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Résumé

On introduit un nouveau type de structure de dualité pour les A∞-catégories appelée corres-

pondance de Calabi-Yau faible relative qui généralise la notion de Kontsevich et Soibelman

d’une structure de Calabi-Yau faible (propre). On démontre l’existence d’une correspon-

dance de Calabi-Yau faible relative sur la catégorie de Fukaya de cobordismes lagrangiens

Fukcob(C×M) de Biran et Cornea. Ici M est une variété symplectique fermée ou convexe à

l’infini. Cette structure de dualité sur Fukcob(C ×M) étend la dualité relative de Poincaré

satisfaite par les complexes de Floer pour les paires de cobordismes lagrangiens. De plus, on

montre que la correspondance de Calabi-Yau faible relative sur Fukcob(C ×M) satisfait à

une condition de compatibilité avec la structure de Calabi-Yau faible usuelle sur la catégorie

de Fukaya monotone de M .

La construction de la correspondance de Calabi-Yau faible relative sur Fukcob(C ×M)

est basée sur des comptes de courbes dans C ×M satisfaisant à une équation de Cauchy-

Riemann non linéaire non homogène. Afin de démontrer l’existence de cette structure de

dualité et de vérifier ses propriétés, on étend les méthodes de Biran et Cornea pour établir des

résultats de régularité et de compacité pour les espaces de modules pertinents. On considère

également les implications de l’existence de la correspondance de Calabi-Yau faible relative

sur Fukcob(C ×M) pour la décomposition en cônes dans la catégorie de Fukaya dérivée de

M associée à un cobordisme lagrangien et on présente un exemple concernant la chirurgie

lagrangienne.

Mots clés : topologie symplectique, sous-variétés lagrangiennes, homologie de Floer, caté-

gories de Fukaya, catégories de Fukaya dérivées, cobordismes lagrangiens, chirurgie lagran-

gienne, structures de Calabi-Yau faibles.
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Abstract

We introduce a new type of duality structure for A∞-categories called a relative weak Calabi-

Yau pairing which generalizes Kontsevich and Soibelman’s notion of a weak (proper) Calabi-

Yau structure. We prove the existence of a relative weak Calabi-Yau pairing on Biran and

Cornea’s Fukaya category of Lagrangian cobordisms Fukcob(C×M). HereM is a symplectic

manifold which is closed or tame at infinity. This duality structure on Fukcob(C×M) extends

the relative Poincaré duality satisfied by Floer complexes for pairs of Lagrangian cobordisms.

Moreover, we show that the relative weak Calabi-Yau pairing on Fukcob(C×M) satisfies a

compatibility condition with respect to the usual weak Calabi-Yau structure on the monotone

Fukaya category of M .

The construction of the relative weak Calabi-Yau pairing on Fukcob(C×M) is based on

counts of curves in C×M satisfying an inhomogeneous nonlinear Cauchy-Riemann equation.

In order to prove the existence of this duality structure and to verify its properties, we extend

the methods of Biran and Cornea to establish regularity and compactness results for the

relevant moduli spaces. We also consider the implications of the existence of the relative

weak Calabi-Yau pairing on Fukcob(C×M) for the cone decomposition in the derived Fukaya

category of M associated to a Lagrangian cobordism, and we present an example involving

Lagrangian surgery.

Keywords: symplectic topology, Lagrangian submanifolds, Floer homology, Fukaya cate-

gories, derived Fukaya categories, Lagrangian cobordisms, Lagrangian surgery, weak Calabi-

Yau structures.
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Introduction

The study of Lagrangian cobordisms, which originated with Arnold [4, 5], has seen many

significant developments in recent years, most notably in the work of Biran and Cornea [9–

11]. The underlying theme of their work has been one of establishing connections between

geometric notions and seemingly disparate algebraic ones. Their central result of this nature

concerns two types of decomposition of a Lagrangian L in a symplectic manifold M which

is closed or tame at infinity: one type of decomposition is a geometric decomposition, via a

Lagrangian cobordism in C×M ; the other is an algebraic decomposition, by exact triangles

in the derived (monotone) Fukaya category ofM . A cobordism is viewed as a decomposition

of L into Lagrangians L1, . . . , Ls ⊂M if the cobordism has as ends L,L1, . . . , Ls. The result

of Biran and Cornea associates to such a cobordism a cone decomposition of L as an object

of the derived Fukaya category of M , with factors L1, . . . , Ls. The proof of this result relies

on constructing a Fukaya category whose objects are Lagrangian cobordisms in C×M .

The connections between algebraic and geometric notions stemming from the study of

Lagrangian cobordisms can be deepened by considering extra structures on the Fukaya cat-

egory of cobordisms Fukcob(C × M). For example, by taking into account the filtration

of Floer complexes of Lagrangian cobordisms by the action functional, Biran and Cornea

together with Shelukhin showed that Fukcob(C × M) has the structure of a “weakly fil-

tered” A∞-category. From this, they were able to derive new results concerning Lagrangian

intersections and to introduce new pseudo-metrics and metrics on classes of Lagrangians [12].

In this thesis, we consider a different kind of extra structure on Fukcob(C×M), namely

a duality structure. Duality for abstract A∞-categories can be formulated in terms of a weak

Calabi-Yau structure, a notion introduced by Kontsevich and Soibelman [31]. The mono-

tone Fukaya category of a compact symplectic manifold admits a weak Calabi-Yau structure

whose geometric description generalizes the Poincaré duality satisfied by Lagrangian Floer



complexes [40, 44]. We introduce an algebraic variant of weak Calabi-Yau structures for

A∞-categories which we call a relative weak Calabi-Yau pairing. We then describe a geo-

metric realization of this structure for Fukaya categories of cobordisms which generalizes

the Poincaré duality relative to boundary satisfied by Floer complexes of Lagrangian cobor-

disms. Our main result establishes the existence of this structure for Fukcob(C×M), as well

as its compatibility with the usual weak Calabi-Yau structure on the Fukaya category of M ,

Fuk(M).

0.1. Context and new ingredients

This work builds on notions from both algebra and geometry. The algebra involved is

the homological algebra of A∞-categories, a categorical extension of A∞-algebras. The latter

generalize differential graded algebras and have been of interest in algebraic topology (see

for example [3, 28, 33]) since their introduction by Stasheff in 1963 [45]. Starting in the early

nineties, A∞-categories have attracted considerable attention beyond algebraic topology –

in algebra, geometry, and mathematical physics (see for example [1, 22, 26, 34, 38, 46]).

Much of this interest has been spurred by the introduction of the Fukaya A∞-category and

its connection with Kontsevich’s famous homological mirror symmetry conjecture [29].

The conjecture of Kontsevich posits an equivalence between two triangulated categories

associated to A∞-categories: the derived category of coherent sheaves on a Calabi-Yau man-

ifold and the derived Fukaya category of the “mirror” Calabi-Yau manifold. The derived

category of coherent sheaves on a compact Calabi-Yau manifold is a so-called Calabi-Yau

triangulated category. This refers to the presence of a duality structure on the category com-

ing from Serre duality. The existence of this structure relies on the particularly simple form

Serre duality takes for Calabi-Yau manifolds, resulting from the triviality of the canonical

line bundle.

Weak Calabi-Yau structures for A∞-categories generalize the Calabi-Yau property for

ordinary categories, and have played an important role in the work of Abouzaid-Smith [2],

Ganatra [23], Ganatra-Perutz-Sheridan [25], and Sheridan [43, 44], among others. As we

explain in more detail in Chapter 3, drawing from the detailed guide to Calabi-Yau structures

in [25, §6.1], there are many different A∞-versions of Calabi-Yau structures. The particular

kind we are interested in, weak (proper) Calabi-Yau structures, is defined in terms of a

3



quasi-isomorphism between two A∞-modules which can be associated to any A∞-category:

the diagonal bimodule and the Serre bimodule, a dual to the diagonal bimodule.

The algebraic description of duality we formulate, which to the best of our knowledge

is new, generalizes weak Calabi-Yau structures to situations where we are given an A∞-

functor I : B → A, and the A∞-category A is equipped with certain auxiliary structures.

In particular, we require A to have an associated bimodule, which we call the relative Serre

bimodule, that plays the role of the Serre bimodule for A in our formulation of duality. The

duality structure we introduce, a relative weak Calabi-Yau pairing on A, induces an ordinary

weak Calabi-Yau structure on the category B.

Proving the existence of a relative weak Calabi-Yau pairing on Fukcob(C × M) relies

on first establishing the existence of an appropriately defined relative Serre bimodule. The

functor I in this context is an inclusion functor of Fuk(M) into Fukcob(C × M). The

existence of such an inclusion functor was established by Biran and Cornea; however we

adapt their construction of the functor in such a way that the relative weak Calabi-Yau

pairing on Fukcob(C×M) induces the usual weak Calabi-Yau structure on Fuk(M).

On the geometric side, following the path laid out by Biran and Cornea in [9, 10], our

work combines two widely used methods for studying Lagrangian submanifolds: the “rigid”

method of Lagrangian intersection theory, and the “flexible” method of Lagrangian cobor-

dism. The first method, Lagrangian intersection theory, is the central method in symplectic

topology for studying Lagrangians. It has as a main tool Floer homology [19–21], which

builds on Gromov’s theory of pseudoholomorphic curves [27]. The techniques of Gromov

and Floer are at the heart of a large proportion of developments in modern symplectic topol-

ogy. Gromov’s groundbreaking discovery was that, under appropriate assumptions, moduli

spaces of J-holomorphic curves in a symplectic manifold M are finite-dimensional smooth

manifolds for a generic almost complex structure J on M . Moreover, if the curves satisfy

a uniform energy bound, these moduli spaces can be compactified by nodal curves. The

theory of J-holomorphic curves draws on diverse techniques and theorems from partial dif-

ferential equations, and functional and complex analysis, such as the theory of elliptic partial

differential equations, Fredholm theory, and the Riemann-Roch theorem.

Floer related Gromov’s work to Lagrangian intersection theory by defining a complex

generated by the intersection points of two Lagrangians (in the transverse case), and whose

4



differential counts pseudoholomorphic strips between the Lagrangians. Floer homology plays

a role as fundamental to symplectic topology as the role of singular homology in classical

algebraic topology. A key development in the more recent history of Lagrangian intersection

theory has been the construction of the Fukaya category of a symplectic manifold M , whose

objects are Lagrangian submanifolds inM (satisfying some conditions) and whose morphism

spaces are Floer chain complexes. In other words, the Fukaya category incorporates all Floer

complexes for pairs of Lagrangians inM into a coherent algebraic structure. The construction

of the Fukaya category, which is highly technical, is pursued in detail in Seidel’s seminal text

[40] in the exact case.

The second method of studying Lagrangians, Lagrangian cobordism, is a natural notion

extending to the Lagrangian setting the topological notion of cobordism which has been

prevalent in differential topology since the work of Thom in the fifties. Lagrangian cobor-

disms have been studied in various contexts by Eliashberg [18], Audin [6], Chekanov [14],

and several others. Biran and Cornea have studied monotone cobordisms in C ×M [9, 10]

as well as in Lefschetz fibrations [11] and explored the relationship of cobordisms with alge-

braic structures in Lagrangian intersection theory, namely Floer complexes, and Fukaya and

derived Fukaya categories.

The weak Calabi-Yau structure on the Fukaya category of a compact symplectic manifold

is defined by counting curves which can be seen as computing A∞-comparison maps. At the

chain level, the Poincaré duality quasi-isomorphism for Floer complexes is a composition of

two maps: a formal map whose definition does not involve any counts of pseudoholomorphic

curves, and a comparison map interpolating between two sets of perturbation data. In the

transverse case, neglecting degree considerations, the formal map simply acts as the identity

on intersection points viewed as generators of the complex for the pair of Lagrangians L,L′

in the domain, and the dual of the complex for the pair L′, L in the target. For the Fukaya

category, we can similarly interpret duality as a composition of two morphisms, one whose

definition is formal and does not involve curve counts, and another counting curves which

interpolate between two sets of perturbation data for defining Floer complexes.

In the Lagrangian cobordism context, the Poincaré duality quasi-isomorphism for Floer

complexes, as well as the relative weak Calabi-Yau pairing, can also be understood as a

composition of a formal map and a comparison map. For self-Floer complexes (where the
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homology computed is the quantum homology of the Lagrangian cobordism), the formal

map has as domain a complex computing quantum homology relative to the boundary of

the cobordism and as target one computing absolute quantum cohomology. The perturba-

tion data involved in defining Floer complexes for Lagrangian cobordisms satisfy a splitting

condition with respect to the product structure of the ambient symplectic manifold C×M

outside of a compact set. The key difference in the construction of the weak Calabi-Yau

pairing on Fukcob(C×M) versus the Calabi-Yau structure on Fuk(M) is that the compar-

ison maps involved only interpolate between data in the direction of the fibre M , whereas

the data on C remain unchanged.

In Biran and Cornea’s extension of the construction of Fukaya categories to Lagrangian

cobordisms [10], the main technical challenge is to prove compactness results for the moduli

spaces involved. The difficulty in this arises from the non-compactness of the ambient man-

ifold C ×M . In order to prove our main result, we extend the methods of [10] to establish

compactness and regularity results for the moduli spaces involved in the definition of the

relative weak Calabi-Yau pairing.

0.2. Organization of the thesis

We proceed to a brief outline of the contents of the chapters in the thesis. The first chap-

ter introduces the algebraic concepts involving A∞-categories that we will use: basic concepts

such as functors and natural transformations, modules and bimodules, as well as more spe-

cialized concepts such as dualization, Yoneda and abstract Serre functors, and Hochschild

homology and cohomology. The second chapter introduces the geometric background we will

rely on: Lagrangian cobordisms, Lagrangian Floer homology and Poincaré duality for Floer

complexes, as well as the monotone Fukaya category.

In the third chapter we review the algebraic notion of a weak Calabi-Yau structure on an

A∞-category from three different perspectives: in terms of Hochschild homology, in terms

of diagonal and Serre bimodules, as well as in terms of Yoneda functors and abstract Serre

functors. We also introduce the modified version of this notion that we will use, that of a

relative weak Calabi-Yau pairing. Finally we describe the geometric realization of the weak

Calabi-Yau structure on the monotone Fukaya category.
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In the fourth chapter we set up the Fukaya category of cobordisms following [10] and

describe its duality structure, both from the perspective of Hochschild homology and of

natural transformations between Yoneda and relative abstract Serre functors. We state the

main theorem (Theorem 4.5.1) which asserts that the structure we describe is in fact a weak

Calabi-Yau pairing compatible with the weak Calabi-Yau structure on the Fukaya category of

M . The theorem also relates the two alternative descriptions of this structure. Chapter five

is devoted to the proof of this result. In the remaining chapter we consider an application

of the main theorem relating to the cone decomposition associated to a cobordism. We

present an example coming from Lagrangian surgery and state a conjecture for the cone

decomposition associated to an arbitrary cobordism.
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Chapter 1

Algebraic preliminaries

In this chapter, we review some background material relating to A∞-categories. We refer

the reader to [40] for an in-depth account of large portions of this material which uses

cohomological conventions, and to the appendix of [10] for a summary using the homological

conventions we follow here. We note however that unlike in [10], the concepts in this section

will be presented in the graded context. A∞-bimodules are covered in [24, 41, 44], and

Hochschild homology and cohomology for A∞-categories using cohomological conventions in

[24, 44]. We assume all vector spaces to be over the field Z2 and all gradings to be over

Z. All of the algebraic constructions we present can also be performed over arbitrary fields,

but it requires the insertion of Koszul signs in all formulae (see [40] for details of this in the

cohomological context).

1.1. A∞-categories

Definition 1.1.1. An A∞-category A of degree NA ∈ Z consists of a class of objects

Ob(A), a graded vector space A(X0, X1) for every pair of objects X0, X1 ∈ Ob(A), and for

every family X0, . . . , Xk of k + 1 objects a linear map

µAk : A(X0, X1)⊗ · · · ⊗ A(Xk−1, Xk)→ A(X0, Xk) (1.1.1)

of degree −2 + k(1−NA) +NA. These maps are required to satisfy the A∞ relations:

∑
j,s

µAk−s+1(x1, . . . , xj, µ
A
s (xj+1, . . . , xj+s), xj+s+1, . . . , xk) = 0, (1.1.2)

for all k > 0. Here the sum is over all 0 < s ≤ k and 0 ≤ j ≤ k − s, i.e. over all possible

terms.



In particular, setting k = 1 in the equation above, we have µA1 ◦ µA1 = 0 and hence µA1
defines a differential on A(X0, X1) for all pairs of objects X0 and X1 in Ob(A). Setting

k = 2, we obtain that µA2 defines a product which satisfies the Leibniz rule with respect to

µA1 . Setting k = 3 in Equation (1.1.2), we see that this product is associative up to homotopy,

with the chain homotopy given by µA3 . These observations imply that µA2 descends to an

associative product on homology and we can therefore make the following definition.

Definition 1.1.2. The homological category H(A) associated to A is the category whose

objects are the same as those of A, whose morphism spaces are the homology spaces of the

morphism spaces in A, and whose composition maps are the maps induced on homology

by µA2 . This is an ordinary linear graded category, although possibly without identity mor-

phisms.

Remark 1.1.3. The homological conventions of [10] that we use here differ from the coho-

mological conventions of [40] in two respects. The first is in the arbitrary choice to order

the objects as X0, X1, . . . , Xk in defining the composition maps µAk (and the maps occurring

in the definitions of other structures), as opposed to the usual ordering for a cohomological

category A′ where the compositions are given as maps

µkA′ : A′(Xk−1, Xk)⊗ · · · ⊗ A′(X0, X1)→ A′(X0, Xk). (1.1.3)

The second difference is in the association of a degree to a homological A∞-category, a

notion which is not necessary in defining cohomological A∞-categories, but which is needed

to specify the degrees of maps when defining homological A∞-categories.

Remark 1.1.4. All definitions and constructions relating to A∞-categories that we consider

also have ungraded versions. An ungraded A∞-category has as morphism spaces ungraded

vector spaces. All other definitions are identical except there is no requirement for the

degree of maps. When considering Fukaya categories, we will work in the ungraded context

for simplicity, but we set up the algebra in the graded context for completeness.

For ease of notation we introduce the convenient shorthand

A(X0, . . . , Xk) := A(X0, X1)⊗ · · · ⊗ A(Xk−1, Xk). (1.1.4)
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Definition 1.1.5. The opposite category Aopp of an A∞-category A of degree NA is the

A∞-category of degree NA whose objects are the same as those of A, whose morphism spaces

are given by Aopp(X0, X1) = A(X1, X0), and whose higher composition maps µAoppk are given

by reversing the order of morphisms for the maps µAk :

µA
opp

k (x1, . . . , xk) = µAk (xk, . . . , x1). (1.1.5)

Definition 1.1.6. The j-fold suspension A[j] of A is an A∞-category of degree NA − j

which is defined by shifting by j the degrees in the morphism spaces of A:

A[j](X0, X1)p = A(X0, X1)p+j. (1.1.6)

Definition 1.1.7. An A∞-functor F between two A∞-categories A and B consists of a map

on objects F : Ob(A) → Ob(B) and, for every family X0, . . . , Xk of k ≥ 1 objects, a linear

map

Fk : A(X0, . . . , Xk)→ B(F(X0),F(Xk))

of degree −1 + k(1−NA) +NB. The maps Fk are required to satisfy the relations

∑
s

∑
p1,...,ps

µBs (Fp1(x1, . . . , xp1), . . . ,Fps(xk−ps+1, . . . , xk))

=
∑
j,q

Fk−q+1(x1, . . . , xj, µ
A
q (xj+1, . . . , xj+q), xj+q+1, . . . , xk), (1.1.7)

where the sum is over all possible terms.

The relations (1.1.7) imply that F induces a functor H(F) : H(A) → H(B) which is

defined on morphisms by H(F)([x]) = [F1(x)].

Two A∞-functors F : A → B and G : B → C can be composed to give an A∞-functor

G ◦ F : A → C. The map on objects for G ◦ F is the composition of the object maps for F

and G, and the maps (G ◦ F)k are defined by

(G ◦ F)k(x1, . . . , xk) =∑
s

∑
p1,...,ps

Gs(Fp1(x1, . . . , xp1),Fp2(xp1+1, . . . , xp1+p2), . . .

. . . ,Fps(xk−ps+1, . . . , xk)).

(1.1.8)

The sum is taken over all possible terms of the appropriate form.
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Natural transformations between A∞-functors are defined as a specific class of more

general transformations called pre-natural transformations.

Definition 1.1.8. A pre-natural transformation T of degree g between two A∞-functors

F0 and F1 from A to B is a sequence T = (T0, T1, . . .), where

• T0 consists of a family of elements (T0)X ∈ B(F0(X),F1(X)) of degree g for each

object X ∈ Ob(A), and

• Tk is a collection of linear maps

Tk : A(X0, . . . , Xk)→ B(F0(X0),F1(Xk))

of degree g + k(1−NA) for each family of objects X0, . . . , Xk in Ob(A).

The collection of all A∞-functors from A to B form the objects of an A∞-category

fun(A,B) of degree NB. The morphisms in fun(A,B) are spaces of pre-natural transfor-

mations, and the maps µfun(A,B)
k are given by Equation (75) and a generalization of Equation

(76) in [10]. Those pre-natural transformations ν satisfying µfun(A,B)
1 (ν) = 0 are called nat-

ural transformations.

Definition 1.1.9. Fix a functor F : A → B and an A∞-category C. The left and right

composition functors associated to F are the functors

LF : fun(C,A)→ fun(C,B), RF : fun(B, C)→ fun(A, C), (1.1.9)

whose action on objects is given by composition with F and whose higher maps are de-

fined as follows. The first order map for LF applied to a pre-natural transformation

T ∈ fun(C,A)(G,G′) is given by

(LF)1(T )(x1, . . . , xm)

=
∑
s,i

∑
p1,...,ps

Fs(Gp1(x1, . . . , xp1), . . . ,Gpi−1(xp1+···+pi−2+1, . . . , xp1+···+pi−1),

Tpi(xp1+···+pi−1+1, . . . , xp1+···+pi),G′pi+1
(xp1+···+pi+1, . . . , xp1+···+pi+1),

. . . ,G′ps(xm−ps+1, . . . , xm)).

(1.1.10)

The higher order maps (LF)k, k ≥ 2, are given by an obvious generalization of this formula.

The first order map for RF applied to a pre-natural transformation S ∈ fun(B, C)(H,H′) is
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given by

(RF)1(S)(y1, . . . , ym)

=
∑
t

∑
p1,...,pt

St(Fp1(y1, . . . , yp1), . . . ,Fpt(ym−pt+1, . . . , ym)).
(1.1.11)

The higher order maps (RF)k, k ≥ 2, all vanish.

There are different notions of what it means for an A∞-category to be equipped with

identity morphisms.

Definition 1.1.10. An A∞-category A is strictly unital if for each object X there is a

unique element eX ∈ A(X,X)NA satisfying

(1) µA1 (eX) = 0.

(2) For x ∈ A(X0, X1), µA2 (x, eX1) = x = µA2 (eX0 , x).

(3) µAk (x1, . . . , xi, eXi , xi+1, . . . , xk−1) = 0 for k > 2, xj ∈ A(Xj−1, Xj), and any 0 ≤ i ≤

k − 1.

A weaker notion than strict unitality is that of homological unitality.

Definition 1.1.11. An A∞-category A is homologically unital if for each object X there

is a unique element 1X ∈ HNA(A(X,X)) which is an identity with respect to composition

in the category H(A).

1.2. A∞-modules and bimodules

Definition 1.2.1. A left A-moduleM consists of the following:

• For every object X ∈ Ob(A), a graded Z2-vector spaceM(X).

• For every k ≥ 0 and every family of objects X0, . . . , Xk ∈ Ob(A), module structure

maps µMk|1. These are linear maps of degree −1 + k(1−NA),

µMk|1 : A(X0, . . . , Xk)⊗M(Xk)→M(X0), (1.2.1)

which must satisfy the following A∞-relations:

∑
µMi−1|1(x1, . . . , xi−1, µ

M
k−i+1|1(xi, . . . , xk,w)) (1.2.2)

+
∑

µMk−j′+j|1(x1, . . . , µ
A
j′−j+1(xj, . . . , xj′), . . . , xk,w) = 0.
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The first k inputs of µMk|1 are referred to as category inputs and the (k + 1)th input is

referred to as the module input. We adopt the convention of writing module inputs in

bold.

The relations (1.2.2) imply that µM0|1 is a differential and that the map µM1|1 induces an

operation on homology.

Right modules over A are defined similarly, but with the module structure maps defining

operations of A on the right.

Definition 1.2.2. A right A-module N consists of the following:

• For every object X ∈ Ob(A), a graded Z2-vector space N (X).

• For every k ≥ 0 and every family of objects X0, . . . , Xk ∈ Ob(A), linear maps of

degree −1 + k(1−NA),

µN1|k : N (Xk)⊗A(Xk, . . . , X0)→ N (X0), (1.2.3)

satisfying the following A∞-relations:

∑
µN1|i−1(µN1|k−i+1(w, xk, . . . , xi), xi−1, . . . , x1) (1.2.4)

+
∑

µN1|k−j′+j(w, xk, . . . , µAj′−j+1(xj′ , . . . , xj), . . . , x1) = 0.

Likewise one can define bimodules by considering module structure maps which define

operations by A∞-categories on both the left and right.

Definition 1.2.3. An A–B bimodule K consists of the following:

• For every pair of objects X ∈ Ob(A) and Y ∈ Ob(B), a graded Z2-vector space

K(X, Y ).

• For every k,m ≥ 0 and every family of objects X0, . . . , Xk ∈ Ob(A) and Y0, . . . , Ym ∈

Ob(B), linear maps of degree −1 + k(1−NA) +m(1−NB),

µKk|1|m : A(X0, . . . , Xk)⊗K(Xk, Ym)⊗ B(Ym, . . . , Y0)→ K(X0, Y0), (1.2.5)
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satisfying the following A∞-relations:∑
µKi−1|1|i′−1(x1, . . . , µ

K
k−i+1|1|m−i′+1(xi, . . . , xk, z, ym, . . . , yi′), . . . , y1)

+
∑

µKk−j′+j|1|m(x1, . . . , µ
A
j′−j+1(xj, . . . , xj′), . . . , xk, z, ym, . . . , y1)

+
∑

µKk|1|m−j′+j(x1, . . . , xk, z, ym, . . . ,

µBj′−j+1(yj′ , . . . , yj), . . . , y1) = 0.

(1.2.6)

Definition 1.2.4. A pre-morphism of left A-modules ν :M→M′ of degree |ν| consists

of maps

νk|1 : A(X0, . . . , Xk)⊗M(Xk)→M′(X0) (1.2.7)

of degree |ν|+ k(1−NA) for all k ≥ 0.

Definition 1.2.5. A pre-morphism of right A-modules η : N → N ′ of degree |η| consists

of maps

η1|k : N (Xk)⊗A(Xk, . . . , X0)→ N ′(X0) (1.2.8)

of degree |η|+ k(1−NA) for all k ≥ 0.

Definition 1.2.6. A pre-morphism of A–B bimodules τ : K → K′ consists of maps

τk|1|m : A(X0, . . . , Xk)⊗K(Xk, Ym)⊗ B(Ym, . . . , Y0)→ K′(X0, Y0) (1.2.9)

of degree |τ |+ k(1−NA) +m(1−NB) for all k,m ≥ 0.

Remark 1.2.7. As noted in [24], both left and right A-modules are a special case of bi-

modules. To see this, we view the field Z2 as an A∞-category with a single object whose

self-morphism space is Z2. We set µZ2
1 = 0 and µZ2

k = 0 for k ≥ 3, and we set µZ2
2 to be

the Z2 multiplication map. Then left A-modules correspond to A–Z2 bimodulesM satisfy-

ing µMk|1|m = 0 for m > 0 and right A-modules correspond to Z2–A bimodules N satisfying

µNk|1|m = 0 for k > 0. For two A–Z2 bimodulesM andM′ satisfying µKk|1|m = 0 and µK′k|1|m = 0

for m > 0, the data of a pre-morphism of bimodules ν :M→M′ with νk|1|m = 0 for m > 0

is equivalent to the data of a pre-morphism of the corresponding left A-modules. Similarly,

for two Z2–A bimodules N and N ′ satisfying µNk|1|m = 0 and µN ′k|1|m = 0 for k > 0, the data

of a pre-morphism of bimodules η : N → N ′ with νk|1|m = 0 for k > 0 is equivalent to the

data of a pre-morphism of the corresponding right A-modules.
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Remark 1.2.8. Note that an A–B bimodule M can also be viewed as an A[j]–B[j′] bi-

module, where A[j] and B[j′] are the j-fold and j′-fold suspensions of A and B respectively.

Additionally, there is a notion of the suspension of the bimoduleM. The j-fold suspension

ofM is the A–B bimoduleM[j] withM[j](X, Y )p =M(X, Y )p+j, and with module struc-

ture maps induced by the µMk|1|m. A pre-morphism of A–B bimodules ν :M→M′ of degree

|ν| induces a pre-morphism of A–B bimodules ν[j] : M[j] → M′[j] of degree |ν|. Taking

the j-fold suspension of A–B bimodules and pre-morphisms of A–B bimodules defines the

j-fold suspension functor

Σj : A–mod–B → A–mod–B. (1.2.10)

Similar definitions and statements hold for left and right modules.

The class of A–B bimodules forms the objects of a strictly unital A∞-category A–mod–B

of degree zero. The morphism spaces are pre-morphisms between bimodules. The operation

µA–mod–B
1 is defined on ν ∈ A–mod–B(K,K′) by

(µA–mod–B
1 (ν))k|1|m(x1, . . . , xk, z, ym, . . . , y1)

=
∑

µK
′

i−1|1|i′−1(x1, . . . , νk−i+1|1|m−i′+1(xi, . . . , xk, z, ym, . . . , yi′), . . . , y1)

+
∑

νi−1|1|i′−1(x1, . . . , µ
K
k−i+1|1|m−i′+1(xi, . . . , xk, z, ym, . . . , yi′), . . . , y1)

+
∑

νk−j′+j|1|m(x1, . . . , µ
A
j′−j+1(xj, . . . , xj′), . . . , xk, z, ym, . . . , y1)

+
∑

νk|1|m−j′+j(x1, . . . , xk, z, ym, . . . , µBj′−j+1(yj′ , . . . , yj), . . . , y1). (1.2.11)

The operation µA–mod–B
2 is defined on ν ∈ A–mod–B(K,K′) and ν ′ ∈ A–mod–B(K′,K′′)

by

(µA–mod–B
2 (ν, ν ′))k|1|m(x1, . . . , xk, z, ym, . . . , y1)

=
∑

ν ′i−1|1|i′−1(x1, . . . , νk−i+1|1|m−i′+1(xi, . . . , xk, z, ym, . . . , yi′), . . . , y1).
(1.2.12)

The operations µA–mod–B
k for k ≥ 3 are all zero, meaning A–mod–B is in fact a dg-

category. Bimodule pre-morphisms ν satisfying µA–mod–B
1 (ν) = 0 are called bimodule

morphisms.
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The units in the category A–mod–B are the module endomorphisms eM given by

(eM)0|1|0 :M(X)→M(X), (eM)0|1|0 = idM(X),

(eM)k|1|m = 0 for (k,m) 6= (0, 0).
(1.2.13)

Being strictly unital, A–mod–B is also homologically unital and it therefore makes sense to

speak of both isomorphisms and quasi-isomorphisms in A–mod–B.

The class of left A-modules also forms the objects of a strictly unital A∞-category of

degree zero which we denote A–mod. This is similarly a dg-category. The operations µA–mod
k

are induced by the operations µA–mod–Z2
k in A–mod–Z2 by viewing left A-modules as A–Z2

bimodules (see Remark 1.2.7). Likewise, right A-modules are the objects of a strictly unital

degree-zero A∞-category mod–A which is also a dg-category. The operations µmod–A
k are

induced by the operations µZ2–mod–A
k in Z2–mod–A.

Definition 1.2.9. Let A be a homologically unital A∞-category and for any X ∈ Ob(A)

denote by eX ∈ A(X,X) a representative of the homology unit for X. A left A-moduleM

is homologically unital if for all X ∈ Ob(A),

µM1|1([eX ], [w]) = [w], (1.2.14)

for any w ∈M(X) with µ0|1(w) = 0. Similarly, a rightA-moduleN is homologically unital if

the homology-level multiplication µN1|1 with the homology units in A is the identity. An A–B

bimodule K is homologically unital if the homology-level multiplication µK1|1|0 with homology

units in A is the identity and the homology-level multiplication µK0|1|1 with homology units

in B is also the identity.

Although we will mainly use the preceding description of module and bimodule categories,

there is also an interpretation of these categories as categories of functors into the dg-category

of chain complexes. Denote by Ch the dg-category of Z-graded chain complexes over Z2

where the differential lowers degree by one. We view Ch as an A∞-category of degree zero

by setting µCh
k = 0 for k ≥ 3.

The A∞-category of left A-modules is given by

A–mod = fun(A,Chopp)opp, (1.2.15)
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the A∞-category of right A-modules is given by

mod–A = (fun(Aopp,Chopp))opp, (1.2.16)

and the A∞-category of A–B bimodules is given by

A–mod–B = fun(A× Bopp,Chopp)opp. (1.2.17)

By spelling out the definitions of these functor categories, it is not hard to see that these

descriptions of modules and module categories are equivalent to the previous ones.

There is also another interpretation of categories of A∞-bimodules as functor categories.

This results from the existence of isomorphisms of dg-categories

Φl : fun(B,A–mod)
∼=−→ A–mod–B,

Φr : fun(B, (mod–A)opp)
∼=−→ (B–mod–A)opp.

(1.2.18)

The isomorphism Φl is defined as follows. For F ∈ Ob(fun(B,A–mod)), Φl(F) is the A–B

bimodule specified by the following data:

• For X ∈ Ob(A) and Y ∈ Ob(B), Φl(F)(X, Y ) = F(Y )(X).

• µΦl(F)
k|1|m : A(X0, . . . , Xk)⊗ Φl(F)(Xk, Ym)⊗ B(Ym, . . . , Y0)→ Φl(F)(X0, Y0),

µ
Φl(F)
k|1|m(x1, . . . , xk,w, ym, . . . , y1) = (Fm(ym, . . . , y1))k|1(x1, . . . , xk,w). (1.2.19)

The components Φl
k for k > 1 are all zero, and the component Φl

1 is defined as follows. For

any pair of functors F0,F1 ∈ Ob(fun(B,A–mod)), Φl
1 is the map

Φl
1 : fun(B,A–mod)(F0,F1)→ A–mod–B(Φl(F0),Φl(F1)) (1.2.20)

which is defined on a pre-natural transformation T ∈ fun(B,A–mod)(F0,F1) to be the pre-

morphism of A–B bimodules from Φl(F0) to Φl(F1) given by

(Φl
1(T ))k|1|m(x1, . . . , xk,w, ym, . . . , y1) = (Tm(ym, . . . , y1))k|1(x1, . . . , xk,w). (1.2.21)

The isomorphism Φr is defined similarly.

We will make use of the following distinguished bimodule associated to an A∞-category.

Definition 1.2.10. The diagonal bimodule A∆ is the A–A bimodule defined on objects

by A∆(X,X ′) = A(X,X ′) and whose bimodule structure maps are given by µA∆
k|1|m = µAk+m+1.
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The following definition appears in [48] for the case of A∞-algebras.

Definition 1.2.11. The linear dual of an A–B bimodule M is the B–A bimodule M∨

defined by

(M∨(Y,X))q = hom(M(X, Y )−q,Z2) (1.2.22)

µM
∨

k|1|m : B(Y0, . . . , Yk)⊗M∨(Yk, Xm)⊗A(Xm, . . . , X0)→M∨(Y0, X0),

〈µM∨k|1|m(y1, . . . , yk, f , xm, . . . , x1),w〉 = 〈f , µMm|1|k(xm, . . . , x1,w, y1, . . . , yk)〉.

One sees easily that the bimodule structure maps µM∨k|1|m have the correct degrees and satisfy

the A∞ relations (1.2.6).

The linear dual of the diagonal bimodule A∆ is the Serre bimodule, denoted A∨.

By viewing left A-modules as A–Z2 bimodules and right A-modules as Z2–A bimodules

(see Remark 1.2.7), we see that the linear dual of a left A-module is a right A-module and

vice versa.

Remark 1.2.12. There are two other notions of duals for A∞-modules worth mentioning,

although we will not make use of them. The first notion, that of a module dual, applies

to left or right A∞-modules. For a fixed A–B bimodule K, one can assign to a left A-

moduleM a right B-module homA–mod(M,K), and to a right B-module N a left A-module

hommod–B(N ,K) (see [24, §2.13]). The right A-module homA–mod(M,A∆) and the left B-

module hommod–B(N ,B∆) are called the module dual ofM and ofN respectively. The second

notion, that of a bimodule dual applies to an A–A bimodule. We refer to [24, Definition 2.40]

for the definition of this dual.

Taking the linear dual of bimodules forms the object map of a dg-functor.

Definition 1.2.13. The dualization functor is the functor of dg-categories

D : A–mod–B → (B–mod–A)opp. (1.2.23)
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which on objects is given by the linear dual, and on morphisms is defined by

D : A–mod–B(M,N )→ B–mod–A(N ∨,M∨), ν 7→ ν∨, (1.2.24)

ν∨m|1|k : B(Y0, . . . , Ym)⊗N ∨(Ym, Xk)⊗A(Xk, . . . , X0)→M∨(Y0, X0),

〈ν∨m|1|k(y1, . . . , ym,g, xk, . . . , x1),w〉 = 〈g, νk|1|m(xk, . . . , x1,w, y1, . . . , ym)〉.

Viewing left A-modules as A–Z2 bimodules and right A-modules as Z2–A bimodules we

obtain dualization functors

A–mod → (mod–A)opp, mod–A → (A–mod)opp. (1.2.25)

The following proposition says that the dualization functor is compatible with the iso-

morphisms (1.2.18). It is proved by direct computation.

Proposition 1.2.14. The following diagram of dg-functors commutes:

fun(B, (mod–A)opp) (B–mod–A)opp

fun(B,A–mod) A–mod–B.

...................................................................................
.....
.......
.....

LDopp

............................................................. ............
Φr

................................................................................................................. ............
Φl

...................................................................................
.....
.......
.....

Dopp

Another operation that can be performed on bimodules is the pullback along a pair of

functors.

Definition 1.2.15. Let F0 : A → A′ and F1 : B → B′ be functors of A∞-categories. For an

A′–B′ moduleM, the pullback ofM along F0 and F1 is the A–B bimodule (F0⊗F1)∗(M)

specified by

(F0 ⊗ F1)∗M(X, Y ) =M(F0(X),F1(Y )),

µ
(F0⊗F1)∗M
k|1|m (x1, . . . , xk,w, ym, . . . , y1) =∑

s,s′

∑
p1,...,ps,
q1,...,qs′

µMs|1|s′((F0)p1(x1, . . . , xp1), . . . , (F0)ps(xk−ps+1, . . . , xk),w,

(F1)qs′ (ym, . . . , ym−qs′+1), . . . , (F1)q1(yq1 , . . . , y1)). (1.2.26)

The pullback of modules along F0 and F1 is the object map of the pullback functor

(F0 ⊗ F1)∗ : A′–mod–B′ → A–mod–B. (1.2.27)
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The functor (F0 ⊗ F1)∗ is defined on morphisms in A′–mod–B′ by

((F0 ⊗ F1)∗(ν))k|1|m(x1, . . . , xk,w, ym, . . . , y1) =∑
s,s′

∑
p1,...,ps,
q1,...,qs′

νs|1|s′((F0)p1(x1, . . . , xp1), . . . , (F0)ps(xk−ps+1, . . . , xk),w,

(F1)qs′ (ym, . . . , ym−qs′+1), . . . , (F1)q1(yq1 , . . . , y1)).

(1.2.28)

We will use the shorthand F∗ = (F⊗ F)∗.

Using the description of left A-modules as A–Z2 bimodules and right B-modules as Z2–B

bimodules, we obtain pullback functors

F∗0 := (F0 ⊗ IdZ2)∗ : A′–mod → A–mod, F∗1 := (IdZ2 ⊗ F1)∗ : mod–B′ → mod–B. (1.2.29)

The next proposition follows from a direct check using the definitions of the pullback and

dualization functors.

Proposition 1.2.16. Pullback functors are compatible with dualization in the following

sense. For functors F0 : A → A′ and F1 : B → B′, the following diagram commutes

A′–mod–B′ A–mod–B

(B′–mod–A′)opp (B–mod–A)opp

...................................................................................
.....
.......
.....

D

............................................................................................................................................................................................................................................................................ ............
(F0 ⊗ F1)∗

.................................................................................................................................................................................................................. ............
((F1 ⊗ F0)∗)opp

...................................................................................
.....
.......
.....

D

There is also an interpretation of the pullback of bimodules via the isomorphisms (1.2.18).

Define the following compositions

Gl
F0,F1 : fun(B′,A′–mod)

RF1−−→ fun(B,A′–mod)
LF∗0−−→ fun(B,A–mod),

Gr
F0,F1 : fun(A′, (mod–B′)opp)

RF0−−→ fun(A, (mod–B′)opp)
L(F∗1)opp

−−−−−→ fun(A, (mod–B)opp). (1.2.30)

We will use the shorthand Gl
F = Gl

F,F and Gr
F = Gr

F,F.

By the next proposition, which again is proved by direct computation, the functors Gl
F0,F1

and Gr
F0,F1 correspond to the pullback functor (F0 ⊗F1)∗ under the isomorphisms (1.2.18).
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Proposition 1.2.17. The following diagrams commute

fun(A′, (mod–B′)opp) (A′–mod–B′)opp

fun(A, (mod–B)opp) (A–mod–B)opp

...................................................................................
.....
.......
.....

Gr
F0,F1

............................................................................... ............
Φr

............................................................................................ ............
Φr

...................................................................................
.....
.......
.....

((F0 ⊗ F1)∗)opp

fun(B′,A′–mod) A′–mod–B′

fun(B,A–mod) A–mod–B

...................................................................................
.....
.......
.....

Gl
F0,F1

....................................................................................................................................... ............
Φl

..................................................................................................................................................... ............
Φl

...................................................................................
.....
.......
.....

(F0 ⊗ F1)∗

Given this correspondence of the functors Gl
F0,F1 and Gr

F0,F1 with the pullback functor

(F0⊗F1)∗, we can interpret the compatibility between pullback and dualization of Proposi-

tion 1.2.16 as a statement about the functors Gl
F0,F1 and Gr

F0,F1 . This is the content of the

following proposition which is a direct consequence of Propositions 1.2.14, 1.2.16 and 1.2.17.

Proposition 1.2.18. The following diagram commutes

fun(A′, (mod–B′)opp) fun(A′,B′–mod)

fun(A, (mod–B)opp) fun(A,B–mod)

...................................................................................
.....
.......
.....

Gr
F0,F1

........................................................................................................... ............
LDopp

......................................................................................................................... ............
LDopp

...................................................................................
.....
.......
.....

Gl
F1,F0

1.3. Yoneda functors and abstract Serre functors

Any A∞-category possesses canonical functors into left and right modules over the cate-

gory, the left and right Yoneda functors.

Definition 1.3.1. The left Yoneda functor for the A∞-category A is the A∞-functor

Yl
A : A → A–mod which is defined as follows. On objects, the functor Yl

A is given by

setting Yl
A(X) to be the left A-moduleMl

X defined by

Ml
X(Y ) = A(Y,X),

µ
Ml

X

k|1 : A(Y0, . . . , Yk)⊗Ml
X(Yk)→Ml

X(Y0), (1.3.1)

µ
Ml

X

k|1 (y1, . . . , yk,w) = µAk+1(y1, . . . , yk,w).
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The higher maps of the functor Yl
A are given by

(Yl
A)m : A(Xm, . . . , X0)→ A–mod(Ml

Xm ,M
l
X0),

(xm, . . . , x1) 7→ ν(xm,...,x1), (1.3.2)

where ν(xm,...,x1) is the module pre-morphism defined by

(ν(xm,...,x1))k|1 : A(Y0, . . . , Yk)⊗Ml
Xm(Yk)→Ml

X0(Y0),

(y1, . . . , yk,w) 7→ µAk+m+1(y1, . . . , yk,w, xm, . . . , x1). (1.3.3)

Definition 1.3.2. The right Yoneda functor for the A∞-category A is the A∞-functor

Yr
A : A → (mod–A)opp which is defined as follows. On objects, the functor Yr

A is given by

setting Yr
A(X) to be the right A-moduleMr

X defined by

Mr
X(Y ) = A(X, Y ),

µ
Mr

X

1|k :Mr
X(Yk)⊗A(Yk, . . . , Y0)→Mr

X(Y0), (1.3.4)

µ
Mr

X

1|k (z, yk, . . . , y1) = µAk+1(z, yk, . . . , y1).

The higher maps of the functor Yr
A are given by

(Yr
A)m : A(X0, . . . , Xm)→ mod–A(Mr

Xm ,M
r
X0),

(x1, . . . , xm) 7→ τ(x1,...,xm), (1.3.5)

where τ(x1,...,xm) is the module pre-morphism defined by

(τ(x1,...,xm))1|k :Mr
Xm(Yk)⊗A(Yk, . . . , Y0)→Mr

X0(Y0),

(z, yk, . . . , y1) 7→ µAm+k+1(x1, . . . , xm, z, yk, . . . , y1). (1.3.6)

When the A∞-category A is homologically unital, the functors Yl
A and Yr

A are full and

faithful on the level of homological categories [40, Corollary 2.13]. Hence these functors are

often called the left and right Yoneda embeddings.

There are also dual versions of the left and right Yoneda functors, as was mentioned in

[40, p. 189].

22



Definition 1.3.3. The left abstract Serre functor is the A∞ functor (Y∨A)l : A → A–mod

which is defined as follows. On objects, the functor (Y∨A)l is given by setting (Y∨A)l(X) to

be the left A-module N l
X defined by

(N l
X(Y ))q = (A(X, Y ))∨q := hom(A(X, Y )−q,Z2),

µ
N lX
k|1 : A(Y0, . . . , Yk)⊗N l

X(Yk)→ N l
X(Y0), (1.3.7)

〈µN
l
X

k|1 (y1, . . . , yk, f),w〉 = 〈f , µAk+1(w, y1, . . . , yk)〉.

The higher maps of the functor (Y∨A)l are given by

(Y∨A)lm : A(Xm, . . . , X0)→ A–mod(N l
Xm ,N

l
X0),

(xm, . . . , x1) 7→ ρ(xm,...,x1), (1.3.8)

where ρ(xm,...,x1) is the module pre-morphism defined by

(ρ(xm,...,x1))k|1 : A(Y0, . . . , Yk)⊗N l
Xm(Yk)→ N l

X0(Y0),

〈(ρ(xm,...,x1))k|1(y1, . . . , yk, f),w〉

= 〈f , µAk+m+1(xm, . . . , x1,w, y1, . . . , yk)〉.

(1.3.9)

The left abstract Serre functor satisfies (Y∨A)l = Dopp ◦Yr
A. Although we will only make

use of the left abstract Serre functor, one can similarly define the right abstract Serre functor

(Y∨A)r : A → (mod–A)opp. This functor satisfies (Y∨A)r = D ◦Yl
A.

Under the isomorphism Φl of (1.2.18), the left Yoneda functor corresponds to the diagonal

bimodule A∆, and similarly the right Yoneda functor corresponds to A∆ under Φr. The left

and right abstract Serre functors correspond to the Serre bimodule A∨ under Φl and Φr

respectively.

1.4. Hochschild homology and cohomology

This section follows [24] and [44], although this material is presented there using co-

homological conventions for A∞-categories as opposed to the homological conventions used

here.
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Definition 1.4.1. For an A–A bimoduleM, we define the Hochschild cochain complex

of A with coefficients inM to be

CC•(A,M) =
∏

X0,...,Xk

HomNA+k(1−NA)+•(A(X0, . . . , Xk),M(X0, Xk)). (1.4.1)

In other words, a Hochschild cochain g ∈ CCp(A,M) assigns to every k ≥ 0 and every

family of objects X0, . . . , Xk, a map

gk : A(X0, . . . , Xk)→M(X0, Xk)

of degree NA + k(1−NA) + p. The differential is defined by

(∂g)k(x1, . . . , xk) =
∑
j,j′

µMj−1|1|k−j′(x1, . . . , gj′−j+1(xj, . . . , xj′), . . . , xk)

+
∑
j,j′

gk−j′+j(x1, . . . , µ
A
j′−j+1(xj, . . . , xj′), . . . , xk).

(1.4.2)

The homology of this complex is the Hochschild cohomology of A with coefficients in

M, denoted HH•(A,M). The Hochschild cohomology of A, HH•(A), is defined to be the

homology of CC•(A) := CC•(A,A∆).

We emphasize that with our grading conventions, the differential on CC•(A,M) lowers

degree.

There is an alternative description of Hochschild cohomology in terms of morphisms of

bimodules.

Definition 1.4.2. The two-pointed Hochschild cochain complex of A with coefficients

inM is defined to be

2CC
•(A,M) = (A–mod–A(A∆,M))•. (1.4.3)

We set 2CC
•(A) = 2CC

•(A,A∆).

There is a chain map

S : CC•(A,M)→ 2CC
•(A,M), (1.4.4)
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which is a quasi-isomorphism whenM is homologically unital [24, Proposition 2.5]. This is

a version for homological categories of the map (2.200) in [24]. It is defined by

(S(g))k|1|m(x1, . . . , xk,w, x′m, . . . , x′1)

=
∑

µMi−1|1|k−j+m+1(x1, . . . , gj−i+1(xi, . . . , xj), . . . , xk,w, x′m, . . . , x′1). (1.4.5)

Remark 1.4.3. When A is homologically unital, the Hochschild cohomology HH•(A) has

the structure of a unital associative Z-graded Z2-algebra, where the product is given on

cochains in 2CC
•(A) by composition of module morphisms. Moreover, for a homologically

unital A–A bimoduleM, the Hochschild cohomology HH•(A,M) has the structure of an

HH•(A)-module. Again theHH•(A) action is described on the level of two-pointed cochains

by composition of module morphisms. We refer the reader to [44] and [24] for more details,

including a description of the product on ordinary Hochschild cochains.

Definition 1.4.4. The Hochschild chain complex of A with coefficients inM is defined

by

CC•(A,M) =
⊕

X0,...,Xk

(A(X0, . . . , Xk)⊗M(Xk, X0))NA−k(1−NA)+• (1.4.6)

with differential given by

∂(x1 ⊗ · · · ⊗ xk ⊗w)

=
∑

x1 ⊗ · · · ⊗ µAj−i+1(xi, . . . , xj)⊗ · · · ⊗ xk ⊗w

+
∑

xj+1 ⊗ · · · ⊗ xi−1 ⊗ µMk−i+1|1|j(xi, . . . , xk,w, x1, . . . , xj).

(1.4.7)

The homology of this complex is the Hochschild homology of A with coefficients inM,

denoted HH•(A,M). The Hochschild homology of A is defined to be the homology of

CC•(A) := CC•(A,A∆), and denoted HH•(A).

For any object X of A, there is an obvious inclusion of chain complexes

M(X,X)NA+• ↪→ CC•(A,M). (1.4.8)

A morphism of A–A bimodules ν : M → M′ induces a map on Hochschild chain

complexes

ν∗ : CC•(A,M)→ CC•+|ν|(A,M′). (1.4.9)
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This is defined by

ν∗(x1 ⊗ · · · ⊗ xk ⊗w)

=
∑
i,j

xj+1 ⊗ · · · ⊗ xk−i ⊗ νi|1|j(xk−i+1, . . . , xk,w, x1, . . . , xj).
(1.4.10)

If ν is a quasi-isomorphism of bimodules, then ν∗ is also a quasi-isomorphism.

The Hochschild chain complex is also functorial in the following sense. Fix a B–B bi-

module N and a functor F : A → B. There is an induced map of chain complexes

F∗ : CC•(A,F∗N )→ CC•+NA−NB(B,N ), (1.4.11)

which is given by

F∗(x1 ⊗ · · · ⊗ xk ⊗ z) =∑
s

∑
p1,...,ps

Fp1(x1, . . . , xp1)⊗ · · · ⊗ Fps(xk−ps+1, . . . , xk)⊗ z.
(1.4.12)

This is compatible with composition of functors, and if F is a quasi-isomorphism (i.e. the

induced map on homological categories is an isomorphism), then so is F∗.

As with Hochschild cohomology, there is an alternative description of Hochschild homol-

ogy in terms of a ‘two-pointed complex’. For this, we require the following definition.

Definition 1.4.5. Given an A–B bimodule N and a B–A bimodule N ′, we can define their

bimodule tensor product, N ⊗A–B N ′. This is the chain complex given by

N ⊗A–B N ′ =
⊕

X0,...,Xk,
Y0,...,Ym

N (Xk, Ym)⊗ B(Ym, . . . , Y0)⊗N ′(Y0, X0)⊗A(X0, . . . , Xk), (1.4.13)
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with differential

∂(w⊗ ym ⊗ · · · ⊗ y1 ⊗ z⊗ x1 ⊗ · · · ⊗ xk)

=
∑
i,j

µNk−i+1|1|m−j+1(xi, . . . , xk,w, ym, . . . , yj)⊗ yj−1 ⊗ · · ·

· · · ⊗ y1 ⊗ z⊗ x1 ⊗ · · · ⊗ xi−1

+
∑
i,i′

w⊗ ym ⊗ · · · ⊗ y1 ⊗ z⊗ x1 ⊗ · · · ⊗ µAi′−i+1(xi, . . . , xi′)⊗ · · · ⊗ xk

+
∑
i,j

w⊗ ym ⊗ · · · ⊗ µN
′

j|1|i(yj, . . . , y1, z, x1, . . . , xi)⊗ · · · ⊗ xk

+
∑
j,j′

w⊗ ym ⊗ · · · ⊗ µBj′−j+1(yj′ , . . . , yj)⊗ · · · ⊗ y1 ⊗ z⊗ x1 ⊗ · · · ⊗ xk.

(1.4.14)

The chains are graded as follows:

|w⊗ ym ⊗ · · · ⊗ y1 ⊗ z⊗ x1 ⊗ · · · ⊗ xk|N⊗A–BN ′

=
k∑
i=1
|xi|+

m∑
j=1
|yj|+ |w|+ |z|+ k(1−NA) +m(1−NB)−NA −NB.

(1.4.15)

Definition 1.4.6. The two-pointed Hochschild chain complex of A with coefficients

inM is the bimodule tensor product of the diagonal bimodule A∆ withM,

2CC•(A,M) = A∆ ⊗A–AM. (1.4.16)

We set 2CC•(A) = 2CC•(A,A∆).

There is a chain map

T : 2CC•(A,M)→ CC•(A,M), (1.4.17)

given by

T (w⊗ ym ⊗ · · · ⊗ y1 ⊗ z⊗ x1 ⊗ · · · ⊗ xk)

=
∑

xj+1 ⊗ · · · ⊗ xk−i ⊗ µMm+i+1|1|j(xk−i+1, . . . , xk,w, ym, . . .

. . . , y1, z, x1, . . . , xj)

(1.4.18)

This is a homological version of the chain map (2.196) in [24]. When M is homologically

unital, T is a quasi-isomorphism [24].
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Remark 1.4.7. The Hochschild homology HH•(A,M) is a module over HH•(A). Assum-

ingM is homologically unital, the chain-level action can be described in terms of two-pointed

complexes. It results from functoriality of A∆ ⊗A–AM with respect to bimodule endomor-

phisms of A∆. There is also a description of the action on the ordinary Hochschild complexes

via the cap product (see [24, 44] for details).

The following lemma appears as Lemma 6.2 in [25] forM = A∆.

Lemma 1.4.8. There is a naturally defined isomorphism

Γ : 2CC•(A,M)∨
∼=−→ 2CC

•−2NA(A,M∨). (1.4.19)

Proof. For α ∈ 2CC•(A,M)∨, Γ(α) is the module pre-morphism from A∆ toM∨ given by

Γ(α)k|1|m : A(X0, . . . , Xk)⊗A∆(Xk, Ym)⊗A(Ym, . . . , Y0)→M∨(X0, Y0),

〈Γ(α)k|1|m(x1, . . . , xk,w, ym, . . . , y1), z〉

= 〈α,w⊗ ym ⊗ · · · ⊗ y1 ⊗ z⊗ x1 ⊗ · · · ⊗ xk〉.

(1.4.20)

One checks easily that this is an isomorphism of chain complexes. �

Remark 1.4.9. In subsequent sections, we will also consider Hochschild chain and cochain

complexes for ungraded A∞-categories. Although these are ungraded chain complexes, we

will continue to denote them CC•(A,M) and CC•(A,M) to distinguish the Hochschild chain

complex from the Hochschild cochain complex (and similarly we continue to use 2CC•(A,M)

and 2CC
•(A,M) for the two-pointed complexes).
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Chapter 2

Geometric preliminaries

In this chapter, we review the basic geometric ingredients that will be needed in subsequent

chapters. Specifically, we define Lagrangian cobordisms as well as the particular variants of

Floer homology and the Fukaya category we use.

Throughout, (M,ω) will be a compact symplectic manifold of dimension 2n. In general,

Lagrangian submanifolds of M will be taken to be closed.

2.1. Lagrangian cobordisms

We describe here Lagrangian cobordisms as defined by Biran and Cornea in [9, 10]. Let

ω0 = dx ∧ dy be the standard symplectic form on R2. We set M̃ = R2 ×M and equip M̃

with the product symplectic form ω̃ = ω0 ⊕ ω. Denote by π : R2 ×M → R2 the projection

onto R2.

Definition 2.1.1. Let (Li)1≤i≤r and (L′j)1≤j≤s be two families of Lagrangian submanifolds

in M . A Lagrangian cobordism V from (Li)1≤i≤r to (L′j)1≤j≤s, denoted V : (L1, . . . , Lr) →

(L′1, . . . , L′s), is a cobordism V from tri=1Li to tsj=1L
′
j together with a Lagrangian embedding

V ↪→ ([0, 1]× R)×M satisfying the following condition. There exists ε > 0 such that

• V ∩ (((1− ε, 1]× R)×M) = ⊔r
i=1((1− ε, 1]× {i})× Li,

• V ∩ (([0, ε)× R)×M) = ⊔s
j=1([0, ε)× {j})× L′j.

A Lagrangian cobordism V ⊂ [0, 1] × M can also be viewed as a submanifold of M̃

by extending its ends trivially. It is often useful to visualize Lagrangian cobordisms by

projecting them onto R2, as in Figure 2.1.



V

0 ε 1− ε 1

L1

Lr−1

Lr

L′s
L′s−1

L′1

Figure 2.1. A Lagrangian cobordism V projected onto R2.

Some examples of Lagrangian cobordisms include the suspension of a Lagrangian in M

with respect to a Hamiltonian isotopy, and the trace of Lagrangian surgery performed on

two transversely intersecting Lagrangians in M [9].

2.2. Lagrangian Floer homology and Poincaré duality

We review the construction of Lagrangian Floer homology, introduced by Floer [19] in

his work on the Arnold conjecture and extended by Oh [36, 37] to the monotone case. We

present the variant used by Biran and Cornea in [10].

Let L ⊂M be a Lagrangian submanifold. Recall that there are two homomorphisms

µL : π2(M,L)→ Z, ωL : π2(M,L)→ R.

The homomorphism µL is the Maslov index and the homomorphism ωL is given on the class

of a map u : (D, ∂D) → (M,L) by
∫
D u
∗ω. Here D is the unit disc in C. The minimal

Maslov number of L, denoted NL, is the positive generator of Image(µL). In the case

where Image(µL) = {0}, we set NL =∞. The Lagrangian L is said to be monotone if there

is a constant τ ≥ 0 such that ωL = τµL, and in addition, NL ≥ 2. The constant τ , which is

unique if µL 6≡ 0, is known as the monotonicity constant of L.

To every monotone connected L, we can associate an invariant dL which is the number in

Z2 of (unparametrized) J-holomorphic discs of Maslov index two passing through a generic

point of L, for a generic compatible almost complex structure. This Gromov-Witten-type in-

variant was introduced in [36], and appears in various constructions in the monotone setting,

for example in [8, 14, 37]. By the same transversality and compactness arguments which are

used to define Gromov-Witten invariants (see [27, 35]), the number dL is well-defined, and
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in particular independent of the choice of generic point in L and generic compatible almost

complex structure. The constant dL is also invariant under exact deformations of L.

Let L and N be two monotone connected Lagrangian submanifolds in M which have

the same monotonicity constant and satisfy dL = dN . Moreover, assume that the maps

π1(L)→ π1(M) and π1(N)→ π1(M) induced by the inclusions of L and N in M are trivial.

Let J = {Jt}t∈[0,1] be a path of almost complex structures on M compatible with ω. Fix

a time-dependent Hamiltonian function H : M × [0, 1] → R whose associated Hamiltonian

isotopy φHt is such that N and φH1 (L) intersect transversely. The pair (H, J) is called a Floer

datum for the pair of Lagrangians (L,N). Define

O(H) = {γ ∈ C∞([0, 1],M)| γ(0) ∈ L, γ(1) ∈ N, γ(t) = φHt (γ(0))}.

The set O(H) consists of those paths from L to N which are time-1 orbits of φHt .

Assume now that the Floer datum (H, J) is chosen generically. The Floer complex

associated to the pair (L,N) and the Floer datum (H, J) is defined by

CF (L,N ;H, J) = Z2〈O(H)〉,

with differential given by counting elements of the moduli spaces of inhomogeneous pseudo-

holomorphic strips we define now.

Let γ− and γ+ be elements of O(H), and let u ∈ C∞(R × [0, 1],M) be a smooth map

satisfying the conditions
lim

s→−∞
u(s, ·) = γ−, lim

s→+∞
u(s, ·) = γ+,

u(s, 0) ∈ L, u(s, 1) ∈ N for all s ∈ R.
(2.2.1)

We consider those maps u which are solutions of Floer’s equation,

∂su+ Jt(u)∂tu+∇H(t, u) = 0, (2.2.2)

and which have finite energy,

E(u) :=
∫
R×[0,1]

u∗ω <∞. (2.2.3)
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The moduli space of Floer orbits connecting γ− to γ+ is defined to be

M̂(γ−, γ+;H, J) = {u ∈ C∞(R× [0, 1],M)| u satisfies (2.2.1)− (2.2.3)}.

A generically chosen Floer datum is regular in the sense that these moduli spaces are regular

for all γ−, γ+ ∈ O(H). We let M(γ−, γ+;H, J) denote the quotient of M̂(γ−, γ+;H, J) by

the R-action by reparametrizations in the s coordinate. The Floer differential counts the

elements of the zero-dimensional componentM(γ−, γ+;H, J)0 ofM(γ−, γ+;H, J),

∂ : CF (L,N ;H, J)→ CF (L,N ;H, J),

∂(γ−) =
∑

γ+∈O(H)
#Z2M(γ−, γ+;H, J)0γ+.

(2.2.4)

Standard compactness and gluing arguments, together with the monotonicity condition,

imply that this is a well-defined differential.

The Floer complex CF (L,N ;H, J) depends on the choice of regular Floer datum (H, J),

but different choices result in quasi-isomorphic chain complexes. Moreover, the isomorphism

induced on Floer homology is natural.

Remark 2.2.1. This construction, like all of the constructions in this thesis, also works

when M is not necessarily compact as long as the Gromov compactness theorem is still

valid. This is the case for symplectic manifolds which are tame at infinity, for instance, and

these provide a broad class of examples (see [7, §4.2]).

2.2.1. Poincaré duality for Floer complexes

Let L and N be as above and fix a regular Floer datum (HL,N , JL,N) for the pair (L,N).

Define a time-dependent Hamiltonian H̄L,N and time-dependent almost complex structure

J̄L,N on M by

H̄L,N : [0, 1]× R→M, H̄L,N(t, p) = −HL,N(1− t, p), (2.2.5)

J̄L,N = {(J̄L,N)t}t∈[0,1], (J̄L,N)t = (JL,N)1−t. (2.2.6)

Then (H̄L,N , J̄L,N) is a regular Floer datum for the pair (N,L) and so the Floer complex

CF (N,L; H̄L,N , J̄L,N) is defined. For a path γ in M , denote by γ̄ the time-reversed path,
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γ̄(t) = γ(1− t). There is an isomorphism of chain complexes

P : CF (L,N ;HL,N , JL,N)
∼=−→ CF (N,L; H̄L,N , J̄L,N)∨,

γ 7→ γ̄.
(2.2.7)

Here CF (N,L; H̄L,N , J̄L,N)∨ denotes the dual of the complex CF (N,L; H̄L,N , J̄L,N). In

(2.2.7), we have implicitly used the vector space isomorphism between CF (N,L; H̄L,N , J̄L,N)

and its dual determined by the basis O(H̄L,N). The fact that the map (2.2.7) is an isomor-

phism follows from the identification of moduli spaces

M̂(γ−, γ+;HL,N , JL,N) ∼= M̂(γ̄+, γ̄−; H̄L,N , J̄L,N),

u 7→ ū, (2.2.8)

where ū(s, t) := u(−s, 1− t).

Given another regular Floer datum (HN,L, JN,L) for the pair (N,L), there is also a com-

parison map

ΦH,J : CF (N,L;HN,L, JN,L)→ CF (N,L; H̄L,N , J̄L,N) (2.2.9)

which depends on a choice of regular homotopy (H,J) from (HN,L, JN,L) to (H̄L,N , J̄L,N),

H : R→ C∞([0, 1],M), H|(−∞,−λ] ≡ HN,L, H|[λ,∞) ≡ H̄L,N ,

J : R→ C∞([0, 1],J (M)), J|(−∞,−λ] ≡ JN,L, J|[λ,∞) ≡ J̄L,N ,
(2.2.10)

where λ > 0. Here J (M) is the space of compatible almost complex structures on M . The

map ΦH,J is defined by counting finite-energy solutions of

∂su+ Jt(u)∂tu+∇H(t, u) = 0 (2.2.11)

which satisfy the conditions
lim

s→−∞
u(s, ·) = γ−, lim

s→+∞
u(s, ·) = γ+,

u(s, 0) ∈ N, u(s, 1) ∈ L for all s ∈ R.
(2.2.12)

for γ− ∈ O(HN,L) and γ+ ∈ O(H̄L,N). The map induced on homology by ΦH,J is a canonically

defined isomorphism.

Equivalently, by fixing a biholomorphic map between the unit disc in C with two bound-

ary punctures and the strip R× [0, 1], ΦH,J can be defined by counting pseudoholomorphic
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Figure 2.2. A disc contributing to the Poincaré duality quasi-isomorphism φH,J

discs. We can assume that one of these boundary punctures – which we regard as the “in-

put” puncture – is at −1, and the other – which we consider to be the “output” – is at +1.

In addition to these two boundary punctures, we fix an internal marked point at zero. No

constraints are placed on the image of this marked point, which just serves to stabilize the

domain.

We define the total Poincaré duality quasi-isomorphism φH,J associated to the Floer data

(HL,N , JL,N) and (HN,L, JN,L) to be the composition of the formal chain isomorphism P with

the dual of the comparison map quasi-isomorphism ΦH,J:

φH,J : CF (L,N ;HL,N , JL,N) P−→ CF (N,L; H̄L,N , J̄L,N)∨

Φ∨H,J−−−→ CF (N,L;HN,L, JN,L)∨. (2.2.13)

The map φH,J is given geometrically by counting pseudoholomorphic discs with two ingoing

boundary punctures and one internal marked point which satisfy boundary conditions along

L andN – see Figure 2.2. The inhomogeneous Cauchy-Riemann equation we consider reduces

to the Floer equation for (HL,N , JL,N) near one puncture and for (HN,L, JN,L) near the other

puncture. More precisely, set R(γ, ξ)0 to be the zero-dimensional component of this space

of discs which satisfy asymptotic conditions along γ in O(HL,N) at one puncture and along

ξ ∈ O(HN,L) at the other puncture. The map φH,J is given by

〈φH,J(γ), ξ〉 = #Z2R(γ, ξ)0. (2.2.14)
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This follows directly from the definitions of P and ΦH,J as well as a trick for changing output

punctures to input punctures which we explain in a more general context in Remark 4.3.3.

Remark 2.2.2. When L is an exact Lagrangian, the isomorphism induced on homology

by (2.2.13) for the self-Floer complex of L, HF (L,L) ∼= HF (L,L)∨, corresponds under the

isomorphism HF (L,L) ∼= H(L) to the usual Poincaré duality isomorphism for the homology

of the compact manifold L with coefficients in Z2.

Remark 2.2.3. In the case where 2c1(M) = 0 and L and N are equipped with Z-gradings

(see [40] for definitions), the complexes in (2.2.13) admit induced Z-gradings and the Poincaré

duality quasi-isomorphism is a degree-zero map

CF•(L,N ;HL,N , JL,N)
∼=−→ CF•−n(N,L;HN,L, JN,L)∨ (2.2.15)

Here we assume the dual complex CF•(N,L;HN,L, JN,L)∨ is graded homologically.

2.3. The monotone Fukaya category

In this section, we briefly review the construction of the monotone Fukaya category

associated to a compact symplectic manifold. This material is treated in [10] using the same

conventions and assumptions we use here. For an in-depth account of this construction in

the exact context, we refer the reader to the foundational text [40]. Here we suppress many

details which we will however describe later in the context of Fukaya categories of Lagrangian

cobordisms in Chapter 4.

Fix d ∈ Z2. We first define the class L∗d(M) of Lagrangians inM which forms the objects

of the Fukaya category Fuk(M). A family of monotone Lagrangians in M is said to be

uniformly monotone if all Lagrangians in the family have the same monotonicity constant.

The class L∗d(M) is defined to be the collection of uniformly monotone Lagrangians L ⊂M ,

for a fixed monotonicity constant, satisfying dL = d. Here dL is the invariant described

in Section 2.2 which counts the number of discs of Maslov index two passing through a

generic point of L. We also require that every Lagrangian L in L∗d(M) be non-narrow (i.e.

QH(L) 6= 0) and that the inclusion of π1(L) in π1(M) be trivial.

In order to define the morphisms in Fuk(M), we fix for every pair L,L′ ∈ L∗d(M) a

regular Floer datum DL,L′ = (HL,L′ , JL,L′). The morphism space Fuk(M)(L,L′) is then

taken to be the Floer chain complex CF (L,L′; DL,L′). The maps µFuk(M)
k count elements
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in zero-dimensional moduli spaces of inhomogeneous pseudoholomorphic polygons satisfying

boundary conditions along Lagrangians in L∗d(M). More precisely, in order to define the

operation

µ
Fuk(M)
k : CF (L0, L1; DL0,L1)⊗ · · · ⊗ CF (Lk−1, Lk; DLk−1,Lk)→ CF (L0, Lk; DL0,Lk) (2.3.1)

we consider maps u : S →M , where S is a disc with k+ 1 punctures on its boundary, which

we label z1, . . . , zk+1 in clockwise order. The connected component of the boundary of the

disc between zi and zi+1 must be mapped by u into the Lagrangian Li, for i = 1, . . . , k − 1,

and the connected component of the boundary between zk+1 and z1 must be mapped to

L0. At the puncture zi, for i = 1, . . . , k, the map u must tend asymptotically toward a

Hamiltonian chord γi ∈ O(HLi−1,Li) and at the puncture zk+1, the map u must tend toward

a Hamiltonian chord γk+1 ∈ O(HL0,Lk). In order to describe this asymptotic behaviour

precisely, the punctured disc S must be equipped with strip-like ends as we will describe in

Section 4.1. The maps u in the moduli space we consider must satisfy an inhomogeneous

nonlinear Cauchy-Riemann equation whose expression relies on a choice of perturbation

data for the family L0, . . . , Lk of Lagrangians in L∗d(M). We will describe this data and the

relevant equation for cobordism Fukaya categories in Chapter 4. We denote the moduli space

of such maps u by Rk+1
µ (γ1, . . . , γk+1). Assume now that the perturbation data is regular.

Then if we allow for deformations of the conformal structure on S, the subset of the moduli

space Rk+1
µ (γ1, . . . , γk+1) consisting of curves of a fixed Maslov index N is a smooth manifold

of dimension N + k− 2. We denote by Rk+1
µ (γ1, . . . , γk+1)0 the zero-dimensional component

of the moduli space. The map µFuk(M)
k is defined by

µ
Fuk(M)
k (γ1, . . . , γk) =

∑
γk+1∈O(HL0,Lk )

#Z2Rk+1
µ (γ1, . . . , γk+1)0γk+1. (2.3.2)

Standard compactness and gluing arguments show that these maps satisfy the A∞-

relations, and hence Fuk(M) is an ungraded A∞-category. Under additional assump-

tions, it is possible to introduce gradings (see [40]), but we will work exclusively in the

ungraded context. Moreover, the category Fuk(M) is homologically unital, with the unit

in HF (L,L; DL,L) for L ∈ L∗d(M) being the fundamental class of L under the isomorphism

QH(L) ∼= HF (L,L; DL,L).
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The construction of the Fukaya category Fuk(M) depends on all of the choices of data

involved (strip-like ends, Floer and perturbation data), so we in fact obtain a family of A∞-

categories. However for any two sets of data (for a fixed d and monotonicity constant), the

associated categories are quasi-isomorphic and the quasi-isomorphism is canonically defined

on the underlying homological categories [40].

As M will be fixed in what follows, we will abbreviate Fuk(M) by F .
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Chapter 3

Weak Calabi-Yau structures and relative weak

Calabi-Yau pairings

There are two distinct but related approaches to describing duality for A∞-categories: The

first is via a cyclic A∞ structure, an approach studied by Costello [15, 16]; The second, which

will be our focus, is via some manner of Calabi-Yau structure. Calabi-Yau structures were

introduced by Kontsevich and Soibelman for A∞-algebras [31]. The concept also appears in

[40, §I.12j] and is further developed in [23, 25, 44]. Calabi-Yau structures for A∞-categories

come in various flavours. The first distinction is between Calabi-Yau structures for smooth

A∞-categories and those for proper A∞-categories. Each of these two types of Calabi-Yau

structure in turn has a weak version, formulated in terms of Hochschild homology, and a

strong version, formulated in terms of cyclic homology. We will consider exclusively weak

proper Calabi-Yau structures, also known as weak compact Calabi-Yau structures. For A∞-

categories over fields of characteristic zero, strong proper Calabi-Yau structures are closely

related to Costello’s cyclic A∞ structures ([30, Theorem 10.2.2]), but away from characteristic

zero the two concepts diverge (see Remark 6.5 in [25]). We refer the reader to [25, §6.1] for

a detailed explanation of the different notions of Calabi-Yau structures for A∞-categories.

An A∞-category A is defined to be proper if the homology groups Hp(A(X,X ′)) are of

finite rank for all X,X ′ ∈ Ob(A). We will not use the concept of smoothness, so we refer the

reader to [24, Definition 2.35] for the definition. In [44], Sheridan showed that the monotone

Fukaya category of a compact symplectic manifold possesses a weak proper Calabi-Yau struc-

ture (a fact that was mentioned in [40, §I.12j] for exact symplectic manifolds). Furthermore,



the Fukaya category of a Calabi-Yau manifold satisfying some additional technical assump-

tions possesses a strong proper Calabi-Yau structure [25]. In [23], Ganatra showed that the

wrapped Fukaya category of a symplectic manifold satisfying a non-degeneracy condition

possesses a weak smooth Calabi-Yau structure. When an A∞-category is both smooth and

proper, the two notions of weak (and of strong) Calabi-Yau structures are equivalent [25,

Proposition 6.10]. As we will only use weak proper Calabi-Yau structures, we suppress the

‘proper’ in what follows.

In this section we will assume all A∞-categories and bimodules are homologically unital.

3.1. Weak Calabi-Yau structures on A∞-categories

We first recall from [48] that an ∞ inner product on an A∞-category A is an A∞-

bimodule morphism from the diagonal bimodule associated to A to the Serre bimodule,

φ : A∆ → A∨. (3.1.1)

The ∞ inner product φ is said to be n-dimensional if φ is of degree −n. In other words,

an n-dimensional ∞ inner product is a closed element of 2CC
−n(A,A∨), and hence defines

a class in HH−n(A,A∨). Two n-dimensional ∞ inner products are said to be equivalent if

they represent the same class in HH−n(A,A∨).

Definition 3.1.1. A weak Calabi-Yau structure on A is the class of an NA-dimensional

∞ inner product which is a bimodule quasi-isomorphism. Here NA is the degree of A.

Note that A must be proper in order to support a weak Calabi-Yau structure. This can

be seen by considering the maps φ0|1|0 for an NA-dimensional ∞ inner product φ. If φ is a

quasi-isomorphism, these maps give isomorphisms

Hp(A(X,X ′)) ∼= hom(HNA−p(A(X ′, X)),Z2),

HNA−p(A(X ′, X)) ∼= hom(Hp(A(X,X ′)),Z2),
(3.1.2)

for any pair of objects X,X ′ in A. This in turn implies that Hp(A(X,X ′)) is isomorphic to

its (algebraic) double dual and so must have finite dimension.

Remark 3.1.2. As a result of our choice to use homological conventions for A∞-categories,

the dimension of an ∞ inner product representing a weak Calabi-Yau structure on A is
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intrinsically defined to be NA. For cohomological A∞-categories, which do not have an asso-

ciated degree, there is no preferred choice of dimension for an ∞ inner product representing

a weak Calabi-Yau structure. This dimension must be specified as an extra piece of data.

Remark 3.1.3. A weak Calabi-Yau structure [φ] on A induces an isomorphism

HH•(A) ∼= (HH•(A))∨ (3.1.3)

of degree NA. This is the homological map associated to the map of two-pointed complexes

2CC
•(A)→ 2CC

•−NA(A,A∨), α 7→ µA–mod–A
2 (α, φ), (3.1.4)

where we implicitly use the isomorphism 2CC•+NA(A)∨ ∼= 2CC
•−NA(A,A∨). See [44, Lemma

A.2].

Under the isomorphism of categories A–mod–A ∼= fun(A,A–mod) in (1.2.18), an∞ inner

product φ corresponds to a natural transformation

δφ : Yl
A → (Yl

A)∨. (3.1.5)

If φ is n-dimensional, then δφ is of degree −n. We therefore have the following equivalent

definition.

Definition 3.1.4. [40, §I.12j] A weak Calabi-Yau structure on A is the class of a natural

quasi-isomorphism δ from Yl
A to (Y∨A)l of degree −NA, i.e. δ represents an isomorphism in

the category H(fun(A,A-mod)).

Via the isomorphism of chain complexes

Γ : 2CC•(A,M)∨
∼=−→ 2CC

•−2NA(A,M∨). (3.1.6)

of Lemma 1.4.8 forM = A∆, we can equivalently define an NA-dimensional∞ inner product

on A to be a closed element of 2CCNA(A)∨ := hom(2CC−NA(A),Z2). Then through the

quasi-isomorphism

T∨ : CC•(A,M)∨ → 2CC•(A,M)∨, (3.1.7)

dual to the quasi-isomorphism (1.4.17), withM = A∆, classes of NA-dimensional ∞ inner

products correspond to elements of HHNA(A)∨.
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The following definition appears as Definition A.1 in [44] forM = A∆.

Definition 3.1.5. A closed element σ ∈ CCNA(A,M)∨ is defined to be homologically

non-degenerate if the following composition is a perfect pairing

Hp(A(X,X ′))⊗HNA−p(M(X ′, X))
H(µM1|1|0)
−−−−−→ H0(M(X,X))
ι
↪→ HH−NA(A,M) σ−→ Z2 (3.1.8)

for any pair of objects X,X ′ ∈ Ob(A) and for all p ∈ Z. The inclusion ι is induced by

the chain-level map (1.4.8). In other words, σ is homologically non-degenerate if the map

Hp(A(X,X ′)) → hom(HNA−p(M(X ′, X)),Z2) induced by (3.1.8) is an isomorphism of Z2-

vector spaces.

The next lemma is a generalization of Lemma A.1 in [44] fromM = A∆ to arbitraryM.

The proof that appears there applies also for arbitraryM.

Lemma 3.1.6. A closed element σ ∈ CCNA(A,M)∨ is homologically non-degenerate if and

only if Γ ◦ T∨(σ) ∈ 2CC
−NA(A,M∨) is a bimodule quasi-isomorphism.

By Lemma 3.1.6, the map induced on homology by Γ ◦ T∨ identifies elements of

HHNA(A)∨ represented by homologically non-degenerate cycles with weak Calabi-Yau struc-

tures on A. Hence we can equivalently define a weak Calabi-Yau structure on A as follows:

Definition 3.1.7. A weak Calabi-Yau structure on A is the class of a homologically

non-degenerate element of CCNA(A)∨.

3.2. Relative weak Calabi-Yau pairings

Let A and B be A∞-categories with degrees satisfying NA = NB + j and let

I : B → A[j] (3.2.1)

be an A∞-functor. Consider the j-fold suspension (A∆)[j] of A∆ as a module over A[j] (see

Remark 1.2.8). Note that there is a naturally defined B–B bimodule morphism of degree

zero

i : B∆ → I∗(A∆)[j], (3.2.2)
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given by

ik|1|m(y1, . . . , yk, z, y′m, . . . , y′1) = Ik+m+1(y1, . . . , yk, z, y′m, . . . , y′1). (3.2.3)

Definition 3.2.1. Let Arel∆ be a homologically unital A–A bimodule, and set A∨rel = (Arel∆ )∨.

A relative weak Calabi-Yau pairing onA with coefficients inArel∆ consists of the following

data:

• the class of an A–A bimodule quasi-isomorphism φA : A∆ → A∨rel of degree −NA,

• a B–B bimodule morphism irel : B∆ → I∗Arel∆ [−j] of degree j.

The quasi-isomorphism φA must satisfy an additional non-degeneracy condition which we

describe now. First define a map of chain complexes of degree j

Ψi,irel : A–mod–A(A∆,A∨rel)→ B–mod–B(B∆,B∨) (3.2.4)

by mapping α ∈ A–mod–A(A∆,A∨rel) to the composition

Ψi,irel(α) : B∆
i−→ I∗A∆[j] I∗α[j]−−−→ I∗A∨rel[j]

i∨rel−−→ B∨. (3.2.5)

Here we use the identification I∗A∨rel[j] = (I∗Arel∆ [−j])∨. In order for the data described

above to define a relative weak Calabi-Yau pairing, we require that the B–B bimodule mor-

phism Ψi,irel(φA) be a quasi-isomorphism. In other words, since Ψi,irel(φA) is of degree −NB,

[Ψi,irel(φA)] must define a weak Calabi-Yau structure on B.

We will refer to the bimodule Arel∆ as the relative diagonal bimodule and the bimodule

A∨rel as the relative Serre bimodule. We will also refer to [φA] as a relative weak Calabi-

Yau pairing on A when it is clear what Arel∆ and irel are.

Note that Definition 3.2.1 reduces to the absolute case when B = A, I is the identity

functor, Arel∆ = A∆, and irel = i.

As in the absolute case, this definition has an equivalent formulation in terms of

Hochschild homology, but with coefficients in Arel∆ in the present situation. This relies on

the following lemma, which is a generalization of Proposition 4.1 in [13]. Set Irel
∗ to be the

map induced on Hochschild chain complexes by irel and I,

Irel
∗ : CC•(B) (irel)∗−−−→ CC•+j(B, I∗Arel

∆ [−j]) I∗−→ CC•+j(A[j],Arel
∆ [−j]) ∼= CC•−j(A,Arel

∆ ).

(3.2.6)

Lemma 3.2.2. The following diagram of chain complexes commutes up to homotopy.
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CC•(A,Arel∆ )∨ 2CC•(A,Arel∆ )∨ 2CC
•−2NA(A,A∨rel)

CC•−j(B)∨ 2CC•−j(B)∨ 2CC
•−j−2NB(B,B∨)

.......................................................................................... ............
T∨

.......................................................................................... ............∼=
............................................................. ............

Γ
............................................................. ............∼=

.................................................................................................................................... ............
T∨

.................................................................................................................................... ............∼=
............................................................................... ............

Γ
............................................................................... ............∼=

...................................................................................
.....
.......
.....

(Irel
∗ )∨

...................................................................................
.....
.......
.....

Ψi,irel

Proof. By direct computation. �

Proposition 3.2.3. A bimodule morphism φ of degree −NA from A∆ to A∨rel represents

a relative weak Calabi-Yau pairing on A with coefficients in Arel∆ if and only if any cycle

σ ∈ CCNA(A,Arel∆ )∨ with [Γ ◦ T∨(σ)] = [φ] is homologically non-degenerate and the cycle

(Irel
∗ )∨(σ) ∈ CCNB(B)∨ is homologically non-degenerate as well. In other words, (Irel

∗ )∨(σ)

represents a weak Calabi-Yau structure on B by Definition 3.1.7.

Proof. By Lemma 3.1.6, φ is a quasi-isomorphism if and only if σ is homologically non-

degenerate. Moreover, by Lemma 3.2.2, [(Irel
∗ )∨(σ)] corresponds to [Ψi,irel(φ)] under the

isomorphism

H(Γ ◦ T∨) : HHNB(B)∨
∼=−→ H(B–mod–B)(B∆,B∨)−NB . (3.2.7)

Again by Lemma 3.1.6, The B–B bimodule morphism Ψi,irel(φ) is a quasi-isomorphism pre-

cisely when (Irel
∗ )∨(σ) is homologically non-degenerate. �

Therefore we have the following equivalent definition.

Definition 3.2.4. A relative weak Calabi-Yau pairing on A with coefficients in Arel∆

consists of of the following data:

• the class of a homologically non-degenerate element σA ∈ CCNA(A,Arel
∆ )∨,

• a B–B bimodule morphism irel : B∆ → I∗Arel∆ [−j] of degree j,

satisfying the condition that the cycle (Irel
∗ )∨(σ) ∈ CCNB(B)∨ is also homologically non-

degenerate. As with the previous definition, we will also refer to [σA] as a relative weak

Calabi-Yau pairing on A when it is clear what Arel∆ and irel are. If B is equipped with

a weak Calabi-Yau structure [σB], the relative weak Calabi-Yau pairing [σA] is said to be

compatible with [σB] if [(Irel
∗ )∨(σA)] = [σB]
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Finally, there is an interpretation of relative weak Calabi-Yau pairings in terms of Yoneda

and abstract Serre functors. Consider the functors

Gl
I : fun(A[j],A[j]–mod)→ fun(B,B–mod), (3.2.8)

Gr
I : fun(A[j], (mod–A[j])opp)→ fun(B, (mod–B)opp) (3.2.9)

defined in (1.2.30). The functor I : B → A[j] induces a natural transformation

SI : Yl
B → Gl

I(Yl
A[j]) (3.2.10)

of degree zero. The components (SI)k of SI are given by

(SI)k : B(Y0, . . . , Yk)→ B–mod(Yl
B(Y0),Gl

I(Yl
A[j])(Yk)), (3.2.11)

((SI)k(y1, . . . , yk))m|1 : B(Y ′m, . . . , Y ′0)⊗Yl
B(Y0)(Y ′0)→ Gl

I(Yl
A[j])(Yk)(Y ′m),

((SI)k(y1, . . . , yk))m|1(y′m, . . . , y′1,w) = Ik+m+1(y′m, . . . , y′1,w, y1, . . . , yk).

Here we have used that Gl
I(Yl

A[j])(Yk)(Y ′m) = A[j](I(Y ′m), I(Yk)), which follows from the

definition of Gl
I.

In the following definition, we will also make use of the opposite functors associated to

the dualization functors from right to left modules over A and over B. Denote these by Dopp
A

and Dopp
B respectively,

Dopp
A : (mod–A)opp → A–mod, Dopp

B : (mod–B)opp → B–mod. (3.2.12)

Moreover we will make use of the suspension functors

Σk : A–mod → A–mod, Σk : mod–A → mod–A (3.2.13)

and their associated opposite functors (see Remark 1.2.8).

Definition 3.2.5. Assume the categoryA is equipped with a functor Yr
rel : A → (mod–A)opp

and set

(Y∨rel)l = Dopp
A ◦Yr

rel : A → A–mod. (3.2.14)

By abuse of notation we also denote the induced functors A[j]→ (mod–A[j])opp and A[j]→

A[j]–mod by Yr
rel and (Y∨rel)l. A relative weak Calabi-Yau pairing on A for the functor

Yr
rel consists of the following data:
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• the class of a natural quasi-isomorphism δA : Yl
A → (Y∨rel)l of degree −NA,

• a natural transformation Srel : Gr
I((Σ−j)opp ◦Yr

rel)→ Yr
B of degree j.

These data are subject to an additional non-degeneracy condition which we describe now.

Using Proposition 1.2.18, we have that LDopp
B

(Srel) defines a natural transformation

LDopp
B

(Srel) : Gl
I(Σj ◦ (Y∨rel)l)→ (Y∨B)l (3.2.15)

of degree j. The above data define a relative weak Calabi-Yau pairing if the natural trans-

formation Prel(δA) : Yl
B → (Y∨B)l of degree −NB defined as the composition

Prel(δA) : Yl
B

SI−→ Gl
I(Yl

A[j])
Gl

I(δA[j])
−−−−−→ Gl

I(Σj ◦ (Y∨rel)l)
LDopp
B

(Srel)
−−−−−−→ (Y∨B)l (3.2.16)

is a quasi-isomorphism. In other words, since Prel(δA) is of degree −NB, it represents a weak

Calabi-Yau structure on B. If B is equipped with a weak Calabi-Yau structure [δB], the

relative weak Calabi-Yau pairing [δA] is said to be compatible with [δB] if [Prel(δA)] = [δB].

We will refer to the functor Yr
rel as the relative right Yoneda functor and the functor

(Y∨rel)l as the relative left abstract Serre functor.

Remark 3.2.6. There is also a notion of a relative weak Calabi-Yau structure which was

introduced by Toen in [47] and whose strong version was further studied by Brav and Dy-

ckerhoff in [13]. In [13] this is referred to as a ‘relative right Calabi-Yau structure’ (‘right’

being their terminology for proper Calabi-Yau structures and ‘left’ for smooth Calabi-Yau

structures). This notion is distinct from our concept of a relative weak Calabi-Yau pairing.

A relative weak Calabi-Yau structure for an A∞-functor P : C → D between A∞-categories

both of degree N is defined to be an element of HHN(P)∨ satisfying certain non-degeneracy

conditions. Here

HH•(P) := H•(cone(P∗ : CC•(C)→ CC•(D))). (3.2.17)

We set

Crel∆ = cone(p : C∆ → P∗D∆). (3.2.18)

As explained in [13], a relative weak Calabi-Yau structure induces a module morphism C∆ →

(Crel∆ )∨. This can be viewed as a duality morphism for the category C relative to D. We

see then that a relative weak Calabi-Yau structure for P : C → D describes duality for the

category C relative to D, whereas a relative weak Calabi-Yau pairing for I : B → A describes
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a type of duality for the category A which induces duality on B in the form of an absolute

weak Calabi-Yau structure. Moreover, for a relative weak Calabi-Yau structure, the module

Crel∆ is defined intrinsically in terms of the functor P, but to define a relative weak Calabi-Yau

pairing, the module Arel∆ is an extra structure that must be fixed.

In the special case of A∞-algebras over fields of characteristic zero, Toen and Brav-

Dyckerhoff’s notion of a relative (strong) right Calabi-Yau structure is related to the earlier

concept of Seidel of an A∞-algebra with boundary [42, §3.3].

3.3. The weak Calabi-Yau structure on F

We now describe the weak Calabi-Yau structure on the monotone Fukaya category. This

construction was introduced by Seidel in the exact context [40, §I.12j]. It was proved by

Sheridan that the construction defines a weak Calabi-Yau structure in the monotone case

[44]. The technical assumptions used by Sheridan are slightly different from those given in

Section 2.3 because he works in the graded context (although not necessarily Z-graded) and

with coefficients in C. However the same arguments carry over to the ungraded context and

Z2-coefficients.

The construction of the weak Calabi-Yau structure on F relies on counting elements

of moduli spaces of inhomogeneous pseudoholomorphic curves in M which generalize the

moduli spaces involved in the definition of the Poincaré duality quasi-isomorphism for Floer

complexes. We present two equivalent versions of the construction which correspond to

Definitions 3.1.4 and 3.1.7 of weak Calabi-Yau structures on A∞-categories. As we work

in the ungraded context, Hochschild homology and cohomology spaces are ungraded vector

spaces, as are spaces of F–F bimodule pre-morphisms, and there is no requirement on the

degree of a weak Calabi-Yau structure (see also Remark 1.4.9).

3.3.1. As an element of HH•(F)∨.

To define the weak Calabi-Yau structure on F as an element of HH•(F)∨, we consider

moduli spaces of inhomogeneous pseudoholomorphic curves with domain the unit disc in C

with at least one entry point along the boundary, no exit points, and a single internal marked

point fixed at zero. We assume one of the entries along the boundary is fixed at +1. As in

the usual construction of Fukaya categories [40], we fix strip-like ends and a generic choice

of perturbation data for these curves so that, when considered together with the data for
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L5
γ6

γ5

L6

γ

L0

L1

L2

L3

L4

γ4

γ3

γ2

γ1

Figure 3.1. An inhomogeneous pseudoholomorphic polygon in M in the moduli space
R7;1(γ1, . . . , γ6,γ) used to define the representative σF ∈ CC•(F)∨ of the weak Calabi-Yau
structure on F . The inward pointing arrows indicate that the punctures along the boundary
are inputs. The cross at zero indicates the marked point.

defining F , all data is consistent with respect to gluing. We discuss this type of construction

in detail for cobordism categories in Chapter 4.

For a Hochschild chain of the form

γ1 ⊗ · · · ⊗ γm ⊗ γ ∈ F(L0, . . . , Lm)⊗F(Lm, L0) ⊂ CC•(F), (3.3.1)

we let Rm+1;1(γ1, . . . , γm,γ) denote the moduli space of such pseudoholomorphic discs satis-

fying boundary conditions along L0, . . . , Lm, L0 (labelled in clockwise order) and asymptotic

conditions along γ1, . . . , γm,γ, as shown in Figure 3.1. No constraints are placed on the

image of the internal marked point, which is present for dimensional reasons. The subset of

Rm+1;1(γ1, . . . , γm,γ) consisting of discs of a fixed Maslov index is a smooth manifold whose

dimension is given by the Fredholm index of the linearized operator associated to the rel-

evant inhomogeneous Cauchy-Riemann equation. We denote the s-dimensional component

of Rm+1;1(γ1, . . . , γm,γ) by Rm+1;1(γ1, . . . , γm,γ)s.
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The zero-dimensional component Rm+1;1(γ1, . . . , γm,γ)0 is compact and the one-

dimensional component Rm+1;1(γ1, . . . , γm,γ)1 can be compactified by once-broken

configurations. These broken configurations are pairs of discs in M joined at a boundary

point, each with m ≥ 1 entry chords along the boundary, and with one disc containing the

image of the internal marked point.

Define an element σF ∈ CC•(F)∨ by

〈σF , γ1 ⊗ · · · ⊗ γm ⊗ γ〉 = #Z2Rm+1;1(γ1, . . . , γm,γ)0, (3.3.2)

for γi ∈ O(HLi−1,Li), i = 1, . . . ,m, and γ ∈ O(HLm,L0).

Consider now ∂∨σF applied to γ1 ⊗ · · · ⊗ γm ⊗ γ, where ∂∨ is the dual of the differential

on the Hochschild chain complex CC•(F). This is a count of the broken configurations

appearing as elements of the boundary of Rm+1;1(γ1, . . . , γm,γ)1. It follows that ∂∨σF = 0,

and so σF represents a class in HH•(F)∨. Moreover, as proved in [44, Lemma 2.4], σF

is homologically non-degenerate, and therefore represents a weak Calabi-Yau structure on

F . This is a reflection of the fact that the chain-level comparison map (2.2.9) is a quasi-

isomorphism.

3.3.2. As the class of a natural quasi-isomorphism Yl
F → (Y∨F)l.

To define the weak Calabi-Yau structure on F as the class of a natural transformation

from the left Yoneda functor for F to the left abstract Serre functor, we consider moduli

spaces of two-pointed open-closed (m, p)-discs in M . These have as domain the unit disc

in C with m + p + 2 entry punctures around the boundary: one puncture fixed at −1, one

puncture at +1, m punctures on the lower half of the boundary of the disc and p punctures

on the upper half of the boundary of the disc. There is also a marked point fixed at zero.

We fix strip-like ends and a generic choice of perturbation data for these curves so that,

when considered together with the data for defining F , all data is consistent with respect to

gluing.
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N3
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L2

ξ′

η4

η3
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η1

γ3

γ2
γ1

ξ

Figure 3.2. An inhomogeneous pseudoholomorphic polygon in M in the mod-
uli space R3,4;1(γ1, γ2, γ3, ξ; η4, . . . , η1, ξ

′) used to define the representative δF in
fun(F ,F–mod)(Yl

F , (Y∨F)l) of the weak Calabi-Yau structure on F

Fix m, p ≥ 0 and Hamiltonian orbits

γi ∈ O(HLi−1,Li), i = 1, . . . ,m,

ηj ∈ O(HNj ,Nj−1), j = 1, . . . , p,

ξ ∈ O(HLm,Np), ξ′ ∈ O(HN0,L0).

(3.3.3)

We denote by Rm,p;1(γ1, . . . , γm, ξ; ηp, . . . , η1, ξ
′) the moduli space of two-pointed open-closed

(m, p)-discs in M which satisfy boundary conditions along L0, . . . , Lm, Np, . . . , N0 and as-

ymptotic conditions along γ1, . . . , γm, ξ, ηp, . . . , η1, ξ
′ (see Figure 3.2). We denote its s-

dimensional component by Rm,p;1(γ1, . . . , γm, ξ; ηp, . . . , η1, ξ
′)s.

The weak Calabi-Yau structure on F is represented by the natural transformation

δF = (δF0 , δF1 , . . .) : Yl
F → (Y∨F)l, (3.3.4)

defined as follows. The map

δFm : F(Np, . . . , N0)→ F–mod(Yl
F(Np), (Y∨F)l(N0)) (3.3.5)

49



applied to the Hamiltonian chords ηj ∈ O(HNj ,Nj−1), j = p, . . . , 1, gives a pre-morphism of

left F -modules

δFp (ηp, . . . , η1) : Yl
F(Np)→ (Y∨F)l(N0). (3.3.6)

This in turn is specified by maps

δFp (ηp, . . . , η1)m|1 : F(L0, . . . , Lm)⊗F(Lm, Np)→ (F(N0, L0))∨. (3.3.7)

On the Hamiltonian chords γi ∈ O(HLi−1,Li), i = 1, . . . ,m, ξ ∈ O(HLm,Np), and ξ′ ∈

O(HN0,L0), the map δFp (ηp, . . . , η1)m|1 is given by

〈δFp (ηp, . . . , η1)m|1(γ1, . . . , γm, ξ), ξ′〉

= #Z2Rm,p;1(γ1, . . . , γm, ξ; ηp, . . . , η1, ξ
′)0.

(3.3.8)

This description defines a pre-natural transformation which can be seen to be a natural

transformation, i.e. µfun(F ,F–mod)
1 (δF) = 0, by examining the configurations which appear as

the boundary of the compactification of Rm,p;1(γ1, . . . , γm, ξ
′; ηp, . . . , η1, ξ)1. Moreover the

fact that δF represents an isomorphism in the category H(fun(F ,F–mod)) again follows

from the fact that the chain-level comparison map (2.2.9) is a quasi-isomorphism.

Remark 3.3.1. The bimodule quasi-isomorphism φF : F∆ → F∨ corresponding to δF under

the isomorphism Φl of (1.2.18) is given by

φFm|1|p : F(L0, . . . , Lm)⊗F(Lm, Np)⊗F(Np, . . . , N0)→ (F(N0, L0))∨,

〈φFm|1|p(γ1, . . . , γm, ξ, ηp, . . . , η1), ξ′〉

= #Z2Rm,p;1(γ1, . . . , γm, ξ; ηp, . . . , η1, ξ
′)0.

(3.3.9)

Moreover, the chain-level map φF0|1|0 can be identified with the Poincaré duality quasi-

isomorphism (2.2.14). To see this, first note that a homotopy (H,J) interpolating between

Floer data (HN,L, JN,L) and (H̄L,N , J̄L,N) as in (2.2.10) determines a perturbation datum for

defining R0,0;1(γ; ξ) (we define perturbation data and the associated inhomogeneous Cauchy-

Riemann equation in the more general setting of Fukaya categories of Lagrangian cobordisms

in Section 4.3). With this perturbation datum, there is an identification between R0,0;1(γ; ξ)

and the moduli space R(γ, ξ) in (2.2.14).
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3.3.3. Relating the two descriptions.

As remarked in [44, Remark 2.7], the descriptions of the weak Calabi-Yau structure on

F in the previous two sections are related via the quasi-isomorphism from the two-pointed

Hochschild chain complex to the ordinary Hochschild chain complex. We spell this out in

the following lemma which is a simple consequence of a version of Proposition 5.6 in [24].

The proof, which we omit, uses the same idea as the proof of the corresponding result for the

relative weak Calabi-Yau pairing on the Lagrangian cobordism Fukaya category (see part

(3) of Theorem 4.5.1).

Lemma 3.3.2. The isomorphism induced on homology by the quasi-isomorphism of chain

complexes

CC•(F)∨ T∨−→ 2CC•(F)∨ Γ−→ 2CC
•(F ,F∨), (3.3.10)

takes [σF ] to [φF ]. Here T∨ is the quasi-isomorphism dual to (1.4.17), and Γ is the isomor-

phism of Lemma (1.4.8).

Remark 3.3.3. If we work instead with the graded Fukaya category, which is an A∞-

category of degree n = 1
2dim(M), the weak Calabi-Yau structure has the appropriate degree,

i.e. |φF | = |δF | = −n and σF ∈ HHn(F)∨. Moreover, this construction of the weak Calabi-

Yau structure is valid for coefficients in an arbitrary field.

Remark 3.3.4. The usual description of the weak Calabi-Yau structure on F is in terms

of open-closed maps (see [44]). The two incarnations σF and φF of the structure on F

can be described using the ordinary open-closed map and the two-pointed open-closed map

respectively:

OC : CC•(F)→ (C•(f), ∗), 2OC : 2CC•(F)→ (C•(f), ∗). (3.3.11)

Here (C•(f), ∗) is the Morse complex associated to a Morse function f onM with coefficients

in Z2, equipped with the quantum product, i.e. (C•(f), ∗) computes the quantum homology of

M with Z2 coefficients. The Hochschild homology HH•(F) has a natural QH•(M)-module

structure, where the chain level description of the action can be described on either the

ordinary or two-pointed Hochschild chain complexes. Both OC and 2OC induce maps of

QH•(M)-modules on homology. The maps 2OC and OC are defined by counting the same
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kind of configurations as in Figures 3.1 and 3.2, but additionally geometric constraints are

placed on the image of the marked point at zero. The representatives σF and φF of the weak

Calabi-Yau structure on F satisfy

σF(a) = 〈OC(a), e〉, (Γ−1(φF))(b) = 〈2OC(b), e〉, (3.3.12)

for all a ∈ CC•(F) and b ∈ 2CC•(F), where e ∈ C•(f) is a representative of the fundamental

class in QH•(M). Lemma 3.3.2 is a reflection of the fact that up to homotopy, OC◦T = 2OC,

which is a version of Proposition 5.6 in [24].
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Chapter 4

The Fukaya category of cobordisms and its relative

weak Calabi-Yau pairing

In this section, we will recall the construction of the Fukaya category of cobordisms from

[10] while introducing the new ingredients needed to define the relative weak Calabi-Yau

pairing. We will view cobordisms as Lagrangian submanifolds of M̃ = C×M by identifying

cobordisms in ([0, 1]× R)×M with their trivial R-extensions.

The objects of the Fukaya category of cobordisms Fukcob(M̃) are connected cobordisms

W ⊂ M̃ with dW = d, for a fixed d ∈ Z2, which are uniformly monotone and satisfy the

condition

π1(W ) ι∗−→ π1(M̃) is trivial. (4.0.1)

Moreover, we assume that the Lagrangians in M forming the ends of the cobordism are in

L∗d(M). We denote this class of cobordisms by CLd(M̃). The construction of Fukcob(M̃)

proceeds along the same lines as the construction of Fuk(M), but with changes to account for

the compactness issues that arise from the non-compactness of the cobordisms themselves.

In what follows, M will be fixed and we will denote Fukcob(M̃) by Fc.

4.1. Pointed discs, strip-like ends, and sign data

Fix k ≥ 2. We first describe the domains of the inhomogeneous pseudoholomorphic

curves we will be interested in. This description appears in [40] and [10] for those curves

contributing to the operations in the Fukaya category. Let D denote the unit disc in C and

define Confk+1(∂D) ⊂ (∂D)k+1 to be the space of configurations of k + 1 distinct points

(z1, . . . , zk+1) in ∂D ordered clockwise. The group Aut(D) of biholomorphisms of the disc



acts freely and properly on Confk+1(∂D) and we define

Rk+1 = Confk+1(∂D)/Aut(D),

Ŝk+1 = Confk+1(∂D)×Aut(D) D.

The projection Ŝk+1 → Rk+1 has sections ζi([z1, . . . , zk+1]) = [z1, . . . , zk+1, zi]. We set Sk+1 =

Ŝk+1 \ ∪iζi(Rk+1). The fibre bundle Sk+1 → Rk+1 is called a universal family of (k + 1)-

pointed discs, and its fibres Sk+1
r , r ∈ Rk+1, are called (k+ 1)-pointed discs. We extend

this definition to the case k = 1 by setting R2 = {0} and S2 = D \ {−1, 1}.

We also consider discs with an interior marked point. Fix m ≥ 0 and define

Confm+1;1(∂D; Int(D)) ⊂ (∂D)m+1 × Int(D) to be the space of configurations of m + 2

distinct points (z1, . . . , zm+1, y) in D, where z1, . . . , zm+1 ∈ ∂D are ordered clockwise and

y ∈ Int(D). Again, the group Aut(D) acts freely and properly on Confm+1;1(∂D; Int(D))

and we define

Rm+1;1 = Confm+1;1(∂D; Int(D))/Aut(D),

Ŝm+1;1 = Confm+1;1(∂D; Int(D))×Aut(D) D.

The projection Ŝm+1;1 → Rm+1;1 has sections ξi([z1, . . . , zm+1, y]) = [z1, . . . , zm+1, y, zi]. We

set Sm+1;1 = Ŝm+1;1 \∪iξi(Rm+1;1). The fibre bundle Sm+1;1 → Rm+1;1 is called a universal

family of (m + 1)-pointed discs with one interior marked point, and its fibres are

called (m + 1)-pointed discs with one interior marked point. For k ≥ 2, there is a

natural projection pk+1 : Rk+1;1 → Rk+1 and we have Sk+1;1 = p∗k+1Sk+1.

Now fix m, p ≥ 0. We recall from [24] the definition of two-pointed open-closed

discs. Consider the space Rm+p+2;1 and assume the elements of Confm+p+2;1(∂D; Int(D))

are labelled (z1, . . . , zm, z
′, wp, . . . , w1, w

′, y), where z1, . . . , zm, z
′, wp, . . . , w1, w

′ ∈ ∂D are

ordered clockwise and y ∈ Int(D). We define Rm,p;1 to be the codimension-one sub-

manifold of Rm+p+2;1 consisting of those [z1, . . . , zm, z
′, wp, . . . , w1, w

′, y] ∈ Rm+p+2;1 where

z′ = −1, w′ = 1, and y = 0. We set Sm,p;1 = Sm+p+2;1|Rm,p;1 . This bundle is the universal

family of two-pointed open-closed discs with (m, p) punctures. The points z′ and w′

are referred to as special points.

We now recall from [40] the notion of a universal choice of strip-like ends. Fix a subset

Ik+1 ⊂ {1, . . . , k + 1}, k ≥ 1. Set Z+ = [0,∞) × [0, 1], Z− = (−∞, 0] × [0, 1]. Let S be a
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(k + 1)-pointed disc with boundary punctures (z1, . . . , zk+1). A choice of strip-like ends

for S with inputs Ik+1 is a collection of proper, holomorphic embeddings

εSi : Z− → S, i ∈ Ik+1,

εSi : Z+ → S, i ∈ {1, . . . , k + 1} \ Ik+1,

which satisfy the conditions

(1) For i ∈ Ik+1, (εSi )−1(∂S) = (−∞, 0]× {0, 1} and lims→−∞ ε
S
i (s, t) = zi.

(2) For i ∈ {1, . . . , k + 1} \ Ik+1, (εSi )−1(∂S) = [0,∞)× {0, 1} and lims→∞ ε
S
i (s, t) = zi.

We also require that the εSi have pairwise disjoint images. Those punctures zi for i ∈ Ik+1

are referred to as inputs or entries, and zi for i ∈ {1, . . . , k + 1} \ Ik+1 are referred to as

outputs or exits.

A universal choice of strip-like ends with inputs Ik+1 for the bundle Sk+1 → Rk+1

is a choice of embeddings

εi : Rk+1 × Z− → Sk+1, i ∈ Ik+1,

εi : Rk+1 × Z+ → Sk+1, i ∈ {1, . . . , k + 1} \ Ik+1,

whose restrictions εi|r×Z± for any r ∈ Rk+1 are a choice of strip-like ends for Sk+1
r with

inputs Ik+1.

Similarly one defines strip-like ends for (m + 1)-pointed discs with one interior marked

point (m ≥ 0) and for two-pointed open-closed discs with (m, p) punctures (m, p ≥ 0), but

there we include the additional requirement that the interior marked point not be contained

in the union of the images of the εSi . These definitions can likewise be extended to universal

choices of strip-like ends for the bundles Sm+1;1 and Sm,p;1. A universal choice of strip-like

ends for Sm+p+2;1 determines one for Sm,p;1 by restriction.

Remark 4.1.1. We note that a universal choice of strip-like ends {εi} for some fixed input

set Ik+1 determines a universal choice of strip-like ends for any input set (I ′)k+1. Indeed, a

negative strip-like end εi, i.e. a strip-like end εi for i ∈ Ik+1, can be changed to a positive

strip-like end ε′i (and vice versa) by defining ε′i(s, t) = ε(−s, 1− t).

A pair of pointed discs equipped with strip-like ends can be glued along an input for one

disc and an output for the other disc to produce another pointed disc. This operation is
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defined as follows. Fix ρ > 0. Let S be a (k + 1)-pointed disc with strip-like ends {εSi } and

S ′ be a (k′+ 1)-pointed disc with strip-like ends {εS′j }. Assume that zi0 is an input puncture

for S and z′j0 is an output puncture for S ′. The glued disc S#ρS
′ with gluing parameter ρ is

defined by first taking the disjoint union obtained by removing a piece of each disc around

the punctures zi0 and z′j0

(S \ εSi0((−∞,−ρ)))
∐

(S ′ \ εS′j0 ((ρ,∞))),

and then making the identifications

εSi0(s− ρ, t) ∼ εS
′

j0 (s, t), (s, t) ∈ [0, ρ]× [0, 1].

The surface S#ρS
′ inherits a complex structure from S and S ′ and has k + k′ boundary

punctures. Therefore it is biholomorphic to a unique fibre of the bundle Sk+k′ → Rk+k′ .

Moreover, the strip-like ends {εSi } and {εS
′

j } induce strip-like ends on the glued disc S#ρS
′.

The glued disc S#ρS
′ comes equipped with a thick-thin decomposition, given by

(S#ρS
′)thin =

∐
i 6=i0

εSi (Z±) t
∐
j 6=j0

εS
′

j (Z±)
∐
εi0([−ρ, 0]× [0, 1]),

(S#ρS
′)thick = (S#ρS

′) \ (S#ρS
′)thin.

Similarly a pointed disc S ′′ with one interior marked point can be glued to the pointed

disc S along an input for S ′′ and an output for S (or vice versa). The glued disc S#ρS
′′ is

a pointed disc with one interior marked point. Again, strip-like ends on S and S ′′ induce

strip-like ends on S#ρS
′, and S#ρS

′ has a thick-thin decomposition. We note however that

the gluing of a two-pointed open-closed disc to a pointed disc does not necessarily produce a

two-pointed open-closed disc, but rather only a pointed disc with one interior marked point.

This is because, after gluing, the resulting disc may not be biholomorphic to one where the

special punctures and interior marked point lie at −1, 1 and 0 respectively. However, as

the gluing parameter ρ approaches zero, this configuration still degenerates to a two-pointed

open-closed disc joined to a pointed disc at a boundary point.

The spaces Rk+2 (k ≥ 2) and Rm+1;1 (m ≥ 0) have natural compactifications (see [40]).

The strata of the compactification Rk+1 of Rk+1 are indexed by stable trees with k + 1

exterior edges, and those of the compactification Rm+1;1 of Rm+1;1 are indexed by stable
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trees with one distinguished vertex and m + 1 exterior edges. We note that the stability

condition for the distinguished vertex only requires it to have one adjacent edge, as opposed

to three for the non-distinguished vertices. As a submanifold of Rm+p+2;1, the space Rm,p;1

can be compactified by adding strata which are indexed by a subset of the set of stable trees

with m + p + 2 exterior edges and one distinguished vertex. The bundles Sk+1 and Sm+1;1

have partial compactifications Sk+1 and Sm+1;1. These are no longer fibre bundles, but only

smooth manifolds with corners. They are equipped with smooth submersions Sk+1 → Rk+1

and Sm+1;1 → Rm+1;1 that extend the respective projections. It follows that the subbundle

Sm,p;1 ⊂ Sm+p+2;1 also has a partial compactification Sm,p;1 ⊂ Sm+p+2;1 together with a

smooth submersion Sm,p;1 → Rm,p;1 extending the projection.

For the structures we will consider, we will limit ourselves to the following fixed input

sets:

(1) For Sk+1, k ≥ 1, Ik+1
µ := {1, . . . , k} ⊂ {1, . . . , k + 1}.

(2) For Sm+1;1, m ≥ 0, Im+1
CY = {1, . . . ,m+ 1}.

(3) For Sm,p;1, m, p ≥ 0, Im+p+2
CY .

We will assume that the strip-like ends on S2 for the input set I2
µ are those coming from

a fixed choice of biholomorphic map between the strip R× [0, 1] and S2.

Given universal choices of strip-like ends {εk+1
i }i=1,...,k+1 for Sk+1 with inputs Ik+1

µ for all

k ≥ 2 and universal choices of strip-like ends {εm+1;1
j }j=1,...,m+1 for Sm+1;1 with inputs Im+1

CY

for all m ≥ 0, there is a notion of consistency of these choices with respect to gluing. Here

consistency refers to consistency among all of the {εk+1
i } and {ε

m+1;1
j } for different choices of

k and m. This is a minor extension of the notion introduced in [40]. In the present context,

the consistency condition requires the choices of strip-like ends near the boundary of Rk+1

and of Rm+1;1 to be equal to those obtained by gluing configurations of discs associated to

stable trees with k + 1 exterior edges, or respectively to stable trees with one distinguished

vertex and m+ 1 exterior edges. By arguments similar to those in [40], consistent universal

choices of strip-like ends for Sk+1 with inputs Ik+1
µ and for Sm+1;1 with inputs Im+1

CY exist.

Similarly there is a notion of consistency between universal choices of strip-like ends for Sk+1

with inputs Ik+1
µ and for Sm,p;1 with inputs Im+p+2

CY . The consistency condition is satisfied

by taking the universal choice of strip-like ends on Sm,p;1 to be that given by restriction from

Sm+p+2;1.
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We also require a choice of metrics ρk+1 on Sk+1 and ρm+1;1 on Sm+1;1. Like the uni-

versal choices of strip-like ends, these metrics must be consistent with respect to gluing.

Furthermore, we assume there exist constants Ak+1, k ≥ 2, and Bm+1, m ≥ 0, such that

lengthρk+1(∂Sk+1
r ) ≤ Ak+1 for all r ∈ Rk+1 and all k ≥ 2, (4.1.1)

lengthρm+1;1(∂Sm+1;1
r′ ) ≤ Bm+1 for all r′ ∈ Rm+1;1 and all m ≥ 0. (4.1.2)

Note that the metric ρm+p+2;1 induces a metric ρm,p;1 on Sm,p;1 form, p ≥ 0 which is consistent

with the metrics ρk+1 and satisfies

lengthρm,p;1(∂Sm,p;1r′′ ) ≤ Bm+p+2 for all r′′ ∈ Rm,p;1 and all m, p ≥ 0. (4.1.3)

These metrics play a role in proving the energy estimates in Lemma 5.1.3.

We will also associate to a universal family of discs Sk+1 or Sk+1;1, with fixed choice of

inputs a (k + 1) sign datum ᾱ = (α1, . . . , αk+1) consisting of an ordered family of k + 1

signs αi ∈ {−,+}. The αi indicate which of two types of Floer data will be used for the pairs

of Lagrangians associated to the ith puncture, as we describe in Section 4.3. Similarly, we

associate to a universal family of two-pointed open-closed discs with (k,m) punctures and

fixed choice of inputs a (k +m+ 2) sign datum. Note that sign data do not appear in [10],

but are needed in the present context to describe the duality structure on Fc.

4.2. Transition functions

Following [10], we require an ingredient that does not appear in [40] – so-called transition

functions. These are used in defining the naturality transformation that arises in the proof

of compactness for the moduli spaces of curves in M̃ that we will consider. The transition

functions we define here are a slight generalization of those appearing in [10].

Let S be a (k+ 1)-pointed disc with or without interior marked point. We assume k ≥ 1

in the case without interior marked point and k ≥ 0 in the case with interior marked point.

Fix inputs Ik+1 ⊂ {1, . . . , k + 1} and equip S with a choice of strip-like ends {εSi }i=1,...,k+1

for the input set Ik+1 and a (k+1) sign datum ᾱ. A transition function for S is a smooth

function a : S → [0, 1] satisfying the following conditions (see Figure 4.1):

(1) For i ∈ Ik+1 with αi = +, we have:

(a) a ◦ εSi (s, t) = t, for all (s, t) ∈ (−∞,−1]× [0, 1].
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(b) ∂s(a ◦ εSi )(s, 1) ≤ 0 for s ∈ [−1, 0].

(c) a ◦ εSi (s, t) = 0 for (s, t) ∈ ((−∞, 0]× {0}) ∪ ({0} × [0, 1]).

(2) For i ∈ {1, . . . , k + 1} \ Ik+1 with αi = +, we have:

(a) a ◦ εSi (s, t) = t, for all (s, t) ∈ [1,∞)× [0, 1].

(b) ∂s(a ◦ εSi )(s, 1) ≥ 0 for s ∈ [0, 1].

(c) a ◦ εSi (s, t) = 0 for (s, t) ∈ ([0,+∞)× {0}) ∪ ({0} × [0, 1]).

(3) For i ∈ Ik+1 with αi = −, we have:

(a) a ◦ εSi (s, t) = 1− t, for all (s, t) ∈ (−∞,−1]× [0, 1].

(b) ∂s(a ◦ εSi )(s, 0) ≤ 0 for s ∈ [−1, 0].

(c) a ◦ εSi (s, t) = 0 for (s, t) ∈ ((−∞, 0]× {1}) ∪ ({0} × [0, 1]).

(4) For i ∈ {1, . . . , k + 1} \ Ik+1 with αi = −, we have:

(a) a ◦ εSi (s, t) = 1− t, for all (s, t) ∈ [1,∞)× [0, 1].

(b) ∂s(a ◦ εSi )(s, 0) ≥ 0 for s ∈ [0, 1].

(c) a ◦ εSi (s, t) = 0 for (s, t) ∈ ([0,+∞)× {1}) ∪ ({0} × [0, 1]).

We consider now the case without interior marked point. Assume we have a universal

choice of strip-like ends εi for Sk+1 with input set Ik+1. A global transition function for

Sk+1 with sign datum ᾱ is a smooth function a : Sk+1 → [0, 1] such that ar := a|Sr is a

transition function on Sr for each r ∈ Rk+1. Global transition functions are defined similarly

for Sk+1;1 and Sk,m;1.

Let S be a (k + 1)-pointed disc with (k + 1) sign datum ᾱ and transition function

a : S → [0, 1], and let S ′ be a (k′+ 1)-pointed disc with (k′+ 1) sign datum β̄ and transition

function b : S → [0, 1]. We allow for the possibility that one of S or S ′ has an interior marked

point. Fix ρ ∈ (1,∞) and consider the disc S#ρS
′ obtained by gluing along the ith puncture

for S, which we assume to be an input, and the jth puncture for S ′, which we assume to be

an output. We further assume that αi = βj. By conditions 1 – 4 (a), the transition functions

a and b determine a transition function on S#ρS
′.

Suppose we have fixed consistent universal choices of strip-like ends {εk+1
i }i=1,...,k+1 on

Sk+1 for the input set Ik+1
µ , k ≥ 1, and {εm+1;1

i }i=1,...,m+1 on Sm+1;1 for the input set Im+1
CY ,

m ≥ 0. We take as strip-like ends {εm,p;1i }i=1,...,m+p+2 on Sm,p;1 for the input set Im+p+2
CY ,

m, p ≥ 0, those given by restriction of the εm+p+2;1
i . We will make use of the following types

of global transition functions in what follows:
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ε1 ε2

ε4 ε3

α1 = + α2 = +

α3 = −α4 = −

z1 z2

z4 z3

Figure 4.1. A 4-pointed disc with strip-like ends ε1, . . . , ε4 illustrating the conditions im-
posed on transition functions. The punctures are of the following types: z1 is an input with
α1 = +, z2 is an output with α2 = +, z3 is an output with α3 = −, and z4 is an input with
α4 = −. On the green regions the transition function is equal to (s, t) 7→ t; on the brown
regions, it is equal to (s, t) 7→ 1 − t; along the blue lines, the function vanishes; the red
regions are transition zones. There are no conditions imposed on the function in the grey
region.

(1) For defining the maps µFck in the category Fc, we will need global transition functions

aµ : Sk+1 → [0, 1] for the input set Ik+1
µ and the (k + 1) sign datum ᾱµ given by

(αµ)i = + for i ∈ {1, . . . , k + 1}.

(2) For defining the relative right Yoneda functor Yr
rel for Fc (or equivalently the relative

diagonal bimodule (Fc)rel
∆ ), we will need for every pair (m, p) with m, p ≥ 0 global

transition functions am,pY : Sm+p+2 → [0, 1] for the input set Im+p+2
µ and the (m+p+2)

sign datum ᾱY(m, p) given by

(αY(m, p))i =


−, i ∈ {m+ 1,m+ p+ 2}

+, i ∈ {1, . . . ,m+ p+ 2} \ {m+ 1,m+ p+ 2}.
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(3) For defining the relative weak Calabi-Yau pairing on Fc as the class of a natural

quasi-isomorphism from Yl
Fc to (Y∨rel)l, we will need for every m, p ≥ 0 a global

transition function aδ : Sm,p;1 → [0, 1] for the input set Im+p+2
CY and the m + p + 2

sign datum ᾱCY given by

(αCY )i =


−, i = m+ p+ 2,

+, i ∈ {1, . . . ,m+ p+ 1}.
(4.2.1)

(4) For defining the relative weak Calabi-Yau pairing on Fc in terms of Hochschild ho-

mology, we will need for every m ≥ 0 a global transition function aσ : Sm+1;1 → [0, 1]

for the input set Im+1
CY and the (m+ 1) sign datum ᾱCY .

By the same type of arguments used to show the existence of consistent universal choices

of strip-like ends in [40], there exist consistent choices of global transition functions aµ, am,pY ,

and aσ. We take aδ to be given by restriction of aσ to Sm,p;1. Moreover, we can assume

that the transition function aµ on S2 is given by aµ(s, t) = t and the transition function a0,0
Y

on S2 is given by aµ(s, t) = 1− t, where we make use of the same fixed biholomorphic map

between the strip R× [0, 1] and S2 = D \ {−1, 1} that was used to define strip-like ends on

S2.

4.3. Floer data, perturbation data, and the curve configurations

We describe here the two types of Floer data we will use to define Floer complexes for pairs

of cobordisms. We then define a general notion of compatible perturbation data that covers

both the data used to define the pseudoholomorphic polygons appearing in the construction

of the Fukaya category of cobordisms as well as the data used to describe the curves which

define the relative right Yoneda functor Yr
rel on Fc and the relative weak Calabi-Yau pairing.

As in [10], we fix a smooth function h : R2 → R satisfying the following conditions (see

Figure 4.2):

(1) There exists ε ∈ (0, 1
4) such that the support of h is contained in the union of the sets

W−
i = (−∞,−1]× [i− ε, i+ ε], W+

i = [2,∞)× [i− ε, i+ ε], i ∈ Z.
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−2 −3
2 −1 2 5

2 3h−

h+

ε
2

− ε
2

(φh1)−1(R× {0})

Figure 4.2. The functions h− : (−∞,−1] → R and h+ : [2,∞) → R, together with the
image of the real line under the Hamiltonian diffeomorphism (φh1)−1. The points (−3

2 , 0) and
(5

2 , 0) are “bottlenecks”.

(2) Set T−i = (−∞,−1]× [i− ε
2 , i+ ε

2 ] and T+
i = [2,∞)× [i− ε

2 , i+ ε
2 ]. The restrictions

h|T−i and h|T+
i
, i ∈ Z, are of the form h|T−i (x, y) = h−(x) and h|T+

i
(x, y) = h+(x)

where the smooth functions h− : (−∞,−1]→ R and h+ : [2,∞)→ R satisfy:

(a) h−|(−∞,−2) = λ−0 x+ λ−1 for some constants λ−0 , λ−1 ∈ R with λ−0 > 0. Moreover,

on the interval (−∞,−1), h− has a single critical point at −3
2 and this point is

a non-degenerate maximum.

(b) h+|(3,∞) = λ+
0 x + λ+

1 for some constants λ+
0 , λ+

1 ∈ R with λ+
0 < 0. Moreover,

on the interval (2,∞), h+ has a single critical point at 5
2 and this point is also

a non-degenerate maximum.

(3) The Hamiltonian isotopy φht : R2 → R2 exists for all t ∈ R and satisfies:

(a) For all t ∈ [−1, 1],

φht ((∞,−1]× {i}) ⊂ T−i and φht ([2,∞)× {i}) ⊂ T+
i .

In other words, we require the derivatives of the functions h± to be sufficiently

small.

(b) For all t ∈ R, φht ([−3
2 ,

5
2 ]× R) = [−3

2 ,
5
2 ]× R.

The function h is called a profile function.

Remark 4.3.1. The critical points of h at x = (−3
2 , i) and x = (5

2 , i) for i ∈ Z are referred

to as bottlenecks. The descriptive term arises from the role these critical points play in the
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compactness theorem for moduli spaces of inhomogeneous pseudoholomorphic curves satis-

fying boundary conditions along Lagrangian cobordisms. This proof relies on performing a

naturality transformation on such curves, and the resulting transformed curves satisfy mov-

ing boundary conditions. The techniques developed in [9] for proving Gromov compactness

in the cobordism setting need to be modified in the presence of moving boundary conditions.

The bottlenecks introduced in [10] create a common point that a transformed curve must

“pass through” in order to escape a compact region, hence the name.

Fix a pair of cobordisms W,W ′ ∈ CLd(M̃) and a sign α ∈ {−,+}. We associate to

the pair of cobordisms W,W ′ a Floer datum Dα
W,W ′ = (Hα

W,W ′ , J
α
W,W ′) consisting of a

time-dependent Hamiltonian and almost complex structure on M̃ , satisfying the following

conditions:

(1) φ
Hα
W,W ′

1 (W ) is transverse to W ′.

(2) Write points of M̃ as (x, y, p) with x + iy ∈ C and p ∈ M . We require that there

exist a compact set KW,W ′ ⊂ (−5
4 ,

9
4) × R ⊂ C such that outside of KW,W ′ ×M , we

have

Hα
W,W ′(t, x, y, p) = αh(x, y) +Gα

W,W ′(t, p),

for some Gα
W,W ′ : [0, 1]×M → R.

(3) Outside of KW,W ′ ×M , the projection π : M̃ → C satisfies:

• For α = +, π is (JαW,W ′(t), (φht )∗i)-holomorphic for all t ∈ [0, 1],

• For α = −, π is (JαW,W ′(t), (φh1−t)∗i)-holomorphic for all t ∈ [0, 1].

When α = +, these are the conditions used in [10]. We will refer to Floer data of the type

D+
W,W ′ as positive profile Floer data and to data of the type D−W,W ′ as negative profile

Floer data.

Remark 4.3.2. It follows from the form of Hα
W,W ′ and h that the set O(Hα

W,W ′) of Hamilton-

ian chords connectingW toW ′ is finite and that every γ ∈ O(Hα
W,W ′) satisfies Image(π◦γ) ⊂

[−3
2 ,

5
2 ] × R. To see this, consider a chord γ(t) = φ

Hα
W,W ′

t (x0, y0, p0) ∈ O(Hα
W,W ′). If

x0 ∈ R \ (−5
4 ,

9
4), it follows from conditions (2) and (3) on h that x0 ∈ {−3

2 ,
5
2} and π ◦ γ is a

constant curve at (−3
2 , i) or (5

2 , i) for some i ∈ Z. We conclude that any γ in O(Hα
W,W ′) is of

the form γ(t) = φ
Hα
W,W ′

t (x0, y0, p0) with x0 ∈ [−3
2 ,

5
2 ]. Since W and (φ

Hα
W,W ′

1 )−1(W ′) intersect
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transversely, there are only finitely many such γ. Finally, condition (3b) on h implies that

Image(π ◦ γ) ⊂ [−3
2 ,

5
2 ]× R.

We now define the higher level perturbation data. Let S → R denote one of the bundles

Sk+1 → Rk+1 (k ≥ 2), Sk+1;1 → Rk+1;1 (k ≥ 0), or Sm,p;1 → Rm,p;1 (k := m + p + 1 ≥ 1).

Fix cobordisms W0, . . . ,Wk ∈ CLd(M̃), a set of inputs Ik+1, a universal choice of strip-like

ends {εi}i=1,...,k+1, a (k + 1) sign datum ᾱ = (α1, . . . , αk+1), and a global transition function

a : S → [0, 1]. Fix also Floer data (Hαi
Wi−1,Wi

, JαiWi−1,Wi
) for i ∈ Ik+1 and (Hαi

Wi,Wi−1
, JαiWi,Wi−1

)

for i ∈ {1, . . . , k + 1} \ Ik+1. We first define some notation. Let sW0,...,Wk
∈ N be the

smallest natural number satisfying π(W0 ∪ · · · ∪ Wk) ⊂ R × (−sW0,...,Wk
, sW0,...,Wk

). Let

h̃ = h ◦ π : M̃ → R. For r ∈ R, define

U r
i =


εi(r, (−∞,−1]× [0, 1]) ⊂ Sr, i ∈ Ik+1,

εi(r, [1,∞)× [0, 1]) ⊂ Sr, i ∈ {1, . . . , k + 1} \ Ik+1.

We denote the connected components of ∂Sr by C0, . . . , Ck, where C0 is the component

connecting zk+1 to z1 and the indices increase in the clockwise direction.

To the collection W0, . . . ,Wk, the set of inputs Ik+1, the universal choice of strip-like

ends {εi}i=1,...,k+1, the (k+ 1) sign datum ᾱ, and the transition function a, we can associate

a perturbation datum DW0,...,Wk
= (Θ,J) on the bundle S → R where:

(1) Θ = {Θr}r∈R is a family of one-forms indexed by r ∈ R, where for a fixed r ∈ R,

Θr ∈ Ω1(Sr, C∞(M̃)), i.e. Θr is a one-form on Sr with values in the space of smooth

functions on M̃ .

(2) J = {Jr,z}(r,z)∈S is a family of ω̃-compatible almost complex structures on M̃

parametrized by r ∈ R and z ∈ Sr.

For each r ∈ R, the one-form Θr induces a one-form Yr on Sr with values in the space of

vector fields on M̃ , Yr ∈ Ω1(Sr, C∞(TM̃)). This is defined by Yr(v) = XΘr(v) for v ∈ TM̃ ,

i.e. Yr(v) is the vector field on M̃ associated to the autonomous Hamiltonian Θr(v).

The perturbation datum DW0,...,Wk
is required to satisfy the following conditions:
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(1) (Asymptotic conditions) For all r ∈ R,

Θ|Uri =


Hαi
Wi−1,Wi

dt, i ∈ Ik+1,

Hαi
Wi,Wi−1

dt, i ∈ {1, . . . , k + 1} \ Ik+1,

J|Uri =


JαiWi−1,Wi

, i ∈ Ik+1,

JαiWi,Wi−1
, i ∈ {1, . . . , k + 1} \ Ik+1,

We use the convention Wk+1 = W0 throughout.

(2) For the family of forms (Θ0)r ∈ Ω1(Sr, C∞(M̃)) defined by

(Θ0)r = Θr − dar ⊗ h̃, (4.3.1)

we have:

(a)

(Θ0)r(ξ) = 0 for all ξ ∈ TCi ⊂ T∂Sr (4.3.2)

(b) There is a compact set KW0,...,Wk
⊂
(
−3

2 ,
5
2

)
× R which does not depend on

r ∈ R such that:

(i) For all i = 0, . . . , k,

KW0,...,Wk
⊃


KWi−1,Wi

, i ∈ Ik+1,

KWi,Wi−1 , i ∈ {1, . . . , k + 1} \ Ik+1.

(ii) KW0,...,Wk
⊃
([
−5

4 ,
9
4

]
× [−sW0,...,Wk

,+sW0,...,Wk
]
)
,

(iii) For every r ∈ R, outside of KW0,...,Wk
×M we have Dπ(Y0) = 0, where

Y0 = X(Θ0)r .

(3) Outside of KW0,...,Wk
×M , the projection π is (Jr,z, (φhar(z))∗i)-holomorphic for every

r ∈ R and z ∈ Sr.

These conditions are a slight generalization of the conditions appearing in [10] which in

turn are based on the conditions in [40].

The inhomogeneous Cauchy-Riemann equation associated to the data above is

u : Sr → M̃, Du+ Jr,z(u) ◦Du ◦ j = Yr + Jr,z(u) ◦ Yr ◦ j, u(Ci) ⊂ Wi. (4.3.3)
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Here j is the complex structure on Sr. On the entry strip-like ends, u ◦ εi must approach a

time-1 Hamiltonian chord γi ∈ O(Hαi
Wi−1,Wi

) as s → −∞. On the exit strip-like ends, u ◦ εi
must approach a time-1 Hamiltonian chord γi ∈ O(Hαi

Wi,Wi−1
) as s→ +∞.

Remark 4.3.3. For a solution u : Sr → M̃ of (4.3.3), it is possible to change any number of

inputs to outputs, and vice versa, if we also make a change of Floer data for the corresponding

puncture. For instance, consider a puncture zi0 which is an entry, i.e. i0 ∈ Ik+1. Set

(I ′)k+1 = Ik+1 \ {i0} and define a new (k + 1) sign datum (ᾱ′) by

(α′)i =


αi, i 6= i0,

−αi, i = i0.
(4.3.4)

Define a positive strip-like end ε′i0 : [0,∞) × [0, 1] → Sr for the puncture zi0 by ε′i0(s, t) =

εi0(−s, 1− t). Note that the global transition function a : S → [0, 1] satisfies conditions (1)–

(4) in Section 4.2 for the input set (I ′)k+1, for the choice of strip-like ends where εi0 is replaced

by ε′i0 , and for the sign datum (ᾱ′). Moreover, the perturbation datum DW0,...,Wk
= (Θ,J)

satisfies the asymptotic condition near the puncture zi0 viewed as an exit for the Floer

datum D
−αi0
Wi0 ,Wi0−1

= (H̄αi0
Wi0−1,Wi0

, J̄
αi0
Wi0−1,Wi0

), where H̄αi0
Wi0−1,Wi0

(t) = −Hαi0
Wi0−1,Wi0

(1 − t) and

J̄
αi0
Wi0−1,Wi0

(t) = J
αi0
Wi0−1,Wi0

(1 − t). The datum D
−αi0
Wi0 ,Wi0−1

satisfies the conditions (1) – (3)

on the Floer data for pairs of cobordisms. The perturbation datum DW0,...,Wk
also satisfies

conditions (2) and (3) for the input set (I ′)k+1 and the global transition function a. The

map u is a solution of (4.3.3) with boundary conditions along W0, . . . ,Wk, sign datum (ᾱ′),

and perturbation datum DW0,...,Wk
. The Hamiltonian chord in O(H̄αi0

Wi0−1,Wi0
) giving the

asymptotic condition for u at the puncture zi0 is γ̄i0 where γ̄i0(t) = γi0(1− t).

Assume that we have fixed consistent universal choices of strip-like ends {εk+1
i }1=1,...,k+1 on

the bundles Sk+1 for the input sets Ik+1
µ and consistent choices of global transition functions

aµ : Sk+1 → [0, 1] as described in Section 4.2. In order to define the Fukaya category of

cobordisms without any additional structure (as in [10]), we require the following Floer and

perturbation data:

(1) For every pair of cobordisms W,W ′ ∈ CLd(M̃), a Floer datum D+
W,W ′ =

(H+
W,W ′ , J

+
W,W ′).

(2) For every k ≥ 2 and every collection of cobordisms W0, . . . ,Wk in CLd(M̃), a pertur-

bation datum Dµ
W0,...,Wk

= (Θµ,Jµ) on the bundle Sk+1 → Rk+1 for the set of inputs
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Ik+1
µ , the universal choice of strip-like ends {εk+1

i }i=1,...,k+1, the (k + 1) sign datum

ᾱµ, and the global transition function aµ.

Moreover, this data is required to be consistent with respect to gluing.

Now we describe the additional data needed to define the weak Calabi-Yau pairing on Fc.

First assume we have fixed universal choices of strip-like ends {εm+1;1
i }i=1,...,m+1 and global

transition functions am,pY , aδ, and aσ as described in Section 4.2 so that all strip-like ends

and global transition functions are consistent. Then we must fix the following additional

Floer and perturbation data:

(1 ′) For every pair of cobordisms W,W ′ ∈ CLd(M̃), a Floer datum D−W,W ′ =

(H−W,W ′ , J−W,W ′).

(2 ′) For every pair (m, p) with m + p ≥ 1 and every collection of cobordisms

W0, . . . ,Wm, Xp, . . . , X0 in CLd(M̃), a perturbation datum DY
W0,...,Wm;Xp,...,X0 =

(ΘY,JY) on the bundle Sm+p+2 → Rm+p+2 for the set of inputs Im+p+2
µ , the

universal choice of strip-like ends {εm+p+2
i }i=1,...,m+p+2, the (m + p + 2) sign datum

ᾱY(m, p), and the global transition function am,pY .

(3 ′) For every pair (m, p) with m, p ≥ 0 and every collection of cobordisms

W0, . . . ,Wm, Xp, . . . , X0 in CLd(M̃), a perturbation datum Dδ
W0,...,Wm;Xp,...,X0 =

(Θδ,Jδ) on the bundle Sm,p;1 → Rm,p;1 for the set of inputs Im+p+2
CY , the universal

choice of strip-like ends {εm,p;1i }i=1,...,m+p+2, the (m + p + 2) sign datum ᾱCY , and

the global transition function aδ.

(4 ′) For every pair m ≥ 0 and every collection of cobordisms W0, . . . ,Wm in CLd(M̃), a

perturbation datum Dσ
W0,...,Wm

= (Θσ,Jσ) on the bundle Sm+1;1 → Rm+1;1 for the set

of inputs Im+1
CY , the universal choice of strip-like ends {εm+1;1

i }i=1,...,m+1, the (m + 1)

sign datum ᾱCY , and the global transition function aσ.

The additional data (1 ′)–(4 ′) together with the data (1)–(2) must all be consistent with

respect to gluing. The consistency condition is satisfied if the data Dδ
W0,...,Wm;Xp,...,X0 in (4 ′)

are given by restriction of Dσ
W0,...,Wm,Xp,...,X0 to the subbundle Sm,p;1 of Sm+p+2;1. However,

care must be taken because regular data on Sm+p+2;1 will not in general restrict to regular

data on Sm,p;1.
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4.3.1. The curve configurations

We introduce the following notation for the moduli spaces of solutions of the inhomo-

geneous Cauchy-Riemann equation (4.3.3) associated to the Floer and perturbation data

introduced above (see Figure 4.3).

(1) For the Floer datum D±W,W ′ = (H±W,W ′ , J±W,W ′), define a perturbation datum by Θ =

dt ⊗ H±W,W ′ and J(t) = J±W,W ′(t) (where we have identified S2 with the strip R ×

[0, 1]). The moduli space of solutions of (4.3.3) for this perturbation datum satisfying

boundary conditions along W,W ′ and asymptotic conditions along γ, γ′ ∈ O(H±),

modulo R-action, is denoted R2
±(γ, γ′).

(2) The moduli space of pairs (r, u) where u : Sk+1
r → M̃ is a solution of (4.3.3) for the

perturbation datum Dµ
W0,...,Wk

satisfying boundary conditions along W0, . . . ,Wk and

asymptotic conditions along γi ∈ O(H+
Wi−1,Wi

), i = 1, . . . , k, and γk+1 ∈ O(H+
W0,Wk

)

is denoted Rk+1
µ (γ1, . . . , γk+1).

(3) The moduli space of pairs (r, u) where u : Sm+p+2
r → M̃ is a solution of (4.3.3)

for the perturbation datum DY
W0,...,Wm;Xp,...,X0 satisfying boundary conditions along

W0, . . . ,Wm, Xp, . . . , X0 and the following asymptotic conditions

γi ∈ O(H+
Wi−1,Wi

), i = 1, . . . ,m,

ζ ∈ O(H−Wm,Xp),

ηj ∈ O(H+
Xj ,Xj−1

), j = p, . . . , 1,

ζ ′ ∈ O(H−W0,X0),

(4.3.5)

is denoted Rm+p+2
Y (γ1, . . . , γm, ζ; ηp, . . . , η1, ζ

′).

(4) The moduli space of pairs (r, u) where u : Sm,p;1r → M̃ is a solution of (4.3.3)

for the perturbation datum Dδ
W0,...,Wm;Xp,...,X0 satisfying boundary conditions along

W0, . . . ,Wm,Xp, . . . , X0 and the following asymptotic conditions

γi ∈ O(H+
Wi−1,Wi

), i = 1, . . . ,m,

ξ ∈ O(H+
Wm,Xp),

ηj ∈ O(H+
Xj ,Xj−1

), j = p, . . . , 1,

ξ′ ∈ O(H−X0,W0),

(4.3.6)
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is denoted Rm,p;1
δ (γ1, . . . , γm, ξ; ηp, . . . , η1, ξ

′).

(5) The moduli space of pairs (r, u) where u : Sm+1;1
r → M̃ is a solution of (4.3.3) for the

perturbation datum Dσ
W0,...,Wm

satisfying boundary conditions along W0, . . . ,Wm and

asymptotic conditions along γi ∈ O(H+
Wi−1,Wi

), i = 1, . . . ,m, and γ ∈ O(H−Wm,W0) is

denoted Rm+1;1
σ (γ1, . . . , γm,γ).

At certain points, we will also make use of the conventions R2
µ(γ1, γ2) = R2

+(γ1, γ2) and

R2
Y(ζ; ζ ′) = R2

−(ζ, ζ ′).

4.4. The Fukaya category of cobordisms

Biran and Cornea proved in [10] that for a generic consistent choice of Floer data and

perturbation data as described in (1)–(2) in Section 4.3, the moduli spaces of the type

R2
+(γ, γ′) and Rk+1

µ (γ1, . . . , γk+1) are regular and satisfy Gromov compactness. As a result,

they were able to adapt the methods in [40] for constructing ordinary Fukaya categories to

construct Fukaya categories of cobordisms. The Fukaya category of cobordisms Fc associated

to a fixed choice of Floer and perturbation data has as objects cobordisms in CLd(M̃), as

morphism spaces between W,W ′ ∈ CLd(M̃) the Floer complex for the Floer datum D+
W,W ′ ,

Fc(W,W ′) = CF (W,W ′; D+
W,W ′) := (Z2〈O(H+

W,W ′)〉, µFc1 ). (4.4.1)

Here the differential µFc1 counts elements in the zero-dimensional component of the mod-

uli spaces R2
+(γ, γ′). Since the moduli spaces R2

+(γ, γ′) are well-behaved, this complex is

well-defined and satisfies the expected properties of the Floer complex associated to a pair

of Lagrangians. The maps µFck are defined by counting elements in the zero-dimensional

components of the moduli spaces Rk+1
µ (γ1, . . . , γk+1). By the usual gluing and compactness

arguments, the µFck satisfy the A∞-relations.

It had been shown previously in [9] that Floer complexes associated to pairs of cobordisms

are well-defined for both types of data D+
W,W ′ and D−W,W ′ , as well as for more general types of

Floer data. It was also established there that for the type of profile function h we consider

here, which in particular has bottlenecks corresponding to local maxima, there are PSS-type
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W ′
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(b) R2
−(γ, γ′)
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(c) R4
µ(γ1, . . . , γ4)

X1ζ
η1
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ζ ′

(d) R5
Y(γ1, γ2, ζ; η1, ζ

′)

X2
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X3

ξ′
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η2
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ξ
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W0

(e) R2,3;1
δ (γ1, γ2, ξ; η3, η2, η1, ξ

′)

γ

W3

W0

W1

W2

γ3
γ2

γ1

(f) R4;1
σ (γ1, . . . , γ3,γ)

Figure 4.3. The six different types of moduli spaces used to define the A∞-structure and
the relative weak Calabi-Yau pairing on Fc. The signs near the boundary punctures indicate
which type of Floer data – positive or negative profile – appears in the asymptotic conditions
for the perturbation data near the puncture.
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isomorphisms

QH(W,∂W ) := H(C(f, J+
W,W )) ∼= HF (W,W ; D+

W,W ), (4.4.2)

QH(W ) := H(C(g, J−W,W )) ∼= HF (W,W ; D−W,W ). (4.4.3)

Here QH(W,∂W ) and QH(W ) are the relative and absolute quantum homology for cobor-

disms introduced in [9]. They are taken to be ungraded and with coefficients in Z2. The

relative quantum homology QH(W,∂W ) is the homology of the pearl complex C(f, JW,W ) as-

sociated to a Morse function f onW whose negative gradient points outward along ∂W , and

the absolute quantum homology QH(W ) is the homology of the pearl complex C(g, JW,W )

associated to a Morse function g onW whose negative gradient points inward along ∂W . The

images of the fundamental classes in QH(W,∂W ) for W ∈ CLd(M̃) under the isomorphism

(4.4.2) serve as identity isomorphisms in the category H(Fc), and thus Fc is homologically

unital (see also Remark 3.5.1 in [10]).

The category Fc depends on the choices of data used in its construction: universal strip-

like ends, a Floer datum D+
W,W ′ for every pair of objects W,W ′, a perturbation datum

Dµ
W0,...,Wk

for every family of objects W0, . . . ,Wk (k ≥ 2), as well as a profile function h.

However, any two choices of data result in quasi-isomorphic categories. Moreover, choosing

a profile function with positions other than −3/2 and 5/2 for the bottlenecks likewise results

in a quasi-isomorphic category.

4.5. The relative weak Calabi-Yau pairing on Fc

The definitions of the structures in this section rely on regularity and compactness results

for the moduli spaces defined in Section 4.3.1. We prove these results in Chapter 5.

4.5.1. Poincaré duality for Lagrangian cobordism Floer complexes

The Poincaré duality quasi-isomorphism for Floer complexes associated to pairs of cobor-

disms differs from the ordinary Poincaré duality quasi-isomorphism for Floer complexes

(2.2.13) due to the fact that cobordisms generally have non-empty boundary (when viewed

as existing in R × [0, 1] ×M). It is instructive to first consider the description of Poincaré

duality for Morse complexes on a smooth manifold X with boundary. Recall that for a Morse
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function f on X whose negative gradient is transverse to the boundary of X and points out-

ward, the Morse complex C(f) is well-defined and computes the homology of X relative to

∂X. We use the convention here that the Morse differential counts flow lines of −∇f . For

a Morse function g on X whose negative gradient is transverse to the boundary of X and

points inward, the Morse complex C(g) is similarly well-defined, but in this case the complex

computes the absolute homology of X. We define the Poincaré duality quasi-isomorphism

for the choice of Morse functions f and g to be the composition

C(f)→ C(−f)∨ → C(g)∨. (4.5.1)

The first map is the isomorphism which acts as the identity on critical points of f . This map

corresponds to the “formal” part (2.2.7) of the duality map on Floer complexes associated to

pairs of closed Lagrangians. The second map in (4.5.1) is the dual of a choice of comparison

quasi-isomorphism C(g)→ C(−f) interpolating between the Morse functions g and−f whose

negative gradients both point inward along ∂X. When ∂X = ∅ it is possible to take f = g.

However, in general there is no comparison map interpolating between a Morse function with

negative gradient pointing outward along ∂X and a Morse function with negative gradient

pointing inward along ∂X.

We now consider duality for Floer complexes associated to a pair of cobordisms W,W ′ ∈

CLd(M̃). Fix a regular positive profile Floer datum D+
W,W ′ for the pair W,W ′ and a regular

negative profile Floer datum D−W ′,W for the pair W ′,W . As in the Morse case, the Poincaré

duality quasi-isomorphism for the complex CF (W,W ′; D+
W,W ′) is a composition of a formal

map and a continuation map. The formal map is defined identically to the formal part of

the duality map for Floer complexes for closed Lagrangians. In the present situation, the

map is
CF (W,W ′;H+

W,W ′ , J
+
W,W ′)→ CF (W ′,W ; H̄+

W,W ′ , J̄
+
W,W ′)∨,

γ 7→ γ̄.
(4.5.2)

In general there is only a well-defined continuation map interpolating between Floer com-

plexes for a pair of cobordisms if both complexes are computed with respect to the same

type of Floer data: either positive profile or negative profile. This mirrors the situation

in Morse theory where one can only interpolate between Morse functions whose negative
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gradients point the same way along the boundary of the manifold. Note that for the posi-

tive profile Floer datum D+
W,W ′ = (H+

W,W ′ , J
+
W,W ′) associated to the pair W,W ′, the datum

(H̄+
W,W ′ , J̄

+
W,W ′) is a negative profile Floer datum for the pairW ′,W , i.e. it satisfies conditions

(1)–(3) on Floer data in Section 4.3 for α = −. Therefore there is a continuation map

CF (W ′,W ; D−W ′,W )→ CF (W ′,W ; H̄+
W,W ′ , J̄

+
W,W ′). (4.5.3)

As usual, this continuation map depends on a choice of regular homotopy between the Floer

data D−W ′,W and (H̄+
W,W ′ , J̄

+
W,W ′). We define the total Poincaré duality quasi-isomorphism for

Floer complexes associated to pairs of cobordisms to be the composition of the map (4.5.2)

with the dual of the continuation map (4.5.3):

CF (W,W ′; D+
W,W ′)→ CF (W ′,W ; H̄+

W,W ′ , J̄
+
W,W ′)∨ → CF (W ′,W ; D−W ′,W )∨. (4.5.4)

For an appropriate choice of homotopy determining the map (4.5.3), the total Poincaré dual-

ity quasi-isomorphism is defined by counting elements in the zero-dimensional component of

R1,1;1(ξ, ξ′) for ξ ∈ O(H+
W,W ′) and ξ′ ∈ O(H−W ′,W ). We note that in the case where W = W ′,

under the PSS isomorphisms (4.4.2) and (4.4.3), the map (4.5.4) induces an isomorphism

QH(W,∂W ) ∼= QH(W )∨.

4.5.2. The relative right Yoneda functor for Fc

The relative right Yoneda functor for the category Fc is the functor

Yr
rel : Fc → (mod–Fc)opp

which is described as follows. On objects W in Fc, Yr
rel(W ) =Mr,−

W whereMr,−
W is the right

Fc-module defined by

Mr,−
W (X) = CF (W,X; D−W,X),

µ
Mr,−

W

1|p : CF (W,Xp; D−W,Xp)⊗Fc(Xp, . . . , X0)→ CF (W,X0; D−W,X0),

〈µM
r,−
W

1|p (ζ, ηp, . . . , η1), ζ ′〉 = #Z2R
p+2
Y (ζ; ηp, . . . , η1, ζ

′)0,

for Hamiltonian chords ζ ∈ O(H−W,Xp), ηj ∈ O(H+
Xj ,Xj−1

), j = p, . . . , 1, ζ ′ ∈ O(H−W,X0). In

particular, µM
r,−
W

1|0 is the Floer differential on CF (W,X; D−W,X). The higher maps of Yr
rel are
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defined by
(Yr

rel)m : Fc(W0, . . . ,Wm)→ mod–Fc(Mr,−
Wm

,Mr,−
W0 ),

(γ1, . . . , γm) 7→ τ(γ1,...,γm), for γi ∈ O(H+
Wi−1,Wi

), i = 1, . . . ,m,
(4.5.5)

where τ(γ1,...,γm) is the module pre-morphism specified by

(τ(γ1,...,γm))1|p : CF (Wm, Xp; D−Wm,Xp)⊗Fc(Xp, . . . , X0)→ CF (W0, X0; D−W0,X0),

〈(τ(γ1,...,γm))1|p(ζ, ηp, . . . , η1), ζ ′〉 = #Z2R
m+p+2
Y (γ1, . . . , γm, ζ; ηp, . . . , η1, ζ

′)0,

for ζ ∈ O(H−Wm,Xp), ηj ∈ O(H+
Xj ,Xj−1

), j = p, . . . , 1, ζ ′ ∈ O(H−W0,X0). Here we use

regularity of Rm+p+2
Y (γ1, . . . , γm, ζ; ηp, . . . , η1, ζ

′) and compactness of its zero-dimensional

component. The fact that this definition of Yr
rel yields a functor results from analysing

once-broken configurations in the compactification of the one-dimensional component of

Rm+p+2
Y (γ1, . . . , γm, ζ; ηp, . . . , η1, ζ

′).

4.5.3. The natural transformation δFc

The relative weak Calabi-Yau pairing on Fc is represented by the natural transformation

δFc = (δFc
0 , δFc

1 , . . .) : Yl
Fc → (Y∨rel)l, (4.5.6)

defined as follows. The map

δFc
p : Fc(Xp, . . . , X0)→ Fc–mod(Yl

Fc(Xp), (Y∨rel)l(X0)) (4.5.7)

applied to the Hamiltonian chords ηj ∈ O(H+
Xj ,Xj−1

), j = p, . . . , 1, gives a module pre-

morphism

δFc
p (ηp, . . . , η1) : Yl

Fc(Xp)→ (Y∨rel)l(X0), (4.5.8)

which in turn is specified by maps

δFc
p (ηp, . . . , η1)m|1 :Fc(W0, . . . ,Wm)⊗Fc(Wm, Xp)

→ CF (X0,W0; D−X0,W0)∨.
(4.5.9)
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On the Hamiltonian chords γi ∈ O(H+
Wi−1,Wi

), i = 1, . . . ,m, ξ ∈ O(H+
Wm,Xp), and ξ′ ∈

O(H−X0,W0), this is given by

〈(δFc
p (ηp, . . . , η1)m|1(γ1, . . . , γm, ξ), ξ′〉

= #Z2R
m,p;1
δ (γ1, . . . , γm, ξ; ηp, . . . , η1, ξ

′)0.
(4.5.10)

Here again we are relying on regularity and compactness results. In particular, the relation

µ
fun(Fc,Fc–mod)
1 (δFc) = 0 arises from counting configurations in the boundary of the compact-

ification of Rm,p;1
δ (γ1, . . . , γm, ξ; ηp, . . . , η1, ξ

′)1.

4.5.4. The dual Hochschild cycle σFc

We denote by (Fc)rel
∆ the Fc–Fc bimodule corresponding to Yr

rel . Explicitly, (Fc)rel
∆ is

defined as follows:

(Fc)rel
∆ (W,X) = CF (W,X; D−W,X),

µ
(Fc)rel

∆
m|1|p : Fc(W0, . . . ,Wm)⊗ CF (Wm, Xp; D−Wm,Xp)⊗Fc(Xp, . . . , X0)

→ CF (W0, X0; D−W0,X0),

〈µ(Fc)rel
∆

m|1|p (γ1, . . . , γm, ζ, ηp, . . . , η1), ζ ′〉 = #Z2R
m+p+2
Y (γ1, . . . , γm, ζ; ηp, . . . , η1, ζ

′)0,

(4.5.11)

for γi ∈ O(H+
Wi−1,Wi

), i = 1, . . . ,m, ζ ∈ O(H−Wm,Xp), ηj ∈ O(H+
Xj ,Xj−1

), j = p, . . . , 1,

ζ ′ ∈ O(H−W0,X0).

We define a dual Hochschild cycle σFc ∈ CC•(Fc, (Fc)rel
∆ )∨ by

σFc(γ1 ⊗ · · · ⊗ γm ⊗ γ) = #Z2Rm+1;1
σ (γ1, . . . , γm,γ)0, (4.5.12)

for γi ∈ O(H+
Wi−1,Wi

), i = 1, . . . ,m, and γ ∈ O(H−Wm,W0). It follows from the properties of the

moduli spaces Rm+1;1
σ (γ1, . . . , γm,γ)0 and Rm+1;1

σ (γ1, . . . , γm,γ)1 that this is a well-defined

closed element of CC•(Fc, (Fc)rel
∆ )∨.

4.5.5. The main theorem

Theorem 4.5.1. For a generic consistent choice of Floer and perturbation data as in Section

4.3, the following statements hold:

(1) (a) The Fc–Fc bimodule (Fc)rel
∆ is well-defined and σFc is a closed homologically

non-degenerate element of CC•(Fc, (Fc)rel
∆ )∨.
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(b) There is a functor Iγ : F → Fc, which depends on a choice of curve γ in C,

and there is an F–F bimodule morphism irel : F∆ → (Iγ)∗(Fc)rel
∆ such that

[(Irel
γ )∨∗σFc ] = [σF ]. Here (Irel

γ )∗ is the map on Hochschild homology defined in

(3.2.6) for the functor Iγ.

In other words, σFc represents a relative weak Calabi-Yau pairing on Fc by Definition

3.2.4 with coefficients in (Fc)rel
∆ , and this pairing is compatible with the usual weak

Calabi-Yau structure σF on F as defined in Section 3.3.1.

(2) (a) Yr
rel is a well-defined functor from Fc to (mod–Fc)opp and δFc : Yl

Fc → (Y∨rel)l

is a natural transformation which is a quasi-isomorphism.

(b) There is a natural transformation Srel : Gr
Iγ (Yr

rel)→ Yr
F such that the natural

transformation Prel(δFc) : Yl
F → (Y∨F)l induced by δFc as in (3.2.16) satisfies

[Prel(δFc)] = [δF ].

In other words, δFc represents a relative weak Calabi-Yau pairing on Fc by Definition

3.2.5 for the functor Iγ and the relative right Yoneda functor Yr
rel, and this pairing

is compatible with the usual weak Calabi-Yau structure δF on F as defined in Section

3.3.2.

(3) Denote by φFc : (Fc)∆ → (Fc)∨rel the bimodule quasi-isomorphism corresponding to

the weak Calabi-Yau pairing in (2). The isomorphism induced on homology by the

quasi-isomorphism of chain complexes

CC•(Fc, (Fc)rel
∆ )∨ T∨−→ 2CC•(Fc, (Fc)rel

∆ )∨ Γ−→ 2CC
•(Fc, (Fc)∨rel) (4.5.13)

takes [σFc ] to [φFc ]. Here T∨ is the quasi-isomorphism dual to (1.4.17), and Γ is the

isomorphism of Lemma (1.4.8).
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Chapter 5

Proof of the main theorem

5.1. Compactness

The main goal of this section is to prove a general compactness result that extends Lemma

3.3.2 in [10]. This compactness result, Lemma 5.1.2, implies that for all of the moduli spaces

of inhomogeneous pseudoholomorphic polygons in M̃ that we consider, there is a compact

region of M̃ containing the images of all of these curves. This, together with uniform energy

bounds on the curves, allows us to apply the Gromov compactness theorem even in this

non-compact setting. The latter part of this section deals with these energy bounds.

We will make use of the following general proposition which appears as Proposition 3.3.1

in [10]:

Proposition 5.1.1. Let Σ and Γ be Riemann surfaces, not necessarily compact, Σ possibly

with boundary and Γ without boundary. Let w : Σ → Γ be a continuous map and U ⊂ Γ be

an open connected subset. Suppose the following conditions are satisfied:

(1) Image(w) ∩ U 6= ∅.

(2) w is holomorphic over U , i.e. w|w−1(U) : w−1(U)→ U is holomorphic.

(3) w(∂Σ) ∩ U = ∅.

(4) (Image(w) \ Image(w)) ∩ U = ∅.

Then Image(w) ⊃ U . In particular, if Image(w) ⊂ Γ is compact, then so is U .

Let S → R denote any of the bundles Sk+1 → Rk+1 (k ≥ 1), Sk+1;1 → Rk+1;1 (k ≥ 0),

or Sm,p;1 → Rm,p;1 (k := m+ p+ 1 ≥ 1). For convenience we associate to an input set Ik+1

a (k + 1)-tuple of signs κ̄ = (κ1, . . . , κk+1) defined by κi = − for i ∈ Ik+1 and κi = + for



i 6∈ Ik+1. The input set Ik+1 is defined to be compatible with a (k + 1) sign datum ᾱ if

there exist i, i′ ∈ {1, . . . , k + 1} such that αi = κi and αi′ 6= κi′ .

Lemma 5.1.2. Let W0, . . . ,Wk be k + 1 cobordisms in the class CLd(M̃). Fix an input set

Ik+1 and a (k+ 1) sign datum ᾱ which are compatible, as well as a universal choice of strip-

like ends {εi} on S for the input set Ik+1, and a global transition function a : S → [0, 1]

for the input set Ik+1 and the (k + 1) sign datum ᾱ. Also fix a Floer datum Dαi
Wi−1,Wi

for

all i ∈ Ik+1 and a Floer datum Dαi
Wi,Wi−1

for all i ∈ {1, . . . , k + 1} \ Ik+1 (where as usual

we set Wk+1 = W0), and a perturbation datum DW0,...,Wk
satisfying the conditions in Section

4.3 for this choice of data. Then there exists a constant C = CW0,...,Wk
which depends only

on W0, . . . ,Wk and the Floer and perturbation data (but not on the strip-like ends or global

transition function) such that for all r ∈ R and every solution u : Sr → M̃ of (4.3.3), we

have u(Sr) ⊂ BW0,...,Wk
×M , where BW0,...,Wk

= [−3
2 ,

5
2 ]× [−C,C].

Proof. This proof follows the proof of Lemma 3.3.2 in [10] closely. We indicate the main

adjustments that need to be made.

We will arrive at the constant C via an auxiliary constant C ′ which we define now. Take

C ′ > 0 to be large enough such that the set B′ =
[
−3

2 ,
5
2

]
× [−C ′, C ′] satisfies the following

conditions for every t ∈ [0, 1]:

(1) B′ ⊃ (φht )−1(π(Wi) ∩
[
−3

2 ,
5
2

]
× R), i = 0, . . . , k,

(2) B′ ⊃ (φht )−1(KW0,...,Wk
),

(3) (a) For every i ∈ {1, . . . , k + 1} such that (κi, αi) = (−,+), B′ ⊃ (φht )−1(π(γ(t)))

for every chord γ ∈ O(Hαi
Wi−1,Wi

).

(b) For every i ∈ {1, . . . , k + 1} such that (κi, αi) = (+,+), B′ ⊃ (φht )−1(π(γ(t)))

for every chord γ ∈ O(Hαi
Wi,Wi−1

).

(c) For every i ∈ {1, . . . , k+ 1} such that (κi, αi) = (−,−), B′ ⊃ (φh1−t)−1(π(γ(t)))

for every chord γ ∈ O(Hαi
Wi−1,Wi

).

(d) For every i ∈ {1, . . . , k+ 1} such that (κi, αi) = (+,−), B′ ⊃ (φh1−t)−1(π(γ(t)))

for every chord γ ∈ O(Hαi
Wi,Wi−1

).

The existence of such a constant C ′ relies on condition (3b) on the profile function h,

which says that φht preserves the strip
[
−3

2 ,
5
2

]
× R for all t. It also makes use of the fact
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mentioned in Remark 4.3.2 that the projections of the time-1 Hamiltonian chords involved

are contained in the strip [−3
2 ,

5
2 ]× R.

The proof is based on the following Auxiliary Lemma which also appears in [10], but here

there is a dependence of the form of the transition functions ar on the input set Ik+1 and

on the (k + 1) sign datum ᾱ.

Auxiliary Lemma. Let r ∈ R and let u : Sr → M̃ be a solution of (4.3.3). Take v : Sr → M̃

to be defined by the naturality transformation formula:

v(z) =
(
φh̃ar(z)

)−1
(u(z)), (5.1.1)

where h̃ = h ◦ π. Then Image(v) ⊂ B′ ×M .

Proof of Auxiliary Lemma. A computation shows that the inhomogeneous Cauchy-

Riemann equation (4.3.3) for u transforms to the following equation for v:

Dv + J ′r,z(v) ◦Dv ◦ j = Y ′r + J ′r,z(v) ◦ Y ′r ◦ j. (5.1.2)

Here Y ′r ∈ Ω1(Sr, C∞(TM̃)) and the almost complex structure J ′r,z on M̃ are defined by

Yr = Dφh̃ar(z)(Y
′
r ) + dar ⊗X h̃, Jr,z = (φh̃ar(z))∗J

′
r,z. (5.1.3)

The map v satisfies the moving boundary conditions:

∀z ∈ Ci, v(z) ∈
(
φh̃ar(z)

)−1
(Wi). (5.1.4)

In contrast to the scenario in [10], the asymptotic conditions on v depend on the input set

Ik+1 and the (k + 1) sign datum ᾱ. They are as follows:

• For i ∈ {1, . . . , k + 1} such that (κi, αi) = (−,+), v(εi(s, t)) tends as s → −∞ to a

time-1 chord of (φh̃t )−1 ◦ (φ
H+
Wi−1,Wi

t ) starting on Wi−1 and ending on (φh̃1)−1(Wi).

• For i ∈ {1, . . . , k + 1} such that (κi, αi) = (+,+), v(εi(s, t)) tends as s → +∞ to a

time-1 chord of (φh̃t )−1 ◦ (φ
H+
Wi,Wi−1

t ) starting on Wi and ending on (φh̃1)−1(Wi−1).

• For i ∈ {1, . . . , k + 1} such that (κi, αi) = (−,−), v(εi(s, t)) tends as s → −∞ to a

time-1 chord of (φh̃1−t)−1 ◦ (φ
H−Wi−1,Wi
t ) starting on (φh̃1)−1(Wi−1) and ending on Wi.
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• For i ∈ {1, . . . , k + 1} such that (κi, αi) = (+,−), v(εi(s, t)) tends as s → +∞ to a

time-1 chord of (φh̃1−t)−1 ◦ (φ
H−Wi,Wi−1
t ) starting on (φh̃1)−1(Wi) and ending on Wi−1.

As in [10], we prove the Auxiliary Lemma using three claims concerning the map v′ :=

π ◦ v : Sr → C. Although in our case the form of v′ depends on the more general transition

function ar, no significant alteration is required for the proofs of these claims. Indeed, the

proofs of Claims 2 and 3 are the same as those that appear in [10]. The proof of Claim 1

makes use of the more general perturbation data and transition function in our case; however

no other adjustment is required.

CLAIM 1. There exists δ > 0 small enough such that v′ is (j, i)-holomorphic over C \

([−3
2 + δ, 5

2 − δ]× [−C ′, C ′]).

Using the definition of (Θ0)r (Equation (4.3.1)), the one-form Yr ∈ Ω1(Sr, C∞(TM̃)) is

given by

Yr = dar ⊗X h̃ + Y0, (5.1.5)

where (Dπ)(w,p)(Y0) = 0 for all (w, p) ∈ (C \KW0,...,Wk
) ×M . Together with the definition

of Y ′ in Equation (5.1.3), we obtain Y0 = Dφh̃a(z)(Y ′). Since the vector field X h̃ is horizontal

with respect to the projection π : M̃ → C, its flow φh̃t carries vertical vector fields to vertical

vector fields. Therefore Y ′ satisfies

(Dπ)(w,p)(Y ′) = 0 for (w, p) ∈ (φha(z))−1(C \KW0,...,Wk
)×M. (5.1.6)

Choose δ > 0 such that (φht )−1(KW0,...,Wk
) ⊂ [−3

2 + δ, 5
2 − δ]× [−C ′, C ′] for all t ∈ [0, 1]. Then

for all z ∈ Sr such that v′(z) is contained in the set C \ ([−3
2 + δ, 5

2 − δ]× [−C ′, C ′]), we have

(Dπ)v(z)(Y ′) = 0.

By condition (3) on the perturbation datum DW0,...,Wk
, the projection π is

(
Jz,

(
φhar(z)

)
∗
i
)
-

holomorphic over (C \KW0,...,Wk
). Equivalently, π is ((φh̃ar(z))

−1
∗ Jz, i)-holomorphic over (C \

(φhar(z))
−1(KW0,...,Wk

)). This together with the inhomogeneous Cauchy-Riemann equation

(5.1.2) for v and (5.1.6) gives

Dv′ + iDv′ ◦ j = 0
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for all z ∈ Sr such that v′(z) ∈ (φha(z))−1(C \ KW0,...,Wk
). Therefore the claim holds for the

chosen δ.

Set

R =
 k⋃
i=0

⋃
t∈[0,1]

(φht )−1(π(Wi))
 ∩ (C \B′), Q = C \ (R ∪B′),

A =
({

(−3
2 , q)| q ∈ Z

}
∪
{

(5
2 , q)| q ∈ Z

})
∩B′.

CLAIM 2. v′(Sr) ∩Q = ∅.

Assume to the contrary that v′(Sr)∩Q 6= ∅. Let Q0 be one of the connected components

of Q that has non-empty intersection with v′(Sr). Note that v′ maps all of the boundary

arcs Ci connecting the punctures of Sr into R ∪B′. Moreover all of the Hamiltonian chords

forming the asymptotic conditions of v are contained in B′ ×M . Therefore v′ satisfies the

conditions v′(∂Sr) ∩Q0 = ∅ and (v′(Sr) \ v′(Sr)) ∩Q0 = ∅. Since Q0 is open, we can apply

Proposition 5.1.1 with w = v′, Σ = Sr, Γ = C and U = Q0 to conclude that Q0 ⊂ v′(Sr).

This is a contradiction as all of the connected components of Q are unbounded, but v′(Sr)

is compact. This completes the proof of Claim 2.

CLAIM 3. v′(Int(Sr)) ∩ A = ∅.

This is a direct consequence of the open mapping theorem together with Claim 1: By

Claim 1, v′ is holomorphic over a neighbourhood of A. If there were a point z ∈ Int(Sr) and

a point P ∈ A such that v′(z) = P , then a neighbourhood of P would have to be contained

in v′(Sr). But every neighbourhood of P intersects Q, and therefore this would contradict

Claim 2.

We now use the three claims to prove the Auxiliary Lemma. Since C = Q t R t B′, by

Claim 2 it suffices to show that Image(v′) ∩ R = ∅. Suppose by way of contradiction that

Image(v′) ∩R 6= ∅.
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There are two possibilities:

(1) Image(v′) ⊂ R ∪ A.

(2) Image(v′) ∩ (B′ \ A) 6= ∅.

In the second case, since we are assuming Image(v′) ∩ R 6= ∅, there must be two points

z0, z1 ∈ Sr such that v′(z0) ∈ R and v′(z1) ∈ B′ \A. Let {zt}t∈[0,1] be a path in Sr from z0 to

z1 such that zt ∈ Int(Sr) for all t ∈ (0, 1). Since ∂B′ ∩ ∂R ⊂ A, there must exist t0 ∈ (0, 1)

such that v′(zt0) ∈ A. This contradicts Claim 3, and hence rules out the second possibility.

Suppose now that the first possibility occurs. Then for one of the connected components

R0 of R, we have Image(v′) ⊂ R̄0 = R0 ∪ {P}. Here P is a point of A and so is of the form

(−3
2 , q) or (5

2 , q) for some q ∈ Z. Consider the case where P = (−3
2 , q). Since Image(v′) ⊂ R̄0,

the Hamiltonian chords giving the asymptotic conditions for v are contained in R̄0×M and

hence project to constant chords at P (see Remark 4.3.2). By assumption, the input set Ik+1

and the sign datum ᾱ are compatible, and so there is a puncture zi with (κi, αi) = (±,±).

We first treat the case where (κi, αi) = (+,+), which corresponds to the case considered in

[10], and we follow their proof. In this case, v′ satisfies the asymptotic condition

lim
s→∞

(v′(εi(s, t))) = P. (5.1.7)

Set v′′ = v′ ◦ εi : Z+ → C. Then from the boundary conditions on u, v′′(s, 0) ∈

π((φh̃ar(εi(s,0)))−1(Wi)) ∩ R̄0 = π(Wi) ∩ R̄0 = (−∞,−3
2 ] × {q} for all s ∈ [0,∞). There-

fore ∂sv′′(s, 0) is real-valued for all s ∈ [0,∞). Moreover, for every s ≥ 0, ∂sv′′(s, 0) ≤ 0.

Indeed, if we have s0 ≥ 0 such that ∂sv′′(s0, 0) > 0, then since v′′ is holomorphic, we ob-

tain ∂tv
′′(s0, 0) = i∂sv

′′(s0, 0) ∈ iR>0. This implies that for t ∈ [0, 1] close enough to 0,

Im(v′′(s0, t)) > q and hence Image(v′′) ∩Q 6= ∅, contradicting Claim 2. From ∂sv
′′(s, 0) ≤ 0

for all s ≥ 0 and lims→∞ v
′′(s, 0) = P , we conclude that v′′(s, 0) = P for all s ≥ 0. This makes

it possible to extend v′′ by Schwarz reflection to a holomorphic map v′′ : [0,∞)×[−1, 1]→ C.

Since the extended function satisfies v′′([0,∞) × {0}) = P , by the open mapping theorem,

v′′ must be constant at the point P . Then v′ itself must be constant at P , contradicting the

assumption that Image(v′) ∩R 6= ∅.

In contrast to [10], we must also consider the case where (κi, αi) = (−,−). In this case,

define a positive universal strip-like end ε′i : R×Z+ → S by ε′i(r, s, t) = εi(r,−s, 1− t). Then

set v′′′ := v◦ε′i : Z+ → C. The map v′′′ is holomorphic and satisfies v′′′([0,∞)×{0}) ⊂ π(Wi),
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v′′′([1,∞) × {1}) ⊂ (φh1)−1(π(Wi−1)), and v′′′ converges as s → ∞ to a time-1 chord of

(φht )−1 ◦ (φ
H−Wi−1,Wi
1−t ). It again follows from Remark 4.3.2 that this chord is constant at P .

Therefore the same argument as above applies to show that v′′′ is constant at P .

In the case where P = (5
2 , q), similar arguments applied to the puncture with (κi, αi) =

(±,∓) show that v′ must be constant at P . This completes the proof of the Auxiliary

Lemma.

We now use the Auxiliary Lemma to complete the proof of Lemma 5.1.2. This part of

the proof proceeds as in [10]. Let C = CW0,...,Wk
> 0 be a constant large enough such that

the set B = [−3
2 ,

5
2 ]× [−C,C] satisfies

⋃
τ∈[0,1]

φh̃τ (B′) ⊂ B.

Let r ∈ R and consider a solution u : Sr → M̃ of (4.3.3). Let v : Sr → C be defined as in

(5.1.1). By the Auxiliary Lemma we have

v(z) ∈ B′ ×M, ∀z ∈ Sr.

Then u satisfies

u(z) = φh̃ar(z)(v(z)) ∈ φh̃ar(z)(B
′)×M ⊂ B ×M, ∀z ∈ Sr.

Therefore the statement of Lemma 5.1.2 holds for this choice of constant C. �

5.1.1. Energy bounds

The next step in showing that Gromov compactness continues to hold in this setting is

to establish uniform bounds on the energy of the curves in the moduli spaces we consider.

Recall that the energy of a solution u : Sr → M̃ of (4.3.3) is defined by

E(u) :=
∫
Sr

1
2 |Du− Y |

2
Jσ, (5.1.8)

where σ is an arbitrary choice of volume form on Sr. The energy is independent of this

choice, although the energy density |Du− Y |2J does depend on σ.

Let R(k+1; Γk+1; D) denote any one of the moduli spaces of inhomogeneous pseudoholo-

morphic curves of type (1)–(5) in Section 4.3.1. Here k + 1 is the total number of boundary
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punctures on the domain, Γk+1 is the (k+ 1)-tuple of Hamiltonian chords giving the asymp-

totic conditions, and D = (Θ,J) is the perturbation datum. We use R(k + 1; Γk+1; D)s to

denote the component of R(k + 1; Γk+1; D) of virtual dimension s.

Lemma 5.1.3. For each of the moduli spaces R(k + 1; Γk+1; D)s there exists a constant

A depending on s ∈ N, on the consistent choice of global transition functions a (i.e. the

functions aµ, am,pY , aδ, and aσ), on the Hamiltonians H±Wi−1,Wi
and H±Wi,Wi−1

giving the

asymptotic conditions on Θ, as well as on the profile function h, the perturbation datum D ,

and the (k+1)-tuple of Hamiltonian chords Γk+1, such that for any (r, u) ∈ R(k+1; Γk+1; D)s,

E(u) ≤ A. (5.1.9)

Proof. The proof proceeds precisely as in the case considered in [10] and we only provide an

outline. There are three steps involved. The first step is to establish the following property

of the global transition functions a which is a generalization to our context of Lemma 3.1.1

in [10]: There exists a constant Ck
a, which depends on the metric ρ on S, so that for any

r ∈ R and any ξ ∈ T (∂Sr), we have

|dar(ξ)| ≤ Ck
a|ξ|ρ (5.1.10)

The proof of this property relies on the compatibility of the metrics ρ as well as of the global

transition functions. Compatibility of the global transition functions implies in particular

that a extends to the partial compactification S of S, and so the above inequality makes

sense. The steps in the proof of (5.1.10) are outlined in [10].

The second step in the proof of Lemma 5.1.3 is to bound the energy of curves u with

(r, u) ∈ R(k+1; Γk+1; D) in terms of their symplectic area. More precisely, we can show that

there exists a constant C depending on the global transition functions a, the Hamiltonians

H±Wi−1,Wi
and H±Wi,Wi−1

giving the asymptotic conditions on Θ, the profile function h, and

the perturbation datum D , such that for (r, u) ∈ R(k + 1; Γk+1; D) with u of any index,

E(u) ≤
∫
Sr
u∗ω̃ + C. (5.1.11)

This is a generalization of Lemma 3.3.3 in [10]. The proof involves re-expressing the integrand

in (5.1.8) as
1
2 |Du− Y |

2
Jσ = u∗ω̃ − d(u∗Θr) +RΘr(u). (5.1.12)
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Here the term RΘr ∈ Ω2(Sr, C∞(M̃)) is the curvature form associated to Θr. The integral

of RΘr(u) satisfies a uniform bound (independent of r and u) since for every pair (r, u) ∈

R(k + 1; Γk+1; D), the curve u has image contained in the compact set B ×M by Lemma

5.1.2. The integral of the term −d(u∗Θr) in (5.1.12) can be bounded by another application

of Lemma 5.1.2 and using the existence of the constant Ck
a above.

The final step in the proof of Lemma 5.1.3 is to establish a uniform bound on the

symplectic area of solutions of (4.3.3) of a fixed index. This is done by showing that for

(r, u), (r′, u′) ∈ R(k + 1; Γk+1; D),∫
Sr
u∗ω̃ −

∫
Sr′
u′∗ω̃ = τ(µ(u)− µ(u′)), (5.1.13)

where µ is the Maslov index and τ is the monotonicity constant. The identity (5.1.13) is

proved using a variation of an argument due to Oh for Floer strips [36], and uses the condition

on W ∈ CLd(M̃) that the inclusion of π1(W ) in π1(M̃) is trivial. From (5.1.13) it follows

that all (r, u) ∈ R(k + 1; Γk+1; D)s have the same symplectic area, and we then obtain the

uniform energy bound from (5.1.11). �

5.2. Transversality

In order to define the A∞-category Fc together with its relative weak Calabi-Yau pairing,

we need to show that all of the Floer and perturbation data involved can be chosen in a

generic fashion to be both consistent and regular. The proof of the next lemma is based

on the arguments in [10, §3.4], which in turn adapt the methods in [40] to the cobordism

context.

Lemma 5.2.1. We consider collections of data consisting of the following:

(1) Floer data D+
W,W ′ and D−W,W ′ for all pairs of cobordisms W,W ′ ∈ CLd(M̃).

(2) Perturbation data Dµ
W0,...,Wk

for all families W0, . . . ,Wk ∈ CLd(M̃), k ≥ 2.

(3) Perturbation data DY
W0,...,Wm;Xp,...,X0 for m, p with m + p ≥ 1 and perturbation data

Dδ
W0,...,Wm;Xp,...,X0 for all m, p ≥ 0 and all familiesW0, . . . ,Wm;Xp, . . . , X0 ∈ CLd(M̃).

(4) Perturbation data Dσ
W0,...,Wm

for every m ≥ 0 and every family W0, . . . ,Wm ∈

CLd(M̃).

Such a collection can be chosen generically to be both consistent and regular.
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Proof. Assume we have fixed the following data: universal choices of strip-like ends {εk+1
i }

on the bundles Sk+1 → Rk+1, k ≥ 1, for the input sets Ik+1
µ and universal choices of strip-

like ends {εm+1;1
j } on Sm+1;1 → Rm+1;1, m ≥ 0, for the input sets Im+1

CY ; global transition

functions aµ : Sk+1 → [0, 1], am,pY : Sm+p+2 → [0, 1], and aσ : Sm+1;1 → [0, 1] as described

in Section 4.2; and a profile function h : C→ R. We take the universal choices of strip-like

ends and global transition functions on the bundles Sm,p;1 → Rm,p;1, m, p ≥ 0, to be given

by restriction from Sm+p+2;1.

As in the argument in [40], we will choose the perturbation data by induction on the

number of punctures. We emphasize that in order to achieve the necessary consistency

among all of the data, i.e. the data used to define the maps µFck as well as those used to

define the Fc–Fc bimodule (Fc)rel
∆ , the dual Hochschild cycle σFc ∈ CC•(Fc, (Fc)rel

∆ )∨, and

the natural transformation δFc : Yl
Fc → (Y∨rel)l, it is necessary to perform the induction for

the different types of data in parallel. More precisely, the induction step is the following:

Assume we have chosen the following consistent regular data:

(1) D+
W,W ′ and D−W,W ′ for all pairs of cobordisms W,W ′ ∈ CLd(M̃).

(2) Dµ
W0,...,Wk

for all k ∈ {2, . . . , N} and all families W0, . . . ,Wk ∈ CLd(M̃).

(3) DY
W0,...,Wm;Xp,...,X0 for all m, p with 0 ≤ m + p ≤ N − 1 and all families

W0, . . . ,Wm, Xp, . . . , X0 ∈ CLd(M̃),

(4) Dδ
W0,...,Wm;Xp,...,X0 for all m, p ≥ 0 with m + p ≤ N − 3 and all families

W0, . . . ,Wm, Xp, . . . , X0 ∈ CLd(M̃),

(5) Dσ
W0,...,Wm

for all m ∈ {0, . . . , N − 2} and all families W0, . . . ,Wm ∈ CLd(M̃).

Then it is possible to extend this choice to consistent regular data:

(1 ′) Dµ
W0,...,WN+1

,

(2 ′) DY
W0,...,Wm;Xp,...,X0 for all m, p with m+ p = N ,

(3 ′) Dδ
W0,...,Wm;Xp,...,X0 for all m, p with m+ p = N − 2,

(4 ′) Dσ
W0,...,WN−1

.

We begin by making regular choices of Floer data D+
W,W ′ and D−W,W ′ for all pairs of

cobordisms W,W ′ ∈ CLd(M̃) in a generic way. This is done in two steps: We first choose

generic data such that solutions u of the Floer equation, i.e. solutions of (4.3.3) for the

perturbation datum (dt⊗H±W,W ′ , J±W,W ′(t)), are regular if they have image contained in the

fibre over a bottleneck; then we introduce a generic perturbation in this data so that all
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solutions of the Floer equation are regular. To accomplish the first step, consider a solution

u of the Floer equation for a Floer datum (H±W,W ′ , J±W,W ′) satisfying conditions (1) – (3)

on Floer data in Section 4.3 and assume π ◦ u is constant at a bottleneck point q ∈ C.

The linearized operator associated to (4.3.3) at u splits into a horizontal and a vertical

part. The vertical part is the linearized operator for the Floer equation for u in π−1(q)

for the data (G±W,W ′ , J±|π−1(q)) (where G±W,W ′ is the Hamiltonian on M satisfying condition

(2) in the definition of Floer data for cobordisms). Hence if we choose the data D+
W,W ′

and D−W,W ′ such that the “vertical” data (G±W,W ′ , J±|π−1(q)) are regular data on π−1(q) for

all bottlenecks q ∈ C, the vertical part of the linearized operator will be surjective. To

demonstrate surjectivity for the horizontal part of the linearized operator, we make use of the

specific form of the profile functions around a bottleneck. Part 1a of Corollary 5.3.2 applied

with f1 = f2 = h± in the case of data D+
W,W ′ , and with f1 = f2 = −h± in the case of data

D−W,W ′ , implies that the horizontal part of the linearized operator is surjective. This proves

regularity for solutions with constant projection when the data D+
W,W ′ and D−W,W ′ are chosen

so that the corresponding vertical data (G±W,W ′ , J±|π−1(q)) are generic for all bottlenecks

q ∈ C.

We now consider solutions u of the Floer equation with non-constant projection, and we

simplify the argument by using the naturality transformation (5.1.1) to transform these to

curves v. Note that u projects to a constant at a bottleneck if and only if v does. Since by

assumption u does not project to a constant at a bottleneck, it is not possible for the image

of v′ := π ◦ v to remain in a small neighbourhood of a bottleneck. This would mean that the

bottleneck serves as both entry and exit for v′. However, by orientation considerations and

an application of the open mapping theorem, a bottleneck cannot be an exit in the case of

data D+
W,W ′ , and cannot be an entry in the case of data D−W,W ′ , unless v′ is constant. It then

follows that for small enough δ (which does not depend on the original curve u) the image

of u must enter the region (−5
4 + δ, 9

4 − δ) × R ×M . Enlarging KW,W ′ within (−5
4 ,

9
4) × R

if necessary, we can assume u enters Int(KW,W ′)×M . Standard regularity arguments (as in

[35, Lemma 3.4.3] and [40]) then imply that transversality for the pair (H±W,W ′ , J±W,W ′) can

be attained by a generic perturbation supported on KW,W ′ ×M .

To prove the induction step, we first fix choices of perturbation data (1′)–(4′) which are

consistent with the choices (1)–(5). This is done by a simple adaptation of the procedure
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explained in [40] for choosing perturbation data consistently, and relies on the fact that the

perturbation data induced on a glued configuration of discs will satisfy conditions (1) – (3) on

perturbation data in Section 4.3 if the data on the individual discs satisfy these conditions.

We then modify this data in two steps using two different types of perturbation. Both types

of perturbation are subclasses of the class of perturbations introduced in [40, §II.9k], and

so in particular are supported on subsets Ω ⊂ SN+2, Ω′ ⊂ SN ;1 and Ω′′ ⊂ Sm,p;1 which are

disjoint from the strip-like ends and, for small enough gluing parameters, are contained in

the thick part of the thick-thin decomposition associated to discs obtained by gluing. It will

also be convenient to arrange for the data on Sm,p;1 to be given by restriction of the data on

SN ;1. This can be achieved by first choosing regular data for Sm,p;1, then extending this to

consistent data on SN ;1, and finally perturbing the extended data away from the subbundle

Sm,p;1 ⊂ SN ;1.

We now describe the two types of perturbation we use. We first perturb the initial data

by vertical perturbations supported in a small neighbourhood of the union of the fibres

over the bottlenecks. If a generic perturbation of this sort is applied to a datum (Θ,J),

the perturbed datum (Θ̃, J̃) will satisfy the condition that each solution (r, u) of (4.3.3)

which has constant projection at a bottleneck q will be regular as a curve in π−1(q) for

the perturbed vertical datum (Θ̃0|π−1(q), J̃|π−1(q)). Essentially the same argument that was

applied to Floer strips shows that these curves are also regular as curves in M̃ , although in

this case we must consider the extended linearized operator DS,r,u associated to (4.3.3) (i.e.

the linearized operator which takes into account variations of r within R). Recall that this

operator is a map

DS,r,u : (TR)r × (TBSr)u → (ESr)u, (5.2.1)

where BSr is the Banach manifold of locally W 1,p-maps Sr → M̃ converging on the strip-like

ends to the chords giving the asymptotic conditions for (4.3.3), and ESr → BSr is the Banach

vector bundle with fibre over u ∈ BSr given by Lp(Sr,Ω0,1(Sr) ⊗ u∗TM̃) (see [40, §II.9h]).

The second component of the operator DS,r,u is simply the linearized operator associated to

(4.3.3) for the fixed domain Sr. When u projects to a constant at a bottleneck, the operator

DS,r,u respects the splitting of (TBSr)u and (ESr)u coming from the product structure on
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C×M . By this we mean that DS,r,u is of the form

DS,r,u(ν, (ξ1, ξ2)) = (DS,r,w(ν, ξ1),DS,r,w′(ν, ξ2)). (5.2.2)

Here DS,r,w is the extended linearized operator for the inhomogeneous pseudoholomorphic

curve equation in C at (r, w) where w = π ◦u, and DS,r,w′ is the extended linearized operator

for the inhomogeneous pseudoholomorphic curve equation in M at (r, w′) where w′ = πM ◦u

and πM : C×M →M is the projection onto the second factor. The vertical operator DS,r,w′

is surjective by regularity of the vertical data. Surjectivity of the total operator follows from

the fact that the operator DS,r,w(ν, ·) is surjective for every ν ∈ (TR)r. To see this, we

apply (1b) of Corollary 5.3.2 for solutions u : SN+2
r → M̃ of (4.3.3) with data Dµ

W0,...,WN+1

or DY
W0,...,Wm;Xp,...,X0 and part (2) of Corollary 5.3.2 for solutions u : Sm,p;1r → M̃ of (4.3.3)

with data Dδ
W0,...,Wm;Xp,...,X0 and for solutions u : SN ;1

r → M̃ with data Dσ
W0,...,WN−1

. From

this we obtain that the horizontal linearized operator for every fixed domain is surjective,

and therefore DS,r,w(ν, ·) is surjective for all ν ∈ (TR)r.

For solutions u which do not satisfy the condition that π◦u is constant at a bottleneck, we

again apply the naturality transformation (5.1.1). The types of solutions under consideration

all have either an exit zi with αi = + or an entry zj with αj = − and so by the open

mapping theorem together with orientation considerations, the transformed curves v cannot

have projection that remains in a small neighbourhood of a bottleneck. LetK be the compact

subset appearing in conditions (2) and (3) on perturbation data in Section 4.3 for the datum

under consideration (i.e. Dµ
W0,...,WN+1

, DY
W0,...,Wm;Xp,...,X0 , Dδ

W0,...,Wm;Xp,...,X0 , or Dσ
W0,...,WN−1

). It

follows from the form of the profile function and the conditions on the set K that the curve

u must enter the region Int(K) ×M . Hence we can achieve transversality for these curves

by introducing a generic perturbation of the perturbation datum supported in K ×M . �

We are now in a position to prove parts (1a), (2a), and (3) of Theorem 4.5.1.

Proof of Theorem 4.5.1, (1a), (2a), and (3). By Lemma 5.2.1, for a generic consistent

choice of Floer and perturbation data as in Section 4.3, the moduli spaces defined in Sec-

tion 4.3.1 are smooth manifolds of dimension equal to the Fredholm index of the extended

linearized operator associated to (4.3.3). By Lemmas 5.1.2 and 5.1.3, these moduli spaces

also satisfy Gromov compactness, i.e. they can be compactified by nodal curves. The mono-

tonicity assumption on the cobordisms in CLd(M̃) precludes disc and sphere bubbling for
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the moduli spaces of dimension zero and one. Index considerations then imply that the zero-

dimensional moduli spaces are compact, and that the one-dimensional moduli spaces can

be compactified by once-broken configurations of polygons, and the usual gluing argument

shows that all once-broken polygon configurations occur in the boundary of the compactified

one-dimensional moduli spaces. By compactness of the index-zero moduli spaces, the curve

counts used in defining Yr
rel , δFc , and σFc make sense. The terms appearing in the A∞-functor

relations (1.1.7) for Yr
rel correspond to the configurations in the boundary of the compactifi-

cations of the moduli spacesRm+p+2
Y (γ1, . . . , γm, ζ; ηp, . . . , η1, ζ

′)1, and hence Yr
rel is a functor.

The corresponding Fc–Fc bimodule (Fc)rel
∆ is therefore also well-defined. Similarly, the terms

appearing in the relation µ
fun(Fc,Fc–mod)
1 (δFc) = 0 correspond to the configurations in the

boundary of the compactifications of the moduli spaces Rm,p;1
δ (γ1, . . . , γm, ξ; ηp, . . . , η1, ξ

′)1,

and so δFc : Yl
Fc → Y∨rel is a natural transformation. By examining the configurations in

the boundary of the compactifications of the spaces Rm+1;1
σ (γ1, . . . , γm,γ)1, we also see that

σFc ∈ CC•(Fc, (Fc)rel
∆ )∨ is a cycle.

To see that the relationship [φFc ] = Γ ◦ T∨([σFc ]) holds, we apply an argument due to

Ganatra [24, Proposition 5.6]. This involves considering curves defined on a subbundle T m,p;1

of Sm+p+2;1 which is given by restricting Sm+p+2;1 to a particular subset R̃m,p;1 of Rm+p+2;1.

The subset R̃m,p;1 is defined to be the set of elements [z1, . . . , zm, z
′, wp, . . . , w1, w

′, y] of

Rm+p+2;1 where z′ = eiπt for some t ∈ (0, 1), w′ = +1, and y = 0. We assign to this bundle

the input set Im+p+2
CY and the (m+ p+ 2) sign datum ᾱCY . We take the universal strip-like

ends, global transition function, and perturbation data on T m,p;1 to be given by restriction

of the corresponding data on Sm+p+2;1. Denote by R̃m,p;1(γ1, . . . , γm, ξ; ηp, . . . , η1, ξ
′) the

moduli space of pairs (r, u) where r ∈ R̃m,p;1 and u : T m,p;1r → M̃ is a solution of (4.3.3) sat-

isfying boundary conditions along W0, . . . ,Wm,Xp, . . . , X0 and asymptotic conditions along

the following Hamiltonian chords

γi ∈ O(H+
Wi−1,Wi

), i = 1, . . . ,m,

ξ ∈ O(H+
Wm,Xp),

ηj ∈ O(H+
Xj ,Xj−1

), j = p, . . . , 1,

ξ′ ∈ O(H−X0,W0).

(5.2.3)
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The moduli space R̃m,p;1(γ1, . . . , γm, ξ; ηp, . . . , η1, ξ
′) is regular and satisfies Gromov com-

pactness. Define an element β ∈ CC•(Fc, (Fc)rel
∆ )∨ by

〈β, γ1 ⊗ · · · ⊗ γm ⊗ ξ ⊗ ηp ⊗ · · · ⊗ η1 ⊗ ξ′〉

= #Z2R̃m,p;1(γ1, . . . , γm, ξ; ηp, . . . , η1, ξ
′)0.

(5.2.4)

Set δ̄Fc = Γ−1(φFc). We claim that the cycle δ̄Fc − T∨(σFc) in 2CC•(Fc, (Fc)rel
∆ )∨ is equal to

the boundary of β. Indeed, the terms in the relation

〈∂(β)− δ̄Fc + T∨(σFc), γ1 ⊗ · · · ⊗ γm ⊗ ξ ⊗ ηp ⊗ · · · ⊗ η1 ⊗ ξ′〉 = 0 (5.2.5)

correspond to configurations in the boundary of the compactification of R̃m,p;1(γ1, . . . , ξ;

. . . , η1, ξ
′)1 (including those configurations obtained as the limit when the parameter t ap-

proaches 0 and 1 – see Figure 5.1). This proves that [φFc ] = Γ ◦ T∨([σFc ]).

It remains to prove that δFc is a quasi-isomorphism and that σFc is homologically non-

degenerate. Note that by the relation [φFc ] = Γ◦T∨([σFc ]) and Lemma 3.1.6 these statements

are equivalent. We will show that δFc is a quasi-isomorphism. By the definition of a natural

transformation between A∞-functors, the component δFc
0 of δFc = (δFc

0 , δFc
1 , . . .) consists of

a family of module morphisms

(δFc
0 )W : Yl

Fc(W )→ Y∨rel(W ), W ∈ CLd(M̃). (5.2.6)

To show that δFc is a quasi-isomorphism, we claim that it is sufficient to show that the chain

maps

((δFc
0 )W )0|1 : Yl

Fc(W )(X)→ Y∨rel(W )(X) (5.2.7)

are quasi-isomorphisms for all X,W ∈ CLd(M̃). This is a result of a general algebraic

fact that for two A∞-functors G0,G1 : A → B, where B is homologically unital, a natural

transformation T from G0 to G1 is a quasi-isomorphism if (T0)X ∈ B(G0(X),G1(X)) is

a quasi-isomorphism for all X ∈ Ob(A). Applying this algebraic result first to the natural

transformation δFc and then to the module morphism δFc
0 , viewed as a natural transformation

itself, shows that it is sufficient to check that the chain maps (5.2.7) are quasi-isomorphisms.

The algebraic result in turn is a consequence of the existence of an obvious functor

H(fun(A,B))→ fun(H(A), H(B)), (5.2.8)
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eiπt

t→ 1

t→ 0

+1

+1−1

Figure 5.1. A punctured disc which is a fibre of T 3,2;1 with t → 0 and t → 1 limit
configurations.

which is unital if B is homologically unital. Finally, the fact that the map

((δFc
0 )W )0|1 : CF (X,W ; D+

X,W )→ CF (W,X; D−W,X)∨ (5.2.9)

is a quasi-isomorphism is clear from its explicit description, since it is the total Poincaré

duality quasi-isomorphism for Floer complexes of Lagrangian cobordisms. �

5.3. Index and regularity results for curves in R2

In this section we state some results about the index and regularity of polygons in R2 sat-

isfying an inhomogeneous nonlinear Cauchy-Riemann equation and having boundary along

an embedded path with horizontal ends. We consider two versions of this equation, the

second more general than the first. For the first version, we will concern ourselves only
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with constant solutions, and for the second more general version of the equation, we treat

only non-constant solutions. Corollary 5.3.2 concerning constant solutions has already been

applied in the previous section in the proof of regularity of the moduli spaces of curves

involved in the definition of Fc and its weak Calabi-Yau pairing. Both this corollary and

Lemma 5.3.4 concerning non-constant curves will be used in the following sections to define

the inclusion functor Iγ, as well as the bimodule morphism irel and the natural transfor-

mation Srel appearing in Theorem 4.5.1, and to prove their properties. The results of this

section are generalizations of those appearing in Section 4.3 of [10]. As the proofs involve

only minor alterations to the proofs there, we do not include them here.

Let γ ⊂ R2 be a properly embedded curve which is diffeomorphic to R and has horizontal

ends. Fix a punctured disc S which is a fibre of one of the bundles Sk+1 (k ≥ 2), Sk+1;1

(k ≥ 0), or Sm,p;1 (m, p ≥ 0). In the last case, set k = m + p + 1. Denote by j the

complex structure on S. Assume we have a fixed input set Ik+1, strip-like ends {εSi }i=1,...,k+1,

and a (k + 1) sign datum ᾱ, as well as a corresponding transition function a : S → R.

Let f1, . . . , fk+1 : γ → R be Morse functions with a common critical point x ∈ γ and

let {f̂z : γ → R}z∈S be a family of functions parametrized by S satisfying the following

properties:

(1) For all z ∈ S, df̂z(x) = 0.

(2) For all i ∈ Ik+1, there exists a compact set K− ⊂ Z− and for all i ∈ {1, . . . , k + 1} \

Ik+1, there exists a compact set K+ ⊂ Z+ such that f̂z = fi for all z ∈ εSi (Z± \K±).

We extend the functions f̂z and fi to R2 using the identification R2 ∼= T ∗γ and defining the

extension to be constant along the fibres. Let X f̂ = {X f̂z}z∈S be the associated family of

Hamiltonian vector fields on R2 parametrized by S, and define a 1-form on S with values

in the space of Hamiltonian vector fields on R2 by Z = da ⊗X f̂ . Lastly define a family of

complex structures î = {̂iz}z∈S on R2 parametrized by S by îz = (φf̂za(z))∗i.

For the case without interior marked point, i.e. where S is a fibre of Sk+1, we also extend

these choices to the case k = 1 for the input set I2 = I2
µ and sign datum ᾱ = (α1, α2)

satisfying α1 = α2. Here we require that f0 = f1 and that f̂z be constant with respect to z.

For the case where ᾱ = (+,+), we take a(s, t) = aµ(s, t) := t, and for ᾱ = (−,−), we take

a(s, t) = a0,0
Y (s, t) := 1− t.
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We consider the following equation:

w : (S, ∂S)→ (R2, γ), Dw + îz(w) ◦Dw ◦ j = Z + îz(w) ◦ Z ◦ j. (5.3.1)

From our definitions, we have that Zz(x) = 0 for all z ∈ S, and so the constant map

w0(z) ≡ x is a solution of (5.3.1). Let Dw0 denote the linearized operator associated to

(5.3.1) for this solution.

The following lemma is a generalization of Lemma 4.3.1 in [10]. The proof, which we

omit, is an application of the theory developed in [42].

Lemma 5.3.1. The Fredholm index of Dw0 is given by

ind(Dw0) =
∑

i∈Ik+1

(|x|fi − 1)−
∑

i 6∈Ik+1

|x|fi + 1, (5.3.2)

where |x|fi is the Morse index of x as a critical point of fi. Moreover, when the index (5.3.2)

is zero, the operator Dw0 is surjective and therefore the constant solution w0 is regular.

The following corollary is simply a statement of the previous lemma for the specific cases

we will be interested in.

Corollary 5.3.2. In the following cases, ind(Dw0) = 0.

(1) The input set is Ik+1 = Ik+1
µ and one of the following applies:

(a) k = 1 and |x|f1 = |x|f2

(b) k ≥ 2, and there exists i0 ∈ {1, . . . , k} such that |x|fi = 1 for i ∈ {1, . . . , k}\{i0}

and |x|fi0 = |x|fk+1.

(2) The input set is Ik+1 = Ik+1
CY , and we have |x|fk+1 = 0, and |x|fi = 1 for i ∈

{1, . . . , k}.

Moreover in all of these case Dw0 is surjective and therefore the constant solution w0 is

regular.

We now describe a more general version of Equation 5.3.1. For this we consider Morse

functions fi : γ → R, now possibly with different critical points. Assume xi ∈ γ is a critical

point of fi. We still require a family of functions {f̂z : γ → R}z∈S identically equal to fi near

the ith puncture, but there is no longer a requirement on the critical points of the functions
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f̂z. We also allow the one-form Z which appears in (5.3.1) to have the more general form

Z = da⊗X f̂ +Xq. (5.3.3)

Here q is a form in Ω1(S,C∞(R2)) which is required to have compact support contained in

the interior of S.

Remark 5.3.3. In the course of completing this work, we discovered an error in subsection

4.3.2 of the published version of [10]. This error, which had no impact on the rest of [10],

has been corrected in the most recent arXiv version of the paper. Our references below to

this subsection and, in particular, to Lemma 4.3.3 and Corollary 4.3.4 refer to the forms that

appear in this revision.

The next lemma is a generalization of Lemma 4.3.3 in [10]. Again we omit the proof which

requires only minor modifications to the proof which appears there. The transversality result

in particular follows from the methods in [40, §II.13a].

Lemma 5.3.4. Let w : (Sr, ∂Sr)→ (R2, γ) be a non-constant solution of (5.3.1). Then the

linearized operator Dw associated to (5.3.1) for the fixed surface Sr has index given by

ind(Dw) =
∑

i∈Ik+1

(|xi|fi − 1)−
∑

i 6∈Ik+1

|xi|fi + 1. (5.3.4)

Therefore the index of the extended linearized operator DS,r,w is given by

ind(DS,r,w) =



∑
i∈Ik+1(|xi|fi − 1)−∑i 6∈Ik+1 |xi|fi + k − 1, S = Sk+1, (k ≥ 2),∑
i∈Ik+1(|xi|fi − 1)−∑i 6∈Ik+1 |xi|fi + k + 1, S = Sk+1;1,∑
i∈Ik+1(|xi|fi − 1)−∑i 6∈Ik+1 |xi|fi +m+ p+ 1, S = Sm,p;1 (k = m+ p+ 1).

(5.3.5)

Moreover, in all of these cases DS,r,w is surjective.

The difference in the indices of the ordinary and extended linearized operators accounts

for repositioning of the marked points, hence is given by the dimension of R.

5.4. The inclusion functor Iγ

The purpose of this section is to define the functor Iγ : F → Fc appearing in the

statement of Theorem 4.5.1. This definition is based on the one in [10, §4.2], although some
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modifications are required in this setting. Here γ ⊂ R2 is an embedded curve which is

horizontal outside of [0, 1]× R and whose ends have y-coordinate in Z. In other words, γ is

a Lagrangian cobordism in R2 × {pt}.

The definition of Iγ relies on restricting the class of data used to define the category

Fc. More precisely, we place restrictions on the Floer and perturbation data associated to

families of cobordisms in CLd(M̃) which are of the form γ×L for L ∈ L∗d(M). For notational

convenience we set L̃ = γ × L. We first fix a profile function h satisfying the conditions in

Section 4.3. We also choose a function h′ : R2 → R which is equal to h outside of a small

neighbourhood of [−1, 2] × [−λ, λ] for some λ > 0 and such that (φh′1 )−1(γ) is of the form

shown in Figure 5.2. In particular, we require that γ and (φh′1 )−1(γ) intersect transversely

and that the number of intersection points is equal to one modulo four. Note that the second

condition is different from the one imposed in [10] where the number of intersection points is

only required to be odd. This added assumption plays a role in proving Propositions 5.5.6 and

5.5.9 relating σFc to σF and δFc to δF . We label the intersection points o1, . . . , ol from right

to left along γ (see Figure 5.2). In particular, o1 and ol are bottlenecks. We also fix regular

Floer data DL,L′ = (HL,L′ , JL,L′) on M for all pairs of Lagrangians L,L′ ∈ L∗d(M). The

positive and negative profile Floer data D±
L̃,L̃′

= (H±
L̃,L̃′

, J±
L̃,L̃′

) for the pair L̃, L̃′ ∈ CLd(M̃)

are taken to be

H+
L̃,L̃′

:= h′ ⊕HL,L′ and J+
L̃,L̃′

(t) = ((φh′t )∗i)⊕ JL,L′(t), (5.4.1)

H−
L̃,L̃′

:= −h′ ⊕HL,L′ and J−
L̃,L̃′

(t) = ((φh′1−t)∗i)⊕ JL,L′(t), t ∈ [0, 1]. (5.4.2)

The data D±
L̃,L̃′

are regular owing to the splitting of the linearized operator associated to

(4.3.3) into horizontal and vertical parts, each of which can be seen to be surjective. Indeed,

at a solution u = (u1, u2) of (4.3.3), where u1 : R × [0, 1] → C and u2 : R × [0, 1] → M ,

the vertical part of the linearized operator is the linearized operator at u2 for the Floer

equation with data DL,L′ , and thus surjective by regularity of DL,L′ . The horizontal part

of the linearized operator is the linearized operator at u1 for the Floer equation with data

(h′, (φh′t )∗i) in the positive profile case and with data (−h′, (φh′1−t)∗i) in the negative profile

case. To show surjectivity of this component of the linearized operator, we consider two cases.

When u1 is constant, part (1a) of Corollary 5.3.2 implies surjectivity. For non-constant u1,
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Figure 5.2. The path γ and its image under the Hamiltonian diffeomorphism (φh′1 )−1.

surjectivity follows from automatic regularity for holomorphic curves in C (see [40, §II.13a]

and [17]).

We extend the above choice of Floer data for pairs of cobordisms of the form γ × L to

a choice of regular positive and negative profile Floer data for all pairs of cobordisms in

CLd(M̃) (for the profile function h).

Next we make a choice of perturbation data for both F and Fc which includes data for

defining the weak Calabi-Yau structure on F and the relative weak Calabi-Yau pairing on

Fc. Denote the data onM by Dµ
M , DY

M , Dδ
M , and Dσ

M . The data Dµ, DY, Dδ, and Dσ on M̃

associated to families of cobordisms of the form γ × L for L ∈ L∗d(M) must be of the form

Θµ
r = daµr ⊗ h′ + (Θµ

M)r +Qµ
r , Jµr = (̃iµh′)r ⊕ (JµM)r, r ∈ Rk+1, (5.4.3)

ΘY
r = daY

r ⊗ h′ + (ΘY
M)r +QY

r , JY
r = (̃iYh′)r ⊕ (JY

M)r, r ∈ Rm+p+2, (5.4.4)

Θσ
r = daσr ⊗ h′ + (Θσ

M)r +Qσ
r , Jσr = (̃iσh′)r ⊕ (JσM)r, r ∈ Rm+1;1, (5.4.5)

Θδ
r = daδr ⊗ h′ + (Θδ

M)r +Qδ
r, Jδr = (̃iδh′)r ⊕ (JδM)r, r ∈ Rm,p;1. (5.4.6)
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Here (̃iµh′)r = {iµh′(z)}z∈Sk+1
r

is the family of almost complex structures on R2 defined by

(iµh′)r(z) = (φh′aµr (z))∗i. Similarly (̃iYh′)r, (̃iδh′)r, and (̃iσh′)r are families of almost complex struc-

tures on R2 parametrized by Sm+p+2, Sm,p;1, and Sm+1;1 respectively. They are defined

analogously to (̃iµh′). The term Qµ
r is a one-form in Ω1(Sk+1

r , C∞(M̃)) which is required to

be compactly supported on the interior of Sk+1
r and away from the strip-like ends. The form

Qµ
r is subject to the following additional constraints:

(1) There is a one-form qµr ∈ Ω1(Sk+1
r , C∞(C)) such that for all z ∈ Sk+1

r and v ∈ TzSk+1
r ,

the function (Qµ
r )z(v) : M̃ → R satisfies (Qµ

r )z(v) = (qµr )z(v) ◦ π.

(2) For all z ∈ Sk+1
r and v ∈ TzSk+1

r , the function (qµr )z(v) ∈ C∞(C) is supported on a

union Uh of small neighbourhoods of the points oi ∈ C with i even.

(3) For every even i, there exist z and v such that the function (qµr )z(v) does not have a

critical point at oi.

The terms QY
r , Qδ

r, and Qσ
r are likewise one-forms with values in C∞(M̃) which are subject

to constraints analogous to the above. As usual, the data are chosen inductively to achieve

consistency. In this situation, the induction for the data for F and Fc must take place in

parallel.

Note that the conditions on the Floer data D+
L̃,L̃′

and the perturbation data Dµ are those

which appeared in [10]. The additional conditions involving the data D−
L̃,L̃′

, DY, Dσ and Dδ

are needed to define the bimodule morphism irel and the natural transformation Srel in the

statement of Theorem 4.5.1 and to prove their properties.

Remark 5.4.1. Suppose that u is a solution of (4.3.3) for a perturbation datum (Θ,J) as

in (5.4.3)–(5.4.6). In particular u satisfies boundary conditions along cobordisms of the form

L̃ for L ∈ L∗d(M). Then condition (3) above on (qr)z(v) implies that u cannot have constant

projection at an intersection point oi ∈ γ ∩ (φh′1 )−1(γ) with i even. This is in contrast to the

case of oi with i odd, where if u is an inhomogeneous pseudoholomorphic curve in M for the

vertical datum ((ΘM)L0,...,Lk , (JM)L0,...,Lk), then the curve (oi, u) in M̃ is a solution of (4.3.3)

for the datum (Θ
L̃0,...,L̃k

,J
L̃0,...,L̃k

).

By the following lemma, this class of perturbation data is sufficient to achieve regularity

for all of the moduli spaces in Section 4.3.1. The corresponding fact concerning only the

moduli spaces associated to the data of type (Θµ,Jµ) appears in Corollary 4.3.4 of [10].
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Lemma 5.4.2. For a generic choice of perturbation data on M , all of the moduli spaces

in Section 4.3.1 of curves (r, u) in M̃ associated to the perturbation data (5.4.3)–(5.4.6) are

regular.

Proof. We will prove this for a moduli space of type Rm+1;1
σ (ξ1, . . . , ξm, ξ) of curves in

M̃ satisfying boundary conditions along Ñ0, . . . , Ñm. The other cases are similar. First

notice that, due to the split form of the Floer data on M̃ , the orbits ξ1, . . . , ξm are

of the form ξi = (oji , ξ′i) for some ji ∈ {1, . . . , l} and ξ′i ∈ O(HNi−1,Ni), and the or-

bit ξ is of the form (os, ξ′), for some s ∈ {1, . . . , l} and ξ′ ∈ O(HNm,N0). Moreover,

for every (r, u) ∈ Rm+1;1
σ (ξ1, . . . , ξm, ξ) the curve w := π ◦ u in C satisfies the inhomo-

geneous pseudoholomorphic curve equation in C for the horizontal perturbation datum

(Θσ
C,JσC) = (daσ ⊗ h′ + qσ, ĩσh′), and the curve w′ := πM ◦ u satisfies the inhomogeneous

pseudoholomorphic curve equation inM for the vertical perturbation datum (Θσ
M ,JσM). De-

note by Rσ
C the moduli space of curves in C associated to the perturbation datum (Θσ

C,JσC)

satisfying asymptotic conditions along the constant trajectories at oj1 , . . . , ojm , os of the flow

of h′. These curves have boundary conditions along γ. Similarly denote by Rσ
M the moduli

space of curves in M associated to the vertical perturbation datum (Θσ
M ,JσM) satisfying

asymptotic conditions along the Hamiltonian trajectories ξ′1, . . . , ξ′m, ξ′. The boundary con-

ditions for these curves are along the Lagrangians N0, . . . , Nm ⊂M .

The moduli spaces Rσ
C and Rσ

M are equipped with smooth projections,

p1 : Rσ
C → Rm+1;1, p2 : Rσ

M → Rm+1;1. (5.4.7)

The moduli space Rm+1;1
σ (ξ1, . . . , ξm, ξ) of curves in M̃ can be described as the fibre product

of these projections. By Lemma 5.3.4, the moduli spaces Rσ
C (of all dimensions) are regular.

The moduli spaces Rσ
M (of all dimensions) are regular by genericity of the vertical data.

By standard arguments, the projection p2 is transverse to p1 for a generic choice of data

(Θσ
M ,JσM). Therefore the moduli space Rm+1;1

σ (ξ1, . . . , ξm, ξ) is also regular. �

Remark 5.4.3. In general, for defining Fukaya categories and associated structures, it is

only necessary to have regularity of moduli spaces of dimension zero and one. The preceding

lemma however requires that the moduli spaces of curves in C and inM of higher dimensions

also be regular. This can be achieved easily by the usual methods.
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We assume from this point on that the perturbation data for M in (5.4.3)–(5.4.6) are

chosen generically as in Lemma 5.4.2 so that the corresponding data for M̃ are regular.

We also assume that the perturbation data for M̃ associated to families of cobordisms not

necessarily of the form γ × L are regular.

5.4.1. Definition of Iγ

For L,L′ ∈ L∗d(M), both types of Floer complexes CF (L̃, L̃′; D+
L̃,L̃′

) and CF (L̃, L̃′; D−
L̃,L̃′

)

split as vector spaces as

CF (L̃, L̃′; D±
L̃,L̃′

) =
l⊕

i=1
CF (L,L′; DL,L′). (5.4.8)

The ith summand corresponds to the point oi, and it will be convenient to identify it as

CF (L,L′; DL,L′)oi,− for the negative profile Floer complex and as CF (L,L′; DL,L′)oi,+ for

the positive profile Floer complex. For x ∈ CF (L,L′; DL,L′), we write x(i,±) for the element

(0, . . . , 0, x, 0, . . . , 0) of CF (L̃, L̃′; D±
L̃,L̃′

), where x is placed at the ith position.

Remark 5.4.4. As remarked in [10, §4.2], the differential µFc1 on CF (L̃, L̃′; D+
L̃,L̃′

) has a

simple description in terms of the differential µF1 on CF (L,L′; DL,L′). It is given by

µFc1 (x(j,+)) =


(µF1 (x))(j,+) + x(j−1,+) − x(j+1,+), j odd,

(µF1 (x))(j,+), j even.
(5.4.9)

Here we set x(j−1,+) = 0 if j = 1 and x(j+1,+) = 0 if j = l. Formula (5.4.9) is a simple

consequence of the split form of the Floer data 5.4.1 together with index considerations and

an open mapping theorem argument. The same arguments show that the differential ∂− on

CF (L̃, L̃′; D−
L̃,L̃′

) is given by

∂−(x(j,−)) =


(µF1 (x))(j,−) + x(j−1,−) − x(j+1,−), j even,

(µF1 (x))(j,−), j odd.
(5.4.10)

As a result, we see that the complexes CF (L,L′; DL,L′), CF (L̃, L̃′; D+
L̃,L̃′

), and

CF (L̃, L̃′; D−
L̃,L̃′

) are all quasi-isomorphic.
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The functor Iγ : F → Fc is defined on objects by Iγ(L) = L̃. The map (Iγ)1 is given by

(Iγ)1 : CF (L,L′; DL,L′)→ CF (L̃, L̃′; D+
L̃,L̃′

),

x 7→ x(1,+) + x(3,+) + · · ·+ x(l−2,+) + x(l,+).
(5.4.11)

The maps (Iγ)k for k ≥ 2 are all zero. It is an easy consequence of the corollary of the next

lemma that Iγ is a functor. We omit the proofs of this lemma (which appears as part of

Corollary 4.3.4 in [10]) and its corollary as they are very similar to the proofs of Lemma

5.5.1 and Corollary 5.5.4 in the next section.

Lemma 5.4.5. Fix k ≥ 2 and consider the moduli space

Rk+1
µ (a(j1,+)

1 , . . . , a
(jk,+)
k ,a(s,+)), (5.4.12)

of curves in M̃ satisfying boundary conditions along L̃0, . . . , L̃k. Here ai ∈ O(HLi−1,Li) for

i = 1, . . . , k, and a ∈ O(HL0,Lk). Suppose that the zero-dimensional component of this moduli

space is non-empty. Then one of the following possibilities occurs:

(1) The index s is odd and we have j1 = · · · = jk = s. In this case, π ◦ u is constant at

os.

(2) The index s is even, and among the indices j1, . . . , jk at least one is also even.

Corollary 5.4.6. Let j1, . . . , jk ∈ {1, . . . , l} be odd. Then the following relation is satisfied:

µFck (x(j1,+)
1 , . . . , x

(jk,+)
k ) =


µFk (x1, . . . , xk)(j1,+), j1 = · · · = jk,

0, otherwise,
(5.4.13)

for all xi ∈ CF (Li−1, Li; DLi−1,Li), i = 1, . . . , k.

The functor Iγ is called the inclusion functor. If we allow γ and the function h′, as

well as the profile function h, to vary, we in fact obtain a whole family of inclusion functors,

Iγ,h,h′ : Fuk(M)→ Fukcob(M̃ ; D(γ, h, h′)). (5.4.14)

Here we use D(γ, h, h′) to denote the collection of Floer and perturbation data on M̃ . This

data is assumed to satisfy the conditions in Section 4.3 as well as (5.4.1)–(5.4.6) for the curve

γ and the functions h and h′. For any two choices of data D(γ1, h1, h
′
1) and D(γ2, h2, h

′
2),
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there is a comparison quasi-isomorphism

KD(γ1,h1,h′1)
D(γ2,h2,h′2) : Fukcob(M̃ ; D(γ1, h1, h

′
1))→ Fukcob(M̃ ; D(γ2, h2, h

′
2)). (5.4.15)

Suppose γ1 and γ2 are horizontally isotopic paths, i.e. they are related by a Hamiltonian

isotopy which is only permitted to slide the ends of the path in the horizontal direction and

cannot change their y-coordinate. Then the functors KD(γ1,h1,h′1)
D(γ2,h2,h′2) ◦ Iγ1,h1,h′1

and Iγ2,h2,h′2
are

related by a natural quasi-isomorphism which is canonically defined on homology. See [10,

Proposition 4.2.5].

5.5. The relative weak Calabi-Yau pairing and compatibility

In order to complete the proof of Theorem 4.5.1, it remains to define the F–F bimodule

morphism irel : F∆ → (Iγ)∗(Fc)rel
∆ in part (1) of the theorem and the natural transformation

Srel : Gr
Iγ (Yr

rel)→ Yr
F in part (2), and to verify that they satisfy the stated properties.

5.5.1. The bimodule morphism irel

As a module pre-morphism, irel : F∆ → (Iγ)∗(Fc)rel
∆ is defined by

(irel)0|1|0 : CF (L,L′; DL,L′)→ CF (L̃, L̃′; D−
L̃,L̃′

),

(irel)0|1|0(x) = x(1,−) + x(3,−) + · · ·+ x(l,−),

(irel)m|1|p = 0, for (m, p) 6= (0, 0).

(5.5.1)

To verify that irel is in fact a module morphism and to show that [(Irel
γ )∨∗σFc ] = [σF ],

we will use the following results about solutions (r, u) of (4.3.3) where u satisfies boundary

conditions along cobordisms of the form γ × L.

Lemma 5.5.1. Assume m+ p ≥ 1 and consider the moduli space

Rm+p+2
Y (a(j1,+)

1 , . . . , a(jm,+)
m , c(s,−); b(j′p,+)

p , . . . , b
(j′1,+)
1 , c′(s

′,−)), (5.5.2)

of curves in M̃ satisfying boundary conditions along L̃0, . . . , L̃m, Ñp, . . . , Ñ0. Here ai ∈

O(HLi−1,Li) for i = 1, . . . ,m, c ∈ O(HLm,Np), bi ∈ O(HNi,Ni−1) for i = p, . . . , 1, and

c′ ∈ O(HL0,N0). Suppose that the zero-dimensional component of this moduli space is non-

empty. Then one of the following possibilities occurs:
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(1) The index s is odd and we have j1 = · · · = jm = s = j′p = · · · = j′1 = s′. In this case,

π ◦ u is constant at os.

(2) The index s is even, and among the indices j1, . . . , jm, j
′
p, . . . , j

′
1, s
′ at least one is also

even.

Proof. Set S = Sm+p+2 and let (r, u) belong to the zero-dimensional component of the

moduli space (5.5.2). Note that with the choice of perturbation data (5.4.4), when u is

transformed by the naturality transformation (5.1.1), it becomes holomorphic over a neigh-

bourhood of the oi with i odd. Therefore the odd intersection points in γ∩(φh′1 )−1(γ) behave

as bottlenecks and in particular are entry points for positive profile Floer data and exit points

for negative profile Floer data. It follows that every curve u : Sr → M̃ that has an entry over

a bottleneck with negative profile Floer data must project to a constant at the bottleneck.

This proves that j1 = · · · = jm = s = j′p = · · · = j′1 = s′ and that π ◦u is constant if s is odd.

The other possibility is that s is even. In this case, set w = π ◦ u and w′ = πM ◦ u. It

follows from the split form of the perturbation data that the index of the extended linearized

operator DS,r,u associated to (4.3.3) at (r, u) can be expressed in terms of the indices of the

operators DS,r,w and DS,r,w′ by

ind(DS,r,u) = ind(DS,r,w) + ind(DS,r,w′)− (m+ p− 1). (5.5.3)

Suppose toward a contradiction that j1, . . . , jm, j
′
p, . . . , j

′
1, s
′ are all odd. Then by Lemma

5.3.4 we obtain ind(DS,r,w) = m + p. By assumption ind(DS,r,u) = 0, and so from (5.5.3)

we have ind(DS,r,w′) = −1. This contradicts the fact that the vertical perturbation datum

(ΘY
M ,JY

M) is regular. Therefore one of the indices j1, . . . , jm, j
′
p, . . . , j

′
1, s
′ must be even. �

The following two lemmas are proved using the same argument as in the proof of Lemma

5.5.1.

Lemma 5.5.2. Consider the moduli space Rm+1;1
σ (a(j1,+)

1 , . . . , a(jm,+)
m ,a(s,−)) of curves in M̃

satisfying boundary conditions along L̃0, . . . , L̃m. Here ai ∈ O(HLi−1,Li) for i = 1, . . . ,m,

and a ∈ O(HLm,L0). Suppose that the zero-dimensional component of this moduli space is

non-empty. Then one of the following possibilities occurs:

(1) The index s is odd and we have j1 = · · · = jm = s. In this case, π ◦ u is constant at

os.
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(2) The index s is even, and among the indices j1, . . . , jm at least one is also even.

Lemma 5.5.3. Consider the moduli space

Rm,p;1
δ (a(j1,+)

1 , . . . , a(jm,+)
m ,d(s,+); b(j′p,+)

p , . . . , b
(j′1,+)
1 ,d′(s

′,−))

of curves in M̃ satisfying boundary conditions along L̃0, . . . , L̃m, Ñp, . . . , Ñ0. Here ai ∈

O(HLi−1,Li) for i = 1, . . . ,m, d ∈ O(HLm,Np), bi ∈ O(HNi,Ni−1) for i = p, . . . , 1, and

d′ ∈ O(HN0,L0). Suppose that the zero-dimensional component of this moduli space is non-

empty. Then one of the following possibilities occurs:

(1) The index s is odd and we have j1 = · · · = jm = s = j′p = · · · = j′1 = s′. In this case,

π ◦ u is constant at os.

(2) The index s is even, and among the indices j1, . . . , jm, j
′
p, . . . , j

′
1, s
′ at least one is also

even.

We now use the preceding three lemmas to prove a corollary which is the analogue of

Corollary 5.4.6 for the module structure maps µ(Fc)rel
∆

m|1|p , the dual Hochschild cycle σFc , and

the natural transformation δFc .

Corollary 5.5.4. Assume j1, . . . , jm, s, j
′
p, . . . , j

′
1, s
′ are all odd. Then the following relations

are satisfied:

(1) µ
(Fc)rel

∆
m|1|p (a(j1,+)

1 , . . . , a(jm,+)
m , c(s,−), b

(j′p,+)
p , . . . , b

(j′1,+)
1 )

=



µFm+p+1(a1, . . . , am, c, bp, . . . , b1)(s,−), j1 = · · · = jm = s

= j′p = · · · = j′1,

0, otherwise.

(2) 〈σFc , a(j1,+)
1 ⊗ · · · ⊗ a(jm,+)

m ⊗ a(s,−)〉

=


〈σF , a1 ⊗ . . .⊗ am ⊗ a〉, j1 = · · · = jm = s,

0, otherwise.

(3) 〈(δFcp (b(j′p,+)
p , . . . , b

(j′1,+)
1 ))m|1(a(j1,+)

1 , . . . , a(jm,+)
m ,d(s,+)),d′(s′,−)〉

=



〈((δF)p(bp, . . . , b1))m|1(a1, . . . , am,d),d′〉, j1 = · · · = jm = s

= j′p = · · · = j′1 = s′,

0, otherwise.
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Proof. In order to prove (1), first notice that the identity holds for m = p = 0 as a

result of the form (5.4.10) of the differential on CF (L̃, L̃′; D−
L̃,L̃′

). Assume therefore that

(m, p) 6= (0, 0). Then Lemma 5.5.1 implies that the left-hand side of the equation in part

(1) vanishes unless j1 = · · · = jm = s = j′p = · · · = j′1, since otherwise the moduli spaces

Rm+p+2
Y (a(j1,+)

1 , . . . , a(jm,+)
m , c(s,−); b(j′p,+)

p , . . . , b
(j′1,+)
1 , c′(s

′,−))0 are empty. For the case where

j1 = · · · = jm = s = j′p = · · · = j′1, we apply part (1b) of Corollary 5.3.2 with k = m+ p+ 1

and i0 = m+ 1. From this, we obtain that the index of the horizontal part of the linearized

operator (for a fixed domain) associated to (4.3.3) at a curve u in M̃ that projects to an oi
with i odd vanishes. It follows that the index of u as a curve in M̃ is equal to its index as a

curve in M , and we obtain the identity in part (1).

The second and third parts of the corollary are proved by the same argument, using the

results of Lemmas 5.5.2 and 5.5.3. �

Proposition 5.5.5. The module pre-morphism irel : F∆ → (Iγ)∗(Fc)rel
∆ is a module mor-

phism, i.e. µF–mod–F
1 (irel) = 0.

Proof. We must verify the identity

∑
µ

(Iγ)∗(Fc)rel
∆

i−1|1|i′−1 (x1, . . . , (irel)m−i+1|1|p−i′+1(xi, . . . , xm, z, yp, . . . , yi′), . . . , y1)

+
∑

(irel)i−1|1|i′−1(x1, . . . , µ
F∆
m−i+1|1|p−i′+1(xi, . . . , xm, z, yp, . . . , yi′), . . . , y1)

+
∑

(irel)m−j′+j|1|p(x1, . . . , µ
F
j′−j+1(xj, . . . , xj′), . . . , xm, z, yp, . . . , y1)

+
∑

(irel)m|1|p−j′+j(x1, . . . , xm, z, yp, . . . , µ
F
j′−j+1(yj′ , . . . , yj), . . . , y1)

= 0 (5.5.4)

Since (irel)m|1|p = 0 for (m, p) 6= (0, 0), the last two sums on the left-hand side of (5.5.4) are

empty. Simply applying the definitions of irel , of the functor Iγ, and of the pullback of a

bimodule, the first sum is equal to

µ
(Frel
c )∆

m|1|p ((x1)(1,+) + (x1)(3,+) + · · ·+ (x1)(l,+), . . . ,

(xm)(1,+) + (xm)(3,+) + · · ·+ (xm)(l,+), z(1,−) + z(3,−) + · · ·+ z(l,−),

(yp)(1,+) + (yp)(3,+) + · · ·+ (yp)(l,+), . . . , (y1)(1,+) + (y1)(3,+) + · · ·+ (y1)(l,+)).

(5.5.5)
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One sees directly that the second sum is equal to

µFm+p+1(x1, . . . ,z, . . . , y1)(1,−) + · · ·+ µFm+p+1(x1, . . . ,z, . . . , y1)(l,−). (5.5.6)

By part (1) of Corollary 5.5.4, we have equality of (5.5.5) and (5.5.6). �

Proposition 5.5.6. The dual Hochschild cycles σFc ∈ CC•(Fc, (Fc)rel
∆ )∨ and σF ∈ CC•(F)∨

are related by

(Irel
γ )∨∗σFc = σF . (5.5.7)

Proof. Recall that (Irel
γ )∗ is defined to be the composition

(Irel
γ )∗ : CC•(F) (irel)∗−−−→ CC•(F , I∗γ(Fc)rel

∆ ) (Iγ)∗−−−→ CC•(Fc, (Fc)rel
∆ ). (5.5.8)

Using the definitions of Iγ and irel as well as of the pushforward maps (1.4.9) and (1.4.11)

on Hochschild homology, we obtain

〈(Irel
γ )∨∗σFc , ξ1 ⊗ · · · ⊗ ξm ⊗ ξ〉 (5.5.9)

= 〈σFc , (Iγ)1(ξ1)⊗ · · · ⊗ (Iγ)1(ξm)⊗ (irel)0|1|0(ξ)〉 (5.5.10)

= 〈σFc , (ξ(1,+)
1 + ξ

(3,+)
1 + · · ·+ ξ

(l,+)
1 )⊗ · · · (5.5.11)

⊗ (ξ(1,+)
m + ξ(3,+)

m + · · ·+ ξ(l,+)
m )⊗ (ξ(1,−) + ξ(3,−) + · · ·+ ξ(l,−))〉.

Then from part (2) of Corollary 5.5.4, we have

〈(Irel
γ )∨∗σFc , ξ1 ⊗ · · · ⊗ ξm ⊗ ξ〉 = #Z2{oi| i is odd}〈σF , ξ1 ⊗ · · · ⊗ ξm ⊗ ξ〉. (5.5.12)

Finally, from the fact that the number l of intersection points between γ and (φh′1 )−1(γ) is

equal to one in Z4, we obtain the result. �

5.5.2. The natural transformation Srel

As a pre-natural transformation, Srel = (Srel
0 , Srel

1 , . . .) : Gr
Iγ (Yr

rel) → Yr
F is defined as

follows. First, in order to define the component Srel
0 , we must specify a morphism (Srel

0 )L in

the category (mod–F)opp from Gr
Iγ (Yr

rel)(L) to Yr
F(L) for every object L in Ob(F). In other

words, (Srel
0 )L must be a pre-morphism of right F -modules from Yr

F(L) to Gr
Iγ (Yr

rel)(L).
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Note that for N ∈ Ob(F),

Gr
Iγ (Y

r
rel)(L)(N) = CF (L̃, Ñ ; D−

L̃,Ñ
). (5.5.13)

We define (Srel
0 )L by

((Srel
0 )L)1|0 :CF (L,N ; DL,N)→ CF (L̃, Ñ ; D−

L̃,Ñ
),

x 7→ x(1,−) + x(3,−) + · · ·+ x(l,−),
(5.5.14)

and ((Srel
0 )L)1|p = 0 for p ≥ 1. Finally, all of the components Srel

m for m ≥ 1 are set to zero.

Proposition 5.5.7. The pre-natural transformation, Srel is a natural transformation, i.e.

µ
fun(F ,(mod–F)opp)
1 (Srel) = 0.

Proof. We omit the details of this proof since it is very similar to the proof of Proposition

5.5.5. It simply involves using the definitions of the differential µfun(F ,(mod–F)opp)
1 , of the

functors Gr
Iγ and Yr

rel , and of the pre-natural transformation Srel , together with the identity

in part (1) of Corollary 5.5.4. �

Remark 5.5.8. The identities µfun(F ,(mod–F)opp)
1 (Srel) = 0 and µF–mod–F

1 (irel) = 0 are in fact

equivalent. This is a result of Srel and irel being related by the isomorphism of dg-categories

Φr : fun(F , (mod–F)opp)
∼=−→ (F–mod–F)opp (5.5.15)

from (1.2.18). Indeed, the object map of Φr satisfies Φr(Yr
F) = F∆ and Φr(Gr

Iγ (Yr
rel)) =

(Iγ)∗(Fc)rel
∆ . The latter equality makes use of Proposition 1.2.17. One checks easily that the

map on morphisms for Φr satisfies Φr(Srel) = irel .

Proposition 5.5.9. The natural transformation Prel(δFc) : Yl
F → (Y∨F)l induced by δFc as

in (3.2.16) satisfies Prel(δFc) = δF .

Proof. By computation and using part (3) of Corollary 5.5.4. As in the proof of Proposition

5.5.6, this makes use of the fact that the number l of intersection points between γ and

(φh′1 )−1(γ) is equal to one in Z4. �

Together Propositions 5.5.5, 5.5.6, 5.5.7, and 5.5.9 complete the proof of Theorem 4.5.1.
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Chapter 6

Further directions: Cone decompositions and duality

Our aim in this chapter is to explore the implications of the existence of the weak Calabi-Yau

pairing on Fc for the cone decomposition in the derived Fukaya category of M associated to

a cobordism. In Section 6.2, we will recall in full generality Theorem A of [10] establishing

the existence of this cone decomposition. We begin however by considering the special

case of the cobordism associated to the Lagrangian surgery of two Lagrangians intersecting

transversely in a single point. We present a speculative result in Section 6.2 which generalizes

this example involving Lagrangian surgery to arbitrary cone decompositions associated to

cobordisms. The proof of this generalization requires the full machinery used by Biran and

Cornea to construct a cone decomposition from a cobordism, and is beyond the scope of this

thesis. However, we will provide a very broad idea of what is involved.

6.1. An example: Duality and the exact triangle associated to La-

grangian surgery

Let L1, L2 ∈ L∗d(M) be two Lagrangians which intersect in a single point, which we

assume to be a transverse intersection. We first recall how to perform Lagrangian surgery at

this point, a construction due to Lalonde-Sikarov and Polterovich [32, 39]. The construction

begins with the local picture, i.e. we assume L1 = Rn ⊂ Cn and L2 = iRn ⊂ Cn. We define

a smooth curve c ⊂ C of the form c(t) = a(t) + ib(t), t ∈ R, where the functions a and b

satisfy:

(1) (a(t), b(t)) = (t, 0) for t ∈ (−∞,−1],

(2) (a(t), b(t)) = (0, t) for t ∈ [1,∞),

(3) a′(t), b′(t) > 0 for t ∈ (−1, 1).



L1

L2

c

−1

i

Figure 6.1. The curve c

See Figure 6.1.

The submanifold L1#L2 ⊂ Cn obtained by performing Lagrangian surgery of L1 and L2

at 0 ∈ Cn is by definition c · Sn−1. Explicitly,

L1#L2 = {((a(t) + ib(t))x1, . . . , (a(t) + ib(t))xn)| t ∈ R, (x1, . . . , xn) ∈ Rn,
∑

x2
i = 1}.

(6.1.1)

A computation shows that the submanifold L1#L2 ⊂ Cn is Lagrangian (see [39]).

To describe the global picture for Lagrangian surgery of L1 and L2, we choose symplectic

coordinates around the intersection point in such a way that L1 maps to Rn ⊂ Cn and L2

maps to iRn ⊂ Cn. We then apply the construction above in this coordinate system.

In [9], Biran and Cornea showed the existence of a cobordism V : L1#L2 → (L1, L2). The

cobordism V which they constructed is monotone with the same monotonicity constant as L1

and L2. It will be convenient for us to assume all ends of the cobordism are in fact negative.

This arrangement can be accomplished by bending the L1#L2 end of the cobordism around

to the left as shown in Figure 6.2. We call the resulting cobordism W , and we assume that

W belongs to the class CLd(M̃).

6.1.1. The chain-level duality quasi-isomorphism

We take a path γ ⊂ C as shown in Figure 6.2. For a Lagrangian N ∈ L∗d(M), we

will consider the Poincaré duality quasi-isomorphism for the Floer complex associated to

the cobordisms Ñ = γ × N and W . Considering the chain-level case allows for substantial

simplification over the module-level case because it is possible to use Floer data of a simpler

form than that described in Section 4.3. In this situation where γ intersects the projection
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L1#L2

γ

L2

L1

K

Figure 6.2. The cobordism associated to the Lagrangian surgery of L1 and L2, together
with the path γ and the compact set K

of W transversely, we can assume that outside of a compact set of the form K×M where K

is as in Figure 6.2, this data is given by (G+ ◦ πM , i⊕ J+
M). Here D+

M = (G+, J+
M) is a Floer

datum on M which is regular for the pairs (N,L1), (N,L2), and (N,L1#L2). By abuse of

notation we denote the datum (G+ ◦ πM , i⊕ J+
M) on M̃ by D+

Ñ,W
= (H+

Ñ,W
, J+

Ñ,W
). In other

words, we are using a vanishing profile function in the description of Floer data in Section

4.3. Likewise, we can assume that outside of K ×M , the Floer datum for the pair (W, Ñ) is

of the form (G− ◦πM , i⊕J−M) where D−M := (G−, J−M) is a Floer datum onM which is regular

for the pairs (L1, N), (L2, N), and (L1#L2, N). We denote the datum (G− ◦ πM , i⊕ J−M) by

D−
W,Ñ

= (H−
W,Ñ

, J−
W,Ñ

).

The complexes CF (Ñ ,W ; D+
Ñ,W

) and CF (W, Ñ ; D−
W,Ñ

) split as vector spaces as

CF (Ñ ,W ; D+
Ñ,W

) = CF (N,L1#L2; D+
M)⊕ CF (N,L2; D+

M)⊕ CF (N,L1; D+
M), (6.1.2)

CF (W, Ñ ; D−
W,Ñ

) = CF (L1#L2, N ; D−M)⊕ CF (L2, N ; D−M)⊕ CF (L1, N ; D−M). (6.1.3)

Arguments based on the open mapping theorem and orientation considerations show that

certain components of the differentials of these complexes vanish (see [9]). These differentials

are respectively of the form

∂+
Ñ,W

=


∂+
N,L1#L2 0 0

ρ32 ∂+
N,L2 0

ρ31 ρ21 ∂+
N,L1

 , ∂−
W,Ñ

=


∂−L1#L2,N ψ23 ψ13

0 ∂−L2,N ψ12

0 0 ∂−L1,N

 . (6.1.4)

110



Here ∂+
N,L1#L2 , ∂

+
N,L2 and ∂

+
N,L1 denote the differentials on the complexes CF (N,L1#L2; D+

M),

CF (N,L2; D+
M), and CF (N,L1; D+

M) respectively. Likewise, ∂−L1#L2,N , ∂
−
L2,N , and ∂−L1,N

denote the differentials on the complexes CF (L1#L2, N ; D−M), CF (L2, N ; D−M), and

CF (L1, N ; D−M). The maps ρ32, ρ21, ψ23, and ψ12 are maps of chain complexes, whereas the

maps ρ31 and ψ13 do not commute with the respective differentials. Moreover, owing to the

fact that the path γ is horizontally isotopic to a path that does not intersect the projection

of W , the complexes CF (Ñ ,W ; D+
Ñ,W

) and CF (W, Ñ ; D−
W,Ñ

) are acyclic. Hence the maps

(ρ32, ρ31) : CF (N,L1#L2; D+
M)→ cone(ρ21), (6.1.5)

ψ23 ◦ pr2 + ψ13 ◦ pr1 : cone(ψ12)→ CF (L1#L2, N ; D−M), (6.1.6)

are quasi-isomorphisms. Here pr1 and pr2 are the projections cone(ψ12) → CF (L1, N ; D−M)

and cone(ψ12)→ CF (L2, N ; D−M).

The fact that the complex CF (N,L1#L2; D+
M) is quasi-isomorphic to the mapping cone of

ρ21 is a special case of Theorem 2.2.1 in [9]. This theorem applies in general to cobordisms of

the form V : ∅ → (L1, . . . , Ls, L) in CLd(M̃), where L1, . . . , Ls, L ∈ L∗d(M) are arbitrary. The

theorem associates to such a cobordism and a Lagrangian N ∈ L∗d(M) a cone decomposition

of CF (N,L; D) in terms of CF (N,L1; D), . . . , CF (N,Ls; D). Here D is a Floer datum on

M which is regular for the pairs (N,L1), . . . , (N,Ls), (N,L). By the same arguments used to

prove this theorem, one can show that the cobordism V also results in a cone decomposition

of CF (L,N ; D ′) in terms of CF (L1, N ; D ′), . . . , CF (Ls, N ; D ′), where D ′ is a regular Floer

datum for the pairs (L1, N), . . . , (Ls, N), (L,N). The existence of the quasi-isomorphism

(6.1.6) is a special case of this result.

We now consider the Poincaré duality quasi-isomorphism

φ
Ñ,W

: CF (Ñ ,W ; D+
Ñ,W

)→ CF (W, Ñ ; D−
W,Ñ

)∨. (6.1.7)

We assume that the perturbation datum Dδ
Ñ,W

= (Hδ
Ñ,W

, Jδ
Ñ,W

) on the disc S1,1;1 used to

define the map φ
Ñ,W

is of the form

Hδ
Ñ,W

= Gδ ◦ πM , Jδ
Ñ,W

= i⊕ JδM (6.1.8)
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L1#L2

γ

L2

L1

φ21

Figure 6.3. The projection to C of a curve in M̃ contributing to the map φ21

outside of the compact set K ×M . Here (Gδ, JδM) is a perturbation datum on M which is

regular for defining the Poincaré duality maps

φN,L1#L2 : CF (N,L1#L2; D+
M)→ CF (L1#L2, N ; D−M)∨, (6.1.9)

φN,L2 : CF (N,L2; D+
M)→ CF (L2, N ; D−M)∨, (6.1.10)

φN,L1 : CF (N,L1; D+
M)→ CF (L1, N ; D−M)∨. (6.1.11)

By similar arguments to those used to describe the form (6.1.4) of the differentials on

the complexes CF (Ñ ,W ; D+
Ñ,W

) and CF (W, Ñ ; D−
W,Ñ

), the map φ
Ñ,W

is of the form

φ
Ñ,W

=


φN,L1#L2 0 0

φ32 φN,L2 0

φ31 φ21 φN,L1

 . (6.1.12)

The maps φij for (i, j) = (3, 2), (3, 1), (2, 1) count discs with two inputs and satisfying bound-

ary conditions alongW and Ñ . One of the inputs projects to an intersection point between γ

and the horizontal end ofW labelled Li, and the other input projects to an intersection point

between γ and the horizontal end ofW labelled Lj. Here we use the convention L3 = L1#L2.

Figure 6.3 depicts the projection to C of a curve in M̃ counted by the map φ21.
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Since φ
Ñ,W

is a chain map, the following diagram commutes up to homotopy

CF (N,L1#L2; D+
Ñ,W

) cone(ρ21)

CF (L1#L2, N ; D−
W,Ñ

)∨ cone(ψ∨12)

.........................................................................................................................
.....
.......
.....

φN,L1#L2

.................................................................................................................................................... ............
(ρ32, ρ31)

............................................................................................................................................ ............
(ψ∨23, ψ

∨
13)

.....................................................................................................................................
.....
.......
.....

 φN,L2 0

φ21 φN,L1


(6.1.13)

The chain homotopy is given by

(φ32, φ31) : CF (N,L1#L2; D+
Ñ,W

)→ cone(ψ∨12). (6.1.14)

From the diagram (6.1.13), we see that the Poincaré duality map for the pair N,L1#L2 is

given on the level of homology in terms of the duality maps for the pairs N,L2 and N,L1

together with the map φ21 constructed from the cobordism W .

6.1.2. The module-level duality quasi-isomorphism

Next we recall from [10] the form of the module-level cone decomposition associated to

the cobordism W obtained from the Lagrangian surgery of L1 and L2. In this case, the

decomposition is simply an exact triangle in the category F–mod of the form

Yl
F(L2)→ Yl

F(L1)→ Yl
F(L1#L2)→ Yl

F(L2). (6.1.15)

This triangle results from considering properties of the left F -modulesMl
W,γj

:= Yl
Fc(W )◦Iγj

for an arrangement of paths γ1, γ2, γ3 ⊂ C as in Figure 6.4 for s = 3. At the heart of the

proof of the existence of the triangle (6.1.15) are arguments based on the open mapping

theorem and orientation considerations, similar to those we have seen.

Rather than considering the left F -modulesMl
W,γj

, one could instead consider the right

F -modules Mr,rel
W,γj

:= Yr
rel(W ) ◦ Iγj . The arguments in [10] can be adapted to study the

properties of these modules and to relate theMr,rel
W,γj

to the right F -modules Yr
F(L1), Yr

F(L2),

and Yr
F(L1#L2). The result is an exact triangle in the category mod–F

Yr
F(L1)→ Yr

F(L2)→ Yr
F(L1#L2)→ Yr

F(L1). (6.1.16)
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Dualizing this triangle gives an exact triangle in F–mod,

(Y∨F)l(L2)→ (Y∨F)l(L1)→ (Y∨F)l(L1#L2)→ (Y∨F)l(L2). (6.1.17)

It is then possible to compare the triangles (6.1.15) and (6.1.17). These two trian-

gles are related by the components (δF0 )L1 , (δF0 )L2 , and (δF0 )L1#L2 of the representative

δF ∈ fun(F ,F–mod)(Yl
F , (Y∨F)l) of the weak Calabi-Yau structure on the Fukaya cate-

gory F of M . More precisely, the following diagram commutes in F–mod up to homotopy

of module morphisms:

Yl
F(L2) Yl

F(L1) Yl
F(L1#L2) Yl

F(L2)

(Y∨F)l(L2) (Y∨F)l(L1) (Y∨F)l(L1#L2) (Y∨F)l(L2)

................................................................................................... ............ ......................................................................................................................... ............ ......................................................................................................................... ............

..................................................................... ............ .......................................................................................... ............ .......................................................................................... ............

..........................................................
.....
.......
.....
(δF0 )L2

..........................................................
.....
.......
.....
(δF0 )L1

..........................................................
.....
.......
.....
(δF0 )L1#L2

..........................................................
.....
.......
.....
(δF0 )L2

(6.1.18)

In particular, the triangles (6.1.15) and (6.1.17) are isomorphic in the derived Fukaya cate-

gory D(F). We note that this result is not specific to the cobordism associated to Lagrangian

surgery. Indeed, any three-ended cobordism in CLd(M̃) leads to exact triangles in the cate-

gories F–mod and mod–F , as in (6.1.15) and (6.1.16) in the case of surgery. The triangle in

F–mod is related to the dual of the triangle in mod–F by a diagram like (6.1.18).

We will not undertake the proof of the commutativity of (6.1.18) up to homotopy here.

However, the basic method is to consider the properties of the duality quasi-isomorphisms

(Iγj)∗(δFc0 )W :Ml
W,γj
→ (Mr,rel

W,γj
)∨, (6.1.19)

and to relate these morphisms to the duality morphisms (δF0 )L1 , (δF0 )L2 , and (δF0 )L1#L2 . The

proof has at its core considerations about the moduli spaces figuring in the definition of

(Iγj)∗(δFc0 )W . Specifically, these are the moduli spaces Rm,0;1
δ (γ1, . . . , γm, ξ; ξ′) of solutions of

(4.3.3) satisfying boundary conditions along the cobordisms W and γj×Ni for Ni ∈ L∗d(M),

i = 0, . . . ,m.

6.2. General cone decompositions

In this section we state a conjecture for cone decompositions associated to cobordisms

which extends the result of the previous section for the cobordism obtained from Lagrangian

surgery at a point. We take W : ∅ → (L1, . . . , Ls) to be a cobordism in CLd(M̃), where
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W

γs

Ls

γ3

L3

γ2

L2

γ1

L1

Figure 6.4. The cobordism W together with the paths γ1, . . . , γs

L1, . . . , Ls ∈ L∗d(M) are arbitrary. Fix paths γ1, . . . , γs in C as shown in Figure 6.4. We

recall Theorem A of [10], which we state at the underived level.

Theorem 6.2.1. The left F-modulesMl
W,γj

:= I∗γj(Y
l
Fc(W )) satisfy:

(1) Ml
W,γ1 = Yl

F(L1).

(2) For j = 2, . . . , s− 1, there exist module morphisms

νj : Yl
F(Lj)→Ml

W,γj−1
(6.2.1)

which fit into exact triangles in F–mod of the form

Yl
F(Lj)

νj−→Ml
W,γj−1

−→Ml
W,γj
−→ Yl

F(Lj). (6.2.2)

Moreover, there is a module quasi-isomorphism

νs : Yl
F(Ls)→Ml

W,γs−1 . (6.2.3)

Using the methods of [10], it is possible to prove the following analogue for right F -

modules of the preceding theorem.

Theorem 6.2.2. The right F-modulesMr,rel
W,γj

:= I∗γj(Y
r
rel(W )) satisfy:

(1) Mr,rel
W,γ1 = Yr

F(L1).
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(2) For j = 2, . . . , s− 1, there exist module morphisms

ξj :Mr,rel
W,γj−1

→ Yr
F(Lj) (6.2.4)

which fit into exact triangles in mod–F of the form

Mr,rel
W,γj−1

ξj−→ Yr
F(Lj) −→Mr,rel

W,γj
−→Mr,rel

W,γj−1
. (6.2.5)

Moreover, there is a module quasi-isomorphism

ξs :Mr,rel
W,γs−1 → Yr

F(Ls). (6.2.6)

Finally, it is possible to compare the cone decompositions of Theorems 6.2.1 and 6.2.2

using the relative weak Calabi-Yau pairing on Fc. Although we do not carry out the details

of this comparison here, we state the expected result in the following conjecture.

Conjecture 6.2.3. Consider the exact triangles of left F-modules (6.2.2) associated to the

cobordism W , as well as the exact triangles of left F-modules dual to the triangles (6.2.4),

(Yr
F(Lj))∨

ξ∨j−→ (Mr,rel
W,γj−1

)∨ −→ (Mr,rel
W,γj

)∨ −→ (Yr
F(Lj))∨, 2 ≤ j ≤ s− 1. (6.2.7)

Then for j = 1, . . . , s− 1 the quasi-isomorphisms

δW,j := (Iγj)∗(δFc0 )W :Ml
W,γj
→ (Mr,rel

W,γj−1
)∨ (6.2.8)

have the following properties:

(1) δW,1 = (δF0 )L1.

(2) For j = 2, . . . , s− 1, the diagrams

Yl
F(Lj) Ml

W,γj−1
Ml

W,γj Yl
F(Lj)

(Yr
F(Lj))∨ (Mr,rel

W,γj−1
)∨ (Mr,rel

W,γj
)∨ (Yr

F(Lj))∨

................................................................................................ ............
νj

......................................................................................................................................................... ............ ............................................................................................................................................................. ............

......................................................... ............
ξ∨j

.................................................................................................................. ............ ....................................................................................................................... ............

..................................................................................................
.....
.......
.....

(δF0 )Lj

................................................................................................
.....
.......
.....

δW,j−1

................................................................................................
.....
.......
.....

δW,j

..................................................................................................
.....
.......
.....

(δF0 )Lj

commute in F–mod up to homotopy of module morphisms.
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(3) The diagram
Yl
F(Ls) Ml

W,γs−1

(Yr
F(Ls))∨ (Mr,rel

W,γm−1)∨

............................................................................................................
.....
.......
.....

(δF0 )Ls

................................................................................................................................................. ............
νs

....................................................................................................... ............
ξ∨s

............................................................................................................
.....
.......
.....

δW,s

commutes in F–mod up to homotopy of module morphisms.

In particular, the induced diagrams in the derived category D(F) commute.

The expected proof of this conjecture extends the method described at the end of the

previous section for the cobordism associated to Lagrangian surgery in a point.
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