitis animals when administered an adequate 

dose of morphine (1 mg/kg; s.c.). Another study was also able to demonstrate that rats with colitis 

displayed poorer discriminatory learning which was once again able to recover with the 

administered morphine (1 mg/kg, s.c.; Messaoudi et al., 1999). 

1.3.3. Comparing pain models: bladder cancer, bone cancer and colitis 

To recap, the criteria for a novel pain model were: 1) clinical relevance, 2) well-recognised 

and frequently used, 3) acute, 4) chronicity, 5) assessment tools already available, 6) no procedure-

related mortality, 7) practical and 8) visceral. Each of these criteria are discussed below. 

1 and 2) Clinical relevance and well-recognised and frequently used: All three disease models 

are relevant and mimic debilitating diseases plaguing human society. These disease models are 

also well-recognised and frequently studied. 

3 and 4) Acute and chronic: Between all the mentioned disease models, bone cancer and colitis 

models seem to have a well-defined predictable onset and progression of disease (20 days and 7-

14 days respectively) while a larger variability seems to be involved in bladder cancer (around one 

month). The natural cycle of remission and relapse of colitis can be mimicked by giving the colitis 

inducing agents on and off. Therefore, both the acute and chronic phases of the disease may be 

induced with the application of this model. However, the onset and progression of the bladder 

cancer model appears to be more variable with large individual variability. 

5) Assessment tools already available: Assessment of pain related to bone cancer and colitis 

models predominantly rely on hypersensitivity or referred hypersensitivity as well as non-specific 

pain behaviours (CPP, discriminatory learning and attentional levels) which are less practical and 

more labour intensive because these assessment methods require multiple days/sessions of training 

and habituation for the animals involved. Both bone cancer and colitis have detectable symptoms 

that correlate well to measurements of hypersensitivity (i.e. bone degeneration and DAI or 

macroscopic assessment via endoscopy). The bladder cancer model does not have a reliable 

method to assess pain or disease severity. 
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6) No procedure related mortality: Bone and bladder cancer models seem to involve severe 

pain as evidenced from the morphine’s ineffectiveness to raise mechanical threshold in the bone 

cancer models and the appearance of symptoms indicative of terminal bladder cancer (palpable 

tumour and haematuria). Furthermore, the damage from bone and bladder cancer were reported to 

be terminal with no recovery possible and euthanasia is the only available humane endpoint. With 

the colitis model, if the dose is carefully chosen the damage is transient, the animals can recover, 

and procedure related mortality is preventable.  

7) Practicality: The colitis models appear to be the simplest to reproduce as it only requires the 

addition of DSS into the rats’ drinking water or an intra-rectal injection of TNBS to create a colitis 

model. For bladder cancer, it is possible to create the disease via an intra-urethra injection of cancer 

cells, however the successful inoculation rate is only 75% and this can only be performed in female 

rats. A 100% inoculation rate is possible, but surgery is required to inject cancer cells into the 

bladder of the rat. A surgery may confound the study as side effects from surgery unrelated to the 

model may affect the results. In bone cancer, surgery is also required to perform the intra-tibia or 

–femur injection and as mentioned before, the pain detected may be confounded by the pain from 

the surgery and not only from the disease model itself. 

8) Visceral: Of all the three models, only bone cancer is not visceral in nature however, it can 

still be considered internal as the damage is inside the bone. Visceral was chosen as one of the 

criteria as it is usually difficult to detect visceral pain. Colitis is unique as one of its symptoms are 

referred hypersensitivity whereby hypersensitivity can be measured via mechanical 

hypersensitivity on the rat’s back or feet. 

Therefore, all three models are clinically relevant, well recognised, frequently used and all 

models currently rely mainly on nociceptive evoked testing as a pain assessment method. The 

bladder cancer model is less reliable with its larger variability in onset and it is difficult to detect 

the presence of the disease until it has reached its terminal stages. This means that all animals must 

be euthanized soon after detection of disease as there is the potential for severe pain. Bone cancer 

has a more predictable onset and progression, but its pain severity, the seeming inability to counter 

the pain with high doses of morphine and the irreversible nature makes it undesirable. Therefore, 
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a colitis model would be the ideal model to use as it can be both acute and chronic and it is 

recoverable with time and reversible with analgesic. 

1.3.4. Comparing colitis models: TNBS- and DSS-colitis 

The two favoured methods to induce colitis in rats are via intra-rectal injection of TNBS 

or providing DSS in water ad libitum. The TNBS and DSS models are morphologically similar to 

Crohn’s disease (inflammation with infiltration at the submucosal layer) and ulcerative colitis 

(inflammation with infiltration focused at the mucosal layer), respectively (Jurjus et al., 2004 and 

Shi et al., 2011). The TNBS model of colitis is initiated by first fasting the rats overnight or up to 

24 hours before intra-rectal injection of TNBS under general anesthesia with a gavage needle or a 

catheter (Messaoudi et al., 1999; Rawandhawa et al., 2014). The DSS model is induced by 

providing DSS (2-5%) in the rat’s drinking water ad libitum for 4-9 days (Randhawa et al., 2014).  

Colitis in humans is a chronic disease and usually consists of periods of remission (no 

active ongoing inflammation) and relapse (inflammation returns; Rawandhawa et al., 2014). 

Therefore, it is appropriate that the equivalent animal models can mimic the remission and relapse 

phases. Both TNBS and DSS models of colitis are usually utilised as an acute model, where 

animals are exposed once to the inflammatory agent to induce a transient inflammation which 

fades a few days later. However, both model types may create a chronic colitis model by 

administering TNBS or DSS solutions via their appropriate routes repeatedly. 

1.3.4.1. Chronic TNBS-colitis 

A TNBS chronic colitis model can be created by giving rats TNBS intra-rectally or via a 

catheter placed intra-rectally followed by another one a few weeks later (Palmen et al., 1995 and 

Gambero et al., 2007). A chronic TNBS-colitis model is characterised by inflammation with high 

MPO activity and ulceration in two or more sites seven days after initial TNBS injection, this is 

followed by a slow healing period and a slight inflammation before the second intra-rectal 

injection. After the second intra-rectal injection of TNBS, the inflammation and ulceration 

reappeared. These chronic TNBS-colitis studies did not assess any pain or hypersensitivity 

assessments (Palmen et al., 1995 and Gambero et al., 2007). 
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1.3.4.1.1. Acute TNBS-colitis 

Acute TNBS-colitis is created by a single intra-rectal exposure to TNBS. Studies have 

reported that rats display increased visceral hypersensitivity and somatic ‘referred’ 

hypersensitivity. Visceral hypersensitivity has been assessed in male Sprague Dawley rats by CRD 

and observing if the rat’s testicles, tail or abdominal muscles contract when 15-20 mmHg of 

pressure was applied intra-rectally (Zhou et al., 2008). Visceral hypersensitivity was observed 2, 

7, 14, 21 and 28 days after exposure to TNBS. In comparison, control rats only respond when 50 

mmHg of pressure was applied. Visceral hypersensitivity can also be assessed by assessing VMR 

during CRD. In studies with male Lewis and female Wistar rats, rats with TNBS-colitis had a 

higher VMR response compared to control rats when a 60-mmHg pressure was applied (Adam et 

al., 2006 and Deiteren et al., 2014). The elevated visceral hypersensitivity resolved on days 10 and 

28 in male Lewis and female Wistar rats respectively. Interestingly, visceral hypersensitivity 

reoccurred in the male Lewis rats on day 28 and 31 with re-elevated VMR responses to CRD 

(Adam et al., 2006). This suggests a strain and sex effect on the inflammatory response in the 

TNBS-colitis model. 

Referred hypersensitivity to the hind paws has also been assessed with von Frey and 

Hargrave’s method (Zhou et al., 2008). A lower mechanical threshold and thermal sensitivity was 

observed 14 days after TNBS exposure. TNBS-colitis rats had a reduced mechanical threshold 

(paw withdrawal at 10g) and a reduced latency to withdraw their hind paw from a hot plate (latency 

of 8s). Comparatively, control rats only displayed a withdrawal response to 50g and their average 

latency to react while on a hot plate was 15s. A reduced threshold to thermal stimulus was also 

apparent with the tail flick test (Zhou et al., 2008). TNBS-colitis rats had a shorter latency to 

withdraw their tail from a heat source compared to controls (TNBS-colitis: 2s; controls: 6s). Non-

specific pain behaviours (repeated licking of abdomen, testicles and hind paws and hunched 

posture) occurred more frequently in colitis rats compared to control rats after TNBS injection. 

These behaviours subsided 5-7 days after TNBS injection. This seems to agree with De Rantere et 

al. (2016)’s study where hypersensitivity lasted well after spontaneous behaviour of pain (as 

assessed with the RGS) subsided. 
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1.3.4.1.2. TNBS-colitis and other non-specific indicators of pain 

Human chronic pain patients are observed to have reduced attention levels which recover 

when they are administered an effective dose of morphine, suggesting that a reduced attention 

level may be pain related (Lorenz et al., 1997). Attention levels as a non-specific indicator of pain 

can also be assessed in rats by assessing if a rat notices a novel object or by assessing their 

discriminatory learning ability (Messoudi et al., 1999 and Millecamps et al., 2003). To assess a 

rat’s attention level to a novel object, rats are first allowed to explore an enclosure with four distinct 

objects for three days once daily (Millecamps et al., 2003). On the testing day, one of the objects 

was replaced with a novel unfamiliar object and control rats usually spent most of their time 

exploring the novel object. When rats with TNBS-colitis were put through this test, the rats did 

not spend more time exploring the novel object. This suggests that TNBS-colitis induced pain 

caused attentional or discriminatory deficits. Interestingly, TNBS-colitis rats that received an 

adequate dose of analgesic (1 mg/kg s.c. morphine; 10µg/rat intrathecal morphine; 200 and 400 

mg/rat p.o. acetaminophen), spent more time exploring the novel object compared to their 

conspecifics that did not. This suggests that relief from TNBS-colitis induced pain improved the 

rats’ attentional or discriminatory deficits. Discriminatory learning can also be used as an indicator 

of pain where rats must discriminate between two levers (active and inactive) that granted them 

30s of darkness (Messoudi et al., 1999). It was found that male Sprague Dawley rats with TNBS-

colitis were less able to discriminate between the two levers compared to control rats or rats treated 

with morphine (1 mg/kg s.c.). This ability to discriminate was abolished when rats administered 

morphine were also administered naloxone (0.1 mg/kg), a morphine antagonist. Both groups of 

TNBS-colitis rats (treated with saline or morphine) had similar microscopic damage from exposure 

to the TNBS treatment and this suggests that the rats’ inability to discriminate between the two 

levers were due to pain and not the inflammatory damage from the model.  

1.3.4.1.3. TNBS-colitis and other measurements 

The TNBS-colitis model is also characterised by weight loss, reduced colon length, 

increased colon weight and increased DAI (Adam et al., 2006; Deiteren et al., 2011; Brenna et al., 

2013 and Sun et al., 2013). Weight loss was observed three days after TNBS injection (30 mg/ml 

TNBS in 50% ethanol) in female Sprague Dawley rats (Brenna et al., 2013 and Sun et al., 2013) 
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which were subsequently recovered some days later. The weight loss seems to correlate with 

endoscopic evaluations whereby the colon was erythematous and edematous on day 3 and 7 and 

healing was evident on day 12 with mucosal granulation and ulceration (Brenna et al., 2013). 

Additionally, the DAI scores increased steadily after TNBS exposure while control rats did not 

display any of the clinical signs (Sun et al., 2013).  

1.3.4.1.4. Chronic DSS-colitis 

A chronic DSS-colitis model can also be created by giving rats an alternating regime of 

DSS-water and water multiple times (Okayasu et al., 1990; Cooper et al., 1993 and Gaudio et al., 

1999). For example, one study exposed rats to DSS for 6 days (acute phase) before switching to 6 

days of water and then restarting the DSS treatment again (Gaudio et al., 1999). The original study 

in mice seemed to determine the length of DSS exposure by the appearance of the clinical signs 

(reduction in stool consistency, weight and presence of blood) and DSS treatment was stopped 

long enough for the mice to recover completely before DSS treatment was restarted (Okayasu et 

al., 1990). This alternating cycle can be repeated from 2 to 8 times (Gaudio et al., 1999 and 

Kullman et al., 2001). During subsequent cycles (chronic phases), the clinical signs of the model 

were observed to be more severe, had a quicker onset and lasted longer in male Sprague Dawley 

and Wistar rats (Gaudio et al., 1999 and Kullman et al., 2001). Macroscopic and microscopic 

scores of DSS-colitis rats were more severe with shortened colons compared to controls (1 cycle: 

control: 14 cm; DSS: 12 cm; 2 cycles: control: 16 cm; DSS: 12 cm; 3 cycles: control: 18 cm; DSS: 

13 cm) and had more severe and numerous ulcerations and lesions in the distal colon that worsened 

with the application of more cycles (Gaudio et al., 1999; Kullman et al., 2001 and Vetuschi et al., 

2002). There was also an increase in apoptosis of colonic cells by a factor of 20- or 120-fold after 

two or three cycles in comparison with one cycle of DSS exposure (Vestuschi et al, 2002). 

Comparatively, apoptosis in control animals was always less than 1% (Vestuschi et al., 2002). At 

higher concentrations of DSS, mortality was more likely to occur if rats were exposed to more 

cycles (Kullman et al., 2001). 

1.3.4.1.5. Acute DSS-colitis 

Visceral hypersensitivity with CRD has also been measured in DSS animals, however, the 

results have not been consistently reported in studies on mice. A study on BALB/c and C57BL/6 
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mice reported that there were no differences in visceral hypersensitivity between DSS-colitis and 

control mice after an acute exposure to DSS for 5 days and up to 51 days (Larsson et al., 2006). 

This was despite high inflammatory and MPO scores that suggested the DSS-colitis induced was 

quite severe. However, differences in visceral hypersensitivity were observed in a similar study in 

male BALB/c mice (Verma-Gandhu et al., 2006) where there was a reduced visceral 

hypersensitivity in DSS-colitis mice after 5 days of DSS. Interestingly, after a chronic DSS model 

(repeated alternating regime of DSS-water and water), visceral hypersensitivity was no longer 

present (i.e. the pressure required to elicit a response was similar in DSS-colitis and controls). The 

differences observed may be due to differences in protocol as the studies utilised different 

percentages of DSS (4% and 5%), differences in molecular weight of DSS (44 kDA and 40 kDa) 

and days exposed to DSS (5 and 6 days). The severity of DSS-colitis is known to increase when a 

higher DSS concentration is used, a larger amount of DSS consumed and the DSS has a larger 

molecular weight (Kitajima et al., 2000; Vowinkel et al., 2004; Kullman et al., 2011 and 

Goncalves et al., 2013). The authors of the first study attributed their negative finding to their DSS 

source, potential differences at the level of the spinal cord between species and colon compliance 

(Larsson et al., 2006). The lack of visceral hypersensitivity in the second study after chronic 

exposure to DSS suggests the inflammatory activity in response to the DSS exposure attenuated 

visceral hypersensitivity (Verma-Gandhu et al., 2006). Nonetheless, this lack of visceral 

hypersensitivity after DSS exposure is interesting as it seems to mimic the human disease, whereby 

patients display reduced visceral sensitivity (Chang et al., 2000; Sharkey et al., 2006). However, 

ongoing pain is still reported by these patients (Chang et al., 2000). This phenomenon has been 

attributed to an upregulation of sensitivity during acute tissue damage and an activation of counter 

regulatory mechanisms when the damage is chronic (Chang et al., 2000). Alternatively, visceral 

hypersensitivity can also be assessed by applying von Frey filaments to the rats’ abdomens as mice 

with DSS-colitis were found to withdraw their abdomen when a 0.04 g of force was applied (Jain 

et al., 2015). It has also been observed that male Sprague Dawley rats with DSS-colitis had an 

increased excitatory neuronal response when they were assessed with the CRD (Qin et al., 2008). 

Somatic referred hypersensitivity to the hind paw has been observed in animals with DSS-

colitis. Male C57BL/6 mice with DSS-colitis withdrew their hind paw from mechanical stimulus 
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or displayed a lower latency to withdraw their hind paws from a thermal stimulus compared to 

controls (Jain et al., 2015).    

1.3.4.1.6. DSS-colitis and other non-specific indicators of pain 

Mice with DSS-colitis were observed to perform more nocifensive behaviours. These 

behaviours include locomotion, time spent climbing and rearing in response to a splash test (where 

mice were sprayed with water and the frequency of rearing was assessed; Lapointe et al., 2015 and 

Jain et al., 2015). In C57BL/6 mice with DSS-colitis, mice travelled less and spent less time 

climbing compared to control animals (DSS-colitis: 20m travelled and 500s spent climbing; 

controls: 50m travelled and 1750s spent climbing; Lapointe et al., 2015). These behaviours 

continued to be depressed five weeks after DSS treatments were discontinued (30m travelled and 

750s spent climbing). In another study, male C57BL/6 mice with DSS-colitis not only had 

depressed locomotion, they also reared less after the splash test (Jain et al., 2015). These data 

suggest that DSS-colitis animals have a lower motivation to move compared to control animals 

and this may be because of the pain experienced. 

1.3.4.1.7. DSS-colitis and other measurements 

The DSS-colitis model has also been characterised by a decrease in food (DSS: 131g; 

control: 143g) and water consumption (DSS: 157 mL; control: 197 mL), decreased urine output 

(DSS: 78 mL; control: 125 mL), an increased white blood cell count (DSS: 25000; control: 5000) 

and an increase in serum inflammatory cytokines (TNF-α, IL-β, IL-6; Togawa et al., 2002 and 

Geier et al, 2007) 

1.3.4.2. Comparing TNBS- and DSS-colitis 

Overall, both types of colitis models are well accepted as models for human colitis. Both 

colitis models utilise similar assessment methods to assess the severity and progression of the 

colitis model: visceral and referred somatic hypersensitivity, the DAI, microscopic and 

macroscopic scores and assessment of inflammatory markers. In both models, procedure related 

mortality can be avoided provided the doses are carefully chosen. However, both models also have 

a similar drawback whereby the experimental protocols from published studies differ. For 

example, in the TNBS-colitis studies the experimental protocol can differ by the different 
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percentages of ethanol, volume and TNBS weight used, animal strains, variation of anal leakage 

and the duration of fasting (Gambero et al., 2007 and Brenna et al., 2013). This issue of 

inconsistency is also evident in the DSS-colitis model as severity of colitis can be impacted by 

DSS concentration, duration of DSS exposure and molecular weight of the DSS powder (Kitajima 

et al., 2000; Vowinkel et al., 2004; Kullman et al., 2011 and Goncalves et al., 2013). Some studies 

even fail to report the molecular weight of DSS powder used (Bramhall et al., 2015). This is 

problematic as studies reported using a 5% concentration of DSS with similar duration of exposure 

to DSS but had different molecular weights reported a larger variation of average DAI scores 

which ranged from 1 to 3.5 out of 4 (Stucchi et al., 2000; Kihara et al., 2003; Osman et al., 2004 

and Dicksved et al., 2012). Lastly, in terms of practicality, the DSS-colitis model is preferable to 

the TNBS-colitis model as it is less intrusive because the creation of a DSS-colitis model does not 

require anesthesia. Instead, the model is created by simply adding DSS powder into the rats’ 

drinking water. Without the need for anesthesia, the animals are probably less stressed because it 

has been reported that rats find anesthesia agents to be aversive (Leach et al., 2002 and Altholtz et 

al., 2006). This is important as stress has been shown to be involved in modulating visceral pain 

and hypersensitivity from colitis (Larauche et al., 2012). Therefore, the repeated exposure to 

anesthesia and the repeated administration of the intrarectal injections of TNBS may result in stress 

of the animal and introduce confounding factors during the pain assessment. Given this, an acute 

and chronic DSS-colitis model was selected as a visceral pain model to assess the utility of the 

RGS.  

1.3.5. Differences between acute and chronic DSS-colitis 

The methodology of acute and chronic DSS-colitis models is very similar. The chronic DSS-

colitis model is induced by two or more exposures to DSS, therefore it could be suggested that the 

subsequent exposures to DSS are a repeat of the acute phase. This begs the question: are the 

repeated phases of DSS-colitis representative of a chronic process or are they repetitions of the 

acute phase? 

1.3.5.1. What happens during the ‘acute’ phase of DSS? 

During the first phase of DSS (acute phase), animals develop the clinical signs typical of the 

colitis model (loose stools, rectal bleeding and weight loss) beginning from day 3 after the DSS 



 

74 

 

treatments start (Cooper et al., 1993 and Gaudio et al., 1999). The colons of these animals also 

shorten significantly (shrinking ~15% in rats and ~50% in mice) and colon weights increase in 

comparison with controls (Gaudio et al., 1999; Okayasu et al., 1990 and Bento et al., 2012). When 

examined microscopically, the colon mucosa displayed crypt loss, thinning epithelium and 

inflammatory infiltrates at the mucosal and submucosal layers (Cooper et al., 1993 and Gaudio et 

al., 1999). The inflammatory cytokine profile was characterised by elevated levels of serum 

proinflammatory cytokines in comparison to controls (TNF-α, IL-6, IL-12 and IL-17; Alex et al., 

2009 and Bento et al., 2012). Whereas the pro-inflammatory cytokine, IL-1β, and anti-

inflammatory cytokines, IL-4 and IL-10, were similar to control levels (Bento et al., 2012). 

When animals were allowed to recover with a water only phase (representing the ‘remission’ 

phase typical of human ulcerative colitis), these animals usually recovered quickly with clinical 

signs resolving around 4-10 days after DSS treatment stopped (Gaudio et al., 1999 and Bento et 

al., 2012). The colon length of these animals also recovered and were significantly longer than the 

colons during the acute phase (~30% longer) but remained shorter than controls (~13% shorter; 

Melgar et al., 2005; Hall et al., 2011 and Bento et al., 2012). During this time, the anti-

inflammatory cytokines of IL-10 and IL-4 increased and TNF-α levels remained elevated in 

comparison to controls (Bento et al., 2012). Interestingly, C57BL/6 mice developed a concomitant 

chronic colitis when allowed to recover with a prolonged water phase after the initial acute phase 

of DSS (Melgar et al., 2005). However, in Swiss Webster and BALB/c mice, a slow regenerative 

healing (colon not completely regenerated 5 weeks after acute phase ends) and quick regeneration 

(colon appears normal 3 weeks after acute phase ends) were observed respectively (Dieleman et 

al., 1998 and Melgar et al., 2005). During this time, a progressive production of pro-inflammatory 

cytokines (IL-1β, IL-12, IL-17 and IFN-ϒ) was observed in C57BL/6 mice (Melgar et al., 2005). 

In these mice, loose stools, high inflammatory scores and no crypt healing was observed (Melgar 

et al., 2005). In Swiss Webster mice, low grade dysplasia was evident (Cooper et al., 1993) and 

two weeks after stopping DSS treatment, the colonic mucosa tissues had increased IFN-ϒ, IL-4 

and CD4+ T cells in areas of inflammation and regenerating crypt lesions, suggesting that the 

immune response was triggered and may play a role during the regenerative phase of DSS included 

colitis (Dieleman et al., 1998). Increases in B and T cells were also observed in C57BL/6 mice 

(Melgar et al., 2005). 
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1.3.5.2. What happens during the subsequent phases of DSS? 

During the second phase of DSS administration (chronic phases), bleeding and loose stool 

consistency appeared earlier (day 2) when the DSS treatment restarted (Okayasu et al., 1990; 

Gaudio et al., 1999; Cooper et al., 1993). In some studies, after 4-5 cycles, the clinical symptoms 

no longer resolved during the water phase but continued to worsen (Okayasu et al., 1990). 

Depending on the study, animals began to gain weight during the subsequent phases of DSS but 

were always about 20% lower than control animals (Gaudio et al., 1999) or continued to lose 

weight (Bento et al., 2012). More animals developed dysplasia at the mucosal epithelium when 

more cycles were induced (Okayasu et al., 1990 and Kullman et al., 2001). The colons of these 

animals were shorter in comparison to control animals and similar to those observed in the acute 

phase (~25% shrinkage in rats and ~50% in mice, Okayasu et al., 1990; Gaudio et al., 1999; Bento 

et al., 2012). However, after the second water phase, the colons no longer regenerated (Bento et 

al., 2012). Microscopic changes were similar to the acute phase in terms of crypt loss and 

inflammation (Cooper et al., 1993) and increased focal erosion of the epithelium, greater crypt 

dilation and goblet cell depletion was evident with more cycles (Gaudio et al., 1999). The cytokine 

profile during the chronic phase (2 and 4 cycles) was characterised by increased serum 

proinflammatory cytokines (TNF-α, IL-1β, IL-6 and IFN-ϒ) and anti-inflammatory cytokine (IL-

10) in comparison to control animals (Bento et al., 2012 and Alex et al., 2009). However, one 

study reported an increase in IL-4 in C57BL/6 mice after 4 cycles of DSS (Alex et al., 2009) while 

the other did not in BALB/c mice after 2 cycles of DSS (Bento et al., 2012). This difference may 

be attributed to the differences in strain and the number of cycles of DSS administered. The 

increase in anti-inflammatory cytokines (IL-4 and IL-10) during the chronic phases of DSS 

suggests an anti-inflammatory dominant profile during the chronic phase which is similar to human 

ulcerative colitis (Alex et al., 2009). 

During the second water phase, TNF-α, IL-1β remain elevated and CD4+ and CD8+ T cells 

and TGF-β increased from controls in BALB/c mice (Bento et al., 2012). This suggests that the 

colon is adapting during the chronic phases, with regulatory T-cells now releasing the observed 

increase in anti-inflammatory cytokines (IL-10, TGF-β and FoxP3; Bento et al., 2012).  
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In conclusion, it seems that changes are initiated after the initial insult of DSS treatment, with 

increased levels of pro-inflammatory cytokines and immune cells in DSS-treated animals. These 

pro-inflammatory cytokines were still present when DSS treatment is halted. The cytokine profiles 

are also different during the acute and chronic phases, with the acute phase characterised by a pro-

inflammatory cytokine profile and the chronic phrases characterised by both pro- and anti-

inflammatory cytokine profiles. These differences are evident as early as the second phase of DSS. 

Differences are also evident with clinical signs reappearing earlier and taking longer to resolve 

and the colon lengths are no longer regenerating after the second phase of DSS treatment. 

Therefore, these studies suggest that two phases of DSS exposure is sufficient to create a chronic 

colitis model. 
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1.4. Pain recognition training 

It has been reported that underestimation or failure to recognise pain is the major reason some 

veterinarians withhold or provide inadequate analgesics to their patients (Hugonnard et al., 2004; 

Raekallio et al., 2003; Hewson et al., 2006; Dohoo and Dohoo, 1996; Mich et al., 2010 and Lim 

et al., 2014). The further training of veterinarians and veterinary students to recognise painful 

behaviour or the use pain assessment tools has been proposed (Mich et al., 2010). Two studies 

have assessed the effects of training in veterinary students to recognise pain. In both studies, 

students were given a formal single, brief training assessment (30-40 minutes) of pain in dogs or 

cats and then asked to assess their level of confidence on the identification of painful behaviours 

post-training (Mich et al., 2010 and Lim et al., 2014). After training, students reported improved 

confidence in assessing pain which was statistically significant. These students also improved and 

were able to recognise subtle signs of pain that they had missed before. However, despite the 

formal training sessions, students were unable to score in a similar manner to experienced 

veterinarians (Mich et al., 2010 and Lim et al., 2014). This suggests that the training provided was 

insufficient for students to be as competent as experienced raters and that experience or more 

training was still required. Another study assessed the effect of experience on scoring ability 

(Doodnaught et al., 2017). This study also found that veterinary students were unable to score 

similarly to experienced veterinarians (graduate veterinarians and anesthesiologists; Doodnaught 

et al., 2017). In contrast, another study assessed if three behaviours that rats typically displayed 

after a laparotomy surgery could be recognised by raters with varying levels of experience with 

rats (i.e. administrative staff, animal technicians and researchers; Roughan and Flecknell, 2006). 

Before a short (10 minute) training session, raters were asked to assess pain with a visual analogue 

scale from a 5-minute video of a rat. After the training session, most of these raters were able to 

recognise painful behaviours and demonstrated improvement in differentiating between rats with 

and without pain. It appears that the correct identification of painful behaviours requires learning 

and that providing of training tools will not ensure a similar ability in the scoring of pain with 

raters of different experience levels (Haidet et al., 2009 and Campbell et al., 2014).  

Interestingly, the underestimation of pain and overestimation of analgesic efficacy by 

healthcare professionals for human patients has also been observed (Klopfenstein et al., 2000). 
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Like veterinarians, some doctors also report low confidence in their ability to assess pain and to 

treat pain (Silvoniemi et al., 2012). Additional training and use of a systematic assessment tool 

have also been suggested (Klopfenstein et al., 2000 and Silva et al., 2013). When nurses were 

trained and provided with a systemised assessment form (an application form), their patients 

reported greater pain relief than patients with untrained nurses, thus demonstrating that trained 

nurses were more effective at pain management (Silva et al., 2013). When the trained nurses no 

longer had access to the systemised assessment form, they were less able to manage pain as 

effectively. Furthermore, with training and a systemised assessment form, health care 

professionals reported increased confidence at assessing pain and were more likely to administer 

analgesics to their patients (Silva et al., 2013 and Heinrich et al., 2015). 

Therefore, training to recognise pain and proper knowledge of pain assessment tools is required 

for veterinarians and human healthcare professionals to be effective at pain management. 

1.4.1. The Rat Grimace Scale and training 

As a pain assessment tool, the RGS is simple to use as it consists of only four AUs (Sotocinal 

et al., 2011). These AUs are all located on the rat’s face which human observers tend to focus on 

(Leach et al., 2011). Each AU is assigned a score of 0, 1 or 2 depending on the intensity or how 

obviously present it is. The assessment of AU intensities makes the scoring system subjective and 

may have an impact on the reliability of the scale (Cohen et al., 2007). Therefore, training and 

assessment of inter-rater reliability should be performed before a rater begins to score. This ensures 

that raters are proficient and can score reliably with one another. However, when RGS or MGS 

studies describe the training undertaken by raters, it varies from only reviewing training manuals 

(Faller et al., 2015) to one training session (Langford et al., 2010; Sotocinal et al., 2011; Oliver et 

al., 2014 and Philips et al., 2017) to multiple training sessions (Mittal et al., 2016). Additionally, 

few studies assess and report reliability between raters (Langford et al., 2010; Sotocinal et al., 

2011; Oliver et al., 2014 and Mittal et al., 2016). Therefore, it is unknown how proficient these 

raters were during the time of scoring. A simple solution to assess competency would be to train 

and assess the inter-rater reliability between raters or between a new and experienced rater 

(Streiner and Norman, 2008). This would ensure that the inter-rater reliability between new and 

experienced raters was at an acceptable standard and would also help to identify rogue raters who 
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could be excluded or sent for more training (Mittal et al., 2016 and Mullard et al., 2017). 

Assessment of intra-rater reliability may also be used to ensure raters were scoring consistently 

with themselves over time (Oliver et al., 2014). 

While the usefulness of training has not been assessed adequately with animal grimace scales, 

it has been assessed in a study on human facial expressions of pain (Solomon et al., 1997). In this 

study, new raters were given a 30-minute training session to identify four different facial 

movements: frown, eyes close, nose wrinkle and squint. While these raters were more likely to 

pick up subtle facial movements after training, raters still tended to underestimate pain. Overall, 

raters in this study only improved slightly in their abilities to pick up the four facial expressions of 

pain. Another study also assessed the reliability of two raters experienced with the Facial Action 

Coding System (FACS) to assess 19 different AUs (Sayette et al., 2001). These experienced raters 

had excellent reliability at assessing 11 of the AUs when they assessed for the absence and 

presence of the AUs. However, reliability fell when raters assessed the intensity of each AU. 

Interestingly, reliability was better when raters assessed each AU on a 3-point scale instead of a 5-

point scale. This study suggests that although experienced raters were able to agree if most of the 

AUs were present or absent, they were less able to agree on the intensity of individual AU. 

These data suggest that a single short training session is insufficient for raters to be proficient 

at scoring behaviours or facial expressions, however, longer and multiple training sessions could 

be beneficial to learn and recognise multiple AUs. Therefore, proficiency in RGS scoring may 

require more than a single training session. Ultimately, assessing the proficiency of raters at 

utilizing the RGS is key to evaluate if training was effective and this can be done by assessing 

reliability and accuracy of scores. This thesis explores this issue by assessing the reliability and 

the proficiency of trainee raters in comparison to an experienced rater after multiple training 

sessions. An additional group of raters which only scored images was also included to assess if the 

scoring of multiple images without training would results in improved reliability and proficiency 

in comparison to an experienced rater. 
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1.5. The importance of good reporting  

Published papers are the building blocks of scientific progress, each paper generates new 

information that future research builds upon. Accurate and transparent reporting within scientific 

papers is vital for study validation, replication and use in retrospective analysis such as systematic 

reviews and meta-analyses (MacCallum 2010; du Sert, 2011 and Freedman et al., 2015). Study 

validation requires sufficient information describing the methods and results so that readers may 

critically evaluate the findings and conclusions made by the authors. The data from a properly 

reported study may also be used to direct future animal research or human clinical trials (e.g. 

deciding if a novel analgesic has potential for human use). Adequate study reporting is also 

required for study replication which may be performed to ensure that the reported study is reliable 

and valid and to determine if the results can be replicated in a similar or different population or 

environment. This cannot be performed if insufficient information is reported in the original study. 

For example, when the use of anesthesia and analgesia are unreported, replicate studies cannot 

reproduce the study in its entirety and may even incorrectly assume anesthesia or analgesia were 

not used (Carbone and Austin, 2016). Lastly, only well-reported studies may be incorporated into 

a metanalysis or systematic review (Rice et al., 2013). This allows for the generation of a larger 

data set to test new hypotheses without the need to use more animals. This also allows for the 

confirmation of findings from smaller studies through increased power. Incorporation into 

metanalyses or systematic reviews cannot be performed if the original studies were poorly 

performed or had substandard reporting. Due to these limitations, the impact of poorly reported 

animal studies affects the number of animals used in research and significantly impacts welfare 

and ethical considerations.  

Furthermore, poorly reported research has important financial implications. It is estimated that 

53% of reported preclinical studies report irreproducible results, leading to a loss of $28 billion 

dollars spent on irreproducible data annually in the United States alone (Freedman et al., 2015). 

This is further compounded by the use of further funds in repeating flawed studies to check, correct 

and refute findings (Freedman et al., 2017).  

Importantly, reporting quality has been associated with study design quality (Macleod et al., 

2008, Sena et al., 2010 and Holman et al., 2015). For example, studies were more likely to report 
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NXY-059 (a free radical scavenger with supposed neuroprotective properties) as efficacious when 

randomisation and blinding were unreported (Macleod et al., 2008). When these two items are 

unreported in a study, it is suggested that they were either not performed or were poorly performed, 

thus allowing for the element of bias in the study and likely inflating the changes of obtaining a 

positive result. Furthermore, when Swiss researchers were asked which measures were effective 

against different types of biases, many researchers answered incorrectly (Reichlin et al., 2016). 

Together, these studies demonstrate that readers should not assume a study was performed 

properly if the expected and necessary steps are unreported. Therefore, poor reporting equates to 

doubt over the study’s validity due to possible issues with experimental bias (Rice et al., 2013). 

Overall, good reporting is important to maintain scientific progress and has ethical and 

financial implications. This seems to be in consensus among authors, journal editors and funding 

agencies (MacCallum 2010; du Sert 2011 and Ma et al., 2017). 

1.5.1. What is the reporting standard in animal research? 

In 2009, a systematic review of 271 in vivo papers from 1999-2005 was performed by Kilkenny 

et al. This study found that studies were generally poorly reported, with fundamental information 

missing. For example, the sex, age and weight of animals used were reported in 74%, 43% and 

46% of the 271 papers respectively. Alarmingly, only 13% reported both the age and weight and 

24% did not report either age or weight. Most curiously, items that impacted the study’s validity 

and are important to study design: sample size justification (0% reported), randomisation (12%) 

and blinding (14%) were also unreported or never reported. Of the studies that reported use of 

statistical analysis (247/271), adequate reporting of statistical methods and results were only 

present in 70% of the papers. Overall, most of these papers were missing fundamental items which 

prevented the readers from judging the validity of the results (i.e. description of study design and 

statistical analysis), reproducing the data or including it in retrospective analysis (i.e. basic 

information such as animal sex, age and weight).  
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1.5.2. Introducing the ARRIVE (Animal Research: Reporting of In Vivo 

Experiments) guidelines and its… impact? 

In 2010, the ARRIVE guidelines were published to guide and promote improved reporting of 

animal research papers (Kilkenny et al., 2010). The ARRIVE guidelines consist of 20 items with 

sub-items that all animal research papers should include to be complete and to maximise the data 

gathered (Kilkenny et al., 2010). A recommendation is provided beside each item that suggests 

how it should be reported. For example, under item number 9 “Housing and husbandry”, authors 

should provide details of housing, husbandry conditions and welfare assessments that the animals 

were exposed to during the study. Within these sub-items, authors are recommended to include the 

cage type, bedding materials, number of cage companions used etc. These guidelines were 

prepared by researchers, statisticians, journal editors and funders of research. The ARRIVE 

guidelines have since been published by 13 journals, supported by hundreds of journals and by 

various funding agencies, universities and learned societies organisations (www.nc3rs.org.uk). 

Since the publication of the ARRIVE guidelines, there have been various systematic studies 

on reporting quality to assess the current standards and to evaluate if these reporting standards 

have improved (Schwarz et al., 2012; Baker et al., 2014; Delgado-Ruiz et al., 2014; Bara and 

Joffe, 2014; Ting et al., 2015; Gulin et al., 2015; Lin et al., 2016; Avey et al., 2016; Nam et al., 

2018). Overall, these studies reported that reporting standards remain low and the publication of 

the ARRIVE guidelines does not seem to have made a significant impact. For example, the 

reporting rates of basic animal information (i.e. sex, age and weight) and key items required to 

assess study validity (i.e. sample size justification, randomisation, blinding and statistical analysis) 

remain poorly reported in many studies (Table 1.5.2.1 and 1.5.2.2). 

The reasons for the low reporting standards are probably multifactorial. Firstly, more time may 

be required for the ARRIVE guidelines to take hold as a relatively short time has passed since they 

were first published. This may also explain why many authors were not aware of them (Reichlin 

et al., 2016 and Ma et al., 2017). Therefore, more time and perhaps better education and promotion 

of the ARRIVE guidelines may be required for authors to use the guidelines. The enforcement of 

core concepts contained in the guidelines (e.g. items related to bias and study precision – the use 

of blinding, randomisation and sample size calculation) by journals and funding agencies may also 
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help. Additionally, it seems that researchers may be reporting only what they think is minimally 

required for a paper. This can be observed by the fact that items of the ARRIVE guidelines which 

were frequently well reported were items that constitute the essential ‘skeleton’ of a paper: the 

title, abstract, background, objectives and hypothesis, details on experimental animals (methods), 

experimental outcomes (results), outcomes and estimation, interpretation and implication 

(discussion; Schwarz et al., 2012; Delgado-Ruiz et al., 2014; Bara and Joffe, 2014; Ting et al., 

2015; Lin et al., 2016; Avey et al., 2016; Nam et al., 2018). In contrast, items that were generally 

poorly reported are not always deemed necessary or essential: welfare assessments, sample size 

calculations, baseline data of animals, numbers analysed, adverse events, implications for 

replacement, refinement or reduction of animal use. Lastly, it is interesting to note that reporting 

standards within a certain field remain consistent overtime. For example, it was observed that 369 

papers on neoplasm in rodents from 2010 to 2012 had very similar reporting rates for all items 

(Lin et al., 2016). Although this was over a short amount of time, this suggests that authors within 

the same field take cues from one another regarding which items should be reported. This was also 

observed by Macleod et al. (2015) where different fields were more likely to report certain items. 

Overall, it seems that the ARRIVE guidelines have not made a substantial impact on the 

reporting standards of animal research papers. It remains to be seen if this will change over time. 

Use of the ARRIVE guidelines and the importance of good reporting should continue to be 

promoted to researchers and enforcement of the entirety or part of the guidelines should be 

employed. 

1.5.3. Items listed in the ARRIVE guidelines related to pain research 

Studies have been performed which demonstrate the various factors that can affect outcome 

measures in pain research. These items highlight the importance of precise descriptions in pain 

research. These include stress induced analgesia which has been reported to be affected by 

experimenter (e.g. male olfactory cues) and when experiments are conducted in a novel 

environment (Abbott et al., 1986; Chesler et al., 2002 and Sorge et al., 2014). Other testing 

conditions such as time of testing (i.e. effect of circadian rhythm), testing surfaces and presence of 

conspecifics have been reported to affect pain assessments (Frederickson et al., 1977; Pitcher et 

al., 1999 and Langford et al., 2006). Demographics of experimental animals utilised in the study 
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is also known to affect the results of pain assessment methods such as sex, strain and age (Chesler 

et al., 2002; Mogil et al., 2005; Legg et al., 2009 and Sorge et al., 2011; 2015). The effects of 

housing have been described to also affect the outcome of pain assessment methods, these include 

the type of bedding (Moehring et al., 2005), cage size, presence of enrichment items (Tall, 2009 

and Gabriel et al., 2010) and number of companions (isolated housing, overcrowding and 

aggression; Nishikawa and Tanaka, 1978; Pilcher and Browne, 1982; Puglisi-Allegra and Oliverio, 

1983; Gentsch et al., 1988; Brown et al., 1995; Coudereau et al., 1997 and Tuboly et al., 2009). 

Lastly, the effects of dietary differences of fat, sugar content, caloric restriction and iron deficits 

may also affect pain assessment results (Yehuda et al., 1986; Frye et al., 1993; and de los Santos-

Arteaga et al., 2003; Hargraves and Hentall, 2005; Perez et al., 2005; Dowling et al., 2009; Martin 

and Avendano, 2009; Ross-Huot et al., 2011 and Veigas et al., 2011). 

1.5.4. Conclusion 

In conclusion, good reporting is required to maintain scientific rigor as well as prevention of 

ethical and financial issues associated with poor reporting. The ARRIVE guidelines were 

published to give authors clear guidance on what should be reported to maximise the data gathered 

from each study. However, reporting standards remain poor and the efforts by all stakeholders are 

required to improve reporting standards. This thesis explores this issue by assessing if papers 

published in veterinary journals five years after the publication of the ARRIVE guidelines have 

improved. In addition, a comparison was made between papers that were published in journals that 

support the ARRIVE guidelines and journals that did not. Both of these comparisons assess if the 

publication of the ARRIVE guidelines resulted in improved reporting standards of published 

veterinary papers. 
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Table 1.5.2.1:  Summary of the reporting rates of three basic animal demographic 

details that should be reported in all papers 

Animal details   

Sex (%) Age (%) Weight (%) N (of papers) Reference 

74 43 46 271 Kilkenny et al., 2009 

- 30 70 25 Delgado-Ruiz et al., 2014 

79 44 56 47 Avey et al., 2016 

60 82 24 50 Nam et al., 2018 

77 38 78 77 Bara and Joffe, 2014 

90 58 52 83 Gulin et al., 2016 

 

Legend: Table compares the reporting rates of different basic items from various systematic 

reviews assessing reporting adherence to the ARRIVE guidelines. As there were no differences 

observed of items reported in papers published before or after the ARRIVE guidelines, the data 

was merged. 

 

Table 1.5.2.2:  Summary of the reporting rates of four key items to the validity of a 

study design. 

Sample size 
justification  
(%) 

Randomisation 
(%) 

Blinding 
(%) 

Statistics 
(%) 

n Reference 

0 43 46  271 Kilkenny et al., 2009 

0 17 29 75 41 Ting et al., 2014 

88 - - 72.6 75 Schwarz et al., 2012 

0 90 0.25 79 396 Lin et al., 2016 

2 23 30 32 47 Avey et al., 2016 

8 17 6 42 50 Nam et al., 2018 

5 61 40 - 77 Bara and Joffe, 2014 

0 16 - 61 83 Gulin et al., 2016 

Legend: Table comparing the reporting rates of 4 key items related to study design from various 

systematic reviews assessing reporting adherence to the ARRIVE guidelines. As there were no 

differences observed of items reported in papers published before or after the ARRIVE guidelines, 

the data was merged 
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1.6. Research questions, hypotheses and objectives 

1.6.1. Can the Rat Grimace Scale be utilised in real-time? 

1.6.1.1. Background 

The RGS, a facial expression scale, allows for the assessment of the affective component 

of pain in rats (emotional experience and presence of ongoing pain). This behavioural tool works 

well as a research tool but is limited as a clinical tool as the standard video-based method is time 

and labour intensive. The standard method requires the rat to be first video-recorded, then images 

need to be manually extracted and cropped before scoring can even begin. This results in hours or 

even days passing before a score can be obtained for a single rat. Overall, it is impractical, and it 

is difficult to utilise the RGS in a clinical setting where time is limited and decisions to intervene 

need to be made quickly. Therefore, real-time application of the RGS, where an observer can 

simply walk in and assess an animal, will drastically reduce the time and labour required as well 

as lend itself as a clinical tool to assess animals and provide analgesic intervention quickly. 

1.6.1.2. Hypothesis and objectives 

It was hypothesised that real-time application of the RGS would be as successful as the 

standard RGS method for the assessment and evaluation of pain in the rat. This was tested through 

four objectives: 1) assessing if point- and interval-scoring methods would produce scores 

comparable to the standard method (video-based) method; 2) assessing if real-time scoring was 

able to identify treatment effects of analgesics over time; 3) assessing the shortest observation time 

(10, 5 and 2 minute durations) required for real-time scores to be comparable to the RGS scores 

from the standard method and 4) assessing if there is an effect of an observer being present (do 

rats display a different facial expressions when an observer is present?). 
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1.6.2. Can spontaneous behaviours (Rat Grimace Scale, burrowing and 

Composite Behavioural Score) assess visceral pain in an acute and 

chronic dextran sulfate sodium colitis model? 

1.6.2.1. Background 

The RGS was developed with acute inflammatory pain models and its applicability in other 

pain models has also been demonstrated. However, its applicability in chronic and visceral pain 

remains unexplored. Visceral pain in animals has been difficult to assess due to the absence of an 

external injury that can be stimulated. Other spontaneous based behaviours that may allow for the 

evaluation of visceral pain are: The Composite Behaviour Score (CBS), behavioural ethogram of 

behaviours (twitch, writhe, back arch and fall/stagger) which rats will display with increased 

frequency during visceral pain; and burrowing, voluntary spontaneous behaviour that rats are 

highly motivated to perform which decrease during pain. The visceral pain model selected was the 

DSS colitis model. This model was chosen because it is a frequently used model, replicable and 

model induced mortality can be avoided. Up until now, the affective component of pain has not 

been assessed in this model. Instead, disease progression has been assessed with the DAI 

(assessment for the presence of bleeding, reduction in stool consistency and weight loss). 

1.6.2.2. Hypothesis and objectives 

It was hypothesised that the use of spontaneous behaviours would be able to assess pain in 

an acute and chronic dextran sulfate sodium model. This was tested through two objectives: 1) 

assessing if the RGS and CBS scores would increase with exposure to dextran sulfate sodium and 

would follow a similar pattern to the DAI index and 2) assessing if rats would burrow less with 

exposure to DSS. 

1.6.3. What is the effect of training on Rat Grimace Scale scoring? 

1.6.3.1. Background 

If the RGS is to be used as a tool for the assessment of pain, then its reliability and 

repeatability between raters is an important consideration. The effects of training and how much 

training is required to attain proficiency has never been explored and rater training is rarely 
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reported in RGS papers. In general, pain recognition and assessment in animals is difficult and a 

single training session is usually insufficient for trainee raters to be as proficient as experienced 

raters. Therefore, not only is undergoing training important, it is also important for some 

assessment of proficiency. One way to assess proficiency is to assess the inter-rater reliability 

between trainee and experienced raters. Once proficiency and inter-rater reliability from training 

is attained, it is important for this proficiency and reliability to be maintained within the individual. 

Therefore, intra-rater reliability should also be reassessed once a latency period is applied to 

evaluate an individual’s proficiency at retaining the ability to score effectively. 

1.6.3.2. Hypothesis and objectives  

It was hypothesised that training would improve inter-rater reliability and proficiency would 

be maintained after a period of disuse. This was tested through three objectives: 1) assessing if 

trainee raters would have improved inter-rater reliability with one another and with an experienced 

rater after training sessions, 2) assessing if trainee raters without training would demonstrated 

improved inter-rater reliability with one another and an experienced rater and 3) assessing if inter-

rater reliability with each other and the experienced rater and intra-rater reliability may be 

maintained after a period of disuse. 

1.6.4. What are the reporting standards of papers published five years 

after the ARRIVE guidelines? 

1.6.4.1. Background 

In addition to the improvement of pain assessment methods and the training required to use 

these assessment methods, pain research needs to be well reported. Good and complete reporting 

in published papers are vital to allow for critical assessment, replication of the study and inclusion 

in retrospective analyses. However, studies that have assessed reporting standards in published 

animal studies have indicated that reporting is generally poor in published papers. Poor reporting 

results in irreproducible animal research that is ethically and financially costly. To combat poor 

reporting of animal studies, the ARRIVE guidelines, a 20-item checklist, was published in 2010 

to inform animal researchers about the information they should include for complete reporting. 

Since its publication, there has been overwhelming support by hundreds of journals. No studies to 
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date have assessed the adherence of the ARRIVE guidelines in the veterinary literature and none 

have compared the reporting standards of journals that support or do not support the ARRIVE 

guidelines. 

 

1.6.4.2. Hypothesis and objectives 

 It was hypothesised that the publication of the ARRIVE guidelines would result in an 

increase in the standards of reporting. This was tested through two objectives: 1) assessing if papers 

published five years after the ARRIVE guidelines were published (2015) would have higher 

standard of reporting than those papers published prior to the 2009 ARRIVE guidelines and 2) 

assessing if papers published in journals that support the ARRIVE guidelines have a higher 

standard of reporting than papers published in journals that do not support the ARRIVE guidelines. 
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2. Publications 

This thesis explored the strengths and limitations of the RGS as a pain assessment tool. 

Specifically, this thesis explored if practicality of the RGS could be improved with real-time 

application, if it could be used to assess chronic and visceral pain and the effect of training on the 

reliability of RGS scoring. This thesis also explored if the publication of the ARRIVE guidelines 

improved the reporting standards of animal studies. 

The first objective was to assess if real-time application of the Rat Grimace Scale could be 

successfully translated from the standard RGS method. The successful real-time application of the 

RGS would increase the practicality of the scale in the research setting, establish its usefulness in 

a clinical setting and to improve the animal welfare of laboratory rodents. This study and results 

are presented in the first paper titled “Real-time application of the Rat Grimace Scale as a welfare 

refinement in laboratory rats” (Vivian Leung, Emily Zhang, Daniel SJ Pang), published in 

Scientific Reports (2016, 6, 31667; doi: 10.1038/srep31667). Author contributions: Vivian 

Leung was involved in the data collection of the main study, data interpretation, statistical analysis 

and manuscript preparation. Emily Zhang was involved in the collection of control animal data, 

data interpretation and manuscript preparation. Daniel SJ Pang was involved with the study design, 

data interpretation and manuscript preparation. 

The second objective was to assess if the RGS could be used to assess pain in an acute and 

chronic colitis model. The ability to use the RGS to assess pain in this model opens its utility for 

visceral pain assessment, a pain type that is difficult to assess in animals because there is no 

external injury that can be stimulated. This study and results are presented in the second paper 

titled “Performance of behavioral assays: The Rat Grimace Scale, burrowing activity and a 

composite behavior score to identify pain in an acute and chronic colitis model” (Vivian Leung, 

Marie-Odile Benoit-Biancamano and Daniel SJ Pang), in press in Pain Reports (2019). Author 

contributions: Vivian Leung was involved in the study design, data collection, data interpretation, 

statistical analysis and manuscript preparation. Marie-Odile Benoit-Biancamano was involved in 

the interpretation of histological data and manuscript preparation. Daniel SJ Pang was involved in 

the study design, data interpretation and manuscript preparation. 
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The third objective was to assess the influence of training on the reliability and proficiency 

of RGS scoring. Training before use of the RGS is rarely described and as such, the influence of 

training on data reliability and proficiency is unknown. This study and results are presented in the 

third paper titled “The influence of rater training on inter- and intra-rater reliability when using 

the Rat Grimace Scale”, in press in the Journal of the American Association for Laboratory Animal 

Science (2019). Author contributions: Vivian Leung and Emily Zhang were both involved in the 

study design, data collection, data interpretation, statistical analysis and manuscript preparation. 

Daniel SJ Pang was involved in the study design, data interpretation and manuscript preparation. 

An additional study was performed to assess if the publication of the ARRIVE guidelines 

improved reporting standards in animal research papers five years after their publication. It also 

assessed if journals that support the ARRIVE guidelines were more likely to publish papers with 

higher reporting standards. This study and results are presented in the fourth paper titled “ARRIVE 

has not ARRIVEd: Support for the ARRIVE (Animal Research: Reporting of in vivo Experiments) 

guidelines does not improve the reporting quality of papers in animal welfare, analgesia or 

anesthesia”, published in PLOSone (2018, 13(5): 

e0197882.https://doi.org/10.1371/journal.pone.0197882). Author contributions: Vivian Leung 

and Frederik Rousseau-Blass were both invovled in the study design, data assessment, data 

interpretation and manuscript preparation. Guy Beauchamp was involved with the statistical 

analysis and manuscript preparation. Daniel SJ Pang was involved in the study design, data 

interpretation and manuscript preparation. 
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2.1. Real-time application of the Rat Grimace Scale as a welfare 

refinement in laboratory rats 

Vivian Leung1, Emily Zhang1 & Daniel SJ Pang1, 2 

2.1.1. Abstract 

Rodent grimace scales have been recently validated for pain assessment, allowing 

evaluation of facial expressions associated with pain. The standard scoring method is retrospective, 

limiting its application beyond pain research. This study aimed to assess if real-time application 

of the Rat Grimace Scale (RGS) could reliably and accurately assess pain in rats when compared 

to the standard method. Thirty-two male and female Sprague-Dawley rats were block randomised 

into three treatment groups: buprenorphine (0.03 mg/kg, subcutaneously), multimodal analgesia 

(buprenorphine [0.03 mg/kg] and meloxicam [2 mg/kg], subcutaneously), or saline, followed by 

intra-plantar carrageenan. Real-time observations (interval and point) were compared to the 

standard RGS method using concurrent video recordings. Real-time interval observations reflected 

the results from the standard RGS method by successfully discriminating between analgesia and 

saline treatments. Real-time point observations showed poor discrimination between treatments. 

Real-time observations showed minimal bias (<0.1) and acceptable limits of agreement. These 

results indicate that applying the RGS in real-time through an interval scoring method is feasible 

and effective, allowing refinement of laboratory rat welfare through rapid identification of pain 

and early intervention. 

2.1.2. Introduction 

Pain in animals is commonly under-treated. This stems from numerous factors, including 

the limited availability of validated pain scales (Williams et al., 2005; Hewson et al., 2006; 

Hewson et al., 2007 and Rialland et al., 2012). In laboratory rodents, analgesic administration rates 

as low as 15% have been reported for invasive procedures (e.g. orthopedic surgery, thoracotomy) 

                                                 

1 Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, AB, T2N 4Z6 

Canada. 

2 Hotchkiss Brain Institute, University of Calgary, AB, T2N 4Z6 Canada. 
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and data variability related to the presence of pain and sporadic analgesic use is likely to act as a 

confounding factor during experimental studies (Carbone, 2011 and Stokes et al., 2009). 

Furthermore, some experimental designs allow analgesia to be withheld until established humane 

endpoints have been reached (Carbone, 2011). These endpoints, such as weight loss, are largely 

non-specific and little is known about their relationship to pain (Roughan et al., 2014). Early 

recognition of pain coupled with appropriate intervention would address these issues and support 

refinement of in vivo research (Carbone, 2011; Matsumiya et al., 2012; Waite et al., 2015 and 

3rs.ccac.ca). The recent development of rodent grimace scales has expanded our ability to assess 

pain in rodents (Langford et al., 2010 and Sotocinal et al., 2011) and potentially addresses failures 

in translational pain research resulting from a reliance on evoked-response nociceptive testing 

(Mogil and Crager, 2004, Rice et al., 2008 and De Rantere et al., 2016). The Rat Grimace Scale 

(RGS) consists of four facial “action units” (orbital tightening, nose/cheek appearance, ear and 

whisker positions) which are scored using still images by an observer (Sotocinal et al., 2011). The 

RGS has been validated, showing content and construct validity and reliability (inter- and intra-

observer; Sotocinal et al., 2011 and Oliver et al., 2014). An analgesia intervention threshold has 

been derived for the RGS and it has been used to highlight discrepancies between nociception and 

spontaneous ongoing pain (Oliver et al., 2014 and De Rantere et al., 2016). The development of 

both the RGS and Mouse Grimace Scale (MGS) has allowed reappraisals of analgesic efficacy in 

these species (Matsumiya et al., 2012 and Waite et al., 2015). In their current form, the RGS and 

MGS show great potential as research tools in the study of pain. However, the standard method of 

generating pain scores requires multiple steps: high quality video-recording, automated or manual 

selection of several images per time point and scoring (Sotocinal et al., 2011 and Oliver et al., 

2014). These steps are time and labour intensive and consequently inhibit wider application of the 

scales. Performing real-time scoring with the RGS and MGS broadens their applications, 

facilitating improvements in welfare through rapid, early and accurate identification of pain, thus 

bridging the gap from research tool to improving rodent care and welfare. Real-time scoring has 

been attempted in mice (Miller and Leach, 2015) and has been proposed, but remains untested, in 

rats (Oliver et al., 2014). Potential obstacles to real-time scoring are: 1. a change in behaviour in 

the presence of an observer (observer effect), 2. an inherent bias from the observer being able to 

observe the whole animal rather than just the head, as performed in the validation studies (observer 

bias) and 3. limited accuracy of real-time scoring of moving animals without the control offered 
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by video playback. We hypothesised that the standard video-based application of the Rat Grimace 

Scale could be successfully translated to real-time assessment. This hypothesis was tested through 

two specific aims: 1) assessing if results from two different real-time scoring methods are 

comparable to those collected through standard RGS methodology and 2) assessing the shortest 

observation period possible for real-time scores to remain comparable to standard RGS scores. 

2.1.3. Methods and materials 

2.1.3.1. Ethical statement 

All experiments were approved by the University of Calgary Health Sciences Animal Care 

Committee and performed in accordance with Canadian Council on Animal Care guidelines. 

2.1.3.2. Experimental animals 

Forty-four male and female Sprague-Dawley rats (224–435 g) were obtained from the 

University of Calgary Animal Resource Centre surplus stock and Charles River, Canada. Animals 

were housed in pairs in polycarbonate or polysulfone rat cages (RC88D-UD, Alternate Design 

Mfg and Supply, Siloam Springs, Arizona, USA) with bedding of wood shavings, shredded paper, 

sizzle paper and a plastic tube for enrichment. The housing environment was controlled: light cycle 

of 12 hours on/12 hours off (lights on at 0700) and temperature and humidity settings of 23 °C and 

22%, respectively. Laboratory rat pellets (Prolab 2500 Rodent 5P14, LabDiet, PMI Nutrition 

International, St Louis, MO, USA) and tap water were available ad libitum. 

2.1.3.3. Experimental procedures 

All animals were habituated to the observer and observation chamber for three days. During 

these habituation sessions, each animal was placed in the observation chamber for approximately 

10 minutes and handled by the observer for at least 20 minutes. Animals were offered a food 

reward (Honey Nut Cheerios™, General Mills, Inc., Golden Valley, Minnesota, USA) when 

handled. They were considered habituated when they voluntarily ate the food reward while being 

held by the observer.  
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Sample sizes for treatment groups were chosen based on RGS data variability observed in 

previous publications12,16 with an alpha of 0.05, beta of 0.8 to detect a mean difference of 0.3. 

Injections were prepared by a third-party not involved in the experiment. All injections were 

performed between 0700 and 0915 hours and testing completed within the light period. Image 

scoring and real-time observations were performed by a single observer. Animals were block 

randomised into one of nine treatment groups (Fig. 2.1.2.3.1). Three treatment groups received 

intra-plantar carrageenan (100 microlitres of 1% λ -carrageenan dissolved in saline, Sigma-

Aldrich, St. Louis, MO, USA) with either buprenorphine (0.03 mg/kg SC, Vetergesic, Champion 

Alstoe, Whitby, ON, Canada, n = 12), buprenorphine (0.03 mg/kg SC) and meloxicam 

(“multimodal analgesia group”, 2 mg/kg SC, Metacam 0.5% injection, Boehringer Ingelheim, 

Burlington, ON, Canada, n = 12), or saline (n = 12). A cross-over design was used for the control 

groups, with each animal receiving three control treatments with a minimum 10-day washout 

period between treatments (Fig. 2.1.2.3.1).  
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Figure 2.1.2.3.1: Flow chart depicting experimental pathway for each treatment group. 

 

Legend: SALB, saline volume equivalent to buprenorphine dose. SALM, saline volume equivalent 

to meloxicam dose. BUP, buprenorphine. MEL, meloxicam. 
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All animals received two sets of injections. The first was given 30 minutes before intra-

plantar injection and the second 9 hours after intra-plantar injection (or equivalent time for the 

control groups). Injections at 9 hours were given after pain assessments were completed.  

Intra-plantar injections were performed under brief general anaesthesia. Animals were 

placed individually in a plexiglass induction chamber and 5% isoflurane carried in oxygen (1 

L/min) administered until loss of righting reflex occurred, at which point the animal was 

transferred to an adjacent counter (anaesthesia maintained by nose cone with 2% isoflurane in 1 

L/minute oxygen) and placed in sternal recumbency on a heat pad. The left hind paw was extended 

caudally, and the plantar surface wiped with 70% ethanol. The assigned treatment (carrageenan or 

saline) was injected subcutaneously into the plantar surface. Animals were then allowed to recover 

with 1 L/minute oxygen and returned to their home cages once the righting reflex had returned. 

2.1.3.4. Observations 

Two video cameras (Panasonic HC-V720P/PC, Panasonic Canada Inc., Mississauga, ON, 

Canada) were placed at opposite ends of the observation chamber (28 × 15 × 21 cm). During real-

time observation the observer was positioned perpendicular to the camera and was free to move 

around without entering the cameras’ field of view. Three observation periods (V1, O+ V, V2) 

were video-recorded consecutively. V1: video-recording was performed with no observer present. 

O+ V: real-time observations were performed concurrently with video recording. V2: video-

recording was performed with no observer present. Each observation period was 10-minutes long. 

Observations were performed at baseline (day before procedure) and 3, 6, 9 and 24 h after intra-

plantar injections (or equivalent time for control groups). 

2.1.3.5. Image RGS scoring 

Image scores (IMG) were generated as previously described, by selecting the best image 

from each consecutive 3-minute period of a 10-minute video (Sotocinal et al., 2011). Videos were 

relabelled by a third party not involved in image grabbing or scoring, blinding the observer to the 

rat, treatment and time point. The preferred image was a frontal view that clearly showed all action 

units. A profile view was selected if no frontal image of sufficient quality was available. Images 

were put into a presentation software (Microsoft PowerPoint, version 15.0, Microsoft Corporation, 
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Redmond, WA, USA) and the slide order randomised before scoring. An average score was 

calculated from the three images from each video. 

2.1.3.6. Real-time RGS scoring 

Real-time (RT) scores were obtained using two methods: 1) a point observation alternating 

with 2) a 15 s interval observation, where the animal was observed for 15 s and assigned a single 

score for the period. Each method was repeated every 30 s for the 10-minute observation period, 

generating 18 scores of each type per animal. Similar to the standard method described for RGS 

scoring (Sotocinal et al., 2011), scores generated from both methods were averaged every three 

minutes to produce three separate scores and these averaged to yield a single score (RT-interval10 

or -RT-point10). Real-time scores were also averaged from the first five and two minutes of the 

observation period (RT-interval5, RT-point5, RT-interval2, RT-point2) to compare shorter 

observation periods (Fig. 2.1.2.6.1).  

Additionally, five single real-time scores from each 10-minute observation period were 

randomly selected (single RT-interval and single RT-point) to evaluate variability associated with 

single observations. Real-time scoring and image grabbing were not performed if a rat was rearing 

(two paws raised off the chamber floor), sniffing, grooming or sleeping. 

2.1.3.7. Pica 

A petri dish (given to each cage at the beginning of habituation period) was weighed at 

baseline and after the experiment as pica is a potential side effect of buprenorphine (Schaap et al., 

2012). Pica was confirmed if there was evidence of petri dish fragments at necropsy examination 

(visual inspection of the stomach contents) or a decrease in the mass of petri dishes (> 0.1 g) was 

observed. 
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Fig. 2.1.2.6.1: Cartoon of real-time observation methods 

Legend: Observations alternate between point and 15s interval observations. After a 15s pause, 

the observations are repeated for the 10-minute observation period. Scores from each 3-minute 

block were averaged and the 3 blocks averaged to give an overall score for the 10-minute period 

(real-time interval [RT-interval10] and real-time point [RT-point10]). Raw scores were also 

averaged over 5 (RT-interval5 and RT-point5) and 2 minutes (RT-interval2 and RT-point2). 
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2.1.3.8. Statistical methods 

Data analyses were performed using commercial software (Prism 6.07, GraphPad 

Software, La Jolla, CA, USA). Open source software (R 3.3.0, ‘MethComp’ package ver. 1.22.2) 

was used for the Bland and Altman method. Data were assessed for normality with a D’Agostino-

Pearson omnibus normality test and parametric tests applied where data approximated a normal 

distribution. Repeated measures two-way ANOVA was used for between group comparisons with 

post-hoc tests if a significant main effect was observed: RT-interval and RT-point versus IMG 

scores (post-hoc Dunnett’s test), treatment groups (saline vs buprenorphine vs multimodal; post-

hoc Tukey’s test), single RT-interval and single RT-point versus IMG scores (post-hoc Dunnett’s 

test), observer effect (RGS scores during observation periods with and without the observer 

present; post-hoc Tukey’s test). When it was not possible to obtain an RGS score for a rat at a 

given time point, an average of the scores obtained from other rats at the same time point was 

substituted to allow analysis. The Bland and Altman method for repeated measures was used to 

assess agreement between IMG scores and RT-interval or RT-point scores (Bland and Altman, 

2007). Control data were analysed with Friedman’s test with a post-hoc Dunn’s test. Differences 

were considered statistically significant if the computed two-tailed p value was less than 0.05. 

When available, p values are reported with 95% confidence intervals (95% CI). Data are presented 

as mean ± SD or median ± interquartile range. Graphs are plotted as mean ± SEM. 

2.1.4. Results 

2.1.4.1. Multiple interval and point observation scoring methods 

Agreement between real-time interval observation scoring methods (RT-interval10, RT-

interval5, RT-interval2) were comparable to the standard RGS method (IMG-O+ V, Fig. 2.1.3.1.1). 

No significant differences were observed between these observation methods at each time point in 

the saline (F = 1.92, df 3, p = 0.14, Fig. 2.1.3.1.1a) and buprenorphine (F = 1.32, df 3, p = 0.28, 

Fig. 2.3.1.1.3b) groups. A single difference was observed in the multimodal (buprenorphine and 

meloxicam) treatment group (F = 13.74, df 3, p < 0.0001) at the 24-hour time point between IMG 

O+ V and RT-interval10 (p = 0.02, 95% CI: 0.02 to 0.35, Fig. 2.1.3.1.1c).  
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Fig. 2.1.3.1.1: Real-time 

interval Rat Grimace Scale 

(RGS) scoring methods were 

comparable to standard RGS 

scoring. 

Legend:  Saline (A) and 

buprenorphine (B): scoring 

methods had no significant effect 

on RGS scores (saline: p = 0.14; 

buprenorphine: p = 0.28). (C) 

Scoring method was found to 

have an effect in the multimodal 

group. However, the differences 

was limited to the 24 hour time 

point (between IMG O+V and 

RT10, p = 0.02). RT-interval = 

real-time interval RGS scoring. 

IMG O+V = standard (video-

based) RGS scoring. Data are 

mean ± SEM. 
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The Bland and Altman analysis revealed that the bias between real-time and standard RGS 

observation methods was small, regardless of the type or frequency of real-time observations, and 

represented a systematic underestimation of the standard method by real-time methods of 

approximately 0.1 (Table 2.1.3.1.1). The limits of agreement (bias ± 2 SD) reflect the distribution 

of 95% of the measured differences between scoring methods. Observation frequencies of either 5 

or 10 minutes showed similar limits of agreement for both interval and point observations (Table 

2.1.3.1.1, Fig. 2.1.3.1.2). As observation frequency decreased to 2 minutes, the limits of agreement 

widened (Table 2.1.3.1.1, Fig. 2.1.3.1.3).  

Table 2.1.1.3.1.1: Bland and Altman method comparing each real-time (RT) observation 

method with image (IMG) scores 

Legend: Bias is the mean difference between RT and IMG Rat Grimace Scale scores. Upper and 

lower limits of agreement are mean difference ± 2 SD. 

Figure 2.1.3.1.2: Bland and Altman plots comparing image and real-time scores.

Observation type Bias Upper limit Lower limit 

RT-interval10 -0.09 0.46 -0.63 

RT-interval5 -0.11 0.55 -0.65 

RT-interval2 -0.14 0.43 -0.71 

RT-point10 -0.07 0.49 -0.63 

RT-point5 -0.08 0.47 -0.63 

RT-point2 -0.09 0.50 -0.68 

Legend: The Bland-Altman analysis indicates that the limits of agreement between (A) real-time 

observation over 5 minutes (RT-interval5) with a bias (underestimation) by real-time scores of -

0.11 and limits of agreement ranging from -0.65 to 0.44. (B) Real-time point observation over 5 

minutes (RT-point5) with a bias (underestimation) by real-time scores of -0.08 and limits of 

agreement ranging from -0.63 to 0.50. 
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Fig. 2.1.3.1.3: Bland and Altman plots comparing real-time (RT) scoring (RT-

interval10,2 and RT-point10,2) to image based (IMG) scores 

Most (4/6) of the real-time observation methods, including all of the interval observation 

methods, were able to discriminate between saline and analgesic treatments (Fig. 2.1.3.1.4, 

2.1.3.1.5). Buprenorphine and the multimodal treatments provided effective analgesia with 

significant reductions in RGS scores. Coinciding with an expected peak in carrageenan-induced 

pain at 6 hours (De Rantere et al., 2016), buprenorphine and multimodal analgesia were effective 

at reducing RGS scores compared with saline in the IMG-O+ V (buprenorphine, p < 0.0001, 95% 

CI: 0.33 to 0.87; multimodal, p = 0.0003, 95% CI: 0.19 to 0.74, Fig. 2.1.3.1.4a), RT-interval10 

(buprenorphine, p = 0.03, 95% CI: 0.02 to 0.52; multimodal, p = 0.004, 95% CI: 0.09 to 0.60, Fig. 

5b), RT-point10 (multimodal, p = 0.02, 95% CI: 0.05 to 0.59, Fig. 2.1.3.1.4c), RT-interval5 

(buprenorphine, p = 0.005, 95% CI: 0.08 to 0.56; multimodal, p = 0.001, 95% CI: 0.13 to 0.61, 

Fig. 2.1.3.1.4d). The same pattern was observed at 9 hours in the RT-interval10 (buprenorphine, p 

= 0.02, 95% CI: 0.03 to 0.54, multimodal, p = 0.01, 95% CI: 0.06 to 0.56, Fig. 2.1.3.1.4b), RT-

Legend: (a) RT-interval10 (b) RT-point10, (c) RT-interval2, (d) RT-point2. Data are mean 

differences (bias, central horizontal line) and limits of agreement (bias ± 2 SD, upper and lower 

horizontal lines) 
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point10 (multimodal, p = 0.007, 95% CI: 0.08 to 0.62, Fig. 2.1.3.1.4c) and RT-interval5 

(buprenorphine, p = 0.002, 95% CI: 0.12 to 0.60, multimodal, p = 0.02, 95% CI: 0.03 to 0.51, Fig. 

2.1.3.1.4d). At 9 hours the IMG-O+ V method identified a decrease in RGS scores associated with 

buprenorphine compared with saline (p < 0.0001, 95% CI: 0.23 to 0.78) and multimodal analgesia 

(p = 0.04, 95% CI: 0.01, 0.54, Fig. 2.1.3.1.4a). Fewer differences were observed at 3 and 24 hours, 

consistent with the expected time course of carrageenan-induced inflammation. No analgesic 

effects were identified with RT-point5 (F = 2.73, df 2, p = 0.08, Fig. 2.1.3.1.4e). Ability to 

discriminate between saline and analgesic treatment groups were identifiable with RT-interval2 

but not RT-point2 (Fig. 2.1.3.1.5).  

When comparing the RT-point observations with IMG-O+ V, the expected pattern of RGS 

scores with different treatments is present (Fig. 2.1.3.1.6).  

2.1.4.2. Single interval and point observation scoring methods. 

 The random selection of 5 interval and 5-point observations illustrated that the predicted 

time course of pain for each treatment group was present but substantial variability was observed 

between individual scores (Figs 2.1.3.1.7 and 2.1.3.1.8). 

2.1.4.3. Observer effect 

The presence of the observer did not significantly affect the RGS scores from the saline (F 

= 1.27, df 2, p = 0.30; Fig. 2.1.3.2.1a) and multimodal analgesia treatment groups (F = 1.37, df 2, 

p = 0.28, Fig. 2.1.3.2.1c). Unexpectedly, significant differences were observed at 24 h in the 

buprenorphine group between observation periods V1 and V2 (p < 0.0001, 95% CI: 0.17 to 0.56) 

and between IMG-O+ V and V2 (p = 0.01, 95% CI: 0.05 to 0.44, Fig. 2.1.3.2.1b). 

2.1.4.4. Control groups 

None of the control treatments resulted in significant changes to RGS scores compared 

with baseline values (Table 2.1.2.5.1).
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Fig. 2.1.3.1.4: Both standard Rat Grimace Scale (RGS) and real-time interval RGS 

scoring were able to discriminate between saline and analgesia treatment groups. 

 

Legend: A) Standard (video-based) RGS scoring (IMG-O + V). Lower RGS scores were 

observed in the buprenorphine treatment group at 3 (p = 0.007), 6 (p < 0.0001), 9 (p < 0.0001) 

and 24 h (p = 0.03). RGS scores were reduced in the multimodal treatment group at 6 h (p = 

0.0003) and a difference was observed between buprenorphine and multimodal treatment groups 

at 9 h (p = 0.04). (B) Real-time interval observation over 10 minutes (RT-interval10). RGS 

scores were lower in the buprenorphine group at 3 (p = 0.03), 6 (p = 0.03), and 9 h (p = 0.02). 

Similarly, multimodal analgesia (buprenorphine and meloxicam) resulted in a decrease in RGS 

scores at 3 (p = 0.02), 6 (p = 0.004) and 9 h (p = 0.01). (C) The real-time point observation over 

10 minutes (RT-point10) identified a treatment effect in the multimodal treatment group at 6 h (p 

= 0.02) and 9 h (p = 0.007). (D) Real-time interval observation over 5 minutes (RT-interval5) 

showed that buprenorphine and multimodal analgesia were associated with a decrease in RGS 

scores at 6 h (buprenorphine, p = 0.005; multimodal, p = 0.001) and 9 h (buprenorphine, p = 

0.002; multimodal, p = 0.02). RGS scores were also lower in the multimodal group at 3 hours (p 

= 0.04). (E) Realtime point observation over 5 minutes (RT-point5) did not identify analgesia 

treatment effects (p = 0.08). SAL = saline, BUP = buprenorphine, MEL = meloxicam. Data are 

mean ± SEM. Broken horizontal line represents a previously derived analgesic intervention 

threshold (Oliver et al., 2014). 
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Fig. 2.1.3.1.5: Treatment effects identified with RT-interval2. 

Fig.  2.1.3.1.6:  Real-time (RT) point scoring methods compared to standard (video-

based) Rat Grimace Scale (RGS) scoring (IMG O+V)

Legend: Treatment effects were identifiable with RT-interval2 but not RT-point2. (a) The real-time 

interval observation over 2 minutes (RT-interval2) identified treatment effect in the buprenorphine 

and multimodal treatment groups from saline treatment group at 6h (buprenorphine, p = 0.005, 

95% CI: 0.09 to 0.60; multimodal, p = 0.003, 95% CI: 0.10 to 0.61) and 9h (buprenorphine, p = 

0.0005, 95% CI: 0.16 to 0.67; multimodal, p = 0.003, 95% CI: 0.11 to 0.62). (b) Real-time point 

observation over 2 minutes (RT-point2) was not able to discriminate between analgesia and saline 

treatment groups (p = 0.19). SAL = saline, BUP = buprenorphine, MEL = meloxicam. Data are 

mean ± SEM. Broken horizontal line represents a previously derived analgesic intervention 

threshold (Oliver et al., 2014). 

Legend: (a) Scoring method was found to differ significantly in the saline treatment groups: IMG-

O+V vs. RT-point10 at 6 (p = 0.04, 95% CI: 0.01 to 0.31) and 24h (p < 0.0001; 95% CI: 0.16 to 

0.46), IMG-O+T vs. RT-point2 at BL (p = 0.002; 95% CI: 0.07 to 0.37), 3 (p = 0.005; 95% CI: 

0.05 to 0.36), 6 (p = 0.005; 95% CI: 0.05 to 0.36) and 24h (p<0.0001; 95% CI: 0.17 to 0.47). There 

was no effect of scoring method on RGS scores in (b) buprenorphine (F = 1.38, df 3, p = 0.27) and 

(c) multimodal treatment groups (F = 2.89, df 3, p = 0.05). BL = baseline. Data are mean ± SEM. 
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Fig. 2.1.3.1.7: Single rea-time 

interval scores. 

Legend: Single real-time interval 

scores (scores 1-5) approximates 

the expected time course associated 

with each treatment, but visual 

inspection of the data reveals 

substantial variability between 

scores. (A) saline treatment group. 

There was no main effect of 

treatment (p=0.11). (B) 

Buprenorphine treatment group. A 

significant difference between 

scores was observed at 24 hours 

(p=0.003). (c) Multimodal 

treatment group. A significant 

difference was observed at 24 hours 

(p=0.03). Data are mean ± SEM. 

Broken horizontal line represents a 

previously derived analgesic 

intervention threshold (Oliver et al., 

2014) 
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Fig. 2.1.3.1.8:  Single real-

time point scores.

Legend: Single real-time point 

scores (scores 1-5) approximates 

the expected time course 

associated with each treatment, but 

visual inspection of the data 

reveals substantial variability 

between scores. No man effects for 

scoring method were identified in 

the buprenorphine ((B) p = 0.13) 

and multimodal ((C) p = 0.16) 

treatment groups. A single 

difference was observed at 6 hours 

in the saline group ((A) p = 0.16). 

Data are mean ± SEM. Broken 

horizontal line represents a 

previously derived analgesic 

intervention threshold (Oliver et 

al., 2014). 
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Figure 2.1.3.2.1: No observer 

effect was observed. 

 

Legend: No observer effect was 

observed in the saline (A) p = 0.30) 

and multimodal treatment groups 

(C) p = 0.28). A significant 

difference between observation 

periods was present in the 

buprenorphine group (B) at 

24 hours, between V1 and V2 

(p < 0.0001) and between IMG-

O+V and V2 (p = 0.01). V1 and 

V2 = video only, no observer 

present. O+V = video, with 

observer present. Data are 

mean ± SEM.  
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Table 2.1.2.5.1: Rat Grimace Scale scores from control group. Scores generated by 

standard (video-based) method. 

Legend: Scores at 3, 6, 9 and 24h were compared to their BL scores. A: saline (buprenorphine 

volume) + saline (meloxicam volume) + anesthesia + intra-plantar saline; B: buprenorphine + 

anesthesia + intra-plantar saline; C: buprenorphine + meloxicam + anesthesia + intra-plantar 

saline; D: buprenorphine + anesthesia; E: buprenorphine and meloxicam. There were no significant 

differences in RGS scores at the various time points compared to their baseline scores. BL = 

baseline. IQR = interquartile range. 

2.1.4.5. Pica 

There was no evidence of pica behaviour from necropsy examination or masses of petri 

dishes in the treatment groups (Table 2.1.3.3.1). The buprenorphine control groups exhibited a 

small amount of pica behaviour (petri dish weight changes of 0.1–0.6 g, Table 2.1.3.3.2).

 Treatment 
Treatment BL 

Median 

(IQR) 

3 

Median 

(IQR) 

p-
value 

6 

Median 

(IQR) 

p-
value 

9 

Median 

(IQR) 

p-
value 

24 

Median 

(IQR) 

A 0.40 

(0.34, 
0.48) 

0.38 
(0.33, 
0.67) 
0.25 

> 0.99 0.63 
(0.44, 
0.75) 
0.31  

0.47 0.36 (0.27, 
0.41) 

< 0.99 0.40 
(0.22, 
0.67) 

B 0.13 
(0.08, 
0.17) 

0.25 
(0.19, 
0.31) 

0.88 0.31 
(0.19, 
0.47) 

0.29 0.28 
(0.06,0.36) 

0.88 0.57 

(0.31, 
0.91) 

C 0.17 
(0.04, 
0.33) 

0.50 

(0.23, 
0.71) 

> 0.99 0.42 
(0.25, 
0.58) 

0.23 0.54  
(0.31, 
0.83) 

0.10 0.63 

(0.13, 
0.75) 

D 0.25 

(0.19, 
0.31) 

0.29 

(0.19, 
0.83) 

> 0.99 0.21 

(0.10, 
0.44) 

> 0.99 0.46 

(0.25, 
0.82) 

0.72 0.31 

(0.25, 
0.66) 

E 0.29 

(0.02, 
0.50) 

0.50 

(0.20, 
0.65) 

0.71 0.50 

(0.23, 
0.65) 

0.47 0.42  
(0.23, 
0.57) 

> 0.99 0.31  
(0.25, 
0.53) 

F 0.19  
(0.13, 
0.31) 

0.50 

(0.25, 
0.63) 

0.29 0.46 

(0.10, 
0.81) 

0.72 0.33 

(0.27, 
0.46) 

> 0.99 0.38  
(0.25, 
0.78) 
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Table 2.1.3.3.1: Weights of petri dishes in the three treatment groups 

Treatment group Cage # Petri dish weight (g) 
  Before (BL) After difference 

Saline 1 8.6 8.6 0 

2 2.7 2.7 0 

3 6.9 6.9 0 

4 8.5 8.5 0 

5 8.4 8.4 0 

6 7.2 7.2 0 

Buprenorphine 1 8.6 8.6 0 

2 6.7 6.7 0 

3 - - 0 

4 8.2 8.2 0 

5 8.5 8.4 0.1 

6 8.2 8.2 0 

Buprenorphine + 
Meloxicam 

1 8.6 8.6 0 

2 8.0 8.0 0 

3 8.7 8.7 0 

4 8.6 8.6 0 

5 6.0 6.0 0 

6 7.8 7.8 0 

Legend: No non-food items were found in the stomach of all the rats and the weight of petri dishes 

did not changes from their baseline weights. Variations in weights of petri dishes “before” reflects 

chewing which occurred during habituation. BL = baseline. Difference = before (BL) – after.
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Table 2.1.3.3.2: Weights of petri dishes in the control groups 

Treatment 
group 

Cage # Crossover # Petri dish weight (g) 
Before (BL) After difference 

A 1 1 7.8 7.8 0 

3 2 7.7 7.7 0 

B 2 2 6.3 6.0 0.3 

4 2 8.1 - - 

C 3 1 7.7 7.7 0 

1 3 5.5 5.5 0 

D 2 1 7.9 7.9 0 

4 1 7.9 7.9 0 

E 2 3 5.1 4.5 0.6 

4 3 4.2 3.8 0.4 

F 1 2 8.0 7.8 0.2 

3 3 6.3 6.2 0.1 

Legend: (A) Saline (buprenorphine volume) + saline (meloxicam volume) + anesthesia + 

intraplantar saline. (B) buprenorphine + anesthesia + intraplantar saline (C) buprenorphine + 

meloxicam + anesthesia + intraplantar saline (D) buprenorphine + anesthesia (E) buprenorphine 

and (F) buprenorphine and meloxicam). No non-food items were found in the stomach of all the 

rats and unlike the rats given intra-plantar carrageenan (Table 2.1.3.3.1), weights of petri dishes 

did decrease from their baseline weight when the rats were given buprenorphine. Variation in 

weights of petri dishes “before” reflects chewing which occurred during habituation. BL = 

baseline. Difference = before (BL) – after.
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2.1.5. Discussion 

The appeal of real-time application of rodent grimace scales lies in expanding their current 

role as retrospective research instruments to one allowing early identification of pain, facilitating 

timely intervention and improving the welfare of laboratory rodents. The potential for rodent 

grimace scales to be applied as a real-time scoring system has been previously suggested (Langford 

et al., 2010; Oliver et al., 2014 and Roughan et al., 2016) and attempted with limited success in 

mice (Miller and Leach, 2015 and Faller et al., 2015). We have shown that real-time RGS scoring 

is an accurate and feasible alternative to the standard method described by Sotocinal et al. (2011), 

offering a refinement to the humane care of laboratory rats. The ability of a new method to reflect 

changes identified by the current (criterion) standard shows accuracy and construct validity. In 

evaluating different methods of real-time scoring, we identified multiple 15 s interval observations 

as more sensitive than multiple point observations. And we observed that single observations, both 

interval and point, approximated the predicted time course of pain, but exhibited substantial 

variability. Applying the Bland and Altman method to our data allowed assessment of systematic 

differences between observation methods and the variability around these differences. There was 

a small systematic underestimation by all the real-time methods, showing that on average, real-

time scores are very close to image-generated scores. The similarity between 5 and 10-minute real-

time observation periods indicates that 10-minute observation periods are unnecessary if the RGS 

is being applied as a tool to guide pain management (rather than as a research tool). Furthermore, 

the similarity between RT-interval5 and RT-point5 observations offers alternative means of scoring 

depending on user preference. The acceptability of a new (real-time) technique over a criterion 

standard (image-based) depends on a subjective assessment of the limits of agreement. For RT-

interval5 and RT-point5 observations, the limits of agreement span a 0.5 score range either side of 

the bias. Therefore, there is the possibility of a single observation either over or underestimating 

the true score. Furthermore, the Bland and Altman plots show that data variability increases at 

RGS scores > 0.5. Interpreting these observations together, a practical approach could be a planned 

reassessment of any animal with an initial RGS score > 0.5 within a relatively short period (e.g. 1 

hour), taking in to account the potential for suffering if providing analgesia is delayed against any 

side-effects associated with analgesic use. As RGS scores exceed a previously identified threshold 

for intervention (RGS score > 0.67; Oliver et al., 2014), the likelihood of an animal experiencing 
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pain increases, in which case the reassessment interval should be kept short or analgesia provided 

immediately, and the animal reassessed for an improvement in RGS score. The agreement between 

RT scores and IMG scores was not reflected in their ability to discriminate treatment effects 

statistically as observations decreased to 2 minutes. Both interval and point observation methods 

(RT-interval10 and RT-point10) were able to discriminate between the saline and analgesic 

treatments at the 6- and 9-hour time points, when peak RGS scores are expected (Radhakrishnan 

et al., 2003 and De Rantere et al., 2016) and did not differ significantly from the standard RGS 

scoring method. Furthermore, the mean scores at these times exceeded a proposed analgesic 

intervention threshold (Oliver et al., 2014), providing evidence for the relevance of this decision-

making tool. However, when the observation period was decreased to 5- or 2-minutes (RT-

interval5,2 and RT-point5,2) only the interval scoring methods were able to reliably discriminate 

between saline and analgesia treatment groups, though the pattern of RGS scores did exhibit the 

expected time courses of the different treatment groups. This inability to discriminate was likely 

due to insufficient power when scoring with RT-point5,2 as the Bland and Altman results showed 

similar agreement to the equivalent interval scoring methods. Our findings agree with those of 

Ballantyne et al. (1999), where a multidimensional 7 item pain scale, of which 3 items were facial 

action units, was evaluated in neonatal infants during painful and non-painful procedures 

(Ballantyne et al., 1999). The authors showed that real-time (bedside) observations (over a 45 s 

period) did not differ significantly from the standard video-based assessments and were able to 

discriminate between predicted painful and non-painful states. This assessment method is similar 

to the successful interval method we employed. Faller et al. (2015) successfully used the mode of 

observed scores (scored from 10 photographs taken over a 15–20-minute observation period) to 

identify a reduction in the MGS score following buprenorphine administration (Faller et al., 2015). 

This approach resembles our point observations, though the discriminatory ability identified 

differs from our findings with the RT-point10 observation method, where 18 observations were 

recorded over a 10-minute period. However, a direct comparison between studies is limited by 

differences in the time allowed to perform the scoring (photograph versus live observation), 

species and grimace scales (the number of facial action units differs between the RGS and MGS).  

The similarity in RGS scores we observed between RT-interval and standard RGS methods 

differs from the findings of Miller and Leach (2015) where they reported, using the MGS, that 
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real-time scores were significantly lower than image scores in 6/7 comparisons (across strain and 

gender). Their real-time scoring was based on 3 × 5 s observations during a 10-minute observation 

period and image scores were derived from 3 randomly selected photographs taken during the 

same 10-minute period. Our RT-interval2 and RT-point2 observations at baseline provide the 

closest comparison to this study as the mice studied did not receive potentially painful 

interventions. While our results showed no significant differences between these observation types 

and the standard RGS method, only interval observations were capable of differentiating treatment 

effects. As suggested by the authors, the use of photographs to generate MGS scores may have 

resulted in an artificial elevation of scores by capturing behaviours interfering with scoring (such 

as blinking). A comparison with the standard RGS scoring method (Sotocinal et al., 2015) allowed 

evaluation of this possibility. Single observations with both the RT-interval and RT-point methods 

displayed the predicted time course for each treatment group, with RGS scores in the saline group 

exceeding a proposed threshold for analgesic intervention at 9 hours, in contrast to the 

buprenorphine and multimodal groups (Oliver et al., 2014). However, visual inspection of the data 

revealed substantial variability with both observation methods, indicating that reliance on a single 

observation for treatment decisions is insufficient, with the risk of failing to identify a painful state.  

Buprenorphine was an effective analgesic, limiting the predicted increase in RGS scores at 

6 and 9 hours after carrageenan administration (De Rantere et al., 2016 and Radhakrishnan et al., 

2003). The timing of buprenorphine administration may have resulted in its analgesic effects 

waning around the 9-hour time point (Roughan and Flecknell, 2004), explaining the slight 

increases in RGS scores observed at this time in the buprenorphine and multimodal groups. The 

optimal dosing interval for buprenorphine in rats is unclear and is likely to vary according to 

procedure and strain, highlighting the importance of regular pain assessment with an appropriate 

instrument (Roughan and Flecknell, 2001; 2004 and Schaap et al., 2012). The choice of a 0.03 

mg/kg dose was based on recent work showing its efficacy when evaluated with the RGS9. A dose 

of 0.05 mg/kg may have provided a longer duration of analgesia (Roughan and Flecknell, 2004) 

but has been associated with pica behaviour (Clark et al., 1997 and Schaap et al., 2012). Therefore, 

the lower dose was selected to minimise the possibility of pain from pica behaviour acting as a 

confounding factor.  
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Somewhat unexpectedly, the multimodal treatment group (buprenorphine and meloxicam) 

exhibited similar RGS scores to the buprenorphine treatment group at all time points, when it might 

be expected that a multimodal analgesic approach with a non-steroidal anti-inflammatory agent 

(NSAID) and opioid resulted in lower RGS scores (Ong et al., 2005; Rialland et al., 2012 and 

Ciuffreda et al., 2014). There are several interpretations of these findings. Firstly, the addition of 

meloxicam may not have conferred any additional benefit as the RGS scores were already low and 

below a level identified as painful (Oliver et al., 2014). Secondly, the relationship between 

inflammation and pain may be less clear than previously believed. Meloxicam may reduce 

inflammation without a concurrent decrease in pain (Bianchi et al., 2002 and Roughan et al., 2016). 

However, this contradicts a substantial body of evidence that NSAIDs are effective analgesics in 

rats (Engelhardt et al., 1995; Roughan and Flecknell, 2003; 2004 and Roughan et al., 2004) though 

the relationship between the behavioural (postural) pain scale used in those studies and the RGS 

is undefined. Finally, the RGS may not be sensitive enough to identify subtle variations in pain 

intensities. This is possible as original work validating the RGS used the potent opioid morphine 

to demonstrate analgesic sensitivity (construct validity) in several robust pain models (Sotocinal 

et al., 2011). 

RGS scores were similar between observation periods (V1, O+ V, V2), indicating that the 

presence of an observer had negligible impact. The extent to which this lack of effect was related 

to the observer being female is unknown: a systematic effect of observer gender has been recently 

shown in mice, with a reduction in MGS scores in the presence of men as a result of stress-induced 

analgesia (Sorge et al., 2014). The exception to the general case was the difference observed 

between observation periods at 24 hours in the buprenorphine group. This is unlikely to be an 

‘observer effect’ as this difference was limited to a single treatment group and time point. 

Furthermore, if an observer effect was present, RGS scores from V1 and V2 periods would be 

expected to be similar, and different from those generated during O + V.  

Scoring by an observer involved with the study raised the possibility of observer bias as it 

was not possible to blind to time point. This may have affected the real-time RGS scores at baseline 

and 24 hours, when RGS scores would be predicted to be low for this model. This possibility was 

addressed by comparing real-time scores with those generated from randomised, blinded images. 

Without concurrent video-recording, observer bias cannot be accounted for unless the observer 
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has no knowledge of the study design. This may reflect the situation encountered if real-time RGS 

scoring were to be used by technicians or veterinarians not involved with a study.  

We have shown that the RGS can be successfully applied with real-time observations, 

lending itself to use as a rapid pain assessment tool to identify acute pain in rats. Interval 

observations over a 2-minute period was able to discriminate between treatment effects whereas 

point observations displayed lower sensitivity and were unable to discriminate between treatments. 

Single observations, interval or point, showed substantial variability and should not be used to 

determine analgesic administration without planned reassessment. The best balance between 

practicality and accuracy is achieved with 5-minute observation periods with either interval or 

point observations. When using real-time observations, we suggest implementing planned 

reassessments to account for score variability, particularly as RGS scores exceed 0.5. However, 

the decision to administer analgesia should be balanced against the welfare cost of delaying 

intervention for reassessment. 
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2.2. Performance of behavioral assays: The Rat Grimace Scale, 

burrowing activity and a composite behavior score to 

identify visceral pain in an acute and chronic colitis model 

Vivian Leung3, Marie-Odile Benoit-Biancamano3, Daniel SJ Pang3 

2.2.1. Abstract  

Introduction: The Rat Grimace Scale (RGS), a facial expression scale, quantifies the affective 

component of pain in rats. The RGS was developed to identify acute and inflammatory pain and 

applicability in acute and chronic visceral pain is unknown. The dextran sulfate sodium (DSS) 

colitis model is commonly used in rats but pain is rarely assessed, instead, disease progression is 

monitored with the Disease Activity Index (DAI; assessing fecal blood, stool consistency and 

weight loss). The aim of this study was to assess if the RGS and two additional behavioral tools 

(Composite Behavior Score (CBS) and burrowing) could identify pain in an acute and chronic 

DSS colitis model.  

Methods: Male and female Sprague Dawley rats were block randomized to: 1) acute colitis (four 

days DSS in drinking water); 2) chronic colitis (four days DSS, seven days water, three days DSS) 

or 3) control (14 days water). DAI, RGS, CBS and burrowing assessments were performed daily.  

Results: RGS scores increased as DAI scores increased during both acute and chronic phases. 

Burrowing only decreased during the acute phase. In contrast, CBS scores did not increase 

significantly during either colitis phase.  

Conclusions: These data show that the RGS and burrowing identify acute and chronic visceral 

pain and that variables assessed in the DAI are indicative of pain. This suggests that the RGS can 

be applied to a wider range of pain types and chronicity than originally suggested. These findings 

increase the application of the RGS as a pain scale and welfare improvement tool. 

                                                 

3 Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada 
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2.2.2. Introduction 

In recent years, it has been proposed that spontaneous behaviors of animals should be used 

to assess pain in animals (Mogil et al., 2010). In laboratory rats, one of these behavioral tools is 

the Rat Grimace Scale (RGS), a facial expression scale, which was developed with acute 

inflammatory pain models (Sotocinal et al., 2011). Since its initial development, performance of 

the RGS in acute inflammatory pain models has been confirmed (De Rantere et al., 2016 and 

Leung et al., 2016) and its application in other acute and neuropathic pain models has been 

described (Liao et al., 2014 and Akintola et al., 2017). Development of the Mouse Grimace Scale 

(MGS) identified a limited ability of this scale to identify pain in classic models of neuropathic 

pain (chronic constriction injury and spared nerve injury), but there has been little investigation of 

chronic pain using other grimace scales, including the RGS (Langford et al., 2011 and Akintola et 

al., 2017). Furthermore, a study of induced acute visceral mucositis failed to identify significant 

changes in the RGS (Whittaker et al., 2016). Therefore, it is currently unclear what role the RGS 

may play in the evaluation of chronic or visceral pain. Potential alternative, or complementary, 

methods to the RGS include a Composite Behavior Score (CBS) and burrowing behavior 

(Roughan and Flecknell, 2003 and Andrews et al., 2012). The CBS, which uses an ethogram, 

including twitching, writhing and back-arching behaviors, has been employed successfully to 

assess visceral pain in laparotomy and mucositis models (Roughan and Flecknell 2003 and 

Whittaker et al., 2016). Burrowing, as an expression of voluntary behavior, is performed by a high 

proportion of laboratory rats (Andrews et al., 2016). It has been successfully applied in models of 

induced osteoarthritis and found to be robust in multi-center testing (Wodarski et al., 2016). 

The dextran sulfate sodium (DSS) colitis model is well characterized and widely used to 

study colitis in mice and rats (Okayasu et al., 1990; Cooper et al., 1993 and Gaudio et al., 1999). 

With a focus on underlying disease mechanisms, the assessment of pain is performed infrequently 

in this model despite being a common symptom of clinical disease (Farrell et al., 2014). Where 

pain is evaluated, it is typically limited to non-specific behaviors or evoked hypersensitivity testing 

(Tobin et al., 2004; Larsson et al., 2006; Verma-Gandhu et al., 2006 and Jain et al., 2015), 

measures that may not capture the pain experience (Mogil and Crager, 2004 and Smith et al., 

2016). Model severity and progression is commonly monitored using the Disease Activity Index 

(DAI), which scores the presence of fecal blood, stool consistency and weight loss (Cooper et al., 
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1993). A relationship between similar clinical signs and pain is present in people but has not been 

established in rodent models of colitis (Bielefeldt et al., 2009).  

The aim of this study was to assess the performance of the RGS, CBS and burrowing as 

measures of acute and chronic visceral pain in a DSS-colitis rat model. We hypothesized that the 

RGS and CBS would increase in parallel with the DAI, with a concurrent reduction in burrowing.  

2.2.3. Methods and materials 

2.2.3.1. Ethical statement 

All experiments were approved by the institutional animal care and use committee (Comité 

d’Éthique de l’Utilisation des Animaux of Université de Montréal, #Rech-1876) and performed in 

accordance with the Canadian Council on Animal Care guidelines. 

2.2.3.2. Animals 

Thirty-eight male and female Sprague-Dawley rats of at least 6 weeks of age (females (n = 

18): 182g [range: 144-289g]; males (n = 20): 217g [range: 183-293g]) were obtained from Charles 

River Laboratories (Sherbrooke, Canada). Animals were housed singly in polycarbonate rat cages 

(2154F, Tecniplast, Montreal, QC, Canada) in a conventional facility. Single housing was required 

to facilitate daily DAI assessments (stool consistency and presence of blood). Rats had hardwood 

laboratory bedding (Beta Chip, Charles River Laboratories, Sherbrooke, Canada), with a plastic 

tube (ABS tubing, Verdun, IPEX Inc., QC, Canada) and a nylon toy for enrichment (Bio-serv Inc., 

Flemington, NJ, USA). They were housed in a 14:10 hour light/dark cycle with lights on at 6 am 

and temperature and humidity settings of 22°C and 35-50% respectively. Rats were fed laboratory 

rat pellets (Charles River Rodent Diet #5075, Charles River Laboratories, Sherbrooke, QC, 

Canada) and tap water was provided ad libitum before the start of the study. Rats acclimatized to 

their new surroundings for at least three days before habituation procedures began. 

2.2.3.3. Colitis model induction 

Colitis was induced by adding dextran sulfate sodium (5% DSS, J63606, Alfa Aesar, Ward 

Hill, MA, USA, MW 40,000) in to distilled drinking water provided ad libitum. The DSS solution 
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was prepared on the day of administration (day 0). Rats were block randomized with a list 

randomizer (random.org) with equal allocation of sexes to one of three treatment groups: 1) Group 

1 (n = 12) were given one phase of DSS (acute phase); 2) Group 2 (n = 13) were given one phase 

of DSS (acute phase) followed by a water phase (distilled drinking water only), then a second 

phase of DSS (chronic phase); and 3) Group 3 controls (n = 13) were given distilled drinking water 

for the duration of the experiment (Figure 1). Randomization was performed after baseline (BL) 

assessments. DSS treatments were stopped when all rats within each block-randomized cohort 

displayed signs of colitis as indicated by the DAI (i.e. decrease in stool consistency, bloody stools 

and weight loss), with an average DAI score of 2/4. The water phase was terminated when all rats 

within the cohort had DAI scores of 0 for at least 24 hours before restarting DSS treatment. 

Following completion of the final assessments, rats were euthanized (induction of general 

anesthesia with isoflurane, followed by guillotine decapitation after confirming loss of righting 

and pedal withdrawal reflexes): on day 4 of the acute phase for group 1, on day 3 of the chronic 

phase for groups 2 and the equivalent day for group 3. All assessments (DAI, RGS, CBS, 

burrowing) were performed during the light phase. DAI and RGS were assessed in a room adjacent 

to the housing room. Burrowing was assessed in the housing room.  

2.2.3.4. Habituation 

Before the study, all rats were habituated to the observer (VL, Figure 2.2.3.4). On the day 

before habituation (day -5), two pieces of food reward (Honey Net CheeriosTM, General Mills, 

Inc., Golden Valley, MN, USA) were introduced to each cage. For four days (day -4 to -1), rats 

were handled by the experimenter for a minimum of 10 minutes each while offering the food 

reward. Rats were also habituated to the Plexiglas observation box (28 cm length x 15 cm width x 

21 cm height) daily, whereby they were placed inside for a maximum of 10 minutes with a food 

reward. 

2.2.3.5. Disease Activity Index 

The DAI consists of three items, each scored from 0 to 4: weight loss, stool consistency and 

bloody stools (Table 2.2.3.5.1; Cooper et al., 1993). Rats were weighed after completion of all 

assessments (RGS, CBS, burrowing). If gross bleeding was not evident, the presence of blood was 
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assessed with a fecal blood slide test (Hemoccult IITM Slides,60151A, Beckman Coulter, Inc., 

Brea, CA, USA). 

Table: 2.2.3.5.1: Disease Activity Index scoring. 

Score Weight loss (%) Stool consistency Bloody stools 

0 0 Normal Normal 
1 1-5   

2 5-10 Loose stool Hemoccult positive 

3 10-20   

4 >20 Diarrhea Gross Bleeding 

Legend: The average score is calculated from the sum of the three items: weight loss, stool 

consistency and bloody stools (Cooper et al., 1993). 

 Fig. 2.2.3.3.1: Experimental timeline

Legend: Experimental timeline. (Disease Activity Index, Rat Grimace Scale, burrowing and 

Composite Behavior Scale). Each filled box indicates a habituation or assessment activity for each 

assessment method. Unfilled boxes indicate when no assessments were performed. During the 

acute phase, group 1 and group 2 rats were treated with 5% dextran sulfate sodium (DSS) 

administered in water. Group 1 rats were euthanized at the end of the acute colitis phase. During 

the water phase (Group 2 and controls) no assessments were made. During the chronic phase, 

group 2 rats were treated with 5% DSS for a second time before euthanasia on day 3. Tissue was 

harvested for microscopic and macroscopic analysis immediately following euthanasia. BL = 

baseline. 
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2.2.3.6. Rat Grimace Scale 

The Rat Grimace Scale was scored as originally described by Sotocinal et al. (2011). 

Briefly, each of 4 action units (orbital tightening, nose/cheek flattening, ear changes and whisker 

changes) was assigned a score of 0, 1 or 2 based on degree of presentation. 

The RGS was scored two ways: 1) in real time and 2) with video-based analysis. During 

real-time scoring, observations began 3 minutes after introducing the rat to the observation 

chamber. Facial expression was scored based on a 15s observation period repeated every 30 

seconds which generated a total of 18 scores for each time point over a 9-minute timer period 

(Leung et al., 2016). Scores were averaged every three-minute interval and the resultant three 

scores were averaged again for a final score. For video-based analysis, video-recording took place 

at the same time as real-time observations. Blinded video-based scoring was performed in ‘real-

time’ while the video was playing to assess observer bias because it was not possible to blind the 

observer from treatment groups and time points (Leung et al., 2016). Video-based data were used 

for analysis. Both real-time and video scores were performed by the same observer (VL). The 

observer was previously trained in RGS scoring by an experienced rater (Zhang et al., 2019). Real-

time scoring was performed between 8 am to 12 pm and the order in which the rats were assessed 

was randomized each day with a list randomizer (random.org). 

2.2.3.7. Burrowing 

The technique described by Andrews et al. (2012) was followed. During two days of 

habituation (days -4 to -3; Figure 2.2.3.3.1), rats were placed in same sex pairs in a 53 L box 

(burrowing box; 58.4 cm length x 41.3 cm width x 31.4 cm height; Sterilite Corporation, 

Townsend, MA, USA) with the empty burrowing tube (32 cm in length x 10 cm in diameter, 

elevated by 6 cm at the open end of the tube with two metal legs) for 30 minutes. After 30 minutes, 

the burrowing tube was filled with 2.5 kg of gravel (2-5mm, Premium Aquarium Gravel, Clifford 

W. Estes Company, Fairfield, NJ, USA) and placed with the rats for 60 minutes. If a pair of rats 

did not burrow sufficiently (< 100g of gravel displaced) on the first day of habituation (day -4), a 

new pair was created including a burrowing rat (identified on day -4) and the protocol repeated. 

BL assessments were made over the next three days (days -2 to 0) with rats placed individually in 
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the burrowing box with the gravel-filled burrowing tube for 60 minutes daily. The amounts of 

gravel displaced over these three days were averaged to produce a BL score for each rat. It was 

predetermined that rats that had a BL of less than 100g of gravel displaced would be excluded. 

Burrowing assessments were always performed after RGS scoring. Burrowing was assessed in 

group 2 and control animals during both acute and chronic phases. 

2.2.3.8. Composite Behavioural Score 

The composite behavior score (CBS) consisted of recording the frequency of five 

behaviours (writhing, vertical back arching, stagger/fall, twitch and belly pressing) as described 

by Roughan and Flecknell (2003) and Thomas et al. (2016) Writhing behavior was defined as the 

contraction of the abdominal muscles. Back arching was defined as a vertical stretch upwards that 

resembled a cat stretching. Stagger/fall behavior was defined as a rat falling over or losing its 

balance while moving. Twitch behavior was defined as a fleeting contraction of flank muscles. 

These behaviours were observed from the same video recordings used for the Rat Grimace Scale 

(observer blinded to treatment). The total frequency of each behavior was summed to produce a 

total score. 

2.2.3.9. Macroscopic 

Following euthanasia, abdomens were opened via a midline incision and colons removed. 

Macroscopic scoring consisted of body weight loss from BL, changes in colon length compared 

with controls, adhesion of the colon to the mesentery, length of any ulcer present, percentage of 

colon inflamed, presence of erythema, fecal blood, diarrhea and bowel thickness (Cluny et al., 

2010). Ulcer length and bowel thickness were measured with digital calipers after fixation in 

formalin for 48 hours. The score for each item was summed to provide a total macroscopic score 

(Table 2.2.3.9). 

2.2.3.10. Microscopic 

Colons were collected and fixed in neutral buffered 10% formalin for approximately 48 hours 

before four samples (7mm transverse sections) were collected from the distal colon of each rat. 

Any ulcers identified were transected and both halves examined. Tissues were routinely processed, 

and slides were cut at 4 um and stained with hematoxylin-eosin-phloxine-saffron (HEPS). The 
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microscopic assessments consisted of three items (severity of inflammation, mucosal damage and 

crypt damage) and the highest score used for analysis (Table 2.2.3.10; Vowinkel et al., 2004). 

Each item was then multiplied by the factor of the pathological change rate, taking into account 

the total surface of the affected area. 

Table 2.2.3.9.1: Macroscopic scoring of colon samples 

Score 0 1 2 3 4 

Body weight 0% 0-5% 5-10% 10-
20% 

>20% 

Length 

(% shrunk from 
controls) 

<15% 15-25% 25-35% >35%  

Adhesion No 
adhesion 

Some 
adhesion 

Extensive 
adhesion 

  

Erythema Absent Present     

Fecal blood Absent Present    

Diarrhea Absent Present    

Ulcer length (cm) Measurements of ulcers in colon 

% total length inflamed inflamed length of colon (cm)/total length of colon (cm) 
Bowel thickness (mm) Measured with calipers at thickest point 

Legend: Scores for individual items are summed to produce a total score (Cluny et al., 2010). 

 

Table 2.2.3.10.1: Microscopic scoring of colon samples 

Score Inflammation Mucosal damage Crypt damage Pathological change 
rate 

0 None None None None 

1 Mild Mucous layer 1/3 0-25% 

2 Moderate Submucosa 2/3 26-50% 

3 Severe Muscularis and 
serosa 

100% 51-75% 

4   100% with epithelium 
loss 

76-100% 

Legend: Each item is assigned a score which is then multiplied by the pathological change rate 

(extent of colon section affected).  Resultant score from each item is summed to produce a total 

score. (Vowinkel et al., 2004). 
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2.2.3.11. Humane Endpoints 

Humane endpoints were assessed daily and consisted of: 1) more than 15% weight loss, 2) 

an RGS score of 2/2 for more than 4 hours, 3) a DAI score ≥3/4 and 4) obvious lethargy. Any rat 

that reached an endpoint was euthanized. 

2.2.3.12. Statistical analysis 

Data were analyzed, and sample size estimated with commercial statistical software (Prism 

6.07, GraphPad Software, La Jolla, CA, USA; MedCalc Software 18.5, Ostend, Belgium and 

G*Power 3.1.9.2, Germany). All data, except the CBS and pathology data (macro- and 

microscopic scores), approximated a normal distribution according to the D’Agostino-Pearson 

omnibus normality test. Comparisons between DSS-treated groups and controls were performed 

with a two-way ANOVA followed by a post-hoc Bonferroni test. Comparisons within groups 

(from baseline) were performed with a two-way ANOVA followed by a post-hoc Dunnett test 

(RGS, CBS, DAI, burrowing) and a Kruskall-Wallis test for microscopic and macroscopic scores 

(Dunn’s post-hoc test). A Bland-Altman analysis of repeated measures was used to assess if RGS 

real-time and video scores were similar. Sample sizes were estimated for the primary outcomes of 

interest; the RGS, CBS and burrowing. For the RGS: a sample size of 12 animals per group was 

estimated based on an alpha of 0.05, power of 0.8, SD of 0.25 and a mean difference of 0.3 (Leung 

et al., 2016). For the DAI: a sample size of 12 animals per group was estimated based on an alpha 

of 0.05, beta of 0.8, SD of 0.9 and a mean difference of 1.0 (Kullmann et al., 2001). A p-value of 

< 0.05 was considered statistically significant for all comparisons. Data are presented as mean ± 

SD (text) or SEM (figures) with the 95%CI for the mean difference. Data supporting the results 

are available in an electronic repository: https://doi.org/10.7910/DVN/MLJTCV. 

2.2.4. Results 

During the first cohort of rats tested, four rats assigned to group 2 were euthanized for 

reaching humane endpoints on the fifth day of the acute phase. Data (RGS, DAI, CBS and 

burrowing) collected from these rats up to day 4 were included in the group 1 data set (except for 

necropsy data, which were not used). The final sample sizes were unchanged as block 

randomization was maintained. Due to these animals reaching their humane endpoints, the 
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remaining rats that had no yet been treated with DSS (group 1: n = 8, group 2: n = 10, controls: n 

= 10) received an acute phase that lasted 4 days, the water phase lasted 7-10 days and the chronic 

phase lasted 3 days (group 2 rats displayed similar DAI scores as day 4 of the acute phase, average 

DAI 2/4). The burrowing data of one rat from the control group was excluded as it burrowed an 

average of 2g during BL.  

2.2.4.1. Disease Activity Index 

During the acute phase, there were significant main effects for treatment and time (F (1, 

23) = 95, p < 0.0001) and F (2, 46) = 59, p < 0.0001 respectively) and the interaction effect was 

significant (F (2, 46) = 59, p < 0.0001). Post-hoc tests revealed that group 1 had increased DAI 

scores from BL and from the control group on days 3 (p < 0.0001, 95% CI [0.59 to 1.2]; p < 0.0001, 

95% CI [01.2 to -0.54] respectively) and 4 (p < 0.0001, 95% CI [1.7 to 2.3]; p < 0.0001, 95% CI 

[-2.3 to -1.6] respectively; Fig. 2.2.4.1). During the chronic phase, there were significant main 

effects for treatment and time (F (1, 24) = 97, p < 0.0001) and F (4, 96) = 63, p < 0.0001, 

respectively) and the interaction effect was significant (F (4, 96) = 63, p < 0.0001). Post-hoc tests 

revealed that the DAI scores of group 2 animals returned to the BL score of 0 before increasing 

significantly from BL and from controls on chronic phase days 1 (p < 0.0001, 95% CI [0.58 to 

1.1]; p < 0.0001, 95% CI [-1.2 to -0.51] respectively), 2 (p < 0.0001, 95% CI [1.0 to 1.6]; p < 

0.0001, 95% CI [-1.6 to -0.97] respectively) and 3 (p < 0.0001, 95% CI [1.7 to 2.3], p < 0.0001, 

95% CI [-2.3 to -1.7] respectively). Animals from the control group maintained DAI scores of zero 

throughout. 
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Fig. 2.2.4.1.1: Disease activity index scores during the acute and chronic phases 

 

Legend: DAI scores increased significantly during acute DSS exposure compared to baseline and 

controls on days 3 and 4 (p < 0.0001). DAI scores increased significantly during chronic DSS 

exposure compared to baseline on day 0 (before DSS treatment began again) and controls on days 

1, 2 and 3 (p < 0.0001). Shaded boxes represent when DSS treatment was given. **** p < 0.0001. 

Data presented as mean ± SEM. 
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2.2.4.2. Rat Grimace Scale 

With video-scoring during the acute phase, there were significant main effects for treatment 

and time (F (1, 23) = 2.3, p = 0.14 and F (2, 46) = 3.6, p = 0.034, respectively) and a significant 

interaction effect (F (2, 46) = 7.8, p = 0.0012). Post-hoc tests revealed that group 1 showed 

increased RGS scores from BL (p = 0.0002, 95% CI [0.14 to 0.44]) and controls (p = 0.003, 95% 

CI [-0.56 to -0.09]) on day 4 (Fig. 2.2.4.2). During the chronic phase, there were significant main 

effects for treatment and time (F (1, 24) = 2.4, p = 0.14 and F (4, 96) = 6.8, p < 0.001, respectively) 

and a significant interaction effect (F (4, 96) = 3.6, p = 0.0092). Post-hoc tests revealed that the 

RGS scores of group 2 decreased to their baseline and control levels before increasing significantly 

from baseline on chronic phase days 2 (p = 0.03, 95% CI [0.02 to 0.39]) and 3 (p < 0.0001, 95% 

CI [0.15 to 0.53]), crossing a previously established intervention threshold of 0.67 (Oliver et al., 

2014). A significant increase compared to controls was visible on day 3 (p = 0.004, 95% CI [-0.56 

to -0.08]). 

Similar increases from baseline and controls were observed from DSS-treated animals during 

the acute and chronic phases, when analyzed with real-time observations: there were significant 

main effects for treatment and time (F (1, 24) = 13, p = 0.0016 and F (4, 96) = 28, p < 0.0001, 

respectively) and a significant interaction effect (F (4, 96) = 16, p < 0.0001) (Suppl. Fig. 1A). The 

similarities between RGS real-time and video scores were also evident with a Bland-Altman of 

repeated measures, real-time scores had a bias of -0.11 when compared to video scores with limits 

of agreement ranging from -0.76 to -0.56 (Suppl. Fig. 2.2.4.2.2). 
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Fig.  2.2.4.2.1: Rat Grimace Scale (video) scores during the acute and chronic phases 

 

Legend: Significant increases from baseline were observed on day 4 of the acute phase in group 

1 and on days 2 and 3 of the chronic phase in group 2 (p < 0.05). Significant increases from controls 

were observed on day 4 during the acute phase and on day 2 and 3 during the chronic phase (p < 

0.01). Broken horizontal line represents a derived analgesic intervention threshold.24 Shaded boxes 

represent DSS treatment phases. *p < 0.05. **p < 0.01. ***p < 0.001. ****p < 0.0001. Data 

presented as mean ± SEM. 
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Fig. 2.2.4.2.2: The Rat Grimace Scale scores (real-time observations) during the acute 

and chronic phases (A, shaded boxes) and B) a comparison between real-time and video 

scores with Bland-Altman analysis for repeated measures. 

 

Legend: A) Significant 

increases from baseline 

were evident on days 3 and 

4 of the acute phase (p < 

0.05) and on day 1, 2 and 3 

during the chronic phase (p 

< 0.01). Significant 

increases from controls 

were evident on day 4 of 

the acute phase (p < 0.01) 

and on days 2 and 3 of the 

chronic phase. Horizontal 

dotted line represents a 

previously derived 

intervention threshold of 

0.67 (Oliver et al., 2014). 

Data presented as mean ± 

SEM. B) Bias (-0.11, 

central broken horizontal 

line) reflects 

underestimation of video-

based scores by real-time 

scores. Limits of agreement 

(broken horizontal lines) 

range from -0.76 to 0.56. *p 

< 0.05, **p < 0.01, ****p < 

0.0001. 
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2.2.4.3. Burrowing 

All rats burrowed to a similar degree at baseline (group 2: 1404.2 ± 566.5g; controls: 1330.0 ± 

559.1g). During the acute phase, there was a significant main effect of time (F (1, 23) = 5.9, p = 

0.023) but not treatment (F (1, 23) = 0.12, p = 0.74) and a non-significant interaction effect (F (1, 

23) = 3.0, p = 0.095). Post-hoc tests revealed that there were no differences between the mean 

difference of gravel burrowed between group 2 and controls in both the acute and chronic phases 

(p > 0.99, all comparisons; Fig 4). During the acute phase, group 2 rats burrowed significantly less 

than baseline on day 4 (p = 0.03, 95% CI [36.2 to 813.7]). During the chronic phase, there were 

no significant differences observed (p > 0.05, all comparisons. 95%CI ranged from approximately 

-300 to 400). 

Fig. 2.2.4.3.1: Mean difference in gravel displacement during acute and chronic colitis 

phases 

Legend: During both phases, no significant differences were observed between DSS treated and 

control rats (p > 0.99). A significant decrease from baseline was observed on day 4 (acute phase; 

p < 0.05). *p < 0.05. Data presented as mean ± SEM. 
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2.2.4.4. Composite Behavioural Score 

All behaviors except belly pressing were observed. During the acute phase, there was a 

significant main effect of treatment (F (1, 23) = 5.8, p = 0.024) but not time (F (2, 46) = 0.67, p = 

0.52) and a non-significant interaction effect (F (2, 46) = 1.7, p = 0.20). During the chronic phase, 

there was a significant main effect of treatment (F (1, 24) = 5.6, p = 0.027) but not time (F (4, 96) 

= 1.7, p = 0.15) and a non-significant interaction (F (4, 96) = 0.79, p = 0.53). Post-hoc tests revealed 

that the only difference was between group 1 and controls at baseline (p = 0.02, 95% CI [-2.8 to -

0.17], Fig. 5). No differences were observed between group 2 and controls or baseline (Figure 5, 

p > 0.05). Twitch frequency was the only behavior that identified treatment effects between group 

2 and control rats during the third day of the chronic phase (p = 0.04, 95% CI [-2.7 to -0.021]; 

Suppl. Fig. 2D).  

Fig. 2.2.4.4.1: Summed frequency of four behaviours (back arch, stagger/fall, writhe 

and twitch) evaluated during the acute phase and the chronic phase 

Legend: Differences between groups were identified at baseline between group 1 and controls (p 

< 0.05). Differences within groups (from baseline) were not observed. Shaded boxes represent 

when DSS treatment was given. Data presented as median (10-90 percentile). *p < 0.05 
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Fig. 2.2.4.4.2: Breakdown of the frequency of all behaviours from the Composite 

Behaviour Score (CBS)

Legend: Shaded boxes represent DSS treatment durations. Belly pressing was never observed. No 

significant differences were observed within groups (from baseline). A significant difference 

between groups (control and group 2) was only observed for twitch behaviour (p < 0.05). Data 

presented as median ± IQR. 
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2.2.4.5. Microscopic score 

After both acute and chronic phases, the microscopic score increased significantly from 

controls (p = 0.001, p < 0.0001, respectively; Table 4). 

2.2.4.6. Macroscopic score 

After both acute and chronic phases, significant increases from controls were evident (p = 

0.003, p < 0.0001, respectively, Table 4). 

Table 2.2.4.5.1: Microscopic and macroscopic scores of colon samples 

 Controls 
(n=13) 

Group 1 (acute phase, n=8) Group 2 (chronic phase, n=13) 

 Mean [SD] Mean ± 
SD 

p-value [95% CI] Mean 
[SD] 

p-value [95% CI] 

Microscopic 0.08 ± 0.28 7.3 ± 7.0 0.007 [-12 to -
1.9] 

4.3 ± 6.1 0.07 [-8.8 to 0.36] 

Macroscopic 2.3 ± 1.7 8.0 ± 3.2 0.002 [-9.3 to -
2.1] 

10 ± 4.8 <0.0001 [-11 to -
4.6] 

Legend: Group 1: Significant differences from controls were evident from the microscopic and 

macroscopic scores (p < 0.01). Group 2: Significant differences from controls were evident from 

the macroscopic scores (p < 0.0001). p-values are comparisons between each treatment group and 

controls 

2.2.5. Discussion 

These results show: 1. Clinical signs of increasing disease severity (measured by the DAI) 

are reflected by an increase in RGS scores, but not by the CBS. 2. During acute colitis, as the DAI 

score increases, burrowing decreases. These data demonstrate that pain is likely to be present in 

DSS colitis models and increases concurrently with the presence of the clinical signs of the model 

(bleeding, loose stools and weight loss). This is in line with previous studies showing that visceral 

nociception (assessed with a colorectal balloon pressure measurement) and referred 

hypersensitivity (assessed with the von Frey filaments) occurred (Jain et al., 2015 and Tobin et al., 

2004). Previous work has described the temporal relationship between hypersensitivity and 

ongoing pain, showing that pain presents over a shorter time course than hypersensitivity (in a 

peripheral models of inflammation), a situation that may better model the human experience 

(Gould., 2000 and De Rantere et al., 2016).  
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The changes in RGS scores coincide with model severity as assessed with the DAI, 

confirming that pain is present when clinical signs of colitis are apparent. Furthermore, the mean 

RGS scores exceeded an established analgesic interventional threshold (0.67; Oliver et al., 2014). 

This observation may be helpful in guiding manipulations in this model (decision to provide pain 

relief, response to treatment, humane endpoints). The similar pattern of increase in RGS and DAI 

scores suggest that the DAI can be used as a proxy measure of pain. At the times when RGS scores 

crossed the analgesic intervention threshold DAI scores were >1, suggesting that this could be 

used as a proxy to trigger intervention. The successful application of facial expressions (Mouse 

Grimace Scale) has been previously applied to a murine colitis model (intrarectal allyl 

isothiocyanate), though no comparison was made with the DAI (Hassan et al., 2017). 

With real-time RGS scoring, the same pattern of change upon exposure to DSS was also 

observed, providing further support for the notion that real-time RGS scoring is a useful and 

feasible method of rapid pain assessment (Leung et al., 2016).  Furthermore, the closeness in RGS 

scores generated by real-time and standard scoring techniques supports the use of real-time scoring 

by a trained observer to routinely assess pain and welfare in this model. This means of rapid 

assessment could serve to identify humane endpoints or facilitate decisions regarding analgesia.  

Unexpectedly, differences between DSS-treated and control rats were not identified with 

the CBS after DSS treatment. The behaviors evaluated (writhe, twitch, back arch, belly pressing 

and fall/stagger) were previously validated in rats that underwent a laparotomy and were suggested 

as a potential tool to assess visceral pain (Roughan and Flecknell, 2003 and Thomas et al., 2016). 

The incidence of some of these same behaviors has also been observed to increase in ureteral 

calculi and intestinal mucositis models (Giamberardino et al., 1995 and Whittaker et al., 2016). 

However, a slightly different combination of behaviors was observed in each model. For example, 

back-arching behavior was the only behavior observed in all three models (laparotomy, ureteral 

calculi and intestinal mucositis models) while writhing was only observed after a laparotomy and 

intestinal model. This suggests that rats display a different combination of behaviors in different 

types of visceral pain models. Additional work is required to assess if the addition of different 

behaviors will allow discrimination between treatment groups in a DSS-colitis model.  
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Rats burrowed less on the same days where increases in DAI and RGS scores were 

observed during the acute phase (of group 2). This agrees with a previous mouse study that also 

observed reduced burrowing when mice were exposed to an acute dose of 2% DSS (Jirkof et al., 

2013). However, this decrease was not sustained during the chronic phase and no differences were 

observed compared to controls or baseline. The absence of changes in burrowing behavior from 

baseline during the chronic phase may reflect a lack of study power (reflected in wide 95%CI). 

Furthermore, the effect of chronic pain on burrowing behavior is currently unknown. 

A limitation of this study is that a more comprehensive set of behaviors was not used as 

part of the CBS. Inclusion of additional behaviors may have better reflected the pain in this model. 

These behaviours could include abdominal licking and horizontal stretching, which were observed 

in mice following an allyl isothiocyanate induced colitis model (Hassan et al., 2017). 

In conclusion, the RGS was able to identify both acute and chronic phases of a colitis 

model, with changes occurring in tandem with clinical signs (reflected by the DAI). Additionally, 

burrowing activity reflects ongoing acute visceral pain in this colitis model and may be changed 

in the presence of chronic pain. The concurrent changes observed in the DAI and RGS suggest 

that the DAI may be a proxy measure for pain that is simple to apply. Pain assessments with the 

real-time RGS or DAI is recommended to assess the efficacy of treatment or analgesics for colitis-

related pain, to study visceral pain mechanisms or to ensure the well-being of rats with colitis. 
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2.3. The influence of rater training on inter- and intra-rater 

reliability when using the Rat Grimace Scale 

Emily Zhang4*, Vivian Leung5*, Daniel SJ Pang4 

2.3.1. Abstract 

Rodent grimace scales facilitate assessment of spontaneous pain and can identify a range 

of acute pain levels. Reported rater training in using these scales varies considerably and may 

contribute to observed variability in inter-rater reliability. This study evaluated the effect of 

training on inter-rater reliability with the Rat Grimace Scale (RGS). Two training sets, of 42 and 

150 images, were prepared from several acute pain models. Four trainee raters progressed through 

2 rounds of training, first scoring 42 images (set 1) followed by 150 images (set 2a). After each 

round, trainees reviewed the RGS and any problematic images with an experienced rater. The 150 

images were then re-scored (set 2b). Four years after training, all trainees re-scored the 150 images 

(set 2c). A ‘no training’ group was also recruited and scored image sets 1 to 2b without reviewing 

with an experienced rater. Inter- and intra-rater reliability was evaluated using the intra-class 

correlation coefficient (ICC) and ICCs compared with a Feldt test.  In the trainee group, inter-rater 

reliability increased from moderate (0.58 [95%CI: 0.43-0.72]) to very good (0.85 [0.81-0.88]) 

between set 1 and set 2b (p < 0.01) and also increased between set 2a and set 2b (p < 0.01). The 

action units with the highest and lowest ICCs at set 2b were orbital tightening (0.84 [0.80-0.87]) 

and whiskers (0.63 [0.57-0.70]), respectively. In comparison to an experienced rater the ICCs for 

all trainees improved, ranging from 0.88 to 0.91 at set 2b. Four years later, very good inter-rater 

reliability was retained (0.80 [0.76-0.84]) and intra-rater reliability was good or very good (0.78-

0.86). In the ‘no training’ group, inter-rater reliability was moderate and did not improve from set 

1 (0.43 [0.30-0.58]) to set 2a (0.41 [0.26-0.54]) or to set 2b (0.55 [0.44-0.64]; p>0.05). Training 

improves inter-rater reliability between trainees, with an associated reduction in 95%CI. 

Additionally, training resulted in improved inter-rater reliability alongside an experienced rater. 
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Performance was retained after several years. The beneficial effects of training potentially reduce 

data variability and improve experimental animal welfare. 

2.3.2. Introduction 

The effectiveness of a pain assessment scale lies in its validity (does a scale measure what 

is intended) and reliability (measurement error). Rodent grimace scales have renewed interest in 

measuring the affective component of pain and have been promoted as a means of overcoming the 

shortfalls of nociceptive threshold testing (Langford et al., 2010; Sotocinal et al., 2011; Oliver et 

al., 2014 De Rantere et al., 2016 and Leung et al., 2016). There is increasing evidence that grimace 

scales discriminate painful and non-painful states in a range of acute pain models and interventions 

(Langford et al., 2010; Sotocinal et al., 2011; Leach et al., 2012; Oliver et al., 2014 and De Rantere 

et al., 2016). However, there are conflicting reports regarding reliability when multiple raters score 

images (Langford et al., 2010; Sotocinal et al., 2011; Oliver et al., 2014; Faller et al., 2015; and 

Mittal et al., 2016). Factors contributing to this variability may include a lack of structured training 

and variation in individual learning curves (de Oliveria, 2002 and Campbell et al., 2014). 

It is unclear what level of training is required to attain proficiency in using grimace scales. 

Most studies include minimal, non-specific descriptions of training (Langford et al., 2010; 

Sotocinal et al., 2011; Leach et al., 2012; Oliver et al., 2014; Faller et al., 2015; Mittal et al., 2016 

and Philips et al., 2017) and few reports any measure of reliability (Roughan and Flecknell, 2006; 

Langford et al., 2010; Oliver et al., 2014 and Mittal et al., 2016). Trainees progress at different 

rates during training to achieve proficiency in a task (Roughan and Flecknell, 2006; Campbell et 

al., 2014 and Mittal et al., 2016); therefore, in addition to training, some assessment of score 

reliability is necessary. The impact of training on scoring reliability with the Rat Grimace Scale 

(RGS) has not been formally evaluated. The objective of this study was to assess the effect of 

training on inter-and intra-rater reliability when scoring was performed with single and multiple 

raters applying the RGS. We hypothesised that training would improve inter-rater reliability. 
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2.3.3. Methods and materials 

2.3.3.1. Animals and image selection 

Two sets of training images were created from images collected during an unrelated project 

that had received institutional animal care and use committee approval from the University of 

Calgary Health Sciences Animal Care Committee (protocol IDs: AC13-0161 and AC13-0124; De 

Rantere et al., 2016). This project used the following acute pain models: intra-plantar carrageenan, 

intra-plantar Complete Freund’s adjuvant or plantar incision. The RGS scores from the three 

models display the RGS’ spectrum of possible scores (scores 0-2; De Rantere et al., 2016). 

Animals were adult (> 10 weeks old) male Wistar (n = 34) rats, from a commercial source (Charles 

River Laboratories, Québec, Canada). 

The methodology used to generate images was as previously described (Sotocinal et al., 

2011). Briefly, still images were captured from high-definition video-recordings and cropped so 

that only the face was visible. Each image was presented on a single slide in presentation software 

(Microsoft PowerPoint, version 14.0, Microsoft Corporation, Redmond, WA, USA). Slide order 

was randomised and identifying information (animal ID, time point, model) removed.  

Images were selected based on image quality alone, by an individual not involved with the 

study. Two unique sets of training images were created, of 42 (set 1) and 150 (set 2) images. 

Images were scored using the RGS (scale range 0-2 for each action unit) and the average score 

calculated from four action units: orbital tightening, nose/cheek flattening, ear changes, and 

whisker change. 

2.3.3.2. Training protocol 

None of the 4 trainee raters recruited had previous experience with the RGS. All trainee 

raters (rater 1, 2, 3 and 4) were female undergraduate and graduate students (age range 20-25 

years), studying veterinary medicine, biology (n = 2) and health sciences and were recruited when 

joining the research group as project students. No trainee raters had previous experience with rats, 

as experimental animal or pets, before beginning training. The experienced rater (DP) had applied 

the RGS for several years, successfully identifying painful interventions using established models 
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(a form of construct validity; known-group discrimination; Calvo et al., 2014; Oliver et al., 2014 

and De Rantere et al., 2016) and adoption of the RGS method within the research group of the 

experienced rater was supported with the assistance of the Mogil laboratory (McGill University), 

developers of the mouse and rat grimace scales (Langford et al., 2010 and Sotocinal et al., 2011), 

through informal evaluation of scoring performance. 

All trainee raters followed the same scoring protocol (Figure 2.1.2.3.1): set 1 image was 

scored independently by each individual, using the training manual provided by Sotocinal et al 

(2011) alongside a training manual from our laboratory (Appendix B). Trainee raters were 

encouraged to record comments for any images they found difficult to score. Following set 1 

scoring, trainee raters reviewed their scores as a group with an experienced rater, discussing 

recorded comments and areas of inconsistency. Images with the most variation between raters were 

selected for review. The primary goal of the discussion was to improve standardisation of scoring 

images assigned a score of 0 or 2. Disagreement in scores was tolerated provided differences 

between raters did not exceed 1 point on the scale. The standard of scoring was set by the 

experienced rater, following establishment of the technique within the laboratory with the support 

of the Mogil laboratory (McGill University). Once review of set 1 scoring was complete, set 2 

images were scored independently by each individual and comments recorded as before (set 2a). 

The set 2 image set was added when more images were available. The S2 image set was then 

scored independently a second time (set 2b) after a facilitated group discussion with the 

experienced rater (as per the set 1 image set discussion). Approximately 15-30 images were 

reviewed during group discussions, with 2-3 weeks between reviews. Intra-rater reliability was 

assessed by asking the trainee raters to independently re-score the set 2 image set (set 2c) with 

access to the training manual. Scoring set 2c took place 4 years after initial training. The order of 

the images was randomised from set 2b. At the time of set 2c scoring, trainee rater 1 had not used 

the RGS in 10 months and trainee raters 3 and 4 had not used it in three years. Trainee rater 2 was 

still in the research group and actively using the RGS. All trainee raters were asked if they 

remembered any previous scores or images from the data set. 
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Fig. 2.1.2.3.1: Timeline of training protocol 

 

2.3.3.3. ‘No training’ group 

A second group of raters (‘no training’) were later recruited to assess if repeated scoring of 

images with no group discussions (only the training manual utilised) would be enough to attain 

scoring proficiency. Eight raters were recruited but only six completed the entire process (rater 5, 

6, 7, 8, 9 and 10). Five raters were female, and one was male (rater 7; age range 24-26 years). Rater 

7 was the only one that had prior knowledge of the RGS, but he had not used or been trained to 

use the RGS. All other raters had no previous experiences with rats, as experimental animals or 

pets, nor any previous knowledge regarding the RGS. All raters are from a science background 

Legend: Two image sets of 42 and 150 images (set 1 and set 2 respectively) were scored 

independently by all trainee raters and ‘no training’ raters. For trainee raters, set 1, set 2a and set 

2b were scored with 2-3 weeks break in between. During the break, a group discussion with the 

experienced rater took place to discuss inconsistencies. After each scoring session, the scores from 

each individual trainee rater was compared to the experienced rater to assess inter-rater reliability. 

Four years later, the 150 image set was randomized and re-scored (set 2c) by all trainee raters. 

Their scores were compared to the experienced rater’s and their own scores from set 2b to assess 

inter- and intra-rater reliability respectively. For ‘no training’ raters, set 1, set 2a and set 2b were 

scored with 1 week break in between. These raters never participated in any discussion and their 

scores were also compared to the experienced rater to assess inter-rater reliability. 



 

143 

 

having graduated with an undergraduate degree in zoology (n = 3), possess (n = 1) or are candidates 

for a Doctor of Veterinary Medicine (n = 1), or pursuing a Masters in integrative biology (n = 1). 

These raters were asked to score the same image sets raters 1-4 had previously scored (set 1, set 

2a, set 2b) following the same training protocol, with the exception being that these raters did not 

discuss or consult with the experienced rater (or each other) during the entire scoring process and 

there was a week in between scoring each image set (Figure 2.1.2.3.1). 

2.3.3.4. Statistics 

Intraclass correlation coefficients (ICCs, MedCalc version 12.6.1.0, MedCalc Software, 

Ostend, Belgium) were calculated to measure the reliability of RGS scoring between and within 

raters for the individual action unit scores and average RGS scores. An absolute model was used 

for the ICC calculation and single measure reported. This was done for each dataset (set 1, set 2a, 

set 2b and set 2c) for both groups of raters (trainee or ‘no training’). ICCs were also calculated for 

the comparison between each individual trainee or ‘no training’ rater’s scores and those of the 

experienced rater (DP) to determine reliability of each individual rater. Planned comparisons were 

pre-established: calculated ICCs were compared with a Feldt test for set 1 versus set 2b, set 1 

versus set 2a, set 2a versus set 2b and set 2b versus set 2c (critical F set at alpha = 0.01 and 

differences considered significant if the observed F value was greater than the critical F value; 

Feldt et al., 1987 and Kuzmic, 2015). ICCs were also calculated between each trainee and ‘no 

training’ rater's own scores (set 2b and set 2c) to assess intra-rater reliability over time. 

Interpretation of the ICC followed the same divisions as used previously: ‘‘very good’’ (0.81–1.0), 

‘‘good’’ (0.61–0.80), ‘‘moderate’’ (0.41–0.60), ‘‘fair’’ (0.21–0.40), ‘‘poor’’ (< 0.20; Oliver et al., 

2014). During the training process, trainee raters were said to be proficient when calculated ICCs 

± 95%CI overlapped with those published in a study reporting inter-rater reliability (Oliver et al., 

2014) and obtained an ICC of at least 0.80 (Haidet et al., 2009). To assess the potential impact of 

scores memorised during group discussion between set 2a and set 2b introducing bias in to the ICC 

calculation for set 2b, images with the greatest scoring variability at set 2a (those with a difference 

of 2 points between any 2 raters and therefore the most likely to have been discussed) were 

removed and the ICCs for set 2b recalculated. Data are presented as ICC (± 95%CI) and a corrected 

p value for multiple comparisons of ≤ 0.017 was considered significant. Scoring accuracy was 
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assessed by comparing the experienced rater's scores for images collected at baseline and 6-9 hours 

after treatment (when a peak in RGS scores could be expected for the models studied (De Rantere 

et al., 2016); paired t test with alpha set at 0.05) from the set 2 images. The datasets generated from 

this study and training manual are available in the Harvard Dataverse repository (Pang, 2018). 

2.3.4. Results 

Four trainee raters and six ‘no training’ raters completed the study. All training images 

were scored by every rater, and all scores included in the subsequent analysis.  

2.3.4.1. Inter-rater reliability of trainee raters 

Training was associated with a progressive improvement in inter-rater reliability and 

narrowing 95%CI (Figure 2.3.4.1.1). The first training round (set 1) resulted in a moderate ICC 

for the average RGS scores, with wide 95%CI (0.58 [0.43-0.72]). The increase in average RGS 

ICC between set 1 and set 2a (0.68 [0.58-0.76]) was not statistically significant (F0.01;149,41 = 1.88, 

observed F = 1.31, p > 0.05). A significant improvement was observed at set 2b (0.85 [0.81-0.88]) 

compared with set 1 (observed F = 2.8) and set 2a (F0.01;149,149 = 1.47, observed F = 2.13, p < 0.01 

for both comparisons). The resultant set 2b ICC was classified as very good and comparable with 

published values (Figure 2.3.4.1.1; Oliver et al., 2014). 

A similar pattern of improvement was observed in the scores of individual action units 

(Table 2.3.4.1.1). Significant increases in ICCs were observed between set 1 and set 2b for orbital 

tightening (observed F = 1.94), ear changes (observed F = 2.14) and nose/cheek flattening 

(observed F = 2.21, p < 0.01 all comparisons), but not whisker changes (observed F = 1.65, p > 

0.05). And between set 2a and set 2b: orbital tightening (observed F = 1.81), ear changes (observed 

F = 1.96) and nose/cheek flattening (observed F = 1.72, p < 0.01 all comparisons), but not whisker 

changes (observed F = 1.35, p > 0.05). At all stages, orbital tightening had the highest ICC, 

improving from 0.69 to 0.84. Following training, ICCs for individual action units fell within the 

good or very good range (Table 2.3.4.1.1).  
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Comparing individual trainee rater performance against the experienced rater showed 

considerable variation following the first training round with ICCs ranging from fair to good. All 

trainee raters showed improvement with training (Table 2.3.4.1.2). 

 

Fig. 2.3.4.1.1: Average group intra-class correlation coefficients 

Legend: Average group intra-class correlation coefficients for each of the four datasets (mean and 

95%CI) with reference values. Ref = reference (Oliver et al., 2014). 
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Table: 2.3.4.1.1 Group Intra-class Correlation Coefficients (ICC) for each of the 

datasets. 

Action Unit set 1  set 2a set 2b set 2c 
Reference 

values 

Orbital tightening 
0.69 [0.56-

0.80]a 

0.71 [0.63-

0.78]b 

0.84 [0.80-

0.87]a,b,c 

0.76 [0.70-

0.81]c 

0.92 [0.89-

0.95] 

Ear changes 
0.40 [0.25-

0.56]a 

0.45 [0.35-

0.54]b 

0.72 [0.66-

0.77]a,b,c 

0.60 [0.51-

0.68]c 

0.62 [0.51-

0.72] 

Nose/Cheek 

flattening 

0.36 [0.21-

0.52]a 

0.50 [0.41-

0.58]b 

0.71 [0.65-

0.76]a,b 

0.64 [0.57-

0.70] 

0.62 [0.51-

0.72] 

Whisker change 
0.39 [0.26-

0.55] 

0.50 [0.42-

0.58] 

0.63  

[0.57-0.70] 

0.54 [0.45-

0.62] 

0.52 [0.39-

0.63] 

Legend: Set 1, set 2a and set 2b are the first, second and third training round, respectively. Set 2c 

was scored 4 years after initial training. ICC scores are divided as ‘‘very good’’ (0.81–1.0), 

‘‘good’’ (0.61–0.80), ‘‘moderate’’ (0.41–0.60), ‘‘fair’’ (0.21–0.40), ‘‘poor’’ (< 0.20). Data are 

ICCsingle [95%CI]. Within a row, identical superscript letters indicate significant differences 

between the different training rounds, p < 0.01. Reference values and ICC score divisions are from 

Oliver et al. (2014). 

 

Tables: 2.3.4.1.2: Agreement of each individual trainee rater when compared to an 

experienced rater (DP). 

Image set Rater 1 vs DP Rater 2 vs DP Rater 3 vs DP Rater 4 vs DP 

set 1 0.41 [0.06-0.66]a,b 0.70 [0.50-0.83]a 0.62 [0.36-0.79]a 0.42 [0.13-0.64]a 

set 2a 0.84 [0.79-0.88]a 0.75 [0.68-0.82]b 0.68 [0.25-0.84]b 0.65 [0.38-0.79]b 

set 2b 0.89 [0.85-0.92]b 0.88 [0.84-0.91]a,b 0.91 [0.88-0.94]a,b 0.90 [0.87-0.93]a,b,c 

set 2c 0.87 [0.82-0.90] 0.86 [0.82-0.90] 0.86 [0.80-0.90] 0.78 [0.71-0.83]c 

Legend: ICC scores are divided as ‘‘very good’’ (0.81–1.0), ‘‘good’’ (0.61–0.80), ‘‘moderate’’ 

(0.41–0.60), ‘‘fair’’ (0.21–0.40), ‘‘poor’’ (< 0.20). Data are ICCsingle [95%CI]. Within a column, 

matching superscript letters indicate significant differences (p < 0.01). ICC score divisions are 

from Oliver et al. (2014). 
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There were 28 images (19%) with score differences between raters of 2 points at set 2a. 

Removing these scores had a minimal effect on the recalculated ICCs for set 2b (average RGS 

scores were 0.85 [0.81-0.88] and 0.86 [0.83-0.89] for 150 and 122 images, respectively). 

There was a significant increase in RGS scores between baseline (n = 41, 0.45 ± 0.07) and 6-9 

hours after treatment (n = 29, 0.92 ± 0.08, p < 0.001, 95%CI of mean difference 0.27 to 0.68), at 

which time the mean RGS score exceeded a published analgesic intervention threshold (Oliver et 

al., 2014). 

When the images were re-scored four years after initial training (set 2c), the ICC was good 

for the averaged RGS scores (0.80 [0.76-0.84]) and proficiency was maintained from set 2b 

(observed F = 1.33, p > 0.01). Between set 2b and set 2c there were no significant differences for 

nose/cheek flattening (observed F = 1.24, p > 0.05), whisker changes (observed F = 1.24, p > 0.05) 

and ear changes (observed F = 1.42, p > 0.01), Table 2.3.4.1.1. However, inter-rater reliability 

from set 2b was not maintained and decreased significantly for orbital tightening (observed F = 

1.50, p < 0.01). All trainee raters maintained similar proficiency with the experienced rater 

(observed F < 1.31, p > 0.05) except for trainee rater 4 (observed F = 2.20, p < 0.01; Table 

2.3.4.1.2). 

2.3.4.2. Intra-rater reliability of trainee raters 

The ability of a trainee rater to score reliably over time was good or very good with ICCs 

ranging from 0.78 to 0.86 for the average RGS (Table 2.3.4.2.1). The intra-rater reliability of 

individual action units ranged from moderate to very good depending on the action unit and trainee 

rater. Two trainee raters (2 and 4) reported that they did not recognise any images or remember 

previous scores while the remaining trainee raters (1 and 3) reported recognizing a few images but 

did not remember scores. 

2.3.4.3. Inter-rater reliability of ‘no training’ raters 

In the ‘no training’ group, repeated scoring of images did not result in improvement of 

inter-rater reliability (Figure 2.3.4.1.1). The agreement between raters was moderate during all 

three stages of scoring with no significant improvement observed from set 1 (0.43 [0.30-0.58]) to 
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set 2a (0.41 [0.26-0.54]; F0.01; 149; 41 = 1.88, observed F = 1.04, p > 0.05), or from set 1 to set 2b 

(0.55 [0.44-0.64]; F0.01; 149; 41 = 1.88, observed F =1.27, p > 0.05) or from set 2a to set 2b (F0.01; 149; 

149 = 1.47, observed F =1.31, p > 0.05). 

This pattern of no improvement was also observed with individual action units (Table 

2.3.4.3.1). Some improvements were observed from individual raters when comparing their scores 

to the experienced rater, however, none of the raters had very good agreement with the experienced 

rater (Table 2.3.4.3.2). Rater 6 improved from set 1 to set 2a (observed F = 1.97, p < 0.01) and 

raters 7 and 8 improved from set 2a to set 2b (observed F = 1.58, p <0.01; observed F = 1.57, p < 

0.01 respectively). 

Table 2.3.4.2.1: Intra-class Correlation Coefficients (ICC) for intra-rater reliability for 

each individual trainee rater four years after initial training 

Action Unit Rater 1 Rater 2 Rater 3 Rater 4 

Average 0.85 [0.78-0.90] 0.86 [0.82-0.90] 0.86 [0.79-0.90] 0.78 [0.71-0.84] 

Orbital tightening 0.72 [0.53-0.82] 0.86 [0.82-0.90] 0.85 [0.78-0.89] 0.75 [0.63-0.83] 

Ear changes 0.68 [0.48-0.80] 0.49 [0.11-0.70] 0.74 [0.66-0.81] 0.71 [0.61-0.79] 

Nose/Cheek 

flattening 
0.64 [0.53-0.73] 0.68 [0.56-0.77] 0.74 [0.60-0.82] 0.63 [0.53-0.72] 

Whisker change 0.77 [0.70-0.83] 0.69 [0.55-0.78] 0.53 [0.27-0.69] 0.47 [0.34-0.59] 

Legend: ICC scores are divided as ‘‘very good’’ (0.81–1.0), ‘‘good’’ (0.61–0.80), ‘‘moderate’’ 

(0.41–0.60), ‘‘fair’’ (0.21–0.40), ‘‘poor’’ (< 0.20). Data are ICC single [95% CI]. ICC score 

divisions are from Oliver et al. (2014). 

 

Table 2.3.4.3.1: Group Intra-class Correlation Coefficients (ICC) for each of the 

datasets for the “no training group” 

Action Unit set 1  set 2a set 2b Reference values 

Orbital tightening 0.48 [0.35-0.62] 0.65 [0.58-0.71] 0.71 [0.65-0.76] 0.92 [0.89-0.95] 

Ear changes 0.24 [0.14-0.38] 0.35 [0.25-0.46] 0.35 [0.24-0.46] 0.62 [0.51-0.72] 

Nose/Cheek flattening 0.35 [0.23-0.50] 0.17 [0.09- 0.26] 0.35 [0.27-0.43] 0.62 [0.51-0.72] 

Whisker change 0.19 [0.09 -0.32] 0.23 [0.16-0.32] 0.25 [0.18-0.33] 0.52 [0.39-0.63] 

Legend: Set 1, set 2a and set 2b are the first, second and third rounds of scoring, respectively. ICC 

scores are divided as ‘‘very good’’ (0.81–1.0), ‘‘good’’ (0.61–0.80), ‘‘moderate’’ (0.41–0.60), 

‘‘fair’’ (0.21–0.40), ‘‘poor’’ (< 0.20). Data are ICCsingle [95%CI]. Reference values and ICC 

score divisions are from Oliver et al. (2014). 
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Table 2.3.4.3.2: Agreement of each individual “no training” rater when compared to 

an experienced rater (DP). 

 

Legend: Agreement of each individual “no training” rater when compared to an experienced rater 

(DP). ICC scores are divided as ‘‘very good’’ (0.81–1.0), ‘‘good’’ (0.61–0.80), ‘‘moderate’’ 

(0.41–0.60), ‘‘fair’’ (0.21–0.40), ‘‘poor’’ (< 0.20). Data are ICCsingle [95%CI]. Within a column, 

matching superscript letters indicate significant differences (p < 0.01). ICC score divisions are 

from Oliver et al. (2014). 

2.3.5. Discussion 

Our results suggest that reliability is limited when raters only review the training manual 

and score images repeatedly. Improvement is observed when feedback and discussion with an 

experienced rater are included. The high level of reliability and proficiency achieved from training 

can be maintained for several years. 

Little is known regarding the need for, or role of, rater training in the use of rodent grimace 

scales. Where training has been described, it ranges from reviewing the grimace scale training 

manuals (Leach et al., 2012 and Faller et al., 2015) to a single training session of variable length 

(Langford et al., 2010; Sotocinal et al., 2011; Oliver et al., 2014; De Rantere et al., 2016 and 

Philips et al., 2017) or multiple training sessions (Mittal et al., 2016). Few studies describe an 

assessment of reliability (Langford et al., 2010; Sotocinal et al., 2011; Oliver et al., 2014 and 

Mittal et al., 2016). The results of this study show that an assessment of reliability is necessary to 

confirm that training will lead to proficiency as well as standardised scoring. This study also 

demonstrated that inclusion of a group discussion as part of training is beneficial. While repeated 

exposure without discussion does have some benefits as observed by the increased reliability 

amongst the individual raters from the ‘no training’ group, this improvement is variable between 

raters and none of them achieved the same reliability as those in the trainee group. 

Image 

set 
Rater 5 vs DP Rater 6 vs DP Rater 7 vs DP Rater 8 vs DP 

Rater 9 vs DP Rater 10 vs DP 

set 1 
0.63 [0.40-

0.78] 

0.37 [0.07-

0.60]a 

0.57 [0.33-

0.74] 

0.33 [0.04-

0.57] 

0.56 [0.24-

0.75] 

0.57 [0.25-

0.76] 

set 2a 
0.72 [0.60-

0.81] 

0.68 [0.58-

0.76]a 

0.51 [0.06-

0.73]a 

0.12 [-0.06-

0.30]a 

0.63 [0.28-

0.80] 

0.67 [0.45-

0.79] 

set 2b 
0.68 [0.57-

0.77] 

0.65 [0.54-

0.74] 

0.69 [0.41-

0.82]a 

0.41 [0.05-

0.64]a 

0.73 [0.56-

0.82] 

0.68 [0.51-

0.78] 
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The rate at which individuals achieve proficiency in a task is highly variable and, as such, 

it is erroneous to assume that participating in training guarantees proficiency. Neither a single 

training session nor repeated attempts at a task ensure proficiency (de Oliveira, 2002; Roughan 

and Flecknell, 2006; Campbell et al., 2014). The length and intensity of training should depend on 

the difficulty of mastering the tool and the proficiency of the trainee (Haidet et al., 2009). 

Additionally, proficiency should not be assumed just because a rater feels confident using a scale 

following training (Björn et al., 2017). Instead, it is important to test the actual proficiency of 

raters, and a simple approach is to assess inter-rater reliability (Streiner and Norman, 2008). This 

provides assurance that scoring has reached the desired standard, that variability is at an acceptable 

level and enables rogue raters to be identified (Brondani et al., 2013 and Mittal et al., 2016). 

Identification of rogue raters during training allows for further testing and assessment or removal 

from participation in scoring (Mittal et al., 2016 and Mullard et al., 2017). Ensuring reliability and 

standardizing scoring will reduce data variability and consequently, animal use. An alternative 

approach is to use a single rater; however, it is still useful to compare the performance of a single 

rater against that of an experienced rater, or a standard set of scores, to confirm reliability and 

consistency over time (Oliver et al., 2014). The presence of systematic bias may negatively affect 

data interpretation and pain management (Faller et al., 2015). 

Orbital tightening had the highest associated ICC following the initial round of scoring, 

which was maintained throughout training. In contrast, the reliability of whisker scoring remained 

relatively low throughout training. These results support previous findings that assessing the 

whisker change action unit is more difficult for raters than orbital tightening (Oliver et al., 2014). 

Four years after training, with variable use of the RGS during this time, the inter- and intra-rater 

reliability of the average RGS was maintained. This indicates that raters can retain scoring 

proficiency and score consistently with each other, with themselves and achieve the standard set 

by the experienced rater. This agrees with a previous study showing that a single rater maintained 

scoring reliability after a break of six months (Oliver et al., 2014). Nevertheless, the observed 

reductions in ICC for one of the action units indicate that some degree of re-training may be 

beneficial. 
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A recent description of a successful machine learning approach to the MGS highlights the 

potential for simplifying the standard method of facial image acquisition and scoring (Streiner and 

Norman, 2008). This advance could greatly shorten what is currently a relatively slow process and 

allow for the scoring of large numbers of animals in a short period of time, an advance over real-

time scoring (Leung et al., 2016). However, the need for proficient human raters remains necessary 

to classify those images that cannot currently be scored by machine with a high degree of 

confidence (Tuttle et al., 2018). 

A limitation of this study was re-scoring the 150-image set in the final training round, with 

the potential for memorised scores assigned during the group discussion following the second 

training round being applied rather than a rater scoring independently. We feel this is unlikely due 

to the large number of images scored, the similar appearance of rodent faces from similar strains, 

the time elapsed between review rounds, the small number of images reviewed during group 

discussion and the nature of the group discussion, where disagreement between raters was 

acceptable. The minimal difference in ICCs after removal of the 28 image scores supports this 

assertion as well as the maintained quality of scores after 4 years. A further limitation is the 

generalisability of these findings, based on 4 trainee raters and 6 ‘no training’ raters, to a larger 

population. These results highlight the risk of assuming that some form of training in the use of 

the RGS (and perhaps other facial expression scales) is unnecessary and should serve to encourage 

users to regularly evaluate scoring reliability and accuracy. In more general terms, scale 

performance is specific to the population and context studied, so that performance when applied 

by different raters or in a different context should be formally evaluated (Streiner and Norman, 

2008). 

Images for training were selected on the basis of quality rather than to allow comparison 

between treatment groups. This limits any assessment of construct validity but the comparison of 

baseline and predicted peak pain periods indicates that accuracy was preserved.  

In conclusion, these data show that reliance on access to the available manuals for rater 

training may be insufficient. Formal training that includes group discussion with an experienced 

rater improves inter-rater reliability and is likely to reduce data variability if rater proficiency is 

assessed before embarking on data collection. Collaborative training between research groups 
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would ensure similar levels of rater proficiency and improve the reproducibility of research. 

Inclusion of clear descriptions of rater training and assessment would help in evaluating study 

results. Lastly, once raters achieve proficiency, this may be maintained over several years even 

without scoring during the intervening period. 
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2.4. ARRIVE has not ARRIVEd: Support for the ARRIVE 

(Animal Research: Reporting of in vivo Experiments) 

guidelines does not improve the reporting quality of papers 

in animal welfare, analgesia or anesthesia 

Vivian Leung6*, Frédérik Rousseau-Blass5*, Guy Beauchamp5, Daniel SJ Pang5 

2.4.1. Abstract 

Poor research reporting is a major contributing factor to low study reproducibility, financial 

and animal waste. The ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines 

were developed to improve reporting quality and many journals support these guidelines. The 

influence of this support is unknown. We hypothesised that papers published in journals supporting 

the ARRIVE guidelines would show improved reporting compared with those in non-supporting 

journals. In a retrospective, observational cohort study, papers from 5 ARRIVE supporting (SUPP) 

and 2 non-supporting (nonSUPP) journals, published before (2009) and 5 years after (2015) the 

ARRIVE guidelines, were selected. Adherence to the ARRIVE checklist of 20 items was 

independently evaluated by two reviewers and items assessed as fully, partially or not reported. 

Mean percentages of items reported were compared between journal types and years with an 

unequal variance t-test. Individual items and sub-items were compared with a chi-square test. From 

an initial cohort of 956, 236 papers were included: 120 from 2009 (SUPP; n = 52, non- SUPP; n = 

68), 116 from 2015 (SUPP; n = 61, nonSUPP; n = 55). The percentage of fully reported items was 

similar between journal types in 2009 (SUPP: 55.3 ± 11.5% [SD]; non- SUPP: 51.8 ± 9.0%; p = 

0.07, 95% CI of mean difference -0.3±7.3%) and 2015 (SUPP: 60.5 ± 11.2%; nonSUPP; 60.2 ± 

10.0%; p = 0.89, 95%CI -3.6±4.2%). The small increase in fully reported items between years was 

similar for both journal types (p = 0.09, 95% CI -0.5±4.3%). No paper fully reported 100% of 

items on the ARRIVE checklist and measures associated with bias were poorly reported. These 
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results suggest that journal support for the ARRIVE guidelines has not resulted in a meaningful 

improvement in reporting quality, contributing to ongoing waste in animal research. 

2.4.2. Introduction 

Accurate and complete reporting of animal experiments is central to supporting valid, 

reproducible research and to allow readers to critically evaluate published work. Poor or absent 

reporting is associated with deficiencies in experimental design that introduce bias and 

exaggerated effect sizes in to the literature (Macleod et al., 2008 and Vesterinen et al., 2010). As 

a result, irreproducible animal research has significant ethical and financial costs (Freedman et al., 

2015). The use of animals in poorly designed studies and in efforts to reproduce such studies 

represents a failure to uphold the 3Rs (refine, reduce, replace) of animal research (Russell and 

Burch, 1992). Incomplete reporting of research contributes to a waste of funding, with a 

conservative estimate for preclinical research, of US$28 billion annually (Freedman et al., 2015). 

To address low standards of reporting, the ARRIVE (Animals in Research: Reporting In 

Vivo Experiments) guidelines for reporting were published in 2010 (Kilkenny et al., 2009 and 

2010). The ARRIVE guidelines are summarised by a 20-item checklist that includes reporting of 

measures associated with bias (randomisation, blinding, sample size calculation, data handling) 

(Landis et al., 2012 and Macleod et al., 2015). Over 1000 journals have responded to publication 

of the guidelines by linking to it on their websites and in their instructions to authors 

(www.nc3rs.org). The effect of these endorsements is unknown. For the majority of existing health 

research guidelines, the impact of journal support for other reporting guidelines on guideline 

adherence in published papers is unclear (Stevens et al., 2014). The impact of the CONSORT 

guidelines for the reporting of randomised controlled trials have been evaluated more than other 

reporting guidelines, and current evidence suggests that though reporting of some items has 

improved, overall standards of reporting remain low (Turner et al., 2012).  

To our knowledge, there have been no studies comparing reporting standards between 

journals classified as ARRIVE guideline supporters and non-supporters. Furthermore, no studies 

examining adherence to the ARRIVE guidelines have been conducted in the veterinary literature. 

We hypothesised that papers published in supporting journals would have greater adherence to the 

guidelines, and therefore higher reporting standards, than those published in non-supporting 



 

155 

 

journals. Additionally, we hypothesised that papers published in supporting journals would show 

a greater improvement in reporting standards since the guidelines became available. To test these 

hypotheses the related subjects of anesthetic and analgesic efficacy and animal welfare were 

selected for study. 

2.4.3. Methods and materials 

2.4.3.1. Journal and paper selection 

Journals were categorised as ARRIVE supporters (SUPP) or non-supporters (nonSUPP) 

based on whether the ARRIVE guidelines were mentioned in their instructions to authors when 

beginning the study (November 2016). Editorial offices of SUPP journals confirmed by email that 

the ARRIVE guidelines were included in the instructions to authors before December 2014. Papers 

were selected from a selection of journals from these two categories (SUPP and nonSUPP) from 

two years: 2009 (pre-ARRIVE) and 2015 (post-ARRIVE). SUPP journals were: Journal of the 

American Association for Laboratory Animal Science, Comparative Medicine, Animal Welfare, 

Laboratory Animals and Alternatives to Animal Experimentation. NonSUPP journals were: 

Applied Animal Behaviour Science and Experimental Animals. Journals were selected based on 

an initial search for those publishing papers on the predetermined subjects of interest (welfare, 

analgesic and anesthetic efficacy). Additionally, none of the selected journals had previously been 

included in a study assessing adherence to the ARRIVE guidelines.  

An initial screening of all papers was performed by a single author (VL) by manual search 

of tables of contents, using titles, abstracts and keywords to identify relevant papers. Papers were 

selected based on subject and study type. A second screening was performed by two authors (VL 

and FRB) during the full text evaluation of the selected papers. Anesthesia or analgesia papers 

described studies assessing the efficacy of anesthetics or analgesics as a primary objective. Animal 

welfare papers described studies where the objective was to improve the well-being of animals 

used in research. Only prospective in vivo studies were included. Case studies were excluded. 
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2.4.3.2. Evaluation 

Evaluation of adherence to the ARRIVE guidelines was performed independently by two 

authors (VL and FRB). The ARRIVE checklist (Kilkenny et al., 2010) of 20 items and 46 

associated sub-items was operationalised and used as the basis for evaluation (Table 2.4.3.2.1). 

Descriptors were developed by consensus to promote consistency during evaluation (Table 

2.4.3.2.1). Items without associated sub-items were categorised as either not reported, partially 

reported or fully reported. Items with sub-items were categorised as not reported if no sub-items 

were reported, partially reported if only some sub-items were reported and fully reported if all sub-

items were reported. For example, for Item 6 (Study design, Table 2.4.3.2.1), the item would only 

be classified as fully reported if all sub-items (6a-d) were reported, otherwise it would be classified 

as partially (3 or fewer sub-items reported) or not reported (none of the 4 sub-items reported). 

A sub-item was added to the original ARRIVE checklist to clarify drug use (sub-item 7e, 

Table 2.4.3.2.1). Where items or sub-items were considered not applicable, no score was entered. 

For example, a paper on zebra fish would have the sub-items bedding materials, access to water 

and humidity classed as not applicable. 

Item and sub-item scores were compared between authors and differences resolved by 

consensus (with DP).  



 

157 

 

Table 2.4.3.2.1. The ARRIVE guidelines checklist: operationalised items and sub-items to facilitate assessment of reporting 

(Kilkenny et al., 2010). 
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Item/sub-

item 
ARRIVE items and sub-items Possible categories Descriptor 

1 Title 
not reported; partially 

reported; fully reported 
Accurate and concise description of article content 

2 Abstract 
not reported; partially 

reported; fully reported 

Accurate summary of background, research 

objectives, species or strain of animal used, key 

methods, principle findings, and conclusions 

 Introduction   

3 Background depends on sub-items - 

3a Motivation for and context of study not reported; reported 

Sufficient scientific background (with references) on 

motivation and context of study, with explanation of 

experimental approach and rationale 

3b Animal species and models justified not reported; reported 
Explain how and why animal species and models 

were chosen 

4 Objectives 
not reported; partially 

reported; fully reported 

Objectives or hypotheses of study are clearly 

described 

 Methods   

5 Ethical Statement not reported; fully reported 

Statement to indicate ethical review permissions, 

relevant licenses and national or institutional 

guidelines for care and use of animals 

6 Study design depends on sub-items - 

6a Number of groups not reported; reported; N/A 
Number of experimental and control groups clearly 

stated; N/A if single group study 

6b Randomisation not reported; reported; N/A 

Statement that randomisation was used or 

justification for no randomisation; N/A if single 

group study 

6c Blinding not reported; reported; N/A 

Statement that blinding was used or justification for 

no blinding; N/A if single group study. Classified as 

“reported” if blinding was mentioned for any step 

(e.g. blinding to allocation, blinding to outcome 

assessment, treatment administration etc.). 
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6d Experimental unit not reported; reported 
Reader is able to understand if comparisons were 

between a single animal or a group of animals 

7 Experimental procedures depends on sub-items - 

7a How not reported; reported 

Description of experiment performed, and details of 

specialised equipment used can be replicated with the 

information present 

7b When not reported; reported; N/A 

Statement of when during the day the procedures took 

place and when according to the experimental 

timeline; N/A if paper was assessing continuous 

assessment or if light cycle unlikely to affect 

assessment (e.g. lameness)  

7c Where not reported; reported Some indication of where each procedure took place 

7d Why not reported; reported 
Rationale for why chosen experimental procedures 

were performed 

7e Drugs used not reported; reported 

Statement of the name, dose, route, and frequency of 

the analgesics or anesthetics used; N/A if procedures 

can be obviously performed without analgesic or 

anesthetics 

8 Experimental animals depends on sub-items - 

8a Species not reported; reported Statement of species used 

8b Strain not reported; reported Statement of strain used 

8c Sex not reported; reported Statement of sex used 

8d Developmental stage not reported; reported Statement of age of animals used 

8e Weight not reported; reported; N/A 
Statement of the animals’ weight; N/A for zoo 

animals 

8f Source not reported; reported; N/A Statement of animals’ source; N/A for zoo animals 

8g Health/immune status not reported; reported 

Statement of animals’ heath (i.e. screening of tested 

animals or sentinel animals for lab animals) or general 

statement that animals were healthy for farm, 

companion, and zoo animals 

9 Housing and husbandry depends on sub-items - 
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9a Type of cage/housing not reported; reported; N/A 

Statement of cage dimensions and product source for 

lab animals and a general description for companion 

and zoo animals; N/A if paper was on animals being 

process for slaughter (e.g. study at abattoir) 

9b Bedding material not reported; reported; N/A 

Statement of bedding type and source for lab animals 

and a general description for non-lab animals; N/A for 

fish species or animals being processed for slaughter 

9c Type of facility not reported; reported; N/A 

Statement of facility type and a general description 

for non-lab animal; N/A if paper was on animals 

being process for slaughter 

9d Number of cage companions not reported; reported; N/A 

Statement of number of animals housed together or 

individually; N/A if paper was on animals being 

processed for slaughter 

9e Light/dark cycle not reported; reported; N/A 

Statement of time lights were on/off for lab animals; 

information of place of facility and time of 

experiment is accepted as an alternative for farm and 

zoo animals*; N/A if paper was on animals being 

process for slaughter 

9f Temperature not reported; reported; N/A 

Statement of temperature animals were housed in; 

information of place of facility and time of 

experiment is acceptable as an alternative for farm 

and zoo animals*; N/A if paper was on animals being 

process for slaughter 

9g Type of food not reported; reported; N/A 

Statement of food type and sources for lab animals; 

general description (e.g. hay for cattle) acceptable for 

non-lab animals; N/A if paper was on animals being 

process for slaughter 

9h Water access not reported; reported; N/A 
Statement that water was provided; N/A for fish 

species or animals being processed for slaughter  

9i Environmental enrichment not reported; reported; N/A 

Statement that a form of enrichment was provided; 

N/A if paper was on animals being processed for 

slaughter 
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9j Humidity not reported; reported; N/A 

Statement of humidity for lab animals; information of 

place and time of experiments is acceptable as an 

alternative for farm and zoo animals*; N/A for fish 

species or animals being processed for slaughter 

9k Welfare assessment not reported; reported; N/A 

Statement that a form of welfare assessment was in 

place; point was awarded by default if the paper was 

a welfare paper; N/A if the intervention performed 

was not for the benefit of the animals involved 

9l Welfare interventions not reported; reported; N/A  

Statement of what type of welfare intervention 

prepared; intervention must be in response to 

animals’ well-being and not from an outcome of the 

experiment e.g. Eye issues from eye procedure vs. 

Weight loss; N/A if no adverse event is expected (i.e. 

animal assessed after death) 

9m 
Time of welfare assessment or 

intervention 
not reported; reported; N/A  

Statement of when welfare assessment or intervention 

occurred; N/A if no adverse event expected (e.g. 

study was assessing a new enrichment) 

10 Sample size depends on sub-items - 

10a Total number of animals used not reported; reported 

Statement specifying in absolute numbers of the total 

number of animals used in each experiment and 

treatment groups 

10b Sample size calculation not reported; reported; N/A 
Statement that sample size calculation was 

performed; N/A if pilot study 

10c 
Number of independent 

replications** 
reported; N/A 

Statement of the number of independent replications 

performed 

11 Allocating animals  depends on sub-items - 

11a Allocation method not reported; reported; N/A 

Statement of how animals were allocated to groups, 

including randomisation or matching if done; N/A if 

single treatment group 

11b Treatment and assessment of animals not reported; reported 

Describe the order in which the animals in the 

different experimental groups were treated and 

assessed 
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12 Experimental outcomes 
not reported; partially 

reported; fully reported 

Define the primary and secondary experimental 

outcomes assessed 

13 Statistical methods depends on sub-items - 

13a Details of statistical methods used not reported; reported Statistical tests performed for each analysis was clear 

13b Specify unit of analysis not reported; reported Unit of analysis was clear for each data set 

13c Assess normality not reported; reported 
Statement that assessment of normality was 

performed 

 Results   

14 Baseline data not reported; fully reported 
Statement to report relevant characteristics and health 

status of animals were collected 

15 Numbers analysed depends on sub-items - 

15a Animals included not reported; reported 
Statement of the number of animals 

included/excluded in absolute numbers 

15b Reasons for animal exclusion not reported; reported; N/A 
Statement detailing why animals were excluded; N/A 

if no animals excluded 

16 Outcomes and estimation 
not reported; partially 

reported; fully reported 

Results for each analysis was clear with a measure of 

precision (e.g. standard error or confidence interval) 

17 Adverse events depends on sub-items - 

17a Details of adverse events not reported; reported; N/A 

Reported details of adverse events that occurred or a 

statement to report no adverse events occurred; N/A 

if no adverse events expected 

17b 
Modifications to reduce adverse 

events 
not reported; reported; N/A 

Modifications to experimental procedures made to 

reduce adverse events were described; N/A if no 

adverse event expected 

 Discussion   

18 
Interpretation/scientific 

implications 
depends on sub-items - 

18a Interpretation not reported; reported 

Interpret results, taking into account study objectives 

and hypotheses, current theory and other relevant 

studies in literature 
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18b Study limitations not reported; reported 

Commented on the study limitations including 

potential sources of bias, any limitations of the animal 

model and the imprecision associated with results 

18c Implications for 3Rs of animal use not reported; reported; N/A 

Described any implications of experimental methods 

or findings for the replacement, refinement or 

reduction (3Rs) of the use of animals in research; 

point was awarded if it was a welfare paper; N/A if 

assessing anatomic response to an analgesic or 

anesthetic (e.g. buprenorphine effects on limb 

volume) 

19 Generalisability/translation 
not reported; fully reported; 

N/A 

Commented on whether the findings of this study are 

likely to translate to other species or systems, 

including any relevance to human biology; N/A for 

welfare paper unless specified in discussion  

20 Funding not reported; fully reported 
List all funding sources and the role of the funder(s) 

in the study 

Legend: Items are bolded and listed with a number. Sub-items are listed with a number and letter. *Acceptable to report only place and 

time of year for 9e) light/dark cycle; 9f) temperature; 9j) humidity as this information can be inferred if animals (production and zoo 

types) are housed outdoors ** Number of independent replications was scored as not applicable (N/A) when not reported as this sub-

item was not required for a complete study. 
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2.4.3.3. Statistics 

Each paper was assessed against the 20 items of the ARRIVE guidelines, generating 

percentages of fully reported items. From this, mean percentages of items were calculated for each 

journal type during each publication year. Following Levene’s test revealing heterogeneity of 

variances, an unequal variance t-test was used to compare these mean percentages between journal 

types (SUPP 2009 vs nonSUPP 2009; SUPP 2015 vs nonSUPP 2015) and between years (SUPP 

2009 vs. SUPP 2015; nonSUPP 2009 vs. nonSUPP 2015). Correction for multiple comparisons 

was not applied as comparisons between identical items were viewed as independent from other 

items. The overall quality of item reporting was classified as well-reported (> 80%), average (50-

80%) or poor (< 50%; Delgado-Ruiz et al., 2014). For each journal type, the percentages of 

individual items and sub-items that were fully, partially or not reported were compared between 

years with a chi-square test. Additionally, to provide an overall impression of reporting standards 

in 2015 data from both journal types were pooled.  

2.4.4. Results 

After initial screening, 271 papers were identified. Thirty-five papers were excluded 

following full text evaluation, leaving 236 papers included in the final analysis (SUPP 2009: n = 

52; SUPP 2015: n = 61; nonSUPP 2009: n = 68; nonSUPP 2015: n = 55, Fig 2.4.4.1). One item 

and one sub item (generalisability/translation (item 19), number of independent replication (sub- 

item 10c)) were removed before analysis as they were only applicable in a small number of papers 

(4/236 and 10/236, respectively). 

The percentages of fully reported items between journal types were similar in 2009 (p = 0.07) 

and 2015 (p = 0.89; Table 2.4.4.1). The percentage of fully reported items increased significantly 

from 2009 to 2015 for both SUPP (p = 0.02) and nonSUPP (p = 0.0001; Table 2.4.4.1) journals. 

Although both journal types showed improvements from 2009 to 2015, neither improved 

significantly more than the other (absolute difference in change between nonSUPP – SUPP = 

3.3%, p = 0.09 [95% CI -0.5 – 4.3%]). 
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Fig 2.4.4.1 Flow diagram of paper selection process.  

 

 

 

Table 2.4.4.1: Overall reporting quality in journals supporting (SUPP) and not 

supporting (nonSUPP) the ARRIVE guidelines for 2009 and 2015. 

 2009 (%) 2015 (%) bp-value [95% CI] 

SUPP 55.3 ± 11.5 60.5 ± 11.2 0.02 [1.0 – 9.4] 

Non-SUPP 51.8 ± 9.0 60.2 ± 10.0 0.0001 [5.0 – 11.8] 
ap value [95% CI] 0.07 [-0.3 – 7.3] 0.89 [-3.6 – 4.2]  

Legend: Values ae mean percentages of fully reported items. The numbers of papers examined 

were: SUPP 2009; n = 52, SUPP 2015; n = 61, nonSUPP 2009; n = 68, nonSUPP 2015; n = 55. ap 

values of differences between journal types within the same year. bp-values of differences between 

years for the same journal type. 95% confidence interval (95% CI) is for the mean difference. 

Legend: Papers were selected from studies reporting research in anesthesia, analgesia and 

animal welfare from 5 veterinary journals. 
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2.4.4.1. Items  

Despite minimal improvements in overall reporting standards between 2009 and 2015, several 

individual items showed significant improvement in full reporting. For SUPP journals, these items 

were the abstract (from 69.2 to 91.8%, p = 0.003), housing and husbandry (from 3.9 to 21.3%, p 

= 0.01) and sample size (from 3.8 to 21.3%, p = 0.01; Table 2.4.4.1.1). For nonSUPP journals, the 

following items were increasingly fully reported from 2009 to 2015: ethical statement (from 36.8 

to 81.8%, p < 0.0001); experimental animals (from 1.5 to 10.9%, p = 0.04) and 

interpretation/scientific implications (from 10.3 to 38.2%, p = 0.0004; Table 2.4.4.1.1). 

In SUPP journals, sample size was reported at least partially by all papers in 2009 but was not 

reported in 9.8% of papers in 2015 (p = 0.03, Table 2.4.1.1.1 and Table 2.4.1.1.2. In both SUPP 

and nonSUPP journals, items that were frequently not reported in both 2009 and 2015 were 

baseline data, numbers analysed and funding. 

Pooling the percentage of fully reported items in 2015 from both journal types revealed that 

items with excellent (> 80%), average (50-80%) and poor (< 50%) reporting was distributed in to 

thirds (Fig 2.4.4.1.1). Title, abstract, background, objectives, ethical statement, experimental 

outcomes, and outcomes and estimation were well reported. In contrast, ethical statement, baseline 

data, numbers analysed, adverse events and funding were poorly reported.  

2.4.4.2. Sub-items 

There were significant improvements in percentages of papers reporting a small number of sub-

items between years for each journal type though overall levels of reporting remained low (Table 

2.4.4.2.1). Notably amongst these were sub-items associated with bias: blinding (sub-item 6c), 

sample size calculation (sub-item 10b), allocation method (sub-item 11a) and data handling (sub-

item 15b) (Fig 2.4.4.2.1) Randomisation (sub-item 6b) was alone in being reported more than 50% 

of the time (Fig 2.4.4.2.1). 
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Table 2.4.4.1.1: Papers fully reporting ARRIVE checklist items in supporting (SUPP) and non-supporting (nonSUPP) 

journals in 2009 and 2015. 

Item SUPP NonSUPP 

  2009 (N = 52) 2015 (N = 61)  2009 (N = 68) 2015 (N = 55)  

 
 n/N (% 

reported) 

n/N (% 

reported) 

p-

value 

n/N (% 

reported) 

n/N (% 

reported) 
p-value 

1 Title 52/52 (100) 61/61 (100) 1 68/68 (100) 55/55 (100) 1 

2 Abstract 36/52 (69.2) 56/61 (91.8) 0.003 45/68 (66.2) 44/55 (80.0) 0.11 

3 Background 52/52 (100) 60/61 (98.4) 1 68/68 (100) 55/55 (100) 1 

4 Objectives 47/52 (90.2) 60/61 (98.4) 0.09 68/68 (100) 55/55 (100) 1 

5 Ethical statement 39/52 (75.0) 52/61 (85.2) 0.23 25/68 (36.8) 45/55 (81.8) <0.0001 

6 Study design 10/52 (19.2) 19/61 (31.1) 0.20 10/68 (14.7) 15/55 (27.3) 0.12 

7 Experimental procedure 34/52 (65.4) 30/61 (49.2) 0.09 45/68 (66.2) 42/55 (76.4) 0.24 

8 Experimental animals 8/52 (15.4) 18/61 (29.5) 0.12 1/68 (1.5) 6/55 (10.9) 0.04 

9 Housing and husbandry 2/51 (3.9) 13/61 (21.3) 0.01 3/67 (4.5) 8/54 (14.8) 0.06 

10 Sample size 2/52 (3.8) 13/61 (21.3) 0.01 1/68 (1.5) 3/55 (5.5) 0.32 

11 Allocating animals 11/52 (21.2) 16/61 (26.2) 0.66 14/68 (20.6) 17/55 (30.9) 0.22 

12 Experimental outcomes 52/52 (100) 61/61 (100) 1 66/67 (98.5) 55/55 (100) 1 

13 Statistical methods 23/52 (44.2) 29/61 (47.5) 0.85 38/68 (55.9) 32/55 (58.2) 0.86 

14 Baseline data 24/41 (58.5) 27/50 (54.0) 0.68 20/30 (66.7) 18/35 (51.4) 0.31 

15 Numbers analysed 29/52 (55.8) 39/61 (63.9) 0.44 37/68 (54.4) 25/55 (45.5) 0.37 

16 Outcomes and estimation 45/52 (86.5) 49/61 (80.3) 0.45 55/68 (80.9) 49/55 (89.1) 0.32 

17 Adverse events 18/29 (62.1) 17/41 (41.5) 0.15 4/18 (22.2) 8/23 (34.8) 0.50 

17a Details of adverse events 25/29 (86.2) 25/41 (61.0) 0.03 8/18 (44.4) 20/24 (83.3) 0.02 

18 
Interpretation/scientific 

implications 
15/52 (28.8) 20/61 (32.8) 0.69 7/68 (10.3) 21/55 (38.2) 0.0004 

19 Generalisability/translation - - - - - - 

20 Funding 29/52 (55.8) 43/61 (70.5) 0.12 48/68 (70.6) 44/55 (80) 0.30 

Legend: N = total number of papers where the item was applicable. n = total number of papers reporting the item. p values are for 

comparisons between years for each journal type. 
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Table 2.4.1.1.2. Papers partially reporting ARRIVE checklist items in supporting (SUPP) and non-supporting (nonSUPP) 

journals in 2009 and 2015. 

Item  SUPP NonSUPP 

  2009 (N = 52) 2015 (N = 61)  2009 (N = 68) 2015 (N = 55)  

  n/N (% reported) n/N (% reported) p-value n/N (% 

reported) 
n/N (% reported) p-value 

1 Title 0/52 (0) 0/61 (0) 
1 

0/68 (0) 0/55 (0) 
1 

2 Abstract 16/52 (30.8) 5/61 (8.2) 
0.003 

23/68 (33.8) 11/55 (20.0) 
0.11 

3 Background 0/52 (0) 1/61 (1.6) 
1 

0/68 (0) 0/55 (0) 
1 

4 Objectives 1/52 (2.0) 0/61 (0) 
0.46 

0/68 (0) 0/55 (0) 
1 

5 Ethical statement 0/52 (0) 0/61 (0) 
1 

0/68 (0) 0/55 (0) 
1 

6 Study design 42/52 (80.8) 42/61 (68.9) 
0.20 

58/68 (85.3) 40/55 (72.7) 
0.12 

7 Experimental procedure 28/52 (34.6) 31/61 (50.8) 
0.09 

23/68 (33.8) 13/55 (23.6) 
0.24 

8 Experimental animals 44/52 (84.6) 43/61 (70.5) 
0.12 

67/68 (98.5) 49/55 (89.1) 
0.04 

9 Housing and husbandry 49/51 (96.1) 48/61 (78.7) 
0.01 

 64/67 (95.5) 46/54 (85.2) 
0.06 

10 Sample size 50/52 (96.2) 42/61 (68.9) 
0.0002 

67/68 (98.5) 51/55 (92.7) 
0.17 

11 Allocation animals 41/52 (78.8) 45/61 (73.8) 
0.66 

54/68 (79.4) 38/55 (69.1) 
0.22 

12 Experimental outcomes 0/52 (0) 0/61 (0) 
1 

1/67 (1.5) 0/55 (0) 
1 

13 Statistical methods 27/52 (51.9) 30/61 (49.2) 
0.85 

25/68 (36.8) 23/55 (41.8) 
0.58 

14 Baseline data 1/41 (2.4) 0/50 (0) 
0.45 

0/30 (0) 0/35 (0) 
1 

15 Numbers analysed 4/52 (7.7) 2/61 (3.3) 
0.31 

3/68 (4.4) 2/55 (3.6) 
1 

16 Outcomes and estimation 6/52 (11.5) 11/61 (18.0) 
0.43 

13/68 (19.1) 6/55 (10.9) 
0.32 

17 Adverse events 7/29 (24.1) 9/41 (2.0) 
1 

4/18 (22.2) 10/23 (43.5) 
0.2 

18 Interpretation/scientific implications 37/52 (71.2) 41/61 (67.2) 
0.69 

61/68 (87.7) 34/55 (61.8) 
0.0004 

19 Generalisability/translation   
 

  
 

20 Funding 0/52 (52.0) 0/61 (0) 
1 

0/68 (0) 0/55 (0) 
1 

Legend: N = total number of papers where the item was applicable. n = total number of papers partially reporting the item. p values 

are for comparisons between years for each journal type. 
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Table 2.4.4.2.1 Papers fully reporting ARRIVE checklist sub-items in supporting (SUPP) and non-supporting (nonSUPP) 

journals in 2009 and 2015. 

Items Sub-items SUPP NonSUPP 

   2009 (N = 52) 2015 (N = 61)  2009 (N = 68) 2015 (N = 55)  

   N (% reported) n (% reported) p-value n (% reported) n (% reported) p-value  

Background 

3a 
Motivation and context of 

study 
52/52 (100) 61/61 (100) 1 68/68 (100) 55/55 (100) 1 

3b 
Animal species and model 

justification 
52/52 (100) 60/61 (98.4) 1 68/68 (100) 55/55 (100) 1 

Study design 

6a Number of groups 52/52 (100) 61/61 (100) 1 68/68 (100) 55/55 (100) 1 

6b Randomisation 29/46 (63.0) 37/52 (71.2) 0.52 38/67 (56.7) 34/48 (70.8) 0.17 

6c Blinding 13/52 (25.0) 24/60 (40.0) 0.11 10/68 (14.7) 15/53 (28.3) 0.08 

6d Experimental units 52/52 (100) 61/61 (100) 1 68/68 (100) 55/55 (100) 1 

Experimental 

procedure 

7a How 52/52 (100) 61/61 (100) 1 68/68 (100) 55/55 (100) 1 

7b When 31/44 (70.5) 36/60 (60.0) 0.31 47/68 (69.1) 45/54 (83.3) 0.09 

7c  Where 45/52 (86.5) 55/61 (90.2) 0.57 67/68 (98.5) 52/55 (94.5) 0.33 

7d Why 52/52 (100) 61/61 (100) 1 68/68 (100) 55/55 (100) 1 

7e Drugs used 20/20 (100) 29/33 (87.9) 0.17 5/6 (83.3) 9/10 (90) 1 

Experimental 

animals 

8a Species 52/52 (100) 61/61 (100) 1 68/68 (100) 55/55 (100) 1 

8b Strain 48/52 (92.3) 61/61 (100) 0.04 62/68 (91.2) 49/54 (90.7) 1 

8c Sex 46/52 (88.5) 60/61 (98.4) 0.05 55/68 (80.9) 50/55 (90.9) 0.13 

8d Developmental stage 38/52 (73.1) 49/61 (80.3) 0.38 49/68 (72.1) 45/55 (81.8) 0.29 

8e Weight 28/49 (57.1) 32/58 (55.2) 0.85 26/63 (41.3) 23/50 (46) 0.70 

8f Source 34/52 (65.4) 52/61 (85.2) 0.02 34/68 (50) 32/55 (58.2) 0.47 

8g Health/immune Status 19/52 (36.5) 34/61 (55.7) 0.06 7/68 (10.3) 7/55 (12.7) 0.78 

Housing and 

husbandry 

9a Type of cage/housing 42/50 (84.0) 49/55 (89.1) 0.57 59/66 (89.4) 51/53 (96.2) 0.19 

9b Bedding material 34/48 (70.8) 36/52 (69.2) 1 39/61 (63.9) 42/51 (82.4) 0.04 

9c Type of facility 23/50 (46.0) 33/54 (61.1) 0.17 39/66 (59.1) 33/53 (62.3) 0.85 

9d Number of cage companions 47/50 (94.0) 51/55 (92.7) 1 62/66 (93.9) 49/53 (92.5) 1 

9e Light/dark cycle 36/50 (72.0) 46/55 (83.6) 0.17 22/66 (33.3) 29/53 (54.7) 0.025 

9f Temperature 34/50 (68.0) 35/55 (63.6) 0.68 21/66 (31.8) 30/53 (56.6) 0.009 
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9g Type of food 45/50 (90.0) 47/54 (87.0) 0.76 63/67 (94.0) 44/53 (83.0) 0.076 

9h Water access 42/49 (85.7) 43/52 (82.7) 0.79 42/61 (68.9) 41/52 (78.8) 0.29 

9i Environmental enrichment 25/50 (50.0) 29/54 (53.7) 0.84 35/66 (53.0) 23/53 (43.4) 0.36 

9j Humidity 25/48 (52.1) 25/53 (47.2) 0.69 12/61 (19.7) 20/52 (38.5) 0.04 

9k Welfare assessment 45/51 (88.2) 51/59 (86.4) 1 66/68 (97.1) 52/55 (94.5) 0.66 

9l Welfare interventions 12/27 (44.4) 11/27 (40.7) 1 1/7 (14.3) 8/22 (36.4) 0.38 

9m 
Time of welfare assessment 

or intervention 
43/50 (86.0) 52/60 (86.7) 1 66/68 (97.1) 51/55 (92.7) 0.41 

Sample size 

10a Total number of animals used 52/52 (100) 56/61 (91.8) 0.06 67/68 (98.5) 53/55 (96.4) 0.59 

10b Sample size calculation 1/52 (1.9) 8/59 (13.6) 0.04 2/68 (2.9) 3/55 (5.5) 0.66 

10c 
Sample size: Number of 

independent replications 
- - - - - - 

Animal 

allocation 

11a Allocation method 5/49 (10.2) 7/61 (13.2) 0.76 10/64 (15.6) 10/50 (20) 0.62 

11b 
Treatment and assessment of 

animals 
52/52 (100) 61/61 (100) 1 68/68 (100) 55/55 (100) 1 

Statistical 

methods 

13a 
Details of statistical methods 

used 
50/52 (96.2) 59/61 (96.7) 1 64/68 (94.1) 55/55 (100) 0.13 

13b Specify unit of analysis  48/52 (92.3) 57/61 (93.4) 1 63/68 (92.6) 55/55 (100) 0.06 

13c Assess normality 27/52 (51.9) 29/61 (47.5) 0.71 38/68 (55.9) 34/55 (61.8) 0.58 

Numbers 

analysed 

15a Animals included 31/52 (59.6) 42/61 (68.9) 0.33 40/68 (58.8) 27/55 (49.1) 0.36 

15b Reasons for animal exclusion 13/33 (39.4) 17/37 (45.9) 0.63 18/45 (40) 13/41 (31.7) 0.50 

Adverse 

Events 

17a Details of adverse events 25/29 (86.2) 25/41 (61.0) 0.03 8/18 (44.4) 20/24 (83.3) 0.02 

17b 
Modifications to reduce 

adverse events 
8/19 (42.1) 8/30 (26. 7) 0.35 1/15 (6.7) 5/20 (25) 0.21 

Interpretation 

18a Interpretation 52/52 (100) 61/61 (100) 1 68/68 (100) 55/55 (100) 1 

18b Study limitations 16/52 (30.8) 22/61 (36.1) 0.69 7/68 (10.3) 20/55 (36.4) 0.0008 

18c 
Implications for 3Rs of 

animal use 
51/51 (100) 61/61 (100) 1 68/68 (100) 55/55 (100) 1 

Legend: N = total number of journal articles where the sub-item was applicable; n = total number of journal articles reporting the 

sub-item. p values are for comparisons between years for each journal type. 
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Fig 2.4.4.1.1 Bar graph of papers fully reporting individual items from the ARRIVE 

checklist. 

 

Legend: Data from papers published in 2015 were pooled from ARRIVE supporting (SUPP, n 

= 61 papers) and non-supporting (nonSUPP, n = 55 papers) journals. Broken horizontal lines 

indicate reporting quality thresholds: excellent (> 80%), average (50-80%) and poor (< 50%; 

Delgado-Ruiz et al., 2015).  
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Fig 2.4.4.2.1 Radar plot of ARRIVE checklist sub-items associated with bias reported 

in ARRIVE supporting (SUPP) and non-supporting (nonSUPP) journals in 2015. 

Legend: Sub-items associated with bias reported in ARRIVE supporting (SUPP) and non-

supporting (nonSUPP) journals in 2015. 
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2.4.5. Discussion 

Numerous studies across different research fields have shown that reporting quality has 

remained low since the publication of the ARRIVE guidelines (Schwarz et al., 2012; Baker et 

al., 2014; Delgado-Ruiz et la., 2015; Ting et al., 2015 Avey et al., 2016 and Lui et al., 2016). 

This is in spite of large-scale support for the guidelines by biomedical journals and increasing 

awareness of the financial and ethical cost of irreproducible research (Ioannidis et la., 2005; 

Kilkenny et al., 2009; Landis et al., 2012; Freedman et al., 2015). The results of our study 

confirm that reporting quality remains low and that journal support for the ARRIVE guidelines 

has not resulted in meaningful improvements in reporting standards.  

2.4.5.1. Adherence to reporting guidelines remains low despite journal support 

Reporting standards in this sample of anesthesia, analgesia and animal welfare papers 

was low, with little indication that the ARRIVE guidelines have made an impact in improving 

reporting standards. These findings echo those of others (Baker et al., 2014; Macleod et al., 

2015 and Liu et al., 2016). The data presented here, published 5 years after introduction of the 

ARRIVE guidelines, reflect the low reporting rates identified by Kilkenny et al. (2009) that 

served as the catalyst for creation of the guidelines. As in those findings, reporting of important 

indicators of study design quality (randomisation, blinding, sample size calculation and data 

handling) remain low.  

A recent study of the veterinary literature that focused on reporting of randomisation in 

randomised controlled trials found a higher percentage of papers (49%, n = 106) reporting the 

allocation method than reported here (13-20% for SUPP and nonSUPP, respectively; Di 

Girolamo et al., 2017). This difference is likely to have resulted from selecting papers self-

describing as randomised clinical trials. 

With the small observed increase in reported items in both SUPP and nonSUPP journals, 

an increased awareness of reporting standards, such as the ARRIVE guidelines, cannot be ruled 

out. However, these increases were limited, with no significant differences in fully reported 

items between journal types in 2015 and, perhaps most importantly, the reporting of key sub-
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items indicating bias (randomisation; sub-items 6b and 11a, blinding; sub-item 6c, animals 

excluded; sub-item 15b and sample size calculation; sub-item 10b) remained low (Landis et al., 

2012 and Macleod et al., 2015). Similar findings have been reported in surveys of experimental 

animal models, including acute lung injury, peri-odontology, autoimmunity and neoplasia 

(Schwarz et al., 2012; Baker et al., 2014; Avey et al., 2016; Liu et al., 2016 and Ting et al., 

2015). Sample size justification, in particular, is consistently poorly reported, with reporting 

percentages ranging from 0 – 7% (Schwarz et al., 2012; Baker et al., 2014; Avey et al., 2016; 

Liu et al., 2016 and Ting et al., 2015). This is an alarming figure given the impact it has on 

interpretation of findings and animal use (Button et al., 2013). 

A common feature in this and other studies of ARRIVE guideline adherence has been a 

lack of enforcement of reporting standards. In contrast, when reporting is mandatory, important 

improvements have been achieved (Han et al., 2017 and Macleod et al., 2017). Following a 

change in editorial policy in 2013, the Nature research journals now require that authors 

accompany accepted manuscripts with a completed checklist identifying inclusion of key items 

associated with quality of reporting and study design (Anon, 2013). This checklist has numerous 

items in common with those of the ARRIVE guidelines. In reviewing approximately 440 papers 

in each of two groups (those published in the Nature publishing journals and those from other 

publishers, before and after checklist implementation), the positive effect of the checklist was 

evident in that reporting of bias criteria (randomisation, blinding, sample size calculation and 

data handling; Landis et al., 2012) improved significantly from 0 to 16.4% (Macleod et al., 

2017). While this number remains low, the percentage of papers from other publishers reporting 

these items was < 1% over the same time period. In striking contrast with the findings presented 

here and elsewhere (Schwarz et al., 2012; Baker et al., 2014; Avey et al., 2016; Liu et al., 2016 

and Ting et al., 2015), introduction of the checklist was associated with a mention of sample 

size calculation in 58% (90/154) of papers, increasing from < 2% (3/192). 

2.4.5.2. Suggestions to improved guideline adherence 

To date, a change in editorial policy accompanied by mandatory submission of a 

reporting checklist is the only method shown to have resulted in an increase in reporting quality 

(Macleod et al., 2017). This clearly indicates that enforcement is required to generate a change 
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in behavior. As others have suggested, achieving change in a well-established process, such as 

peer-review, is difficult (McGrath and Lilley, 2015). Furthermore, placing the responsibility of 

policing guideline adherence on reviewers is unrealistic, when they are volunteering their time, 

usually busy and may share the same view of an unenforced request to complete a checklist 

(Landis et al., 2012 and McGrath and Lilley, 2015). 

Other, albeit untested, suggestions to improve reporting standards include: 1. using a 

template of the methods section to require completion of desired items (McGrath and Lilley, 

2015), 2. standardizing reporting of common outcomes by learned societies and research 

communities (Fisher et al., 2009; Ludolph et al., 2010 and Shineman et al., 2011; Baker and 

Amor, 2012 and Baker et al., 2014) and 3. mandating adherence to reporting standards at the 

stage of applying for federal authority to conduct research (in countries where this applies), 

perhaps in the form of study registration (Vogt et al., 2016). These suggestions, along with the 

checklist used by the Nature research journals, represent a shift away from the current format of 

the ARRIVE guidelines towards a shorter checklist. Irrespective of scope and format, it is clear 

reporting standards will remain low without some form of enforced adherence (Baker et al., 

2014 and McGrath and Lilley, 2015). An important consequence of enforced compliance, which 

must be considered when selecting a method to improve reporting, is the associated cost (time 

and financial resources) to publishers and authors and striking an acceptable balance between 

an ideal and that which is feasible, practical and achievable. 

2.4.5.3. Limitations 

Our data may have been skewed by the small number of journals in the nonSUPP group 

and any policies of individual journals on how compliance with the ARRIVE reporting 

guidelines were assessed. The choice of journals was limited due to the large number that have 

registered support for the ARRIVE guidelines and our choice of subject matter. While this 

reflects the success of the ARRIVE guidelines in being widely adopted, our data highlight that 

the relationship between guideline support and adherence merits investigation (Baker et al., 

2014 and Cressey, 2016). Despite the low number of journals included, the risk of systematic 

journal bias is likely to be low given similar standards of reporting have been documented across 
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a wide range of biomedical journals (Schwarz et al., 2012; Baker et al., 2014; Delgado-Ruiz et 

al., 2015; Ting et al., 2015; Avey et al., 2016 and Liu et al., 2016). 

2.4.5.4. Conclusion 

Journal support for the ARRIVE guidelines has not resulted in improved reporting 

standards, with the lowest levels of reporting associated with factors reflecting potential study 

bias. To achieve meaningful improvements in reporting standards, as a means to improve study 

reproducibility and reduce financial and animal waste, enforcement of reporting is necessary.  
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3. Discussion 

3.1 Overview 

At the beginning of this PhD, researchers were beginning to reconsider how animal pain 

research should be conducted, shifting from an overreliance on nociceptive tests to utilising non-

evoked spontaneous behaviours to assess pain (Mogil and Crager, 2004; Rice et al., 2008 and 

Mogil et al., 2010). One of these behaviours were facial expression scales or “grimace scales”, 

such as the RGS, which has been demonstrated as a viable pain assessment method applicable 

for a variety of pain types (Sotocinal et al., 2011; Liao et al., 2014 and Akintola et al., 2017). It 

is evident that a validated pain scale is required to ensure animal welfare of laboratory rodents 

and to perform pain research studies in rodents. It is also evident that these pain research studies 

must be well performed and reported. However, it was also recognised that current reporting 

standards in preclinical research are poor (Kilkenny et al., 2009). This prompted the creation 

and publication of the ARRIVE guidelines (Kilkenny et al., 2010) which has since garnered 

tremendous support and endorsement by various journals and related stakeholders. 

The MGS and RGS were developed in 2010 and 2011 respectively and were proposed as 

assessments of ongoing pain in rodents (Langford et al., 2010 and Sotocinal et al., 2011). The 

MGS demonstrated robustness at assessing acute inflammatory pain that lasted less than a day 

but not for neuropathic pain or pain that lasted for more than a day (Langford et al., 2010). It 

was assumed that the MGS and RGS may only be able to assess acute pain types. However, it 

was later demonstrated that rodent grimace scales could be used to assess neuropathic and 

inflammatory pain of that lasted for more than a day (Akintola et al., 2017 and Leung et al., in 

press). In general, the rodent grimace scales seem to be viable tools for the evaluation of a wide 

array of pain types and duration. However, the RGS was still a recent development and the 

possible applications and limitations of the RGS was still unknown. Therefore, this thesis 

focused on assessing the various applications and possible limitations of the RGS as a research 

and clinical tool. In addition, this thesis also assessed the impact of the ARRIVE guidelines, a 

reporting guideline to guide authors on what should be reported in in vivo experimental studies, 

on reporting standards of papers published five years after the ARRIVE guidelines were 

published. 
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Subsequently, the studies described in this thesis demonstrated that the RGS can be a 

practical tool for both research and clinical use with application of real-time scoring. The 

application for real-time scoring and an intervention threshold (Oliver et al., 2014) allows both 

researches and animal care personnel the ability to quickly assess if a rat is in pain and determine 

if analgesic intervention is required. It was also demonstrated that the RGS is an applicable tool 

for a wider array of pain types, as the RGS can also be used to assess acute and chronic visceral 

pain in a DSS colitis model. This suggests that the RGS can be used as a pain assessment method 

in other visceral pain models, thereby expanding its usefulness in a research and clinical setting. 

Additionally, it was highlighted that training and assessment of proficiency in scoring with the 

RGS is important before a trainee rater begins scoring. This will ensure that trainee raters score 

similarly and reliably in comparison to an experienced rater. It was also demonstrated that 

proficiency and reliability is maintained four years after training. Lastly, it was demonstrated 

that the publication of the ARRIVE guidelines have not improved reporting standards in a 

meaningful way. This implies that journal support for the ARRIVE guidelines is not sufficient 

and enforcement of the ARRIVE guidelines may be required for improvements. 

3.2 Contributions to the field of pain, study limitations and 

future work 

3.2.1 Real-time application of the RGS 

This study has demonstrated that real-time RGS scoring is possible. This means that an 

observer can simply observe the animal in real-time and assess its pain. Researchers are no 

required to go through the tedious steps of the standard method: video-recording of the animals 

and manual image extraction and cropping (Sotocinal et al., 2011). Real-time application of the 

RGS therefore drastically decreases the time and labour required, increasing the practicality of 

this tool in a research setting. Furthermore, when observations can be performed in minutes (10 

minutes or less), the RGS can now be applied in a clinical setting and lends itself as a welfare 

tool as rats can be assessed quickly and if it is required, an intervention can be performed.  
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As observed in this project, a blinded and trained observer could differentiate between 

rats treated with analgesics or saline after a painful intra-plantar injection of carrageenan, thus 

demonstrating construct validity. Furthermore, the observer scored similarly with both real-time 

and standard methods and demonstrates criterion validity. This differs from a previous study 

that reported significantly lower scores with real-time assessment in comparison to standard 

method MGS scores (Miller and Leach, 2015). This difference in results may be because of 

species differences or because the authors only performed three 5s observations over a 10-

minute period in their assessment of real-time scoring. In contrast, this study observed each rat 

with 18 separate time point or 15s interval observations. In this study, a single point or 15s 

interval observation was the most direct comparison to the study performed by Miller and Leach 

(2015). When a single point or 15s interval observation was randomly selected in this study, it 

was observed that the scores were very variable. Therefore, this suggests that a single or a short 

observation period is inadequate and may explain the differences in results between the Miller 

and Leach study and the one in this thesis.  

There have also been other developments that have refined the RGS and made it more 

practical, these include the RFF and the aMGS ( Sotocinal et al., 2011 and Tuttle et al., 2018). 

The RFF and aMGS are computer programs that automatically collect images from videos and 

automatically scores images respectively. When the two programs are used in conjunction with 

each other, they can greatly reduce the labour and time required by a researcher to obtain and 

score images. However, these programs in their current state still need time to run before images 

are collected and scored. This means that hours or days will still pass before a score for an 

animal is obtained. Furthermore, the current version of the aMGS only scores images binarily 

as ‘pain’ or ‘no pain’ (Tuttle et al., 2018). It is also unable to score images with intermediate 

scores with high confidence and performs poorer than human raters in this regard. This means 

that the aMGS cannot be used to identify animals that are beginning to experience pain or are 

currently experiencing low levels of pain. Therefore, early pain identification and analgesic 

intervention is not possible. While these two programs reduce the manual work required to 

obtain scores and therefore increases the RGS’ practicality as a research tool, they cannot be 

used in a clinical setting because they do not allow for early identification of animals in pain. It 

is likely that with time, these two computer programs can be improved to allow immediate and 
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real-time identification of rats with low levels of pain. However, trained observers will still be 

required to assess the rats in real-time and decide if an intervention is appropriate. Lastly, 

another advantage of real-time scoring over the RFF and aMGS is that video recording 

equipment and computer programs are not required to perform a pain assessment. 

This study (Leung et al., 2016) implies that researchers, animal technicians or 

veterinarians can assess pain cage-side with real-time RGS scoring. This refinement to the 

standard method of RGS scoring drastically reduces the labour and time required. This will 

hopefully encourage use of the RGS as a research tool and a clinical tool that will improve 

animal welfare of laboratory rats by allowing a quick and practical way to identify and assess 

pain. 

A limitation of this study is that rats utilised in this study were habituated to the observer 

and the observation box and were assessed in a quiet room. It is unknown if rats will still show 

similar facial expressions when in the presence of an unknown observer and in a conventional 

housing environment. It has been reported that mice display lower MGS scores if the olfactory 

cues of a male observer were present (Sorge et al., 2014). It is unknown if this is a species-

specific limitation or if rats will react similarly. Rat were also assessed individually in the 

observation box, and it is unknown if RGS scoring would be affected by the presence of cage 

mates nearby. It has been observed that mice will display changes in facial expressions which 

are similar to a painful grimace during an aggressive encounter with an intruder conspecific 

(Defensor et al., 2012). This demonstrates that changes in facial expressions in rodents are not 

always pain-specific and observers need to consider the environmental context the animal is in 

when scoring. Furthermore, it has been observed that rodents understand pain behaviours and 

have empathy for their conspecifics: rats are highly motivated to press a lever to help a cage 

mate out of an uncomfortable situation (i.e. stuck in a small box, Ben-Ami Bartal et al., 2011), 

mice are more likely to display pain behaviours in the presence of conspecifics (i.e. writhing, 

Langford et al., 2006) and rats will avoid an area if shown a picture of a rat with a pain face 

(Nakashima et al., 2015). Additionally, real-time scoring of the RGS requires the observer to be 

competent at scoring quickly and accurately and consultation of a manual is not possible. 

Therefore, it is unknown how much training is required for an observer to be proficient at 
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scoring in real-time. Lastly, with real-time scoring of the RGS, it is not possible to check the 

accuracy and reliability of the observer. Therefore, video recordings should always be 

performed concurrently so that they may be used to assess inter- and intra-rater reliability later. 

The future work for real-time scoring should be to investigate the perceived limitations. 

Namely, it should be assessed if rats will still display the same facial expressions if observed by 

an unknown observer and if the presence of male olfactory cues will have an effect (Sorge et 

al., 2014). Therefore, a study examining the effects of an observer’s gender and familiarity to 

the rats is warranted. Unfamiliar male and female observers should enter a room separately with 

the rat during baseline testing and after an acute pain model. This should then be repeated, after 

a washout and habituation period and the RGS scores from both scenarios compared. This will 

answer if the observers’ gender affects the grimace score displayed and if habituation is required 

before real-time observations are performed. Additionally, it should also be assessed if pain 

assessment is still possible when performed in a conventional housing environment and in the 

presence of conspecifics. It would be interesting to assess if observers can walk up to a rat’s 

home cage and score facial expressions and if the approach of an observer will influence facial 

expression and behaviour. The current use of polycarbonate cages is likely to be a limiting factor 

as they are prone to scratching in use, impeding view of the interior. The use of a camera inside 

of the cage may be an alternative to allow remote monitoring as well as avoid any observer 

effects. Furthermore, the presence of conspecifics in the same housing room or cage may affect 

the displayed facial expression. Lastly, the effect of training on real-time RGS scoring should 

be considered to ensure that new observers are able to score proficiently and quickly in real-

time. This may be evaluated by first having the trainee observer go through the training protocol 

described by Zhang et a/. (2019). Then both trainee and experienced observer should score a 

video while it is playing at a normal speed and assess if both observers score similarly. This will 

evaluate if proficiency of scoring still images is enough to translate to proficiency of scoring in 

real-time or if additional training is required for real-time scoring. 
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3.1.1 Applying the RGS to a secondary model: acute and chronic 

visceral pain in a colitis model 

This study (Leung et al., in press) has demonstrated that the use of RGS scoring allows 

an observer to assess and characterise acute and chronic visceral pain from a DSS-colitis model. 

The RGS scores increase with exposure to DSS during both the acute and chronic phases. This 

increase of RGS scores mimicked the increase observed with DAI scores, demonstrating that 

pain is present when DAI scores increase or when clinical signs are present. This association 

between RGS and DAI scores also suggest that the DAI can be used as a proxy pain measure. 

Burrowing in DSS-treated rats also decreased from baseline when the DAI scores increased, 

however, this decrease was not sustained during the chronic phase. In addition, it was no 

different from control rats. This questions whether it can discriminate between control rats and 

rats experiencing pain. It is unknown why the decrease in burrowing did not continue during the 

chronic phase since the RGS and DAI scores remained high. It is possible that because 

burrowing is a highly motivated and self-rewarding behaviour in rats, the rats attenuated to the 

pain and burrowed. The CBS scores were too variable to allow differences between treatment 

and from controls to be identified. Therefore, this study has demonstrated that the RGS and 

burrowing can be used to assess the visceral pain present in an acute and chronic DSS-colitis 

model. This also implies that these behavioural assessment methods may be applied in other 

visceral pain models. 

Overall, this study and other studies have demonstrated that the RGS is a useful tool to 

assess ongoing pain from various different types of pain, ranging from acute inflammatory pain 

to acute and chronic neuropathic pain, orofacial pain, muscle pain, chronic migraine, pain from 

an intracerebral hemorrhage and sepsis (Sotocinal et al., 2011; Akintola et al., 2017; Liao et al., 

2014; Asgar et al., 2015; Harris et al., 2017; Saine et al., 2016 and Jeger et al., 2017).  

Consequently, since the RGS can be used to assess ongoing pain present in wide variety of pain 

models it can and has been used to search for and assess different pain biomarkers and processes 

and the painfulness of novel surgical devices and analgesics (Asgar et al., 2015; Long et al., 

2015; Yousef et al., 2015; Gao et al., 2016; Long et al., 2017 and Fujita et al., 2018). 

Furthermore, this also supports the use of the RGS as an animal welfare tool as the presence of 
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pain from different experimental models can be identified and the appropriate interventions can 

be provided. 

A limitation of this study was that the behaviour items in the CBS, validated for use in a 

laparotomy model, were applied directly to the DSS colitis model. This may be the reason why 

the CBS was unable to identify treatment effects and the inclusion of more behaviours may 

allow treatment effects to be identified with this method. Furthermore, analgesia was not 

administered at the end of the study to assess if the RGS scores would decrease with analgesic 

administration.  

Future work should assess if the RGS scores will decrease with analgesic or colitis 

treatment, thus displaying construct validity of the RGS to assess pain from this model. For 

example, the use of morphine, a potent opioid, has been observed to reduce RGS scores 

following a laparotomy procedure (Sotocinal et al., 2011) and reduced nociception after DSS 

colitis in mice (Jain et al., 2015). Therefore, the DSS colitis model of this study could be 

repeated and assess if RGS scores reduce after morphine administration. Additionally, a closer 

observation of the actual behaviour items that DSS-treated rats displayed may have provided 

the information for improving the CBS scale to be utilised in this model. Some behaviours that 

may be useful would be the abdominal licking and horizontal stretching, which have been 

observed in a mouse colitis model (Hassan et al., 2017). Lastly, it may be worthwhile to reassess 

burrowing during the chronic phase with a lower dose of DSS and allow for a longer exposure 

to the DSS and a prolonged time interval to assess the effect on burrowing behaviour. It would 

be interesting to assess if the reduction in burrowing would be sustained with a longer exposure 

to DSS. A suggested dose would be 2% DSS as this was the dose used by a study that observed 

a reduction in burrowing after mice were exposed to DSS (Jirkof et al., 2013). 

3.1.2 The effects of training on the reliability of RGS scoring 

This study (Zhang et al., 2019) demonstrated that multiple training sessions which 

included discussion with an experienced rater was beneficial in improving reliability between 

the trainee raters and the experienced rater. It was also demonstrated that a single training 

session or scoring of multiple images did not produce a meaningful improvement in reliability. 
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It was also observed that high inter- and intra-rater reliability was maintained four years later. 

This study agrees with previous studies that a single training session is insufficient for a trainee 

rater to score similarly to an experienced rater (Solomon et al., 1997; Mich et al., 2010 and Lim 

et al., 2014). Furthermore, training does not guarantee proficiency and hence, it is important 

that proficiency should be assessed to ascertain that training was effective (Campbell et al., 

2014). 

A limitation of this study was that during the third session of scoring, raters were given 

the same 150 images to score. These images were also not randomised from the previous scoring 

session. Therefore, there was the potential for the observed improvement to be due to the trainee 

raters memorizing the rat faces and the associated scores. However, this is unlikely as there were 

over a hundred images of similar looking albino rats, additionally when images that were most 

likely to result in discrepancies in the scores were removed, it did not significantly change the 

ICC scores. Furthermore, the ability of the trainee raters to still score reliably with one other 

and the experienced rater four years after training demonstrates that these trainee raters scored 

reliably due to proficiency and not from the memorisation of the images. Another limitation of 

the study was the small sample size of participants: 4 trainee raters and 6 ‘no training’ raters, 

this limits the generalisability of these findings. 

Future work should assess the effects of training in a different population of trainee 

raters. This may be completed in a similar manner as Roughan and Flecknell (2006) who 

introduced the CBS method to students during a lecture and during an advanced training 

program. During this study, trainees were asked to score a 5-minute long video with a visual 

analog scale (i.e. estimation of pain severity by marking along a line). Trainees were then taught 

about the various behaviours in the CBS and asked to reassess the same video by noting down 

the behaviours observed. This study demonstrated that trainees improved in their ability to 

identify painful rats from rats that received analgesic treatment after training. Therefore, a 

follow up study that includes a larger population of trainee raters will increase the overall sample 

size and generalisability of the findings. Future work should also assess the inter-rater variability 

between different labs to discern the variability between labs as it seems that each employs a 
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different training or learning method. This could provide insight on how comparable the data 

from studies performed by different research groups. 

3.1.3 Assessment of adherence to the ARRIVE guidelines five years later 

This study has demonstrated that five years after the publication of the ARRIVE 

guidelines, reporting standards have not improved meaningfully in studies of animal welfare, 

anesthesia and analgesia in veterinary journals. This result echoes many other studies that 

assessed reporting adherence to the ARRIVE guidelines in other subjects (Schwarz et al., 2012; 

Bara and Joffe, 2014; Delgado-Ruiz et al., 2014; Ting et al., 2014; Avey et al., 2016; Gulin et 

al., 2016; Lin et al., 2016; Nam et al., 2018). This study also demonstrated that papers published 

in journals that support the ARRIVE guidelines did not perform better. It is also discouraging 

to discover that not one paper fully adhered to all items on the ARRIVE guidelines and that on 

average papers only fully report 50-60% of the items on the ARRIVE guidelines. This means 

that the ARRIVE guidelines have not made a significant impact and many published papers still 

do not provide enough information to be replicated, validated or utilised in retrospective 

analyses. This begs the question: why have reporting standards not improved five years after the 

ARRIVE guidelines were published? 

A limitation of this study published on this topic in this thesis was the small number of 

journals in the non-supporting group (n = 2). However, the ARRIVE guidelines have been 

widely adopted by hundreds of journals and this made it difficult to find journals that do not 

support the guidelines. Additionally, the risk of a systematic bias from the inclusion of only two 

journals is most likely low because similarly poor reporting standards have also been observed 

in other studies (Schwarz et al., 2012; Bara and Joffe, 2014; Delgado-Ruiz et al., 2014; Ting et 

al., 2014; Avey et al., 2016; Gulin et al., 2016; Lin et al., 2016 and Nam et al., 2018). 

While the comparison between journals that support or do not support the ARRIVE 

guidelines may be limited by the large number of journals that support the ARRIVE guidelines, 

other comparisons can still be made. Future work could include assessment of the adherence to 

the ARRIVE guidelines once more time has passed (e.g. 10 years later). Assessments of 

adherence should also account for the various enforcement methods that have been proposed, 



 

186 

 

such as the use of a mandated checklist (Han et al., 2017 and Macleod et al., 2017). Furthermore, 

when the revised ARRIVE guidelines are published (du Sert et al., 2018), reassessments should 

be performed to evaluate if the proposed tiered system is useful in the promoting improved 

reporting standards. 

3.3 Pain research: looking forward 

3.3.1 Use of appropriate assessment methods 

Going forward, the fact that pain is a multidimensional phenomenon should be 

appreciated during pain research. This implies two changes in the way pain studies are primarily 

conducted: 1) a shift away from utilising only nociceptive evoked testing methods to assess the 

entire pain experience in animals and 2) the use of multiple types of pain assessment methods 

to evaluate the different dimensions of pain.  

Firstly, the shift away from nociceptive evoked testing does not mean that these methods 

are irrelevant in pain research. Instead, pain researchers need to be more discerning of the type 

or quality of pain they are interested in and not use one type of assessment method as a proxy 

for another (Mogil and Crager, 2004). Afterall, it has been reported in both rodents and humans 

that the different qualities of pain are distinct and distinguishable (Gould, 2000 and De Rantere 

et al., 2015). These different aspects of pain may be evaluated with the combined application of 

nociceptive threshold testing, spontaneous behaviours and performance of ADL activities. 

Researchers may also want to consider the co-morbidities of pain, such as anxiety and 

depression, which have been observed in chronic pain patients and can be modelled similarly in 

rodent models (Mogil et al., 2010). The matching of the appropriate assessment method to the 

interested quality of pain will result in increased testing specificity and accuracy of the interested 

type of pain. 

Secondly, the use of multiple types of assessment methods concurrently (termed the 

triangulation method) should be utilised to assess the entire pain experience (Bateson, 1991 and 

Roughan et al., 2014). This allows researchers to observe pain from different angles, and 

therefore build up a more complete picture of pain. For example, the use of multiple assessment 

methods demonstrated that the duration of different pain types may differ (i.e. mechanical 
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hypersensitivity outlasts ongoing pain, De Rantere et al., 2015) and analgesic dose efficacy may 

differ depending on the assessment method used (Matsumiya et al., 2012; Waite et al., 2015 and 

Oliver et al., 2018). The use of multiple assessment methods may also help to identify more 

sensitive humane endpoints (Roughan et al., 2014 and Oliver et al., 2018). This is also 

applicable in the use of multiple nociceptive evoked tests to perform a QST protocol. The use 

of a QST protocol allows researchers to identify three distinct clusters of sensory profiles that 

are present across all types of patients with neuropathic diseases (Baron et al 2017). This has 

resulted in the reconsideration of neuropathic pain treatments not just due to disease types but 

rather the underlying pain mechanisms at play. Hence, the use of multiple assessment methods 

concomitantly builds up a more complete picture of the pain phenomenon and allows 

researchers to test hypothesis they may not have considered had they used only one type of 

assessment method. 

Furthermore, the appropriate assessment methods for different types of pain can be 

inferred from human studies. Animal models have been utilised as models for human pain 

because humans and animals are similar physiologically (i.e. both possess similar nociceptors 

and brain structures to process pain which is abolished with analgesics) and behaviourally (i.e. 

both will react to pain and learn to avoid it; Bateson, 1991). Therefore, human studies can be 

used to inform animal studies on how different types of pain can manifest and what types of 

pain behaviours can be expected. For example, human neuropathic pain is known to include 

spontaneous pain (assessed with self-report), reduction of general well-being (with decreased 

motivation to perform normal activities) and abnormal sensory profiles (assessed with QST; 

Backonja et al., 2013). It can be expected that animals with neuropathic pain conditions also 

experience the same symptoms, however, pain assessments are primarily limited to nociceptive 

evoked testing. Therefore, assessments of spontaneous pain and reduction of general wellbeing 

are relevant to characterising neuropathic pain and should also be assessed. While direct self-

report by animals is impossible, animals can still ‘self-report’ their pain by the presence of 

spontaneous behaviours associated with pain (i.e. with the CPP test or grimacing; King et al., 

2009 and Sotocinal et al., 2011). Assessment of general well-being of rats with neuropathic pain 

can be quantified with ADL activities such as burrowing (Andrews et al., 2012).  
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There is the continued need for the development, and validation (including identifying 

limitations) of novel pain assessment methods (Mogil, 2010). The development of new pain 

assessment methods includes the understanding of specific innate behaviour repertoires, such as 

grimacing, burrowing and grooming in rodents, and their specificity to pain and possible 

confounding factors. For example, grimacing in mice is known to be affected by the presence 

of male olfactory cues and therefore, the use of female observers or habituation to male 

observers may be required (Sorge et al., 2014). The appropriateness of the MGS and other 

grimace scales for use in chronic neuropathic pain models is contested (Langford et al., 2010 

and Akintola et al., 2017). Follow-up studies are required to ascertain if the MGS is applicable 

for all neuropathic pain models or if it is only applicable in a few. Moreover, validation of new 

pain assessment methods is important, however, it should be noted that the validation of any 

assessment method is specific to the situation in which it was used (e.g. the pain assessment 

method may vary depending on the populations, environment and pain models it was tested 

with; Norman and Streiner, 2008). Validation usually includes assessment of face validity (i.e. 

do the items on the scale make sense?) and criterion validity (i.e. does the scale increase with 

pain and decrease with analgesia?) as well as reliability (i.e. is the scale consistent between and 

within raters?). Lastly, proper training and assessment of proficiency is important for the 

reliability of a scale (Zhang et al., 2019). Raters with higher proficiency are required to produce 

reliable and consistent data and to reduce inherent variability.  

Overall, there is a need to ensure that the pain assessment methods used in animal models 

are relevant to the hypothesis tested and to the pain disease it is supposed to mimic. This includes 

the use of relevant and different types of assessment methods to characterise pain in animal 

models. Additionally, the continued development of new assessment methods that considers the 

animals’ natural behavioural repertoire and the training of raters to use them are needed.  

3.3.2. Use of technology to automate 

The use of machine learning to automate pain assessment has been utilised in methods 

such as the HomeCageScan, a software that detects various behaviours of mice and records 

changes in their frequency and duration (Roughan et al., 2009). The application of similar 

software to grimacing has been developed for image capture and scoring (Sotocinal et al., 2011 
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and Tuttle et al., 2018). The use of such software reduces the work required to collect and score 

images for researchers. The combination of both software could also be applied as a clinical tool 

for round the clock monitoring. However, there are limitations that need to be understood. 

Facial recognition software needs to be able to recognise a rat’s face and some obstacles 

include: 1) head orientation, 2) lighting effects, 3) ability to detect facial landmarks (fur colour), 

4) view obstruction (i.e. head movements or view blocked by objects) and 5) correct 

identification of expressions from facial landmarks (Sariyanidi et al., 2015). The current version 

of the RFF software identifies the faces by using eyes and ears as identifying landmarks 

(Sotocinal et al., 2011). It excludes unclear images by selecting images that are similar to the 

previous video frame.  While these features make the software functional, it is still limited as a 

research tool in its current state. Rats should not be scored when they are performing certain 

actions as it will distort their facial expressions (i.e. during grooming, eating, sniffing and 

sleeping). During manual image extraction or real-time scoring, observers can make the 

distinction and decide when it is appropriate to score or extract an image. The RFF does not 

currently account for these behavioural influences. The RFF was developed while the rats were 

in a clear Plexiglas box under optimum lighting conditions. This is not the case in a home cage 

setting; light quality will differ depending on the rack level the cage is placed at and the rats 

would be blocked by enrichment items or cage mates. The use of infrared may be useful to deal 

with poor lighting or assessments during the dark cycle (Li and Deng, 2018) while the use of 

multiple cameras may be able to capture images around the obstructions. The RFF does not 

differentiate between individuals, preventing its use in group housing. The tracking of individual 

mice with the HomeCageScan has been demonstrated as possible and similar applications for 

the RFF may be possible as well (Bains et al., 2016). 

Subsequently, the scoring of multiple images requires a software that can recognise the 

different facial expressions (Li and Deng, 2018). This has been performed with a deep neural 

network to create the aMGS which binarily classifies images as “pain” or “no pain” (Tuttle et 

al., 2018). These types of software typically require large training data sets and the aMGS was 

trained with nearly 6000 images which needed to be annotated manually (i.e. labelling of 

identifying facial landmarks; Li and Deng, 2018 and Tuttle et al., 2018). While the aMGS was 

able to identify images into the two categories with similar accuracy to human raters (83-93%), 
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the aMGS functioned best when images had scores at the extreme ends of the scale (e.g. 0 or 2) 

and poorly when scores were intermediate (e.g. 1). This shows that the current version of the 

aMGS lacks sensitivity and needs to be improved to capture subtle facial changes. This may be 

possible with 3D facial expression recognition (i.e. modeling the rat’s face from 2D to 3D, 

thereby reducing the effect of head orientation and lighting and improving the recognition of 

subtler facial expression changes) or utilising visualization techniques to focus on landmarks 

that may improve discrimination (i.e. the identification of a classifier – orbital tightening and 

ear changes may allow better discrimination between “pain” and “no pain” mice, Dalla Costa et 

al., 2018 and Li and Deng, 2018). Lastly, the aMGS needs to be validated with image sets 

collected from other laboratories as the image sets used to train, test and validate the software 

were limited to two laboratories. It has been reported that the effectiveness of a program may 

be affected by different collection environments, construction indicators and annotators (Li and 

Deng, 2018). 

Overall, the introduction of automation into pain assessments of animals will relieve the 

workload required to collect and score the images. However, current software is limited in their 

utility and can only serve as research tools. Improvements or development of new software to 

accurately identify animal faces in their home cage and to score subtle changes in facial 

expressions are required for clinical applications. The use of machine learning programs can be 

trained to overcome the many obstacles during the identification and scoring of rat faces. 

However, this requires more time for people to manually annotate additional images or videos. 

The eventual development of such programs will improve the sensitivity of pain assessments 

with round the clock monitoring. This will also improve animal welfare as painful animals can 

be identified immediately. However, there will always be the need for human observers who are 

competent because they are required to decide if an animal has reached a humane endpoint and 

intervention is required. Furthermore, while machine learning can only identify specifically 

what they have been programmed to identify, experienced animal care personnel are able to 

make judgements based on observing the entire animal. Lastly, though time-consuming, human 

observers can simply observe the animals in real-time without need for complex or expensive 

equipment which will be required for automated scoring. 
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3.4. How can we ARRIVE? 

Despite the overwhelming support from journals for the ARRIVE guidelines, the general 

observation of low adherence to the guidelines five years after its publication suggests that more 

time may be required for the guidelines to take effect or that current reliance on voluntary 

adherence to reporting standards will never be successful. The CONSORT (CONsolidated 

Standards Of Reporting Trials) statement, the oldest and most popular clinical reporting 

guideline to date can be used to explore the potential effect of time on the ARRIVE guidelines. 

3.3.2. A “case-study” of the CONSORT statement 

The CONSORT statement was first developed in 1996 (Begg et al.) to promote better 

reporting standards of randomized controlled trials (RCTS). It has since been revised twice, in 

2001 (Moher et al., 2001) and in 2010 (Schluz et al., 2010). The current version of the 

CONSORT checklist includes 25 items and a flowchart diagram. Similar to the ARRIVE 

guidelines, there are many journals that support the CONSORT statement, with 585 journals 

(around 50% of all medical journals) that currently endorse the guidelines (www.consort-

statement.org). “Extensions” of the CONSORT statement have also been developed to 

accommodate different RCT studies (e.g. cluster RCTs, Campbell et al., 2012) 

Several studies assessing the impact of the CONSORT statement have been performed 

since its conception (Moher et al., 2001; Plint et al., 2006 and Turner et al., 2012). These have 

shown that the introduction of the CONSORT statement has resulted in an improvement in 

reporting or adherence to the guidelines 14 years later. Additionally, journals that supported the 

guidelines were more likely to publish papers with higher reporting standards. Papers from 

CONSORT supporting journals do seem to report certain items better, for example, items 

‘allocation concealment’ and ‘sample size’ were 81% and 61%, respectively, and were more 

likely to be reported in papers from journals that support the guidelines (Turner et al., 2012). 

However, when comparisons between supporting and non-supporting journals were performed 

for the entire guidelines, the differences between the journal types was only 3%. When overall 

adherence to the CONSORT statement was assessed, a median of only 60-73% of the 

CONSORT items were reported (Setvanovic et al., 2010; Munter et al., 2015; Sarkis-Onofre et 

al., 2010 and Tam et al., 2017). Overall, 23 years after the introduction of the first CONSORT 
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statement, journals that support the guidelines may publish more papers that report certain items, 

however, overall adherence to the guidelines are still suboptimal. 

Poor reporting standards regarding the ARRIVE guidelines and CONSORT statement is 

not isolated. It was reported that out of 124 systematic reviews that assessed adherence to 

various guidelines, 87.9% of these reviews report suboptimal reporting (Jin et al., 2018). These 

included the ARRIVE (4/4 [100%]), CONSORT (71/81 [88%]) as well as two other guidelines, 

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses; 16/19 [84%]) 

and STROBE (Strengthening the reporting of observational studies in epidemiology; 7/8 

[88%]).  

Therefore, poor reporting is rampant across the scientific literature and while support for 

the guidelines may improve the reporting of certain items, additional measures are required for 

improvement. 

3.3.3. Improving adherence to the ARRIVE guidelines 

One criticism of the ARRIVE guidelines is its general nature. However, the guidelines 

are meant to be general, allowing application in a wide variety of research areas and used as the 

basis for more specific guidelines (du Sert et al., 2018). Adaptation of the ARRIVE guidelines 

has already been applied at least once in the development of a guideline for experimental 

autoimmune encephalomyelitis, experts in the field built upon the ARRIVE guidelines and 

added additional recommendations important to the disease model (Amor and Baker, 2012). 

This has also been performed with the CONSORT statement where extensions of the guidelines 

are available when the CONSORT guidelines may fit well with other types of studies. It has 

also been criticized that the ARRIVE guidelines should be more specific for certain items to 

improve the replicability of the reported studies. This includes the increased emphasis on the 

complete reporting of analgesics and anesthetics used (Muhlhausler et al., 2013 and Carbone 

and Austin, 2016) as well as the specificity of husbandry procedures (Hoojimans et al., 2011). 

A second criticism of the ARRIVE guidelines is its length, with the suggestion that full 

incorporation is too detailed and difficult to read (Carbone and Austin, 2016). When it is broken 

down into constituent parts, the ARRIVE guidelines can consist of multiple items and subitems, 

which limits the capacity of reviewers and editorial staff to easily evaluate adherence (Avey et 
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al., 2010). In addition to the creation of shorter and more specific guidelines, as described above, 

it has been suggested that reporting guidelines should focus on core items that directly affect the 

validity of the study (Landis et al., 2012; Hooijmans and Ritskes-Hoitinga, 2013 and Reichlin 

et al., 2016). One such proposal was the emphasis on items that relate to bias and study design: 

randomization, blinding, sample size estimation and data handling (Landis et al., 2012). The 

focus on a few core items will allow for adherence assessments to be performed more easily and 

rapidly. A more general and shorter guideline which includes items common to many guidelines 

has also been proposed: harmonized animal research reporting principles (HARRP; Osborne et 

al., 2018). This guideline consists of eight items which were formed by the combination of some 

ARRIVE items (e.g. sample size and animal allocation are placed under the ‘study design’ item) 

and the exclusion of some items (i.e. title, abstract and generalisability/translation). This 

guideline may be easier to follow with a slightly shorter list of items, use of simpler language 

and a less rigid format. The concept of prioritizing and focusing on some items has been planned 

for the revision of the ARRIVE guidelines where items will be ranked into different levels of 

priority (du Sert et al., 2018). However, while this may ease the incorporation of the ARRIVE 

guidelines into the review process, it should still be emphasized that non- ‘core’ items remain 

important. 

Lastly, it has been noted that authors do not fully comprehend the issues of poor 

reporting and thus do not appreciate the use of the ARRIVE guidelines to promote scientific 

rigor. This is evident when 56% and 90% of surveyed Swiss and Chinese researchers, 

respectively, report unawareness of the ARRIVE guideline (Reichlin et al., 2013 and Ma et al., 

2017). Furthermore, most of the Swiss researchers surveyed could not correctly identify the 

correct methods to reduce different types of bias, suggesting that the studies they published are 

prone to biases (Reichlin et al., 2013). Therefore, the development of an explanation and 

elaboration document, as has been published to accompany the CONSORT statement should be 

considered (Moher et al., 2010). This has been proposed for the next revision of the ARRIVE 

guidelines (du Sert et al., 2018). 

The observed continued suboptimal reporting standards of published RCTs even though 

the CONSORT statement has been published for 23 years and has been revised twice, it is 
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evident that only revising the ARRIVE guidelines is insufficient. Therefore, to ensure 

improvement of guideline adherence additional or alternative solutions must be considered. 

As noted above, the ARRIVE guidelines and its usefulness to ensure scientific rigor is 

still unknown to many researchers. Therefore, increasing awareness of the ARRIVE guidelines 

is paramount. The ARRIVE guidelines can be introduced to new and veteran researchers by its 

introduction into the university curriculum or promotion at scientific conferences. Multiple 

resources on the NC3Rs website (www.nc3rs.org) are available, including presentations with 

accompanying speaker notes and a webinar. Currently, many journals show support for the 

guidelines by mentioning the ARRIVE guidelines in their ‘instructions to authors’ page and ask 

authors to refer to it when writing up their manuscripts. The need to look at a second page of 

instructions may deter authors from doing so. Therefore, incorporation of the ARRIVE 

guidelines directly into the ‘instructions to authors’ page to present one coherent set of 

instructions may improve reporting adherence. This will also allow journals to customize the 

ARRIVE guidelines to emphasize certain items that are important in the field they represent. 

In addition to an increased promotion of the ARRIVE guidelines, changes in the review 

process should be considered (McGrath and Lilley, 2015). The focus of this would be to 

minimise the time and increase the ease for editors and reviewers to assess adherence. One 

proposed method has been the submission of a mandated checklist alongside the manuscript 

(Loder et al., 2009). The use of such a checklist would ensure that the manuscripts submitted 

adheres to the ARRIVE guidelines. Authors are likely to be very motivated to complete the 

checklist if they know the review process will not proceed without it. This has been enforced by 

the Nature Publishing Group with reported success in improved reporting of items related to 

bias (Anon, 2013; Macleod et al., 2017 and Han et al., 2017). Another suggestion was to provide 

a template of the methods section, where the bulk of the items from the ARRIVE guidelines is 

located that can be included in the publication itself (Baker et al., 2014 and McGrath and Lilley, 

2015). This would standardise the methods section thus simplifying the evaluation process and 

improving transparency. The use of technology such as text mining or machine learning can 

also improve evaluation with automation (Florez-Vargas et al., 2016 and Bahor et al., 2017). 

Lastly, a team of specialists can be employed to review specific aspects of the manuscript to 
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ensure sufficient information is provided and that the statistical methods were correctly used 

(e.g. a team of statisticians; Baker et al., 2014). 

Overall, the support of the ARRIVE guidelines by researchers, journals, fund granting 

agencies and other stakeholders demonstrate that current reporting standards need to improve. 

However, the publication of the ARRIVE guidelines and its support has not caused a meaningful 

improvement. There have been many suggestions of how reporting standards of scientific 

literature can improve, from the emphasis of a few key items to changes in the peer-review 

process. It remains to be seen if such measures can be implemented practically and if they will 

be effective in improving the reporting standards. 

3.5. Additional factors to improve pain research 

In addition to the improvements of pain assessment methods and better reporting 

standards, there are many other factors that require consideration. One such factor is the re-

evaluation of the animal models used (Mogil et al., 2010). Animal pain models have historically 

been young, male and of a single strain whereas most chronic pain patients are middle-aged 

women of varying ethnicities (Greenspan et al., 2007). This discrepancy demonstrates that the 

effects of age, sex and genetic heterogeneity are overlooked during the use of animals as 

translational pain models. Additionally, it was suggested that naturally occurring models should 

be adopted as they will better reflect the human pain condition in terms of age and genetic 

diversity (Mogil et al., 2010 and Klinck et al., 2017). 

Additionally, there is the need for the re-evaluation of what is defined as success in the 

research world (Rice et al., 2013). Currently, there is an overemphasis on the quantity of 

publications, citations, grant funding and the perceived impact of journals in which studies are 

published. In contrast, recognition for work that directly replicates significant pre-clinical 

findings are non-existent. There is a need to include longer term metrics where significant pre-

clinical findings are translated to RCTs (i.e. results from pre-clinical research are replicated in 

RCTs; Rice et al., 2013). It should also include the methodical evaluation of studies and their 

raw data with the ARRIVE guidelines to evaluate potential study design flaws and deciding if 

the results are truly significant. Additionally, there is the need for the reduction of publication 
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bias where studies with positive results are overwhelmingly more likely to be published (Rice 

et al., 2013).  

Lastly, the use and promotion of study design guidelines should be utilised to 

complement reporting guidelines. The use of a study design guideline will ensure that 

researchers have considered all required steps and will perform a well-designed study. When it 

is time to write up their study, they should have all information required to fulfill any reporting 

guidelines and turn in a well reported manuscript. One such guideline has already been 

proposed:  Planning Research and Experimental Procedures on Animals: Recommendations for 

Excellence (PREPARE) guidelines (Smith et al., 2018). This guideline was proposed to direct 

researchers to the various factors that needs to be considered as well as steps that should be 

undertaken before a study is conducted (e.g. performance of a literature review). The use of both 

study design and reporting guidelines should improve the quality and reporting of future 

research.  
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3.6. Conclusion 

Pain assessments in animals has traditionally depended on nociceptive evoked testing 

methods that do not assess the affective ongoing component of pain. This has been suggested as 

one of the reasons why novel analgesics that demonstrated efficacy in animal trials do not 

translate during human trials. It has been proposed that non-evoked spontaneous behaviours can 

be utilised to assess the affective ongoing component of pain. One such non-evoked spontaneous 

behavioural tool is the RGS.  

This thesis has demonstrated that the RGS is a viable and practical tool that can be 

applied in a research and clinical setting. Real-time application of the RGS allows pain 

assessments to be performed easily and quickly, which in turn allows data to be generated 

quickly and analgesic intervention can be provided. Furthermore, the ability to use the RGS to 

assess acute and chronic visceral pain highlights the RGS as a useful pain assessment method 

which can be applied in a wider array of pain types than previously reported. Consequently, this 

means that the RGS may be a robust tool for a variety of different pain models to study the 

different pain mechanisms, identify pain biomarkers and assess the efficacy of novel analgesics. 

More importantly, the real-time application of the RGS for pain assessment will greatly improve 

the welfare of rats in experimental studies. Real-time application of the RGS allow researchers 

to rapidly identify the presence and intensity of pain and decide when analgesic intervention is 

required. The RGS is also a potential method for the pain assessment of all laboratory rats to 

ensure good animal welfare. Therefore, researchers no longer rely solely on nociceptive evoked 

testing methods as the only way to assess pain in animals. The use of such behavioural tools 

will improve the specificity of pain type assessed which will also improve translation to human 

pain as similar qualities of pain are assessed. This will also improve the welfare of animals 

involved in research as the affective and perhaps more relevant component of pain can now be 

assessed. 

It has also been demonstrated that training and assessment of proficiency is required 

before using the RGS to ensure scoring reliability. It was demonstrated that there is a learning 

curve involved in the use of the RGS and training is required for new raters to improve. 
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Furthermore, similar proficiency or reliability with an experienced rater is possible after three 

training sessions and can be maintained for a few years. This demonstrates that training is 

important in the use of the RGS, a finding that should be considered when developing and 

adopting other pain scales.  

Finally, this thesis has also demonstrated that five years after the publication of the 

ARRIVE guidelines, reporting standards have not improved meaningfully. This highlights that 

current measures to improve reporting standards are insufficient and changes to the guidelines 

or enforcement may be required for a meaningful improvement. Good reporting standards are 

imperative for scientific progress because sufficient information is required to validate and 

replicate study findings and for a study to be included in retrospective analysis that will 

maximise the information gathered. Within pain research, there are many factors that may 

confound outcome measures and they need to be accounted for. Reporting standards also have 

welfare and financial implications, this includes the animals and money spent on research that 

cannot be replicated to the use of additional animal and money resources to replicate findings. 

Overall, future pain research should shift away from nociceptive evoked testing as the 

sole pain assessment method in pre-clinical animal research. Instead, researchers should 

embrace the use of behavioural tools, such as the RGS, or ADL activities, such as burrowing, 

to effectively and fully characterise the pain experience. The appropriate pain assessment 

methods can be inferred from the methods used in human pain studies due to similarities 

between animals and humans physiologically and behaviourally. There is also a need for the 

continued development of new pain assessment methods that consider the natural behavioural 

repertoire of animals. Pain assessment methods need to be validated for use in different 

situations and populations to identify potential limitations and ensure the assessment tool is 

appropriate for the situation. Additionally, the future of pain assessment will include automated 

pain assessments by machines which will reduce the work required by researchers and animal 

care personnel and allow for round the clock monitoring. However, there are limitations of the 

currently developed software that restrict their use as research tools only. Lastly, additional 

measures are required for the ARRIVE guidelines to meaningfully improve reporting standards 
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of pre-clinical animal research. It remains to be seen if these measures will be effective and 

continuous assessments for the adherence to the ARRIVE guidelines is required. 

It is the hope that the work in this thesis will encourage more researchers and animal 

care personnel to utilise the RGS, or other non-evoked spontaneous behaviour tools, as a pain 

assessment tool to research pain and to ensure the well-being of animals. It is also the hope that 

this thesis encourages a conscientious effort to improve the reporting standards of published 

papers.
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5. Appendices 

5.1. Appendix A  

5.1.1. Summary of all pain models used, and action units identified for the grimace scales of different 

species 

 

Grimace 
Scale 

Action units Pain model Reference 

Area 
above 

eyes 

Eyes Nose Cheek Ear Whiskers Mouth 

Mouse - Orbital 
tightening 

Nose bulge Cheek 
bulge 

Ear position Whisker 
change 

- Acetic acid abdominal 
constriction test 

Langford 
et al. 

(2010) 
Rat - Orbital 

tightening 

Nose/cheek flattening Ear changes Whisker 
change 

- Intra plantar CFA 

Intra plantar 
Kaolin/Carrageenan 

Laparotomy 

Sotocinal 
et al. 

(2011) 

Rabbit - Orbital 
tightening 

Pointed nose Cheek 
flattening 

Ear changes Whisker 
change 

- Ear tattoo with or 
without EMLA cream 

Keating et 
al. (2012) 

Cat - - Nose/muzzle 
shape 

- Ear position - - Post-operative 
treatment for injuries 

Holden et 
al. (2014) 

Horse Tension 
above the 

eye area 

Orbital 
tightening 

 

Strained 
nostrils and 

flattening of 
profile 

Prominent 
strained 
chewing 
muscles 

Stiffly 
backwards 

ears 

- Mouth 
strained and 
pronounced 

chin 

Castration Dalla 
Costa et 

al. (2014) 

Sheep - Orbital 
tightening 

Abnormal 
nostril and 

philtrum 
shape 

Cheek 
tightening 

Abnormal 
ear position 

- Abnormal lip 
and jaw 

profile 

Foot rot 
Mastitis 

McLennan 
et al. 

(2016) 



 

ii 

Sheep  Orbital 
tightening 

- - Ear and 
head 

position 

- Flehming Osteotomy Hager et 
al. (2017) 

Lamb - Orbital 
tightening 

Nose changes Cheek 
flattening 

Ear position - Mouth 
changes 

Tail docking with 
rubber ring 

Guesgen 
et al. 

(2016) 
Piglet Tension 

above the 
eyes 

Temporal 
tension 

Forehead 
profile 

Orbital 
tightening 

 

Snout plate 
changes 

Snout angle 

Nostril dilation 

Cheek 
tension 

- - Upper lip 
contraction 

Lower jaw 
profile 

Tail docking Di 
Giminiani 

et al. 
(2016) 

Piglet - Orbital 
tightening 

Cheek tightening/nose bulge Ear position - - Tail docking and 
castration 

Viscardi et 
al. (2017) 

Ferret - Orbital 
tightening 

Nose bulging Cheek 
bulging 

Ear changes Whisker 
retraction 

- Telemetry probe Reijgwart 
et al 

(2017) 
Seal - Eye change Nose change - - Whisker 

change 

Mouth 
change 

Tagging and chipping 
of hind flipper 

MacRae et 
al. (2018) 

Actions units that are crossed out were identified but were not included in the study performed. 

  



 

iii 

5.1.2. Summary of the different methods of validation for the grimace scales of different species 

Grimace 
Scale 

Reliability    References 

Inter-
rater 

Intra-
rater 

Internal 
consistency 

Construct Validity Criterion Validity Accuracy of 
experienced 

rater 

 

    Increase with 
‘pain’ 

Decrease with 
analgesia 

   

Mouse  ICC = 
0.90 

- α=0.89 Yes  Yes; Morphine - 97% Langford et al. 
(2010) 

Rat ICC = 
0.90 

ICC = 
0.83 

α= 0.84 Yes Yes; Morphine - 82% Sotocinal et al. 
(2011) 

Oliver et al. 
(2014) 

Rabbit ICC = 
0.91 

- - Yes Yes; EMLA Yes; physiological 
measurements 

84% Keating et al. 
(2014) 

Cat  - - Yes - Yes; cats classified 
based on numerical 

rating scale 

98% Holden et al. 
(2014) 

Horse ICC = 
0.92 

ICC = 
0.85 

- Yes No; flunixin-
meglumine 

Yes; composite pain 
scale 

73% Dalla Costa et 
al. (2014; 

2016) 
Sheep ICC = 

0.86 

- Each AU 
correlates with 
other AUs and 

total score 

Yes Yes; antibiotics and 
meloxicam 

Yes; lameness and 
lesion score 

67% McLennan et 
al. (2016) 

Sheep ICC = 
0.92 

-  Yes - Yes; clinical severity 
score 

68% Hager et al. 
(2017) 

Lamb W = 
0.60 

- - Yes - - - Guesgen et al. 
(2016) 

Piglet ICC = 
0.97 

- - Only orbital 
tightening 

- No correlation - Di Giminiani et 
al. (2016) 

Piglet ICC = 
0.57 

ICC > 
0.90 

- Yes No; EMLA & 
meloxicam 

Yes; active and inactive 
behaviours 

- Viscardi et al. 
(2017) 



 

iv 

Ferret ICC = 
0.89 

ICC = 
0.67 

- Only orbital 
tightening 

- - 89% (only 
orbital 

tightening) 

Reijgwart et al 
(2017) 

Seal - - - Only orbital 
tightening 

Yes; 
buprenorphine 

Yes; increase orbital 
tightening coincides 

with decreased activity 

95% MacRae et al. 
(2018) 

EMLA = Eutectic Mixture of Local Anesthetics 
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5.2. Appendix B – RGS training manual 
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5.3. Appendix C – composite behaviours in DSS colitis model 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: Cartoons of the four behaviours displayed by DSS-treated rats. Back arch = feline-like 

vertical stretch while inactive or walking; writhe = contraction of abdominal muscles; 

stagger/fall = loss of balance while rearing or grooming; twitch = transient involuntary muscle 

contraction. 
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