
Université de Montréal

Learning and Time: On using memory and curricula

for language understanding

par

Caglar Gulcehre

Département de mathématiques et de statistique

Faculté des arts et des sciences

Thèse présentée à la Faculté des études supérieures

en vue de l’obtention du grade de

Philosophiæ Doctor (Ph.D.)

en informatique

May 2018

c© Caglar Gulcehre, 2018





SOMMAIRE

Cette thèse présente quelques-unes des étapes entreprises pour pouvoir un jour résoudre le

problème de la compréhension du langage naturel et d’apprentissage de dépendances à long

terme, dans le but de développer de meilleurs algorithmes d’intelligence artificielle. Cette

thèse est écrite comme une thèse par articles, et contient cinq publications scientifiques.

Chacun de ces articles propose un nouveau modèle ou algorithme et démontre leur efficacité

sur des problèmes qui impliquent des dépendances à long terme ou la compréhension du

langage naturel. Malgré le fait que quelque uns de ces modèles n’ont été testés que sur

une seule tâche (comme la traduction automatique neuronale), les méthodes proposées sont

généralement applicables dans d’autres domaines et sur d’autres tâches.

Dans l’introduction de la thèse, nous expliquons quelques concepts fondamentaux de

l’entraînement de réseaux de neurones appliqués sur des données séquentielles. Tout d’abord,

nous présentons succinctement les réseaux de neurones, puis, de façon plus détaillé, certains

algorithmes et méthodes utilisés à travers cette thèse.

Dans notre premier article, nous proposons une nouvelle méthode permettant d’utiliser la

grande quantité de données monolingue disponible afin d’entraîner des modèles de traduction.

Nous avons accompli cela en entraînant d’abord un modèle Long short-term memory (LSTM)

sur un large corpus monolingue. Nous lions ensuite la sortie de la couche cachée du modèle

avec celle d’un décodeur d’un modèle de traduction automatique. Ce dernier utilise un

mécanisme d’attention et est entièrement entraîné par descente de gradient. Nous avons

montré que la méthode proposée peut augmenter la performance des modèles de traduction

automatique neuronale de façon significative sur les tâches où peu de données multilingues

sont disponibles. Notre approche augmente également l’efficacité de l’utilisation des données

dans les systèmes de traduction automatique. Nous montrons aussi des améliorations sur les

paires de langues suivantes: turc-anglais, allemand-anglais, chinois-anglais et tchèque-anglais.

Dans notre deuxième article, nous proposons une approche pour aborder le problème

des mots rares dans plusieurs tâches du traitement des langages. Notre approche modifie

l’architecture habituelle des modèles encodeur-décodeur avec attention, en remplaçant la

couche softmax du décodeur par notre couche pointer-softmax. Celle-ci permet au décodeur

de pointer à différents endroits dans la phrase d’origine. Notre modèle apprend à alterner

iii



entre copier un mot de la phrase d’origine et prédire un mot provenant d’une courte liste de

mots prédéfinie, de manière probabiliste. L’approche que nous avons proposée est entièrement

entraînable par descente de gradient et n’utilise qu’un objectif de maximum de vraisemblance

sur les tâches de traduction. Nous avons aussi montré que le pointer-softmax aide de manière

significative aux tâches de traduction et de synthèse de documents.

Dans notre article "Plan, Attend, Generate: Planning for Sequence-to-Sequence Models",

nous proposons deux approches pour apprendre l’alignement dans les modèles entraînés

sur des séquences. Lorsque la longueur de l’entrée et celle de la sortie sont trop grandes,

apprendre les alignements peut être très difficile. La raison est que lorsque le décodeur est

trop puissant, il a tendance à ignorer l’alignement des mots pour ne se concentrer que sur

le dernier mot de la séquence d’entrée. Nous avons proposé une nouvelle approche, inspirée

d’un algorithme d’apprentissage par renforcement, en ajoutant explicitement un mécanisme

de planification au décodeur. Ce nouveau mécanisme planifie à l’avance l’alignement pour

les k prochaines prédictions. Notre modèle apprend également un plan de correction pour

déterminer lorsqu’il est nécessaire de recalculer les alignements. Notre approche peut ap-

prendre de haut niveaux d’abstraction au point de vue temporel et nous montrons que les

alignements sont généralement de meilleure qualité. Nous obtenons également des gains de

performance significatifs comparativement à notre modèle de référence, malgré le fait que nos

modèles ont moins de paramètres et qu’ils aient été entraînés moins longtemps.

Dans notre article "Dynamic Neural Turing Machine with Soft and Hard Addressing

Schemes", nous proposons une nouvelle approche pour ajouter de manière explicite un

mécanisme de mémoire aux réseaux de neurones. Contrairement aux RNNs conventionnels, la

mémoire n’est pas seulement représentée au niveau des activations du réseau, mais également

dans une mémoire externe. Notre modèle, D-NTM, utilise un mécanisme d’adressage plus

simple que les Neural Turing Machine (NTM) en utilisant des paires clé-valeur. Nous montrons

que les modèles disposant de ce nouveau mécanisme peuvent plus efficacement apprendre les

dépendances à long terme, en plus de mieux généraliser. Nous obtenons des améliorations

sur plusieurs tâches incluant entre autres la réponse aux questions sur bAbI, le raisonnement

avec implication, MNIST permuté, ainsi que des tâches synthétiques.

Dans notre article "Noisy Activation Functions", nous proposons une nouvelle fonction

d’activation, qui rend les activations stochastiques en leur ajoutant du bruit. Notre motivation

dans cet article est d’aborder les problèmes d’optimisation qui surviennent lorsque nous

utilisons des fonctions d’activation qui saturent, comme celles généralement utilisées dans les

RNNs. Notre approche permet d’utiliser des fonctions d’activation linéaires par morceaux sur

les RNNs à porte. Nous montrons des améliorations pour un grand nombre de tâches sans

iv



effectuer de recherche d’hyper paramètres intensive. Nous montrons également que supprimer

le bruit dans les fonctions d’activation a un profond impact sur l’optimisation.

v





SUMMARY

The goal of this thesis is to present some of the small steps taken on the path towards solving

natural language understanding and learning long-term dependencies to develop artificial

intelligence algorithms that can reason with language. This thesis is written as a thesis

by articles and contains five articles. Each article in this thesis proposes a new model or

algorithm and demonstrates the efficiency of the proposed approach to solve problems that

involve long-term dependencies or require natural language understanding. Although some of

the models are tested on a particular task (such as neural machine translation), the proposed

methods in this thesis are generally applicable to other domains and tasks (and have been

used in the literature).

In the introduction of this thesis, we introduce some of the fundamental concepts behind

training sequence models using neural networks. We first provide a brief introduction to

neural networks and then dive into details of the some of approaches and algorithms that are

used throughout this thesis.

In our first article, we propose a novel method to utilize the abundant amount of available

monolingual data for training neural machine translation models. We have accomplished

this goal by first training a long short-term memory (LSTM) language model on a large

monolingual corpus and then fusing the outputs or the hidden states of the LSTM language

model with the decoder of the neural machine translation model. Our neural machine

translation model is trained end to end with an attention mechanism. We have shown that

our proposed approaches can improve the performance of the neural machine translation

models significantly on the rare resource translation tasks and our approach improved the

data-efficiency of the end to end neural machine translation systems. We report improvements

on Turkish-English (Tr-En), German-English (De-En), Chinese-English (Zh-En) and Czech-

English (Cz-En) translation tasks.

In our second paper, we propose an approach to address the problem of rare words for

natural language processing tasks. Our approach augments the encoder-decoder architecture

with attention model by replacing the final softmax layer with our proposed pointer-softmax

layer that creates pointers to the source sentences as the decoder translates. In the case

of pointer-softmax, our model learns to switch between copying a word from the source

vii



and predicting a word from a shortlist vocabulary in a probabilistic manner. Our proposed

approach is end-to-end trainable with a single maximum likelihood objective of the NMT

model. We have also shown that it improves the performance of summarization and the

neural machine translation model. We report significant improvements in machine translation

and summarization tasks.

In our "Plan, Attend, Generate: Planning for Sequence-to-Sequence Models" paper, we

propose two new approaches to learn alignments in a sequence to sequence model. If the input

and the source context is very long, learning the alignments for a sequence to sequence model

can be difficult. In particular, because when the decoder is a large network, it can learn to

ignore the alignments and attend more on the last token of the input sequence. We propose

a new approach which is inspired by a hierarchical reinforcement learning algorithm and

extend our model with an explicit planning mechanism. The proposed alignment mechanism

plans and computes the alignments for the next k tokens in the decoder. Our model also

learns a commitment plan to decide when to recompute the alignment matrix. Our proposed

approach can learn high-level temporal abstractions, and we show that it qualitatively learns

better alignments. We also achieve significant improvements over our baseline despite using

smaller models and with less training.

In "Dynamic Neural Turing Machine with Soft and Hard Addressing Schemes," we propose

a new approach for augmenting neural networks with an explicit memory mechanism. As

opposed to conventional RNNs, the memory is not only represented in the activations of

the neural network but in an external memory that can be accessed via the neural network

controller. Our model, D-NTM uses a more straightforward memory addressing mechanism

than NTM which is achieved by using key-value pairs for each memory cell. We find

out that the models augmented with an external memory mechanism can learn tasks that

involve long-term dependencies more efficiently and achieve better generalization. We achieve

improvements on many tasks including but not limited to episodic question answering on

bAbI, reasoning with entailment, permuted MNIST task and synthetic tasks.

In our "Noisy Activation Functions" paper, we propose a novel activation function that

makes the activations stochastic by injecting a particular form of noise to them. Our

motivation in this paper is to address the optimization problem of commonly used saturating

activation functions that are used with the recurrent neural networks. Our approach enables

us to use piece-wise linear activation functions on the gated recurrent neural network models.

We show improvements in a wide range of tasks without doing any extensive hyperparameter

search by a drop-in replacement. We also show that annealing the noise of the activation

function can have a profound continuation-like effect on the optimization of the network.

viii



CONTENTS

Sommaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2. Deep Learning Algorithms for Modeling Sequences . . . . . . . 5

2.1. A Primer on Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2. Backpropagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2. Sequential Modeling with Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1. Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2. Bidirectional RNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3. Backpropagation Through Time (BPTT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1. Scaling BPTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2. The Problems of BPTT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Vanishing Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Exploding Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3. Long Short Term Memory (LSTM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4. Gated Recurrent Unit (GRU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4. Models with Explicit Memory Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1. Neural Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2. Memory Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5. On the Loss Surfaces of Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ix



2.6. Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.1. Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.2. Adaptive Learning Rate Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

RMSProp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Adam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7. Curriculum Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8. Training Neural Networks with Discrete Decisions. . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 3. Deep Learning for Natural Language Processing . . . . . . . . . . 33

3.1. Language Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1. Teacher Forcing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2. Encoder-Decoder Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1. Representing the Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3. Machine Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4. Text Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5. Question Answering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 4. Prologue to the First Article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1. Article Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3. Contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4. Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 5. On Integrating a Language Model Into Neural Machine

Translation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2. Background: Neural Machine Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3. Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4. Integrating Language Model into the Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4.1. Shallow Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

x



5.4.2. Deep Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4.2.1. Balancing the LM and TM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5.1. Parallel Corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5.2. Cs→En and De→En: WMT’15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5.3. Monolingual Corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6. Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6.1. Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6.1.1. Neural Machine Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6.1.2. Language Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.6.2. Shallow and Deep Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.6.2.1. Shallow Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.6.2.2. Deep Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.6.2.3. Handling Rare Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.7. Results and Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.7.1. Zh→En: OpenMT’15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.7.2. Tr→En: IWSLT’14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.7.3. Cs→En and De→En: WMT-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.7.4. Analysis: Effect of Language Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.8. A Review of Recent Advances in NMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.9. Conclusion and Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Chapter 6. Prologue to the Second Article . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1. Article Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3. Contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4. Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 7. Pointing the Unknown Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2. Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.3. Neural Machine Translation Model with Attention . . . . . . . . . . . . . . . . . . . . . . . 70

xi



7.4. The Pointer Softmax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.4.1. Basic Components of the Pointer Softmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.5. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.5.1. The Rarest Word Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.5.2. Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.5.3. Neural Machine Translation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 8. Prologue to the Third Article . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.1. Article Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.2. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.3. Contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.4. Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Chapter 9. Dynamic Neural Turing Machine with Continuous and

Discrete Addressing Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.2. Dynamic Neural Turing Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9.2.1. Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9.2.2. Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9.2.3. Model Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.3. Addressing Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9.3.1. Dynamic Least Recently Used Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.3.2. Discrete Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9.3.3. Multi-step Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.4. Training D-NTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.4.1. Training discrete D-NTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.4.2. Curriculum Learning for the Discrete Attention . . . . . . . . . . . . . . . . . . . . . . . 93

9.4.3. Regularizing D-NTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9.5. Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9.6. Experiments on Episodic Question-Answering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.6.1. Model and Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xii



9.6.2. Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.6.3. Results and Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.6.4. Visualization of Discrete Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.6.5. Learning Curves for the Recurrent Controller . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.6.6. Training with Continuous Attention and Testing with Discrete Attention 103

9.6.7. D-NTM with BoW Fact Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.7. Experiments on Sequential pMNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.8. Stanford Natural Language Inference (SNLI) Task . . . . . . . . . . . . . . . . . . . . . . . 105

9.9. NTM Synthetic Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9.10. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Chapter 10. Prologue to the Fourth Article . . . . . . . . . . . . . . . . . . . . . . . . . . 111

10.1. Article Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

10.2. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

10.3. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Chapter 11. Plan, Attend, Generate: Planning for Sequence-to-Sequence

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11.2. Related Works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

11.3. Planning for Sequence-to-Sequence Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

11.3.1. Notation and Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

11.3.2. Alignment and Decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

11.3.2.1. Alignment Repeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

11.3.3. Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

11.4. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

11.4.1. Algorithmic Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

11.4.2. Question Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

11.4.3. Character-level Neural Machine Translation. . . . . . . . . . . . . . . . . . . . . . . . . . 122

11.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Chapter 12. Prologue to the Fifth Article . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

xiii



12.1. Article Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

12.2. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

12.3. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

12.4. Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Chapter 13. Noisy Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

13.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

13.2. Saturating Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

13.3. Annealing with Noisy Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

13.4. Adding Noise when the Unit Saturates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

13.4.1. Derivatives in the Saturated Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

13.4.2. Pushing Activations towards Linear Regime. . . . . . . . . . . . . . . . . . . . . . . . . . 136

13.5. Adding Noise to Input of the Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

13.6. Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

13.6.1. Exploratory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

13.6.2. Learning to Execute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

13.6.3. Penntreebank Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

13.6.4. Neural Machine Translation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

13.6.5. Image Caption Generation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

13.6.6. Experiments with Continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

13.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Chapter 14. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

14.1. Problems of Training Sequence to Sequence Models for NLU . . . . . . . . . . . . 150

14.1.1. Models can Hallucinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

14.1.2. Repetitions in the Generated Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

14.1.3. Teacher Forcing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

14.1.4. Lack of Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xiv



LIST OF FIGURES

2.1 Caption for NN Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 A depiction of how an activation of neural network is computed for the unit

h0 where the inputs are depicted as x. Thus the pre-activations of a unit is

basically the sum of its inputs weighted by W0 weights coming into the unit

0 and the bias b0 added. The activations of the unit are computed via the

application of the activation function f(·) on the pre-activations. . . . . . . . . . . . . 7

2.3 Computational graph of a feed-forward deep neural network. h0 is the input

layer x and the final layer hl denotes the output layer (softmax, sigmoid or

linear), for example in the case of a classification task it can be a logistic

regression layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 An illustration of a deep recurrent neural network. We show both the

visualization of the flow information through time and from input to output

as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 A depiction of a bidirectional RNN. There are two different RNNs running

over the input. The first RNN scans the input from left to right(forward) and

the second RNN scans the input tokens from right to left (backward). Before

the prediction layer, we concatenate the hidden states of the both the forward

and the backward RNNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 This illustration is a simple overview of an LSTM cell. The input, output

and the forget gates modulate the cell of the LSTM and help the gradients

propagate and the information flow through time more easily. . . . . . . . . . . . . . . . 18

2.7 As opposed to the LSTM cells, GRU has only two gates and fewer parameters.

Thus implementation of GRU is easier and it is more efficient both in terms of

memory and the runtime than an LSTM network. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 We show the quadratic approximation of a convex function f(x) around x′

with respect to different learning rates (α). At each update GD will try to

find the minimum of the quadratic approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

xv



2.9 We show the trajectories followed by a GD and GD with momentum with a

fixed learning rate of α = 0.02. In Figure (A), the steps become very small

around the pathological curvature and GD just stalls. In Figure (B), we show

GD with momentum rate of 0.86, as seen in this figure the momentum helps

GD to escape from the pathological curvature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 The red arrows in this figure refers to the teacher forcing. Teacher forcing

requires the model to take true labels as input during the training and during

the evaluation the model’s own predictions are fed-back to it. . . . . . . . . . . . . . . 37

3.2 The red arrows in this figure refers to the teacher forcing. In this figure, we

have depicted an encoder-decoder architecture for a sequence to sequence

model. The encoder (h1) maps the source sequence x into the summary c and

by using c, the decoder RNN (s) generates the target sequence y. . . . . . . . . . . 39

5.1 Graphical illustrations of the proposed fusion methods. In shallow fusion (a),

candidates are scored according to the weighted sum of the scores given by

the translation model and the language model during the beam-search. For

deep fusion (b), we merge the hidden representation of the NMT’s decoder

sTM
t and the neural language model’s sLM

t before predicting each word at every

time-step and the controller gt rescales the contribution coming from the LM. 52

7.1 An example of how copying can happen for machine translation. Common

words that appear both in source and the target can directly be copied from

input to source. The rest of the unknown in the target can be copied from the

input after being translated with a dictionary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2 A depiction of neural machine translation architecture with attention. At each

timestep, the model generates the attention distribution lt. We use lt and

the encoder’s hidden states to obtain the context ct. The decoder uses ct to

predict a vector of probabilities for the words wt by using vocabulary softmax. 72

7.3 A depiction of the Pointer Softmax (PS) architecture. At each timestep, lt, ct

and wt for the words over the limited vocabulary (shortlist) is generated. We

have an additional switching variable zt that decides whether to use vocabulary

word or to copy a word from the source sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.4 A comparison of the validation learning-curves of the same NMT model trained

with pointer softmax and the regular softmax layer. As can be seen from

xvi



the figures, the model trained with pointer softmax converges faster than the

regular softmax layer. Switching network for pointer softmax in this Figure

uses ReLU activation function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9.1 A graphical illustration of the proposed dynamic neural Turing machine with

the recurrent-controller. The controller receives the fact as a continuous vector

encoded by a recurrent neural network, computes the read and write weights

for addressing the memory. If the D-NTM automatically detects that a query

has been received, it returns an answer and terminates. . . . . . . . . . . . . . . . . . . . . . 89

9.2 An example view of the discrete attention over the memory slots for both read

(left) and write heads(right). x-axis the denotes the memory locations that are

being accessed and y-axis corresponds to the content in the particular memory

location. In this figure, we visualize the discrete-attention model with 3 reading

steps and on task 20. It is easy to see that the NTM with discrete-attention

accesses to the relevant part of the memory. We only visualize the last-step of

the three steps for writing. Because with discrete attention usually the model

just reads the empty slots of the memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.3 A visualization for the learning curves of continuous and discrete D-NTM

models trained on Task 1 using 3 steps. In most tasks, we observe that the

discrete attention model with GRU controller does converge faster than the

continuous-attention model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.4 We compare the learning curves of our D-NTM model using discrete attention

on pMNIST task with input-based baseline and regular REINFORCE baseline.

The x-axis is the number of epochs and y-axis is the loss. . . . . . . . . . . . . . . . . . . . 106

11.1 Our planning mechanism in a sequence-to-sequence model that learns to plan

and execute alignments. Distinct from a standard sequence-to-sequence model

with attention, rather than using a simple MLP to predict alignments our

model makes a plan of future alignments using its alignment-plan matrix and

decides when to follow the plan by learning a separate commitment vector. We

illustrate the model for a decoder with two layers s′t for the first layer and the

st for the second layer of the decoder. The planning mechanism is conditioned

on the first layer of the decoder (s′t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

11.2 We visualize the alignments learned by PAG in (a), rPAG in (b), and our

baseline model with a 2-layer GRU decoder using h2 for the attention in (c).

xvii



As depicted, the alignments learned by PAG and rPAG are smoother than

those of the baseline. The baseline tends to put too much attention on the last

token of the sequence, defaulting to this empty location in alternation with

more relevant locations. Our model, however, places higher weight on the last

token usually when no other good alignments exist. We observe that rPAG

tends to generate less monotonic alignments in general. . . . . . . . . . . . . . . . . . . . . . 121

11.3 Learning curves for question-generation models on our development set. Both

models have the same capacity and are trained with the same hyperparameters.

PAG converges faster than the baseline with better stability. . . . . . . . . . . . . . . . . 122

11.4 Learning curves for different models on WMT’15 for En→De. Models with

the planning mechanism converge faster than our baseline (which has larger

capacity). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

13.1 The plot for derivatives of different activation functions. . . . . . . . . . . . . . . . . . . . . 132

13.2 An example of a one-dimensional, non-convex objective function where a

simple gradient descent will behave poorly. With large noise |ξ|→ ∞, SGD

can escape from saddle points and bad local-minima as a result of exploration.

As we anneal the noise level |ξ|→ 0, SGD will eventually converge to one of

the local-minima x∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

13.3 A simple depiction of adding Gaussian noise on the linearized activation

function, which brings the average back to the hard-saturating nonlinearity

h(x), in bold. Its linearization is u(x) and the noisy activation is φ. The

difference h(x)− u(x) is ∆ which is a vector indicates the discrepancy between

the linearized function and the actual function that the noise is being added

to h(x). Note that, ∆ will be zero, at the non-saturating parts of the function

where u(x) and h(u) matches perfectly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

13.4 Stochastic behavior of the proposed noisy activation function with different α

values and with noise sampled from the Normal distribution, approximating

the hard-tanh nonlinearity (in bold green).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

13.5 Derivatives of each unit at each layer with respect to its input for a three-

layered MLP trained on a dataset generated by three normal distributions

with different means and standard deviations. In other words learned
∂φ(xk

i
,ξk

i
)

∂xk
i

at the end of training for ith unit at kth layer. ξk is sampled from Normal

distribution with α = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

xviii



13.6 Activations of each unit at each layer of a three-layer MLP trained on a dataset

generated by three normal distributions with different means and standard

deviations. In other words learned φ(xk
i , ξ

k
i ) at the end of training for ith unit

at kth layer. ξk is sampled from Half-Normal distribution with α = 1. . . . . . . . 141

13.7 Learning curves of validation perplexity for the LSTM language model on

word level on Penntreebank dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

13.8 Training curves of the reference model (Zaremba and Sutskever, 2014) and

its noisy variant on the “Learning To Execute” problem. The noisy network

converges faster and reaches a higher accuracy, showing that the noisy

activations help to better optimize for such hard to optimize tasks. . . . . . . . . . 143

13.9 Validation learning curve of NTM on Associative recall task evaluated over

items of length 2 and 16. The NTM with noisy controller converges much

faster and solves the task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xix





LIST OF TABLES

2.1 A zoo of common activations functions and their derivatives used with neural

networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.1 Statistics of the Parallel Corpora. ⋆: After segmentation, †: After compound

splitting. The segmentation on Turkish sentences and the compound splitting

on German result in longer sentences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Results on the task of Zh→En PB and HPB stand for the phrase-based and

hierarchical phrase-based SMT systems, respectively. The results reported in

this table are obtained with multi-bleu.perl script. . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 We provide the results obtained with both multi-bleu.perl (in paranthesis)

and mteval-v13a.pl scripts. On all the test sets, our deep fusion approach

outperforms the other methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Results for De→En and Cs→En translation tasks on WMT’15 dataset.

Although Cs→En and De→En models are trained on high-resource corpora,

we observe substantial improvements on the test-sets of both corpora. The

results in this table are obtained with multi-blue.perl script. . . . . . . . . . . . . . . . . 60

5.5 Perplexity of RNNLM’s on the development sets and the statistics of the

controller gating mechanism g. The higher perplexities observed in Zh-En and

Tr-En are due to the domain mismatch in Zh-En and Tr-En. . . . . . . . . . . . . . . . . 61

7.1 Results on Gigaword Corpus when pointers are used for UNKs in the training

data, using Rouge-F1 as the evaluation metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2 Results on anonymized Gigaword Corpus when pointers are used for entities,

using Rouge-F1 as the evaluation metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3 Results on Gigaword Corpus for modeling UNK’s with pointers in terms of

recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.4 Generated summaries from NMT with PS. Boldface words are the words

copied from the source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xxi



7.5 Europarl Dataset (EN-FR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9.1 Test error rates (%) on the 20 bAbI QA tasks for models using 10k training

examples. LBA stands for lcoation based addressing and CBA stands for

content based addressing. D-NTM models use GRU controller. In this table,

we compare multi-step vs single-step addressing, original NTM with location

based+content based addressing vs only content based addressing, and discrete

vs continuous addressing D-NTM on bAbI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.2 Test error rates (%) on the 20 bAbI QA tasks for models using 10k training

examples with the feedforward controller. Discrete∗ D-NTM model bootstraps

the discrete attention with the continuous attention, using the curriculum

method that we have introduced in Section 9.3.2. Discrete† D-NTM model is

the continuous-attention model which uses discrete-attention at the test time. 100

9.3 Test error rates (%) on the 20 bAbI QA tasks for models using 10k training

examples. This table reports the test error rate of the best model out of several

models trained with different random seeds. Joint denotes joint training of

one model on all tasks and single denotes separate training of separate model

on each task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.4 Test error rates (%) on the 20 bAbI QA tasks for models using 10k training

examples. This table reports the average error rate and standard deviation

of several models trained with different random seeds. Joint denotes join

training of one model on all tasks and single denotes separate training of

separate model on each task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.5 Test error rates (%) on the 20 bAbI QA tasks for models using 10k training

examples with the GRU controller and representations of facts are obtained

with BoW using positional encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.6 Sequential pMNIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.7 Stanford Natural Language Inference Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9.8 The results of D-NTM architectures on Copy and "Associative Recall" tasks. 108

11.1 The results of different models on WMT’15 task on English to German, English

to Czech and English to Finnish language pairs. We report BLEU scores of

each model computed via the multi-blue.perl script. The best-score of each

model for each language pair appears in bold-face. We use newstest2013 as

xxii



our development set, newstest2014 as our "Test 2014" and newstest2015 as our

"Test 2015" set.
(

†
)

denotes the results of the baseline that we trained using

the hyperparameters reported in Chung, Cho, and Bengio (2016) and the code

provided with that paper. For our baseline, we only report the median result,

and do not have multiple runs of our models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

13.1 Performance of the noisy network on the Learning to Execute / task. Just

changing the activation function to the proposed noisy one yielded about 2.5%

improvement in accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

13.2 Penntreebank word-level comparative perplexities. We only replaced in the

code from Zaremba, Sutskever, and Vinyals (2014) the sigmoid and tanh

by corresponding noisy variants and observe a substantial improvement in

perplexity, which makes this the state-of-the-art on this task. . . . . . . . . . . . . . . . 144

13.3 Image Caption Generation on Flickr8k. This time we added noisy activations

in the code from Xu, Ba, Kiros, Cho, Courville, Salakhudinov, Zemel, and

Bengio (2015b) and obtain substantial improvements on the higher-order

BLEU scores and the METEOR metric, as well as in NLL. Soft attention

and hard attention here refers to using backprop versus REINFORCE when

training the attention mechanism. We fixed σ = 0.05 for NANI and c = 0.5

for both NAN and NANIL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

13.4 Neural machine Translation on Europarl. Using existing code from Bahdanau,

Cho, and Bengio (2014) with nonlinearities replaced by their noisy versions,

we find much improved performance (2 BLEU points is considered significant

for machine translation). We also see that simply using the hard versions of

the nonlinearities buys about half of the gain.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

13.5 Experimental results on the task of finding the unique number of elements in a

random integer sequence. This illustrates the effect of annealing the noise level,

turning the training procedure into a continuation method. Noise annealing

yields better results than the curriculum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xxiii



Acknowledgments

Ph.D. had been one of the toughest journey of my life which started in 2012 during one

of the fiercest winters of Montreal following the student strikes against the tuition increase

which Quebec government was planning to do. In the first few years of my Ph.D., I had

hard time getting used to the environment in Montreal and I was feeling lonely. This caused

me to have difficult time in connecting with others and at the time I was diagnosed with

depression. After my first three years, I have started to love the city and established a very

deep connection with both the lab and Montreal. Even now I fondly remember walking at

the Parc Mont-Royal in the evenings during the summer and discussing research with my

friends at McCarrold’s. Definitely, the last five years that I have spent in Montreal will be

the most memorable times of my life.

I would like to thank many people who helped me along my path to writing this thesis

and helped me on my journey to finish my Ph.D.

I would especially like to thank my thesis advisor, Yoshua Bengio, for taking me under

his wing, when I did not know much about neural networks and for running a lab where

so many researchers are free to explore creative ideas. I also feel deeply debted to him for

supporting and helping me, both financially and emotionally during the difficult periods of

my Ph.D. and life.

I would like to deeply thank Kyunghyun Cho whom I learned a lot from in particular

about writing papers. I had a very fruitful collaboration with him and always enjoyed getting

his opinions on the ideas that I wanted to explore more. He helped me in the beginning

of my Ph.D. We would still be training traditional statistical machine translation systems

without Cho’s enthusiasm on solving Neural Machine Translation. After working with him

my attitude towards the way I used to do research has completely changed. I became more

practical and pragmatic about research than before, and that made me feel more productive

than before.

I would like to present my special thanks to my dear friend Orhan Firat. He helped me

get through very difficult times during my Ph.D. and got me beer many times when I really

needed. His thoughtful comments on life and research put me on the right track when I felt

like I got lost during my Ph.D.

I really appreciate my collaborator Marcin Moczulski for always bringing very interesting

and bright insights about the research problems we were dealing with. Marcin’s endless

enthusiasm on delving deeper into the research ideas and/or papers we were discussing helped

me to understand the underlying concepts better.

xxiv



I would like to thank to all of my co-authors, in particular –Yoshua Bengio, Kyungyhun

Cho, Razvan Pascanu, Marcin Moczulski, Sarath Chandar, Sungjin Ahn, Orhan Firat, Julian

Serban, Junyoung Chung, Ramesh Nallapati, Dzmitry Bahdanau, Bowen Zhou, Bing Xiang,

Bart van Merriënboer, Kelvin Xu, Dzmitry Bahdanau, Yann Dauphin, Francesco Visin, Misha

Denil and many others whom helped me to advance during my Ph.D.

I would like to thank Maluuba for awarding me the Maluuba PhD Fellowship in Deep

Learning. This fellowship has given me the freedom to spend time on projects focusing on

language understanding.

I would like to thank Frédéric Bastien, Pascal Lamblin, Matthieu Germain, Simon

LeFrancois for keeping all of the computing and software infrastructure at MILA running

smoothly, and helping to get recurrent neural networks running fast in Theano.

I would like to thank Thomas Paine, Brendan Shillingford, Jiwoon Im, Francesco Visin,

Sungjin Ahn, Faruk Ahmed and Devon Hjelm for proofreading and providing me feedback

on my thesis. I really appreciate Francis Dutil, Edward Greffensttete and many others at

Deepmind for helping me writing the French translation of the summary for this thesis.

Finally I would like to thank to my manager at Deepmind, Nando deFreitas for giving me

opportunity to work on writing my P.hD thesis while working with his team.

xxv





Chapter 1

INTRODUCTION

The focus of this thesis is to develop neural network models that can learn from and understand

the vast amount of available textual data created by civilizations over many generations.

Machine understanding of the text can potentially enable automation of mundane and

laborious services that would typically require human intervention. Designing systems that

can understand or comprehend language is an essential step in that direction. However, this

can be a challenging problem to solve by only relying on rule-based and symbolic models

(Winograd, 1972) that are defined by a fixed set of rules and heuristics. The number of rules

required to design a system that can understand language even at the level of a three-year-old

toddler can be great (Lenat, Prakash, and Shepherd, 1985). Designing a domain-specific

symbolic system for most language understanding tasks would also require extensive expert

knowledge. The design of rule-based systems for reasoning and language generation with

good generalization is a challenging problem. One of the reasons for this is due to the

underlying mechanisms behind the computational and cognitive nature of language remain

a mystery even with the recent advancements in theoretical linguistics. Several traditional

computational linguistic models are built based on linguistic studies in different languages

(Steedman and Baldridge, 2011; Joshi and Schabes, 1997; Chomsky, 1956). However, those

models are either too general in a way they cover grammars and languages that are outside the

realm of human languages or very specific such that they are only valid for a small subset of

human languages (Bozsahin, 2012). On the other hand, a deep learning approach can offer a

different perspective to this problem, letting the model analyze the data and come up with its

model of the language based on the examples that it has seen. Although the representations

learned by a neural network can be a black box, they would still perform sufficiently well on

the NLP task that they are trained for, and sometimes the representations learned from a

neural network for a particular task can be used for other tasks as well (Radford, Narasimhan,

Salimans, and Sutskever, 2018). In this section, we will give a brief introduction to neural

networks and an overview of the rest of the thesis.

1



Neural networks have been widely adopted on different domains of science and industrial

applications with a notable success. In particular, great improvements in different areas of AI

research, such as image recognition (Szegedy, Ioffe, Vanhoucke, and Alemi, 2016; Simonyan

and Zisserman, 2014), segmentation (Dai, He, and Sun, 2015), speech recognition (Amodei,

Anubhai, Battenberg, Case, Casper, Catanzaro, Chen, Chrzanowski, Coates, Diamos, et al.,

2015), machine translation (Wu, Schuster, Chen, Le, Norouzi, Macherey, Krikun, Cao, Gao,

Macherey, et al., 2016), machine reading comprehension (Hermann, Kocisky, Grefenstette,

Espeholt, Kay, Suleyman, and Blunsom, 2015; Rajpurkar, Zhang, Lopyrev, and Liang, 2016),

and text summarization (Nallapati, Zhou, Gulcehre, Xiang, et al., 2016a) resulted in it

becoming the de facto choice for machine learning applications with the both availability

of new models and datasets. Today, those results are considered as a breakthrough and

have completely altered the way researchers envision the course of different scientific fields

and domains. Some of the factors that lie behind recent successes of deep learning are due

to the availability of the large datasets, improved and more scalable learning algorithms,

new methods that make the optimization of neural networks easier and availability of new

hardware architectures for parallel basic linear algebra subprograms (BLAS) and matrix

operations, examples of this are graphics processing units (GPUs) and field-programmable

gate arrays (FPGAs).

Statistical NLP approaches such as n-gram language models (Damerau, 1971; Manning,

Manning, and Schütze, 1999), and IBM translation models (Brown, Pietra, Pietra, and

Mercer, 1993) have laid the foundations of the statistical approaches for NLP that are

carried forward with the recent deep learning approaches. The heuristic-based and symbolic

approaches to dialogue (Winograd, 1972) also inspired developing novel techniques for dialogue

understanding with deep learning methods. Moreover, recently we have been seeing more

examples of marriages between the symbolic and the connectionist approaches (Johnson,

Hariharan, van der Maaten, Hoffman, Fei-Fei, Zitnick, and Girshick, 2017; Andreas, Rohrbach,

Darrell, and Klein, 2016).

Learning features and representations have become essential for all machine learning (ML)

applications, and here we define some important concepts in this context which we discuss

throughout this thesis:

Feature engineering is the process of manually finding features to transform the model’s

inputs in a way that the new abstract/high-level representation of the inputs would make

the learning of the task easier. Those features are not learned, but they are mainly hand-

engineered or designed for the task of interest by using prior knowledge about that particular

task and data. Some well-known examples of feature engineering algorithms are approaches

2



such as SIFT (Lowe, 1999), HOG features (Zhu, Yeh, Cheng, and Avidan, 2006) for image

recognition, TF-IDF (Sparck Jones, 1972) or bag of n-grams for learning from documents,

and MFCC (Mermelstein, 1976) for speech recognition. These features are still being used in

industrial applications of large scale information processing pipelines, usually in addition to

learned features.

Representation Learning, in the general sense, enables us to build model that can

extract useful features for a task by learning transformations on the raw input data. The main

motivation for representation learning is that the engineering of features for each different task

can be difficult and time-consuming. Moreover, hand-engineered features do not necessarily

have to be composable unless they are engineered to be so and they do not have to be

transferable across different tasks. A leading motivation for the research on representation

learning is that it is possible to learn representations that can disentangle the factors of

variation in the input data. The ability to disentangle factors of variation in an unsupervised

way would achieve more data-efficient algorithms. Potentially, it can also help the model to

learn a class of functions that are less variant to changes in the environment and have better

generalization capabilities.

Deep Learning is based on the idea of learning layers of abstractions and compositional

features. The composition of functions can be obtained by stacking multiple layers and

adding non-linearities, which makes the input to output mapping to become highly nonlinear

and deep. Deep learning techniques usually use neural networks to model non-linear input

to output mappings due to the expressivity of neural networks. However, restricting deep

learning algorithms just to neural networks would be a conservative view. Ideally, each

layer can learn features that could be useful for the task and as one goes deeper in the

hierarchy, the representations can provide higher-level and a more abstract summary of the

input. Before the recent resurgence of deep learning algorithms, the field of machine learning

mainly focused on learning (usually linear) simple local mappings (e.g. by kernels) over the

feature-engineered data. One driving force that enabled the deep learning revolution has

been representation learning (Bengio et al., 2009a; Bengio, Courville, and Vincent, 2013c).

The representations obtained by deep learning algorithms can also be used to learn features

that can be composed with other features learned on a different dataset.

The rest of the thesis is organized as follows:

In Chapter 2, we provide a simple overview of deep learning methods for sequence

processing. We both discuss the models for sequence modeling and how to train or optimize

those models. We give a brief overview of recurrent models and memory models.

3



In Chapter 3, we give a high-level overview of the deep learning methods for NLP. We

provide a brief overview of basic deep learning models for various NLP applications such as

machine translation and summarization.

In Chapter 5 we present our work on how to incorporate monolingual language models

to the sequence to sequence models with attention. We consider both shallow and deep

fusion of the language model. Incorporating the language model improves the performance

significantly on low-resource language pairs.

In Chapter 7, we introduce a mechanism to deal with the rare words. Our proposed model

probabilistically selects between whether to copy the word from the input context or predict

it by using a shortlist softmax. We have shown promising results on text summarization and

machine translation by using the sequence to sequence models.

In Chapter 9, we develop a new memory-based sequential model inspired by Neural Turing

Machines. We introduce several modifications on the original model to simplify the read and

write mechanisms and perform an extensive ablation study.

In Chapter 11, we show that a model that incorporates a planning mechanism in its

attention can help to overcome the issues of learning attention over very long sequences. We

developed two variations of the planning for the attention mechanism and showed that they

both improve over the baselines on neural machine translation and question generation.

In Chapter 13, we introduce noisy activation functions which inject noise into the activation

function to avoid the gradients to get stuck in a particular regime of the saturation. We were

able to train recurrent neural networks with piecewise linear activation function by using

noisy activation functions.

In Chapter 14, we conclude with the open problems in NLP.

4



Chapter 2

DEEP LEARNING ALGORITHMS FOR

MODELING SEQUENCES

2.1. A Primer on Neural Networks

The general notion of artificial neural networks is inspired from its biological counterparts

where the neurons wire together via dendrites creating synapses with other neurons to form

new memories and learn new tasks. In that sense, the neural networks that are used for

machine learning can be considered to be a cartoon view of the biological neural networks

and there are crucial differences between the two. For example, the synaptic strengths are

fixed at the end of the learning phase in the artificial neural networks and in general, we do

not have the concept of firing rate with traditional artificial neural networks. In the rest of

this thesis, when we refer to neural networks what we mean is the artificial neural network.

2.1.1. Neural Networks

In this section, we will introduce multi-layer perceptrons (MLP) and discuss how inference

happens in neural networks. Neural networks are very general parameterized function

approximators which define a highly nonlinear mapping between the inputs and the outputs

for a given task. The basic idea of neural networks can be traced back to perceptrons which

were proposed by Rosenblatt (1958).

A typical deep neural network can be constructed by applying layers of affine-transformations

parameterized by weight matrices Wi ∈ R
di

in
×di

out and the biases bi ∈ R
di

out for every ith

layer. In this formalism, h0 ∈ R
d0

x corresponds to the input layer (x). For a deep feedforward

neural network, the activations of every lth > 0 layer with nonlinearity f(·) can be computed

by using the recursive function in Equation (2.1.1) below. In Figure 2.3, we demonstrate how

different layers can be stacked together in a deep feedforward neural network.

hl = f(Wlhl−1 + bl) (2.1.1)

5





x2x1x0

h0=f(.)

w00 w01
w02

b0

Fig. 2.2. A depiction of how an activation of neural network is computed for
the unit h0 where the inputs are depicted as x. Thus the pre-activations of a
unit is basically the sum of its inputs weighted by W0 weights coming into the
unit 0 and the bias b0 added. The activations of the unit are computed via
the application of the activation function f(·) on the pre-activations.

The high-level representation of a particular observation would emerge as a result of the

patterns of activations in the layers of a neural network. For every different concept recognized

by a neural network, a group of neurons that are specialized for a particular feature of that

concept would respond more strongly than the others. However, in a neural representation, the

neurons in each group can activate to multiple concepts as opposed to a local representation.

In that sense, if two concepts are close to each other, their representations in the ambient

space will be close as well. This type of representation is called distributed representation

(Hinton, Rumelhart, and McClelland, 1984) and recently it has been a focus of great deal of

works (Mikolov, Sutskever, Chen, Corrado, and Dean, 2013; Pascanu, Montufar, and Bengio,

2013c; Montufar, Pascanu, Cho, and Bengio, 2014). As opposed to local representations,

the distributed representation can be more efficient in terms of parameter use and can learn

representations that can generalize better than local representations (Bengio, LeCun, et al.,

2007).

7





seems like the choice of the activation function highly depends on the task and the architecture

that the model is being trained on. In Table 2.1, we have shown the most popular ones along

with their gradients.

Tab. 2.1. A zoo of common activations functions and their derivatives used
with neural networks.

function derivative

sigmoid(x) 1
1+exp(−x)

sigmoid(x)(1− sigmoid(x))

tanh(x) exp(x)−exp(−x)
exp(x)+exp(−x)

1− tanh2(x)

rectifier(x) max(x, 0)

{

1 if x > 0
0 otherwise

softmax(x) exp(xi)
∑N

j=0
exp(xj)

softmax(x)(1− softmax(x))

softplus(x) log(1 + exp(x)) sigmoid(x)

2.1.2. Backpropagation

Backpropagation is the most common way to obtain parameter gradients to train feedfor-

ward neural networks. The first order gradients for each parameter in the model is obtained

by using the chain rule of differentiation. This principle is very intuitive and has already been

used in different disciplines of science (Werbos, 1994) to be able to compute the gradients of

the output of a multivariate function that is a composition of different functions. Rumelhart,

Hinton, and Williams (1986b)’s work is widely considered as the most important work which

introduced this algorithm to the neural networks with practical applications and intuitive

explanations.

The backpropagation algorithm has two phases. First, the forward-propagation of the

signal from input to compute the activations of the layers and the loss function. Once the loss

function is computed, we perform backward-propagation to compute the gradients using the

chain rule and update the parameters. Consider a loss function L(x,y; θ) which measures

the discrepancy between the input x, target y and a neural network with l layers and the

parameters θ. The gradient with respect to the jth layer’s weights Wj can be written as,

∂L(x,y; θ)

∂Wj
=
∂L(x,y; θ)

∂hl

∂hl

∂hi

∂hi

∂Wj
, (2.1.4)

∂hl

∂hi is also called the Jacobian Matrix and it can be further decomposed:

9



∂hl

∂hi
=

∏

i≤j<l

∂hj

∂hj−1
. (2.1.5)

It is possible to reuse the Jacobians when we compute the gradients for each parameter.

In this way the computational complexity of the backpropagation would be O(|θ|) where

|θ| stands for the number of the parameters of the neural network. On the other hand,

computing the gradients for the backpropagation with finite differences would cost O(|θ|2).
Backpropagation is cheaper than finite difference, because when the loss function is just a

scalar, the gradients for all parameters can be computed simultaneously and that ends up

becoming a sequence of matrix vector products.

2.2. Sequential Modeling with Neural Networks

2.2.1. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are another family of neural networks that can process

sequences of input tokens in a sequential manner. The main idea behind recurrent neural

networks is to extend the feedforward neural networks to sequences with variable lengths. The

predecessors of the modern day recurrent neural networks stems from Jordan Nets (Jordan,

1986) and Elman Networks (Elman, 1990).

RNNs can learn to model the dependencies in the input sequence by recursively applying

the same function with shared parameters along the direction where the function is being

applied over. This direction can be either temporal (such as in speech, NLP, videos, ...etc) or

in the spatial axis of the input sequence. The state of the recurrent neural network can learn

to keep dependencies across an arbitrary, unspecified amount of time.

The recurrent function to compute the hidden state ht of the recurrent neural network at

the timestep t for an input sequence x = (x0, · · · ,xt, · · · ,xT ) with a sequence of length T

can be written as in Equation 2.2.1.

ht = f(ht−1,xt) (2.2.1)

It is possible to stack the recurrent layers, as with feedforward neural networks. The "last

layer" of the RNN can also be called as the output or prediction layer predicting the target

yt at every timestep t. A full parameterization of the deep stacked recurrent neural network

can be represented with the parameters Wh ∈ R
dh×dh ,Wx ∈ R

dh×dx ,Wo ∈ R
do×dh ,bh ∈

R
dh ,bo ∈ R

do , the activations of the hidden state being φ(·) and the output function being

g(·) for a network with l + 1 layers (l recurrent and the input layers, +1 for the output layer)

10





2.2.2. Bidirectional RNNs

As opposed to regular RNNs that process the inputs in the sequence uni-directionally

(typically left to right), bidirectional recurrent neural networks (Schuster and Paliwal, 1997)

compute the representation of the sequence by processing it both from left to right and right

to left.

In a bidirectional recurrent neural network, both the future and the past inputs are

accessible from every state. For example, in NLP applications a word can have linguistic

dependencies both to the tokens that appear before and the tokens that appear after. In that

sense, bidirectional RNNs are more powerful in terms of capturing complicated syntactic

dependencies.

As depicted in Figure 2.5, a bidirectional RNN has two states that scan the input in

opposite directions.
←−
ht is the backward state that reads the input from right to left and the−→

ht that reads the input from left to right. The hidden state of the bidirectional RNN ht is

the concatenation of the forward and the backward states, ht = [
←−
ht ;
−→
ht ].

Bidirectional RNNs have found a great number of applications in neural machine trans-

lation (Bahdanau et al., 2014), abstractive summarization (Nallapati et al., 2016a), speech

recognition (Graves, Jaitly, and Mohamed, 2013) and offline hand-writing recognition (Graves

and Schmidhuber, 2009).

2.3. Backpropagation Through Time (BPTT)

The backpropagation through time algorithm was first discussed in (Rumelhart, Hinton,

and Williams, 1986a) and later on further elaborated by Werbos (1990). BPTT is an extension

of the backpropagation algorithm for the RNNs unrolled over the input sequences of variable

length. BPTT is the most popular way to train RNNs.

Similar to the backpropagation algorithm, BPTT also has two phases, forward propagation,

and backward propagation. During forward propagation, the model is unrolled over the input

sequence and during backward propagation, the gradients of the model is computed over the

unrolled graph. The gradient of the output layers of an RNN can be written easily as,

∂L(x,y; θ)

∂Wo

=
∑

1≤t≤T

∂L(xt,yt; θ)

∂ot

∂ot

∂Wo

, (2.3.1)

The challenging aspect of the BPTT algorithm is to compute the gradients with respect to

the recurrent weights, mainly because at each time-step the graph needs to be unrolled until

the beginning of the sequence and the gradients need to be computed for every time-step. Let

12





would eliminate the risk of introducing bugs while computing the gradients manually. The

computational complexity of that algorithm would be O(T ) for a sequence of length T and

the memory space complexity would be O(dhT ) for a model with dh units.

Algorithm 1 The general back-propagation through time algorithm for a single-layer RNN.
Lt refers to the loss at time-step t. The (∗) in gradients (∂h∗t/∂Wh) refers to the immediate
derivative.

1: procedure BPTT
2: for t in 1 . . . T do ⊲ First do Forward propagation.
3: ht ← φ(Wxhl−1

t + Whhl
t−1 + bl

h)
4: ot ← g(Woh

l
t + bo)

5: end for
6: dbo ← 0 ⊲ Initialize accumulated gradients.
7: dWo ← 0
8: dWh ← 0
9: dWx ← 0

10: dbh ← 0
11: dhT +1 ← 1
12: for t in T . . . 1 do ⊲ Do backward propagation.
13: dWo ← ∂Lt/∂Wo

14: dbo ← ∂Lt/∂bo

15: dht ← dht+1(∂ht/∂ht−1) + (∂Lt/∂ht)
16: dWh ← dWh + dht(∂h∗t/∂Wh)
17: dWx ← dWx + dht(∂h∗t/∂Wx)
18: dbh ← dbh + dht(∂h∗t/∂bh)
19: end for
20: θ ← [dbo,dWo,dWh,dWx,dbh]
21: return θ

22: end procedure

2.3.1. Scaling BPTT

It can be difficult to scale RNNs on very long sequences when training with BPTT due to

the large memory consumption because storing activations of all intermediate nodes would

grow linearly in the length of the sequences. Furthermore, as the length of the sequence grows

the number of timesteps that the model would need to backpropagate through time would

grow as well. Thus the computational complexity of such an approach would grow linearly

with respect to the length of the sequence. These issues can become more pronounced when

training models over very long documents or sequences of genomes.

14



A practical way to deal with the memory complexity is to tradeoff memory consumption

with computation. Checkpointing (Griewank, 1992) deals with this issue by dividing the

sequence into subsequences of length k and it is possible to just store the activations of

every k timesteps as a checkpoint in the forward propagation. During the backpropagation

through time, it is possible to reconstruct the activations in a subsequence (instead of storing

activations at every timestep) by storing only the activations of every k time-steps and the

activations in the subsequence of interest. One can recompute the activations in a subsequence

by just doing a forward propagation from the closest checkpoint and update the parameters

of the model in this subsequence. The memory complexity of BPTT with checkpointing

would be O(T/k + k), and if k is chosen to be
√
T as proposed by (Chen, Xu, Zhang, and

Guestrin, 2016b), it can be O(
√
T ).

A well-known approach to deal with the issue regarding the computational complexity of

BPTT is to approximate the gradients by only backpropagating errors at every k1 timesteps

and for k2 timesteps through time. This approach is usually called truncated backpropa-

gation through time (TBTT) (Williams and Peng, 1990). If k1 is large enough and k2 is

small, this method can be more efficient than BPTT. For A = (k1, 2k1, 3k1, 4k1, . . . , T ),

or in other words for A is the sequence of indices that corresponds to every kth
1 in the

input sequence. TBPTT will use an approximation to the BPTT gradients as shown in

Equation 2.3.4 and the residual error of this approximation ǫ is shown in Equation 2.3.5. As

k1 increases and k2 the number of timesteps that will be included in TBTT become smaller,

the approximation error will increase as well. However, if k1 is small and k2 is large, TBPTT

would not be faster than BPTT but it would consume less memory O(k2) rather than O(T ).

Let us note that, even the asymptotic complexity of the TBPTT is the same as BPTT

algorithm that we have provided in Algorithm 1, O(T ), but a linear speedup can be observed

by choosing k1 > k2. For example k1 = 2 and k2 = 1, one would only need propagate the

errors for only a single timestep.

∂L(xt,yt; θ)

∂θ
≈
∑

t∈A

∂L(xt,yt; θ)

∂ht

∑

t−k2≤j≤t

∂ht

∂hj

∂h∗j
∂Wh

, (2.3.4)

ǫ =

∣

∣

∣

∣

∣

∣

∑

t∈A

∂L(xt,yt; θ)

∂ht

∑

1≤j≤t−k2

∂ht

∂hj

∂h∗j
∂Wh

+
∑

t/∈A

∂L(xt,yt; θ)

∂ht

∑

1≤j≤t

∂ht

∂hj

∂h∗j
∂Wh

∣

∣

∣

∣

∣

∣

. (2.3.5)

15



2.3.2. The Problems of BPTT

There are some very well-known problems that can make the training of the RNNs with

BPTT to be difficult. The difficulty of the training arises from the repeated application of

the same function with tied weights through time. Because the iterative application of the

same function results into a very highly nonlinear dynamical system and a small change in

the inputs can put the system into a chaotic state.

Vanishing Gradients

Bengio, Simard, and Frasconi (1994) have first shown that the RNNs can suffer from a

difficulty in learning long-term dependencies due to the gradients vanishing through time.

The reason for the gradients vanishing through time is due to repeated dot products

between the Jacobians ∂ht

∂ht−1

at every timestep as in Equation 2.3.6. For example, If the

activation function is sigmoid, the derivative of the sigmoid will be upper-bounded by 1/4.

Thus the Jacobian ∂ht

∂hk
would be upper bounded by (Wh)t−k(1/4)t−k. As a result and as

noted in (Pascanu et al., 2013a), if the largest singular value of the recurrent weights Wh is

smaller than 4 for sigmoids, the gradients will vanish through time.

Bengio et al. (1994) demonstrated that in order for the network to store information in a

robust and stable way over a long duration, the eigenvalues of the Jacobians through time

have to be less than 1, and as a consequence we are in the regime where gradients vanish

over time, meaning that long-term effects get an exponentially smaller weight in the total

gradient than the short-term effect. We have also detailed this issue and discussed in the

context of memory networks in (Gulcehre, Chandar, and Bengio, 2017a).

∂ht

∂ht−1

= Wh diag (φ′(Wxxt + Whht−1 + bh)) (2.3.6)

Exploding Gradients

Another potential problem that can happen due to the repeated multiplication of the

Jacobians is that the gradients can explode. Exploding gradients can happen if the largest

singular value of the recurrent weights is very large. A typical method to overcome this issue

is to use gradient clipping (Pascanu et al., 2013a). If the norm/magnitude of the gradients

exceeds a certain threshold, the gradients are renormalized such that the L2 norm of the

gradients would be less than the threshold.

16



2.3.3. Long Short Term Memory (LSTM)

As we discussed in earlier sections, vanilla RNNs can be dramatically affected by the

training problems arising due to vanishing gradients and exploding gradients when trained

with BPTT. LSTM (Hochreiter and Schmidhuber, 1997) designed to address those issues

regarding learning long-range dependencies. LSTMs have been shown to be very successful

in different applications such as NLP (Collobert, Weston, Bottou, Karlen, Kavukcuoglu, and

Kuksa, 2011; Sutskever, Vinyals, and Le, 2014; Wu et al., 2016), language modeling (Graves

et al., 2013), computer vision (He, Zhang, Ren, and Sun, 2016; Szegedy et al., 2016) and

speech recognition (Hannun, Case, Casper, Catanzaro, Diamos, Elsen, Prenger, Satheesh,

Sengupta, Coates, et al., 2014).

LSTMs can learn to carry information from the past for arbitrarily long timesteps and

they can learn to ignore particular input tokens or reset the state of the hidden state by

using gates that interact with the memory of the LSTM if it is no longer relevant to the

context. This behavior is learned end to end in a differentiable manner by using parameterized

functions. An LSTM unit has three gates, it, ot and ft, respectively for the input, output

and the forget gates. We consider the parameterization of the gates as proposed in (Zaremba

et al., 2014): the activation of every gate is affected by the inputs coming from the current

time-step and the hidden state (ht) of the LSTM. As shown in Equation 2.3.7, the activation

function of the gates is sigmoid just to ensure that the gates can learn a binary switching

behavior to block or pass the information flowing through the cell. Wh ∈ R
3dh×dh is the

parameter matrix applied on the recurrent states, Wx ∈ R
3dh×dx is the parameter matrix

applied on the input for the ht ∈ R
dh and xt ∈ R

dx .









ft

it

ot









= sigm (Whht−1 + Wxxt + bh) , (2.3.7)

In Equation 2.3.8, we have also shown that the activations of the candidate cell are also

a function of the input and the hidden state of the LSTM, with tanh activation function.

The forget gate can introduce identity connections through time across the previous states of

the cell. This can mitigate the problems related to vanishing gradients. The input gate can

learn to ignore the current input, if it is not relevant for example if it is noise. Output gate is

mainly for dealing with exploding gradients. We have provided the computational graph of

an LSTM unit in Figure 2.6.

17





previous timestep, see Equation 2.3.12. Reset (rt) and update (gt) gates both use the sigmoid

activation function and smooth differentiable gating mechanisms similar to the LSTM as

shown in Equation 2.3.11. This enables the model to be easily trained with gradient-based

optimization techniques.

The update gate of the GRU acts similarly to leaky integrator units (Bengio, Boulanger-

Lewandowski, and Pascanu, 2013a), but with smooth and learned per-unit leakage rate. The

reset gate can learn to reset the information coming from the memory and just use the input

for the current timestep. The details of the model and its computational graph are shown in

Figure 2.7. The GRU can be seen as a special case of the LSTM, where both the input and

the forget gates are tied together (Greff, Srivastava, Koutník, Steunebrink, and Schmidhuber,

2016).





gt

rt



 = sigm (Wh(rt ⊙ ht−1) + Wxxt + bh) , (2.3.11)

ct = tanh(Wc
h(rt ⊙ ht−1) + Wc

xxt + bc)

ht = gt ⊙ ht−1 + (1− gt)⊙ ct (2.3.12)

2.4. Models with Explicit Memory Structure

It is possible to represent the memory of a neural network in a matrix whose rows

corresponds to the contents of the memory. We call this memory matrix M ∈ R
dk×dm

with dm features for each k memory cell. This is because it comes with an explicit memory

structure and the capacity of the model can be increased by just adding new rows into

M. This can be done without introducing additional parameters into the model. When we

increase the memory capacity of an ordinary RNN, we would need to increase the size of the

hidden state which would result quadratic increase in the number of parameters.

2.4.1. Neural Turing Machines

The neural Turing machine (NTM) is an approach to neural networks with explicit

memory (Graves, Wayne, and Danihelka, 2014). The model learns to read from and write

into the memory by using read and write heads accessed via the controller. Read and the

write heads are neural networks that are conditioned on the hidden state of the controller.

The controller fcontrol(·) can either be an LSTM or plain RNN. The size of the memory (M)

is fixed at the beginning of training and Mt is updated at every time-step via the write head.

19





mt =
∑

i

α
(i)
t Mt(i) (2.4.4)

The writing operation involves erasing the old content and updating the memory by using

the new content. Both the erase we
t ∈ R

dm and the write weights ww
t ∈ R

k are computed in

a similar way to the read weights. The writing happens by first erasing some of the contents

from the memory,

M′
t(i) = Mt−1[1−ww

t (i)we
t ] (2.4.5)

After erasing some of the contents from the memory the model adds the new content

(at ∈ R
dm),

Mt(i) = M′
t(i) + ww

t (i)at (2.4.6)

Alternatively, (Graves et al., 2014) also proposed to use location-based addressing which

can facilitate both simple iteration across the locations of the memory and random access

jumps. We will not go into the details of that, but rotation by one would shift the focus to

the next location and negative one would shift the focus in opposite direction. The shifting

and the rotation are performed by circular convolution operations. The model also applies

sharpening on the attention to make the distribution over different memory cells sharper.

Let us note that all the operations that we have described above are fully differentiable and

end-to-end trainable.

NTMs are shown to be able to solve several challenging algorithmic tasks that LSTMs fail.

Also we have shown that this type of MANNs can deal better with long term dependencies

by creating shortcuts through time in the memory (Gulcehre et al., 2017a).

2.4.2. Memory Networks

Memory networks (Weston, Chopra, and Bordes, 2015a) are an approach to integrate an

explicit memory into the neural networks. The contents of the memory is usually considered

an external resource and the model learns to which part of the memory to read from. The

memory can be the continuous representation of the input document or a knowledge base.

The memory networks have been proven to be successful in various NLP applications (Weston

et al., 2015a; Sukhbaatar, Szlam, Weston, and Fergus, 2015; Kumar, Irsoy, Su, Bradbury,

English, Pierce, Ondruska, Gulrajani, and Socher, 2015; Miller, Fisch, Dodge, Karimi, Bordes,

and Weston, 2016a). The main distinction of the memory networks compared to the NTMs

is that the writing operation in memory networks is not being learned but rather fixed via

heuristics. The main advantage of this approach is that, we overcome avoid the difficulty of

learning to write —as a result the training becomes easier and more stable.

21



2.5. On the Loss Surfaces of Neural Networks

The loss surfaces of neural networks are known to be highly non-convex. However, some

characteristics of the loss surfaces of neural networks were not identified until recently. Due

to the nonconvexity of the neural network loss surfaces, most techniques and analysis that

are studied in the convex analysis and convex optimization literature do not apply.

Firstly let us mention that critical points of a loss function are the points on the domain

of the function where the norm of the gradients with respect to its parameters at that point

would be 0. A critical point can either correspond to a local minimum or maximum.

A saddle point can be identified by the eigenvalues of the Hessian. A local minimum

corresponds to the Hessian being positive semi-definite, such that for all v and the Hessian

matrix H i.e. v⊤Hv ≥ 0— in other words, all the eigenvalues of the Hessian matrix should

be positive. A critical point can correspond to a local maximum if all the eigenvalues of the

Hessian matrix are negative. If the Hessian matrix has both positive and negative eigenvalues,

the critical point would be a saddle-point. Intuitively, as the number of parameters (N) of

the neural network grows with N parameters, it is unlikely that all the eigenvalues of the

Hessian matrix would be positive. Thus, it is much more likely that a neural network would

converge to a saddle point rather than a local-minimum unless the critical point stays at a

loss value close to the global minimum.

Dauphin, Pascanu, Gulcehre, Cho, Ganguli, and Bengio (2014) and Choromanska, Henaff,

Mathieu, Arous, and LeCun (2015) have both shown that the local minima are not a big

problem for SGD because they will tend to lie at a very low value of the cost, almost as low

as that of the global minima. Dauphin et al. (2014) focuses on the analysis of critical points,

showing empirically —and by reference to existing math results— that on the optimization

path the nearby critical points will be saddle points, and only when approaching to the

global minimum cost, there will be local minima. Choromanska et al. (2015) further shows

empirically that the effect of network size on this effect and uses a different set of mathematical

tools (in some sense more restrictive in the assumptions made on the parametric form) to

come to the same conclusion about the innocuousness of local minima. Both of those papers

have revolutionized our view of the optimization of neural networks.

Kawaguchi (2016) has shown that every local minimum is also a global minimum for a

neural network (yielding to 0 training error) with additional simplifying assumptions. For

such networks, every critical point that is not a global minimum can be considered as a

saddle-point. Sagun, Bottou, and LeCun (2016) empirically investigated the eigenvalues

of the Hessian for a neural network that is trained until convergence (achieving very small

22



training error and norm of the gradient). They have verified that still some of the eigenvalues

of the Hessian are negative, though the majority of the eigenvalues concentrate around 0.

Thus the authors suggest that the flatness of the error landscape might be beyond the notion

of wide basins.

Baldi and Hornik (1989); Saxe, McClelland, and Ganguli (2013) have shown that even

the loss surfaces of linear networks can be quite complicated and may involve saddle points.

2.6. Gradient Descent

Optimization algorithms tend to be an iterative process, i.e starting from θ
0 the algorithm

will eventually reach to a value θ
k after k iterations. θ

k is said to converge to a solution θ
∗

iff ||θk − θ
∗|| becomes 0 as k goes to infinity.

In this section and the subsequent ones ∇ operator refers to the gradient of the function

—unless stated otherwise— with respect to its own parameters.

In optimization literature the speed which an algorithm reaches to its optimum value θ
∗

at the limit is called as rate of convergence. In general the convergence of an algorithm for

θk can be written as,

lim
k→∞

||θk+1 − θ
∗||

||θk − θ
∗||p = µ (2.6.1)

p and µ are asymptotic rate constants. If p = 1 and µ is constant from step to step then

the algorithm is said to converge linearly. If µk changes step to step with µk → 0 and p = 1

for k →∞, then the sequence is said to converge superlinearly. If µk changes step to step

with µk → 1 and p = 1 for k → ∞, then the sequence is said to converge sublinearly. If

µk > 0 and p = 2 for k →∞, then the sequence is said to converge quadratically.

Gradient Descent (GD) is the most famous family of optimization algorithms used for

neural networks mainly due to its simplicity and efficiency. A basic form of the gradient

descent algorithm would only require easy to obtain first order gradients. GD iteratively

updates the parameters of the model, according to the local gradient information and the

step-size (or learning rate) (αk) at every kth update,

θ
k+1 = θ

k − αk∇θL(x,y; θ
k) (2.6.2)

GD can be treated as a specific form of the hill-climbing algorithm in a continuous space

(Russell and Norvig, 1995) or fixed point iteration methods where the iteration continues

until the norm of the Jacobians become zero, ||∇L||22= 0.

23



Definition 2.6.1. A function f : Rn → R is called L-Lipschitz if and only if

||∇f(x)−∇f(y)||2≤ L||x− y||2 ∀x, y ∈ R
n

Theorem 2.6.1. If f(·) is a L-Lipschitz function and θ
∗ = arg minθ f(θ) and f(θ∗) > −∞,

then the gradient descent algorithm with fixed step-size satisfying α < 2
L

will converge to a

stationary point.

Proof. Let θ
+ = θ

k − α∇θf(θk), since it is L-Lipschitz it will satisfy,

f(θ+) ≤ f(θk) +∇θf(θk)⊤(θ+ − θ
k) +

L

2
||θ+ − θ

k||2 (2.6.3)

We can replace θ
+ = θ

k − α∇θf(θk) in the equation above to get,

f(θ+) ≤ f(θk)− α||∇θf(θk)||2+α
2L

2
||∇θf(θk)||2 (2.6.4)

= f(θk)− α(1− αL

2
)||∇θf(θ)|| (2.6.5)

||∇θf(θk)||2 ≤ 1

α(1− αL
2

)
(f(θk)− f(θ+)) (2.6.6)

If we sum over the iterations, due to the telescoping sums we will obtain,

∞
∑

k=1

||∇θf(θk)||2 ≤ 1

α(1− αL
2

)
(f(θ0)− f(θ∞)) (2.6.7)

≤ 1

α(1− αL
2

)
(f(θ0)− f(θ∗)) (2.6.8)

This implies that limk→∞||∇θf(θk)||2= 0.

�

Gradient descent can be treated by assuming that the original objective function that we

would like to optimize to be a locally quadratic (when you zoom) which can be obtained from

the second order Taylor approximation. For the sake of simplicity of our analysis, assuming

that H ≈ αI, we can obtain,

L(x,y; θ
∗) ≈ L(x,y; θ) +∇θL(x,y; θ)⊤(θ∗ − θ) +

||θ∗ − θ||22
2α(k)

(2.6.9)

The term L(x,y; θ) +∇θL(x,y; θ)⊤(θ∗ − θ) is the first order Taylor approximation of

L(x, y; θ
∗) around θ and it is also the global under-estimator of L(x,y; θ

∗) when it is convex

24



(also called first-order condition for the gradient descent),

L(x,y; θ
∗) ≥ L(x,y; θ) +∇θL(x,y; θ)⊤(θ∗ − θ)

The term 1
2α
||θ−θ

∗||22 just penalizes the discrepancy between θ and θ
∗. The full derivation

of this equation is simple and given in (Bottou, Curtis, and Nocedal, 2016). α is the learning

rate and in Figure 2.8, we have shown how α changes the local quadratic approximation of the

univariate convex function f(x) around x′. GD will minimize this quadratic approximation

to find the parameters θ
k at update k,

θ
k = arg min

θ

L(x,y; θ
k−1) +∇θL(x,y; θ

k−1)⊤(θ − θ
k−1) (2.6.10)

+
||θ − θ

k−1||22
2α(k)

, (2.6.11)

= arg min
θ

∇θL(x,y; θ
k−1)⊤θ +

||θ − θ
k−1||22

2α(k)
, (2.6.12)

= arg min
θ

2α(k)∇θL(x,y; θ
k−1)⊤θ + ||θ − θ

k−1||22, (2.6.13)

= arg min
θ

||θ − (θk−1 − α(k)∇θL(x,y; θ
k−1)||22. (2.6.14)

To ensure the convergence as we discussed earlier, the gradients of the objective should

be Lipschitz continuous,

||∇θL(x,y; θ
k)−∇θL(x,y; θ

k−1)||≤ β||θk − θ
k−1||, for 0 ≤ β ≤ 1

The Lipschitz continuity would imply that the difference ||∇θL(x,y; θ
k)−∇θL(x,y; θ

k−1)||
should be contractive and if L(x,y; θ

k) is twice differentiable then the loss function would

be convex too. Assuming that we satisfy those conditions, GD would have a rate of con-

vergence of O(1/k) for k being the number of iterations. In order to achieve a bound of

L(x,y; θ
k) − L(x,y; θ

∗) ≤ ǫ, we must run the algorithm for O(1/ǫ) iterations. This also

implies a sublinear convergence.

If L(x,y; θ
k) is strongly convex, the gradient descent converges with rate O(ck) for

0 < c < 1. This means that a bound of L(x,y; θ
k)− L(x,y; θ

∗) ≤ ǫ can be achieved in only

O(log(1/ǫ)) iterations. This is also called linear convergence.

There are two popular forms of gradient descent to train machine learning algorithms,

"Stochastic" and "Batch" learning. Batch learning algorithms require all the training examples

to be loaded into the memory and the gradients will be computed over the whole dataset

25





∑

i α
(i) =∞ and

∑

i(α
(i))2 <∞ (Robbins and Monro, 1951). SGD usually has worse rate of

convergence (sublinear) compared to GD which is O(1/
√
k). For minibatch of size N , the

convergence of SGD can be shown to be O(1/
√
Nk + 1/k) (Dekel, Gilad-Bachrach, Shamir,

and Xiao, 2011). Since N examples will be processed at each iteration the improvement

will get worse as the size of the minibatches increase. However, SGD is more immune to

the redundancy in the dataset and less vulnerable to the issues regarding the non-convex

optimization when compared to the GD (Choromanska et al., 2015). Another important

reason for using SGD is that it is empirically well-known that SGD generalizes better and

Hardt, Recht, and Singer (2015) have shown that SGD can generalize better due to its

stability promoting behavior using some basic results in the convex optimization literature.

Momentum

Momentum (Polyak, 1964) is a very popular way to speed up the convergence of gradient

descent based methods. Momentum basically adds a memory to the updates and improves

the speed of GD by adding an inertia to it. The inertia comes from accumulated velocity

vectors vt which is added to the gradients with scaled velocity for every update. For the

momentum of rate β, the momentum updates can be obtained by modifying the standard

gradient descent rule as,

vt = βvt−1 − α(t)∇θL(xt,yt; θ
t−1) (2.6.17)

θ
t = θ

t−1 + vt (2.6.18)

An important issue with optimization is pathological curvature. In particular, pathological

curvature can appear when the regions of the loss surface are not scaled properly. This

usually happens when the Hessian matrix is ill-conditioned 3, such that GD will stall in the

areas of low curvature. However, momentum would address this issue by amplifying the steps

in the low-curvature directions of the loss surface. We illustrate this phenomenon in Figure

2.9 for gradient descent with fixed size. 4

A drawback of momentum is that in the regimes of high-curvature it can amplify the size

of the steps and cause oscillations. Those oscillations can cause unstable training and slower

convergence. Sutskever, Martens, Dahl, and Hinton (2013) have proposed to address this

issue by using the Nestorov momentum for deep neural networks. Nesterov momentum first

3Ill conditioning would happen when the condition number of the Hessian, the ratio between the largest and
the smallest singular value, is very large.
4This figure is obtained by using the excellent online simulation for momentum provided in Goh (2017).

27





that can reshape or modify the local geometry of the loss surface in order to improve first-

order optimization. In the following two sections we will be focusing on two very popular

adaptive learning rate algorithms, RMSProp and Adam. An important advantage of using

adaptive algorithms is that those approaches make learning more robust to the choice of

learning rate. There have been approaches that propose to completely eliminate the burden

of finetuning a learning rate (Gulcehre, Sotelo, Moczulski, and Bengio, 2017c; Schaul, Zhang,

and LeCun, 2013), however, those approaches have not gained popularity at this point. In

this section, with an abuse of notation, the division operation "/" refers to an element-wise

division between two vectors.

RMSProp

RMSProp (Tieleman and Hinton, 2012) has been a very popular method for training

neural networks, in particular RNNs (Graves et al., 2013). RMSProp is basically inspired by

the RPROP algorithm which increases or decreases the learning rate multiplicatively based

on whether if the signs of the gradients for the last two updates agree or not. However,

the RPROP algorithm does not work in the stochastic setting. RMSProp accumulates the

root-mean-square (RMS) statistics about the gradients using running averages. In that sense,

RMSProp estimates the per parameter variance of the gradients via moving averages and uses

this estimate in order to normalize the gradients. This normalization process can augment

the magnitude of the gradients adaptively when they shrink around a saddle point. RMSProp

is also related to the equilibration methods that can speed up the training of the neural

networks for escaping from saddle points faster (Dauphin, de Vries, and Bengio, 2015).

g(k) = βg(k−1) + (1− β)(∇θL(x,y; θ
k−1))2 (2.6.21)

θ
k = θ

k−1 − αk
∇θL(x,y; θ

k−1)
√

g(k) + ǫ
(2.6.22)

Adam

The Adam (Kingma and Ba, 2014) algorithm is similar to RMSProp and uses the statistics

obtained from first order gradients via moving averages. As opposed to just normalizing by

the second order moment of the gradients, Adam uses the ratio between first order moment

and the second order moment of the gradients as well. Kingma and Ba (2014) claims that

this approach behaves like an approximate trust region method around the current values of

the parameters, and it adopts not only the learning rates but also the momentum as well.

29



g(k) = β1g
(k−1) + (1− β1)(∇θL(x,y; θ

k−1))2 (2.6.23)

a(k) = β2a
(k−1) + (1− β2)∇θL(x,y; θ

k−1) (2.6.24)

ā(k) =
a(k)

(1− β1)
(2.6.25)

ḡ(k) =
g(k)

(1− β2)
(2.6.26)

θ
k = θ

k−1 − αk
ā(k)

√

ḡ(k) + ǫ
⊙∇θL(x,y; θ

k−1) (2.6.27)

2.7. Curriculum Learning

The main idea of curriculum learning is to solve problems that are difficult to optimize by

ordering examples seen by the model from easier to more difficult (Bengio et al., 2009a). The

notion of curriculum learning lies back to the incremental learning idea proposed in (Elman,

1993), in which they have shown that it is possible to learn language tasks with a curriculum

that is otherwise not solvable by the network. (Bengio et al., 2009a) have shown that it is

possible to solve highly non-convex and difficult to optimize problems with a curriculum and

they have established its relationship to continuation methods.

2.8. Training Neural Networks with Discrete Decisions

Training neural networks with discrete decisions has been an important research topic

that can be useful for various applications of neural networks, e.g.: discrete attention

(Mnih, Heess, Graves, et al., 2014), accessing to memory (Zaremba and Sutskever, 2015),

conditional computation (Bengio, Léonard, and Courville, 2013b; McGill and Perona, 2017),

deep reinforcement learning (Wierstra, Foerster, Peters, and Schmidhuber, 2007). The ability

to learn discrete random variables in the architecture may also enable our models to both scale

and generalize better. However, learning discrete variables with gradient based optimization

techniques is well-known to be challenging due to tradeoffs that arise from bias and variance

of the approximations.

One of the simplest approaches for the dealing with gradients of the discrete random

variables is to use the Straight-through estimator (Bengio et al., 2013b). The idea behind

the straight-through estimator is to treat the discrete activation function as if it is a smooth

function during the backpropagation, and for the forward computation just to use the discrete

function. For example, if a model has a sign function in the forward propagation, to be able

30



to backpropagate through this function, we treat it as if it is the tanh(·) function. This is

clearly a biased estimator of the gradient, however, in many applications, this approach seems

to work relatively well.

Another approach is to approximate the gradients with a particular form of reinforcement

learning (RL) by using REINFORCE algorithm (Williams, 1992). REINFORCE is a special

case of likelihood ratio method and in RL literature it is also known as Monte-Carlo Policy

Gradients. REINFORCE and policy gradients are more specialized on the stochastic policies

and estimating the gradients of the stochastic random variables.5

Suppose that x is a random variable with probability density of p(x; θ), and ψ(·) is a

scalar-valued function, e.g. the reward, we are interested in maximizing,

x∗ = arg max Ex[ψ(x)],

The function ψ(x) may not be differentiable. However, we can approximate the derivative of

∇θEx[ψ(x)],

∇θEx[ψ(x)] = ∇θ

∫

x
p(x; θ)ψ(x)dx =

∫

x
∇θp(x; θ)ψ(x)dx,

=
∫

x
p(x; θ)∇θ log(p(x; θ))ψ(x)dx = Ex[ψ(x)∇θ log(p(x; θ))],

We can also approximate the integral via the Monte-Carlo approximation,

∇θEx[f(x)] ≈ 1

N

N
∑

i=0

ψ(xi)∇θ log(p(xi; θ)), (2.8.1)

However Equation (2.8.1) is well known to be a high variance approximation. It is possible

to reduce the variance of this approximation by subtracting a baseline (b) from the rewards

(Greensmith, Bartlett, and Baxter, 2004). Baseline can be any function as long as it does

not depend on xi’s, in order to not to introduce any bias i.e., the gradient of the subtracted

quantity would be 0,

N
∑

i=0

b∇θ log(p(xi; θ)) = b∇θ

N
∑

i=0

log(p(xi; θ)) = b∇θ1 = 0 (2.8.2)

5Although it is possible to train deterministic policy gradients, so far in the literature it is mainly used for
reinforcement learning with continuous outputs (Silver, Lever, Heess, Degris, Wierstra, and Riedmiller, 2014).

31





Chapter 3

DEEP LEARNING FOR NATURAL LANGUAGE

PROCESSING

Why, Salisbury must find his flesh and thought

That which I am not aps, not a man and in fire,

To show the reining of the raven and the wars

– Generated by a character-level LSTM language model on the Shakespeare corpus

(Karpathy, Johnson, and Fei-Fei, 2015).

Natural languages evolved to represent an information in a human-interpretable fashion

and communicate it with other agents in a verbal manner. Language is often considered as

an interface to the human mind and sometimes is referred as a mirror of the mind. Human

knowledge is recorded in the form of text for the means of communication and abundant

amount of data available in the form of text. As a consequence, understanding and studying

language based on the largely available data can also give better insights into the human

mind as well.

The inception of using neural networks (Bengio, Ducharme, and Vincent, 2000) for NLP

has improved the state of results on several NLP benchmark tasks (Mikolov et al., 2013;

Collobert et al., 2011). Immediately, it has become an essential tool for many different

applications on different domains. However, compared to the influence that the neural

networks have had on computer vision, the achievements obtained in NLP is still in its

infancy. The essential NLP problems are still far from being solved. In this section, we

investigate different NLP applications and the deep learning approaches that have been

proposed to solve those tasks.

Natural Language Understanding (NLU) is the ultimate goal of NLP. NLU requires one

to be able to comprehend and understand a text or a document in the semantic-level besides

the low-level syntactic aspects. NLU would enable to answer questions related to a text. For

example, the question can be fixed for all the texts in the corpora. It can be as simple as

"what should be the next word given the preceding (or surrounding) text?" as in language

33



modeling or "what is the translation of this sentence in German?". We call this type of

questions as "implicit questions", mainly because it is not provided in the corpus explicitly,

but the model should only be able to learn a mapping from input to output that would

answer this question. The model also does not need to learn a representation for the "implicit

question" since providing a constant for each input would not provide any useful information

to solve the task. On the other hand, the tasks that involve "explicit questions" such as

general question-answering or dialogue generation 1 are still quite far from being solved and

they are known to be general AI-hard tasks.

An advantage of the deep NLP methods over traditional NLP is the fact that a neural

network can learn a continuous vector representation of the words which is oftenwise called

as an embedding (Bengio, Ducharme, Vincent, and Janvin, 2003). The ability of learning

continuous representations for discrete tokens of words enables the model to be able to learn

semantic associations between different words. For example, continuous-space embedding

of the words can learn to cluster the synonyms close to each other and antonyms further

apart in the Euclidean space. Mikolov et al. (2013) have shown those embeddings can be

semantically rich enough to be able to perform simple reasoning and analogy making.

3.1. Language Modeling

The goal of the language modeling is to model the joint distribution of the sequence of

words w = (w0, w1, · · · , wT ) of length T = |w| in a sentence. It is possible to factorize the

probabilities with the chain rule, to model the distribution of the words:

p(w0, w1, · · · , wT ) = p(w0)
T
∏

i=1

p(wi|wi−1, · · · , w0) (3.1.1)

Basically what the chain rule of probabilities suggests is to predict the next word at every

timestep depending on the tokens that have been seen in the past. The probabilistic modeling

of language has been very popular in the context of generative text such as in statistical

machine translation (Koehn, 2009) for generating translations in the target language, spelling

correction to fix the typos and missing words/characters (Kukich, 1992), re-ranking candidates

for speech recognition to improve the fluency of the generated transcriptions (Collins and

Koo, 2005).

The methods based on the n-gram language modeling (Jurafsky, 2000) have been popular

in NLP just for their simplicity. The fundamental principle behind n-gram based language

modeling techniques relies on the assumption that each word in a sentence/sequence only

1Let us note that those tasks still involve implicit questions as well.

34



depends on n words (grams) that appear before itself, namely (n − 1)th order Markov

assumption,

p(w0, · · · , wT ) ≈ p(w0)
T
∏

i=1

p(wi|wi−1, · · · , wi−n) (3.1.2)

An n-gram refers to the contiguous sequence of n tokens in the sequence. Estimating

the n-gram probabilities with maximum-likelihood estimation is simple, just counting

the frequency of the n-grams in the corpus is sufficient. However, data-sparsity can be a

big issue. For example, for a word/gram that has never appeared in the training set it will

assign 0 probability. Overfitting can be an important issue for the n-gram based techniques

because the n-gram model just memorizes the training dataset. However, there are different

smoothing techniques that try to address this issue, but none of these techniques completely

eliminates this problem.

Neural language modeling (Bengio et al., 2003) models the probability of the next word

given the previous history (p(wi|wi−1, · · · , w0)) with a neural network, typically by using

an RNN. A neural language model (NLM) would also learn a distributed representation

for the words. This would enable the model to cluster the words that are similar or that

co-occur very often together closer in the Euclidean space. Visualizing and analyzing the

continuous representation of the word embeddings of the NLM can give us a good intuition

about the biases in the dataset (Bolukbasi, Chang, Zou, Saligrama, and Kalai, 2016), help

to debug the model and make analogies between different words (Mikolov et al., 2013). For

example given an analogy-making riddle, “man is to king as woman is to x” (denoted as

man : king :: woman : x), simple arithmetic of the embedding vectors finds that x := queen

is the best answer because:

man−woman ≈ king− queen

An RNN based LM (RNNLM) (Mikolov et al., 2013) can potentially keep an unbounded

history of the words that appears in the input sequence in its recurrent state. Typically,

RNNLM would learn to model the conditional distribution over words,

p(wt|w<t) ∝ y⊤t exp(Wof(ht−1, wt−1) + bo)), (3.1.3)

where yt is a one-hot encoded vector indicating one of the words in the target vocabulary.

Wo is a learned weight matrix and bo is a bias and they are the parameters of the logit layer.

f(·) is the function that computes the hidden state of the RNN.

35



The whole model is jointly trained to maximize the (conditional) log-likelihood of the

training corpus:

max
θ

1

N

T
∑

i=0

N
∑

n=1

log pθ(w
(n)
i |w(n)

<i ),

where θ denotes a set of all the tunable parameters.

The most common types of language modeling tasks are character-level and word-level

language modeling. The sequences of characters can be quite long and the RNN that is being

trained can be more prone to the difficulties of training RNNs over very long sequences, i.e.

vanishing and exploding gradients, than the word-level language modelling. On the other

hand, the word-level NLP tasks would be more prone to the issues related to the data-sparsity

which happens as a result of rare-words and misspellings/typos in the corpus.

Word-level language modeling would have to deal with the scalability issues coming

from the computation of the large-softmax at the output layer. Approaches like the "large

vocabulary trick" (Jean, Cho, Memisevic, and Bengio, 2015), "hierarchical softmax" (Morin

and Bengio, 2005) and "noise contrastive estimation" (Mnih and Kavukcuoglu, 2013) are

trying to solve this issue by approximating the softmax. A character-level NLM would not

suffer from those issues. However it can have memory and speed issues due to the length of

the sequences.

Language modeling is the most successful method of doing unsupervised learning in NLP.

It is relatively easy to train a language model on a monolingual corpus that can capture

syntactic dependencies relatively well, but it is difficult to obtain semantically coherent text

from an LM trained unconditionally on a monolingual corpus.

Evaluating Language Models: One of the best technique to evaluate a language model

is to have humans to evaluate the generated samples. Human evaluation can be expensive

and time-consuming. Thus, the general research direction has focused on methods that use

intrinsic evaluation techniques, such as evaluating based on the perplexity (PP (·) for

short). Perplexity would be computed in particular on a development set and it as the average

inverse probabilities of the words on a development set,

PP (w) = (p(w))−
1

|w| (3.1.4)

=

(

1

p(w0)
∏T

i=1 p(wi|wi−1, · · · , w0)

)
1

|w|

(3.1.5)

36





3.2. Encoder-Decoder Approaches

The main premise of the encoder-decoder approaches for the NLP is to learn a mapping

from a source sequence to the target sequence by first encoding the source sequence and

then decoding the target based on the summary of the source sequence (Cho et al., 2014a;

Sutskever et al., 2014; Kalchbrenner and Blunsom, 2013). In this sense the context can be

represented using different methods.

3.2.1. Representing the Context

It is common to use neural networks to obtain a representation of the source context.

A very common choice for that is to either use RNNs to get the summary or convolutional

neural networks (Kalchbrenner, Grefenstette, and Blunsom, 2014).

One of the simplest way to obtain the summary of the source sequence is to summarize it

via a recurrent neural network (Sutskever et al., 2014; Cho et al., 2014a), and the last state

of this encoder RNN can be used as a context. The context will be fed back into the decoder

RNN in order generate the target sequence. The general architecture is illustrated in Figure

3.2.

Instead of obtaining a single c for every time-step, it is possible to use a different ct for

every time-step t by using attention (Bahdanau et al., 2014). We will further discuss the

attention mechanism for the neural networks in the following sections of this thesis.

3.3. Machine Translation

Machine translation is one of the most challenging natural language processing task. It

has been one of the hallmark application of AI and a topic of philosophical debates for a long

time, for example the "Chinese Room Argument" discusses the possibility of true AI based

on "Machine Translation" (Cole, 2009).

One of the difficulties of machine translation originates from the difficulty in keeping

the semantics of the source sentence (X) fixed while translating it into a sentence in the

target language (Y). Mapping from source to target sentences is a many-to-many relationship.

Each sentence in the source language can have multiple translations and those sentences

do not have to be mutually exclusive in terms of semantics. The differences in terms of

word-orderings and the syntactic differences between different languages can also introduce

difficulties between language pairs.

Traditional natural language processing (NLP) approaches for Machine Translation involve

an alignment problem (can be related to a word or phrase alignment) which can require the

38





Word based translation techniques would require word reordering and phrase-based

models will require phrase reordering. In this case Inference corresponds to the actual task

of translating a given sentence x into a foreign sentence y∗. Learning is to estimate p(y|x)

from data.

Classical machine translation systems use n-gram based language models with expensive

search and reordering heuristics. Neural machine translation (NMT) proposes to use fully

neural network based algorithms to perform efficient machine translation without any burden

of running expensive alignment heuristics.

Neural machine translation (NMT) can be thought of as a language modeling in

which the RNNLM is conditioned on a sentence that is in a different language than the

one RNNLM is trying to generate in. Neural network based models (Cho et al., 2014a;

Sutskever et al., 2013) accomplish this by encoding the sequence of words in the source

language x = (x0, · · · , xTx
) for Tx = |x| by using a neural network (encoder) and generating

the translation in the target language, y = (y0, · · · , yTy
) for Ty = |y| with another neural

network (decoder). The whole model can be trained end to end to be able to maximize the

conditional probability of generating the translations in target language given the source,

log p(y|x) =
∑|y|

t=1
log p(yt|y< t,x) (3.3.3)

In order to learn the alignments, between the sequences, neural networks based methods

can exploit an attention mechanism to align the source and the target sequences. As suggested

by (Bahdanau et al., 2014), the model can learn the alignments and translation at the same

time in a completely end to end manner.

3.4. Text Summarization

Similar to the neural machine translation, text-summarization can be cast as a sequence

to sequence learning problem where the model tries to learn a mapping from a document

x =
(

x0, · · · , x|x|
)

to the summary s =
(

s0, · · · , s|s|
)

. In general there are two types of

summarization tasks that are widely studied,

(1) Extractive Summarization: approaches select parts of the source text, then arrange

them to form a summary.

(2) Abstractive Summarization: approaches use natural language generation to come

up with novel summaries which may include passages that are not in the source text.

Abstractive summarization, in general, is a fairly difficult problem and still remains

as largely unsolved (Nallapati et al., 2016a) in particular considering different ways of

40



reformulating the summary and sometimes the model might need to have generalized from

additional side information that does not exist in the input document. There have been

several deep learning based approaches recently that are proposed that achieves fairly good

performance on extractive summarization (Narayan, Papasarantopoulos, Lapata, and Cohen,

2017; Nallapati, Zhai, and Zhou, 2016b).

3.5. Question Answering

Human’s quest for knowledge has been an important journey that has contributed

advancements of the societies and civilizations. Question answering have been one of the

oldest application of NLP (Simmons, Klein, and McConlogue, 1964).

There are two common approaches for question-answering, text-based question an-

swering and knowledge-based question answering. The text-based QA systems use

text as the input data and use information retrieval (IR) techniques to find the relevant

documents. On the other hand, knowledge-based question answering techniques leverage

the information stored inside a knowledge-base where the information stored in a particular

structured form. For example, in Freebase (Bollacker, Evans, Paritosh, Sturge, and Taylor,

2008) each fact is represented in the form of triplets where each triplet has a subject, a

relationship and an object.

Below we will review some of the most popular techniques for text-based QA systems,

(1) Factoid Question Answering: Most of the current QA systems are focused on

solving the Factoid QA problems. Factoid QA basically aims to answer the questions

of the form "What is the capital of Brazil?", and the answer would be a single fact.

Iyyer, Boyd-Graber, Claudino, Socher, and Daumé III (2014) has proposed an RNN

based model to answer factual questions based on a question and a document. In

factoid QA systems usually, answer refers to a single word or a short phrase.

(2) Long-tail Question Answering: In the long-tail question answering more often

usually the answer to the question is a long sentence or a text. The answer to a

question such as "How do the magnets work?" would be both long and descriptive.

The questions or the answers can be abstract and based on common-sense knowledge

(folksonomy) rather than just depending on facts.

Machine Reading Comprehension has been an important research topic especially

among the researchers working on question answering. The ability to read a text and

accurately comprehend it is essential for both QA and NLU. There have been several works

and approaches recently that propose new datasets/tasks (Hermann et al., 2015; Rajpurkar

et al., 2016; Nguyen, Rosenberg, Song, Gao, Tiwary, Majumder, and Deng, 2016) and models

41



(Xiong, Zhong, and Socher, 2016a; Nam, Ha, and Kim, 2016) to address this issue. However

most of those tasks are overly simplistic for testing NLU since usually the answer already

exists in the document, the task boils down to become a pattern-matching or searching rather

than doing more abstract reasoning and over some of those tasks neural networks can already

achieve human-level performance (Chen, Bolton, and Manning, 2016a).

42



Chapter 4

PROLOGUE TO THE FIRST ARTICLE

4.1. Article Details

On integrating a language model into neural machine translation., Gulcehre,

Caglar, Orhan Firat, Kelvin Xu, Kyunghyun Cho, and Yoshua Bengio. Computer Speech &

Language 45 (2017): 137-148.

Personal Contributions:

The idea of using an external language model to improve the neural machine translation

models has been brought up first by Yoshua Bengio in a joint meeting we had after submitting

our first NMT paper (Cho et al., 2014a). Kyunghyun Cho suggested Orhan Firat and me

to try the idea of "Shallow Fusion" and "Deep Fusion" for IWSLT 2014 and OpenMT 2015

machine translation competitions. The idea of using control gates in the deep fusion was

mine. Orhan Firat and I sat down together and regularly performed pair-programming to

implement the several parts of the model. We have trained the models together for the

submission, but in the final submission, we used the language models that I have trained. We

have trained the translation models together with Orhan Firat using different hyperparameter

configurations and chose the best ones based on the BLEU score on the dev-set to put in

the paper. I wrote the initial draft of the paper for ACL 2015 and Orhan Firat, Kelvin Xu

and Kyunghyun Cho did corrections and additions on that draft. Our paper was rejected

from ACL 2015. Then we have decided to submit our paper to Elsevier CSL Journal on

Special Issue for Neural Machine Translation. For that submission, I had to rerun most of

the deep-fusion and shallow-fusion experiments with different hyperparameters and rewrote

large part of the paper with the help of Orhan Firat and Kelvin Xu.

4.2. Context

We first started trying the ideas presented in this paper for IWSLT 2014 and OpenMT

2015 machine translation competitions. At the time, "Neural Machine Translation" was

just an emerging topic and neural machine translation for the languages besides English,

43



French and German was still an explored territory. The neural machine translation systems

was still behind the statistical machine translation systems with hand-coded features. One

reason for that was the statistical machine translation systems use the largely available

mono-lingual corpora. We have proposed approaches that extends the attention model

proposed in (Bahdanau et al., 2014) with a shallow and deep fusion techniques.

We have first submitted our paper to ACL 2015 and then EMNLP 2015. However, our

initial submissions to those conferences were rejected, mainly due to the lack of clarity in the

writing. In late 2015, we have updated and largely rewritten the paper and submitted to

Elsevier (Computer Speech and Language) journal with additional results and overview of all

recent approaches explored after our paper first published on arXiv.

4.3. Contributions

The initial arXiv version of our paper was one of the first application of Neural Machine

Translation system on a wide variety of languages with highly inflectional structures such as

Turkish.

We have proposed two different ways to integrate unilingual resources into the language

model of the neural machine translation models. In shallow fusion, we have trained an LSTM

language model on the unilingual data and use its predictions to combine at the output

level. In the deep fusion, we have used the LSTM language model trained on the unilingual

data in the representation level. Both approaches seemed improve our results both for the

low-resource, e.g., Turkish to English IWSLT 2014 and high resource tasks such as WMT

German to English.

4.4. Recent Developments

After our initial manuscript has been published on arXiv, there has been several related

works that came up on integrating monolingual data for machine translation and low-resource

translation. Sennrich et al. (Sennrich, Haddow, and Birch, 2015) proposed two strategies

for low resource neural machine translation by making use of monolingual data. The first

approach, called “dummy source sentences”, is to train the decoder of neural machine

translation with a sentence from a monolingual corpus while setting all the context vectors ct

(see Eq. (5.3.2)) to all-zero vectors. The second approach uses “synthetic source sentences”,

where each sentence from a target-side monolingual corpus is translated to a synthetic source

sentence by a reverse translation model.

44



Luong et al. (Luong, Le, Sutskever, Vinyals, and Kaiser, 2015c) proposed a multitask

neural machine translation model. In this multi-task model, it is possible to include multiple

source languages as well as target languages. They experimented with a setting where

monolingual translation paths (sequence autoencoders) were added to a neural translation

model. The experiment revealed that the translation quality improves by jointly training the

translation and autoencoding paths.

There have been two recent approaches to low-resource translation using neural machine

translation. First, Firat et al. (Firat, Cho, and Bengio, 2016) introduced a multi-way,

multilingual neural machine translation model with a shared attention mechanism. They

empirically showed that the proposed multilingual model was able to translate between

up to ten language pair–directions with the translation quality comparable to ten separate

single-pair translation models.

45





Chapter 5

ON INTEGRATING A LANGUAGE MODEL INTO

NEURAL MACHINE TRANSLATION

5.1. Introduction

Neural machine translation (NMT) is an end-to-end neural network based approach to

statistical machine translation (Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014; Cho

et al., 2014a; Bahdanau et al., 2014) which has recently been able to achieve state-of-the-art

translation quality on many language pairs (Sutskever et al., 2014; Jean, Cho, Memisevic,

and Bengio, 2014; Chung et al., 2016; Luong and Manning, 2016). For the recent advances

made since the publication of the initial technical report version of this manuscript (Gulcehre,

Firat, Xu, Cho, Barrault, Lin, Bougares, Schwenk, and Bengio, 2015), we refer readers to

Sec. 5.2.

A large part of the recent successes of NMT has been due to the availability of large

amounts of high quality, sentence aligned corpora. In the case of low resource language

pairs however, or in a task with severe domain restrictions, large parallel corpora may not

be available. In contrast, monolingual corpora is almost always abundant and universally

available. Despite being “unlabeled”, monolingual corpora still exhibit rich linguistic structure

that can be useful for machine translation.

In this work, we explore the question of how to leverage monolingual corpora. Specifically,

we explore two ways of integrating a language model (LM) trained only on monolingual data

(target language) into an NMT system. First, by combining the LM and NMT system at the

output level (which we term shallow fusion). Second, by fusing the LM and NMT at the level

of their hidden states, enabling us to combine them nonlinearly (which we term deep fusion).

We evaluate the proposed fusion strategies under two distinct settings. The first setting

involves low-resource translation tasks (Turkish→ English and Chinese→ English SMS Chat),

where training an NMT system with a small parallel corpus alone often leads to severe over-

fitting. Second, we further evaluate our methods on higher-resource tasks (German→English

and Czech→English). In addition to observing an improvement in translation quality on

47



the small scale tasks, we observe an improvement in the large scale setting. In addition, our

experiments show that our deep fusion method of fusing the LM and NMT systems more

significantly improves translation quality than the shallow fusion method.

In the following section (Sec. 5.2), we review recent work in neural machine translation.

We present our basic model architecture in Sec. 7.3 and describe our shallow and deep fusion

approaches in Sec. 5.4. Next, we describe our datasets and experiments in Sec. 5.5–5.6.

5.2. Background: Neural Machine Translation

Statistical machine translation (SMT) systems maximize the conditional probability

p(y | x) of a correct target translation y given a source sentence x. This is done by

maximizing separately a language model p(y) and the (inverse) translation model p(x | y)

component by using Bayes’ rule:

p(y | x) ∝ p(x | y)p(y).

This decomposition into a language model and translation model are meant to make full

advantage of available corpora, i.e. monolingual corpora for fitting the language model and

parallel corpora for the translation model. In reality, SMT systems tend to model log p(y | x)

directly by linearly combining multiple features by using a so-called log-linear model:

log p(y | x) =
∑

j

fj(x,y) + C, (5.2.1)

where fj is the j-th feature based on both or either of the source and target sentences, and

C is a normalization constant which is often ignored. These features include, for instance,

pair-wise statistics between two sentences/phrases. The log-linear model is fitted to data, in

most cases, by maximizing an automatic evaluation metric other than an actual conditional

probability, such as BLEU.

Neural machine translation, on the other hand, aims at directly optimizing log p(y | x)

jointly with the feature extraction as well as the normalization constant. This is typically

done under the encoder-decoder framework (Kalchbrenner and Blunsom, 2013; Cho et al.,

2014a; Sutskever et al., 2014) consisting of neural networks. The first network encodes the

source sentence x into a continuous-space representation from which the decoder produces

a target translation sentence. By using RNN architectures equipped to learn long-term

dependencies such as gated recurrent units (GRU, (Cho et al., 2014a)) or long short-term

memory (LSTM, (Hochreiter and Schmidhuber, 1997)), the whole system can be trained

end-to-end (Cho et al., 2014a; Sutskever et al., 2014).

48



Once the model learns the conditional distribution or translation model, given a source

sentence we can find a translation that approximately maximizes the conditional probability

using, for instance, a beam search algorithm.

5.3. Model Description

We use the RNNSearch (Bahdanau et al., 2014) model that learns to jointly (soft-)align

and translate as the baseline neural machine translation system in this paper, we will refer it

as “NMT”.

The encoder of the NMT is a bidirectional RNN that consists of a forward and a

backward RNN (Schuster and Paliwal, 1997). The forward RNN reads the input sentence

x = (x1, . . . , xT ) from left to right, resulting in a sequence of hidden states (
−→
h 1, . . . ,

−→
h T ). The

backward RNN reads x in the opposite direction and outputs (
←−
h 1, . . . ,

←−
h T ). We concatenate

forward and the backward hidden states at each time step to build a sequence of “annotation”

vectors (h1, . . . ,hT ), where

h⊤j =
[←−

h
⊤
j ;
−→
h
⊤
j

]

.

Each annotation vector hj encodes the information about the j-th word with respect to all

the other surrounding words in the sentence.

In the decoder, at each time-step t, a soft-alignment mechanism first decides on which

annotation vectors are most relevant. To do so, a relevance weight αtj for each of the j-th

annotation vector are computed with a feedforward neural network f that takes as input hj,

the previous decoder’s hidden state st−1 and the previous output yt−1:

etj = f(st−1,hj,yt−1).

The outputs etj are normalized over the sequence of the annotation vectors:

αtj =
exp(etj)

∑T
k=1 exp(etk)

, (5.3.1)

and αtj is a relevance score, or an alignment weight, of the j-th annotation vector.

The relevance scores are used to obtain the context vector ct of the t-th word at the target:

ct =
T
∑

j=1

αtjhj , (5.3.2)

49



Then, the decoder’s hidden state sTM
t at time t is computed from the previous hidden

state sTM
t−1, the context vector ct and the previously translated word yt−1:

sTM
t = fr(s

TM
t−1,yt−1, ct), (5.3.3)

where fr is the gated recurrent unit (Cho et al., 2014a).

We use a deep output layer (Pascanu, Gulcehre, Cho, and Bengio, 2014) to compute the

conditional distribution over words:

p(yt|y<t,x) ∝ y⊤t exp((Wofo(s
TM
t ,yt−1, ct) + bo)), (5.3.4)

where yt is a one-hot encoded vector indicating one of the words in the target vocabulary.

Wo is a learned weight matrix and bo is a bias. fo is a single-layer feedforward neural

network with a two-way maxout non-linearity (Goodfellow, Warde-Farley, Mirza, Courville,

and Bengio, 2013a).

The whole model, including both the encoder and decoder, is jointly trained to maximize

the (conditional) log-likelihood of the bilingual training corpus:

max
θ

1

N

N
∑

n=1

log pθ(y
(n)|x(n)),

where the training corpus is a set of (x(n),y(n))’s, and θ denotes a set of all the tunable

parameters.

5.4. Integrating Language Model into the Decoder

We propose two approaches for integrating a neural language model (NLM) into a neural

machine translation system. Without loss of generality, we use language models implemented

with recurrent neural networks (RNNLM, (Mikolov, Kombrink, Deoras, Burget, and Cernocky,

2011)) which are equivalent to the decoder described in the previous section except that it is

not conditioned on a context vector (i.e., ct = 0 in Eqs. (7.3.2)–(11.3.6)).

In the following sections, we assume that both an NMT model (on parallel corpora) as

well as a recurrent neural network language model (RNNLM, on larger monolingual corpora)

have been trained separately before integration. We denote the hidden state at time t of the

RNNLM with sLM
t .

5.4.1. Shallow Fusion

Shallow fusion is inspired by the way that monolingual language models are incorporated

in the decoders of conventional SMT systems (Koehn, 2010; Mohit, Hwa, and Lavie, 2010).

50



At each time step, a translation model proposes a set of candidate words. The candidates are

then scored according to the weighted sum of the scores given by the translation model and

the language model.

More specifically, at each time step t, the translation model (in this case, the NMT)

computes the score of every possible next word for all the hypotheses
{

y
(i)
≤t−1

}

. Score of each

prediction is a summation of the score of the hypothesis and the score given by the NMT for

the next word. All these new hypotheses (a hypothesis from the previous timestep with a

next word appended at the end) are then sorted according to their respective scores, and the

top K ones are selected as candidates
{

ŷ
(i)
≤t

}

i=1,...,K
.

We then rescore these hypotheses with the weighted sum of the scores by the NMT and

RNNLM, where we only need to recompute the score of the “new word” at the end of each

candidate hypothesis. The score of the new word is computed according to the Eq. 5.4.1,

log p(yt = k) = log pTM(yt = k) + β log pLM(yt = k), (5.4.1)

where β is a scalar hyper-parameter that needs to be tuned to maximize the translation

performance on a development set.

See Fig. 5.1 (a) for illustration.

5.4.2. Deep Fusion

In deep fusion, we integrate the RNNLM to the decoder of the NMT by concatenating

their hidden states (see Fig. 5.1 (b)). The model is then finetuned to use the hidden states

from both of these models when computing the output probability of the next word (see

Eq. (11.3.6)). Unlike a vanilla NMT system (without any language model component), the

hidden layer of the deep output takes as input the hidden state of the RNNLM in addition

to the NMT’s decoder, the previous word, and the context such that

p(yt|y<t,x) ∝ exp(y⊤t (Wofo(s
LM
t , sTM

t ,yt−1, ct) + bo)), (5.4.2)

where we use the superscripts LM and TM to denote the hidden states of the RNNLM and

NMT respectively.

During the finetuning, we only update the parameters that are used to parameterize

the output from Eq. (5.4.2). This is to ensure that the features learned by the LM from

monolingual corpora are not overwritten. It is possible to use monolingual corpora as well

when we finetune both models together, but in this paper, we only finetune the output weights

using only the parallel corpora.

51





Chinese English

# of Sentences 436K
# of Unique Words 21K 150K
# of Total Words 8.4M 5.9M

Avg. Length 19.3 13.5
(a) Zh→En

Turkish English

361K
96K⋆ 95K

11.4M⋆ 8.1M
31.6 22.6
(b) Tr→En

Czech English

# of Sentences 12.1M
# of Unique Words 1.5M 911K
# of Total Words 151M 172M

Avg. Length 12.5 14.2
(c) Cs→En

German English

4.1M
1.16M† 742K
11.4M† 8.1M

24.2 25.1
(d) De→En

Tab. 5.1. Statistics of the Parallel Corpora. ⋆: After segmentation, †: After
compound splitting. The segmentation on Turkish sentences and the compound
splitting on German result in longer sentences.

where σ is a logistic sigmoid function. vg and bg are learned parameters.

The output of the controller is then multiplied with the hidden state of the LM. This lets

the decoder use the signal from the NMT fully while the controller adjusts the magnitude of

the signal coming from LM.

In our experiments, we empirically found that it was better to initialize the bias bg to a

negative value. This allows the decoder to decide the importance of the LM only when it is

deemed necessary.1

5.5. Datasets

We evaluate the proposed approaches for integrating monolingual LM into NMT on four

different language pairs: Chinese to English (Zh→En), Turkish to English (Tr→En), German

to English (De→En) and Czech to English (Cs→En). We consider Tr→En (IWSLT’14) and

Zh→En (OpenMT’15) tasks as low-resource translation tasks. By including De→En and

Cs→En WMT’15 translation tasks in our experiments, we evaluate the performance of our

proposed model on high-resource translation tasks as well. In the following sections, we

describe each one of these datasets in more details.

1 In all our experiments, we set bg = −1 to ensure that gt is initially 0.26 on average.

53



5.5.1. Parallel Corpora

Zh→En: OpenMT’15

In our experiments, we use the parallel corpora that are provided as part of the NIST

OpenMT’15 Challenge. Sentence-aligned pairs from three domains are combined to form a

training set: (1) SMS/CHAT and (2) conversational telephone speech (CTS) from DARPA

BOLT Project, and (3) newsgroups/weblogs from DARPA GALE Project. In total, the

training set contains 430K sentence pairs (see Table 5.1 for the detailed statistics). We train

models with this training set and the development set (the concatenation of the provided

development and tune sets from the challenge) and evaluate them on the test set. The domain

of the development and test sets is restricted to CTS.

Preprocessing

Importantly, we did not segment the Chinese sentences and considered each character as a

symbol, unlike other approaches which use a separate segmentation tool to segment Chinese

characters into words. Any consecutive non-Chinese characters such as Latin alphabets were,

however, considered as an individual word. The only preprocessing we did on the English

side of the corpus was simple tokenization using the tokenizer from Moses.2

Tr→En: IWSLT’14

We used the WIT parallel corpus (Cettolo, Girardi, and Federico, 2012) and SETimes

parallel corpus made available as a part of IWSLT’14 (machine translation track). The corpus

consists of the sentence-aligned subtitles of TED and TEDx talks, and we concatenated

dev2010 and tst2010 to form a development set, and tst2011, tst2012, tst2013 and tst2014 to

form a test set.

Preprocessing

As done in the case of Zh→En, initially we removed all special symbols from the corpora

and tokenized the Turkish side with the tokenizer provided by Moses. We segmented each

Turkish sentence into a sequence of sub-word units using Zemberek3 followed by morphological

disambiguation on the morphological analysis (Sak, Güngör, and Saraçlar, 2007) to overcome

the exploding vocabulary due to the rich inflections and derivations in Turkish. We removed

any non-surface morphemes corresponding to, for instance, part-of-speech tags.

2 https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
3 https://github.com/ahmetaa/zemberek-nlp

54



5.5.2. Cs→En and De→En: WMT’15

For the training of our models, we used all the available training data provided for Cs→En

and De→En in the WMT’15 competition. We used newstest2013 as a development set and

newstest2014 for a test set.

Preprocessing

We tokenized the datasets with the tokenizer from Moses decoder first. Sentences longer

than eighty words and those that have large mismatch between the lengths of source and

target sentences were removed from the training set. Then, we filtered the training data by

removing sentence pairs in which one sentence (or both) was written in a wrong language by

using a language detection toolkit from (Shuyo, 2010), unless the sentence had 5 words or

less. For De→En, we also split compounds in the German side by using Moses.

5.5.3. Monolingual Corpora

The English Gigaword corpus by the Linguistic Data Consortium (LDC), which mainly

consists of newswire documents was allowed in both OpenMT’15 and IWSLT’14 challenges for

language modeling. We used the tokenized Gigaword corpus without any other preprocessing

step to train three different RNNLM’s to fuse into NMT for Zh→En, Tr→En and the WMT’15

translation tasks (De→En and Cs→En).

5.6. Experimental Settings

We compare results of each model after finetuning their hyperparameters for each language

pair separately on the development set. We treat the type of optimization algorithm as a

hyperparameter of the model, and as a result, use a different optimization algorithm for each

model.

5.6.1. Training Procedure

5.6.1.1. Neural Machine Translation

The input and output of the network are sequences of one-hot vectors whose dimensionality

correspond to the sizes of the source and target vocabularies, respectively. We constructed the

vocabularies with the most common words in the parallel corpora.Each word was projected

into a 620-dimensional word embedding for both the encoder and decoder. We chose the size

of the recurrent units for Zh→En and Tr→En to be 1, 200 and 1, 000 respectively. The sizes

55



of the vocabularies for Chinese, Turkish and English were 10K, 30K, and 40K, respectively,

for the Tr→En and Zh→En tasks. For our Cs→En and De→En dataset, we employed the

importance sampling based technique introduced in Jean et al. (2014) in order to train a

model with a large vocabulary (size 200k).

Each model was optimized using Adadelta (Zeiler, 2012) with minibatches of 80 sentence

pairs. At each update, we normalized the gradient such that if the L2 norm of the gradient

exceeds 5, the gradients are renormalized to have a magnitude of 5 (Pascanu et al., 2013a). For

the non-recurrent layers (see Eq. (11.3.6)), we used dropout (Hinton, Srivastava, Krizhevsky,

Sutskever, and Salakhutdinov, 2012) and additive Gaussian noise (mean 0 and std. dev.

0.001) on each parameter (Graves, 2011) to prevent overfitting. The training set was shuffled

at the end of every epoch. Training was early-stopped to maximize the performance of the

development set measured by BLEU.4 We initialized all recurrent weight matrices as random

orthonormal matrices.

5.6.1.2. Language Model

We trained three RNNLM’s with 2, 400 long short-term memory (LSTM, (Hochreiter and

Schmidhuber, 1997)) units on English Gigaword Corpus using the vocabularies constructed

separately from the English sides of Zh→En and Tr→En corpora respectively. The third

language model was trained using 2, 000 LSTM units on the English Gigaword Corpus again

but with a vocabulary constructed from the intersection the English sides of Cs→En and

De→En. The parameters of the Zh→En and Tr→En language models were optimized using

RMSProp (Tieleman and Hinton, 2012), and the Adam optimizer (Kingma and Welling,

2014) was used for the shared Cs→En and De→En model. Any sentence with more than

ten percent of its words are out of vocabulary was discarded from the training set. We

early-stopped any training run based upon the perplexity of development set.

5.6.2. Shallow and Deep Fusion

5.6.2.1. Shallow Fusion

The hyperparameter β in Eq. (5.4.1) was selected to maximize the translation performance

on the development set, from the range between 0.001 and 0.1 via a grid search (larger β’s

did not help.) In our preliminary experiments, we found that it is important to re-normalize

the softmax of the LM without the end-of-sequence and out-of-vocabulary symbols (β = 0

4 We compute the BLEU score using the multi-blue.perl script from Moses on tokenized sentence pairs for
early stopping.

56



in Eq. (5.4.1).) We speculate that this may be due to the difference in sentence lengths in

addition to domain differences.

5.6.2.2. Deep Fusion

We experimented with different learning algorithms in order to obtain the optimal

performance for our model. The parameters of the deep output layer (Eq. (5.4.2)) as well

as the controller (see Eq. (5.4.3)) were finetuned for Zh→En using Adam adaptive learning

rate algorithm, and RMSProp with momentum for Tr→En. During the finetuning, the

dropout probability and the standard deviation of the weight noise were set to 0.56 and 0.005,

respectively. Based on our preliminary experiments, we reduced the level of regularization

after the first 10K updates. In Cs→En and De→En tasks with large vocabularies, the model

parameters were finetuned using Adadelta while scaling down the magnitude of the update

steps by 0.01.

5.6.2.3. Handling Rare Words

On the De→En and Cs→En translation tasks, we replaced the unknown words generated

by the NMT with the words that the NMT assigned highest relevance weight to in the source

sentence (Eq. (5.3.1).) We copied the selected source word in the place of the corresponding

unknown token in the target sentence. This method is similar to the technique from Luong

et. al. (Luong, Sutskever, Le, Vinyals, and Zaremba, 2014) on addressing rare words problem.

Instead of relying on an external alignment tool, we used the attention mechanism of the

NMT model to extract alignments.

5.7. Results and Analysis

In our experiments, we first provide results on tasks that have low-resources, such

as Tr→En IWSLT ’14 and Zh→En OpenMT’15 (SMS and call center transcripts.) We

also provide results on high-resource tasks, such as De→En and Cs→En, showing that

incorporating language models to the decoder of an NMT system can improve the results of

these models as well.

5.7.1. Zh→En: OpenMT’15

As a baseline, we trained phrase-based and hierarchical SMT systems (Koehn, Och,

and Marcu, 2003; Chiang, 2005) with/without re-scoring by an external neural language

model (CSLM, (Schwenk, 2007)), in addition to the NMT based systems. We present the

results in Table 5.2.

57



SMS/CHAT CTS
Dev Test Dev Test

PB 15.5 14.73 21.94 21.68
+ CSLM 16.02 15.25 23.05 22.79
HPB 15.33 14.71 21.45 21.43
+ CSLM 15.93 15.8 22.61 22.17

NMT 17.32 17.36 23.4 23.59
Shallow 16.51 16.69 23.09 23.5
Deep 17.58 17.64 23.78 23.5

Tab. 5.2. Results on the task of Zh→En PB and HPB stand for the phrase-
based and hierarchical phrase-based SMT systems, respectively. The results
reported in this table are obtained with multi-bleu.perl script.

We observed that integrating a monolingual LM with deep fusion (see Sec. 5.4.2) improved

performance in general, except for the CTS task. We noticed that the NMT-based models,

regardless of whether the LM was integrated or not, outperformed the phrase-based SMT

systems.

5.7.2. Tr→En: IWSLT’14

In Table 5.3, we present our results on Tr→En. Compared to Zh→En, we saw a greater

performance improvement (+1.19 BLEU) from the basic NMT to the NMT integrated with

the LM under the proposed method of deep fusion. Furthermore, by incorporating the LM

using the deep fusion, the NMT systems were able to outperform the best previously reported

result (Yılmaz, El-Kahlout, Aydın, Ozil, and Mermer, 2013) by up to +2.0 BLEU points.

58



Development Set Test Set
dev2010 tst2010 tst2011 tst2012 tst2013 Test 2014

Previous Best (Single) 15.33 17.14 18.77 18.62 18.88 -
Previous Best (Combination) - 17.34 18.83 18.93 18.70 -
NMT 14.05 (14.50) 17.64 (18.01) 17.84 (18.40) 18.20 (18.77) 19.50 (19.86) 18.09 (18.64)

NMT+LM (Shallow) 14.08 (14.44) 17.65 (17.99) 17.82 (18.48) 18.20 (18.80) 19.53 (19.87) 18.22 (18.66)

NMT+LM (Deep) 15.30 (15.69) 18.92 (19.34) 19.50 (20.17) 19.57 (20.23) 20.92 (21.34) 20.04 (20.56)

Tab. 5.3. We provide the results obtained with both multi-bleu.perl (in paranthesis) and mteval-v13a.pl scripts.
On all the test sets, our deep fusion approach outperforms the other methods.

59



De→En Cs→En
Dev Test Dev Test

NMT Baseline 25.51 23.61 21.47 21.89
Shallow Fusion 25.53 23.69 21.95 22.18
Deep Fusion 25.88 24.00 22.49 22.36

Tab. 5.4. Results for De→En and Cs→En translation tasks on WMT’15
dataset. Although Cs→En and De→En models are trained on high-resource
corpora, we observe substantial improvements on the test-sets of both corpora.
The results in this table are obtained with multi-blue.perl script.

5.7.3. Cs→En and De→En: WMT-15

We provide the results for Cs→En and De→En in Table 5.4. Shallow fusion achieved

+0.09 and +0.29 BLEU score improvements respectively on De→En and Cs→En over the

baseline NMT model. We observed 0.39 and 0.47 BLEU score improvements over the NMT

baseline by using deep fusion.

5.7.4. Analysis: Effect of Language Model

Our results that we report in this paper suggest a heavy dependency on the degree of

similarity between the domain of monolingual corpora and the target domain of translation

for performance improvement.

In the case of Zh→En, intuitively, we can tell that the style of writing in both SMS/CHAT,

as well as the conversational speech will be different from that of news articles (which

constitutes the majority of the English Gigaword corpus.) Empirically, this is reflected in

the high development set perplexity under our LM. For instance, see the column Zh→En of

Table 5.5. This explains the marginal improvement we observed in Sec. 5.7.1.

On the other hand, in the case of Tr→En, the similarity between the domains of the

monolingual corpus and parallel corpora is higher (see the column Tr→En of Table 5.5.)

This led to a significantly larger improvement in translation performance by integrating the

monolingual language model than the case of Zh→En. Similarly, we observed the improvement

by both shallow and deep fusion in the case of De→En and Cs→En, where the perplexity on

the development set was much lower.

Unlike shallow fusion, deep fusion allows a model to selectively incorporate the information

from the additional LM by the controller mechanism from Sec. 5.4.2.1. Although this controller

mechanism works on per-word basis, it can be expected that if the LM is a better model

of the target domain, the controller mechanism will be more frequently active on average,

60



i.e., E[gt] ≫ 0. From Table 5.5, we can see that, on average, the controller mechanism is

most active with De→En and Cs→En, where the additional LM was able to model the target

sentences best. This effectively means that the deep fusion allows the model to be more

robust to the domain mismatch between the TM and LM, thus explaining why deep fusion

was more successful than shallow fusion our the experiments.

Zh→En Tr→En De→En Cs→En

Perplexity 223.68 163.73 78.20 78.20
Average g 0.23 0.12 0.28 0.31
Std Dev g 0.0009 0.02 0.003 0.008

Tab. 5.5. Perplexity of RNNLM’s on the development sets and the statistics of
the controller gating mechanism g. The higher perplexities observed in Zh-En
and Tr-En are due to the domain mismatch in Zh-En and Tr-En.

5.8. A Review of Recent Advances in NMT

Since we proposed the fusion methods in the earlier technical report Gulcehre et al. (2015),

many advances have been made in the field of neural machine translation, more specifically in

the context of integrating monolingual corpora and low-resource translation. In this section,

we review some of the related works and their relation to our proposal.

Incorporating Monolingual Corpora

Sennrich et al. (Sennrich et al., 2015) proposed two strategies for low resource neural machine

translation by making use of monolingual data. The first approach, called “dummy source

sentences”, is to train the decoder of neural machine translation with a sentence from a

monolingual corpus while setting all the context vectors ct (see Eq. (5.3.2)) to all-zero vectors.

The second approach uses “synthetic source sentences”, where each sentence from a target-side

monolingual corpus is translated to a synthetic source sentence by a reverse translation model.

These pseudo-parallel sentence pairs are mixed into the existing parallel corpus and used

to train an neural translation model. Both of these approaches, and especially the latter

approach based on synthetic source sentences, were shown to improve the translation quality

significantly on Tr-En, En-De and De-En. Their approaches are orthogonal to the ones

proposed in this paper, and it is left as a future work to investigate the combination of these

approaches.

Luong et al. (Luong et al., 2015c) proposed a multitask neural machine translation model.

In this multi-task model, it is possible to include multiple source languages as well as target

languages. They experimented with a setting where monolingual translation paths (sequence

61



autoencoders) were added to a neural translation model. The experiment revealed that the

translation quality improves by jointly training the translation and autoencoding paths. Their

work is however limited to a simple encoder-decoder model without the attention mechanism

which has proven to be crucial in getting a good neural translation model. This approach

based on multiple tasks is orthogonal to the proposed deep and shallow fusion techniques as

well.

Low-Resource Translation

There have been two recent approaches to low-resource translation using neural machine

translation. First, Firat et al. (Firat et al., 2016) introduced a multi-way, multilingual neural

machine translation model with a shared attention mechanism. They empirically showed

that the proposed multilingual model was able to translate between up to ten language

pair–directions with the translation quality comparable to ten separate single-pair translation

models. In their paper, they observed that the quality of low-resource translation was

improved when trained as a part of the multilingual model. It will be an interesting future

research direction in which the fusion techniques proposed here and the multi-way, multilingual

model are combined.

More recently, Zoph et al. (Zoph, Deniz, Jonathan, and Knight, 2016) demonstrated a

transfer learning approach to low-resource translation. They first train a neural machine

translation model with a large parallel corpus whose target-side matches that of the target

low-resource language pair. Then, this model, or its part, is further finetuned on a small

parallel corpus of the target task. They observed significant improvements with a variety

of languages, including Hausa, Turkish, Uzbek and Urdu, when the model pretrained with

Fr-En was used as an initial point. Again, it is certainly possible to incorporate the proposed

fusion techniques with this transfer learning approach, and we leave it as a future work.

5.9. Conclusion and Future Work

In this paper, we propose and compare two methods–shallow and deep fusion– for

incorporating monolingual corpora into an existing neural translation system. We empirically

evaluate these approaches on low-resource translation (Tr→En), focused-domain translation

(Zh→En, SMS/Chat and conversational speech) and high-resource translation (Cs→En and

De→En) tasks. On the first two tasks, we observed that the proposed deep fusion improves

the translation quality by up to +2.0 BLEU against the existing phrase-based statistical

machine translation systems. On the latter two, we observed up to +0.47 BLEU improvement

over the neural translation baseline without using any monolingual corpus.

62



Our analysis revealed that the performance improvement by incorporating an external

language model highly depends on the similarity between the domains of the monolingual

corpus and the target language. When the domains match well, as in the cases of De-En

and Cs-En, both the shallow and deep fusion methods worked well. On the other hand, the

deep fusion significantly outperformed the shallow fusion when the domains did not match

well (Zh-En). We conjecture that this is due to the adaptive mechanism built into the deep

fusion that allows the neural translation model to selectively incorporate information from

the language model.

63





Chapter 6

PROLOGUE TO THE SECOND ARTICLE

6.1. Article Details

Pointing the unknown words, Gulcehre, Caglar, Sungjin Ahn, Ramesh Nallapati,

Bowen Zhou, and Yoshua Bengio, ACL 2016.

Personal Contributions:

I came up with the idea of using a pointing or copying mechanism after reading the

paper on learning algorithmic tasks by using sequence to sequence models with a pointing

mechanism as proposed by Vinyals, Fortunato, and Jaitly (2015) in the summer of 2015 and

shared this idea with my supervisor Yoshua Bengio in the form of a draft. Yoshua gave me

useful feedback on how to train the model easily. In October 2015, I have started an internship

at IBM and decided to work on this idea during my internship. However, throughout my

internship in the first few months, I had to focus on a different project. However, in the

last few weeks of my internship, I have implemented the algorithm in the paper and started

experimenting with that on some toy tasks, including on the bAbI (Weston, Bordes, Chopra,

and Mikolov, 2015b) dataset for episodic QA. Ramesh Nallapati implemented the pointer

Softmax for summarization and has run the experiments in the paper. I had a separate

implementation from Ramesh in Montreal and run the experiments on NMT and the toy task

in the paper. Sungjin Ahn and I have written the large part of the paper. Ramesh Nallapati

wrote the large part of the section on Summarization experiments.

6.2. Context

Luong, Sutskever, Le, Vinyals, and Zaremba (2015a) have proposed an effective method

to address the rare-world problem by using an external alignment tool and Vinyals et al.

(2015) proposed a method to predict the location of an input used to predict the next word.

We have decided to combine both of these ideas to create a generic algorithm that can learn

to point at the particular words in the context to predict the output, considering that the

rare words to be predicted usually exist in the context sequence in most NLP tasks. Our

65



approach uses a learned gating mechanism that gates the decision of whether to predict the

word from a short list of words or just copying from the source context.

In parallel to our work, Gu, Lu, Li, and Li (2016) and Cheng and Lapata (2016) proposed

different approaches to learn to copy the rare words from source to target and both papers

analyzed their models on summarization tasks.

Our paper is published at ACL 2016 which is one of the most known conference in the

field of natural language processing. The paper received a wide range of interest from NLP

community and the method is widely adopted and it has more than 60 citations right now.

6.3. Contributions

We proposed a novel way to deal with the rare-words or unseen words during the training

of the NMT model. Our model basically uses two softmax layers and depending on the

context it decides to use either to predict the location of the word from the source side or

directly predict the word itself from the shortlist.We observed improvements on both NMT

and Summarization tasks.

6.4. Recent Developments

The pointing mechanism for the NLP introduced in our paper has been successful and it

got adopted into many different applications of NLP. Text summarization has been a very

popular application of this (See, Liu, and Manning, 2017; Nallapati et al., 2016b).

Recently (Merity, Xiong, Bradbury, and Socher, 2016) has extended our approach to

unconditional language modelling tasks. Grave, Joulin, and Usunier (2016) proposed a

method using a neural cache to deal with the problem of rare words.

Extending generative models with an external memory has also been shown to improve the

quality of the generated samples of those models (Gemici, Hung, Santoro, Wayne, Mohamed,

Rezende, Amos, and Lillicrap, 2017).

66



Chapter 7

POINTING THE UNKNOWN WORDS

7.1. Introduction

Words are the basic input/output units in most of the NLP systems, and thus the ability

to cover a large number of words is a key to building a robust NLP system. However,

considering that (i) the number of all words in a language including named entities is very

large and that (ii) language itself is an evolving system (people create new words), this can

be a challenging problem.

A common approach followed by the recent neural network based NLP systems is to

use a softmax output layer where each of the output dimension corresponds to a word

in a predefined word-shortlist. This is because computing high dimensional softmax is

computationally expensive, in practice the shortlist is limited to have only top-K most

frequent words in the training corpus. All other words are then replaced by a special word,

called the unknown word (UNK).

The shortlist approach has two fundamental problems. The first problem, which is known

as the rare word problem, is that some of the words in the shortlist occur less frequently

in the training set and thus are difficult to learn a good representation, resulting in poor

performance. Second, it is obvious that we can lose some important information by mapping

different words to a single dummy token UNK. Even if we have a very large shortlist including

all unique words in the training set, it does not necessarily improve the test performance,

because there still exists a chance to see an unknown word at test time. This is known as the

unknown word problem. In addition, increasing the shortlist size mostly leads to increasing

rare words due to Zipf’s Law.

These two problems are particularly critical in language understanding tasks such as

factoid question answering Bordes, Usunier, Chopra, and Weston (2015) where the words

that we are interested in are often named entities which are usually unknown or rare words.

In a similar situation, where we have a limited information on how to call an object

of interest, it seems that humans (and also some primates) have an efficient behavioral

67



mechanism of drawing attention to the object: pointing Matthews, Behne, Lieven, and

Tomasello (2012). Pointing makes it possible to deliver information and to associate context

to a particular object without knowing how to call it. In particular, human infants use

pointing as a fundamental communication tool Tomasello, Carpenter, and Liszkowski (2007).

In this paper, inspired by the pointing behavior of humans and recent advances in the

attention mechanism Bahdanau, Cho, and Bengio (2015) and the pointer networks Vinyals

et al. (2015), we propose a novel method to deal with the rare or unknown word problem.

The basic idea is that we can see in many NLP problems as a task of predicting target text

given context text, where some of the target words appear in the context as well. We observe

that in this case we can make the model learn to point a word in the context and copy it

to the target text, as well as when to point. For example, in machine translation, we can

see the source sentence as the context, and the target sentence as what we need to predict.

In Figure 7.1, we show an example depiction of how words can be copied from source to

target in machine translation. Although the source and target languages are different, many

of the words such as named entities are usually represented by the same characters in both

languages, making it possible to copy. Similarly, in text summarization, it is natural to use

some words in the original text in the summarized text as well.

Specifically, to predict a target word at each timestep, our model first determines the

source of the word generation, that is, whether to take one from a predefined shortlist or

to copy one from the context. For the former, we apply the typical softmax operation, and

for the latter, we use the attention mechanism to obtain the pointing softmax probability

over the context words and pick the one of high probability. The model learns this decision

so as to use the pointing only when the context includes a word that can be copied to the

target. This way, our model can predict even the words which are not in the shortlist, as

long as it appears in the context. Although some of the words still need to be labeled as

UNK, i.e., if it is neither in the shortlist nor in the context, in experiments we show that this

learning when and where to point improves the performance in machine translation and text

summarization.

The rest of the paper is organized as follows. In the next section, we review the related

works including pointer networks and previous approaches to the rare/unknown problem. In

Section 3, we review the neural machine translation with attention mechanism which is the

baseline in our experiments. Then, in Section 4, we propose our method dealing with the

rare/unknown word problem, called the Pointer Softmax (PS). The experimental results

are provided in the Section 5 and we conclude our work in Section 6.

68





answering, where, unlike machine translation, the length of the context and the pointing

locations in the context can vary dramatically. In question answering setting, Hermann et al.

(2015) have used placeholders on named entities in the context. However, the placeholder id

is directly predicted in the softmax output rather than predicting its location in the context.

The third category of the approaches changes the unit of input/output itself from words

to a smaller resolution such as characters Graves et al. (2013) or bytecodes Sennrich et al.

(2015); Gillick, Brunk, Vinyals, and Subramanya (2015). Although this approach has the

main advantage that it could suffer less from the rare/unknown word problem, the training

usually becomes much harder because the length of sequences significantly increases.

Simultaneously to our work, Gu et al. (2016) and Cheng and Lapata (2016) proposed

models that learn to copy from source to target and both papers analyzed their models on

summarization tasks.

7.3. Neural Machine Translation Model with Attention

As the baseline neural machine translation system, we use the model proposed by Bahdanau

et al. (2015) that learns to (soft-)align and translate jointly. We refer this model as NMT.

The encoder of the NMT is a bidirectional RNN Schuster and Paliwal (1997). The forward

RNN reads input sequence x = (x1, . . . , xT ) in left-to-right direction, resulting in a sequence

of hidden states (
−→
h 1, . . . ,

−→
h T ). The backward RNN reads x in the reversed direction and

outputs (
←−
h 1, . . . ,

←−
h T ). We then concatenate the hidden states of forward and backward

RNNs at each time step and obtain a sequence of annotation vectors (h1, . . . ,hT ) where

hj =
[−→

h j||
←−
h j

]

. Here, || denotes the concatenation operator. Thus, each annotation vector

hj encodes information about the j-th word with respect to all the other surrounding words

in both directions.

In the decoder, we usually use gated recurrent unit (GRU) Cho et al. (2014a); Chung,

Gülçehre, Cho, and Bengio (2014). Specifically, at each time-step t, the soft-alignment

mechanism first computes the relevance weight etj which determines the contribution of

annotation vector hj to the t-th target word. We use a non-linear mapping f (e.g., MLP)

which takes hj, the previous decoder’s hidden state st−1 and the previous output yt−1 as

input:

etj = f(st−1,hj, yt−1).

The outputs etj are then normalized as follows:

ltj =
exp(etj)

∑T
k=1 exp(etk)

. (7.3.1)

70



We call ltj as the relevance score, or the alignment weight, of the j-th annotation vector.

The relevance scores are used to get the context vector ct of the t-th target word in the

translation:

ct =
T
∑

j=1

ltjhj ,

The hidden state of the decoder st is computed based on the previous hidden state st−1,

the context vector ct and the output word of the previous time-step yt−1:

st = fr(st−1, yt−1, ct), (7.3.2)

where fr is GRU.

We use a deep output layer Pascanu et al. (2013a) to compute the conditional distribution

over words:

p(yt = a|y<t,x) ∝
exp

(

ψa
(Wo,bo)fo(st, yt−1, ct)

)

,
(7.3.3)

where W is a learned weight matrix and b is a bias of the output layer. fo is a single-layer

feed-forward neural network. ψ(Wo,bo)(·) is a function that performs an affine transformation

on its input. And the superscript a in ψa indicates the a-th column vector of ψ.

The whole model, including both the encoder and the decoder, is jointly trained to

maximize the (conditional) log-likelihood of target sequences given input sequences, where

the training corpus is a set of (xn,yn)’s. Figure 7.2 illustrates the architecture of the NMT.

7.4. The Pointer Softmax

In this section, we introduce our method, called as the pointer softmax (PS), to deal with

the rare and unknown words. The pointer softmax can be an applicable approach to many

NLP tasks, because it resolves the limitations about unknown words for neural networks. It

can be used in parallel with other existing techniques such as the large vocabulary trick Jean

et al. (2014). Our model learns two key abilities jointly to make the pointing mechanism

applicable in more general settings: (i) to predict whether it is required to use the pointing or

not at each time step and (ii) to point any location of the context sequence whose length can

vary widely over examples. Note that the pointer networks Vinyals et al. (2015) are in lack

of the ability (i), and the ability (ii) is not achieved in the models by Luong et al. (2015a).

To achieve this, our model uses two softmax output layers, the shortlist softmax and the

location softmax. The shortlist softmax is the same as the typical softmax output layer where

each dimension corresponds a word in the predefined word shortlist. The location softmax is

71







Here, Tw is a set of time steps where zt = 1, and Tl is a set of time-steps where zt = 0. And,

Tw ∪ Tl = {1, 2, . . . , Ty} and Tw ∩ Tl = ∅. We denote all previous observations at step t by

(y, z)<t. Note also that ht = f((y, z)<t).

Then, the joint probabilities inside each product can be further factorized as follows:

p(wt, zt|(y, z)<t) = p(wt|zt = 1, (y, z)<t)×
p(zt = 1|(y, z)<t) (7.4.3)

p(lt, zt|(y, z)<t) = p(lt|zt = 0, (y, z)<t)×
p(zt = 0|(y, z)<t) (7.4.4)

here, we omitted x which is conditioned on all probabilities in the above.

The switch probability is modeled as a multilayer perceptron with binary output:

p(zt = 1|(y, z)<t,x) = σ(f(x, ht; θ)) (7.4.5)

p(zt = 0|(y, z)<t,x) = 1 − σ(f(x, ht; θ)). (7.4.6)

And p(wt|zt = 1, (y, z)<t,x) is the shortlist softmax and p(lt|zt = 0, (y, z)<t,x) is the location

softmax which can be a pointer network. σ(·) stands for the sigmoid function, σ(x) =
1

exp(-x)+1
.

Given N such context and target sequence pairs, our training objective is to maximize

the following log likelihood w.r.t. the model parameter θ

arg max
θ

1

N

N
∑

n=1

log pθ(yn, zn|xn). (7.4.7)

7.4.1. Basic Components of the Pointer Softmax

In this section, we discuss practical details of the three fundamental components of the

pointer softmax. The interactions between these components and the model is depicted in

Figure 7.3.

Location Softmax lt: The location of the word to copy from source text to the target is

predicted by the location softmax lt. The location softmax outputs the conditional probability

distribution p(lt|zt = 0, (y, z)<t,x). For models using the attention mechanism such as NMT,

we can reuse the probability distributions over the source words in order to predict the

location of the word to point. Otherwise we can simply use a pointer network of the model

to predict the location.

74



Shortlist Softmax wt : The subset of the words in the vocabulary V is being predicted

by the shortlist softmax wt.

Switching network dt: The switching network dt is an MLP with sigmoid output

function that outputs a scalar probability of switching between lt and wt, and represents the

conditional probability distribution p(zt|(y, z)<t,x). For NMT model, we condition the MLP

that outputs the switching probability on the representation of the context of the source text

ct and the hidden state of the decoder ht. Note that, during the training, dt is observed, and

thus we do not have to sample.

The output of the pointer softmax, ft will be the concatenation of the the two vectors,

dt ×wt and (1− dt)× lt.

At test time, we compute Eqn. (7.4.3) and (7.4.4) for all shortlist word wt and all location

lt, and pick the word or location of the highest probability.

7.5. Experiments

In this section, we provide our main experimental results with the pointer softmax on

machine translation and summarization tasks. In our experiments, we have used the same

baseline model and just replaced the softmax layer with pointer softmax layer at the language

model. We use the Adadelta Zeiler (2012) learning rule for the training of NMT models.

The code for pointer softmax model is available at https://github.com/caglar/pointer_

softmax.

7.5.1. The Rarest Word Detection

We construct a synthetic task and run some preliminary experiments in order to compare

the results with the pointer softmax and the regular softmax’s performance for the rare-words.

The vocabulary size of our synthetic task is |V |= 600 using sequences of length 7. The words

in the sequences are sampled according to their unigram distribution which has the form

of a geometric distribution. The task is to predict the least frequent word in the sequence

according to unigram distribution of the words. During the training, the sequences are

generated randomly. Before the training, validation and test sets are constructed with a fixed

seed.

We use a GRU layer over the input sequence and take the last-hidden state, in order

to get the summary ct of the input sequence. The wt, lt are only conditioned on ct, and

the MLP predicting the dt is conditioned on the latent representations of wt and lt. We

use minibatches of size 250 using adam adaptive learning rate algorithm Kingma and Adam

(2015) using the learning rate of 8× 10−4 and hidden layers with 1000 units.

75



We train a model with pointer softmax where we assign pointers for the rarest 60 words

and the rest of the words are predicted from the shortlist softmax of size 540. We observe

that increasing the inverse temperature of the sigmoid output of dt to 2, in other words

making the decisions of dt to become sharper, works better, i.e. dt = σ(2x).

At the end of training with pointer softmax we obtain the error rate of 17.4% and by

using softmax over all 600 tokens, we obtain the error-rate of 48.2%.

7.5.2. Summarization

In these series of experiments, we use the annotated Gigaword corpus as described in

Rush, Chopra, and Weston (2015a). Moreover, we use the scripts that are made available by

the authors of Rush et al. (2015a) 1 to preprocess the data, which results to approximately

3.8M training examples. This script generates about 400K validation and an equal number

of test examples, but we use a randomly sampled subset of 2000 examples each for validation

and testing. We also have made small modifications to the script to extract not only the

tokenized words, but also system-generated named-entity tags. We have created two different

versions of training data for pointers, which we call UNK -pointers data and entity-pointers

data respectively.

For the UNK -pointers data, we trim the vocabulary of the source and target data in the

training set and replace a word by the UNK token whenever a word occurs less than 5 times

in either source or target data separately. Then, we create pointers from each UNK token

in the target data to the position in the corresponding source document where the same

word occurs in the source, as seen in the data before UNK’s were created. It is possible that

the source can have an UNK in the matching position, but we still created a pointer in this

scenario as well. The resulting data has 2.7 pointers per 100 examples in the training set and

9.1 pointers rate in the validation set.

In the entity-pointers data, we exploit the named-entity tags in the annotated corpus and

first anonymize the entities by replacing them with an integer-id that always starts from 1

for each document and increments from left to right. Entities that occur more than once in

a single document share the same id. We create the anonymization at token-level, so as to

allow partial entity matches between the source and target for multi-token entities. Next,

we create a pointer from the target to source on similar lines as before, but only for exact

matches of the anonymized entities. The resulting data has 161 pointers per 100 examples in

the training set and 139 pointers per 100 examples in the validation set.

1https://github.com/facebook/NAMAS

76



If there are multiple matches in the source, either in the UNK-pointers data or the

entity-pointers data, we resolve the conflict in favor of the first occurrence of the matching

word in the source document. In the UNK data, we model the UNK tokens on the source

side using a single placeholder embedding that is shared across all documents, and in the

entity-pointers data, we model each entity-id in the source by a distinct placeholder, each of

which is shared across all documents.

In all our experiments, we use a bidirectional GRU-RNN Chung et al. (2014) for the

encoder and a uni-directional RNN for the decoder. To speed-up training, we use the large-

vocabulary trick Jean et al. (2014) where we limit the vocabulary of the softmax layer of the

decoder to 2000 words dynamically chosen from the words in the source documents of each

batch and the most common words in the target vocabulary. In both experiments, we fix the

embedding size to 100 and the hidden state dimension to 200. We use pre-trained word2vec

vectors trained on the same corpus to initialize the embeddings, but we finetune them by

backpropagating through the pre-trained embeddings during training. Our vocabulary sizes

are fixed to 125K for source and 75K for target for both experiments.

We use the reference data for pointers for the model only at the training time. During

the test time, the switch makes a decision at every timestep on which softmax layer to use.

For evaluation, we use full-length Rouge F1 using the official evaluation tool 2. In their

work, the authors of Bahdanau et al. (2015) use full-length Rouge Recall on this corpus, since

the maximum length of limited-length version of Rouge recall of 75 bytes (intended for DUC

data) is already long for Gigaword summaries. However, since full-length Recall can unfairly

reward longer summaries, we also use full-length F1 in our experiments for a fair comparison

between our models, independent of the summary length.

The experimental results comparing the Pointer Softmax with NMT model are displayed

in Table 7.1 for the UNK pointers data and in Table 7.2 for the entity pointers data. As

our experiments show, pointer softmax improves over the baseline NMT on both UNK data

and entities data. Our hope was that the improvement would be larger for the entities data

since the incidence of pointers was much greater. However, it turns out this is not the case,

and we suspect the main reason is anonymization of entities which removed data-sparsity by

converting all entities to integer-ids that are shared across all documents. We believe that

on de-anonymized data, our model could help more, since the issue of data-sparsity is more

acute in this case.

In Table 7.3, we provide the results for summarization on Gigaword corpus in terms of

recall as also similar comparison is done by Rush et al. (2015a). We observe improvements

2http://www.berouge.com/Pages/default.aspx

77



Tab. 7.1. Results on Gigaword Corpus when pointers are used for UNKs in
the training data, using Rouge-F1 as the evaluation metric.

Rouge-1 Rouge-2 Rouge-L
NMT + lvt 34.87 16.54 32.27
NMT + lvt + PS 35.19 16.66 32.51

Tab. 7.2. Results on anonymized Gigaword Corpus when pointers are used
for entities, using Rouge-F1 as the evaluation metric.

Rouge-1 Rouge-2 Rouge-L
NMT + lvt 34.89 16.78 32.37
NMT + lvt + PS 35.11 16.76 32.55

Tab. 7.3. Results on Gigaword Corpus for modeling UNK’s with pointers in
terms of recall.

Rouge-1 Rouge-2 Rouge-L
NMT + lvt 36.45 17.41 33.90
NMT + lvt + PS 37.29 17.75 34.70

on all the scores with the addition of pointer softmax. Let us note that, since the test set

of Rush et al. (2015a) is not publicly available, we sample 2000 texts with their summaries

without replacement from the validation set and used those examples as our test set.

In Table 7.4 we present a few system generated summaries from the Pointer Softmax

model trained on the UNK pointers data. From those examples, it is apparent that the model

has learned to accurately point to the source positions whenever it needs to generate rare

words in the summary.

7.5.3. Neural Machine Translation

In our neural machine translation (NMT) experiments, we train NMT models with

attention over the Europarl corpus Bahdanau et al. (2015) over the sequences of length up to

50 for English to French translation. 3. All models are trained with early-stopping which is

done based on the negative log-likelihood (NLL) on the development set. Our evaluations to

report the performance of our models are done on newstest2011 by using BLUE score4.

3In our experiments, we use an existing code, provided in https://github.com/kyunghyuncho/

dl4mt-material, and on the original model we only changed the last softmax layer for our experiments
4We compute the BLEU score using the multi-blue.perl script from Moses on tokenized sentence pairs.

78



Tab. 7.4. Generated summaries from NMT with PS. Boldface words are the
words copied from the source.

Source #1 china ’s tang gonghong set a world record with a clean
and jerk lift of ### kilograms to win the women ’s
over-## kilogram weightlifting title at the asian games
on tuesday .

Target #1 china ’s tang <unk>,sets world weightlifting record
NMT+PS #1 china ’s tang gonghong wins women ’s weightlifting

weightlifting title at asian games
Source #2 owing to criticism , nbc said on wednesday that it was

ending a three-month-old experiment that would have
brought the first liquor advertisements onto national
broadcast network television .

Target #2 advertising : nbc retreats from liquor commercials
NMT+PS #2 nbc says it is ending a three-month-old experiment
Source #3 a senior trade union official here wednesday called on

ghana ’s government to be “ mindful of the plight ” of
the ordinary people in the country in its decisions on tax
increases .

Target #3 tuc official,on behalf of ordinary ghanaians
NMT+PS #3 ghana ’s government urged to be mindful of the plight

We use 30, 000 tokens for both the source and the target language shortlist vocabularies (1

of the token is still reserved for the unknown words). The whole corpus contains 134, 831

unique English words and 153, 083 unique French words. We have created a word-level

dictionary from French to English which contains translation of 15,953 words that are neither

in shortlist vocabulary nor dictionary of common words for both the source and the target.

There are about 49, 490 words shared between English and French parallel corpora of Europarl.

During the training, in order to decide whether to pick a word from the source sentence

using attention/pointers or to predict the word from the short-list vocabulary, we use the

following simple heuristic. If the word is not in the short-list vocabulary, we first check if

the same word yt appears in the source sentence. If it is not, we then check if a translated

version of the word exists in the source sentence by using a look-up table between the source

and the target language. If the word is in the source sentence, we then use the location of the

word in the source as the target. Otherwise we check if one of the English senses from the

cross-language dictionary of the French word is in the source. If it is in the source sentence,

then we use the location of that word as our translation. Otherwise we just use the argmax

of lt as the target.

79



For switching network dt, we observed that using a two-layered MLP with noisy-tanh

activation Gulcehre, Moczulski, Denil, and Bengio (2016c) function with residual connection

from the lower layer He, Zhang, Ren, and Sun (2015) activation function to the upper

hidden layers improves the BLEU score about 1 points over the dt using ReLU activation

function. We initialized the biases of the last sigmoid layer of dt to −1 such that if dt becomes

more biased toward choosing the shortlist vocabulary at the beginning of the training. We

renormalize the gradients if the norm of the gradients exceed 1 Pascanu, Mikolov, and Bengio

(2012).

Tab. 7.5. Europarl Dataset (EN-FR)

BLEU-4
NMT 20.19
NMT + PS 23.76

In Table 7.5, we provided the result of NMT with pointer softmax and we observe about

3.6 BLEU score improvement over our baseline.

In Figure 7.4, we show the validation curves of the NMT model with attention and the

NMT model with shortlist-softmax layer. Pointer softmax converges faster in terms of number

of minibatch updates and achieves a lower validation negative-log-likelihood (NLL) (63.91)

after 200k updates over the Europarl dataset than the NMT model with shortlist softmax

trained for 400k minibatch updates (65.26). Pointer softmax converges faster than the model

using the shortlist softmax, because the targets provided to the pointer softmax also acts like

guiding hints to the attention.

7.6. Conclusion

In this paper, we propose a simple extension to the traditional soft attention-based

shortlist softmax by using pointers over the input sequence. We show that the whole model

can be trained jointly with single objective function. We observe noticeable improvements

over the baselines on machine translation and summarization tasks by using pointer softmax.

By doing a very simple modification over the NMT, our model is able to generalize to the

unseen words and can deal with rare-words more efficiently. For the summarization task

on Gigaword dataset, the pointer softmax was able to improve the results even when it is

used together with the large-vocabulary trick. In the case of neural machine translation,

we observed that the training with the pointer softmax is also improved the convergence

speed of the model as well. For French to English machine translation on Europarl corpora,

80







Chapter 8

PROLOGUE TO THE THIRD ARTICLE

8.1. Article Details

Dynamic Neural Turing Machine with Continuous and Discrete Addressing

Schemes, Gulcehre, Caglar, Sarath Chandar, Kyunghyun Cho, and Yoshua Bengio. Neural

Computation Journal, 2017.

Personal Contributions:

I got very interested in memory models shortly after the Neural Turing Machines and

Memory Networks papers were published. Upon Yoshua Bengio’s suggestion, I have tried to

reproduce their results and tried those models on various other datasets. Then, I faced the

challenge of making NTMs work on NLP tasks. Kyunghyun Cho and I have decided to solve

those issues one by one. This lead to the idea of representing the input context via a GRU

controller, representing the story with a GRU network instead of BOW (Bag of Words). The

different types of regularizations, discrete addressing and trying content based addressing

were my idea. Sarath Chandar greatly helped me running the experiments, in particular he

ran half of the experiments on bAbI tasks. Kyunghyun Cho proposed to use the addressed

vectors. I have written the paper with great helps from Sarath Chandar, Kyunghyun Cho

and feedback from Yoshua Bengio.

8.2. Context

We had already most of the results presented in this paper by mid-2015, but we have

decided to not put out the paper early on without getting results on more challenging natural

language processing tasks. I have kept experimenting with and trying our models on different

NLP tasks. However, the results we were getting were not satisfying enough for us and

because of that we have not submitted our paper to any venue until NIPS 2016. At NIPS

2016, the reviewers mainly complained about our results and the writing, and it was rejected.

The paper was rejected from ICLR 2017 too due to similar reasons and by the time we have

submitted there has been several papers proposing similar models as well. Thus the reviewers

83



were also skeptical about the novelty of the paper. However, our paper is accepted to the

Neural Computation Journal after a revision .

8.3. Contributions

We extend the neural Turing machine (NTM) model into a dynamic neural Turing machine

(D-NTM) by introducing trainable address vectors. This addressing scheme maintains for

each memory cell two separate vectors, content and address vectors. This allows the D-NTM

to learn a wide variety of location-based addressing strategies including both linear and

nonlinear ones. We implement the D-NTM with both continuous and discrete read and write

mechanisms. We investigate the mechanisms and effects of learning to read and write into

a memory through experiments on Facebook bAbI tasks using both a feedforward and

GRU-controller. We provide extensive analysis of our model and compare different variations

of NTM on this task. We show that our model outperforms LSTM and NTM variants. We

provide further experimental results on the sequential pMNIST, Stanford Natural Language

Inference, associative recall and copy tasks.

8.4. Recent Developments

After our first revision on arXiv of this paper, there has been new memory models

exploring different ways to extend neural networks with memory. The most notable one is the

"Differentiable Neural Computers" (Grave et al., 2016) where they have proposed a general

memory algorithm that can solve complicated graph and reinforcement learning tasks.

Program synthesis has also been an approach where architectures with explicit memory

mechanisms have been useful (Devlin, Uesato, Bhupatiraju, Singh, Mohamed, and Kohli,

2017).

84



Chapter 9

DYNAMIC NEURAL TURING MACHINE WITH

CONTINUOUS AND DISCRETE ADDRESSING

SCHEMES

9.1. Introduction

Despite the success of deep learning, (see, e.g., (Goodfellow et al., 2016)) there is still a

set of challenging tasks that are not well addressed by conventional general-purpose neural

network-based architectures. Those tasks often require a neural network to be equipped with

an explicit, external memory in which a larger, potentially unbounded, set of facts need to

be stored. They include, but are not limited to, episodic question-answering (Weston et al.,

2015a; Hermann et al., 2015; Hill, Bordes, Chopra, and Weston, 2015), learning of compact

algorithms (Zaremba, Mikolov, Joulin, and Fergus, 2015), dialogue (Serban, Sordoni, Bengio,

Courville, and Pineau, 2016a; Vinyals and Le, 2015) and video caption generation (Yao,

Torabi, Cho, Ballas, Pal, Larochelle, and Courville, 2015). These tasks both have long-range

dependencies which make learning difficult for conventional RNNs (Bengio et al., 1994;

Hochreiter, 1991) and need the models to perform complicated reasoning on the data.

Recently two neural network based architectures are proposed to solve these types of tasks

that require an external memory. Memory networks (Weston et al., 2015a) explicitly store all

the facts, or information, available at each episode in an external memory (as continuous

vectors) and use the attention-based mechanism to index them when computing an output.

On the other hand, neural Turing machines (NTM, (Graves et al., 2014)) read each fact in an

episode and decides whether to read, write the fact or do both to the external, differentiable

memory.

A crucial difference between these two models is that the memory network does not have

a mechanism to modify the content of the external memory, while the NTM does. In practice,

this leads to easier learning in the memory network, which in turn resulted in that it being

used more in real-world tasks (Bordes et al., 2015; Dodge, Gane, Zhang, Bordes, Chopra,

85



Miller, Szlam, and Weston, 2015). On the contrary, the NTM has mainly been tested on

a series of small-scale, carefully-crafted tasks such as copy and associative recall. However,

NTM is more expressive, precisely because it can store and modify the internal state of the

network as it processes an episode, and we were able to use it without any modifications to

the model for different tasks.

The original NTM supports two modes of addressing (which can be used simultaneously):

content-based and location-based addressing. The location-based strategy is based on linear

addressing, with the distance between each pair of consecutive memory cells fixed to a

constant. We address this limitation by introducing a learnable address vector for each

memory cell of the NTM with least recently used memory addressing mechanism, and we

call this variant a dynamic neural Turing machine (D-NTM).

We evaluate the proposed D-NTM on the full set of Facebook bAbI tasks (Weston

et al., 2015a) using either continuous, differentiable attention or discrete, non-differentiable

attention (Zaremba and Sutskever, 2015) as an addressing strategy. Our experiments reveal

that it is possible to use the discrete, non-differentiable attention mechanism, and in fact,

the D-NTM with the discrete attention and GRU controller outperforms the one with the

continuous attention. We also provide results on sequential pMNIST, Stanford Natural

Language Inference (SNLI) task and algorithmic tasks proposed by (Graves et al., 2014) in

order to investigate the ability of our model when dealing with long-term dependencies.

We summarize our contributions in this paper as below,

• We propose a variation of neural Turing machine called a dynamic neural Turing

machine (D-NTM) which employs a learnable and location-based addressing.

• We demonstrate the application of neural Turing machines on more natural tasks like

episodic question-answering, natural language entailment, digit classification from the

pixels besides the synthetic tasks. We provide a detailed analysis of our model on the

bAbI task.

• We propose to use the discrete attention mechanism and empirically show that, it

can outperform the continuous attention based addressing for episodic QA task.

• We propose a curriculum strategy for our model with the feedforward controller and

discrete attention that improves our results significantly.

We focus on comparing our model against similar models such as NTM and LSTM with

the same conditions. This helps us to better understand the model’s failures.

The remainder of this article is organized as follows. In Section 2, we describe the

architecture of Dynamic Neural Turing Machine (D-NTM). In Section 3, we describe the

proposed addressing mechanism for D-NTM. Section 4 explains the training procedure. In

86



Section 5, we briefly discuss some related models. In Section 6, we report results on episodic

question answering task. In Section 7, 8, and 9 we discuss the results in sequential MNIST,

SNLI, and synthetic algorithm learning tasks respectively. Section 10 concludes the article.

9.2. Dynamic Neural Turing Machine

The proposed dynamic neural Turing machine (D-NTM) extends the neural Turing

machine (NTM, (Graves et al., 2014)). The D-NTM consists of two main modules: a

controller, and a memory. The controller, which is often implemented as a recurrent neural

network, issues a command to the memory so as to read, write to and erase a subset of

memory cells.

9.2.1. Memory

D-NTM consists of an external memory Mt, where each memory cell i in Mt[i] is

partitioned into two parts: a trainable address vector At[i] ∈ R
1×da and a content vector

Ct[i] ∈ R
1×dc .

Mt[i] = [At[i]; Ct[i]] .

Memory Mt consists of N such memory cells and hence represented by a rectangular matrix

Mt ∈ R
N×(dc+da):

Mt = [At; Ct] .

The first part At ∈ R
N×da is a learnable address matrix, and the second Ct ∈ R

N×dc a

content matrix. The address part At is considered a model parameter that is updated during

training. During inference, the address part is not overwritten by the controller and remains

constant. On the other hand, the content part Ct is both read and written by the controller

both during training and inference. At the beginning of each episode, the content part of

the memory is refreshed to be an all-zero matrix, C0 = 0. This introduction of the learnable

address portion for each memory cell allows the model to learn sophisticated location-based

addressing strategies.

9.2.2. Controller

At each timestep t, the controller (1) receives an input value xt, (2) addresses and reads

the memory and creates the content vector rt, (3) erases/writes a portion of the memory, (4)

updates its own hidden state ht, and (5) outputs a value yt (if needed.) In this paper, we

use both a gated recurrent unit (GRU, (Cho et al., 2014a)) and a feedforward network to

implement the controller such that for a GRU controller

87



ht = GRU(xt,ht−1, rt)

and for a feedforward-controller

ht = σ(xt, rt).

9.2.3. Model Operation

At each timestep t, the controller receives an input value xt. Then it generates the read

weights wr
t ∈ R

N×1. By using the read weights wr
t , the content vector read from the memory

rt ∈ R
(da+dc)×1 is computed as

rt = (Mt)
⊤wr

t , (9.2.1)

The hidden state of the controller (ht) is conditioned on the memory content vector rt and

based on the current hidden state of the controller. The model predicts the output label yt

for the input.

The controller also updates the memory by erasing the old content and writing a new

content into the memory. The controller computes three vectors: erase vector et ∈ R
dc×1,

write weights ww
t ∈ R

N×1, and candidate memory content vector c̄t ∈ R
dc×1. Both the read

(wr
t ) and the write weights (ww

t ) are computed by separate heads (implemented as simple

MLPs) and these weight vectors are used to interact with the memory. Erase vector is

computed by a simple MLP which is conditioned on the hidden state of the controller ht.

The candidate memory content vector c̄t is computed based on the current hidden state of

the controller ht ∈ R
dh×1 and the input of the controller which is scaled by a scalar gate αt.

The αt is a function of the hidden state and the input of the controller.

αt = f(ht,xt), (9.2.2)

c̄t = ReLU(Wmht + αtWxxt). (9.2.3)

where Wm and Wx are trainable matrices and ReLU is the rectified linear activation function

(Nair and Hinton, 2010). Given the erase, write and candidate memory content vectors (et,

ww
t , and c̄t respectively), the memory matrix is updated by,

Ct[j] = (1− etw
w
t [j])⊙Ct−1[j] + ww

t [j]c̄t. (9.2.4)

where the index j in Ct[j] denotes the j-th row of the content matrix Ct of the memory

matrix Mt.

No Operation (NOP)

88





For the read and the write operations, kt ∈ R
(da+dc)×1. Wk ∈ R

(da+dc)×N and bk ∈ R
(da+dc)×1

are the learnable weight matrix and bias respectively of kt. Also, the sharpening factor

βt ∈ R ≥ 1 is computed as follows:

βt = softplus(u⊤β ht + bβ) + 1. (9.3.1)

where uβ and bβ are the parameters of the sharpening factor βt and softplus is defined as

follows:

softplus(x) = log(exp(x) + 1) (9.3.2)

Given the key kt and sharpening factor βt, the logits for the address weights are then computed

by,

zt[i] = βtS (kt,Mt[i]) (9.3.3)

where the similarity function is basically the cosine distance where it is defined as S (x,y) ∈ R

and 1 ≥ S (x,y) ≥ −1,

S (x,y) =
x · y

||x||||y||+ǫ .

ǫ is a small positive value to avoid division by zero. We have used ǫ = 1e − 7 in all our

experiments. The address weight generation which we have described in this section is similar

to the content based addressing mechanism proposed in (Graves et al., 2014).

9.3.1. Dynamic Least Recently Used Addressing

We introduce a memory addressing operation that can learn to put more emphasis on the

least recently used (LRU) memory (Santoro, Bartunov, Botvinick, Wierstra, and Lillicrap,

2016) locations. As observed by Santoro et al. (2016); Rae, Hunt, Harley, Danihelka, Senior,

Wayne, Graves, and Lillicrap (2016), we find it easier to learn the write operations with the

use of LRU addressing.

To learn a LRU based addressing, first we compute the exponentially moving averages

of the logits (zt) as vt, where it can be computed as vt = 0.1vt−1 + 0.9zt. We rescale the

accumulated vt with γt, such that the controller adjusts the influence of how much previously

written memory locations should effect the attention weights of a particular time-step. Next,

we subtract vt from zt in order to reduce the weights of previously read or written memory

locations. γt is a shallow MLP with a scalar output and it is conditioned on the hidden state

of the controller. γt is parametrized with the parameters uγ and bγ,

γt = sigmoid(u⊤γ ht + bγ), (9.3.4)

90



wt = softmax(zt − γtvt−1). (9.3.5)

This addressing method increases the weights of the least recently used rows of the memory.

The magnitude of the influence of the least-recently used memory locations is learned and

adjusted with γt. Our LRU addressing is dynamic due to the model’s ability to switch

between pure content-based addressing and LRU. During training, we do not backpropagate

through vt. Due to the dynamic nature of this addressing mechanism, it can be used for

both read and write operations. If needed, the model will automatically learn to disable LRU

while reading from the memory.

The address weight vector that are defined in Equation (9.3.5) is a continuous vector. This

makes the addressing operation differentiable and we refer to such a D-NTM as continuous

D-NTM.

9.3.2. Discrete Addressing

By definition in Eq. (9.3.5), every element in the address vector wt is positive and sums

up to one. In other words, we can treat this vector as the probabilities of a categorical

distribution C(wt) with dim(wt) choices:

p[j] = wt[j],

where wt[j] is the j-th element of wt. We can readily sample from this categorical distribution

and form an one-hot vector w̃t such that

w̃t[k] = I(k = j),

where j ∼ C(w), and I is an indicator function. If we use w̃t instead of wt, then we will

read and write from only one memory cell at a time. This makes the addressing operation

non-differentiable and we refer to such a D-NTM as discrete D-NTM. In discrete D-NTM we

sample the one-hot vector during training. Once training is over, we switch to a deterministic

strategy. We simply choose an element of wt with the largest value to be the index of the

target memory cell, such that

w̃t[k] = I(k = argmax(wt)).

We approximate the gradients of the discrete vectors via a REINFORCE-based method

(Williams, 1992) that is described in Section 9.3.2.

91



9.3.3. Multi-step Addressing

At each time-step, controller may require more than one-step for accessing to the memory.

The original NTM addresses this by implementing multiple sets of read, erase and write

heads. In this paper, we explore an option of allowing each head to operate more than

once at each timestep, similar to the multi-hop mechanism from the end-to-end memory

network (Sukhbaatar et al., 2015).

9.4. Training D-NTM

Once the proposed D-NTM is executed, it returns the output distribution p(y(n)|x(n)
1 , . . . ,x

(n)
T ; θ)

for the nth example that is parameterized with θ. We define our cost function as the negative

log-likelihood:

C(θ) = − 1

N

N
∑

n=1

log p(y(n)|x(n)
1 , . . . ,x

(n)
T ; θ), (9.4.1)

where θ is the set of all the parameters of the model.

Continuous D-NTM, just like the original NTM, is fully end-to-end differentiable and

hence we can compute the gradient of this cost function by using backpropagation and learn

the parameters of the model with a gradient-based optimization algorithm, such as stochastic

gradient descent, to train it end-to-end. However, in discrete D-NTM, we use sampling-based

strategy for all the heads during training. This clearly makes the use of backpropagation

infeasible to compute the gradient, as the sampling procedure is not differentiable.

9.4.1. Training discrete D-NTM

To train discrete D-NTM, we use REINFORCE (Williams, 1992) together with the

three variance reduction techniques–global baseline, input-dependent baseline and variance

normalization– as suggested in (Mnih and Gregor, 2014).

Let us define R(x) = log p(y|x1, . . . ,xT ; θ) as a reward. We first center and re-scale the

reward by,

R̃(x) =
R(x)− b√
σ2 + ǫ

,

where b and σ are respectively the running average and standard deviation of R. ǫ is a very

small number added to the standard deviations of the reward to avoid numerical instabilities.

We can further center the reward for each input x separately, i.e.,

R̄(x) = R̃(x)− b(x),

92



where b(x) is computed by a baseline network which takes as input x and predicts its

estimated reward. The baseline network is trained to minimize the Huber loss (Huber, 1964)

between the true reward R̃(x) and the predicted reward b(x). This is also called as input

based baseline (IBB) (Mnih and Gregor, 2014).

We use the Huber loss to learn the baseline b(x) which is defined by,

Hδ(z) =











z2 for |z|≤ δ,

δ(2|z|−δ), otherwise,

due to its robustness where z would be R̄(x) in this case. As a further measure to reduce

the variance, we regularize the negative entropy of all categorical distributions to facilitate a

better exploration during training (Xu et al., 2015b).

Then, the cost function for each training example is approximated as in Equation (9.4.2).

In this equation, we write the terms related to computing the REINFORCE gradients that

includes terms for the entropy regularization on the action space, the likelihood-ratio term to

compute the REINFORCE gradients both for the read and the write heads.

Cn(θ) =− log p(y|x1:T , w̃
r
1:J , w̃

w
1:J)

−
J
∑

j=1

R̄(xn)(log p(w̃r
j |x1:T ) + log p(w̃w

j |x1:T )

− λH

J
∑

j=1

(H(wr
j |x1:T ) +H(ww

j |x1:T )). (9.4.2)

where J is the number of addressing steps, λH is the entropy regularization coefficient,

and H denotes the entropy.

9.4.2. Curriculum Learning for the Discrete Attention

Training discrete attention with feedforward controller and REINFORCE is challenging.

We propose to use a curriculum strategy for training with the discrete attention in order

to tackle this problem. For each minibatch, the controller stochastically decides to choose

either to use the discrete or continuous weights based on the random variable πn with

probability pn where n stands for the number of minibatch updates. We only update pn every

k minibatch updates. πn is a Bernoulli random variable which is sampled with probability of

pn, πn ∼ Bernoulli(pn). The model will either use the discrete or continuous-attention based

on the πn. We start the training procedure with p0 = 1 and during training pn is annealed to

0 by setting pn = p0√
1+n

.

93



We can rewrite the weights wt as in Equation (9.4.3), where it is expressed as the

combination of continuous attention weights w̄t and discrete attention weights w̃t with πt

being a binary variable that chooses to use one of them,

wt = πnw̄t + (1− πn)w̃t. (9.4.3)

By using this curriculum learning strategy, at the beginning of the training, the model

learns to use the memory mainly with the continuous attention. As we anneal the pt, the

model will rely more on the discrete attention.

9.4.3. Regularizing D-NTM

If the controller of D-NTM is a recurrent neural network, we find it to be important

to regularize the training of the D-NTM so as to avoid suboptimal solutions in which the

D-NTM ignores the memory and works as a simple recurrent neural network. We used the

regularizers proposed in this section in all our experiments unless it is stated otherwise and

we found them very beneficial in particular when an RNN controller is used.

Read-Write Consistency Regularizer

One such suboptimal solution we have observed in our preliminary experiments with

the proposed D-NTM is that the D-NTM uses the address part A of the memory matrix

simply as an additional weight matrix, rather than as a means to accessing the content part

C. We found that this pathological case can be effectively avoided by encouraging the read

head to point to a memory cell which has also been pointed by the write head. This can be

implemented as the following regularization term:

Rrw(wr,ww) = λ
T
∑

t′=1

||1− (
1

t′

t′
∑

t=1

ww
t )⊤wr

t′||22 (9.4.4)

In the equations above, ww
t is the write and wr

t is the read weights.

Next Input Prediction as Regularization

Temporal structure is a strong signal that should be exploited by the controller based

on a recurrent neural network. We exploit this structure by letting the controller predict

the input in the future. We maximize the predictability of the next input by the controller

during training. This is equivalent to minimizing the following regularizer:

Rpred(W) = −
T
∑

t=0

log p(xt+1|xt,w
r
t ,w

w
t , et,Mt; θ)

where xt is the current input and xt+1 is the input at the next time-step. We find this

regularizer to be effective in our preliminary experiments and use it for bAbI tasks. Similarly

94



(Schmidhuber and Heil, 1995) have proposed a method to compress input sequence into a

continuous vector by using predictive coding.

9.5. Related Work

A recurrent neural network (RNN), which is used as a controller in the proposed D-NTM,

has an implicit memory in the form of recurring hidden states. Even with this implicit

memory, a vanilla RNN is however known to have difficulties in storing information for

long time-spans (Bengio et al., 1994; Hochreiter, 1991). Long short-term memory (LSTM,

(Hochreiter and Schmidhuber, 1997)) and gated recurrent units (GRU, (Cho et al., 2014a))

have been found to address this issue. However, all these models based solely on RNNs have

been found to be limited when they are used to solve, e.g., algorithmic tasks and episodic

question-answering.

Our work is inspired by the original NTM work by Graves et al. (2014) in which they

proposed a model that can modify the contents of its memory to solve complicated algorithmic

problems. D-NTM extends their approach from different aspects, first we propose a simpler

memory access mechanism that can be trained more easily and outperform the original

NTM on some of the real-world tasks. Instead of hard-coding a location-based addressing

mechanism as in NTM, D-NTM separates the memory into an address and the content

section and address vectors are being learned. D-NTM also integrates an LRU mechanism

that helps the model to learn the addressing of the memory more easily. We propose and

use different regularizers to eliminate some of the degeneracies that can happen with the

memory networks. We also show that our D-NTM architecture can be trained with discrete

addressing mechanism as well.

In addition to the finite random access memory of the neural Turing machine, based on

which the D-NTM is designed, other data structures have been proposed as external memory

for neural networks. In Sun, Giles, and Chen (1997); Grefenstette, Hermann, Suleyman, and

Blunsom (2015); Joulin and Mikolov (2015), a continuous, differentiable stack was proposed.

Zaremba and Sutskever (2015) used a grid and tape storage mechanism. These approaches

differ from the NTM in that their memory is unbounded and can grow indefinitely. On the

other hand, they are often not randomly accessible. Zhang, Yu, and Zhou (2015) proposed a

variation of NTM that has a structured memory and they have shown experiments on copy

and associative recall tasks with this model.

In parallel to our work Yang (2016) and Graves, Wayne, Reynolds, Harley, Danihelka,

Grabska-Barwińska, Colmenarejo, Grefenstette, Ramalho, Agapiou, et al. (2016) proposed

new memory access mechanisms to improve NTM type of models. Graves et al. (2016)’s

95



approach extends NTM by extending the model’s memory access mechanism by sparse

temporal linking mechanism and their memory is dynamically extensible. However, the

implementation of their model is more complicated. Graves et al. (2016) also reported

superior results on a diverse set of algorithmic learning tasks as well as bAbI task which we

compare our model against. Recently, Henaff, Weston, Szlam, Bordes, and LeCun (2016);

Seo, Min, Farhadi, and Hajishirzi (2016) proposed new memory based approaches to tackle

bAbI task. The Henaff et al. (2016)’s approach is quite general, but Seo et al. (2016) used a

model that is specifically engineered towards solving bAbI task.

Memory networks (Weston et al., 2015a) form another family of neural networks with

external memory. In this class of neural networks, information is stored explicitly as it is (in

the form of its continuous representation) in the memory, without being erased or modified

during an episode. Memory networks and their variants have been applied to various tasks

successfully (Sukhbaatar et al., 2015; Bordes et al., 2015; Dodge et al., 2015; Xiong, Merity,

and Socher, 2016b; Chandar, Ahn, Larochelle, Vincent, Tesauro, and Bengio, 2016). Miller,

Fisch, Dodge, Karimi, Bordes, and Weston (2016b) have also independently proposed the

idea of having separate key and value vectors for memory networks. A similar addressing

mechanism is also explored in (Reed and de Freitas, 2016) in the context of learning program

traces.

Another related family of models is the attention-based neural networks. Neural networks

with continuous or discrete attention over an input have shown promising results on a

variety of challenging tasks, including machine translation (Bahdanau et al., 2014; Luong,

Pham, and Manning, 2015b), speech recognition (Chorowski, Bahdanau, Serdyuk, Cho, and

Bengio, 2015), machine reading comprehension (Hermann et al., 2015) and image caption

generation (Xu et al., 2015b).

The latter two, the memory network and attention-based networks, are however clearly

distinguishable from the D-NTM by the fact that they do not modify the content of the

memory.

9.6. Experiments on Episodic Question-Answering

In this section, we evaluate the proposed D-NTM on the synthetic episodic question-

answering task called Facebook bAbI (Weston et al., 2015b). We use the version of the

dataset that contains 10k training examples per sub-task provided by Facebook.1 For each

episode, the D-NTM reads a sequence of factual sentences followed by a question, all of

1 https://research.facebook.com/researchers/1543934539189348

96



which are given as natural language sentences. The D-NTM is expected to store and retrieve

relevant information in the memory in order to answer the question based on the presented

facts.

9.6.1. Model and Training Details

We used the same hyperparameters for all the tasks for a given model. We encode a

variable-length fact into a fixed-size representation using a GRU and then feed it to the

controller. Unlike a bag-of-words encoding, this allows the D-NTM to exploit the word

ordering in each fact. We experiment with both a recurrent and feedforward neural network

as the controller that generates the read and write weights. The controller has 180 units. We

train our feedforward controller using the noisy-tanh activation function (Gulcehre et al.,

2016c) since we were experiencing training difficulties with sigmoid and tanh activation

functions. We use both single-step and three-steps addressing with our GRU controller. The

memory contains 120 memory cells. Each memory cell consists of a 16-dimensional address

part and 28-dimensional content part.

We set aside a random 10% of the training examples as a validation set for each sub-task

and use it for early-stopping and hyperparameter search. We train one D-NTM for each

sub-task, using Adam (Kingma and Ba, 2014) with its learning rate set to 0.003 and 0.007

respectively for GRU and feedforward controller. The size of each minibatch is 160, and each

minibatch is constructed uniform-randomly from the training set.

9.6.2. Goals

The goal of this experiment is three-fold. First, we present for the first time the performance

of a memory-based network that can both read and write dynamically on the Facebook bAbI

tasks2. We aim to understand whether a model that has to learn to write an incoming fact

to the memory, rather than storing it as it is, is able to work well, and to do so, we compare

both the original NTM and proposed D-NTM against an LSTM-RNN.

Second, we investigate the effect of having to learn how to write. The fact that the NTM

needs to learn to write likely has adverse effect on the overall performance, when compared

to, for instance, end-to-end memory networks (MemN2N, (Sukhbaatar et al., 2015)) and

dynamic memory network (DMN+, (Xiong et al., 2016b)) both of which simply store the

incoming facts as they are. We quantify this effect in this experiment. Lastly, we show the

effect of the proposed learnable addressing scheme.

2Similar experiments were done in the recently published (Graves et al., 2016), but D-NTM results for bAbI
tasks were already available in arxiv by that time.

97



We further explore the effect of using a feedforward controller instead of the GRU controller.

In addition to the explicit memory, the GRU controller can use its own internal hidden state

as the memory. On the other hand, the feedforward controller must solely rely on the explicit

memory, as it is the only memory available.

9.6.3. Results and Analysis

In Table 9.1, we first observe that the NTMs are indeed capable of solving this type of

episodic question-answering better than the vanilla LSTM-RNN. Although the availability of

explicit memory in the NTM has already suggested this result, we note that this is the first

time neural Turing machines have been used in this specific task.

1-step 1-step 1-step 1-step 3-steps 3-steps 3-steps 3-steps
LBA+CBA CBA Continuous Discrete LBA+CBA CBA Continuous Discrete

Task LSTM NTM NTM D-NTM D-NTM NTM NTM D-NTM D-NTM

1: 1 supporting fact 0.00 16.30 16.88 5.41 6.66 0.00 0.00 0.00 0.00
2: 2 supporting facts 81.90 57.08 55.70 58.54 56.04 61.67 59.38 46.66 62.29
3: 3 supporting facts 83.10 74.16 55.00 74.58 72.08 83.54 65.21 47.08 41.45

4: 2 argument rels. 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5: 3 argument rels. 1.20 1.46 20.41 1.66 1.04 0.83 1.46 1.25 1.45
6: yes/no questions 51.80 23.33 21.04 40.20 44.79 48.13 54.80 20.62 11.04

7: counting 24.90 21.67 21.67 19.16 19.58 7.92 37.70 7.29 5.62
8: lists/sets 34.10 25.76 21.05 12.58 18.46 25.38 8.82 11.02 0.74
9: simple negation 20.20 24.79 24.17 36.66 34.37 37.80 0.00 39.37 32.50

10: indefinite knowl. 30.10 41.46 33.13 52.29 50.83 56.25 23.75 20.00 20.83
11: basic coreference 10.30 18.96 31.88 31.45 4.16 3.96 0.28 30.62 16.87

12: conjunction 23.40 25.83 30.00 7.70 6.66 28.75 23.75 5.41 4.58

13: compound coref. 6.10 6.67 5.63 5.62 2.29 5.83 83.13 7.91 5.00
14: time reasoning 81.00 58.54 59.17 60.00 63.75 61.88 57.71 58.12 60.20

15: basic deduction 78.70 36.46 42.30 36.87 39.27 35.62 21.88 36.04 40.26

16: basic induction 51.90 71.15 71.15 49.16 51.35 46.15 50.00 46.04 45.41
17: positional reas. 50.10 43.75 43.75 17.91 16.04 43.75 56.25 21.25 9.16

18: size reasoning 6.80 3.96 47.50 3.95 3.54 47.50 47.50 6.87 1.66
19: path finding 90.30 75.89 71.51 73.74 64.63 61.56 63.65 75.88 76.66
20: agent motiv. 2.10 1.25 0.00 2.70 3.12 0.40 0.00 3.33 0.00

Avg.Err. 36.41 31.42 33.60 29.51 27.93 32.85 32.76 24.24 21.79

Failed (err. > 5%) 16 16 18 16 14 15 14 16 12

Tab. 9.1. Test error rates (%) on the 20 bAbI QA tasks for models using
10k training examples. LBA stands for lcoation based addressing and CBA
stands for content based addressing. D-NTM models use GRU controller. In
this table, we compare multi-step vs single-step addressing, original NTM with
location based+content based addressing vs only content based addressing, and
discrete vs continuous addressing D-NTM on bAbI.

All the variants of NTM with the GRU controller outperform the vanilla LSTM-RNN.

However, not all of them perform equally well. First, it is clear that the proposed dynamic

NTM (D-NTM) using the GRU controller outperforms the original NTM with the GRU

controller (NTM, CBA only NTM vs. continuous D-NTM, Discrete D-NTM). As discussed

98



earlier, the learnable addressing scheme of the D-NTM allows the controller to access the

memory slots by location in a potentially nonlinear way. We expect it to help with tasks that

have non-trivial access patterns, and as anticipated, we see a large gain with the D-NTM

over the original NTM in the tasks of, for instance, 12 - Conjunction and 17 - Positional

Reasoning.

Among the recurrent variants of the proposed D-NTM, we notice significant improvements

by using discrete addressing over using continuous addressing. We conjecture that this is due

to certain types of tasks that require precise/sharp retrieval of a stored fact, in which case

continuous addressing is in disadvantage over discrete addressing. This is evident from the

observation that the D-NTM with discrete addressing significantly outperforms that with

continuous addressing in the tasks of 8 - Lists/Sets and 11 - Basic Coreference. Furthermore,

this is in line with an earlier observation in (Xu et al., 2015b), where discrete addressing was

found to generalize better in the task of image caption generation.

In Table 9.2, we also observe that the D-NTM with the feedforward controller and discrete

attention performs worse than LSTM and D-NTM with continuous-attention. However, when

the proposed curriculum strategy from Sec. 9.3.2 is used, the average test error drops from

68.30 to 37.79.

We empirically found training of the feedforward controller more difficult than that of

the recurrent controller. We train our feedforward controller based models four times longer

(in terms of the number of updates) than the recurrent controller based ones in order to

ensure that they are converged for most of the tasks. On the other hand, the models trained

with the GRU controller overfit on bAbI tasks very quickly. For example, on tasks 3 and

16 the feedforward controller based model underfits (i.e., high training loss) at the end of

the training, whereas with the same number of units the model with the GRU controller can

overfit on those tasks after 3,000 updates only.

In Table 9.3, we present the best results obtained for each task after 11 runs with different

initialization as also done in (Graves et al., 2016), and we compare out model with NTM,

DNC (Graves et al., 2016), and memory network models (Sukhbaatar et al., 2015; Kumar

et al., 2015; Xiong et al., 2016b). We show that our model outperforms NTM and performs

comparably to other memory models. This approach can be seen as an ensemble learning

technique and (Graves et al., 2014; Sukhbaatar et al., 2015) both used similar approaches

when reporting their results. In Table 9.4, we report the results as the mean across different

tasks. We have not included the models that have very high training errors for each task

from the mean results after training for 80k updates on each task. In terms of the mean

results D-NTM model with FF-controller performs better than DNC1 and DNC2.

99



continuous Discrete Discrete∗ Discrete†

Task D-NTM D-NTM D-NTM D-NTM

1: 1 supporting fact 4.38 81.67 14.79 72.28
2: 2 supporting facts 27.5 76.67 76.67 81.67
3: 3 supporting facts 71.25 79.38 70.83 78.95
4: 2 argument rels. 0.00 78.65 44.06 79.69
5: 3 argument rels. 1.67 83.13 17.71 68.54
6: yes/no questions 1.46 48.76 48.13 31.67
7: counting 6.04 54.79 23.54 49.17
8: lists/sets 1.70 69.75 35.62 79.32
9: simple negation 0.63 39.17 14.38 37.71
10: indefinite knowl. 19.80 56.25 56.25 25.63
11: basic coreference 0.00 78.96 39.58 82.08
12: conjunction 6.25 82.5 32.08 74.38
13: compound coreference 7.5 75.0 18.54 47.08
14: time reasoning 17.5 78.75 24.79 77.08
15: basic deduction 0.0 71.42 39.73 73.96
16: basic induction 49.65 71.46 71.15 53.02
17: positional reas. 1.25 43.75 43.75 30.42
18: size reasoning 0.24 48.13 2.92 11.46
19: path finding 39.47 71.46 71.56 76.05
20: agent motiv. 0.0 76.56 9.79 13.96

Avg. Err. 12.81 68.30 37.79 57.21
Failed (err. > 5%) 9 20 19 20

Tab. 9.2. Test error rates (%) on the 20 bAbI QA tasks for models using 10k
training examples with the feedforward controller. Discrete∗ D-NTM model
bootstraps the discrete attention with the continuous attention, using the
curriculum method that we have introduced in Section 9.3.2. Discrete† D-NTM
model is the continuous-attention model which uses discrete-attention at the
test time.

We notice a performance gap, when our results are compared to the variants of the

memory network (Weston et al., 2015a) (MemN2N and DMN+). We attribute this gap to

the difficulty in learning to manipulate and store a complex input.

We would like to highlight that the experimental setup used in DNC (Graves et al., 2016)

is different from the setup we use in this paper. This makes the comparisons between the

models to be difficult. The main differences broadly are, as the input representations to the

controller, they used the embedding representation of each word whereas we have used the

representation obtained with a GRU network for each fact. Secondly, they only report joint

training results. However, we have trained our models on individual tasks separately. Despite

the differences in terms of architecture in DNC paper (see Table 1 in (Graves et al., 2016)),

the mean error of their NTM model (28.5% with std of +/- 2.9) is very close to ours (31.4%)

with a single run.

100



We found the feedforward controller with soft addressing to perform better than the GRU

controller on bAbI tasks. We believe this particular behavior is due to the construction of

the bAbI dataset in which the temporal ordering of the facts do not matter and the facts can

appear in an arbitrary order on most tasks. Thus the ability to keep the temporal ordering of

the facts is not crucial for most tasks which can be achieved by using an RNN controller. Due

to that, we noticed that GRU controller overfits and tends to use the memory in a degenerate

manner. Feedforward controller uses an MLP as a controller which on its own do not have

any access to the previous context that appears in the story. The only way to access the

history for the feedforward controller is to learn to use the memory in a non-degenerate way.

Joint Single Single Joint Joint Joint Single Single Single
Tasks NTM D-NTM (ff) D-NTM (GRU) DNC1 DNC2 MemN2N MemN2N DMN DMN+

1: 1 supporting fact 31.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

2: 2 supporting facts 54.50 27.50 53.13 1.30 0.40 1.00 0.30 1.80 0.3
3: 3 supporting facts 43.90 63.54 41.45 2.40 1.80 6.80 2.10 4.80 1.1
4: 2 argument rels. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

5: 3 argument rels 0.80 0.62 1.04 0.50 0.80 6.10 0.80 0.70 0.5
6: yes/no questions 17.10 1.46 11.04 0.00 0.00 0.10 0.10 0.00 0
7: counting 17.80 6.04 2.70 0.20 0.60 6.60 2.00 3.10 2.4

8: lists/sets 13.80 0.00 0.74 0.10 0.30 2.70 0.90 3.50 0
9: simple negation 16.40 0.00 27.63 0.00 0.20 0.00 0.30 0.00 0
10: indefinite knowl. 16.60 1.00 20.83 0.20 0.20 0.50 0.00 0.00 0
11: basic coreference 15.20 0.00 1.25 0.00 0.00 0.00 0.10 0.10 0

12: conjunction 8.90 0.00 1.46 0.10 0.00 0.10 0.00 0.00 0
13: compound coreference 7.40 0.00 1.04 0.00 0.10 0.00 0.00 0.20 0
14: time reasoning 24.20 0.00 55.21 0.30 0.40 0.00 0.10 0.00 0.2

15: basic deduction 47.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0
16: basic induction 53.60 49.65 45.41 52.40 55.10 0.20 51.80 0.60 45.3
17: positional reas. 25.50 1.25 9.16 24.10 12.00 41.80 18.60 40.40 4.2

18: size reasoning 2.20 0.00 0.00 4.00 0.80 8.00 5.30 4.70 2.1
19: path finding 4.30 6.35 57.76 0.10 3.90 75.70 2.30 65.50 0
20: agent motiv. 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

Avg. err (%) 20.11 7.87 16.49 4.29 3.83 7.49 4.24 6.27 2.81

Falied (err. > 5%) 15 5 9 2 2 6 3 2 1

Tab. 9.3. Test error rates (%) on the 20 bAbI QA tasks for models using 10k
training examples. This table reports the test error rate of the best model
out of several models trained with different random seeds. Joint denotes joint
training of one model on all tasks and single denotes separate training of
separate model on each task.

9.6.4. Visualization of Discrete Attention

We visualize the attention of D-NTM with GRU controller with discrete attention in

Figure 9.2. From this example, we can see that D-NTM has learned to find the correct

supporting fact even without any supervision for the particular story in the visualization.

101







that the Discrete† D-NTM model which is trained with continuous-attention outperforms

Discrete D-NTM model.

9.6.7. D-NTM with BoW Fact Representation

In Table 9.5, we provide results for D-NTM using BoW with positional encoding (PE)

Sukhbaatar et al. (2015) as the representation of the input facts. The facts representations are

provided as an input to the GRU controller. In agreement to our results with the GRU fact

representation, with the BoW fact representation we observe improvements with multi-step

of addressing over single-step and discrete addressing over continuous addressing.

Soft Discrete Soft Discrete
Task D-NTM(1-step) D-NTM(1-step) D-NTM(3-steps) D-NTM(3-steps)

1: 1 supporting fact 0.00 0.00 0.00 0.00
2: 2 supporting facts 61.04 59.37 56.87 55.62
3: 3 supporting facts 55.62 57.5 62.5 57.5
4: 2 argument rels 27.29 24.89 26.45 27.08
5: 3 argument rels 13.55 12.08 15.83 14.78
6: yes/no questions 13.54 14.37 21.87 13.33
7: counting 8.54 6.25 8.75 14.58
8: lists/sets 1.69 1.36 3.01 3.02
9: simple negation 17.7 16.66 37.70 17.08
10: indefinite knowl. 26.04 27.08 26.87 23.95
11: basic coreference 20.41 3.95 2.5 2.29
12: conjunction 0.41 0.83 0.20 4.16
13: compound coref. 3.12 1.04 4.79 5.83
14: time reasoning 62.08 58.33 61.25 60.62
15: basic deduction 31.66 26.25 0.62 0.05
16: basic induction 54.47 48.54 48.95 48.95
17: positional reas. 43.75 31.87 43.75 30.62
18: size reasoning 33.75 39.37 36.66 36.04
19: path finding 64.63 69.21 67.23 65.46
20: agent motiv. 1.25 0.00 1.45 0.00

Avg. err (%) 27.02 24.98 26.36 24.05

Falied (err. > 5%) 15 14 13 14

Tab. 9.5. Test error rates (%) on the 20 bAbI QA tasks for models using 10k
training examples with the GRU controller and representations of facts are
obtained with BoW using positional encoding.

9.7. Experiments on Sequential pMNIST

In sequential MNIST task, the pixels of the MNIST digits are provided to the model

in scan line order, left to right and top to bottom (Le, Jaitly, and Hinton, 2015). At

the end of sequence of pixels, the model predicts the label of the digit in the sequence of

pixels. We experiment D-NTM on the variation of sequential MNIST where the order of the

104



pixels is randomly shuffled, we call this task as permuted MNIST (pMNIST). An important

contribution of this task to our paper, in particular, is to measure the model’s ability to

perform well when dealing with long-term dependencies. We report our results in Table 9.6,

we observe improvements over other models that we compare against. In Table 9.6, "discrete

addressing with MAB" refers to D-NTM model using REINFORCE with baseline computed

from moving averages of the reward. Discrete addressing with IB refers to D-NTM using

REINFORCE with input-based baseline.

Test Acc

D-NTM discrete MAB 89.6
D-NTM discrete IB 92.3
Soft D-NTM 93.4
NTM 90.9

I-RNN (Le et al., 2015) 82.0
Zoneout (Kruger et. al. 2016) 93.1
LSTM (Kruger et. al. 2016) 89.8
Unitary-RNN (Arjovsky, Shah, and Bengio, 2016) 91.4
Recurrent Dropout (Kruger et. al. 2016) 92.5
Recurrent Batch Normalization (Cooijmans, Ballas, Laurent, and Courville, 2017) 95.6

Tab. 9.6. Sequential pMNIST.

In Figure 9.4, we show the learning curves of input-based-baseline (ibb) and regular

REINFORCE with moving averages baseline (mab) on the pMNIST task. We observe that

input-based-baseline in general is much easier to optimize and converges faster as well. But

it can quickly overfit to the task as well. Let us note that, recurrent batch normalization

with LSTM (Cooijmans et al., 2017) achieves 95.6% accuracy and it performs much better

than other algorithms. However, it is possible to use recurrent batch normalization in our

model and potentially improve our results on this task as well.

In all our experiments on sequential MNIST task, we try to keep the capacity of our

model to be close to our baselines. We use 100 GRU units in the controller and each content

vector of size 8 and with address vectors of size 8. We use a learning rate of 1e − 3 and

trained the model with Adam optimizer. We did not use the read and write consistency

regularization in any of our models.

9.8. Stanford Natural Language Inference (SNLI) Task

SNLI task (Bowman, Angeli, Potts, and Manning, 2015) is designed to test the abilities

of different machine learning algorithms for inferring the entailment between two different

105





random search and sampling the learning rate from log-space between 1e− 2 and 1e− 4 for

each model. We use layer-normalization in our controller (Ba et al., 2016).

We have observed significant improvements by using layer normalization and dropout on

this task. Mainly because that the overfitting is a severe problem on SNLI. D-NTM achieves

better performance compared to both LSTM and NTMs.

Test Acc

Word by Word Attention (Rocktäschel et al., 2015) 83.5
Word by Word Attention two-way (Rocktäschel et al., 2015) 83.2
LSTM + LayerNorm + Dropout 81.7
NTM + LayerNorm + Dropout 81.8
DNTM + LayerNorm + Dropout 82.3
LSTM (Bowman et al., 2015) 77.6
D-NTM 80.9
NTM 80.2

Tab. 9.7. Stanford Natural Language Inference Task

9.9. NTM Synthetic Tasks

We explore the possibility of using D-NTM to solve algorithmic tasks such as copy

and associative recall tasks. We train our model on the same lengths of sequences that is

experimented in (Graves et al., 2014). We compare the results of D-NTM variations and the

NTM on Table 9.8. We find out that D-NTM using continuous-attention can successfully

learn the “Copy" and “Associative Recall" tasks.

In Table 9.8, we train our model on sequences of the same length as the experiments in

(Graves et al., 2014) and test the model on the sequences of the maximum length seen during

training. We consider a model to be successful on copy or associative recall if its validation

cost (binary cross-entropy) is lower than 0.02 over the sequences of maximum length seen

during training. We set the threshold to 0.02 to determine whether a model is successful on

a task. Because empirically we observe that the models have higher validation costs perform

badly in terms of generalization over the longer sequences. "D-NTM discrete" model in this

table is trained with REINFORCE using moving averages to estimate the baseline.

On both copy and associative recall tasks, we try to keep the capacity of our model to be

close to our baselines. We use 100 GRU units in the controller and each content vector of has

a size of 8 and using address vector of size 8. We use a learning rate of 1e− 3 and trained the

model with Adam optimizer. We did not use the read and write consistency regularization

107



Copy Tasks Associative Recall

Soft D-NTM Success Success
D-NTM discrete Success Failure
NTM Success Success

Tab. 9.8. The results of D-NTM architectures on Copy and "Associative
Recall" tasks.

in any of our models. For the model with the discrete attention we use REINFORCE with

baseline computed using moving averages.

9.10. Conclusion and Future Work

In this paper we extend the neural Turing machines (NTM) by introducing a learnable

addressing scheme which allows the NTM to be capable of performing highly nonlinear

location-based addressing. This extension, which we refer by dynamic NTM (D-NTM), is

extensively tested with various configurations, including different addressing mechanisms

(continuous vs. discrete) and different number of addressing steps, on the Facebook bAbI

tasks. This is the first time an NTM-type model was tested on this task, and we observe

that the NTM, especially the proposed D-NTM, performs better than vanilla LSTM-RNN.

Furthermore, the experiments revealed that the discrete addressing works better than the

continuous addressing with the GRU controller, and our analysis reveals that this is the case

when the task requires precise retrieval of memory content.

Our experiments show that the NTM-based models can be weaker than other variants of

memory networks which do not learn but have an explicit mechanism of storing incoming

facts as they are. We conjecture that this is due to the difficulty in learning how to write,

manipulate and delete the content of memory. Despite this difficulty, we find the NTM-based

approach, such as the proposed D-NTM, to be a better, future-proof approach, because it

can scale to a much longer horizon (where it becomes impossible to explicitly store all the

experiences.)

On pMNIST task, we show that our model can outperform other similar type of approaches

proposed to deal with the long-term dependencies. On copy and associative recall tasks, we

show that our model can solve the algorithmic problems that are proposed to solve with

NTM type of models.

Finally we have shown some results on the SNLI task where our model performed better

than the NTM and LSTM on this task. However our results do not involve any task specific

108



modifications and the results can be improved further by structuring the architecture of our

model according to the SNLI task.

The success of both the learnable address and the discrete addressing scheme suggests

two future research directions. First, we should try both of these schemes in a wider

array of memory-based models, as they are not specific to the neural Turing machines.

Second, the proposed D-NTM needs to be evaluated on a diverse set of applications, such as

text summarization (Rush, Chopra, and Weston, 2015b), visual question-answering (Antol,

Agrawal, Lu, Mitchell, Batra, Zitnick, and Parikh, 2015) and machine translation, in order to

make a more concrete conclusion.

109





Chapter 10

PROLOGUE TO THE FOURTH ARTICLE

10.1. Article Details

Plan, Attend, Generate: Planning for Sequence-to-Sequence Models, Caglar

Gulcehre, Francis Dutil, Adam Trischler, Yoshua Bengio, NIPS 2017.

Personal Contributions:

I came up with the ideas of using a planning mechanism inspired by the Strategic Attentive

Reader and Writer (STRAW) (Vezhnevets, Mnih, Agapiou, Osindero, Graves, Vinyals, and

Kavukcuoglu, 2016) model. I proposed the "Plan, Attend and Generate" and the "repeat

Plan Attend Generate" models. I implemented an initial version of those models during my

internship at Microsoft Research Maluuba, but later on, Francis Dutil and I implemented a

faster version at MILA. The idea of trying our models on algorithmic tasks as well was Adam

Trischler’s idea. Yoshua Bengio gave us feedback and ideas on training the alignment plan

mechanism with discrete outputs. I ran the initial English to German and English to Czech

experiments. However, Francis Dutil had to rerun all the machine translation experiments

for the camera-ready version of the paper. Adam Trischler and I wrote the paper, and all the

authors revised the paper.

10.2. Context

The sequence to sequence models with attention is a compelling architecture, and it has

been adapted for many problems successfully. Nevertheless, we observed that a strong decoder

could ignore the context coming from the source and generate the sentences according to the

probability density determined by the language model on its own. This can cause the model

to come up with degenerate samples. This phenomenon was more apparent on the models

trained for character-level machine translation: the model tends to ignore the alignments

after predicting the first few characters of each word correctly. Planning mechanism helps

reinforcement learning models to learn proactive policies, and in this paper, I wanted to see

if that would be the case for the attention models as well. The model was mainly inspired

111



by the STRAW model which got extended to become Feudal Networks (FUN) (Vezhnevets,

Osindero, Schaul, Heess, Jaderberg, Silver, and Kavukcuoglu, 2017).

10.3. Contributions

In this paper, we investigate the integration of a planning mechanism into the sequence

to sequence models with attention. We develop a model which can plan when it computes

alignments between the input and output sequences, constructing a matrix of proposed future

alignments and a commitment vector that governs whether to follow or recompute the plan.

This mechanism is inspired by the recently proposed strategic attentive reader and writer

(STRAW) model for Reinforcement Learning. Our proposed model is end-to-end trainable

mainly using differentiable operations. We show that it outperforms a strong baseline on

character-level translation tasks from WMT’15, the algorithmic task of finding Eulerian

circuits of graphs, and question generation from the text. Our analysis demonstrates that

the model computes qualitatively intuitive alignments, converges faster than the baselines,

and achieves superior performance with fewer parameters.

112



Chapter 11

PLAN, ATTEND, GENERATE: PLANNING FOR

SEQUENCE-TO-SEQUENCE MODELS

11.1. Introduction

Many important tasks in the machine learning literature can be cast as a sequence-to-

sequence problem (Cho et al., 2014a; Sutskever et al., 2014). Machine translation is a prime

example of that: a system that takes as input a sequence of words or characters in some

source language, then generates a translation – an output sequence of words or characters in

the target language.

Neural encoder-decoder models (Cho et al., 2014a; Sutskever et al., 2014) have become

a standard approach for sequence-to-sequence tasks like machine translation. Such models

generally encode the input sequence as a set of vector representations using a recurrent neural

network (RNN). A second RNN then decodes the output sequence step-by-step, conditioned on

the encodings. An important augmentation to this architecture first described by Bahdanau

et al. (2015), is for models to compute a soft alignment between the encoder representations

and the decoder state at each time-step using an attention mechanism. The computed

alignment conditions the decoder more directly on a relevant subset of the input sequence.

The attention mechanism is typically a simple learned function of the decoder’s internal

state, e.g., an MLP.

In this work, we propose to augment the encoder-decoder model with attention by

integrating a planning mechanism. Specifically, we develop a model that uses planning to

improve the alignment between input and output sequences. It creates an explicit plan of

input-output alignments to use at future time-steps, based on its current observation and

a summary of its past actions, which it may follow or modify. This enables the model to

plan ahead rather than attending to what is relevant primarily at the current generation step.

Concretely, we augment the decoder’s internal state with (i) an alignment plan matrix and

(ii) a commitment plan vector. The alignment plan matrix is a template of alignments that

the model intends to follow at future time-steps, i.e., a sequence of probability distributions

113



over input tokens. The commitment plan vector governs whether to follow the alignment

plan at the current step or to recompute it and thus models discrete decisions. This is

reminiscent to the macro-actions and options in the hierarchical reinforcement learning

literature (Dietterich, 2000). This planning mechanism is inspired by the strategic attentive

reader and writer (STRAW) of Vezhnevets et al. (2016) which is originally proposed as a

hierarchical reinforcement learning algorithm.

In the parlance of reinforcement learning, existing sequence-to-sequence models with

attention can be said to learn reactive policies; however, a model with a planning mechanism

could learn more proactive policies. Our work is motivated by the intuition that, although

many natural sequences are output step-by-step because of constraints on the output process,

they are not necessarily conceived and ordered according to only local, step-by-step interactions.

Natural language in the form of speech and writing is again a prime example – sentences

are not conceived one word at a time. Planning, that is, choosing some goal along with

candidate macro-actions to arrive at it, is one way to induce coherence in sequential outputs

like language. Learning to generate long coherent sequences, or how to form alignments over

long input contexts, is difficult for existing models. In the case of neural machine translation

(NMT), the performance of encoder-decoder models with attention deteriorates as sequence

length increases (Cho, Van Merriënboer, Bahdanau, and Bengio, 2014b; Sutskever et al.,

2014). A planning mechanism could make the decoder’s search for alignments more tractable

and more scalable.

In this work, we perform planning over the input sequence by searching for alignments;

our model does not form an explicit plan of the output tokens to generate. Nevertheless,

we find this alignment-based planning to improve performance significantly in several tasks,

including character-level NMT. Planning can also be applied explicitly to generation in

sequence-to-sequence tasks. For example, recent work by Bahdanau, Brakel, Xu, Goyal, Lowe,

Pineau, Courville, and Bengio (2016a) on actor-critic methods for sequence prediction can be

seen as this kind of generative planning.

We evaluate our model and report results on character-level translation tasks from

WMT’15 for English to German, English to Finnish, and English to Czech language pairs. On

almost all pairs we observe improvements over a baseline that represents the state-of-the-art

in neural character-level translation. In our NMT experiments, our model outperforms the

baseline despite using significantly fewer parameters and converges faster in training. We also

show that our model performs better than strong baselines on the algorithmic task of finding

Eulerian circuits in random graphs and the task of natural-language question generation from

a document and target answer.

114



11.2. Related Works

Existing sequence-to-sequence models with attention have focused on generating the

target sequence by aligning each generated output token to another token in the input

sequence. This approach has proven successful in neural machine translation (Bahdanau

et al., 2016a) and has recently been adapted to several other applications, including speech

recognition (Chan, Jaitly, Le, and Vinyals, 2015) and image caption generation (Xu et al.,

2015b). In general these models construct alignments using a simple MLP that conditions

on the decoder’s internal state. In our work we integrate a planning mechanism into the

alignment function.

There have been several earlier proposals for different alignment mechanisms: for in-

stance, Yang, Yang, Dyer, He, Smola, and Hovy (2016) developed a hierarchical attention

mechanism to perform document-level classification, while Luo, Chiu, Jaitly, and Sutskever

(2016) proposed an algorithm for learning discrete alignments between two sequences using

policy gradients (Williams, 1992).

Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou,

Panneershelvam, Lanctot, et al. (2016) used a planning mechanism based on Monte Carlo

tree search with neural networks to train reinforcement learning (RL) agents on the game

of Go. Most similar to our work, Vezhnevets et al. (2016) developed a neural planning

mechanism that can learn high-level temporally abstracted macro-actions, called the strategic

attentive reader and writer (STRAW). STRAW uses an action plan matrix, which represents

the sequences of actions the model plans to take, and a commitment plan vector, which

determines whether to commit an action or recompute the plan. STRAW’s action plan and

commitment plan are stochastic and the model is trained with RL. Our model computes an

alignment plan rather than an action plan, and both its alignment matrix and commitment

vector are deterministic and end-to-end trainable with backpropagation.

Our experiments focus on character-level neural machine translation because learning

alignments for long sequences is difficult for existing models. This effect can be more pro-

nounced in character-level NMT, since sequences of characters are longer than corresponding

sequences of words. Furthermore, to learn a proper alignment between sequences a model

often must learn to segment them correctly, a process suited to planning. Previously, Chung

et al. (2016) and Lee, Cho, and Hofmann (2016) addressed the character-level machine

translation problem with architectural modifications to the encoder and the decoder. Our

model is the first we are aware of to tackle the problem through planning.

115



11.3. Planning for Sequence-to-Sequence Learning

We now describe how to integrate a planning mechanism into a sequence-to-sequence

architecture with attention (Bahdanau et al., 2015). Our model first creates a plan, then

computes a soft alignment based on the plan, and generates at each time-step in the decoder.

We refer to our model as PAG (Plan-Attend-Generate).

11.3.1. Notation and Encoder

As input our model receives a sequence of tokens, X = (x0, · · · , x|X|), where |X| denotes

the length of X. It processes these with the encoder, a bidirectional RNN. At each input

position i we obtain annotation vector hi by concatenating the forward and backward encoder

states, hi = [h→i ; h←i ], where h→i denotes the hidden state of the encoder’s forward RNN and

h←i denotes the hidden state of the encoder’s backward RNN.

Through the decoder the model predicts a sequence of output tokens, Y = (y1, · · · , y|Y |).
We denote by st the hidden state of the decoder RNN generating the target output token at

time-step t.

11.3.2. Alignment and Decoder

Our goal is a mechanism that plans which parts of the input sequence to focus on for

the next k time-steps of decoding. For this purpose, our model computes an alignment plan

matrix At ∈ R
k×|X| and commitment plan vector ct ∈ R

k at each time-step. Matrix At stores

the alignments for the current and the next k − 1 timesteps; it is conditioned on the current

input, i.e. the token predicted at the previous time-step yt, and the current context ψt,

which is computed from the input annotations hi. The recurrent decoder function, fdec-rnn(·),
receives st−1, yt, ψt as inputs and computes the hidden state vector

st = fdec-rnn(st−1,yt, ψt). (11.3.1)

Context ψt is obtained by a weighted sum of the encoder annotations,

ψt =
|X|
∑

i

αtihi, (11.3.2)

where the soft-alignment vector αt = softmax(At[0]) ∈ R
|X| is a function of the first row of

the alignment matrix. At each time-step, we compute a candidate alignment-plan matrix Āt

whose entry at the ith row is

Āt[i] = falign(st−1, hj, β
i
t , yt), (11.3.3)

116



where falign(·) is an MLP and βi
t denotes a summary of the alignment matrix’s ith row at

time t − 1. The summary is computed using an MLP, fr(·), operating row-wise on At−1:

βi
t = fr(At−1[i]).

The commitment plan vector ct governs whether to follow the existing alignment plan, by

shifting it forward from t− 1, or to recompute it. Thus, ct represents a discrete decision. For

the model to operate discretely, we use the recently proposed Gumbel-Softmax trick (Jang, Gu,

and Poole, 2016; Maddison, Mnih, and Teh, 2016) in conjunction with the straight-through

estimator (Bengio et al., 2013b) to backpropagate through ct.
1 The model further learns

the temperature for the Gumbel-Softmax as proposed in (Gulcehre et al., 2017a). Both the

commitment vector and the action plan matrix are initialized with ones; this initialization is

not modified through training.

Alignment-plan update

Our decoder updates its alignment plan as governed by the commitment plan. Denoted by

gt the first element of the discretized commitment plan c̄t. In more detail, gt = c̄t[0], where

the discretized commitment plan is obtained by setting ct’s largest element to 1 and all other

elements to 0. Thus, gt is a binary indicator variable; we refer to it as the commitment switch.

When gt = 0, the decoder simply advances the time index by shifting the action plan matrix

At−1 forward via the shift function ρ(·). When gt = 1, the controller reads the action-plan

matrix to produce the summary of the plan, βi
t. We then compute the updated alignment

plan by interpolating the previous alignment plan matrix At−1 with the candidate alignment

plan matrix Āt. The mixing ratio is determined by a learned update gate ut ∈ R
k×|X|, whose

elements uti correspond to tokens in the input sequence and are computed by an MLP with

sigmoid activation, fup(·):

uti = fup(hi, st−1),

At[:, i] = (1− uti)⊙At−1[:, i] + uti ⊙ Āt[:, i].

To reiterate, the model only updates its alignment plan when the current commitment switch

gt is active. Otherwise it uses the alignments planned and committed at previous time-steps.

Commitment-plan update

The commitment plan also updates when gt becomes 1. If gt is 0, the shift function ρ(·) shifts

the commitment vector forward and appends a 0-element. If gt is 1, the model recomputes

ct using a single layer MLP (fc(·)) followed by a Gumbel-Softmax, and c̄t is recomputed by

1We also experimented with training ct using REINFORCE (Williams, 1992) but found that Gumbel-Softmax
led to better performance.

117



Alignment Plan 

Matrix 

# tokens in the

source       

# steps to plan ahead (k)

At

Commitment plan ct

ht

Tx

Softmax(       )

+ ψt

At[0]

yt

st−1

s′
t

Fig. 11.1. Our planning mechanism in a sequence-to-sequence model that
learns to plan and execute alignments. Distinct from a standard sequence-to-
sequence model with attention, rather than using a simple MLP to predict
alignments our model makes a plan of future alignments using its alignment-plan
matrix and decides when to follow the plan by learning a separate commitment
vector. We illustrate the model for a decoder with two layers s′t for the first
layer and the st for the second layer of the decoder. The planning mechanism
is conditioned on the first layer of the decoder (s′t).

discretizing ct as a one-hot vector:

ct = gumbel_softmax(fc(st−1)), (11.3.4)

c̄t = one_hot(ct). (11.3.5)

We provide pseudocode for the algorithm to compute the commitment plan vector and

the action plan matrix in Algorithm 3. An overview of the model is depicted in Figure 11.1.

11.3.2.1. Alignment Repeat

In order to reduce the model’s computational cost, we also propose an alternative approach

to computing the candidate alignment-plan matrix at every step. Specifically, we propose a

model variant that reuses the alignment from the previous time-step until the commitment

118



Algorithm 2 Pseudocode for updating the alignment plan and commitment vector.

1: for j ∈ {1, · · · |X|} do
2: for t ∈ {1, · · · |Y |} do
3: if gt = 1 then
4: ct = softmax(fc(st−1))

5: β
j
t = fr(At−1[j]) ⊲ Read alignment plan

6: Āt[j] = falign(st−1, hj , β
j
t , yt) ⊲ Compute candidate alignment plan

7: utj = fup(hj , st−1, ψt−1) ⊲ Compute update gate

8: At = (1 − utj)⊙At−1 + utj ⊙ Āt ⊲ Update alignment plan
9: else

10: At = ρ(At−1) ⊲ Shift alignment plan
11: ct = ρ(ct−1) ⊲ Shift commitment plan
12: end if
13: Compute the alignment as αt = softmax(At[0])
14: end for
15: end for

switch activates, at which time the model computes a new alignment. We call this variant

repeat, plan, attend, and generate (rPAG). rPAG can be viewed as learning an explicit

segmentation with an implicit planning mechanism in an unsupervised fashion. Repetition

can reduce the computational complexity of the alignment mechanism drastically; it also

eliminates the need for an explicit alignment-plan matrix, which reduces the model’s memory

consumption as well. We provide pseudocode for rPAG in Algorithm 3.

Algorithm 3 Pseudocode for updating the repeat alignment and commitment vector.

1: for j ∈ {1, · · · |X|} do
2: for t ∈ {1, · · · |Y |} do
3: if gt = 1 then
4: ct = softmax(fc(st−1, ψt−1))
5: αt = softmax(falign(st−1, hj , yt))
6: else
7: ct = ρ(ct−1) ⊲ Shift the commitment vector ct−1

8: αt = αt−1 ⊲ Reuse the old the alignment
9: end if

10: end for
11: end for

11.3.3. Training

We use a deep output layer Pascanu et al. (2013a) to compute the conditional distribution

over output tokens,

p(yt|y<t,x) ∝ y⊤t exp(Wofo(st,yt−1, ψt)), (11.3.6)

119



where Wo is a matrix of learned parameters and we have omitted the bias for brevity.

Function fo is an MLP with tanh activation.

The full model, including both the encoder and decoder, is jointly trained to minimize

the (conditional) negative log-likelihood

L = − 1

N

N
∑

n=1

log pθ(y
(n)|x(n)),

where the training corpus is a set of (x(n),y(n)) pairs and θ denotes the set of all tunable

parameters. As noted in (Vezhnevets et al., 2016), the proposed model can learn to recompute

very often which decreases the utility of planning. In order to avoid this behavior, we

introduce a loss that penalizes the model for committing too often,

Lcom = λcom

|X|
∑

t=1

k
∑

i=0

||1
k
− cti||22, (11.3.7)

where λcom is the commitment hyperparameter and k is the timescale over which plans

operate.

11.4. Experiments

Our baseline is the encoder-decoder architecture with attention described in Chung et al.

(2016), wherein the MLP that constructs alignments conditions on the second layer hidden

states, h2, in the two-layer decoder. The integration of our planning mechanism is analogous

across the family of attentive encoder-decoder models, thus our approach can be applied

more generally. In all experiments below, we use the same architecture for our baseline and

the (r)PAG models. The only factor of variation is the planning mechanism. For training

all models we use the Adam optimizer with initial learning rate set to 0.0002. We clip

gradients with a threshold of 5 (Pascanu, Mikolov, and Bengio, 2013b) and set the number of

planning steps (k) to 10 throughout. In order to backpropagate through the alignment-plan

matrices and the commitment vectors, the model must maintain these in memory, increasing

the computational overhead of the PAG model. However, rPAG does not suffer from these

computational issues.

11.4.1. Algorithmic Task

We first compared our models on the algorithmic task from Li, Tarlow, Brockschmidt, and

Zemel (2015b) of finding the “Eulerian Circuits” in a random graph. The original work used

random graphs with 4 nodes only, but we found that both our baseline and the PAG model

120







between different languages and translations to be more difficult. Character-level neural

machine translation mitigates these issues.

In our NMT experiments we use byte pair encoding (BPE) (Sennrich et al., 2015) for

the source sequence and characters at the target, the same setup described in Chung et al.

(2016). We also use the same preprocessing as in that work.2 We present our experimental

results in Table 11.1. Models were tested on the WMT’15 tasks for English to German

(En→De), English to Czech (En→Cs), and English to Finnish (En→Fi) language pairs. The

table shows that our planning mechanism improves translation performance over our baseline

(which reproduces the results reported in (Chung et al., 2016) to within a small margin). It

does this with fewer updates and fewer parameters. We trained (r)PAG for 350K updates

on the training set, while the baseline was trained for 680K updates. We used 600 units in

(r)PAG’s encoder and decoder, while the baseline used 512 in the encoder and 1024 units in

the decoder. In total our model has about 4M fewer parameters than the baseline. We tested

all models with a beam size of 15.

As can be seen from Table 11.1, layer normalization (Ba et al., 2016) improves the

performance of PAG model significantly. However, according to our results on En→De, layer

norm affects the performance of our rPAG only marginally. Thus, we decided not to train

rPAG with layer norm on other language pairs.

In Figure 11.2, we show qualitatively that our model constructs smoother alignments. At

each word that the baseline decoder generates, it aligns the first few characters to a word in

the source sequence, but for the remaining characters places the largest alignment weight on

the last, empty token of the source sequence. This is because the baseline becomes confident

of which word to generate after the first few characters, and it generates the remainder of the

word mainly by relying on language-model predictions. We observe that (r)PAG converges

faster with the help of the improved alignments, as illustrated by the learning curves in

Figure 11.4.

11.5. Conclusion

In this work we addressed a fundamental issue in neural generation of long sequences by

integrating planning into the alignment mechanism of sequence-to-sequence architectures.

We proposed two different planning mechanisms: PAG, which constructs explicit plans in the

form of stored matrices, and rPAG, which plans implicitly and is computationally cheaper.

The (r)PAG approach empirically improves alignments over long input sequences. We

demonstrated our models’ capabilities through results on character-level machine translation,

2Our implementation is based on the code available at https://github.com/nyu-dl/dl4mt-cdec

123



Model Layer Norm Dev Test 2014 Test 2015

En→De

Baseline ✗ 21.57 21.33 23.45
Baseline† ✗ 21.4 21.16 22.1
Baseline† ✓ 21.65 21.69 22.55

PAG
✗ 21.92 21.93 22.42
✓ 22.44 22.59 23.18

rPAG
✗ 21.98 22.17 22.85
✓ 22.33 22.35 22.83

En→Cs

Baseline ✗ 17.68 19.27 16.98
Baseline† ✓ 19.1 21.35 18.79

PAG
✗ 18.9 20.6 18.88
✓ 19.44 21.64 19.48

rPAG ✗ 18.66 21.18 19.14

En→Fi

Baseline ✗ 11.19 - 10.93
Baseline† ✓ 11.26 - 10.71

PAG
✗ 12.09 - 11.08
✓ 12.85 - 12.15

rPAG ✗ 11.76 - 11.02

Tab. 11.1. The results of different models on WMT’15 task on English to
German, English to Czech and English to Finnish language pairs. We report
BLEU scores of each model computed via the multi-blue.perl script. The
best-score of each model for each language pair appears in bold-face. We use
newstest2013 as our development set, newstest2014 as our "Test 2014" and

newstest2015 as our "Test 2015" set.
(

†
)

denotes the results of the baseline

that we trained using the hyperparameters reported in Chung et al. (2016)
and the code provided with that paper. For our baseline, we only report the
median result, and do not have multiple runs of our models.

an algorithmic task, and question generation. In machine translation, models with planning

outperform a state-of-the-art baseline on almost all language pairs using fewer parameters.

We also showed that our model outperforms baselines with the same architecture (minus

planning) on the question-generation and algorithmic tasks. The introduction of planning

also improves training convergence.

124







Chapter 12

PROLOGUE TO THE FIFTH ARTICLE

12.1. Article Details

Noisy Activation Functions, Caglar Gulcehre, Marcin Moczulski, Misha Denil, Caglar

Gulcehre, International Conference on Machine Learning (ICML) 2016.

Personal Contribution:

I have first came up with the idea of using piecewise linear activation functions with noise

to model the discrete decisions in neural networks with backpropagation. However, my

experiments in that direction did not work very well. I decided to try this with neural

networks to emulate the sigmoid and tanh type of saturating activation functions in order to

overcome some of the issues training them. After getting some encouraging results, I have

started discussing this with Marcin Moczulski and Yoshua Bengio. From the discussions

with Marcin, we have decided to learn standard deviation and the mean of the noise in a

parametrized form. Yoshua Bengio suggested us to run experiments with annealing the noise

to establish the relationship between our method and the continuation methods. Marcin

Moczulski ran the experiments on "Learning to Execute" and Penntreebank dataset. I have

run the rest of the experiments. Misha greatly helped us writing the paper. Yoshua Bengio

has written the part of the paper related to the continuation methods.

12.2. Context

Piecewise linear activation functions such as rectified linear units (ReLU) have contributed

to the success of deep learning in vision problems. Inspired from those results, we decided to

explore the possibility of extending those results for recurrent neural networks. Hannun et al.

(2014) obtained state of art on speech recognition by replacing sigmoid activation functions of

the vanilla recurrent neural networks with a clipped ReLU. We extended this to the gates of

the LSTMs and GRUs. Furthermore, the noise injected to the activation function prevents the

activations to get stuck in the saturated regime. Following the continuation based approaches

as proposed by (Mobahi, 2016), we have also shown that annealing the noise injected to

127



the activation function has a profound continuation like effect on the training. Our method

mainly improves the training of the RNNs, but since the noise is injected into the activation

function, it also has a regularization effect as well.

The paper is published at ICML 2016 and has over 26 citations.

12.3. Contributions

We propose to exploit the injection of appropriate noise so that the gradients may flow

easily, even if the noiseless application of the activation function would yield zero gradient.

Large noise will dominate the noise-free gradient and allow stochastic gradient descent to

explore more. By adding noise only to the problematic parts of the activation function, we

allow the optimization procedure to explore the boundary between the degenerate (saturating)

and the well-behaved parts of the activation function. We also establish connections to

simulated annealing, when the amount of noise is annealed down, making it easier to optimize

hard objective functions. We find experimentally that replacing such saturating activation

functions by noisy variants helps training in many contexts, yielding state-of-the-art or

competitive results on different datasets and tasks, especially when training seems to be the

most difficult, e.g., when curriculum learning is necessary to obtain good results.

12.4. Recent Developments

We have extended our analysis on the relationship between the continuation and noise

injected into the activation function in our more recent work (Gulcehre, Moczulski, Visin, and

Bengio, 2016b). In this paper, we have shown that annealing the noise in the activations for

each layer with a different rate can be an effective way to train neural networks. Furthermore,

recurrent batch normalization (Cooijmans et al., 2017) and layer normalization (Ba et al.,

2016) methods are proposed to deal with the similar issue regarding to saturating activation

functions of the recurrent neural networks.

128



Chapter 13

NOISY ACTIVATION FUNCTIONS

13.1. Introduction

The introduction of the piecewise-linear activation functions such as ReLU and Maxout

Goodfellow, Warde-Farley, Mirza, Courville, and Bengio (2013b) units had a profound effect

on deep learning, and was a major catalyst in allowing the training of much deeper networks.

It is thanks to ReLU that for the first time it was shown (Glorot, Bordes, and Bengio, 2011)

that deep purely supervised networks can be trained, whereas using tanh nonlinearity only

allowed to train shallow networks. A plausible hypothesis about the recent surge of interest

on these piecewise-linear activation functions (Glorot et al., 2011), is due to the fact that

they are easier to optimize with SGD and backpropagation than smooth activation functions,

such as sigmoid and tanh. The recent successes of piecewise linear functions is particularly

evident in computer vision, where the ReLU has become the default choice in convolutional

networks.

We propose a new technique to train neural networks with activation functions which

strongly saturate when their input is large. This is mainly achieved by injecting noise to

the activation function in its saturated regime and learning the level of noise. Using this

approach, we have found that it was possible to train neural networks with much wider family

of activation functions than previously. Adding noise to the activation function has been

considered for ReLU units and was explored in Bengio et al. (2013b); Nair and Hinton (2010)

for feed-forward networks and Boltzmann machines to encourage units to explore more and

make the optimization easier.

More recently there has been a resurgence of interest in more elaborated “gated” archi-

tectures such as LSTMs Hochreiter and Schmidhuber (1997) and GRUs Cho et al. (2014a),

but also encompassing neural attention mechanisms that have been used in the NTM Graves

et al. (2014), Memory Networks Weston et al. (2015a), automatic image captioning Xu et al.

(2015b), video caption generation Yao et al. (2015) and wide areas of applications LeCun,

Bengio, and Hinton (2015). A common thread running through these works is the use of

129



soft-saturating non-linearities, such as the sigmoid or softmax, to emulate the hard decisions

of digital logic circuits. In spite of its success, there are two key problems with this approach.

(1) Since the non-linearities still saturate there are problems with vanishing gradient

information flowing through the gates; and

(2) since the non-linearities only softly saturate they do not allow one to take hard

decisions.

Although gates often operate in the soft-saturated regime Karpathy et al. (2015); Bahdanau

et al. (2014); Hermann et al. (2015) the architecture prevents them from being fully open or

closed. We follow a novel approach to address both of these problems. Our method addresses

the second problem through the use of hard-saturating nonlinearities, which allow gates

to make perfectly on or off decisions when they saturate. Since the gates are able to be

completely open or closed, no information is lost through the leakiness of the soft-gating

architecture.

By introducing hard-saturating nonlinearities, we have exacerbated the problem of gradient

flow, since gradients in the saturated regime are now precisely zero instead of being negligible.

However, by introducing noise into the activation function which can grow based on the

magnitude of saturation, we encourage random exploration. Our work builds up on the

existing literature on the noise injection methods to the piecewise-linear activation functions

(Bengio et al., 2013b; Nair and Hinton, 2010; Xu, Wang, Chen, and Li, 2015a).

At test time the noise in the activation functions can be replaced with its expectation. As

our experiments show, the resulting deterministic networks outperform their soft-saturating

counterparts on a wide variety of tasks, and allow to reach state-of-the-art performance by

simple drop-in replacement of the nonlinearities in existing training code.

The technique that we propose, addresses the difficulty of optimization and having hard-

activations at the test time for gating units and we propose a way of performing simulated

annealing for neural networks.

Hannun et al. (2014); Le et al. (2015) used ReLU activation functions with simple RNNs.

In this paper, we successfully show that, it is possible to use piecewise-linear activation

functions with gated recurrent networks such as LSTM and GRU’s.

13.2. Saturating Activation Functions

Definition 13.2.1. (Activation Function). An activation function is a function h : R→
R that is differentiable almost everywhere.

130



Definition 13.2.2. (Saturation). An activation function h(x) with derivative h′(x) is said

to right (resp. left) saturate if its limit as x → ∞ (resp. x → −∞) is zero. An activation

function is said to saturate (without qualification) if it both left and right saturates.
Most common activation functions used in recurrent networks (for example, tanh and

sigmoid) are saturating. In particular they are soft saturating, meaning that they achieve

saturation only in the limit.

Definition 13.2.3. (Hard and Soft Saturation). Let c be a constant such that x > c

implies h′(x) = 0 and left hard saturates when x < c implies h′(x) = 0, ∀x. We say that h(·)
hard saturates (without qualification) if it both left and right hard saturates. An activation

function that saturates but achieves zero gradient only in the limit is said to soft saturate.

We can construct hard saturating versions of soft saturating activation functions by taking

a first-order Taylor expansion about zero and clipping the results to an appropriate range.

For example, expanding tanh and sigmoid around 0, with x ≈ 0, we obtain linearized

functions ut and us of tanh and sigmoid respectively:

sigmoid(x) ≈ us(x) = 0.25x+ 0.5 (13.2.1)

tanh(x) ≈ ut(x) = x. (13.2.2)

Clipping the linear approximations result to,

hard-sigmoid(x) = max(min(us(x), 1), 0) (13.2.3)

hard-tanh(x) = max(min(ut(x), 1), −1). (13.2.4)

The motivation behind this construction is to introduce linear behavior around zero to

allow gradients to flow easily when the unit is not saturated, while providing a crisp decision

in the saturated regime.

The ability of the hard-sigmoid and hard-tanh to make crisp decisions comes at the cost

of exactly 0 gradients in the saturated regime. This can cause difficulties during training: a

small but not infinitesimal change of the pre-activation (before the nonlinearity) may help to

reduce the objective function, but this will not be reflected in the gradient.

In the rest of the document we will use h(x) to refer to a generic activation function

and use u(x) to denote its linearization based on the first-order Taylor expansion about

zero. hard-sigmoid saturates when x 6 −2 or x > 2 and hard-tanh saturates when x 6 −1

or x > 1. We denote the threshold by xt. Absolute values of the threshold are xt = 2 for

hard-sigmoid and xt = 1 for the hard-tanh.

131







approaches to zero we are fine-tuning the solution and converging near a minimum of the

noise-free objective function. A related approach of adding noise to gradients and annealing

the noise was investigated in Neelakantan, Vilnis, Le, Sutskever, Kaiser, Kurach, and Martens

(2015) as well. Ge, Huang, Jin, and Yuan (2015) showed that SGD with annealed noise will

globally converge to a local-minima for non-convex objective functions in polynomial number

of iterations. Recently, Mobahi (2016) propose an optimization method that applies Gaussian

smoothing on the loss function such that annealing weight noise is a Monte Carlo estimator

of that.

13.4. Adding Noise when the Unit Saturates

A novel idea behind the proposed noisy activation is that the amount of noise added

to the nonlinearity is proportional to the magnitude of saturation of the nonlin-

earity. For hard-sigmoid(x) and hard-tanh(x), due to our parametrization of the noise, that

translates into the fact that the noise is only added when the hard-nonlinearity saturates.

This is different from previous proposals such as the noisy rectifier from Bengio et al. (2013b)

where noise is added just before a rectifier (ReLU) unit, independently of whether the input

is in the linear regime or in the saturating regime of the nonlinearity.

The motivation is to keep the training signal clean when the unit is in the non-saturating

(typically linear) regime and provide some noisy signal when the unit is in the saturating

regime.

h(x) refer to hard saturation activation function such as the hard-sigmoid and hard-tanh

introduced in Sec. 13.2, we consider noisy activation functions of the following form:

φ(x, ξ) = h(x) + s (13.4.1)

and s = µ+ σξ. Here ξ is an iid random variable drawn from some generating distribution,

and the parameters µ and σ (discussed below) are used to generate a location scale family

from ξ.

Intuitively when the unit saturates we pin its output to the threshold value t and add

noise. The exact behavior of the method depends on the type of noise ξ and the choice of µ

and σ, which we can pick as functions of x in order to let some gradients be propagated even

when we are in the saturating regime.

A desirable property we would like φ to approximately satisfy is that, in expectation, it is

equal to the hard-saturating activation function, i.e.

Eξ∼N (0,1)[φ(x, ξ)] ≈ h(x) (13.4.2)

134



If the ξ distribution has zero mean then this property can be satisfied by setting µ = 0, but

for biased noise it will be necessary to make other choices for µ. In practice, we used slightly

biased φ with good results.

Intuitively we would like to add more noise when x is far into the saturated regime, since

a large change in parameters would be required desaturate h. Conversely, when x is close to

the saturation threshold a small change in parameters would be sufficient for it to escape.

To that end we make use of the difference between the original activation function h and its

linearization u

∆ = h(x)− u(x) (13.4.3)

when choosing the scale of the noise. See Eqs.13.2.1 for definitions of u for the hard-sigmoid

and hard-tanh respectively. The quantity ∆ is zero in the unsaturated regime, and when h

saturates it grows proportionally to the distance between |x| and the saturation threshold xt.

We also refer |∆| as the magnitude of the saturation.

We experimented with different ways of scaling σ with ∆, and empirically found that the

following formulation performs better:

σ(x) = c (g(p∆)− 0.5)2

g(x) = sigmoid(x).
(13.4.4)

In Equation 13.4.4 a free scalar parameter p is learned during the course of training. By

changing p, the model is able to adjust the magnitude of the noise and that also effects

the sign of the gradient as well. The hyper-parameter c changes the scale of the standard

deviation of the noise.

13.4.1. Derivatives in the Saturated Regime

In the simplest case of our method we draw ξ from an unbiased distribution, such as a

standard normal. In this case we choose µ = 0 to satisfy Equation 13.4.2 and therefore we

will have,

φ(x, ξ) = h(x) + σ(x)ξ

Due to our parameterization of σ(x), when |x|≤ xt our stochastic activation function

behaves exactly as the linear function u(x), leading to familiar territory. Because ∆ will be 0.

Let us for the moment restrict our attention to the case when |x|> xt and h saturates. In this

135





s =µ(x) + d(x)σ(x)|ξ|.

where ξ and σ are as before and sgn is the sign function, such that sgn(x) is 1 if x is

greater than or equal to 0 otherwise it is −1. We also use the absolute value of ξ in the

reparametrization of the noise, such that the noise is being sampled from a half-Normal

distribution. We ignored the sign of ξ, such that the direction that the noise pushes the

activations are determined by d(x) and it will point towards h(x). Matching the sign of the

noise to the sign of x would ensure that we avoid the sign cancellation between the noise and

the gradient message from backpropagation. sgn(1− α) is required to push the activations

towards h(x) when the bias from α is introduced.

In practice we use a hyperparameter α that influences the mean of the added term, such

that α near 1 approximately satisfies the above condition, as seen in Fig. 13.4. We can rewrite

the noisy term s in a way that the noise can either be added to the linearized function or

h(x). The relationship between ∆, u(x) and h(x) is visualized Figure 13.3 can be expressed

as in Eqn 13.4.6.

We have experimented with different types of noise. Empirically, in terms of performance

we found, half-normal and normal noise to be better. In Eqn 13.4.6, we provide the formulation

for the activation function where ǫ = |ξ| if the noise is sampled from half-normal distribution,

ǫ = ξ if the noise is sampled from normal distribution.

φ(x, ξ) = u(x) + α∆ + d(x)σ(x)ǫ (13.4.6)

By using Eqn 13.4.6, we arrive at the noisy activations, which we used in our experiments.

φ(x, ξ) = αh(x) + (1− α)u(x) + d(x)σ(x)ǫ (13.4.7)

As can be seen in Eqn 13.4.7, there are three paths that gradients can flow through

the neural network, the linear path (u(x)), nonlinear path (h(x)) and the stochastic path

(σ(x)). The flow of gradients through these different pathways across different layers makes

the optimization of our activation function easier.

At test time, we used the expectation of Eqn 13.4.7 in order to get deterministic units,

Eξ[φ(x, ξ)] = αh(x) + (1− α)u(x) + d(x)σ(x)Eξ[ǫ] (13.4.8)

If ǫ = ξ, then Eξ[ǫ] is 0. Otherwise if ǫ = |ξ|, then Eξ[ǫ] is
√

2
π
.

To illustrate the effect of α and noisy activation of the hard-tanh, We provide plots of

our stochastic activation functions in Fig 13.4.

137





In Eqn 13.5.1, we provide a parametrization of the noisy activation function. σ can be

either learned as in Eqn 13.4.4 or fixed as a hyperparameter.

The condition in Eqn 13.3.1 is satisfied only when σ is learned. Experimentally we found

small values of σ to work better. When σ is fixed and small, as x gets larger and further away

from the threshold xt, noise will less likely be able to push the activations back to the linear

regime. We also investigated the effect of injecting input noise when the activations saturate:

φ(x, ξ) = h(x+ 1|x|≥|xt|(σξ)) and ξ ∼ N (0, 1). (13.5.2)

13.6. Experimental Results

In our experiments, we used noise only during training: at test time we replaced the

noise variable with its expected value. We performed our experiments with just a drop-in

replacement of the activation functions in existing experimental setups, without changing

the previously set hyper-parameters. Hence it is plausible one could obtain better results by

performing a careful hyper-parameter tuning for the models with noisy activation functions.

In all our experiments, we initialized p uniform randomly from the range [−1, 1].

We provide experimental results using noisy activations with normal (NAN), half-normal

noise (NAH), normal noise at the input of the function (NANI), normal noise at the input

of the function with learned σ (NANIL) and normal noise injected to the input of the

function when the unit saturates (NANIS). Codes for different types of noisy activation

functions can be found at https://github.com/caglar/noisy_units.

13.6.1. Exploratory Analysis

As a sanity-check, we performed small-scale control experiments, in order to observe the

behavior of the noisy units.

We trained 3−layer MLP on a dataset generated from a mixture of 3 Gaussian distributions

with different means and standard deviations. Each layer of the MLP contains 8-hidden units.

Both the model with tanh and noisy− tanh activations was able to solve this task almost

perfectly. By using the learned p values, in Figure 13.5 and 13.6, we showed the scatter plot

of the activations of each unit at each layer and the derivative function of each unit at each

layer with respect to its input.

139











Tab. 13.2. Penntreebank word-level comparative perplexities. We only re-
placed in the code from Zaremba et al. (2014) the sigmoid and tanh by corre-
sponding noisy variants and observe a substantial improvement in perplexity,
which makes this the state-of-the-art on this task.

Valid ppl Test ppl

Noisy LSTM + NAN 111.7 108.0
Noisy LSTM + NAH 112.6 108.7
LSTM (Reference) 119.4 115.6

Tab. 13.3. Image Caption Generation on Flickr8k. This time we added
noisy activations in the code from Xu et al. (2015b) and obtain substantial
improvements on the higher-order BLEU scores and the METEOR metric,
as well as in NLL. Soft attention and hard attention here refers to using
backprop versus REINFORCE when training the attention mechanism. We
fixed σ = 0.05 for NANI and c = 0.5 for both NAN and NANIL.

BLEU -1 BLEU-2 BLEU-3 BLEU-4 METEOR Test NLL

Soft Attention (Sigmoid and Tanh) (Baseline) 67 44.8 29.9 19.5 18.9 40.33

Soft Attention (NAH Sigmoid & Tanh) 66 45.8 30.69 20.9 20.5 40.17
Soft Attention (NAH Sigmoid & Tanh wo dropout) 64.9 44.2 30.7 20.9 20.3 39.8

Soft Attention (NANI Sigmoid & Tanh) 66 45.0 30.6 20.7 20.5 40.0
Soft Attention (NANIL Sigmoid & Tanh) 66 44.6 30.1 20.0 20.5 39.9

Hard Attention (Sigmoid and Tanh) 67 45.7 31.4 21.3 19.5 -

Tab. 13.4. Neural machine Translation on Europarl. Using existing code from
Bahdanau et al. (2014) with nonlinearities replaced by their noisy versions, we
find much improved performance (2 BLEU points is considered significant for
machine translation). We also see that simply using the hard versions of the
nonlinearities buys about half of the gain.

Valid nll BLEU

Sigmoid and Tanh NMT (Reference) 65.26 20.18
Hard-Tanh and Hard-Sigmoid NMT 64.27 21.59
Noisy (NAH) Tanh and Sigmoid NMT 63.46 22.57

All models are trained with early-stopping. We also compare with a model with hard-tanh

and hard-sigmoid units and our model using noisy activations was able to outperform both,

as shown in Table 13.4. Again, we see a substantial improvement (more than 2 BLEU points)

with respect to the reference for English to French machine translation.

144



13.6.5. Image Caption Generation Experiments

We evaluated our noisy activation functions on a network trained on the Flickr8k dataset.

We used the soft neural attention model proposed in Xu et al. (2015b) as our reference model.4

We scaled down the weight matrices initialized to be orthogonal scaled by multiplying with

0.01. As shown in Table 13.3, we were able to obtain better results than the reference model

and our model also outperformed the best model provided in Xu et al. (2015b) in terms of

Meteor score.

(Xu et al., 2015b)’s model was using dropout with the ratio of 0.5 on the output of the

LSTM layers and the context. We have tried both with and without dropout, as in Table 13.3,

we observed improvements with the addition of dropout to the noisy activation function.

But the main improvement seems to be coming with the introduction of the noisy activation

functions since the model without dropout already outperforms the reference model.

13.6.6. Experiments with Continuation

We performed experiments to validate the effect of annealing the noise to obtain a

continuation method for neural networks.

We designed a new task where, given a random sequence of integers, the objective is

to predict the number of unique elements in the sequence. We use an LSTM network over

the input sequence, and performed a time average pooling over the hidden states of LSTM

to obtain a fixed-size vector. We feed the pooled LSTM representation into a simple (one

hidden-layer) ReLU MLP in order to predict the unique number of elements in the input

sequence. In the experiments we fixed the length of input sequence to 26 and the input

values are between 0 and 10. In order to anneal the noise, we started training with the scale

hyperparameter of the standard deviation of noise with c = 30 and annealed it down to 0.5

with the schedule of c√
t+1

where t is being incremented at every 200 minibatch updates. When

noise annealing is combined with a curriculum strategy (starting with short sequences first

and gradually increase the length of the training sequences), the best models are obtained.

As a second test, we used the same annealing procedure in order to train a Neural Turing

Machine (NTM) on the associative recall task Graves et al. (2014). We trained our model

with a minimum of 2 items and a maximum of 16 items. We show results of the NTM with

noisy activations in the controller, with annealed noise, and compare with a regular NTM in

terms of validation error. As can be seen in Figure 13.9, the network using noisy activation

4We used the code provided at https://github.com/kelvinxu/arctic-captions.

145





13.7. Conclusion

Nonlinearities in neural networks are both a blessing and a curse. A blessing because

they allow to represent more complicated functions and a curse because that makes the

optimization more difficult. For example, we have found in our experiments that using a hard

version (hence more nonlinear) of the sigmoid and tanh nonlinearities often improved results.

In the past, various strategies have been proposed to help deal with the difficult optimization

problem involved in training some deep networks, including curriculum learning, which is an

approximate form of continuation method. Earlier work also included softened versions of

the nonlinearities that are gradually made harder during training. Motivated by this prior

work, we introduce and formalize the concept of noisy activations as a general framework for

injecting noise in nonlinear functions so that large noise allows SGD to be more exploratory.

We propose to inject the noise to the activation functions either at the input of the function

or at the output where unit would otherwise saturate, and allow gradients to flow even in that

case. We show that our noisy activation functions are easier to optimize. It also, achieves

better test errors, since the noise injected to the activations also regularizes the model as

well. Even with a fixed noise level, we found the proposed noisy activations to outperform

their sigmoid or tanh counterpart on different tasks and datasets, yielding state-of-the-art or

competitive results with a simple modification, for example on PennTreebank. In addition,

we found that annealing the noise to obtain a continuation method could further improved

performance.

147





Chapter 14

CONCLUSION

The focus of this thesis is my recent works in the direction of improving "Natural Language

Understanding" systems. In order to tackle this problem, we focus on five different aspects

where improvements are achieved,

(1) Improving the Ways to Deal with Rare Words: In (Gulcehre et al., 2016d), we

have proposed a method to enable NLP models to learn to copy some of the words

from the context, instead of directly predicting them via the softmax output. This

type of method has been successful in summarization and question answering (See

et al., 2017; Nallapati et al., 2016b).

(2) Improving the Memory Aspect of the Algorithms for NLU: We have discussed

issues with existing deep learning approaches on natural language understanding

systems when learning to represent long-term dependencies. In (Gulcehre, Chandar,

Cho, and Bengio, 2016a) and in the followup work (Gulcehre et al., 2017a), we have

explored different models and methods to deal with the problems of learning long-term

dependencies for neural networks.

(3) Improving the Reasoning: Most of the important applications of NLU rely on

the performance of the reasoning abilities of the model. The reasoning can be either

in the form of inferring relationships between different entities (Sukhbaatar et al.,

2015; Hermann and Blunsom, 2014) or based on the information that is not directly

represented in the input.

(4) Improving the Training of NLU Models: Most of the NLU tasks can be basically

cast as sequence processing problems (Winograd, 1972; Hermann et al., 2015; Hermann,

Hill, Green, Wang, Faulkner, Soyer, Szepesvari, Czarnecki, Jaderberg, Teplyashin,

et al., 2017). Some of the sequence processing problems with long-term dependencies

or the ones that involve complicated reasoning can be difficult to learn. It is possible

to tackle those training issues either by changing the architecture, e.g.: by changing

the activation function or improving the optimization methods. In (Gulcehre et al.,

2016c) and (Gulcehre et al., 2016b), we both explored changing the activation function

149



and introducing a curriculum for the sequence models. In (Gulcehre et al., 2016a),

we have proposed a curriculum learning strategy for the memory models with the

discrete addressing method.

(5) Improving the Sample Efficiency: The sequence to sequence models are notori-

ously known to require lots of training data in order to perform well in a particular

task. However, for some domains, it might be difficult to obtain large enough labeled

training sets. In (Gulcehre et al., 2015), we have explored the use of uni-lingual

language modeling corpora in order to improve the performance of the sequence to

sequence models, mainly on the low-resource translation tasks.

14.1. Problems of Training Sequence to Sequence Models for

NLU

The sequence to sequence models with or without attention mechanisms have been very

successful in several different applications for NLU. However, there are still several problems

with the existing models. In this section, we summarize some of them and the future work

should focus on solving some of those issues. I will not propose any solutions or why they are

happening but point out some of the empirical observations that we come across a lot when

we are generating text with "Sequence to Sequence" models.

14.1.1. Models can Hallucinate

In most of the applications of the sequence to sequence models, in particular, when we

have a very strong decoder, the model tends to ignore the context and generate the target

sequence, just by using the language model in the decoder. This tends to cause the model just

generate translations that are completely irrelevant. In our work (Gulcehre, Dutil, Trischler,

and Bengio, 2017b), we have proposed a mechanism to improve the attention that prevents

the decoder to ignore the context. However, more research needs to be done to improve our

models.

14.1.2. Repetitions in the Generated Samples

A common problem that occurs and we have observed in the outputs of the neural machine

translation systems is that the models tend to stutter and repeat a very common phrase

again and again towards the end of the sequence. This tends to happen in particular if the

model is being trained on low data regime. For example,

“The president of United States is Barrack Obama, Barrack Obama Barrack Obama ..."

150



14.1.3. Teacher Forcing

As we have discussed earlier, teacher forcing is needed to train the recurrent neural

language models with the maximum likelihood objective. However, one of the downsides

of this approach is the model never gets exposed to its own predictions during the training

as an input. However, during test-time, we provide the models own predictions as input.

This discrepancy between the training and the test time tends to create a deficiency in the

generated samples once the model starts to make mistakes and eventually the whole sampling

trajectory diverges. The approaches such as scheduled sampling (Bengio, Vinyals, Jaitly, and

Shazeer, 2015) have been proposed to address this issue, but the problem is still far from

being solved completely.

14.1.4. Lack of Diversity

One of the most pressing issue with the generated samples is the lack of diversity in

the outputs of the sequence-to-sequence models. This issue has been more pronounced

in the applications such as Dialogue Generation. It is well-known that in practice neural

dialogue models tend to generate less diverse, short and trivial dialogues (Sordoni, Galley,

Auli, Brockett, Ji, Mitchell, Nie, Gao, and Dolan, 2015; Serban, García-Durán, Gulcehre,

Ahn, Chandar, Courville, and Bengio, 2016b; Vinyals and Le, 2015). There have been several

works recently on addressing this issue (Li, Galley, Brockett, Gao, and Dolan, 2015a; Shao,

Gouws, Britz, Goldie, Strope, and Kurzweil, 2017), however, the issue is still far from being

solved.

151





Bibliography

Allgower, E. L. and Georg, K. (1980). Numerical Continuation Methods. An Introduction.

Springer-Verlag.

Amodei, D., Anubhai, R., Battenberg, E., Case, C., Casper, J., Catanzaro, B., Chen, J.,

Chrzanowski, M., Coates, A., Diamos, G., et al. (2015). Deep speech 2: End-to-end speech

recognition in english and mandarin. arXiv preprint arXiv:1512.02595 .

Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. (2016). Learning to compose neural

networks for question answering. arXiv preprint arXiv:1601.01705 .

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L., and Parikh, D. (2015).

VQA: visual question answering. In 2015 IEEE International Conference on Computer

Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015 , pages 2425–2433.

Arjovsky, M., Shah, A., and Bengio, Y. (2016). Unitary evolution recurrent neural networks.

ICML 2016 .

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint

arXiv:1607.06450 .

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning

to align and translate. arXiv preprint arXiv:1409.0473 .

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly learning

to align and translate. International Conference on Learning Representations (ICLR).

Bahdanau, D., Brakel, P., Xu, K., Goyal, A., Lowe, R., Pineau, J., Courville, A., and

Bengio, Y. (2016a). An actor-critic algorithm for sequence prediction. arXiv preprint

arXiv:1607.07086 .

Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., and Bengio, Y. (2016b). End-to-end

attention-based large vocabulary speech recognition. In Acoustics, Speech and Signal

Processing (ICASSP), 2016 IEEE International Conference on, pages 4945–4949. IEEE.

Baldi, P. and Hornik, K. (1989). Neural networks and principal component analysis: Learning

from examples without local minima. Neural networks, 2(1), 53–58.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. (2015). Automatic

differentiation in machine learning: a survey. arXiv preprint arXiv:1502.05767 .

153



Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). Scheduled sampling for sequence

prediction with recurrent neural networks. In Advances in Neural Information Processing

Systems, pages 1171–1179.

Bengio, Y. et al. (2009a). Learning deep architectures for ai. Foundations and trends R© in

Machine Learning, 2(1), 1–127.

Bengio, Y. and Senécal, J.-S. (2008). Adaptive importance sampling to accelerate training of

a neural probabilistic language model. Neural Networks, IEEE Transactions on, 19(4),

713–722.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. Neural Networks, IEEE Transactions on, 5(2), 157–166.

Bengio, Y., Ducharme, R., and Vincent, P. (2000). A neural probabilistic language model. In

Advances in Neural Information Processing Systems, pages 932–938.

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural probabilistic language

model. J. Mach. Learn. Res., 3, 1137–1155.

Bengio, Y., LeCun, Y., et al. (2007). Scaling learning algorithms towards ai. Large-scale

kernel machines, 34(5), 1–41.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009b). Curriculum learning. In

Proceedings of the 26th annual international conference on machine learning, pages 41–48.

ACM.

Bengio, Y., Boulanger-Lewandowski, N., and Pascanu, R. (2013a). Advances in optimizing

recurrent networks. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE

International Conference on, pages 8624–8628. IEEE.

Bengio, Y., Léonard, N., and Courville, A. (2013b). Estimating or propagating gradients

through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432 .

Bengio, Y., Courville, A., and Vincent, P. (2013c). Representation learning: A review and

new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8),

1798–1828.

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Taylor, J. (2008). Freebase: a

collaboratively created graph database for structuring human knowledge. In Proceedings of

the 2008 ACM SIGMOD international conference on Management of data, pages 1247–1250.

ACM.

Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V., and Kalai, A. T. (2016). Man is

to computer programmer as woman is to homemaker? debiasing word embeddings. In

Advances in Neural Information Processing Systems, pages 4349–4357.

154



Bordes, A., Usunier, N., Chopra, S., and Weston, J. (2015). Large-scale simple question

answering with memory networks. arXiv preprint arXiv:1506.02075 .

Bottou, L. (2012). Stochastic gradient descent tricks. In Neural networks: Tricks of the trade,

pages 421–436. Springer.

Bottou, L., Curtis, F. E., and Nocedal, J. (2016). Optimization methods for large-scale

machine learning. arXiv preprint arXiv:1606.04838 .

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. (2015). A large annotated corpus

for learning natural language inference. arXiv preprint arXiv:1508.05326 .

Bozsahin, C. (2012). Combinatory linguistics. Walter de Gruyter.

Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., and Mercer, R. L. (1993). The mathematics

of statistical machine translation: Parameter estimation. Computational linguistics, 19(2),

263–311.

Cettolo, M., Girardi, C., and Federico, M. (2012). Wit3: Web inventory of transcribed

and translated talks. Proceedings of the 16th Conference of the European Association for

Machine Translation (EAMT), pages 261–268.

Chan, W., Jaitly, N., Le, Q. V., and Vinyals, O. (2015). Listen, attend and spell. arXiv

preprint arXiv:1508.01211 .

Chandar, S., Ahn, S., Larochelle, H., Vincent, P., Tesauro, G., and Bengio, Y. (2016).

Hierarchical memory networks. arXiv preprint arXiv:1605.07427 .

Chen, D., Bolton, J., and Manning, C. D. (2016a). A thorough examination of the cnn/daily

mail reading comprehension task. arXiv preprint arXiv:1606.02858 .

Chen, T., Xu, B., Zhang, C., and Guestrin, C. (2016b). Training deep nets with sublinear

memory cost. arXiv preprint arXiv:1604.06174 .

Cheng, J. and Lapata, M. (2016). Neural summarization by extracting sentences and words.

arXiv preprint arXiv:1603.07252 .

Chiang, D. (2005). A hierarchical phrase-based model for statistical machine translation.

In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics,

pages 263–270. Association for Computational Linguistics.

Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., and Bengio, Y.

(2014a). Learning phrase representations using rnn encoder-decoder for statistical machine

translation. In EMNLP .

Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014b). On the properties of

neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259 .

Chomsky, N. (1956). Three models for the description of language. IRE Transactions on

information theory, 2(3), 113–124.

155



Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., and LeCun, Y. (2015). The loss

surfaces of multilayer networks. In AISTATS .

Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., and Bengio, Y. (2015). Attention-

based models for speech recognition. In Advances in Neural Information Processing Systems,

pages 577–585.

Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated

recurrent neural networks on sequence modeling. CoRR, abs/1412.3555.

Chung, J., Cho, K., and Bengio, Y. (2016). A character-level decoder without explicit

segmentation for neural machine translation. arXiv preprint arXiv:1603.06147 .

Cole, D. (2009). The chinese room argument. Stanford Encyclopedia of Philosophy.

Collins, M. and Koo, T. (2005). Discriminative reranking for natural language parsing.

Computational Linguistics, 31(1), 25–70.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011).

Natural language processing (almost) from scratch. Journal of Machine Learning Research,

12(Aug), 2493–2537.

Cooijmans, T., Ballas, N., Laurent, C., and Courville, A. (2017). Recurrent batch normaliza-

tion. ICLR 2017, Toullone France.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics

of Control, Signals, and Systems (MCSS), 2(4), 303–314.

Dai, J., He, K., and Sun, J. (2015). Convolutional feature masking for joint object and stuff

segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3992–4000.

Damerau, F. J. (1971). Markov models and linguistic theory: an experimental study of a

model for English. Number 95. Mouton De Gruyter.

Dauphin, Y., de Vries, H., and Bengio, Y. (2015). Equilibrated adaptive learning rates for

non-convex optimization. In Advances in Neural Information Processing Systems, pages

1504–1512.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., and Bengio, Y. (2014). Iden-

tifying and attacking the saddle point problem in high-dimensional non-convex optimization.

In Advances in neural information processing systems, pages 2933–2941.

Dekel, O., Gilad-Bachrach, R., Shamir, O., and Xiao, L. (2011). Optimal distributed online

prediction. In Proceedings of the 28th International Conference on Machine Learning

(ICML-11), pages 713–720.

Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed, A.-r., and Kohli, P. (2017).

Robustfill: Neural program learning under noisy i/o. arXiv preprint arXiv:1703.07469 .

156



Dietterich, T. G. (2000). Hierarchical reinforcement learning.

Dodge, J., Gane, A., Zhang, X., Bordes, A., Chopra, S., Miller, A., Szlam, A., and Weston, J.

(2015). Evaluating prerequisite qualities for learning end-to-end dialog systems. CoRR,

abs/1511.06931.

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179–211.

Elman, J. L. (1993). Learning and development in neural networks: The importance of

starting small. Cognition, 48(1), 71–99.

Firat, O., Cho, K., and Bengio, Y. (2016). Multi-way, multilingual neural machine translation

with a shared attention mechanism. arXiv preprint arXiv:1601.01073 .

Ge, R., Huang, F., Jin, C., and Yuan, Y. (2015). Escaping from saddle points—online

stochastic gradient for tensor decomposition. arXiv preprint arXiv:1503.02101 .

Gemici, M., Hung, C.-C., Santoro, A., Wayne, G., Mohamed, S., Rezende, D. J., Amos,

D., and Lillicrap, T. (2017). Generative temporal models with memory. arXiv preprint

arXiv:1702.04649 .

Gillick, D., Brunk, C., Vinyals, O., and Subramanya, A. (2015). Multilingual language

processing from bytes. arXiv preprint arXiv:1512.00103 .

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks. In

International Conference on Artificial Intelligence and Statistics, pages 315–323.

Goh, G. (2017). Why momentum really works. Distill.

Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013a). Maxout

networks. In Proceedings of The 30th International Conference on Machine Learning, pages

1319–1327.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. Book in preparation for

MIT Press.

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013b). Maxout

networks. arXiv preprint arXiv:1302.4389 .

Grave, E., Joulin, A., and Usunier, N. (2016). Improving neural language models with a

continuous cache. arXiv preprint arXiv:1612.04426 .

Graves, A. (2011). Practical variational inference for neural networks. In J. Shawe-Taylor,

R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors, Advances in Neural Informa-

tion Processing Systems 24 , pages 2348–2356.

Graves, A. and Schmidhuber, J. (2009). Offline handwriting recognition with multidimensional

recurrent neural networks. In Advances in neural information processing systems, pages

545–552.

157



Graves, A., Jaitly, N., and Mohamed, A.-R. (2013). Hybrid speech recognition with deep

bidirectional LSTM. In Automatic Speech Recognition and Understanding (ASRU), 2013

IEEE Workshop on, pages 273–278.

Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines. arXiv preprint

arXiv:1410.5401 .

Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A.,

Colmenarejo, S. G., Grefenstette, E., Ramalho, T., Agapiou, J., et al. (2016). Hybrid

computing using a neural network with dynamic external memory. Nature, 538(7626),

471–476.

Greensmith, E., Bartlett, P. L., and Baxter, J. (2004). Variance reduction techniques for

gradient estimates in reinforcement learning. Journal of Machine Learning Research,

5(Nov), 1471–1530.

Grefenstette, E., Hermann, K. M., Suleyman, M., and Blunsom, P. (2015). Learning to

transduce with unbounded memory. In Advances in Neural Information Processing Systems,

pages 1819–1827.

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., and Schmidhuber, J. (2016).

Lstm: A search space odyssey. IEEE transactions on neural networks and learning systems.

Griewank, A. (1992). Achieving logarithmic growth of temporal and spatial complexity in

reverse automatic differentiation. Optimization Methods and software, 1(1), 35–54.

Gu, J., Lu, Z., Li, H., and Li, V. O. (2016). Incorporating copying mechanism in sequence-to-

sequence learning. arXiv preprint arXiv:1603.06393 .

Gulcehre, C., Firat, O., Xu, K., Cho, K., Barrault, L., Lin, H.-C., Bougares, F., Schwenk,

H., and Bengio, Y. (2015). On using monolingual corpora in neural machine translation.

arXiv preprint arXiv:1503.03535 .

Gulcehre, C., Chandar, S., Cho, K., and Bengio, Y. (2016a). Dynamic neural turing machine

with soft and hard addressing schemes. arXiv preprint arXiv:1607.00036 .

Gulcehre, C., Moczulski, M., Visin, F., and Bengio, Y. (2016b). Mollifying networks. arXiv

preprint arXiv:1608.04980 .

Gulcehre, C., Moczulski, M., Denil, M., and Bengio, Y. (2016c). Noisy activation functions.

arXiv preprint arXiv:1603.00391 .

Gulcehre, C., Ahn, S., Nallapati, R., Zhou, B., and Bengio, Y. (2016d). Pointing the unknown

words. arXiv preprint arXiv:1603.08148 .

Gulcehre, C., Chandar, S., and Bengio, Y. (2017a). Memory augmented neural networks

with wormhole connections. arXiv preprint arXiv:1701.08718 .

158



Gulcehre, C., Dutil, F., Trischler, A., and Bengio, Y. (2017b). Plan, attend, generate:

Character-level neural machine translation with planning. In Proceedings of Neural Infor-

mation Processing (NIPS).

Gulcehre, C., Sotelo, J., Moczulski, M., and Bengio, Y. (2017c). A robust adaptive stochastic

gradient method for deep learning. arXiv preprint arXiv:1703.00788 .

Gutmann, M. U. and Hyvärinen, A. (2012). Noise-contrastive estimation of unnormalized

statistical models, with applications to natural image statistics. The Journal of Machine

Learning Research, 13(1), 307–361.

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Prenger, R., Satheesh,

S., Sengupta, S., Coates, A., et al. (2014). Deep speech: Scaling up end-to-end speech

recognition. arXiv preprint arXiv:1412.5567 .

Hardt, M., Recht, B., and Singer, Y. (2015). Train faster, generalize better: Stability of

stochastic gradient descent. arXiv preprint arXiv:1509.01240 .

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition.

arXiv preprint arXiv:1512.03385 .

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

770–778.

Henaff, M., Weston, J., Szlam, A., Bordes, A., and LeCun, Y. (2016). Tracking the world

state with recurrent entity networks. arXiv preprint arXiv:1612.03969 .

Hermann, K. and Blunsom, P. (2014). Multilingual distributed representations without

word alignment. In Proceedings of the Second International Conference on Learning

Representations (ICLR 2014).

Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., and

Blunsom, P. (2015). Teaching machines to read and comprehend. In Advances in Neural

Information Processing Systems, pages 1693–1701.

Hermann, K. M., Hill, F., Green, S., Wang, F., Faulkner, R., Soyer, H., Szepesvari, D.,

Czarnecki, W., Jaderberg, M., Teplyashin, D., et al. (2017). Grounded language learning

in a simulated 3d world. arXiv preprint arXiv:1706.06551 .

Hill, F., Bordes, A., Chopra, S., and Weston, J. (2015). The goldilocks principle: Reading

children’s books with explicit memory representations. arXiv preprint arXiv:1511.02301 .

Hinton, G. E., Rumelhart, D., and McClelland, J. (1984). Distributed representations. In

"Parallel distributed processing", chapter 3. MIT.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R. (2012).

Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint

159



arXiv:1207.0580 .

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen netzen. Diploma, Tech-

nische Universität München, page 91.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation,

9.8, 1735–1780.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are

universal approximators. Neural networks, 2(5), 359–366.

Huber, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist., 35(1),

73–101.

Iyyer, M., Boyd-Graber, J. L., Claudino, L. M. B., Socher, R., and Daumé III, H. (2014). A

neural network for factoid question answering over paragraphs. In EMNLP , pages 633–644.

Jang, E., Gu, S., and Poole, B. (2016). Categorical reparameterization with gumbel-softmax.

arXiv preprint arXiv:1611.01144 .

Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2014). On using very large target vocabulary

for neural machine translation. arXiv preprint arXiv:1412.2007 .

Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2015). On using very large target vocabulary

for neural machine translation.

Johnson, J., Hariharan, B., van der Maaten, L., Hoffman, J., Fei-Fei, L., Zitnick, C. L., and

Girshick, R. B. (2017). Inferring and executing programs for visual reasoning. In ICCV ,

pages 3008–3017.

Jordan, M. I. (1986). Serial order: A parallel distributed processing approach. Advances in

psychology, 121, 471–495.

Joshi, A. K. and Schabes, Y. (1997). Tree-adjoining grammars. In Handbook of formal

languages, pages 69–123. Springer.

Joulin, A. and Mikolov, T. (2015). Inferring algorithmic patterns with stack-augmented

recurrent nets. In Advances in Neural Information Processing Systems, pages 190–198.

Jurafsky, D. (2000). Speech and language processing: An introduction to natural language

processing. Computational linguistics, and speech recognition.

Kalchbrenner, N. and Blunsom, P. (2013). Recurrent continuous translation models. In

Proceedings of the ACL Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 1700–1709. Association for Computational Linguistics.

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A convolutional neural network

for modelling sentences. arXiv preprint arXiv:1404.2188 .

Karpathy, A., Johnson, J., and Fei-Fei, L. (2015). Visualizing and understanding recurrent

networks. arXiv preprint arXiv:1506.02078 .

160



Kawaguchi, K. (2016). Deep learning without poor local minima. In Advances In Neural

Information Processing Systems, pages 586–594.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980 .

Kingma, D. P. and Adam, J. B. (2015). A method for stochastic optimization. In International

Conference on Learning Representation.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. In International

Conference on Learning Representations (ICLR).

Kirkpatrick, S., Jr., C. D. G., , and Vecchi, M. P. (1983). Optimization by simulated annealing.

Science, 220, 671–680.

Koehn, P. (2009). Statistical machine translation. Cambridge University Press.

Koehn, P. (2010). Statistical Machine Translation. Cambridge University Press, New York,

NY, USA.

Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical phrase-based translation. In

Proceedings of the 2003 Conference of the North American Chapter of the Association for

Computational Linguistics on Human Language Technology - Volume 1 , NAACL ’03, pages

48–54, Stroudsburg, PA, USA. Association for Computational Linguistics.

Kukich, K. (1992). Techniques for automatically correcting words in text. ACM Computing

Surveys (CSUR), 24(4), 377–439.

Kumar, A., Irsoy, O., Su, J., Bradbury, J., English, R., Pierce, B., Ondruska, P., Gulrajani, I.,

and Socher, R. (2015). Ask me anything: Dynamic memory networks for natural language

processing. CoRR, abs/1506.07285.

Le, Q. V., Jaitly, N., and Hinton, G. E. (2015). A simple way to initialize recurrent networks

of rectified linear units. arXiv preprint arXiv:1504.00941 .

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

Lee, J., Cho, K., and Hofmann, T. (2016). Fully character-level neural machine translation

without explicit segmentation. arXiv preprint arXiv:1610.03017 .

Lenat, D. B., Prakash, M., and Shepherd, M. (1985). Cyc: Using common sense knowledge

to overcome brittleness and knowledge acquisition bottlenecks. AI magazine, 6(4), 65.

Li, J., Galley, M., Brockett, C., Gao, J., and Dolan, B. (2015a). A diversity-promoting

objective function for neural conversation models. arXiv preprint arXiv:1510.03055 .

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. (2015b). Gated graph sequence neural

networks. arXiv preprint arXiv:1511.05493 .

Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Computer

vision, 1999. The proceedings of the seventh IEEE international conference on, volume 2,

161



pages 1150–1157. Ieee.

Luo, Y., Chiu, C.-C., Jaitly, N., and Sutskever, I. (2016). Learning online alignments with

continuous rewards policy gradient. arXiv preprint arXiv:1608.01281 .

Luong, M.-T. and Manning, C. D. (2016). Achieving open vocabulary neural machine

translation with hybrid word-character models. arXiv preprint arXiv:1604.00788 .

Luong, M.-T., Sutskever, I., Le, Q. V., Vinyals, O., and Zaremba, W. (2015a). Addressing

the rare word problem in neural machine translation. In Proceedings of ACL.

Luong, M.-T., Pham, H., and Manning, C. D. (2015b). Effective approaches to attention-based

neural machine translation. In Proceedings Of The Conference on Empirical Methods for

Natural Language Processing (EMNLP 2015).

Luong, M.-T., Le, Q. V., Sutskever, I., Vinyals, O., and Kaiser, L. (2015c). Multi-task

sequence to sequence learning. arXiv preprint arXiv:1511.06114 .

Luong, T., Sutskever, I., Le, Q. V., Vinyals, O., and Zaremba, W. (2014). Addressing the

rare word problem in neural machine translation. arXiv preprint arXiv:1410.8206 .

Maddison, C. J., Mnih, A., and Teh, Y. W. (2016). The concrete distribution: A continuous

relaxation of discrete random variables. arXiv preprint arXiv:1611.00712 .

Manning, C. D., Manning, C. D., and Schütze, H. (1999). Foundations of statistical natural

language processing. MIT press.

Matthews, D., Behne, T., Lieven, E., and Tomasello, M. (2012). Origins of the human

pointing gesture: a training study. Developmental science, 15(6), 817–829.

McGill, M. and Perona, P. (2017). Deciding how to decide: Dynamic routing in artificial

neural networks. arXiv preprint arXiv:1703.06217 .

Merity, S., Xiong, C., Bradbury, J., and Socher, R. (2016). Pointer sentinel mixture models.

arXiv preprint arXiv:1609.07843 .

Mermelstein, P. (1976). Distance measures for speech recognition, psychological and instru-

mental. Pattern recognition and artificial intelligence, 116, 374–388.

Mikolov, T., Kombrink, S., Deoras, A., Burget, L., and Cernocky, J. (2011). Rnnlm-recurrent

neural network language modeling toolkit. In Proc. of the 2011 ASRU Workshop, pages

196–201.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed

representations of words and phrases and their compositionality. In Advances in neural

information processing systems, pages 3111–3119.

Miller, A., Fisch, A., Dodge, J., Karimi, A.-H., Bordes, A., and Weston, J. (2016a). Key-value

memory networks for directly reading documents. arXiv preprint arXiv:1606.03126 .

162



Miller, A., Fisch, A., Dodge, J., Karimi, A., Bordes, A., and Weston, J. (2016b). Key-value

memory networks for directly reading documents. CoRR, abs/1606.03126.

Mnih, A. and Gregor, K. (2014). Neural variational inference and learning in belief networks.

International Conference on Machine Learning, ICML.

Mnih, A. and Kavukcuoglu, K. (2013). Learning word embeddings efficiently with noise-

contrastive estimation. In Advances in Neural Information Processing Systems, pages

2265–2273.

Mnih, V., Heess, N., Graves, A., et al. (2014). Recurrent models of visual attention. In

Advances in neural information processing systems, pages 2204–2212.

Mobahi, H. (2016). Training recurrent neural networks by diffusion. arXiv preprint

arXiv:1601.04114 .

Mohit, B., Hwa, R., and Lavie, A. (2010). Using variable decoding weight for language model

in statistical machine translation. AMTA.

Montufar, G. F., Pascanu, R., Cho, K., and Bengio, Y. (2014). On the number of linear

regions of deep neural networks. In Advances in neural information processing systems,

pages 2924–2932.

Morin, F. and Bengio, Y. (2005). Hierarchical probabilistic neural network language model.

In Aistats, volume 5, pages 246–252. Citeseer.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann

machines. In Proceedings of the 27th international conference on machine learning (ICML-

10), pages 807–814.

Nallapati, R., Zhou, B., Gulcehre, C., Xiang, B., et al. (2016a). Abstractive text summarization

using sequence-to-sequence rnns and beyond. arXiv preprint arXiv:1602.06023 .

Nallapati, R., Zhai, F., and Zhou, B. (2016b). Summarunner: A recurrent neural net-

work based sequence model for extractive summarization of documents. arXiv preprint

arXiv:1611.04230 .

Nam, H., Ha, J.-W., and Kim, J. (2016). Dual attention networks for multimodal reasoning

and matching. arXiv preprint arXiv:1611.00471 .

Narayan, S., Papasarantopoulos, N., Lapata, M., and Cohen, S. B. (2017). Neural extractive

summarization with side information. arXiv preprint arXiv:1704.04530 .

Neelakantan, A., Vilnis, L., Le, Q. V., Sutskever, I., Kaiser, L., Kurach, K., and Martens, J.

(2015). Adding gradient noise improves learning for very deep networks. arXiv preprint

arXiv:1511.06807 .

Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Majumder, R., and Deng, L. (2016).

Ms marco: A human generated machine reading comprehension dataset. arXiv preprint

163



arXiv:1611.09268 .

Och, F. J. and Ney, H. (2004). The alignment template approach to statistical machine

translation. Computational linguistics, 30(4), 417–449.

Och, F. J., Tillmann, C., Ney, H., et al. (1999). Improved alignment models for statistical

machine translation. In Proc. of the Joint SIGDAT Conf. on Empirical Methods in Natural

Language Processing and Very Large Corpora, pages 20–28.

Pascanu, R., Mikolov, T., and Bengio, Y. (2012). On the difficulty of training recurrent

neural networks. arXiv preprint arXiv:1211.5063 .

Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y. (2013a). How to construct deep recurrent

neural networks. arXiv preprint arXiv:1312.6026 .

Pascanu, R., Mikolov, T., and Bengio, Y. (2013b). On the difficulty of training recurrent

neural networks. ICML (3), 28, 1310–1318.

Pascanu, R., Montufar, G., and Bengio, Y. (2013c). On the number of response regions of

deep feed forward networks with piece-wise linear activations. arXiv:1312.6098[cs.LG].

Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y. (2014). How to construct deep recurrent

neural networks. In Proceedings of the Second International Conference on Learning

Representations (ICLR 2014).

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word

representation. In Empirical Methods in Natural Language Processing (EMNLP), pages

1532–1543.

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods.

USSR Computational Mathematics and Mathematical Physics, 4(5), 1–17.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving language

understanding by generative pre-training.

Rae, J. W., Hunt, J. J., Harley, T., Danihelka, I., Senior, A., Wayne, G., Graves, A., and

Lillicrap, T. P. (2016). Scaling memory-augmented neural networks with sparse reads and

writes. In Advances in NIPS .

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). Squad: 100,000+ questions for

machine comprehension of text. arXiv preprint arXiv:1606.05250 .

Reed, S. and de Freitas, N. (2016). Neural programmer-interpreters. ICLR 2016 .

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The annals of

mathematical statistics, pages 400–407.

Rocktäschel, T., Grefenstette, E., Hermann, K. M., Kočiskỳ, T., and Blunsom, P. (2015).

Reasoning about entailment with neural attention. arXiv preprint arXiv:1509.06664 .

164



Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological review, 65(6), 386.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986a). Learning internal representations

by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive

Science.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986b). Learning representations by

back-propagating errors. Nature, 323(6088), 533–536.

Rush, A. M., Chopra, S., and Weston, J. (2015a). A neural attention model for abstractive

sentence summarization. CoRR, abs/1509.00685.

Rush, A. M., Chopra, S., and Weston, J. (2015b). A neural attention model for abstractive

sentence summarization. In Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015 ,

pages 379–389.

Russell, S. and Norvig, P. (1995). Artificial Intelligence: A modern approach, volume 25.

Prentice-Hall, Egnlewood Cliffs.

Sagun, L., Bottou, L., and LeCun, Y. (2016). Singularity of the hessian in deep learning.

arXiv preprint arXiv:1611.07476 .

Sak, H., Güngör, T., and Saraçlar, M. (2007). Morphological disambiguation of turkish text

with perceptron algorithm. In Computational Linguistics and Intelligent Text Processing,

pages 107–118. Springer.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lillicrap, T. (2016). One-shot

learning with memory-augmented neural networks. ICML 2016 .

Saxe, A. M., McClelland, J. L., and Ganguli, S. (2013). Exact solutions to the nonlinear

dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120 .

Schaul, T., Zhang, S., and LeCun, Y. (2013). No more pesky learning rates. ICML (3), 28,

343–351.

Schmidhuber, J. and Heil, S. (1995). Predictive coding with neural nets: Application to text

compression. In Advances in neural information processing systems, pages 1047–1054.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks. Signal

Processing, IEEE Transactions on, 45(11), 2673–2681.

Schwenk, H. (2007). Continuous space language models. Comput. Speech Lang., 21(3),

492–518.

See, A., Liu, P. J., and Manning, C. D. (2017). Get to the point: Summarization with

pointer-generator networks. arXiv preprint arXiv:1704.04368 .

165



Semeniuta, S., Severyn, A., and Barth, E. (2016). Recurrent dropout without memory loss.

arXiv preprint arXiv:1603.05118 .

Sennrich, R., Haddow, B., and Birch, A. (2015). Neural machine translation of rare words

with subword units. arXiv preprint arXiv:1508.07909 .

Seo, M., Min, S., Farhadi, A., and Hajishirzi, H. (2016). Query-reduction networks for

question answering. arXiv preprint arXiv:1606.04582 .

Serban, I. V., Sordoni, A., Bengio, Y., Courville, A., and Pineau, J. (2016a). Building end-to-

end dialogue systems using generative hierarchical neural network models. In Proceedings

of the 30th AAAI Conference on Artificial Intelligence (AAAI-16).

Serban, I. V., García-Durán, A., Gulcehre, C., Ahn, S., Chandar, S., Courville, A., and

Bengio, Y. (2016b). Generating factoid questions with recurrent neural networks: The 30m

factoid question-answer corpus. Proc. of ACL.

Shao, Y., Gouws, S., Britz, D., Goldie, A., Strope, B., and Kurzweil, R. (2017). Generating

high-quality and informative conversation responses with sequence-to-sequence models. In

Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,

pages 2200–2209.

Shuyo, N. (2010). Language detection library for java.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014). De-

terministic policy gradient algorithms. In International Conference on Machine Learning

(ICML).

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-

twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the

game of go with deep neural networks and tree search. Nature, 529(7587), 484–489.

Simmons, R. F., Klein, S., and McConlogue, K. (1964). Indexing and dependency logic

for answering english questions. Journal of the Association for Information Science and

Technology, 15(3), 196–204.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556 .

Sonoda, S. and Murata, N. (2015). Neural network with unbounded activation functions is

universal approximator. Applied and Computational Harmonic Analysis.

Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y., Mitchell, M., Nie, J.-Y., Gao, J.,

and Dolan, B. (2015). A neural network approach to context-sensitive generation of

conversational responses. arXiv preprint arXiv:1506.06714 .

Sparck Jones, K. (1972). A statistical interpretation of term specificity and its application in

retrieval. Journal of documentation, 28(1), 11–21.

166



Steedman, M. and Baldridge, J. (2011). Combinatory categorial grammar. Non-

Transformational Syntax: Formal and Explicit Models of Grammar , pages 181–224.

Sukhbaatar, S., Szlam, A., Weston, J., and Fergus, R. (2015). End-to-end memory networks.

arXiv preprint arXiv:1503.08895 .

Sun, G., Giles, C. L., and Chen, H. (1997). The neural network pushdown automaton:

Architecture, dynamics and training. In Adaptive Processing of Sequences and Data

Structures, International Summer School on Neural Networks, pages 296–345.

Sutskever, I., Martens, J., Dahl, G. E., and Hinton, G. E. (2013). On the importance of

initialization and momentum in deep learning. ICML (3), 28, 1139–1147.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural

networks. In Advances in neural information processing systems, pages 3104–3112.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. (2016). Inception-v4, inception-resnet

and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261 .

Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running

average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4.

Tomasello, M., Carpenter, M., and Liszkowski, U. (2007). A new look at infant pointing.

Child development, 78(3), 705–722.

Trischler, A., Wang, T., Yuan, X., Harris, J., Sordoni, A., Bachman, P., and Suleman, K.

(2016). Newsqa: A machine comprehension dataset. arXiv preprint arXiv:1611.09830 .

Vezhnevets, A., Mnih, V., Agapiou, J., Osindero, S., Graves, A., Vinyals, O., and Kavukcuoglu,

K. (2016). Strategic attentive writer for learning macro-actions. In Advances in Neural

Information Processing Systems, pages 3486–3494.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., and

Kavukcuoglu, K. (2017). Feudal networks for hierarchical reinforcement learning. arXiv

preprint arXiv:1703.01161 .

Vinyals, O. and Le, Q. (2015). A neural conversational model. arXiv preprint

arXiv:1506.05869 .

Vinyals, O., Fortunato, M., and Jaitly, N. (2015). Pointer networks. In Advances in Neural

Information Processing Systems, pages 2692–2700.

Visin, F., Kastner, K., Courville, A., Bengio, Y., Matteucci, M., and Cho, K. (2015). Reseg:

A recurrent neural network for object segmentation. CoRR, abs/1511.07053 , 2.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it.

Proceedings of the IEEE , 78(10), 1550–1560.

Werbos, P. J. (1994). The roots of backpropagation: from ordered derivatives to neural

networks and political forecasting, volume 1. John Wiley & Sons.

167



Weston, J., Chopra, S., and Bordes, A. (2015a). Memory networks. In Proceedings Of The

International Conference on Representation Learning (ICLR 2015). In Press.

Weston, J., Bordes, A., Chopra, S., and Mikolov, T. (2015b). Towards ai-complete question

answering: a set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698 .

Wierstra, D., Foerster, A., Peters, J., and Schmidhuber, J. (2007). Solving deep memory

pomdps with recurrent policy gradients. In International Conference on Artificial Neural

Networks, pages 697–706. Springer.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine learning, 8(3-4), 229–256.

Williams, R. J. and Peng, J. (1990). An efficient gradient-based algorithm for on-line training

of recurrent network trajectories. Neural computation, 2(4), 490–501.

Winograd, T. (1972). Understanding natural language. Cognitive psychology, 3(1), 1–191.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y.,

Gao, Q., Macherey, K., et al. (2016). Google’s neural machine translation system: Bridging

the gap between human and machine translation. arXiv preprint arXiv:1609.08144 .

Xiong, C., Zhong, V., and Socher, R. (2016a). Dynamic coattention networks for question

answering. arXiv preprint arXiv:1611.01604 .

Xiong, C., Merity, S., and Socher, R. (2016b). Dynamic memory networks for visual and

textual question answering. CoRR, abs/1603.01417.

Xu, B., Wang, N., Chen, T., and Li, M. (2015a). Empirical evaluation of rectified activations

in convolutional network. arXiv preprint arXiv:1505.00853 .

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., and Bengio, Y.

(2015b). Show, attend and tell: Neural image caption generation with visual attention. In

International Conference on Machine Learning, pages 2048–2057.

Yang, G. (2016). Lie access neural turing machine. arXiv preprint arXiv:1602.08671 .

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., and Hovy, E. (2016). Hierarchical attention

networks for document classification. In Proceedings of NAACL-HLT , pages 1480–1489.

Yao, L., Torabi, A., Cho, K., Ballas, N., Pal, C., Larochelle, H., and Courville, A. (2015).

Describing videos by exploiting temporal structure. In Computer Vision (ICCV), 2015

IEEE International Conference on. IEEE.

Yılmaz, E., El-Kahlout, I. D., Aydın, B., Ozil, Z. S., and Mermer, C. (2013). Tubitak

turkish-english submissions for iwslt 2013. Proceedings of the 10th International Workshop

on Spoken Language Translation (IWSLT), pages 152–159.

Yuan, X., Wang, T., Gulcehre, C., Sordoni, A., Bachman, P., Subramanian, S., Zhang, S., and

Trischler, A. (2017). Machine comprehension by text-to-text neural question generation.

168



arXiv preprint arXiv:1705.02012 .

Zaremba, W. and Sutskever, I. (2014). Learning to execute. arXiv preprint arXiv:1410.4615 .

Zaremba, W. and Sutskever, I. (2015). Reinforcement learning neural turing machines. arXiv

preprint arXiv:1505.00521 , 362.

Zaremba, W., Sutskever, I., and Vinyals, O. (2014). Recurrent neural network regularization.

arXiv preprint arXiv:1409.2329 .

Zaremba, W., Mikolov, T., Joulin, A., and Fergus, R. (2015). Learning simple algorithms

from examples. arXiv preprint arXiv:1511.07275 .

Zeiler, M. D. (2012). ADADELTA: An adaptive learning rate method. arXiv:1212.5701

[cs.LG].

Zhang, W., Yu, Y., and Zhou, B. (2015). Structured memory for neural turing machines.

arXiv preprint arXiv:1510.03931 .

Zhu, Q., Yeh, M.-C., Cheng, K.-T., and Avidan, S. (2006). Fast human detection using a

cascade of histograms of oriented gradients. In Computer Vision and Pattern Recognition,

2006 IEEE Computer Society Conference on, volume 2, pages 1491–1498. IEEE.

Zoph, B., Deniz, Y., Jonathan, M., and Knight, K. (2016). Transfer learning for low-resource

neural machine translation. CoRR, abs/1604.02201.

169


