
Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé:

Learning Competitive Ensemble
of Information-Constrained Primitives

présenté par:

Shagun Sodhani

a été évalué par un jury composé des personnes suivantes:

Abdelhakim Hafid, président-rapporteur

Yoshua Bengio, directeur de recherche

Pascal Vincent, membre du jury

Mémoire accepté le: 23 juillet 2019



Résumé
Nous voulons développer des algorithmes d’apprentissage par renforcement qui

permettent à l’agent apprenant d’obtenir une décomposition structurée de son com-
portement. L’apprentissage par renforcement hiérarchique fournit un mécanisme
permettant de le faire en modularisant explicitement la politique en deux compo-
sants: un ensemble de sous-politiques de bas niveau (ou primitives) et une politique
principale de haut niveau permettant de coordonner les primitives. Alors que les
primitives ne doivent se spécialiser que dans une partie de l’espace d’états, la stra-
tégie principale doit se spécialiser dans tout l’espace d’états, car elle décide du
moment d’activer les primitives. Cela introduit un “goulot d’étranglement” dans
lequel le succès de l’agent dépend du succès de la stratégie principale, ce qui en fait
un point d’échec unique.

Nous proposons de supprimer cette limitation en utilisant un nouveau méca-
nisme selon lequel les sous-politiques peuvent décider elles-mêmes dans quelle partie
de l’état elles souhaitent agir. Cette prise de décision décentralisée supprime la né-
cessité d’une politique principale paramétrée. Nous utilisons ce mécanisme pour
former une politique composée d’un ensemble de primitives, mais ne nécessitant
pas de stratégie principale pour choisir entre les primitives. Nous démontrons de
manière expérimentale que cette architecture de politique améliore les politiques à
la fois plates et hiérarchiques en termes de généralisation. Ce travail a été soumis à
la conférence NeurIPS 2019 sous la forme d’un document intitulé Apprentissage
d’un ensemble concurrentiel de primitives à contraintes d’informations.

Dans le premier chapitre, j’introduis des informations de base sur l’apprentis-
sage par renforcement, l’apprentissage par renforcement hiérarchique, les goulots
d’étranglement d’information, la compositionnalité et les réseaux de modules neu-
ronaux, et explique en quoi le travail proposé au chapitre deux est lié à ces idées.
Le chapitre deux décrit l’idée de former un ensemble de primitives. Je conclus ma
thèse en discutant de quelques axes de recherche futurs pour les travaux décrits au
chapitre deux.

Keywords: apprentissage par renforcement, apprentissage par renforcement
hiérarchique, goulot d’étranglement de l’information, compositionnalité, réseaux
modulaires

ii



Summary
We want to develop reinforcement learning algorithms that enable the learning

agent to obtain a structured decomposition of its behavior. Hierarchical Reinforce-
ment Learning provides a mechanism for doing this by explicitly modularising the
policy into two components — a set of low-level sub-policies (or primitives) and a
high-level master policy to coordinate between the primitives. While the primitives
have to specialize to only a part of the state space, the master policy has to specia-
lize to the entire state space as it decides when to activate which primitives. This
introduces a “bottleneck” where the success of the agent depends on the success of
the master policy, thereby making it a single point of failure.

We propose to do away with this limitation by using a new mechanism where
the sub-policies can decide for themselves in which part of the state they want to
act. This decentralized decision making does away with the need for a parameteri-
zed master policy. We use this mechanism to train a policy that is composed of an
ensemble of primitives but one that does not require a master policy to choose bet-
ween the primitives. We experimentally demonstrate that this policy architecture
improves over both flat and hierarchical policies in the terms of generalization. This
work is under review at the NeurIPS 2019 Conference as a paper titled Learning
Competitive Ensemble of Information-Constrained Primitives.

In Chapter One, I provide a background to Reinforcement Learning, Hierarchi-
cal Reinforcement Learning, Information Bottleneck, Compositionality, and Neural
Module Networks and discuss how the proposed work in Chapter Two relates to
these ideas. Chapter Two describes the idea of training an ensemble of primitives.
I conclude the thesis by discussing some future research directions for the work
described in Chapter Two.

Keywords: reinforcement learning, hierarchical reinforcement learning, infor-
mation bottleneck, compositionality, modular networks

iii



Table des matières

Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Learning System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Model of the Environment . . . . . . . . . . . . . . . . . . . 4
1.2.2 Model-Based RL vs Model-Free RL . . . . . . . . . . . . . . 4
1.2.3 Discount Factor and Expected Return . . . . . . . . . . . . 5
1.2.4 Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.5 Value Function . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.6 Markov Decision Process . . . . . . . . . . . . . . . . . . . . 7
1.2.7 Policy Gradient Methods . . . . . . . . . . . . . . . . . . . . 8

1.3 Hierarchical Reinforcement Learning . . . . . . . . . . . . . . . . . 10
1.3.1 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Feudal Learning . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 Meta-Learning Shared Hierarchies . . . . . . . . . . . . . . 17

1.4 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.1 Preliminary Terms . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.2 Information Bottleneck . . . . . . . . . . . . . . . . . . . . . 21

1.5 Compositionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.1 What is compositionality . . . . . . . . . . . . . . . . . . . . 22
1.5.2 Why do we want compositional models . . . . . . . . . . . . 23

1.6 Systematicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iv



1.7 Models of Cognition . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.7.1 Bottom-up approach . . . . . . . . . . . . . . . . . . . . . . 26
1.7.2 Top-down approach . . . . . . . . . . . . . . . . . . . . . . . 26

1.8 How to learn Compositional Models . . . . . . . . . . . . . . . . . . 27
1.8.1 Learning Compositional Task Representation . . . . . . . . . 27
1.8.2 Using models which are composed of other models . . . . . . 28
1.8.3 Sequential Training vs MultiTask Training . . . . . . . . . . 28

1.9 Modular Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 29
1.9.1 Neural Module Networks . . . . . . . . . . . . . . . . . . . . 29

2 Learning Competitive Ensembles of Information-Constrained Pri-
mitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 Information-Theoretic Decentralized Learning of Distinct Primitives 39

2.5.1 Primitives with an Information Bottleneck . . . . . . . . . . 40
2.5.2 Competing Information-Constrained Primitives . . . . . . . 41
2.5.3 Regularization of the Combined Representation . . . . . . . 42
2.5.4 Objective and Algorithm Summary . . . . . . . . . . . . . . 43

2.6 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6.1 2D Bandits Environment . . . . . . . . . . . . . . . . . . . . 44
2.6.2 Four-rooms Environment . . . . . . . . . . . . . . . . . . . . 45
2.6.3 Ant Maze Environment . . . . . . . . . . . . . . . . . . . . . 46
2.6.4 MiniGrid Environment . . . . . . . . . . . . . . . . . . . . . 47

2.7 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.7.1 Model Architecture for MiniGrid . . . . . . . . . . . . . . . 51
2.7.2 Components specific to the proposed model . . . . . . . . . 52
2.7.3 Model Architecture for 2D Bandits . . . . . . . . . . . . . . 53
2.7.4 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . 53
2.7.5 Model Architecture for Ant Maze Environment . . . . . . . 53

2.8 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.8.1 Multi-Task Training . . . . . . . . . . . . . . . . . . . . . . 55
2.8.2 Do Learned Primitives Help in Transfer Learning ? . . . . . 56
2.8.3 Learning Ensembles of Functional Primitives . . . . . . . . . 58

2.9 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 60

3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

v



Table des figures

1.1 Elements of a reinforcement learning problem. Taken from Sutton
and Barto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The option-critic architecture consists of a set of options, a policy
over them and a critic. Gradients can be derived from the critic for
both the intra-option policies and termination functions.The execu-
tion model is suggested pictorially by a switch ⊥ over the contacts
(. Switching can only take place when a termination event is en-
countered. QΩ denotes the option-value function while AΩ denotes
the option-advantage function. The image is taken from Bacon et al.
[2017] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 The schematic illustration of FeUdal Network (taken from Sasha Vezh-
nevets et al. [2017]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Unrolled structure for a master policy action lasting for N = 3 times-
teps. Left: When training the master policy, the update only depends
on the master policy’s action and total reward (blue region), trea-
ting the individual actions and rewards as part of the environment
transition (red region). Right: When training sub-policies, the up-
date considers the master policy’s action as part of the observation
(blue region), ignoring actions in other timesteps (red region). Figure
taken from Frans et al. [2017]. . . . . . . . . . . . . . . . . . . . . 19

1.5 Neural Module Network for answering the question Is there a red
shape above a circle ? The two attend modules locate the red shapes
and circles, the re-attend[above] shifts the attention above the circles,
the combine module computes their intersection, and the measure[is]
module inspects the final attention and determines that it is non-
empty. Taken from Andreas et al. [2016a] . . . . . . . . . . . . . . . 31

2.1 Illustration of our model. An intrinsic competition mechanism, ba-
sed on the amount of information each primitive provides, is used
to select a primitive to be active for a given input. Each primitive
focuses on distinct features of the environment ; in this case, one po-
licy focuses on boxes, a second one on gates, and the third one on
spheres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vi



2.2 The primitive-selection mechanism of our model. The primitive with
most information acts in the environment, and gets the reward. . . 41

2.3 View of the four-room environment . . . . . . . . . . . . . . . . . . 46
2.4 View of the Ant Maze environment with 3 goals . . . . . . . . . . . 47
2.5 RGB view of the Fetch environment. . . . . . . . . . . . . . . . . . 49
2.6 RGB view of the Unlock environment. . . . . . . . . . . . . . . . . 49
2.7 RGB view of the UnlockPickup environment. . . . . . . . . . . . . . 50
2.8 Multitask training. Each panel corresponds to a different training

setup, where different tasks are denoted A, B, C, ..., and a rectangle
with n circles corresponds to an agent composed of n primitives
trained on the respective tasks. Top row: activation of primitives for
agents trained on single tasks. Bottom row: Retrain: two primitives
are trained on A and transferred to B. The results (success rates)
indicate that the multi-primitive model is substantially more sample
efficient than the baseline (transfer A2C). Copy and Combine:
more primitives are added to the model over time in a plug-and-
play fashion (2 primitives are trained on A ; the model is extended
with a copy of itself ; the resulting four-primitive model is trained on
B.) This is more sample efficient than other strong baselines, such as
[Frans et al., 2017, Bacon et al., 2017]. Zero-Shot Generalization:
A set of primitives is trained on C, and zero-shot generalization to
A and B is evaluated. The primitives learn a form of spatial decom-
position which allows them to be active in both target tasks, A and
B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.9 Left: Multitask setup, where we show that we are able to train 8
primitives when training on a mixture of 4 tasks. Right: Success
rates on the different Ant Maze tasks. Success rate is measured as
the number of times the ant is able to reach the goal (based on 500
sampled trajectories). . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.10 Continual Learning Scenario: We consider a continual learning
scenario where we train 2 primitives for 2 goal positions, then trans-
fer (and finetune) on 4 goal positions then transfer (and finetune)
on 8 goals positions. The plot on the left shows the primitives re-
main activated. The solid green line shows the boundary between the
tasks, The plot on the right shows the number of samples taken by
our model and the transfer baseline model across different tasks. We
observe that the proposed model takes fewer steps than the baseline
(an A2C policy trained in a similar way) and the gap in terms of the
number of samples keeps increasing as tasks become harder. . . . . 59

2.11 Snapshots of motions learned by the policy. Top: Reference motion
clip. Middle: Simulated character imitating the reference motion.
Bottom: Probability of selecting each primitive. . . . . . . . . . . . 60

vii



2.12 Embeddings visualizing the states (S) and goals (G) which each pri-
mitive is active in, and the actions (A) proposed by the primitives
for the motion imitation tasks. A total of four primitives are trained.
The primitives produce distinct clusters. . . . . . . . . . . . . . . . 60

2.13 Performance on the 2D bandits task. Left: The comparison of our
model (blue curve - decentralized policy) with the baseline (red curve
- flat policy) in terms of success rate shows the effectiveness of our
proposed approach. Right: Relative frequency of activation of the
primitives (normalized to sum up to 1). Both primitives are utilized
throughout the training. . . . . . . . . . . . . . . . . . . . . . . . . 61

viii



Liste des tableaux

2.1 Hyperparameters for the Minigrid tasks . . . . . . . . . . . . . . . . 52
2.2 Hyperparameters for the 2D Bandits task . . . . . . . . . . . . . . . 53

ix



List of Abbreviations
HRL Hierarchical Reinforcement Learning

LSTM Long-Short Term Memory

MDP Markov Decision Process

NMN Neural Module Network

PVF Proto-Value Functions

RL Reinforcement Learning

RNN Recurrent Neural Networks

x



To my family !

xi



Acknowledgments

I thank the almighty god for giving me a wonderful family, friends, mentors and

collaborators who make me who I am.

I am grateful to Prof Yoshua Bengio and Prof Jian Tang who supervised me

and supported me throughout the two years of the Masters program. They enabled

my introduction to this amazing research community and gave me the freedom to

pursue my research interests. Working with them, I learnt new things every day.

I am thankful to Sarath Chandar and Anirudh Goyal who supported me a lot

during the last two years.

I acknowledge my friends and collaborators(in alphabetical order):

Bhairav Mehta, Carlos Eduardo Lassance, Chinnadurai Shankar, Disha Srivas-

tava, Gunshi Gupta, Jayakumar Subramanian, Jonathon Binas, Kanika Madan,

Khimya Khetarpal, Koustuv Sinha, Kushal Arora, Meng Qu, Nishanth, Olexa Bi-

laniuk, Philippe Lacaille, Prasanna Parthasarathi, Rim Assouel, Ritesh Kumar, Sai

Krishna, Sai Rajeshwar, Simon Blackburn, Sébastien Lachapelle, Tristan Deleu,

Vardaan Pahuja, Vikas Verma, Vikram Voleti, Vishal jain, Weiping Song, Zhao-

cheng Zhu

I thank Linda Pinthiere, Celine Begin, Julie Mongeau and all the other staff

members at Mila who provided administrative help throughout my studies.

I am thankful to Balaji Krishnamurthy who always believed in me. I learned a

lot of things from him - and not just about research.

I thank my undergraduate research advisor Dr Dhaval Patel for accepting me

as his student and always encouraging me to pursue research.

xii



1 Introduction

We want to develop reinforcement learning algorithms that can quickly adapt

to new tasks by obtaining a structured decomposition of the learning agent’s beha-

vior. This problem is well studied under the paradigm of Hierarchical Reinforcement

Learning. We review this body of literature in section 1.3 and describe the central

idea here: Explicitly modularise the policy (learning agent’s behavior) into two com-

ponents — a set of low-level primitives (or sub-policies) and a high-level master

policy to coordinate between the primitives. The rationale behind this decomposi-

tion is as follows: When we have a standard policy, the policy needs to specialize in

the entire state space. In the case of Hierarchical Reinforcement Learning, the pri-

mitives have to specialize in only a part of the state space, thus easing the learning

process. But this decomposition of policy into primitives and master policy may

not be sufficient. Since the master policy decides when to activate which primitive,

the master policy needs to specialize in the entire state space. This introduces a

“bottleneck” where the success of the agent depends on the success of the master

policy, making it a single point of failure.

In this work, we propose a new mechanism for training an ensemble of primitives

without requiring a parameterized master policy. We introduce an information-

theoretic objective that enables a competition mechanism. This mechanism leads

to specialization of individual primitives to different parts of the state space and

is used to select primitives in a decentralized manner. We review the information

theory literature in section 1.4.

The general idea of training modular networks goes beyond Hierarchical Rein-

forcement Learning and is studied under the paradigm of Neural Modular Networks,

which we review in section 1.9.

Our proposed approach enables addition, removal, and recombination of primi-

tives across tasks. One manifestation of this idea is to train two separate set of

primitives on two distinct tasks and then combine them for transferring on a third

task. We demonstrate the superior transfer performance of our model to new tasks.

1



This idea relates to the broader concept of compositionality which we review in

section 1.5.

1.1 Learning System

Thrun and Mitchell [1993] define a learning system as follows: “Given a task,

training experience and a measure of performance (of the learning system), a system

is said to learn if its performance on the task improves with training experience”.

The definition of learning does not put any restrictions on the nature of the task, on

the way training experience is provided (or leveraged for learning) or on the metrics

used to measure the performance. A learning system could be provided with the

training experience in the form of examples of a mapping between the inputs and

the outputs and the task could be to learn this unknown mapping function. This

is the well-known supervised learning paradigm. Another form of learning could

be where the system interacts with its environment to collect training experience

and instead of being given explicit supervision in terms of what input maps to

what output, the system has to learn based on the “rewards” it gets from the

environment. This is the well known reinforcement learning paradigm [Sutton and

Barto] (summarized in section 1.2).

Deep Learning and Reinforcement Learning based techniques have transformed

many application domains - image classification, image generation, machine trans-

lation, question answering, natural language inference, visual question answering,

audio generation - to name a few. But the learning process is still unsatisfactory as

the models trained using these techniques can not generalize as well as humans do.

In this work, we look at this discrepancy from the lens of compositionality (section

1.5) and look at architecture designs like hierarchical reinforcement learning (sec-

tion 1.3) and neural module networks (section 1.9) that can incorporate the notion

of compositionality.

2



1.2 Reinforcement Learning

Consider a learning agent that is acting in an environment E. At time t, the

agent is in some environmental state st and performs an action at in the environ-

ment. This leads to a change in the environmental state from st to st+1. This change

can be experienced by the agent in two ways: the agent observes the environment

and gets an observation ot and the agent may receive a reward rt from the environ-

ment. This sequence of interactions continues for the subsequent timesteps (Figure

1.1). The goal for the agent is to take actions which maximize the expected sum

of reward that it will receive by interacting with the environment. Reinforcement

learning is the learning paradigm that focuses on developing policy that the agent

can follow to achieve this goal.

We formalize some of these terms:

1. Learning agent refers to the agent that interacts with the environment and

for which we want to find (or learn) a good policy or strategy.

2. Environment E refers to everything that is outside of the learning agent.

3. State st refers to the “true” state of the environment at time t.

4. State Space S refers to the set of all the possible states that the agent can

be in.

5. Action at refers to the action that the agent takes at time t.

6. Action Space A refers to the set of all the possible actions that the agent

can take.

7. Observation ot refers to the state of the environment that the agent can

Figure 1.1 – Elements of a reinforcement learning problem. Taken from Sutton and Barto

3



perceive at time t. In some special cases, where the agent can access the

complete state of the environment, the observation is the same as the true

state (denoted as state). This setup is referred to as the fully-observed setup.

The other setup, where the agent can access only a part of the full state is

far more common and is referred to as the partially observed setup.

8. Reward rt refers to the signal that the agent gets from the environment at

time t which indicates how good (or bad) its actions are.

In order to simplify the notation, we assume the fully-observed setup for the

rest of this section so that ∀t, st = ot

1.2.1 Model of the Environment

In the context of RL, model refers to the underlying true mechanisms of the

environment. It is generally composed of two components:

1. State Transition Operator P which describes the probability that the

environment transitions from state st to st+1 when the agent takes an ac-

tion at. The transition operator could be stochastic i.e. st+1 ∼ P(st, at) or

deterministic i.e. st+1 = P(st, at)

2. Reward Function R describes the reward that the agent would get when

it performs the action at in the state st. Like the transition operator, the

reward function could be stochastic i.e. rt ∼ R(st, at) or deterministic i.e.

rt = R(st, at)

1.2.2 Model-Based RL vs Model-Free RL

Consider the two scenarios:

1. The agent may have access to a model of the environment and use that

model for deciding how to act via planning. This family of approach is cal-

led the model-based approach. Generally, the model of the environment is

not available to the agent in which case the model can be learned using

supervised or unsupervised learning approaches.

2. The agent could try to learn a good policy without having to build an explicit

model of the environment. This family of approach is called the model-free

approach.

4



Both approaches have their pros and cons. Recently, the model-free methods

have shown many successes, such as learning to play Atari games with pixel obser-

vations [Mnih et al., 2015b, Mnih et al., 2016] and learning complex motion skills

from high dimensional inputs [Schulman et al., 2015a,b]. However model-free ap-

proaches require huge amount of data to train and their high sample complexity

remains a major criticism. On the other hand, model-based reinforcement learning

approaches are known to be more sample efficient but have several caveats. For

example, if the policy takes the learner to an unexplored state in the environment,

the learner’s model could make errors in estimating the environment dynamics, lea-

ding to sub-optimal behavior. This problem is referred to as the model-bias problem

[Deisenroth and Rasmussen, 2011]. Hence the agent is only as good as the model.

1.2.3 Discount Factor and Expected Return

Consider an agent that starts in state s1, takes an action a1, receives a reward r1

and transitions to the state s2. The agent’s interaction with the environment forms

an episode: s0, a0, r0..., rT−1, sT where T is called the horizon. Recall that the agent

wants to maximize the expected sum of rewards that it gets from the environment

i.e. E[
∑
rt] but this formulation has some limitations.

All the rewards are given equal importance irrespective of whether they are

obtained early in the episode or much later. It can be argued that if the agent can

obtain the same reward at say the first timestep and the hundredth timestep, the

reward obtained at first timestep should be more valuable than the reward obtained

later as future rewards can be uncertain and hence do not provide the same value as

the immediate rewards. Consider a scenario where we are given a choice — to take

100$ right now or take the 100$ one year later. Even though the face-value of the

rewards remains the same, the two offers are not equal and we are more likely to

take up the first offer. It is common to exponentially “discount” the future rewards

with a factor called the discount factor γ. Then the effective value of the reward

obtained at time t is given as γtrt and is referred to as the discounted reward.

Another benefit of using γ is that now we do not have to worry about the

possibility of infinite length episodes. In the earlier formulation, the expected sum

of reward could diverge if the episode length is not finite. In this new formulation,

γ makes the expected sum of discounted rewards finite even when the episode

5



length is infinite. Generally, γ ∈ [0, 1]. The lower is γ, the more important are the

short-term rewards and more myopic (short-sighted) is the agent.

We denote the sum of discounted rewards as returns (equation 1.1) and the goal

of the learning agent is to maximize the returns.

Gt = r1 + γr2 + · · · =
∞∑
k=0

γkrk+t+1 (1.1)

Here Gt denotes the returns at time t or the expected sum of discounted rewards

from time t onwards.

1.2.4 Policy

Policy π refers to the strategy that the agent follows to decide which actions to

take in the different states of the environment. It can be thought of as a mapping

between a state and the action that should be executed in that state. Hence the

policy π is generally a function of the state s and can be implemented using neural-

network based function approximators. We can consider two cases:

1. Stochastic Policy where the action is sampled from the policy i.e. at ∼
π(st).

2. Deterministic Policy where the action is deterministically obtained from

the policy i.e. at = π(st).

1.2.5 Value Function

Value functions estimate how good it is for the agent to be in a state (or to take

an action in a state). There are two types of value functions:

1. state value function V (s) which estimates the goodness of a state s.

2. action value function Q(s, a) which estimates the goodness of a state-

action pair is or how good is it to take an action a in the state s.

The value of a state s, under the policy π can be defined as the expected return

when the agent starts in state s and follows the policy π from that time onwards

[Sutton and Barto]. Mathematically, the state value function can be written as

follows:

6



Vπ(s) = Eπ[Gt|st = s] (1.2)

Similarly, the action value (value of taking action a in a state s) under the

policy π can be defined as the expected return when the agent starts in state s,

takes action a and follows the policy π from that time onwards. Mathematically,

the action value function can be written as follows:

Qπ(s, a) = Eπ[Gt|st = s, at = a] (1.3)

The state value function and the action value function are related as follows:

Vπ(s) =
∑
a∈A

Qπ(s, a)π(a|s) (1.4)

The difference between the action-value function and the state-value function

is known as the action-advantage function (or just the advantage function). It

is denoted by Aπ(s, a) and can be defined as:

Aπ(s, a) = Qπ(s, a)− Vπ(s) (1.5)

There exists a class of techniques called Value based methods that aim to learn

either the state value function V or the action value functions Q and use those

value functions to obtain the policy π. If we have the optimal value functions

(represented as V ∗ and Q∗ respectively) then the optimal policy (represented as

π∗) can be obtained through them as shown below:

π∗ = argmaxπ(V ∗π ) (1.6)

π∗ = argmaxπ(Q∗π) (1.7)

1.2.6 Markov Decision Process

Most of the RL problems can be formulated as a Markov Decision Process or

MDP [Puterman, 1994].

A finite time Markov Decision Process M is generally defined by the tuple

(S,A,P ,R, γ). Here, S is the set of states, A the action space, P(st+1|st, at) the

transition function, R : S × A → R is the reward function and γ the discount

factor. The return is defined to be the sum of discounted rewards r(st, at) along an

7



episode τ := (s0, a0, ..., sT−1, aT−1, sT ), where T refers to the effective horizon of the

process. We note that this terminology is very similar to terminology when defining

the different components of an RL task (section 1.2). In this MDP formulation, the

goal of the learner is to find a policy π that maximizes the expected return. In

practice, we parameterize the policy and represent it as πθ where θ denotes the

parameters of the policy π.

1.2.7 Policy Gradient Methods

Policy Gradient methods refer to the class of algorithms that aim to learn the

policy πθ directly. An objective function J(θ) is defined as follows:

J(θ) =
∑
s∈S

dπ(s)V π(s) =
∑
s∈S

dπ(s)
∑
a∈A

Qπ(s, a)π(a|s) (1.8)

where dπ(s) is the stationary distribution of Markov chain for the policy π.

It is not straightforward to compute ∇θJ(θ) directly because J(θ) depends on

π both directly (through the action sampling step) and indirectly through dπ(s).

Hence the Policy Gradient Theorem [Sutton and Barto] is used to compute ∇θJ(θ)

using the derivative of log function as:

∇θJ(θ) = Eπ[Qπ(s, a)∇θln(πθ(a|s))] (1.9)

Since Eπ[Gt|st, at] = Qπ(st, at), we can rewrite equation 1.9 as:

∇θJ(θ) = Eπ[Gt(st, at)∇θln(πθ(a|s))] (1.10)

Thus the policy gradient theorem provides means to estimate the gradient for

the objective function that can be used to update the policy π.

REINFORCE [Williams, 1992] is a Monte-Carlo policy gradient method that

estimates the gradient for the policy by unrolling episodes in the environment. The

expectation of the sampled gradient is an unbiased estimator of the actual gradient

but often the variance of the sampled gradient is quite high. Subtracting a baseline

value from the returns helps to reduce the variance while keeping the sampled

gradient unbiased. One common and straightforward choice for the baseline is the

running mean of rewards. The gradient of J(θ) can then be computed as:

8



∇J(θ) = Eπ[
(
G(st, at)− b(st)

)
∇θln(πθ(a|s))] (1.11)

where b(s) is the value of the baseline in state s.

Alternatively, one could try to predict the value function and use that as the

baseline for reducing the variance. This approach is know as the Actor-Critic

methods [Konda and Tsitsiklis, 2000] where along with the policy (called actor), a

value function (called as critic) is learned. The actor and the critic networks may

share some parameters. Note that in general, the critic network could learn either

the state-value or the action-value function though it is more common to learn the

state-value function. In that case, we would replace the baseline b(s) with the state

value function V (s).

One of the most prominent policy gradient algorithm is the Asynchronous

Advantage Actor-Critic (or A3C algorithm) and its synchronous variant Ad-

vantage Actor-Critic (or A2C algorithm) [Mnih et al., 2016]. A3C algorithm uses

one critic network and multiple actor networks which synchronize their weights re-

gularly. In contrast, A2C uses one critic network and one actor network. The actor

network interacts, in parallel, with different “copies” of the environment (for n

steps) to collect a batch of trajectories. Then the actor and the critic networks are

trained using these trajectories. In practice, A2C works faster than A3C though

both the approaches are widely used [Jaderberg et al., 2016, Mirowski et al., 2016,

Wang et al., 2016, Pathak et al., 2017].

Another popular idea, when training policy gradient algorithms, is to ensure

that the update step cannot change the policy too much as this could de-stabilize

the training of the policy. Consider the case where the agent takes an action in

a state such that the reward function corresponding to that state-action pair is a

Gaussian distribution with a low reward as the mean. But since the environment

is stochastic, the agent got a high reward (an event which is not likely to happen

again). In this case, the gradient could strongly bias the model to always perform

the sub-optimal action in that state. This is similar to the case of supervised lear-

ning where the loss gradient is often clipped to make sure the weights do not change

too much because of a single update. Schulman et al. [2015a] proposed the Trust

Region Policy Optimization (TRPO) approach that implements this constraint

by regularizing the KL divergence corresponding to the change in the policy to en-

sure that the new policy does not change too much compared to the old policy.

9



Specifically, a trust region constraint is applied as follows:

Eπθold
[
DKL(πθold||πθ)

]
≤ δ (1.12)

where πθold is the old policy (before update), πθ is the new policy (after update)

and δ is a parameter controlling how much is the policy allowed to change.

One downside of TRPO is that it is quite complex to implement and use in

practice. Schulman et al. [2017] proposed the Proximal Policy Optimization

algorithm (PPO) which uses a simpler mechanism for regularizing the change in

the policy by using a clipped surrogate objective. Specifically, consider the ratio of

the old policy and the new policy as

r(θ) =
πθ(a|s)
πθold(a|s)

(1.13)

The ratio r(θ) is clipped to lie in the region [1 − ε, 1 + ε], where ε is a hy-

perparameter. PPO achieves performance similar to TRPO but is much easier to

implement in practice.

1.3 Hierarchical Reinforcement Learning

Consider a routine task like making coffee. The instructions for making coffee

can be written down as (i) Pour the coffee from the machine (ii) Add sugar (iii)

Add milk (iv) Stir and serve. Alternatively, one could break down each instruction

into smaller sub-instructions: (i) Check if the coffee machine has coffee beans or

not. (ii) Turn on the machine and press the button to brew coffee. (iii) Let the

coffee pour into the cup and so on. An extreme case would be where the action

sequence is described in terms of muscle movements: (i) Contract your hand muscle

to lift the hand. (ii) Extend the arm muscle to reach the coffee machine and so on.

The idea is that when performing any task, there are multiple levels of tem-

poral abstractions (or granularity) at which an agent can operate. Standard RL

approaches operate only at one level of abstractions which leads to issues like limi-

ted scalability, low sample efficiency, lack of generalization, difficulty in performing

long-term credit assignment and poor transfer to new tasks. Since these approaches

10



look at the problem from just one level of abstraction, they are also called “flat”

approaches.

On the other hand, humans complete complex tasks by first breaking them into

subtasks and then completing each of those sub-tasks i.e. they operate at multiple

levels of abstractions or hierarchy. This enables them to quickly adapt to new tasks

and scenarios. For example, once a person knows how to make coffee, they can

quickly learn how to make tea because most of the “high-level” instructions (like

add sugar, add milk, etc) remains the same and they need to learn fewer new things

(like how to prepare tea water). Contrast this situation with the scenario where the

instructions were defined in terms of low-level muscle movements and not high-level

sub-goals. In that case, the learner would not be able to transfer much knowledge

as it would not have the notion of grouping sequence of actions into a temporal

abstraction.

Another way to think about the notion of temporal abstractions is in the terms

of “skills” where a skill represents a sequence of actions that can perform some

subtask. When the learner is faced with a new task, it just needs to learn how to

compose skills and does not need to learn the skills from scratch. The transfer of

skills from one task to another reduces the amount of information that the learner

needs to acquire thus improving generalization and reducing the sample complexity.

For the transfer to a new task to be effective, the learner stills need to ensure that

it learns the optimal behavioral hierarchy [Solway et al., 2014] so that it can learn

to compose them and solve more complex tasks. The notion of compositionality is

discussed further in section 1.5.

Hierarchical Reinforcement Learning (HRL) is the learning paradigm that at-

tempts to address the limitations of flat RL approaches by learning to operate

at the different levels of temporal abstractions at once. HRL provides benefits like

better sample efficiency, structured exploration, easier long-term credit assignment,

more effective generalization, and better transfer performance.

1.3.1 Options

One of the most well-known HRL framework is the Options framework that was

introduced by Sutton et al. [1998b, 1999b], Precup [2000] and extended by [Stolle

and Precup, 2002, Bacon et al., 2017, Machado et al., 2017a, Fox et al., 2017a,

11



Machado et al., 2017a, Liu et al., 2017] among others.

An option ω is a triple of the form <Iω, πω, βω > where:

1. Iω refers to the initiation set of the option i.e. the states in which the option

can be initiated. Iω ⊂ S.

2. πω refers to the policy of the option. It is also called the intra-option policy.

πω : S ×A → [0, 1]

3. βω refers to the termination condition of the option. This gives the proba-

bility of the option terminating in the current state. βω : S → [0, 1]

The more recent descriptions of options tend to drop the reference to the initia-

tion set [Sutton and Barto]. An option can be thought of as an action that extends

over multiple time-steps. At the time t = 0, when the agent starts interacting in

the environment, it chooses the option that it wants to use. Once an option has

been selected, the policy corresponding to that option is followed until the option

has been terminated. At each timestep, the agent decides if it wants to terminate

the option using the termination probability βω corresponding to the option. If an

option is terminated, the agent chooses a new option at the next timestep using

the policy πΩ where Ω represents the set of all the options i.e. ∀ω, ω ∈ Ω

One major strength of the options framework is that it is defined in a way

that makes options interchangeable with the one-time step action. In fact, actions

can be thought of as options that are active for just one timestep. Sutton et al.

[1999b] and Precup [2000] show that defining options over a MDP makes it a

Semi-Markov Decision Process (SMDP) [Puterman, 1994]. Hence the notion of the

reward function, transition function, state value function, action, value function,

advantage function, etc can be easily extended in the options framework.

What is not so straightforward is coming up with the options, as unlike actions,

options are not defined as part of the RL problem. Bacon et al. [2017] proposes a

call-and-return option execution model called the option-critic framework where

the different components are parameterized using function approximators. πΩ is

denoted as πΩ,φ, the intra-option policy πω is denoted as πω,θ and the termination

function βω is denoted as βω,ν . Here φ, θ, ν represents the parameters of the policy

(between options), intra-option policy and the termination function respectively.

Once an option ω has been chosen, it is used until it has been terminated in which

case a new option is selected using the policy πΩ. Figure 1.2 depicts the diagram

12



of the option-critic architecture.

Figure 1.2 – The option-critic architecture consists of a set of options, a policy over them
and a critic. Gradients can be derived from the critic for both the intra-option policies and
termination functions.The execution model is suggested pictorially by a switch ⊥ over the contacts
(. Switching can only take place when a termination event is encountered. QΩ denotes the option-
value function while AΩ denotes the option-advantage function. The image is taken from Bacon
et al. [2017]

The policy over the options πΩ is trained to maximize the expected returns

E
[∑∞

t=0 γ
tr(st, at)|s0, w0

]
Bacon et al. [2017] prove two important theorems that enable them to train the

options in an end-to-end manner. The first is the intra-option policy gradient

theorem which enables them to compute the gradient of the expected discounted

returns with respect to the parameters θ of the intra-option policy πω,θ for any

option ω. The second theorem is the termination gradient theorem that enables

them to compute the gradient of the expected discounted returns with respect to

the parameters ν of the termination condition βω,ν for any option ω. They test the

option-critic architecture for the Four-rooms task, Pinball domain and the Arcade

Learning Environment [Bellemare et al., 2013] and verify that the approach of

learning the options in an end-to-end manner is useful in both simple and complex

tasks.

13



Given an MDP with adjacency matrix A and diagonal matrix D, the graph

Laplacian L can be defined as D − A. Proto-value functions (PVFs) [Mahade-

van, 2005, Mahadevan and Maggioni, 2007] are the eigenvectors obtained after the

eigen-decomposition of L and are commonly used to learn representations in RL.

Machado et al. [2017a] proposed an approach to discover task-independent options

by showing that the proto-value functions implicitly defined options. They intro-

duced the concept of eigenpurposes which are the intrinsic reward functions of the

PVFs. Each eigenpurpose can be used to obtain an eigenbehavior which is the op-

timal policy that the agent should follow to maximize the reward corresponding

to the given eigenpurpose. An option is associated with each eigenpurpose and the

corresponding eigenbehvaior becomes the policy of that option. These options are

referred to as the eigenoptions.

Machado et al. [2017b] builds on the idea of eigenoptions and extends Ma-

chado et al. [2017a]’s work for (i) environments where the state space cannot be

enumerated as such and hence needs function approximation to learn the state re-

presentation and (ii) environments with stochastic transitions. The idea is to use

the fact that the PVFs and the successor representations [Dayan, 1993] are equiva-

lent, up to a constant [Stachenfeld et al., 2017]. First, a neural network is trained

to approximate the successor representation from the raw pixels. Then this learned

successor representation is used in place of the PVFs.

Fox et al. [2017b] proposed a policy gradient algorithm called Discovery of Deep

Options (DDO) that can discover parameterized options from a given set of tra-

jectories (or policy rollouts). The trajectories need not come from an expert policy

but they should not be completely random either. The idea is to apply imita-

tion learning techniques to the trajectory data to learn policies at multiple levels

of hierarchy. This approach is called the Hierarchical Behaviour Cloning (HBC).

The approach is recursive in nature and can be applied multiple times to discover

multiple levels of hierarchy. The discovered options are helpful in accelerating the

training of DQN agents on Atari tasks.

1.3.2 Feudal Learning

Several other HRL architectures follow a common pattern:

1. There are a number of low-level policies (called the primitives or primitive-

14



policies) whose action space is the same as the action space of the task i.e.

these policies directly act in the environment.

2. There is a high-level policy (called the meta-policy or the master policy or the

controller) whose task is to select which primitive acts in the environment

in the current state thereby coordinating between the primitives. The action

space for the master policy is the set of primitives. The idea is that the master

policy would break down a given task into sub-tasks that the individual

primitive policies can then execute.

In this particular case, we considered only two levels of hierarchy though in

general there could be multiple levels of hierarchy. This kind of architecture is

quite similar to the modular neural network architecture as well (section 1.9). We

now discuss some prominent approaches which follow this architecture design.

Dayan and Hinton [1993] introduced the concept of Feudal Reinforcement Lear-

ning for solving a RL task. The idea is the following: Consider a hierarchy where

there is a super-manager which controls several managers. The super-manager has

a task to accomplish and it creates some subtasks which are assigned to its ma-

nagers. Each manager controls many sub-managers and is controlled only by its

super-manager. The manager receives a task from the super-manager, creates va-

rious subtasks to solve it and assigns them to its sub-managers. Each sub-manager

controls another level of sub-sub managers and will be controlled only by its own

manager. At the lowest level of the hierarchy are the workers who can act in the

environment. In such a setup, each manager in the intermediate layers gets a “task”

from the manager directly above it and it delegates a new “task” to the managers

directly below it. The manager on the top of the hierarchy gets observations from

the environment while the workers in the last layer act in the environment. This

is what a feudal architecture looks like - agents are arranged in a hierarchy, with

each agent getting some task information from the agent immediately above it in

the hierarchy and each agent passing on some task information to the agents di-

rectly below it. Note that only the task information flows from the manager to the

sub-manager i.e. an agent is told what it needs to do but not how to do it. These

agents together make up the RL system and are not separate RL systems. This

organization schema is similar to how the medieval feudal society was organized

hence the name feudal.

There are two important aspects of Feudal RL:

15



1. Reward Hiding: Each agent’s reward depends on how well it completes

the task assigned to it by the agent directly above it - irrespective of whether

fulfilling that sub-goal helps to complete the actual task or not.

2. Information Hiding: Each agent has access to information at a particular

level of temporal abstraction only. For example, the agent does not have

access to the task that was assigned to the agent directly above it. It does

not even have access to the sub-goal that the agent directly below it assigns

to other agents.

Sasha Vezhnevets et al. [2017] built on the idea of feudal RL and proposed FeU-

dal Networks which is a fully-differentiable neural network architecture with two

levels of hierarchy - Manager and Worker. The manager receives an observation

xt from the environment and encodes it in as a latent representation zt to produce

a goal representation gt. The goal is a direction in which the worker should go in

the latent space. The worker takes as input an intermediate representation of the

observation zt (that it shares with the master), the goal gt and its own internal

hidden state. Both the worker and the manager use RNNs to maintain the history

of the state though the worker uses an LSTM while the manager uses a dilated

LSTM. The manager’s goals gt are trained using transition policy gradient [Sa-

sha Vezhnevets et al., 2017] to ensure that these goals correspond to meaningful

semantics (or meaningful action sequences) and are not just latent variables in the

model. The worker is trained using an intrinsic reward that encourages it to follow

the goal direction provided by the manager.

Figure 1.3 shows a schematic illustration of the FeUdal Network and how the

gradients flow through the network. The input to the system is the observation xt

which is encoded into zt using a convolutional network called fpercept. zt is shared

between the master and the worker. The master encodes zt into its latent state

space to obtain st which is fed as input to its dilated LSTM to produce the goal

gt. The worker projects both the goal gt and the encoding of the observation zt

into a k dimensional vector space and use the product of the two representations

to sample the actions. The worker is trained with the A3C algorithm [Mnih et al.,

2016] using the intrinsic reward it gets for following the goal direction from the

master and the master is trained using the transition policy gradient. Note that no

gradient flows between the master and the worker through the goal.

16



Figure 1.3 – The schematic illustration of FeUdal Network (taken from Sasha Vezhnevets et al.
[2017])

1.3.3 Meta-Learning Shared Hierarchies

Frans et al. [2017] considers the problem of training an RL agent for a given

distribution of tasks P (M) such that the agent can quickly adapt to the new tasks.

While it is intuitive that the agent’s policy (or parts of the policy) should be

shared across tasks, using a single policy to solve all the tasks could be ineffective.

They propose to break down the policy into two components - (i) a task-agnostic

component that is shared across all the tasks and denoted by the parameters φ (ii)

a task specific component that is learnt separately for all the tasks and denoted by

the parameters θ.

During training, a new task is sampled from the given distribution over tasks.

For each task, a new set of task-specific parameters θ are initialized and the

previously-trained task-agnostic parameters φ are reused.

The meta-learning objective for the task-agnostic components is designed to

maximize the agent’s expected returns over the distribution of the tasks ie:

maximizeφEM∼P (M)[GM ] (1.14)

where GM denotes the returns from task M .

The setup is cast as a HRL problem with the task-agnostic component φ im-

plemented as a set of K sub-policies φKi=1 and the task-specific component θ im-

17



plemented as a master policy whose task is to switch between the K sub-policies.

The master policy makes a selection every N timesteps i.e. once a subpolicy φi is

selected, it is executed for N steps. Such a restriction does not exist in the options

framework and an option can terminate at any point in time.

When training on a new task, a new master policy θ is randomly initialised. A

two phase training process follows:

1. Warmup Phase: In this phase, only the master policy is trained to ensure

that it can learn to use the primitives learnt so far. The master policy selects

a sub-policy which then executes for N timesteps. From the master policy’s

perspective, the effect of unrolling a sub-policy for N timesteps is part of

the dynamics of the environment and these N -step transitions (for the sub-

policy) are just 1 transition for the master policy. The master policy can

be thought of as operating in a modified MDP with a horizon that is 1/N

times as long as the horizon of the actual MDP (in which the sub-policies

operate). Any RL algorithm can be used to train the master policy in this

modified MDP

2. Joint Training Phase: In this phase, both the master policy and the sub-

policies are updated together. The updates of the master policy are perfor-

med as described in the warmup phase. From the sub-policy’s perspective,

the master policy is a part of the environment. Given a sequence of tran-

sitions in the environment, a sub-policy is updated using only that part of

the trajectory for which it was active.

Figure 1.4 shows how the updates happen for the master policy and the sub-

policies (assuming N = 3). The idea behind the two phase learning process is to

learn sub-policies that can easily generalize across multiple tasks so that it is easy

to learn a master policy for a given set of pre-trained sub-policies (as done in the

warmup phase). The authors show that they are able to discover meaningful motor

primitives (like walking in a particular direction) for robotic locomotion tasks and

also achieve superior transfer performance for sparse-reward setups where the flat

policies completely fail.

18



Figure 1.4 – Unrolled structure for a master policy action lasting for N = 3 timesteps. Left:
When training the master policy, the update only depends on the master policy’s action and
total reward (blue region), treating the individual actions and rewards as part of the environment
transition (red region). Right: When training sub-policies, the update considers the master policy’s
action as part of the observation (blue region), ignoring actions in other timesteps (red region).
Figure taken from Frans et al. [2017].

1.4 Information Theory

In this section, we review some of the preliminary terms and concepts in informa-

tion theory. We use the concept of information bottleneck to design an information-

theoretic objective which leads to the specialization of individual primitives (to

distinct regions in the state space) and enables a competition mechanism to select

the active primitives in a decentralized manner.

1.4.1 Preliminary Terms

Entropy The entropy of a random variable X, with the probability distribution

p, is a measure of uncertainty in the value of X. It is denoted by H(X). We consider

two cases:

Discrete Case: X can take one of the k discrete values {x1, · · ·xk}

H(X) = −
k∑
i=1

p(x)log2p(x). (1.15)

Continuous Case: If X is a continuous variable, the entropy is also refereed

to as the differential entropy and given as

19



H(X) = −
∫
X

p(x)log2p(x)dx. (1.16)

From this point onward, we assume all the random variables to be continuous

variables to simplify the notations.

Conditional Entropy The entropy of a random variable Y , conditioned on ano-

ther random variable X is referred to as the conditional entropy. It is a measure of

uncertainty in the value of Y given that the value of X is known. It is denoted by

H(Y |X) and can be expressed as follows:

H(Y |X) = −
∫
X,Y

p(x, y)log2p(y|x)dx. (1.17)

Kullback–Leibler Divergence The Kullback–Leibler divergence (KL divergence)

is a metric to measure the dissimilarity between two probability distributions p and

q. It is denoted as DKL(p||q), is also referred to as the relative entropy and can be

expressed as follows:

DKL(p||q) =

∫
X

p(x)log2

(p(x)

q(x)

)
dx. (1.18)

KL divergence DKL(p||q) is convex in the pair (p, q). Using Jensen’s inequality,

it can be shown that DKL(p||q) ≥ 0 and = 0 iff p = q. This property is called the

information inequality.

Mutual Information The Mutual Information (MI) is a metric to measure the

dissimilarity between the joint distribution p(X, Y ) and the factored distributions

p(X)p(Y ). It is denoted as I(X, Y ) and can be expressed as follows:

I(X, Y ) =

∫
X,Y

p(X, Y )log2

( p(X, Y )

p(X)p(Y )

)
dx. (1.19)

The mutual information can also be written as the KL divergence between the

joint distribution and the factored distributions:

I(X, Y ) = DKL(p(X, Y )||p(X)p(Y )). (1.20)

Using the definition of conditional entropy (equation 1.17), the mutual infor-

mation can be re-written as:

20



I(X, Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). (1.21)

Hence, the mutual information between X and Y can be interpreted as a mea-

sure of reduction in the uncertainty about X after observing Y or as a measure of

how much information does Y have about X (and vice-versa).

1.4.2 Information Bottleneck

Tishby et al. [2000] introduced the concept of Information Bottleneck as an

information-theoretic way of extracting the relevant information that an input va-

riable X contains about an output variable Y . They define the relevant information

as being the mutual information between X and Y . They consider an intermediate

“bottleneck” variable X̃ which retains only that information in X that is useful to

produce Y (or is relevant to Y ), thus creating a bottleneck for the information in

X. The value of X̃ can be learnt by maximizing I(X̃, Y ) such that I(X̃,X) < Ic

where Ic is the information constraint. In the absence of the information constraint,

X̃ could encode all the information in X, leading to a trivial solution. The resul-

ting constrained optimization equation can be solved by minimizing the following

Lagrangian:

L[p(x̃|x)] = I(X̃,X)− βI(X̃, Y ) (1.22)

where β is the Lagrangian multiplier and can be seen as the parameter that

balances between retaining information relevant to the output Y vs encoding more

information from the input X.

Tishby and Zaslavsky [2015] applied the information bottleneck principle to

deep neural networks and showed that it can be used to obtain the information-

theoretic limits in the deep networks.

Consider an intermediate layer of a deep neural network (parameterized by θ)

which takes as input X and produces a stochastic variable Z. We want to learn the

parameters θ such that the mutual information between Z and and the output Y

is maximized while that between Z and X is minimized. The objective function,

to be minimized, can then be written as:

JIB(θ) = I(Z,X; θ)− βI(Z, Y ; θ) (1.23)

21



Here β plays the role of a hyperparameter.

In general, computing the mutual information is difficult, thus limiting the

applicability of this approach.

Alemi et al. [2016] proposed to get around this problem by using a variational

approximation to obtain a lower bound on the information bottleneck objective.

This approach is called as the Deep Variational Information Bottleneck or Deep

VIB. Using variational approximation for p(y|z) and p(z), they obtain an approxi-

mation to equation 1.23 as shown below:

JIB =
1

N

N∑
n=1

Eε∼p(ε) [− log q(yn|f(xn, ε))] + βKL [p(Z|xn), r(Z)] . (1.24)

p(x, y) is approximated using the empirical distribution p(x, y) = 1
N

∑N
n=1 δxn(x)δyn(y),

q(y|z) is the variational approximation for p(y|z), r(Z) is the variational approxi-

mation for p(z), and f is the feed-forward network which encodes x to produce z

ie p(z|x) = N (z|fµ(x), fΣ(x)).

1.5 Compositionality

Our proposed model uses many ideas and concepts from the literature on com-

positionality. In this section, we review the notion of compositionality, why would

compositionality be a desirable property and look at some related concepts and

prior work.

1.5.1 What is compositionality

Compositionality is defined as the property that “the meaning of a whole can be

expressed as a function of the meaning of its parts” [Keenan and Faltz, 1987] or that

the “meaning of a complex expression can be determined by its structure and the

meaning of its constituents” [Szabó, 2004]. In the terms of language and semantics,

compositionality can be defined as the existence of a homomorphism between the

expressions of a language and the meanings of those expressions [Montague, 1970].

For example, the rules of propositional logic are compositional as the truth value

22



of any propositional statement is derived in terms of the value of different sub-

statements.

1.5.2 Why do we want compositional models

Most of the recent advancements and success in the field of deep learning and

reinforcement learning are targeted at solving well-defined tasks under somewhat

controlled scenarios. Though the learning systems learn to solve these tasks, some-

times surpassing human performance, the learning process itself is not very satis-

factory. For example, these algorithms are known to be extremely data hungry and

sample inefficient and their performance often deteriorates as the task or the data

distribution changes. In contrast, human beings are far superior learners. They can

quickly adapt to new tasks (or data distributions) and can easily transfer know-

ledge from remotely related but essentially distinct experiences. Thus it is safe to

conclude that our current learning systems are very different from human beings

in terms of what they learn and how they learn it.

Fodor and Pylyshyn [1988] proposes a theory to account for this discrepancy.

The theory uses three features of cognition — productivity, compositionality, and

inferential coherence — to compare the cognition models in humans with the

connectionist models in the learning systems. They invoke these three cognitive

features to argue that connectionist models lack some important features of human

cognition and that combinatorial structure is useful in any rich representation sys-

tem (which are important constituents of a learning system). The arguments are

as follows:

1. Productivity Argument - Providing the learning system with a combina-

torial structure would enable the system to (in-principle) encode infinitely-

many combinations of the input representations. While the input represen-

tations themselves could be simplistic, they could be composed together in

complex ways to learn more powerful representations. Thus compositiona-

lity can be seen as a way for increasing the expressivity or “productivity” of

the learning system [Chomsky, 1964, 1968]. We can also think of the pro-

ductivity argument in the following way: Assume that we have a learner

that can solve a novel task. Since the learner has not encountered this task

before, the only way it could have understood (and hence solved) the task

23



is if the knowledge to solve the task can be obtained by just knowing what

components make up the task and how these components are related [Frege,

1914].

2. Compositionality Argument - It is based on the hypothesis that the

world is inherently compositional, that is the dynamics in the world are

governed by some low-level independent mechanisms [Parascandolo et al.,

2017a]. Hence the new tasks (or experiences) are actually compositions of

parts of previously seen tasks (or experiences). For example, spoken words

are basically combinations of phonemes and sentences are the composition of

the words. If a learning agent has already learned these low-level mechanisms

then it can perform a new task without training (or with much fewer training

examples) provided that it can learn to compose these learned mechanisms.

The process of learning can be seen as a form of inductive inference over

this compositional representation system [Piantadosi et al., 2016].

3. Inferential Coherence - The idea is that similar tasks could use similar

compositions or similar representations so reusing representations and trans-

formations aid in the learning process. This manifests in machine learning

systems in the form of pretraining and multi-task training approaches where

the entire network or parts of the network are shared across tasks.

The compositionality property has been proposed as an important principle

underlying cognitive control in humans [Cole et al., 2013, Sakai, 2008]. Lake et al.

[2017] propose to use compositionality for learning generalizable models that can

quickly adapt to new tasks and environments by effectively transferring knowledge

across tasks. Diuk et al. [2008] and Cobo et al. [2013] also find compositionality to

be a useful property when training RL systems. In section 1.3 we discussed that

HRL systems can be seen as composition of policies operating at different levels of

temporal abstractions. Hence the ability to compose representations seems to be a

useful inductive bias.

1.6 Systematicity

Fodor and Pylyshyn [1988] defined systematicity in the following way: “the abi-

24



lity to learn to solve parts of one task is related to the ability to learn to solve parts

of another task”. For example, if a system can understand the sentence “John loves

the girl”, the system should also be able to understand sentences like “John does

not love the girl” or “The girl loves John”. How strongly can the learning agent

generalize from one task to another depends on many factors including how similar

the different parts of the distinct tasks are. It can be argued that compositionality is

closely related to the concept of systematicity. Recall that the compositionality ar-

gument says that the world is composed of some kind of low-level mechanisms that

are shared across different tasks. Hence systematicity depends on compositionality

- if the world is not compositional and all the tasks are completely independent,

it may as well not be systematic. In other words, if all the tasks are independent

of each other in the true sense, learning to solve one task should not provide any

useful information about the other task. Alternatively, one could say that a sys-

tematic learning system should also be compositional so that it is able to exploit

the underlying compositional mechanisms and learn to solve novel tasks that are

combinations of the tasks that the system has learned to solve.

1.7 Models of Cognition

In this section, we discuss some models that are used to describe human cogni-

tion and see if these models could provide useful cues for designing neural network

architectures.

It is possible to study human cognitive capabilities at various levels. One such

hierarchy was proposed by Marr et al. [1982] where three levels are considered:

1. Computational level: What is the goal of the high-level computation and

how does the computation achieve that goal.

2. Algorithmic level: How can the computation be executed as an algorithm ?

3. Hardware level: How can the algorithm be realized in practice.

There are two broad approaches for developing models of cognition - the bottom-

up approach and the top-down approach.

25



1.7.1 Bottom-up approach

In the bottom-up approach (or the “mechanism-first” approach), one first identi-

fies the mechanisms that could be responsible for explaining the cognitive behavior

and then comes up with an explanation for the behavior. For example, the direct

perception theory [Gibson, 2002] proposes that the world provides sufficient infor-

mation to our visual system to directly perceive the objects and we do not have

to rely on some high order cognitive process or some external information ie we do

not need to be told that we are in a garden before we perceive a flower. Cibson

[1979] proposed the notion of affordances - “aspects (or features) of environments

that allow an individual to perform an action”. In a broad sense, affordances can

be used to refer to all the interactions that are possible between an individual and

an environment. The idea is that affordances can drive actions in a bottom-up

manner without any external input. In our proposed approach (Chapter 2), we

use a bottom-up approach to learn an ensemble of primitive policies which can be

composed to solve the given task in a decentralized fashion.

1.7.2 Top-down approach

In the top-down approach (or the “function-first” approach), we start by identi-

fying the “functions” (or the high-level constructs) that are needed to solve a pro-

blem and then express these high-level constructs in terms of low-level mechanisms.

For example, the information from the environment could be ambiguous and some

high-level cognitive perspective is needed to resolve the ambiguity. This high-level

information could either come from a higher-level cognitive module (which might

be keeping track of the past experience) or from some kind of external knowledge.

Griffiths et al. [2010] argue that while both top-down and bottom-up approaches

are useful, the top-down approach seems to be more useful for learning represen-

tations and inductive biases that seem to support the cognitive system in humans.

Top-down approach is used in modular neural networks (section 1.9) and hierar-

chical reinforcement learning systems (section 1.3) where a high level controller

(or meta-policy) is used to choose between modules (or low-level primitives). The

controller corresponds to the “function” and while the modules correspond to the

low level mechanisms.

26



1.8 How to learn Compositional Models

In this section, we review some work from cognitive science and neuroscience

to understand what inductive biases might be useful for learning compositional

models.

1.8.1 Learning Compositional Task Representation

Human studies [Cole et al., 2011, Reverberi et al., 2012] hint that the task repre-

sentations learnt in the prefrontal cortex are compositional. For example, Reverberi

et al. [2012] consider experiments where humans are shown images and provided

with rules like “if there is a house, press left”. Participants are first tested on tasks

where only one rule needs to be invoked and then tested on tasks where multiple

rules are to be used at once (compound rules). The authors report that they were

able to decode the compound rules by training classifiers only on the simple rules

using prefrontal neural activity patterns as the input data. This suggests that the

inferior lateral frontal cortex uses the composition of the encoding of the constituent

rules. While the nature of these compositions (permutation-invariant, sequential,

hierarchical, etc) is not clear, these studies do provide a very useful insight - a

learning agent could learn a distribution of tasks by first learning the

elementary skills that are useful across all the tasks and then learning

to compose these skills to solve the different tasks.

Following up on these works, Yang et al. [2019] considers an important ques-

tion - if we train a network to perform many tasks, should its units be clustered

and should its representation be compositional ? They train an RNN for solving 20

cognitive tasks simultaneously and study the emerging task representations. The

tasks include variants of memory-guided response [Funahashi et al., 1989], simple

perceptual decision making [Gold and Shadlen, 2007], context-dependent decision

making [Siegel et al., 2015, Mante et al., 2013], multi-sensory integration [Raposo

et al., 2014], parametric working memory [Romo et al., 1999] etc. They introduce a

per-task, per-neuron measure called as the task variance which computes the ave-

rage variance of a single neuron’s noise-free response across the different stimulus

conditions in that task. It can be seen as representing the amount of information

encoded by the neuron unit for that task and can be used as a proxy for how “se-

lective” a neuron is for a given task. These task-variances are normalized and used

27



to cluster the neuron units. Units in the same cluster are found to be selective for

the same subset of tasks. This kind of analysis can lead to even more interesting

insights. For example, one cluster of units was found to be selective for both para-

metric working memory tasks and perceptual decision-making tasks. This indicates

that there is some common substrate shared between the two tasks. An inductive

bias which tells the agent how different tasks are related to each other

is quite useful for learning and multi-task training seems to provide this

kind of bias to the learning system.

1.8.2 Using models which are composed of other models

An alternate strategy would be to learn a set of modules (or networks) and

learn to compose those networks for different tasks. This is the approach taken by

the Modular Neural Networks and is described in detail in section 1.9.

1.8.3 Sequential Training vs MultiTask Training

Yang et al. [2019] considers a scenario where the tasks are learned sequentially,

one after the other as this learning paradigm is closer to how animals learn as well.

To avoid the problem of catastrophic forgetting [McCloskey and Cohen, 1989],

they use the intelligent synapses based approach proposed by Zenke et al. [2017].

In this case, the network develops mixed task selectivity, that is, neurons within

a cluster become selective towards different tasks. This is in contrast to the task

specialization as exhibited in the case of multi-task training. Both these forms of

task selectivity have their benefits. If several tasks share a common substrate

or a subtask, it is will be useful to develop a specialized mechanism

for handling that substrate. On the other hand, if the system needs to

continually learn new tasks while retaining performance on the previous

tasks, a mixed-specialization based approach would be useful. The focus of

our work (chapter 2) is on the former setting where we learn specialized mechanisms

and transfer them (via means of composition) on the new task.

28



1.9 Modular Neural Networks

Modular Neural Networks refers to the class of neural networks that are com-

posed of modules which can be combined in different ways (depending on the task)

to solve a task or a family of tasks [Happel and Murre, 1994, SHARKEY, 1997,

Auda and Kamel, 1999, Andreas et al., 2016a,b, Johnson et al., 2017a, Santoro

et al., 2017, Yu et al., 2018, Alet et al., 2018a,b]. Even though the modules are in-

dependent of each other, they are functionally integrated together (or put together

like lego blocks) to solve a given task.

We adopt the following terminology for the rest of this section: “neural network”

refers to the standard (monolithic) neural network while the term “modular neural

network” refers to the modular neural network architecture described here. A stan-

dard neural network is composed of layers which can be thought of as modules but

the key difference is that the topology of the network (or the nature of connections

between the layers) does not change. In a modular network, the topology is decided

dynamically depending on the current task and input. This “flexibility” of organi-

zation of modules allows for the same module to be reused as many times as needed

while this is not possible with standard neural networks. The modules in modular

neural networks are still neural networks which are to be trained jointly with other

modules using the same backpropagation mechanism [LeCun et al., 1989] that is

used for training standard neural networks.

1.9.1 Neural Module Networks

Andreas et al. [2016c] proposed the Neural Module Network (NMN) architecture

in the context of a VQA task. The model comprises of a collection of neural modules

which are dynamically composed to form a network to answer a given natural

language question about an image. These modules are shared across the datapoints,

jointly-trained and are expected to specialize as different mechanisms.

We first introduce a generic terminology for describing the Neural Module Net-

works.

The Neural Module Networks are comprised of:

1. a collection of modules m where each module mi ∈ m is itself a neural

network with the parameters θi.

29



2. a controller whose task is to produce the network layout specifying how the

modules are to be connected.

The controller is any function that takes in the input and maps it to a network

layout z. Once this layout has been determined, the modules are arranged to form

a neural network f which is used to generate the output y as shown in equation

1.26 below. The process of learning the modules (that make up f) is the same

as the process of learning the parameters of different layers in a standard neural

network. In general, we parameterize the controller to be a neural network (with

parameters φ) that is trained jointly with the modules. Since the structure z is a

discrete variable, we could use either the REINFORCE method [Williams, 1992] or

the gumble-softmax trick [Maddison et al., 2016, Jang et al., 2016]. Even though the

Neural Module Network was introduced in the context of VQA tasks, the framework

is quite general.

z = P (input) (1.25)

y = fz(y|input,m) (1.26)

Model

Now we describe the architecture of the Neural Module Network as introduced

by Andreas et al. [2016c]. The input to the model is a tuple of the form (w, x)

where x is the input image and w is the natural language question about the

image. The model has to predict the correct answer y. The model comprises of a

collection of pre-identified modules m and a controller which is referred to as the

network layout predictor P but instead of learning the network layout predictor,

the linguistic structure of the question is used to determine how the modules should

be organized.

The input question is parsed with the Stanford Dependency Parser [Klein and

Manning, 2003] to obtain a dependency parse representation. The set of dependen-

cies consisting of the w-words(“what”, “who”, “where”, “how”) are filtered to obtain

a modular representation of the question. This representation can be directly map-

ped to a network layout and the resulting network can be used to answer the given

question. Figure 1.5 (taken from Andreas et al. [2016a]) shows an example of this

approach.

30



re-attend[above]

yes

attend[circle]

combine[and]

attend[red]

measure[is]

Figure 1.5 – Neural Module Network for answering the question Is there a red shape above a
circle ? The two attend modules locate the red shapes and circles, the re-attend[above] shifts the
attention above the circles, the combine module computes their intersection, and the measure[is]
module inspects the final attention and determines that it is non-empty. Taken from Andreas
et al. [2016a]

Using such a heuristically-designed network layout predictor makes the training

of modules quite easy as the layout predictor does not need to be trained at all. The

downside is that since the layout-predictor gets no training signal at all, the model

might fail even if the modules are learned perfectly, because of incorrect network

layout. Furthermore, in this case, the network layout depends only on the input

question and any useful signal from the input image is completely disregarded.

Despite these limitations, the proposed approach obtains state-of-the-art results

on two VQA datasets ([Antol et al., 2015, Andreas et al., 2016a]) showing that the

approach is highly useful even in its limited form.

Andreas et al. [2016b] builds on the idea of Neural Module Network and proposes

the Dynamic Neural Module Network architecture. The new architecture has two

improvements over the previous one:

1. The set of five modules (m), that was originally introduced in the context

of visual question answering, is now extended to be able to reason over any

kind of structured representations (text or images). For this purpose, the

following new modules are added: Lookup, Relate, And, and Exists.

2. Instead of completely relying on a dependency parser for generating the net-

work layout, the new approach learns to select from the list of automatically

generated candidate layouts.

31



Johnson et al. [2017b] proposed a variant of neural module networks and eva-

luate it for a visual reasoning task. Like before, the input to the system is an

image-question pair (x, q) and the output is the answer to the question. The task

is formulated as that of inducing a program to describe how the modules should

be connected for the given input. Their proposed system has two components:

1. Program Generator: This component performs the role of the controller

and produces a layout which describes how the modules should be connec-

ted. The key difference from the previous approaches is that the layout is

generated, step by step, and not selected from a list of heuristically genera-

ted layouts. The generator takes as input the question q and produces the

structure z for the network.

2. Execution Engine: The execution engine takes as input the given image

x and the predicted structure z and executes the program (defined by z)

on the image to obtain the answer y. Like the previous works, the set of

modules (m) is predefined.

Since the program generator generates a discrete object. it is trained using the

REINFORCE algorithm [Williams, 1992] while the execution engine is trained with

the standard supervised learning techniques using the backpropagation algorithm.

32



2

Learning Competitive
Ensembles of
Information-Constrained
Primitives

Learning Competitive Ensembles of Information-Constrained Primi-

tives: Anirudh Goyal, Shagun Sodhani, Jonathan Binas, Xue Bin Peng, Yoshua

Bengio, Sergey Levine

This chapter presents joint work with Anirudh Goyal, Jonathan Binas, Xue Bin

Peng, Prof. Yoshua Bengio, and Prof. Sergey Levine. It is under review at Advances

in Neural Information Processing Systems 32 (NeurIPS 2019) (Conference Track).

Contribution: Anirudh had the idea of training primitives without a mas-

ter policy and using information bottleneck mechanism. I helped him develop the

idea. I wrote much of the code for implementing and evaluating the approach, run-

ning the model in the batch setting, and for modifying the models to test on the

new environments. I conducted experiments on four environments and helped with

the draft of the paper. Anirudh did the motion imitation experiments using the

code provided by Xue Bin Peng, helped me in finetuning the parameters for other

experiments and wrote the first draft. Jonathan helped us with the writing and

brainstorming the idea. Prof Yoshua and Prof Sergey helped us to develop the idea

and provided feedback on the writing.

Affiliation

— Anirudh Goyal, MILA, University of Montreal

— Shagun Sodhani, MILA, University of Montreal

— Jonathan Binas, MILA, University of Montreal

— Xue Bin Peng, University of California, Berkeley

— Yoshua Bengio, MILA, University of Montreal

— Sergey Levine, University of California, Berkeley

33



2.1 Abstract

Reinforcement learning agents that operate in diverse and complex envi-

ronments can benefit from the structured decomposition of their behavior.

Often, this is addressed in the context of hierarchical reinforcement lear-

ning, where the aim is to decompose a policy into lower-level primitives

or options, and a higher-level meta-policy that triggers the appropriate be-

haviors for a given situation. However, the meta-policy must still produce

appropriate decisions in all states. In this work, we propose a policy de-

sign that decomposes into primitives, similarly to hierarchical reinforcement

learning, but without a high-level meta-policy. Instead, each primitive can

decide for themselves whether they wish to act in the current state. We

use an information-theoretic mechanism for enabling this decentralized de-

cision: each primitive chooses how much information it needs about the

current state to make a decision and the primitive that requests the most

information about the current state acts in the world. The primitives are

regularized to use as little information as possible, which leads to natural

competition and specialization. We experimentally demonstrate that this

policy architecture improves over both flat and hierarchical policies in terms

of generalization.

2.2 Introduction

Learning policies that generalize to new environments or tasks is a funda-

mental challenge in reinforcement learning. While deep reinforcement lear-

ning has enabled training powerful policies, which outperform humans on

specific, well-defined tasks [Mnih et al., 2015a], their performance often dimi-

nishes even if only some properties of the environment or the task changes.

This is in stark contrast to how humans learn, plan, and act: humans can

seamlessly switch between different aspects of a task, transfer knowledge to

new tasks from remotely related but essentially distinct prior experience,

and combine primitives (or skills) used for distinct aspects of different tasks

in meaningful ways to solve new problems. A hypothesis hinting at the

34



reasons for this discrepancy is that the world is inherently compositional,

such that its features can be described by compositions of small sets of

primitive mechanisms [Parascandolo et al., 2017b]. Since humans seem to

benefit from learning skills and learning to combine skills, it might be a

useful inductive bias for the learning models as well.

This is addressed to some extent by the hierarchical reinforcement learning

(HRL) methods, which focus on learning representations at multiple spatial

and temporal scales, thus enabling better exploration strategies and im-

proved generalization performance [Dayan and Hinton, 1993, Sutton et al.,

1999b, Dietterich, 2000, Kulkarni et al., 2016]. However, hierarchical ap-

proaches rely on some form of learned high-level controller, which decides

when to activate different components in the hierarchy. While low-level sub-

policies can specialize to smaller portions of the state space, the top-level

controller (or master policy) needs to know how to deal with any given

state. That is, it should provide optimal behavior for the entire accessible

state space. As the master policy is trained on a particular state distribu-

tion, learning it in a way that generalizes to new environments effectively

can, therefore, become the bottleneck for such approaches [Sasha Vezhnevets

et al., 2017, Andreas et al., 2017].

We argue, and empirically show, that in order to achieve better generali-

zation, the interaction between the low-level primitives and the selection

thereof should itself be performed without requiring a single centralized net-

work that understands the entire state space. We, therefore, propose a fully

decentralized approach as an alternative to the standard HRL techniques,

where we only learn a set of low-level primitives without learning a high-

level controller. We construct a factorized representation of the policy by

learning simple “primitive” policies, which focus on distinct regions of the

state space. Rather than being gated by a single meta-policy, the primitives

directly compete with one another to determine which one should be ac-

tive at any given time, based on the degree to which their state encoders

“recognize” the current state input.

We frame the problem as one of information transfer between the current

state and a dynamically selected primitive policy. Each policy can by it-

self decide to request information about the current state, and the amount

35



x x x

π1
π2

π3

a

π1
π2

π3

a

π1
π2

π3

a

Action
selection

Competition
mechanism

Compositional
environment

1

2 3

Figure 2.1 – Illustration of our model. An intrinsic competition mechanism, based on the amount
of information each primitive provides, is used to select a primitive to be active for a given input.
Each primitive focuses on distinct features of the environment ; in this case, one policy focuses on
boxes, a second one on gates, and the third one on spheres.

of information requested is used to determine which primitive acts in the

current state. Since the amount of state information that a single primi-

tive can access is limited, each primitive is encouraged to use its resources

wisely. Constraining the amount of accessible information in this way na-

turally leads to a decentralized competition and decision mechanism, where

individual primitives specialize in smaller regions of the state space. We

formalize this information-driven objective based on the variational infor-

mation bottleneck. The resulting set of competing primitives achieves both

a meaningful factorization of the policy and an effective decision mecha-

nism for which primitives to use. Importantly, not relying on a centralized

meta-policy means that individual primitive mechanisms can be recombi-

ned in a “plug-and-play” fashion, and can be transferred seamlessly to new

environments.

Contributions: In summary, the contributions of our work are as follows:

1. We propose a method for learning and operating a set of functional

primitives in a fully decentralized way, without requiring a high-level

36



meta-controller to select active primitives (see Figure 2.1 for illustration).

2. We introduce an information-theoretic objective, the effects of which are

twofold: a) it leads to the specialization of individual primitives to dis-

tinct regions in the state space, and b) it enables a competition mecha-

nism, which is used to select active primitives in a decentralized manner.

3. We demonstrate the superior transfer learning performance of our mo-

del, which is due to the flexibility of the proposed framework regar-

ding the dynamic addition, removal, and recombination of primitives.

Decentralized primitives can be successfully transferred to larger or pre-

viously unseen environments, and outperform models with an explicit

meta-controller for primitive selection.

2.3 Preliminaries

We consider a Markov decision process (MDP) defined by the tuple (S,A, P, r, γ),

where the state space S and the action space A may be discrete or conti-

nuous. The environment emits a bounded reward r : S×A → [rmin, rmax] on

each transition and γ ∈ [0, 1) is the discount factor. π(.|s) denotes a policy

over the actions given the current state s. R(π) = Eπ[
∑

t γ
tr(st)] denotes the

expected total return when the policy π is followed. The standard objective

in reinforcement learning is to maximize the expected total return R(π).

We use the concept of the information bottleneck [Tishby et al., 2000] to

learn compressed representations. The information bottleneck objective is

formalized as minimizing the mutual information of a bottleneck representa-

tion layer with the input while maximizing its mutual information with the

corresponding output. This type of input compression has been shown to

improve generalization [Tishby et al., 2000, Achille and Soatto, 2016, Alemi

et al., 2016].

Computing the mutual information is generally intractable, but can be ap-

proximated using variational inference [Alemi et al., 2016].

37



2.4 Related Work

There are a wide variety of hierarchical reinforcement learning approaches

[Sutton et al., 1998a, Dayan and Hinton, 1993, Dietterich, 2000]. One of

the most widely applied HRL framework is the Options framework ([Sut-

ton et al., 1999b]). An option can be thought of as an action that extends

over multiple timesteps thus providing the notion of temporal abstraction

or subroutines in an MDP. Each option has its own policy (which is followed

if the option is selected) and the termination condition (to stop the execu-

tion of that option). Many strategies are proposed for discovering options

using task-specific hierarchies, such as pre-defined sub-goals [Heess et al.,

2017], hand-designed features [Florensa et al., 2017], or diversity-promoting

priors [Daniel et al., 2012, Eysenbach et al., 2018]. These approaches do not

generalize well to new tasks. Bacon et al. [2017] proposed an approach to

learn options in an end-to-end manner by parameterizing the intra-option

policy as well as the policy and termination condition for all the options.

Eigen-options [Machado et al., 2017a] use the eigenvalues of the Laplacian

(for the transition graph induced by the MDP) to derive an intrinsic reward

for discovering options as well as learning an intra-option policy.

In this work, we consider a sparse reward setup with high dimensional ac-

tion spaces. In such a scenario, performing unsupervised pretraining or using

auxiliary rewards leads to much better performance [Frans et al., 2017, Flo-

rensa et al., 2017, Heess et al., 2017]. Auxiliary tasks such as motion imi-

tation have been applied to learn motor primitives that are capable of per-

forming a variety of sophisticated skills [Liu and Hodgins, 2017, Peng et al.,

2017, Merel et al., 2019b,a].

Another common HRL architecture is as follows: there are a number of low-

level primitives whose action-space is the action space of the task and there

is a high-level policy (called the controller or the master policy) whose job is

to switch or coordinate between these low-level policies. These approaches

aim to learn the hierarchical spatiotemporal decompositions from the re-

wards obtained while interacting with the environment [Sasha Vezhnevets

et al., 2017]. Unlike these approaches, which focus on the single-task set-

ting only, Frans et al. [2017] proposed a meta-learning algorithm to learn

38



an ensemble of primitives that can be designed to easily generalize across a

distribution of tasks. Since our focus is on highlighting the superior perfor-

mance of our method in multi-task setup and transfer learning setup, MLSH

is an important baseline.

Our work is also related to the Neural Module Network family of architec-

tures [Andreas et al., 2017, Johnson et al., 2017b, Rosenbaum et al., 2019]

where the idea is to learn modules that can perform some useful computa-

tion like solving a subtask and a controller that can learn to combine these

modules for solving novel tasks.

The key difference between our approach and all the works mentioned above

is that we learn functional primitives in a fully decentralized way without

requiring any high-level meta-controller or master policy.

2.5 Information-Theoretic Decentralized

Learning of Distinct Primitives

Our goal is to learn a policy, composed of multiple primitive sub-policies,

to maximize average returns over T -step interactions for a distribution of

tasks. Simple primitives which focus on solving a part of the given task (and

not the complete task) should generalize more effectively, as they can be

applied to similar aspects of different tasks (i.e subtasks) even if the overall

objective of the tasks are drastically different. Learning primitives in this

way can also be viewed as learning a factorized representation of a policy,

which is composed of several independent policies.

Our proposed approach consists of three components: 1) a mechanism for

restricting a particular primitive to a subset of the state space ; 2) a compe-

tition mechanism between primitives to select the most effective primitive

for a given state ; 3) a regularization mechanism to improve the generaliza-

tion performance of the policy as a whole. We consider experiments with

both fixed and variable sets of primitives and show that our method allows

for primitives to be added or removed during training, or recombined in

39



new ways. Each primitive is represented by a differentiable, parameterized

function approximator, such as a neural network.

2.5.1 Primitives with an Information Bottleneck

To encourage each primitive to encode information from a particular part

of state space only, we limit the amount of information each primitive can

access from the state. In particular, each primitive has an information bot-

tleneck with respect to the input state, preventing it from using all the

information from the state.

To implement an information bottleneck, we design each of the K primi-

tives to be composed of an encoder penc(Zk | S) and a decoder pdec(A | Zk),
together forming the primitive policy,

πkθ (A | S) =
∫
z
penc(zk | S) pdec(A | zk) dzk .

1

The encoder output Z is meant to represent the information about the cur-

rent state S that an individual primitive believes is important to access in

order to perform well. The decoder takes this encoded information and pro-

duces a distribution over the actions A. Following the variational information

bottleneck objective [Alemi et al., 2016], we penalize the KL divergence of

Z and the prior,

Lk = DKL(penc(Zk|S)||N (0, 1)) . (2.1)

In other words, a primitive pays an “information cost” proportional to Lk for

accessing the information about the current state. In the experiments below,

we fix the prior to be a unit Gaussian. In the general case, we can learn the

prior as well and include its parameters in θ. The information bottleneck

encourages each primitive to limit its knowledge about the current state, but

it will not prevent multiple primitives from specializing to similar parts of the

state space. To mitigate this redundancy, and to make individual primitives

focus on different regions in the state space, we introduce an information-

1. In practice, we estimate the marginalization over Z using a single sample throughout our
experiments.

40



based competition mechanism to encourage diversity among the primitives,

as described in the next section.

2.5.2 Competing Information-Constrained Primitives

We can use the information measure from equation 2.1 to define a selection

mechanism for the primitives without having to learn a centralized meta-

policy. The idea is that the information content of an individual primitive

encodes its effectiveness in a given state s such that the primitive with the

highest value Lk
should be activated in that particular state. We compute normalized weights

αk for each of the k = 1, . . . , K primitives by applying the softmax operator,

αk = exp(Lk)/
∑

j exp(Lj) . (2.2)

The resulting weights αk can be treated as a probability distribution that can

be used in different ways: form a mixture of primitives, sample a primitive

from the distribution, or simply select the primitive with the maximum

weight. The selected primitive is then allowed to act in the environment.

Figure 2.2 – The primitive-selection mechanism of our model. The primitive with most infor-
mation acts in the environment, and gets the reward.

Trading Reward and Information: To make the different primitives com-

pete for competence in the different regions of the state space, the environ-

ment reward is distributed according to their participation in the global

decision, i.e. the reward rk given to the kth primitive is weighted by its se-

41



lection coefficient, such that rk = αkr, with r =
∑

k rk. Hence, a primitive

that access more information about the current state has a higher scaling

factor which could result in higher returns (even though the returns from

the environment remain the same, the primitive experiences a scaled version

of the return). At the same time, accessing more information requires the

primitive to pay a higher price (equal to information cost i.e. Lk) as well.

Hence, a primitive that does not access any state information, will not have

to pay any information cost. This means that the primitives need to balance

between the cost (Lk) and benefit (αk) of encoding the information. The in-

formation bottleneck and the competition mechanism, when combined with

the overall reward maximization objective, should lead to specialization of

individual primitives to distinct regions in the state space. That is, each

primitive should specialize in a part of the state space that it can reliably

associate rewards with. Since the ensemble together still needs to unders-

tand all of the state space for the given task, different primitives need to

encode and focus on different parts of the state space. Figure 2.2 depicts the

various components of our proposed model.

2.5.3 Regularization of the Combined Representation

To encourage a diverse set of primitive configurations and to make sure that

the model does not collapse to a single primitive (which remains active at

all times), we introduce an additional regularization term,

Lreg =
∑

k αkLk . (2.3)

where

αk = eLk/
∑
j

eLj ,

and thus

logαk = Lk − log
∑
j

eLj ,

or

Lk = logαk + LSE(L1, . . . ,LK) ,

42



where LSE is the LogSumExp function, LSE(x) = log(
∑

j e
xj). Note that

LSE(L1, . . . ,LK) = log
∑

j e
Lj is independent of k.

Plugging this in, and using
∑
αk = 1, we get

Lreg =
∑
k

αk logαk + LSE(L1, . . . ,LK) = −H(α) + LSE(L1, . . . ,LK) .

(2.4)

where H(α) is the entropy of the α distribution. The desired behavior is

achieved by minimizing Lreg. Increasing the entropy of α leads to a diverse

set of primitive selections, ensuring that different combinations of the pri-

mitives are used. On the other hand, LSE approximates the maximum of its

arguments, LSE(x) ≈ maxj xj, and, therefore, penalizes the dominating Lk
terms, thus equalizing their magnitudes.

Information-theoretic interpretation Notably, Lreg also represents an

upper bound to the KL-divergence of a mixture of the currently active pri-

mitives and a prior,

Lreg ≥ DKL(
∑
k

αkpenc(Zk|S)||N (0, 1)) ,

and thus can be regarded as a term limiting the information content of the

mixture of all active primitives. This arises from the convexity properties of

the KL divergence, which directly lead to

DKL(
∑
k

αkfk||g) ≤
∑
k

αkDKL(fk||g) .

2.5.4 Objective and Algorithm Summary

Our overall objective function consists of 3 terms,

1. The expected return from the standard RL objective, R(π) which is

distributed among the primitives according to their participation,

2. The individual bottleneck terms leading the individual primitives to focus

on specific parts of the state space, Lk for k = 1, . . . , K,

3. The regularization term applied to the combined model, Lreg.

43



The overall objective for the kth primitive thus takes the form:

Jk(θ) ≡ Eπθ [rk]− βindLk − βregLreg , (2.5)

where Eπθ denotes an expectation over the state trajectories generated by

the agent’s policy, rk = αkr is the reward given to the kth primitive, and

βind, βreg are the hyper-parameters controlling the impact of the respective

terms.

Implementation: In our experiments, the encoders penc(zk|S) and decoders

pdec(A|zk) are represented by neural networks, the parameters of which we

denote by θ. The encoder penc(zk|S) produce the mean and the log-variance

of a Gaussian distribution from which the zk values can be sampled. zk and

actions are sampled for each primitive at every step. While our approach

is compatible with any RL method, we maximize J(θ) computed on-policy

from the sampled trajectories using a score function estimator [Williams,

1992, Sutton et al., 1999a], specifically A2C [Mnih et al., 2016] (unless other-

wise noted). Every experimental result reported has been averaged over 5

random seeds. Our model introduces 2 extra hyper-parameters βind, βreg.

2.6 Environments

2.6.1 2D Bandits Environment

We use the 2D moving bandits task, introduced in Frans et al. [2017]. In

this task, the agent is placed in a 2D world and is shown the position of

two randomly placed points. One of these points is the goal point but the

agent does not know which. We use the sparse reward setup where the agent

receives the reward of 1 if it is within a certain distance of the goal point

and 0 at all other times. Every episode lasts for 50 steps and to get the

reward, the learning agent must reach near the goal point in those 50 steps.

The agent’s action space consists of 5 actions - moving in one of the four

cardinal directions (top, down, left, right) and staying still.

44



Observation Space The 2D bandits task provides a 6-dimensional flat

observation. The first two dimensions correspond to the (x, y) coordinates

of the current position of the agent and the remaining four dimensions cor-

respond to the (x, y) coordinates of the two randomly chosen points.

2.6.2 Four-rooms Environment

We consider the Four-rooms grid environment [Sutton et al., 1999c] where

the agent has to navigate its way through a grid of four interconnected

rooms to reach a goal position within the grid. The agent can perform one

of the following four actions: move up, move down, move left, move right.

The environment is stochastic and with 1/3 probability, the agent’s chosen

action is ignored and a new action (randomly selected from the remaining 3

actions) is executed ie the agent’s selected action is executed with a proba-

bility of only 2/3 and the agent takes any of the 3 remaining actions with a

probability of 1/9 each.

The World In the Four-rooms setup, the world (environment for the lear-

ning agent) is a square grid 11 × 11. The grid is divided into 4 rooms such

that each room is connected with two other rooms via hallways. The layout

of the rooms is shown in figure 2.3. The agent spawns at a random position

and has to navigate to a goal position within 500 steps.

Reward Function We consider the sparse reward setup where the agent

gets a reward (of 1) only if it completes the task (and reaches the goal

position) and 0 at all other time steps. We also apply a time limit of 300

steps on all the tasks.

Observation Space The environment has a total of 104 states (or cells)

that can be occupied. These states are mapped to integer identifiers. At

any time t, the environment observation is a one-hot representation of the

identifier corresponding to the state (or the cell) the agent is in right now

and does not return any information about the goal state.

45



Figure 2.3 – View of the four-room environment

Task distribution In the Four-room environment, the agent has to navi-

gate to a goal position which is randomly selected from a set of goal positions.

We can use the size of this set of goal positions to define a curriculum of task

distributions. Since the environment does not provide any information about

the goal state, the larger the goal set, the harder is the task. Specifically,

we consider three tasks - Fourroom-v0, Fourroom-v1 and Fourroom-v2 with

the set of 2, 4 and 8 goal positions respectively. The set of goal positions for

each task is fixed but not known to the learning agent.

2.6.3 Ant Maze Environment

We use the Mujoco-based quadruple ant [Todorov et al., 2012] to evaluate

the transfer performance of our approach on the cross maze environment

[Haarnoja et al., 2018]. The training happens in two phases. In the first

phase, we train the ant to walk on a surface using a motion reward and using

just 1 primitive. In the second phase, we make 4 copies of this trained policy

and train the agent to navigate to a goal position in a maze (Figure 2.4).

The goal position is chosen from a set of 3 (or 10) goals. The environment

46



is a continuous control environment and the agent can directly manipulate

the movement of joints and limbs.

Figure 2.4 – View of the Ant Maze environment with 3 goals

Observation Space In the first phase (training the ant to walk), the

observations from the environment correspond to the state-space represen-

tation ie a real-valued vector that describes the state of the ant in mechanical

terms - position, velocity, acceleration, angle, etc of the joints and limbs. In

the second phase (training the ant to navigate the maze), the observation

from the environment also contains the location of the goal position along

with the mechanical state of the ant.

2.6.4 MiniGrid Environment

We use the MiniGrid environment [Chevalier-Boisvert et al., 2018] which is

an open-source, grid-world environment package 2. It provides a family of

customizable reinforcement learning environments that are compatible with

the OpenAI Gym framework [Brockman et al., 2016]. Since the environments

can be easily extended and modified, it is straightforward to control the

complexity of the task (eg controlling the size of the grid, the number of

rooms or the number of objects in the grid, etc). Such flexibility is very useful

when experimenting with curriculum learning or testing for generalization.

2. https://github.com/maximecb/gym-minigrid

47



The World In MiniGrid, the world (environment for the learning agent)

is a rectangular grid of size say M ×N . Each tile in the grid contains either

zero or one object. The possible object types are wall, floor, lava, door, key,

ball, box and goal. Each object has an associated string (which denotes the

object type) and an associated discrete color (could be red, green, blue,

purple, yellow and grey). By default, walls are always grey and goal squares

are always green. Certain objects have special effects. For example, a key

can unlock a door of the same color.

Reward Function We consider the sparse reward setup where the agent

gets a reward (of 1) only if it completes the task and 0 at all other time

steps. We also apply a time limit of 500 steps on all the tasks.

Action Space The agent can perform one of the following seven actions

per timestep: turn left, turn right, move forward, pick up an object, drop the

object being carried, toggle, done (optional action).

The agent can use the turn left and turn right actions to rotate around and

face one of the 4 possible directions (north, south, east, west). The move

forward action makes the agent move from its current tile onto the tile in

the direction it is currently facing, provided there is nothing on that tile, or

that the tile contains an open door. The toggle actions enable the agent to

interact with other objects in the world. For example, the agent can use the

toggle action to open the door if they are right in front of it and have the

key of matching color.

Observation Space The MiniGrid environment provides partial and ego-

centric observations. For all our experiments, the agent sees the view of a

square of 4 × 4 tiles in the direction it is facing. The observations are pro-

vided as a tensor of shape 4 × 4 × 3. Additionally, the environment also

provides a natural language description of the goal. An example of the goal

description is: “Unlock the door and pick up the red ball”.

Tasks in MiniGrid Environment We consider the following tasks in

the MiniGrid environment:

48



Figure 2.5 – RGB view of the Fetch environment.

Figure 2.6 – RGB view of the Unlock environment.

1. Fetch: In the Fetch task, the agent spawns at an arbitrary position

in a 8× 8 grid (figure 2.5 ). It is provided with a natural language goal

description of the form“go fetch a yellow box”. The agent has to navigate

to the object being referred to in the goal description and pick it up.

2. Unlock: In the Unlock task, the agent spawns at an arbitrary position

in a two-room grid environment. Each room is 8× 8 square (figure 2.6 ).

It is provided with a natural language goal description of the form “open

the door”. The agent has to find the key that corresponds to the color of

the door, navigate to that key and use that key to open the door.

3. UnlockPickup: This task is basically a union of the Unlock and the

Fetch tasks. The agent spawns at an arbitrary position in a two-room

grid environment. Each room is 8× 8 square (figure 2.7 ). It is provided

with a natural language goal description of the form “open the door and

49



Figure 2.7 – RGB view of the UnlockPickup environment.

pick up the yellow box”. The agent has to find the key that corresponds

to the color of the door, navigate to that key, use that key to open the

door, enter the other room and pick up the object mentioned in the goal

description.

2.7 Implementation Details

In this section, we describe the implementation details which are common

for all the models. Other task-specific details are covered in the respective

task sections.

1. All the models (proposed as well as the baselines) are implemented in

Pytorch 1.1 unless stated otherwise. [Paszke et al., 2017].

2. For Meta-Learning Shared Hierarchies [Frans et al., 2017] and Option-

Critic [Bacon et al., 2017], we adapted the author’s implementations 3for

our environments.

3. During the evaluation, we use 10 processes in parallel to run 500 episodes

and compute the percentage of times the agent solves the task within the

prescribed time limit. This metric is referred to as the “success rate”.

4. The default time limit is 500 steps for all the tasks unless specified other-

wise.

3. https://github.com/openai/mlsh, https://github.com/jeanharb/option critic

50



5. All the feedforward networks are initialized with the orthogonal initiali-

zation where the input tensor is filled with a (semi) orthogonal matrix.

6. For all the embedding layers, the weights are initialized using the unit-

Gaussian distribution.

7. The weights and biases for all the GRU model are initialized using the

uniform distribution from U(−
√
k,
√
k) where k = 1

hidden size
.

8. During training, we perform 64 rollouts in parallel to collect 5-step tra-

jectories.

9. The βind and βreg parameters are both selected from the set {0.001, 0.005, 0.009}
by performing cross validation.

In section 2.7.2, we explain all the components of the model architecture

along with the implementation details in the context of the MiniGrid Envi-

ronment. For the subsequent environments, we describe only those compo-

nents and implementation details which are different than their counterpart

in the MiniGrid setup and do not describe the components which work iden-

tically or the hyperparameters which do not change.

2.7.1 Model Architecture for MiniGrid

Encoder Architecture The agent’s encoder network consists of two mo-

dels - a CNN+GRU based observation encoder and a GRU [Cho et al., 2014]

based goal encoder

Observation Encoder It is a three layer CNN with the output channel

sizes set to 16, 16 and 32 respectively (with ReLU layers in between) and

kernel size set to 2× 2 for all the layers. The output of the CNN is flattened

and fed to a GRU model (referred to as the observation-rnn) with 128-

dimensional hidden state. The output from the observation-rnn represents

the encoding of the observation.

Goal Encoder It comprises of an embedding layer followed by a unidirec-

tional GRU model. The dimension of the embedding layer and the hidden

and the output layer of the GRU model are all set to 128.

51



The concatenated output of the observation encoder and the goal encoder

represents the output of the encoder.

Decoder The decoder network comprises the action network and the critic

network - both of which are implemented as two layer feedforward networks.

2.7.2 Components specific to the proposed model

The components that we described so far are used by both the baselines as

well as our proposed model. We now describe the components that are spe-

cific to our proposed model. Our proposed model consists of an ensemble of

primitives and the components we describe apply to each of those primitives.

Hyperparameters Table 2.1 lists the different hyperparameters for the

MiniGrid tasks.

Table 2.1 – Hyperparameters for the Minigrid tasks

Parameter Value

Learning Algorithm A2C

Opitimizer RMSProp[Tieleman and Hinton, 2012]

learning rate 7 · 10−4

batch size 64

discount 0.99

lambda (for GAE [Schulman et al., 2015]) 0.95

entropy coefficient 10−2

loss coefficient 0.5

Maximum gradient norm 0.5

Information Bottleneck Given that we want to control and regularize

the amount of information that the encoder encodes, we compute the KL

divergence between the output of the action-feature encoder network and a

diagonal unit Gaussian distribution. More is the KL divergence, more is the

information that is being encoded with respect to the Gaussian prior and

vice-versa. Thus we regularize the primitives to minimize the KL divergence.

52



2.7.3 Model Architecture for 2D Bandits

Encoder Architecture

The agent’s encoder network consists of a GRU-based recurrent model (refer-

red as the observation-rnn) with a hidden state size of 128. The 6-dimensional

observation from the environment is the input to the GRU model. The out-

put from the observation-rnn represents the encoding of the observation.

2.7.4 Hyperparameters

Table 2.2 lists the different hyperparameters for the Bandit tasks.

Table 2.2 – Hyperparameters for the 2D Bandits task

Parameter Value

Learning Algorithm PPO [Schulman et al., 2017]

epochs per update (PPO) 10

Optimizer Adam[Kingma and Ba, 2014]

learning rate 3 · 10−5

β1 0.9

β2 0.999

batch size 64

discount 0.99

entropy coefficient 0

loss coefficient 1.0

Maximum gradient norm 0.5

2.7.5 Model Architecture for Ant Maze Environment

Encoder Architecture

The agent’s encoder network consists of a GRU-based recurrent model (refer-

red as the observation-rnn with a hidden state size of 128. The real-valued

state vector from the environment is fed to the GRU model. The output

from the observation-rnn represents the encoding of the observation. Note

53



that in the case of phase 1 vs phase 2, only the size of the input to the

observation-rnn changes and the encoder architecture remains the same.

Decoder

The decoder network comprises the action network and the critic network.

All these networks are implemented as feedforward networks. The design of

these networks is very similar to that of the decoder model for the Mini-

Grid environment as described in section 2.7.1 with just one difference. In

this case, the action space is continuous so the action-feature decoder net-

work produces the mean and log-standard-deviation for a diagonal Gaussian

policy. This is used to sample a real-valued action to execute in the environ-

ment.

2.8 Experimental Results

We designed experiments to address the following questions:

1. Learning primitives: Can an ensemble of primitives be learned over a

distribution of tasks ?

2. Transfer Learning using primitives: Can the learned primitives be

transferred to unseen/unsolvable sparse environments ?

3. Comparison to centralized methods: How does our method compare

to approaches where the primitives are trained using an explicit meta-

controller, in a centralized way ?

Baselines. We compare our proposed method to the following baselines:

1. Option Critic [Bacon et al., 2017]: We extended the author’s imple-

mentation 4 of the Option Critic architecture and experimented with

multiple variations in the terms of hyperparameters and state/goal enco-

ding. None of them yielded reasonable performance in partially observed

tasks, so we omit it from the results.

4. https://github.com/jeanharb/option critic

54



2. MLSH(Meta-Learning Shared Hierarchy [Frans et al., 2017]): This me-

thod uses meta-learning to learn sub-policies that are shared across tasks

along with learning a task-specific high-level master. It also requires a

phase-wise training schedule between the master and the sub-policies to

stabilize training. We use the MLSH implementation provided by the

authors 5.

3. Transfer A2C: In this method, we first learn a single policy on one task

and then transfer the policy to another task, followed by fine-tuning in

the second task.

2.8.1 Multi-Task Training

We evaluate our model on the Minigrid environment. We consider three tasks

here: the Pickup task (A), where the agent is required to pick up an object

specified by the goal string, the Unlock task (B) where the agent needs to

unlock the door (there could be multiple keys in the environment and the

agent needs to use the key which matches the color of the door) and the

UnlockPickup task (C), where the agent first needs to unlock a door that

leads to another room and in the next room, the agent needs to find and

pick up the object specified by the goal string.

We train agents with varying numbers of primitives on various tasks –

concurrently, as well as in transfer settings. The different experiments are

summarized in Figs. 2.8 and 2.9. An advantage of the multi-task setting is

that it allows for quantitative interpretability as to when and which pri-

mitives are being used. The results indicate that a system composed of

multiple primitives generalizes more easily to a new task, as compared to a

single policy. We further demonstrate that several primitives can be combi-

ned dynamically and that the individual primitives respond to stimuli from

new environments when trained on the related environments.

5. https://github.com/openai/mlsh

55



Figure 2.8 – Multitask training. Each panel corresponds to a different training setup, where
different tasks are denoted A, B, C, ..., and a rectangle with n circles corresponds to an agent
composed of n primitives trained on the respective tasks. Top row: activation of primitives for
agents trained on single tasks. Bottom row: Retrain: two primitives are trained on A and trans-
ferred to B. The results (success rates) indicate that the multi-primitive model is substantially
more sample efficient than the baseline (transfer A2C). Copy and Combine: more primitives
are added to the model over time in a plug-and-play fashion (2 primitives are trained on A ; the
model is extended with a copy of itself ; the resulting four-primitive model is trained on B.) This is
more sample efficient than other strong baselines, such as [Frans et al., 2017, Bacon et al., 2017].
Zero-Shot Generalization: A set of primitives is trained on C, and zero-shot generalization to
A and B is evaluated. The primitives learn a form of spatial decomposition which allows them to
be active in both target tasks, A and B.

2.8.2 Do Learned Primitives Help in Transfer Lear-

ning ?

We now evaluate our approach in the settings where the adaptation to the

changes in the task is vital. The argument in the favor of modularity is that

it enables better knowledge transfer between related tasks. This transfer is

more effective when the tasks are closely related as the model would only

have to learn how to compose the already learned primitives. In general, it is

difficult to determine how “closely” related two tasks are and the inductive

56



bias of modularity could be harmful if the two tasks are quite different. We

investigate here the transfer properties of a primitive trained in one envi-

ronment and transferred to a different one. We want to answer the following

questions:

1. Can our proposed approach learn primitives that remain active when

training the agent over a sequence of tasks ?

2. Can our proposed approach be used to improve the sample efficiency of

the agent over a sequence of tasks ?

To answer these questions, we consider two setups. In the baseline setup,

we train a flat A2C policy on Fourrooms-v0 till it achieves a 100 % success

rate during evaluation. Then we transfer this policy to Fourrooms-v1 and

continue to train till it achieves a 100 % success rate during the evaluation

on Fourrooms-v1. We transfer the policy one more time to Fourrooms-v2

and continue to train the policy until it reaches a 60% success rate. In the

last task(Fourrooms-v2 ), we do not use 100% as the threshold as the models

do not achieve 100% for training even after training for 10M frames. We use

60% as the baseline models generally converge around this value.

In the second setup, we repeat this exercise of training on one task and

transferring to the next task with our proposed model. Note that even

though our proposed model converges to a higher value than 60% in the

last task(Fourrooms-v2 ), we compare the number of samples required to

reach 60% success rate to provide a fair comparison with the baseline.

Figure 2.10 shows that our proposed setup needs much fewer samples as

compared to the A2C baseline which is trained in the same manner. The

primitives aslo remain active over the distribution of the tasks.

Continuous control for ant maze We evaluate the transfer performance

of pretrained primitives on the cross maze environment [Haarnoja et al.,

2018]. Here, a quadrupedal robot must walk to the different goals along the

different paths (see Section 2.6.3 for details). The goal is randomly chosen

from a set of available goals at the start of each episode. We pretrain a

policy with a motion reward in an environment which does not have any

walls (similar to [Haarnoja et al., 2018]), and then transfer the policy to the

second task where the ant has to navigate to a random goal chosen from one

57



A

B

C

D

◦
◦
◦
◦
◦
◦
◦◦

Method 3 goals 10 goals

Flat Policy (PPO) 11 ± 5 % 4 ± 2 %

Option critic 18 ± 10 % 7 ± 3 %

MLSH 32 ± 3 % 5 ± 3 %

Explicit high level policy 21 ± 5 % 11 ± 2 %

Proposed method 68 ± 3% 40 ± 3%

Figure 2.9 – Left: Multitask setup, where we show
that we are able to train 8 primitives when training
on a mixture of 4 tasks. Right: Success rates on the
different Ant Maze tasks. Success rate is measured as
the number of times the ant is able to reach the goal
(based on 500 sampled trajectories).

of the 3 (or 10) available goal options. For our model, we make four copies

of the pretrained policies and then finetune the model using the pretrained

policies as primitives. We compare to both MLSH [Frans et al., 2017] and

option-critic [Bacon et al., 2017]. All these baselines have been pretrained

in the same manner. As evident from Figure 2.9, our method outperforms

the other approaches. The fact that the initial policies successfully adapt to

the transfer environment underlines the flexibility of our approach.

2.8.3 Learning Ensembles of Functional Primitives

We evaluate our approach on a number of RL environments to show that

we can indeed learn sets of primitive policies focusing on different aspects

of a task and collectively solving it.

Motion Imitation To test the scalability of the proposed method, we

present a series of tasks from the motion imitation domain. In these tasks, we

train a simulated 2D biped character to perform a variety of highly dynamic

skills by imitating motion capture clips recorded from human actors. Each

mocap clip is represented by a target state trajectory τ ∗ = {s∗0, s∗1, ..., s∗T},
where s∗t denotes the target state at timestep t. The input to the policy

is augmented with a goal gt = {s∗t+1, s
∗
t+2}, which specifies the the target

states for the next two timesteps. Both the state st and goal gt are then

58



Figure 2.10 – Continual Learning Scenario: We consider a continual learning scenario where
we train 2 primitives for 2 goal positions, then transfer (and finetune) on 4 goal positions then
transfer (and finetune) on 8 goals positions. The plot on the left shows the primitives remain
activated. The solid green line shows the boundary between the tasks, The plot on the right
shows the number of samples taken by our model and the transfer baseline model across different
tasks. We observe that the proposed model takes fewer steps than the baseline (an A2C policy
trained in a similar way) and the gap in terms of the number of samples keeps increasing as tasks
become harder.

processed by the encoder penc(zt|st, gt). The repertoire of skills consists of 8

clips depicting different types of walks, runs, jumps, and flips. The motion

imitation approach closely follows Peng et al. [2018].

Snapshots of some of the learned motions are shown in Figure 2.11. 6 To

analyze the specialization of the various primitives, we computed 2D embed-

dings of states and goals which each primitive is active in, and the actions

proposed by the primitives. Figure 2.12 illustrates the embeddings compu-

ted with t-SNE van der Maaten and Hinton [2008]. The embeddings show

distinct clusters for the primitives, suggesting a degree of specialization of

each primitive to certain states, goals, and actions.

2D Bandits We train two primitives on the 2D Bandits tasks and evaluate

the relative frequency of activation of the primitives throughout the training.

It is important that both the primitives remain active. If only 1 primitive

is acting most of the time, its effect would be the same as training a flat

policy. We evaluate the effectiveness of our model by comparing the success

rate with a flat A2C baseline. Figure 2.13 shows that not only do both the

primitives remain active throughout training, our approach also outperforms

the baseline approach.

6. See supplementary information for video material.

59



Figure 2.11 – Snapshots of motions learned by the policy. Top: Reference motion clip. Middle:
Simulated character imitating the reference motion. Bottom: Probability of selecting each pri-
mitive.

S G A

Figure 2.12 – Embeddings visualizing the states (S) and goals (G) which each primitive is active
in, and the actions (A) proposed by the primitives for the motion imitation tasks. A total of four
primitives are trained. The primitives produce distinct clusters.

2.9 Summary and Discussion

We present a framework for learning an ensemble of primitive policies which

can collectively solve the tasks in a decentralized fashion. Rather than re-

lying on a centralized, learned meta-controller, the selection of active pri-

mitives is implemented through an information-theoretic mechanism. The

learned primitives can be flexibly recombined to solve more complex tasks.

Our experiments show that, on a partially observed “Minigrid” task and a

continuous control “ant maze” walking task, our method can enable bet-

ter transfer than flat policies and hierarchical RL baselines, including the

Meta-learning Shared Hierarchies model and the Option-Critic framework.

60



Figure 2.13 – Performance on the 2D bandits task. Left: The comparison of our model (blue
curve - decentralized policy) with the baseline (red curve - flat policy) in terms of success rate
shows the effectiveness of our proposed approach. Right: Relative frequency of activation of the
primitives (normalized to sum up to 1). Both primitives are utilized throughout the training.

On Minigrid, we show how primitives trained with our method can transfer

much more successfully to new tasks and on the ant maze, we show that

primitives initialized from a pretrained walking control can learn to walk to

different goals in a stochastic, multi-modal environment with nearly double

the success rate of a more conventional hierarchical RL approach, which

uses the same pretraining but a centralized high-level policy even though

the architecture of the primitives remains the same in the two cases.

61



3 Conclusion

The work described in this thesis explores the problem of training an en-

semble of low-level functional primitives which can be composed together

to solve complex tasks. Our work is related to the Hierarchical Reinforce-

ment Learning paradigm where several approaches exist for training a set of

low-level policies using a high-level meta-policy to achieve structural decom-

position of the behavior. The centralized decision-making approach (where

the meta-policy decides which primitive will act in which state) makes the

meta-policy a single point of failure. Our proposed approach improves over

these approaches by introducing a mechanism for training the primitives

in a decentralized manner. We introduce an information-theoretic objec-

tive which encourages competition between the primitives to specialize in

different parts of the state space and provides a mechanism to select which

primitive should be active in what state. We show that our approach achieves

superior transfer learning performance as compared to both flat and hierar-

chical reinforcement learning approaches by enabling the dynamic addition,

removal, and recombination of primitives.

In general, for a given arbitrary task (or distribution of tasks), it is very

difficult to come up with the exact number of primitives that should be trai-

ned to obtain the most optimal composition. Given that the decision making

(selecting the primitives) is decentralized, our approach enables adding and

removing primitives both during training and during transfer. This gives us

a greater degree of freedom to experiment with different number of primi-

tives. For instance, we observe that if we introduce too many primitives,

some of the primitives do not specialize at all and we can remove them from

training. This allows for the possibility of dynamically changing the capa-

city of the network, while it is training. In the future work, we would like

to explore this direction further to see if we can come up with an approach

where the existing primitives may “vote” to add/remove new primitives to

62



enable learning better compositions.

Another related application of our approach would be in the context of

continual learning where we add primitives as the model trains over newer

tasks. The two fundamental challenges in continual learning are i) catastro-

phic forgetting - as the model switches training from one task to another, it

forgets the knowledge it acquired on the first task. ii) Capacity Saturation

- as the model trains through a sequence of tasks, it runs out of effective

capacity to learn new tasks without forgetting the knowledge from previous

tasks. Adding new primitives provides a way for the old primitives to re-

tain knowledge about the previous tasks while allowing the new primitives

to adapt to the newer tasks where ever required. Note that existing HRL

approaches cannot be extended for the continual learning use case in such a

straightforward manner because of the meta-policy which would now have

to adapt itself to all the new tasks.

There could be several possible mechanisms for enabling the training of pri-

mitives without an explicit meta-policy, In this work, we use the competition

mechanism which works quite well in practice. Another way of formulating

the objective for training the primitives would be in terms of how fast they

adapt to new tasks. We could use a meta-learning approach to learn a fac-

torization of the primitives that leads to faster adaptation to the transfer

task. In order to have a good transfer performance, the system would have

to learn an optimal factorization of the primitives.

63



Bibliographie

Alessandro Achille and Stefano Soatto. Information dropout: learning op-

timal representations through noise. CoRR, abs/1611.01353, 2016. URL

http://arxiv.org/abs/1611.01353.

Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep

variational information bottleneck. CoRR, abs/1612.00410, 2016. URL

http://arxiv.org/abs/1612.00410.

Ferran Alet, Maria Bauza, Alberto Rodriguez, Tomas Lozano-Perez, and

Leslie P Kaelbling. Modular meta-learning in abstract graph networks for

combinatorial generalization. arXiv preprint arXiv:1812.07768, 2018a.

Ferran Alet, Tomás Lozano-Pérez, and Leslie P Kaelbling. Modular meta-

learning. arXiv preprint arXiv:1806.10166, 2018b.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural

module networks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 39–48, 2016a.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Lear-

ning to compose neural networks for question answering. arXiv preprint

arXiv:1601.01705, 2016b.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural

module networks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 39–48, 2016c.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforce-

ment learning with policy sketches. In Proceedings of the 34th Internatio-

nal Conference on Machine Learning-Volume 70, pages 166–175. JMLR.

org, 2017.

64

http://arxiv.org/abs/1611.01353
http://arxiv.org/abs/1612.00410


Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv

Batra, C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question ans-

wering. In Proceedings of the IEEE international conference on computer

vision, pages 2425–2433, 2015.

Gasser Auda and Mohamed Kamel. Modular neural networks: a survey.

International Journal of Neural Systems, 9(02):129–151, 1999.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic archi-

tecture. In AAAI, pages 1726–1734, 2017.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The

arcade learning environment: An evaluation platform for general agents.

Journal of Artificial Intelligence Research, 47:253–279, 2013.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic

gridworld environment for openai gym. https://github.com/maximecb/

gym-minigrid, 2018.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-

danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning

phrase representations using rnn encoder-decoder for statistical machine

translation. arXiv preprint arXiv:1406.1078, 2014.

Noam Chomsky. Aspects of the theory of syntax. Technical report, MAS-

SACHUSETTS INST OF TECH CAMBRIDGE RESEARCH LAB OF

ELECTRONICS, 1964.

Noam Chomsky. Language and mind. 1968.

JJ Cibson. The ecological approach to visual perceptions. 1979.

Luis C Cobo, Charles L Isbell, and Andrea L Thomaz. Object focused q-

learning for autonomous agents. In Proceedings of the 2013 international

65

https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid


conference on Autonomous agents and multi-agent systems, pages 1061–

1068. International Foundation for Autonomous Agents and Multiagent

Systems, 2013.

Michael W Cole, Joset A Etzel, Jeffrey M Zacks, Walter Schneider, and

Todd S Braver. Rapid transfer of abstract rules to novel contexts in

human lateral prefrontal cortex. Frontiers in human neuroscience, 5:142,

2011.

Michael W Cole, Patryk Laurent, and Andrea Stocco. Rapid instructed task

learning: A new window into the human brain’s unique capacity for flexible

cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 13(1):

1–22, 2013.

Christian Daniel, Gerhard Neumann, and Jan Peters. Hierarchical relative

entropy policy search. In Artificial Intelligence and Statistics, pages 273–

281, 2012.

Peter Dayan. Improving generalization for temporal difference learning: The

successor representation. Neural Computation, 5(4):613–624, 1993.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In

Advances in neural information processing systems, pages 271–278, 1993.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-

efficient approach to policy search. In Proceedings of the 28th International

Conference on machine learning (ICML-11), pages 465–472, 2011.

Thomas G Dietterich. Hierarchical reinforcement learning with the maxq

value function decomposition. Journal of Artificial Intelligence Research,

13:227–303, 2000.

Carlos Diuk, Andre Cohen, and Michael L Littman. An object-oriented

representation for efficient reinforcement learning. In Proceedings of the

25th international conference on Machine learning, pages 240–247. ACM,

2008.

66



Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine.

Diversity is all you need: Learning skills without a reward function. arXiv

preprint arXiv:1802.06070, 2018.

Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks

for hierarchical reinforcement learning. arXiv preprint arXiv:1704.03012,

2017.

Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive archi-

tecture: A critical analysis. Cognition, 28(1-2):3–71, 1988.

Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. Multi-level dis-

covery of deep options. arXiv preprint arXiv:1703.08294, 2017a.

Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. Multi-level dis-

covery of deep options. arXiv preprint arXiv:1703.08294, 2017b.

K. Frans, J. Ho, X. Chen, P. Abbeel, and J. Schulman. Meta Learning

Shared Hierarchies. arXiv e-prints, October 2017.

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman.

Meta learning shared hierarchies. arXiv preprint arXiv:1710.09767, 2017.

Gottlob Frege. Uber Logik in der Mathematik: Fruhling, 1914. Institut fur

Mathematische Logik und Grundlagenforschung, Universitat Munster iW,

1914.

Shintaro Funahashi, Charles J Bruce, and Patricia S Goldman-Rakic. Mne-

monic coding of visual space in the monkey’s dorsolateral prefrontal cor-

tex. Journal of neurophysiology, 61(2):331–349, 1989.

James J Gibson. A theory of direct visual perception. Vision and Mind:

selected readings in the philosophy of perception, pages 77–90, 2002.

Joshua I Gold and Michael N Shadlen. The neural basis of decision making.

Annu. Rev. Neurosci., 30:535–574, 2007.

Thomas L Griffiths, Nick Chater, Charles Kemp, Amy Perfors, and Joshua B

Tenenbaum. Probabilistic models of cognition: Exploring representations

and inductive biases. Trends in cognitive sciences, 14(8):357–364, 2010.

67



Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and Sergey Levine.

Latent space policies for hierarchical reinforcement learning. arXiv pre-

print arXiv:1804.02808, 2018.

Bart LM Happel and Jacob MJ Murre. Design and evolution of modular

neural network architectures. Neural networks, 7(6-7):985–1004, 1994.

Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne,

Yuval Tassa, Tom Erez, Ziyu Wang, Ali Eslami, Martin Riedmiller, et al.

Emergence of locomotion behaviours in rich environments. arXiv preprint

arXiv:1707.02286, 2017.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul,

Joel Z Leibo, David Silver, and Koray Kavukcuoglu. Reinforcement lear-

ning with unsupervised auxiliary tasks. arXiv preprint arXiv:1611.05397,

2016.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with

gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei,

C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for

compositional language and elementary visual reasoning. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 2901–2910, 2017a.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Judy Hoff-

man, Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Inferring and

executing programs for visual reasoning. In Proceedings of the IEEE In-

ternational Conference on Computer Vision, pages 2989–2998, 2017b.

Edward L Keenan and Leonard M Faltz. Boolean semantics for natural

language. 1987.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimi-

zation. arXiv preprint arXiv:1412.6980, 2014.

68



Dan Klein and Christopher D Manning. Accurate unlexicalized parsing. In

Proceedings of the 41st Annual Meeting on Association for Computatio-

nal Linguistics-Volume 1, pages 423–430. Association for Computational

Linguistics, 2003.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances

in neural information processing systems, pages 1008–1014, 2000.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenen-

baum. Hierarchical deep reinforcement learning: Integrating temporal

abstraction and intrinsic motivation. In Advances in neural information

processing systems, pages 3675–3683, 2016.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J

Gershman. Building machines that learn and think like people. Behavioral

and brain sciences, 40, 2017.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation ap-

plied to handwritten zip code recognition. Neural computation, 1(4):541–

551, 1989.

Libin Liu and Jessica Hodgins. Learning to schedule control fragments for

physics-based characters using deep q-learning. ACM Transactions on

Graphics, 36(3), 2017.

Miao Liu, Marlos C Machado, Gerald Tesauro, and Murray Campbell. The

eigenoption-critic framework. arXiv preprint arXiv:1712.04065, 2017.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. A laplacian

framework for option discovery in reinforcement learning. arXiv preprint

arXiv:1703.00956, 2017a.

Marlos C Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald

Tesauro, and Murray Campbell. Eigenoption discovery through the deep

successor representation. arXiv preprint arXiv:1710.11089, 2017b.

69



Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribu-

tion: A continuous relaxation of discrete random variables. arXiv preprint

arXiv:1611.00712, 2016.

Sridhar Mahadevan. Proto-value functions: Developmental reinforcement

learning. In Proceedings of the 22nd international conference on Machine

learning, pages 553–560. ACM, 2005.

Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A laplacian

framework for learning representation and control in markov decision pro-

cesses. Journal of Machine Learning Research, 8(Oct):2169–2231, 2007.

Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome.

Context-dependent computation by recurrent dynamics in prefrontal cor-

tex. nature, 503(7474):78, 2013.

David Marr et al. Vision: A computational investigation into the human

representation and processing of visual information, 1982.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connec-

tionist networks: The sequential learning problem. In Psychology of lear-

ning and motivation, volume 24, pages 109–165. Elsevier, 1989.

Josh Merel, Arun Ahuja, Vu Pham, Saran Tunyasuvunakool, Siqi Liu, Dh-

ruva Tirumala, Nicolas Heess, and Greg Wayne. Hierarchical visuomotor

control of humanoids. In International Conference on Learning Represen-

tations, 2019a. URL https://openreview.net/forum?id=BJfYvo09Y7.

Josh Merel, Leonard Hasenclever, Alexandre Galashov, Arun Ahuja,

Vu Pham, Greg Wayne, Yee Whye Teh, and Nicolas Heess. Neural pro-

babilistic motor primitives for humanoid control. In International Confe-

rence on Learning Representations, 2019b. URL https://openreview.

net/forum?id=BJl6TjRcY7.

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J Bal-

lard, Andrea Banino, Misha Denil, Ross Goroshin, Laurent Sifre, Koray

Kavukcuoglu, et al. Learning to navigate in complex environments. arXiv

preprint arXiv:1611.03673, 2016.

70

https://openreview.net/forum?id=BJfYvo09Y7
https://openreview.net/forum?id=BJl6TjRcY7
https://openreview.net/forum?id=BJl6TjRcY7


V. Mnih, A. Puigdomènech Badia, M. Mirza, A. Graves, T. P. Lillicrap,

T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous Methods for

Deep Reinforcement Learning. ArXiv e-prints, February 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel

Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K

Fidjeland, Georg Ostrovski, et al. Human-level control through deep rein-

forcement learning. Nature, 518(7540):529, 2015a.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel

Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K

Fidjeland, Georg Ostrovski, et al. Human-level control through deep rein-

forcement learning. Nature, 518(7540):529, 2015b.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,

Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.

Asynchronous methods for deep reinforcement learning. In International

conference on machine learning, pages 1928–1937, 2016.

Richard Montague. Universal grammar. Theoria, 36(3):373–398, 1970.

Giambattista Parascandolo, Niki Kilbertus, Mateo Rojas-Carulla, and Bern-

hard Schölkopf. Learning independent causal mechanisms. arXiv preprint

arXiv:1712.00961, 2017a.

Giambattista Parascandolo, Niki Kilbertus, Mateo Rojas-Carulla, and Bern-

hard Schölkopf. Learning independent causal mechanisms. arXiv preprint

arXiv:1712.00961, 2017b.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward

Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and

Adam Lerer. Automatic differentiation in PyTorch. In NIPS Autodiff

Workshop, 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell.

Curiosity-driven exploration by self-supervised prediction. In The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) Work-

shops, July 2017.

71



Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel Van De Panne.

Deeploco: Dynamic locomotion skills using hierarchical deep reinforce-

ment learning. ACM Trans. Graph., 36(4):41:1–41:13, July 2017. ISSN

0730-0301. doi: 10.1145/3072959.3073602. URL http://doi.acm.org/

10.1145/3072959.3073602.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne.

Deepmimic: Example-guided deep reinforcement learning of physics-based

character skills. ACM Trans. Graph., 37(4):143:1–143:14, July 2018. ISSN

0730-0301. doi: 10.1145/3197517.3201311. URL http://doi.acm.org/

10.1145/3197517.3201311.

Steven T Piantadosi, Joshua B Tenenbaum, and Noah D Goodman. The

logical primitives of thought: Empirical foundations for compositional cog-

nitive models. Psychological review, 123(4):392, 2016.

Doina Precup. Temporal abstraction in reinforcement learning. University

of Massachusetts Amherst, 2000.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-

namic Programming. John Wiley & Sons, Inc., New York, NY, USA, 1st

edition, 1994. ISBN 0471619779.

David Raposo, Matthew T Kaufman, and Anne K Churchland. A category-

free neural population supports evolving demands during decision-making.

Nature neuroscience, 17(12):1784, 2014.

Carlo Reverberi, Kai Görgen, and John-Dylan Haynes. Compositionality of

rule representations in human prefrontal cortex. Cerebral cortex, 22(6):

1237–1246, 2012.

Ranulfo Romo, Carlos D Brody, Adrián Hernández, and Luis Lemus. Neu-

ronal correlates of parametric working memory in the prefrontal cortex.

Nature, 399(6735):470, 1999.

Clemens Rosenbaum, Ignacio Cases, Matthew Riemer, and Tim Klinger.

Routing networks and the challenges of modular and compositional com-

putation. arXiv preprint arXiv:1904.12774, 2019.

72

http://doi.acm.org/10.1145/3072959.3073602
http://doi.acm.org/10.1145/3072959.3073602
http://doi.acm.org/10.1145/3197517.3201311
http://doi.acm.org/10.1145/3197517.3201311


Katsuyuki Sakai. Task set and prefrontal cortex. Annu. Rev. Neurosci., 31:

219–245, 2008.

Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Raz-

van Pascanu, Peter Battaglia, and Timothy Lillicrap. A simple neural

network module for relational reasoning. In Advances in neural informa-

tion processing systems, pages 4967–4976, 2017.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess,

Max Jaderberg, David Silver, and Koray Kavukcuoglu. Feudal networks

for hierarchical reinforcement learning. arXiv preprint arXiv:1703.01161,

2017.

J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. Trust Region

Policy Optimization. ArXiv e-prints, February 2015a.

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-

Dimensional Continuous Control Using Generalized Advantage Estima-

tion. ArXiv e-prints, June 2015b.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter

Abbeel. High-dimensional continuous control using generalized advantage

estimation. arXiv preprint arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg

Klimov. Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347, 2017.

AMANDA J C SHARKEY. Modularity, combining and artificial neural

nets. Connection Science, 9(1):3–10, 1997.

Markus Siegel, Timothy J Buschman, and Earl K Miller. Cortical infor-

mation flow during flexible sensorimotor decisions. Science, 348(6241):

1352–1355, 2015.

Alec Solway, Carlos Diuk, Natalia Córdova, Debbie Yee, Andrew G Barto,

Yael Niv, and Matthew M Botvinick. Optimal behavioral hierarchy. PLoS

computational biology, 10(8):e1003779, 2014.

73



Kimberly L Stachenfeld, Matthew M Botvinick, and Samuel J Gershman.

The hippocampus as a predictive map. Nature neuroscience, 20(11):1643,

2017.

Martin Stolle and Doina Precup. Learning options in reinforcement learning.

In International Symposium on abstraction, reformulation, and approxi-

mation, pages 212–223. Springer, 2002.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-

duction.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An in-

troduction. MIT press, 1998a.

Richard S Sutton, Doina Precup, and Satinder P Singh. Intra-option learning

about temporally abstract actions. In ICML, volume 98, pages 556–564,

1998b.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour.

Policy gradient methods for reinforcement learning with function approxi-

mation. In Proceedings of the 12th International Conference on Neural

Information Processing Systems, NIPS’99, pages 1057–1063, Cambridge,

MA, USA, 1999a. MIT Press. URL http://dl.acm.org/citation.cfm?

id=3009657.3009806.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and

semi-mdps: A framework for temporal abstraction in reinforcement lear-

ning. Artificial intelligence, 112(1-2):181–211, 1999b.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and

semi-mdps: A framework for temporal abstraction in reinforcement lear-

ning. Artificial intelligence, 112(1-2):181–211, 1999c.

Zoltán Gendler Szabó. Compositionality. 2004.

Sebastian B. Thrun and Tom M. Mitchell. Integrating inductive neural net-

work learning and explanation-based learning. In Proceedings of the 13th

International Joint Conference on Artifical Intelligence - Volume 2, IJ-

CAI’93, pages 930–936, San Francisco, CA, USA, 1993. Morgan Kaufmann

74

http://dl.acm.org/citation.cfm?id=3009657.3009806
http://dl.acm.org/citation.cfm?id=3009657.3009806


Publishers Inc. URL http://dl.acm.org/citation.cfm?id=1624140.

1624154.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop, coursera: Neu-

ral networks for machine learning. University of Toronto, Technical Re-

port, 2012.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information

bottleneck principle. In 2015 IEEE Information Theory Workshop (ITW),

pages 1–5. IEEE, 2015.

Naftali Tishby, Fernando C. N. Pereira, and William Bialek. The information

bottleneck method. CoRR, physics/0004057, 2000. URL http://arxiv.

org/abs/physics/0004057.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine

for model-based control. In 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 5026–5033. IEEE, 2012.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-

SNE. Journal of Machine Learning Research, 9:2579–2605, 2008. URL

http://www.jmlr.org/papers/v9/vandermaaten08a.html.

Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos,

Koray Kavukcuoglu, and Nando de Freitas. Sample efficient actor-critic

with experience replay. arXiv preprint arXiv:1611.01224, 2016.

Ronald J Williams. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Machine learning, 8(3-4):229–256,

1992.

Guangyu Robert Yang, Madhura R Joglekar, H Francis Song, William T

Newsome, and Xiao-Jing Wang. Task representations in neural networks

trained to perform many cognitive tasks. Nature neuroscience, 22(2):297,

2019.

Licheng Yu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu, Mohit Bansal,

and Tamara L Berg. Mattnet: Modular attention network for referring

75

http://dl.acm.org/citation.cfm?id=1624140.1624154
http://dl.acm.org/citation.cfm?id=1624140.1624154
http://arxiv.org/abs/physics/0004057
http://arxiv.org/abs/physics/0004057
http://www.jmlr.org/papers/v9/vandermaaten08a.html


expression comprehension. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 1307–1315, 2018.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning

through synaptic intelligence. In Proceedings of the 34th International

Conference on Machine Learning-Volume 70, pages 3987–3995. JMLR.

org, 2017.

76


	 Résumé
	 Summary
	 Contents
	 List of Figures
	 List of Tables
	 List of Abbreviations
	 Acknowledgments
	1 Introduction
	1.1 Learning System
	1.2 Reinforcement Learning
	1.2.1 Model of the Environment
	1.2.2 Model-Based RL vs Model-Free RL
	1.2.3 Discount Factor and Expected Return
	1.2.4 Policy
	1.2.5 Value Function
	1.2.6 Markov Decision Process
	1.2.7 Policy Gradient Methods

	1.3 Hierarchical Reinforcement Learning
	1.3.1 Options
	1.3.2 Feudal Learning
	1.3.3 Meta-Learning Shared Hierarchies 

	1.4 Information Theory
	1.4.1 Preliminary Terms
	1.4.2 Information Bottleneck

	1.5 Compositionality
	1.5.1 What is compositionality
	1.5.2 Why do we want compositional models

	1.6 Systematicity
	1.7 Models of Cognition
	1.7.1 Bottom-up approach
	1.7.2 Top-down approach

	1.8 How to learn Compositional Models
	1.8.1 Learning Compositional Task Representation
	1.8.2 Using models which are composed of other models
	1.8.3 Sequential Training vs MultiTask Training

	1.9 Modular Neural Networks
	1.9.1 Neural Module Networks


	2 Learning Competitive Ensembles of Information-Constrained Primitives
	2.1 Abstract
	2.2 Introduction
	2.3 Preliminaries
	2.4 Related Work
	2.5 Information-Theoretic Decentralized Learning of Distinct Primitives
	2.5.1 Primitives with an Information Bottleneck
	2.5.2 Competing Information-Constrained Primitives
	2.5.3 Regularization of the Combined Representation
	2.5.4 Objective and Algorithm Summary

	2.6 Environments
	2.6.1 2D Bandits Environment
	2.6.2 Four-rooms Environment
	2.6.3 Ant Maze Environment
	2.6.4 MiniGrid Environment

	2.7 Implementation Details
	2.7.1 Model Architecture for MiniGrid
	2.7.2 Components specific to the proposed model
	2.7.3 Model Architecture for 2D Bandits
	2.7.4 Hyperparameters
	2.7.5 Model Architecture for Ant Maze Environment

	2.8 Experimental Results
	2.8.1 Multi-Task Training
	2.8.2 Do Learned Primitives Help in Transfer Learning?
	2.8.3 Learning Ensembles of Functional Primitives

	2.9 Summary and Discussion

	3 Conclusion
	 Bibliography

