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Résumé
L’apprentissage profond a poussé l’étude des réseaux de neurones profonds et a

conduit à des avancées significatives dans plusieurs domaines d’application de l’ap-
prentissage automatique. Dans ce manuscrit, nous nous concentrons sur un sous-
ensemble de ces modèles: les réseaux de neurones récurrents. La structure spécifique
de ces réseaux fait de la modélisation de données temporelles, telles que les don-
nées textuelles ou de parole, leur point fort. Plusieurs domaines d’applications plus
pratiques en font d’ailleurs leur composante essentielle, incluant la reconnaissance
de parole, la synthèse de parole, la traduction automatique et l’apprentissage par
renforcement. Cependent, notre compréhension des réseaux de neurones récurrents
reste loin d’être complète, plusieurs problèmes spécifiques aux réseaux de neurones
n’ont pas encore été résolus. Ce manuscrit inclut plusieurs pistes conduisant à des
architectures de réseaux de neurones récurrents profond et multi-échelle.

Dans un premier article, nous présentons un réseau récurrent pouvant contrôler
son propre schéma de connectivité entre couches représentant des indices tempo-
rels consécutifs. Ces connexions entre temps consécutifs ne se limitent pas juste à
des connexions sur un même niveau mais permettent à des couches de haut niveau
de communiquer avec des couches plus basses, et vice-versa. Un ensemble d’uni-
tés barrage paramétriques est appris afin d’ouvrir ou de fermer les connexions qui
conduisent le signal des couches précédentes temporellement. Nous étudions com-
ment les informations des couches ascendantes sont utiles dans la modélisation de
dépendences temporelles.

Dans un deuxième article, nous étudions un système de traduction automatique
neuronale reposant sur un décodeur par caractère. Ce travail est motivé par une
question fondamentale: peut-on générer une suite de caractères en guise de traduc-
tion au lieu d’une suite de mots ? Afin de répondre à cette question, nous avons
utilisé une architecture simple à deux niveaux et conçu un réseau de neurones plus
complexe traitant les dynamiques rapides et lentes séparemment. Ce nouveau mo-
dèle se base sur l’idée d’utiliser des composantes évoluants à différentes échelles
afin de traiter les dépendences temporelles.

Nous étudions dans un troisième article une architecture de réseau récurrent
permettant la découverte des structures latentes d’une séquence. Cette nouvelle
architecture s’appuie sur un ensemble d’unités limites permettant une segmentation
en morceaux pertinents. Le réseau de neurones récurrent met à jour chaque couche
cachée sur un rythme différent dépendant de l’état de ces unités limites. L’inclusion
de ces unités limites nous permet de définir un nouveau mécanisme de miseàjour
utilisant trois différents types d’opérations: chaque couche peut soit copier l’état
précédent, mettre à jour cet état ou évacuer cet état vers l’état de plus haut niveau
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et réinitialiser le contexte.
Enfin, un quatrième article se penche sur l’utilisation de variables latentes dans

un réseau de neurones récurrent. La complexité et le rapport signal-bruit de données
séquentielles comme la parole rendent la découverte de structures pertinentes dans
ces données difficiles. Nous proposons une extension récurrente de l’auto-encodeur
variationel afin d’introduire ces variables latentes et améliorer la performance dans
la modélisation séquentielle, incluant celle de la parole et de l’écriture manuscrite.

Mots-clefs: apprentissage profond, réseaux de neurones, réseaux de neurones
récurrents, réseaux de neurones récurrents hiérarchiques, réseaux de neurones ré-
currents multi-échelle, modélisation du langage, traduction automatique, synthèse
de parole, synthèse d’écriture manuscrite, auto-encodeur variationel.
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Summary
Deep learning is a study of deep artificial neural networks that has led to several

breakthroughs in many machine learning applications. In this thesis, a subgroup of
deep learning models, known as recurrent neural networks is studied in depth. Re-
current neural networks are special types of artificial neural networks that possess
more strength in modelling temporal structures of sequential data such as text and
speech. Recurrent neural networks are used as the core module of many practi-
cal applications including speech recognition, text-to-speech, machine translation,
machine comprehension, and question and answering. However, our understand-
ing of recurrent neural networks is still limited, and some inherent problems with
recurrent neural networks remain unresolved. This thesis includes a series of stud-
ies towards deep multiscale recurrent neural networks and novel architectures to
overcome the inherent problems of recurrent neural networks.

In the first article, we introduce a deep recurrent neural network that can
adaptively control the connectivity patterns between layers at consecutive time
steps. The recurrent connections between time steps are not only restricted to self-
connections as the conventional recurrent neural networks do, but a higher-level
layer can connect to the lower-level layers, and vice-versa. A set of parametrized
scalar gating units is learned in order to open or close the connections that carry
the feedback from the layers at the previous time step. We investigate how the
top-down information can be useful for modelling temporal dependencies.

In the second article, we study a neural machine translation system that ex-
ploits a character-level decoder. The motivation behind this work is to answer a
fundamental question: can we generate a character sequence as translation instead
of a sequence of words? In order to answer this question, we design a naive two-level
recurrent neural network and a more advanced type of recurrent neural network
that tries to capture faster and slower components separately with its layers. This
proposed model is based on an idea of modelling time dependencies with multiple
components that update with different timescales.

In the third article, we investigate a framework that can discover the latent
hierarchical structure in sequences with recurrent neural networks. The proposed
framework introduces a set of boundary detecting units that are used to detect
terminations of meaningful chunks. The recurrent neural network updates each
hidden layer with different timescales based on the binary states of these boundary
detecting units. The inclusion of the boundary detectors enables us to implement
a novel update mechanism using three types of different operations. Each layer
of the recurrent neural network can choose either to completely copy the dynamic
state, to update the state or to flush the state to the upper-level layer and reset the
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context.
Finally, in the fourth article, we study an inclusion of latent variables to recur-

rent neural networks. The complexity and high signal-to-noise ratio of sequential
data such as speech make it difficult to learn meaningful structures from the data.
We propose a recurrent extension of the variational auto-encoder in order to intro-
duce high-level latent variables to recurrent neural networks and show performance
improvements on sequences modelling tasks such as human speech signals and
handwriting examples.

Keywords: deep learning, neural networks, recurrent neural networks, hierar-
chical recurrent neural networks, multiscale recurrent neural networks, language
modelling, machine translation, speech generation, handwriting generation, varia-
tional auto-encoders
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1 Introduction

Deep learning is a research field in machine learning, and a renewed name for

neural networks, which has become an extremely popular and important technique

to solve artificial intelligence (AI) problems. Ironically, the main building blocks for

deep learning, neural networks, have existed for many years (McCulloch and Pitts,

1943; Rosenblatt, 1958; Rumelhart et al., 1988). In the past decade, deep learning

has been popularized by a renewed interest that was raised by theoretical advance

and breakthroughs (Hinton et al., 2006; Bengio et al., 2007). Deep learning has been

adopted to many different applications such as computer vision, natural language

processing, robotics, speech and bio-medicine. In computer vision, deep learning

has brought significant improvements to object classification (Krizhevsky et al.,

2012), object detection (He et al., 2016) and image caption generation (Vinyals

et al., 2015; Xu et al., 2015). In machine translation, deep learning based ap-

proaches have marked large improvement in translation quality in terms of fluency,

BLEU score 1 and the performance evaluated by humans. This deep learning based

translation is known as neural machine translation (Kalchbrenner and Blunsom,

2013; Sutskever et al., 2014; Cho et al., 2014), and many companies are shifting, if

not already transferred, from traditional statistical machine translation systems to

ones based on neural machine translation (Wu et al., 2016; Johnson et al., 2016).

Deep learning is also combined with reinforcement learning, bringing astonishing

results for an artificial Go agent that can beat professional human Go players (Sil-

ver et al., 2016), an artificial agent that can play Atari games in super-human

level (Mnih et al., 2016), and an agent that can control robots in physics environ-

ments (Lillicrap et al., 2015; Duan et al., 2016; Heess et al., 2016, 2017). Machines

are able to generate human voice and audio that is difficult to distinguish from

the real ones using deep learning models (Oord et al., 2016). Deep learning is

also changing the fields of speech recognition (Amodei et al., 2016) and text-to-

1. A precision based metric used to evaluate language generation tasks such as machine trans-
lation and image caption generation.
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speech (Wang et al., 2017)

This thesis focuses on advances in a particular type of deep learning model called

a recurrent neural network. Recurrent neural networks are especially important

in aforementioned problems because they can learn the dynamics of sequential

data. The first chapter provides some background material on machine learning in

general. The second chapter delves deeper into the fundamentals of deep learning.

The rest of the thesis describes my contributions in recurrent neural networks

modelling, using new architectures to better understand and model sequential data.

1.1 Introduction to Machine Learning

Machine learning is a research field focusing on designing learning algorithms,

which learn to solve complex problems from examples rather than programming

with explicit rules. This chapter will introduce the basic concepts of machine learn-

ing. It must be noted that this chapter will not fully cover the whole field of machine

learning but will present the necessary metarial to understand the remainder of this

thesis. Learning is perhaps the most important concept and is the main goal of

machine learning. Learning can mean different things in different tasks, and the

types of learning can be categorized into three groups:

— Supervised learning is a task of inferring a function with a desired behavior

from labeled data. The labeled data means that each training example is a

pair that consists of an input object and a desired output value.

— Unsupervised learning is a task of inferring a function to describe the hidden

structure of data without labeled examples.

— Reinforcement learning is a task of learning a policy for how to act to maxi-

mize the expected rewards that could only be given sparsely and with delays.

In this chapter, the basic idea of the learning from data is described, along with

definitions for supervised and unsupervised learning, which will be used in the

subsequent chapters.
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1.2 Learning

The main goal of machine learning is to find a model with a desired behavior f ∗

in solving a task T . The model can be obtained from data D by optimizing a prop-

erly chosen objective function to solve the task T (Mitchell, 1997). Learning makes

machine learning fundamentally different from other approaches that rely on ex-

plicitly programming the desired behavior f ∗. The model is equipped with limited

resources, e.g., computational units, optimization algorithm, tunable parameters,

and has to synchronize its behavior f to f ∗. Here, we will cover parametric models,

where a model has a finite number of parameters, and a parametric model family

F can be defined as a set of parametric functions, F = {fθ|θ ∈ Θ}, where θ ∈ Rn.

Learning is usually conducted as an optimization problem that minimizes a

discrepancy measure between the behavior of the model f and the desired behavior

f ∗. The discrepancy measure is often called a loss function L. The loss function

L should be designed with care and should take into account the task T . Now

learning can be defined in a clear way: searching for the best behavior f̂ within a

set of functions F , by optimizing the loss function L to perform the task T given

a set of examples from the data D.

We can write the above statement in a mathematical form:

Rexp(fθ) := E(x,y)∼p(X,Y )[L(fθ(x), y)], (1.1)

f̂θ ← arg min
fθ∈F

Rexp(fθ) (1.2)

where E(x,y)∼p(X,Y ) stands for expectation over x and y sampled from the true

distribution p(X, Y ) of the data D, and θ denotes the parameters of the model.

Here, x is an input and y is a desired outcome for x. For example, x is an input

object, and y is a class label of the object given to the model. In this case, the

model becomes a classifier, and the desired behavior f becomes predicting a correct

class label of an input object. The loss function can vary depending on what kind

of learning problem is being solved.

In practice, the model has only limited access to the data D, hence, if there is
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a set of a finite number of examples D̃, we can approximate Eq. 1.1 as:

Remp(fθ) := 1
|D̃|

∑
(x,y)∈D̃

L(fθ(x), y), (1.3)

f̂θ ← arg min
fθ∈F

Remp(fθ), (1.4)

where |D̃| is the number of examples in D̃. Rexp is called an expected loss and

Remp is called an empirical loss (Vapnik, 2013). Almost all problems in supervised

learning and unsupervised learning have limited access to D, and operate on sam-

ples D̃, instead of the true distribution. This procedure of finding the model that

fits the desired behavior best is called training or fitting the data. Throughout

the remainder of this thesis, we will use the terminology training to refer to this

procedure.

In machine learning, we care about the generalization performance of the model

to unseen data. This is because we have access to only a limited amount of data,

and the model has to learn general behavior, without learning things which are

specific only to the training examples. We measure the error between the behavior

of the model and desired behavior on unseen data, which is known as generalization

error. Back to the classification example, the generalization error is a measure of

how accurately a model can predict correct labels for previously unseen data. In

general, a new set of examples, different from the ones used in training, is used

to measure the generalization performance. For this reason, the data D̃ should be

separated into three groups. The first group is a set of examples that is provided

to train the model, and this set is called a training set. The second group is a set

of examples that is provided to evaluate the training procedure of the model and

to find the optimal values for tunable parameters that control the learning process

to draw the best outcome. We call the second set of examples, the validation set.

The last group is a set of examples that is never exposed to the model during the

training, and because it is used to measure the generalization error, this set is called

a test set.

Training a differentiable parametric model is usually done in an iterative fashion

using optimization algorithms such as gradient descent 2. We can assess how well

2. Each update in gradient descent is proportional to the negative of the gradient of the loss
with respect to the parameter: θτ+1 = θτ − η∇θf(θτ ).
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the model is fitting the data by observing the training error, Remp on the training

set, and the generalization error, Remp on the test set. If both training error and the

generalization error do not decrease, we can say that the model is under-fitting the

data. That is, our choice of the model is rather too restricted, or difficult to search

the function or solution that is close to f ∗. If the training error decreases, but the

generalization error increases, we say that the model is over-fitting. This is the case

when the model has the ability to model complex solutions such that the model

parameters can completely fit the training set instead of learning the true mapping

from the input to the target objective. Here, when a model is ‘highly flexible’ means

that the model has a large degree of freedom and enough parameters to approximate

a complicated function. However, we cannot directly use the generalization error

during training. The validation error, Remp on the validation set, is used to find at

which step during iterative training procedure, the generalization error increases.

The validation set is also used to find a set of extra parameters which do not

change during training but still influence the optimization and overall training of

the model. These extra parameters are called hyperparameters, for example, the

learning rate of the optimization algorithm.

The main goal of learning in machine learning is to obtain a model that has a

good solution to the desired behavior which can generalize to unseen data. To have

the best model, it is important not to over-fit to the training examples, or under-fit

the possible solution. One way to prevent over-fitting is to use a low capacity model

such that the model does not have enough flexibility to completely memorize the

training set, so instead it is forced to learn underlying structure among the training

examples. However, there is a chance for a simple model suffers from under-fitting

if the model cannot approximate the function or hypothesis to match the desired

behavior.

1.3 Regularization

If a model is sufficiently flexible, it may not under-fit the training data, how-

ever, the model can choose to match its parameters to fit all the specific details of

the training examples instead of learning a general behavior for solving the task.

Another option to prevent over-fitting is to introduce an extra term that restricts
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the model from exploring certain regions of the function space F leading to over-

fitting. Therefore, it can help the model to increase its generalization ability. This

additional term is called a regularization term, and one can come up with different

forms of regularization terms which are preferable for gradient based optimization.

Now, the objective function with the additional regularization term can be written

mathematically as:

f̂θ ← arg min
fθ∈F

Remp(fθ) + λΩ(θ), (1.5)

where λ is a hyperparameter that weights the influence of the regularization term,

and Ω(θ) is the regularization term such as `2-norm of the model parameters. If

the optimization algorithm conducts minimization over the objective function, e.g.,

gradient descent, λΩ(θ) should have a non-negative value. Adding a regularization

term is just one way of regularization, others include Bayesian methods, adding

noise to parameters, dropout, early stopping, et cetera.

1.4 Supervised Learning

Supervised learning is the process of finding a mapping function that takes input

as a vector and outputs a desired response vector, fθ : Rd → Rt. In supervised

learning, examples are usually given as pairs:

D̃ =
{

(xi, yi) ∼ p(X, Y )
}
i=1,...,|D̃|

,

where x is the input, and y is the desired output of x. The model is asked to predict

a correct output value or label for an input object.

1.4.1 Probabilistic Classification

Classification is the task of predicting a correct class label Y of a given input

object X. If the predicted value for Y is a probability distribution, then fθ is

said to be a probabilistic classifier. Usually, fθ is modelled to learn a conditional

probability p(Y = y | X = x). That is, the output of the model fθ(x) is a

probability of x being an object of a class label, y. Classification is used as a whole
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or part of many applications in machine learning. For example, classification is

used in image classification (Krizhevsky et al., 2012), speech recognition (Amodei

et al., 2016), machine translation (Sutskever et al., 2014; Cho et al., 2014) and

image caption generation (Vinyals et al., 2015; Xu et al., 2015).

Logistic Regression Logistic regression is a popular algorithm for binary clas-

sification. That is, the cardinality of the class label is two, i.e., t = 2. X is

mapped into a probability of Y being 1 using an affine transformation followed by

the logistic function:

pθ(Y = 1 | X = x) = fθ(x) = σ(w>x + b),

where σ(x) = 1
1+exp(−x) , x ∈ Rd is the input, w ∈ Rd is a weight vector and b ∈ R1

is a bias.

Other Classification Algorithms If the number of output classes is larger than

2, i.e., |Y | > 2, we consider using a softmax function instead of the logistic function.

Now, the affine transformation is followed by the softmax function as below:

ψ(Wx + b) = exp(Wx + b)∑K
k=1 exp(Wkx + b)

,

where W ∈ Rn×d is the weight matrix, b ∈ Rn is the bias. Then, the probability

of x being the j-th class is expressed as:

pθ(Y = j | X = x) = ψ(Wx + b)j,

where the subscript j denotes the j-th element of the vector ψ(Wx + b).

1.4.2 Regression

Regression is used in problems where the desired outputs are continuous vari-

ables. For learning a regression function, it is common to make an assumption

that pθ(Y | X) follows a continuous distribution such as a Gaussian distribution.

If we make an assumption that only the mean is predicted by the model fθ and

the variance is fixed to 1, the loss function simplifies to the mean squared error
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function:

L(fθ(x), y) = (y − fθ(x))2. (1.6)

However, we can also model the variance σ2
θ using the probability density function

of the Gaussian distribution:

µθ = fθ(x), (1.7)

σ2
θ = gθ(x), (1.8)

L(fθ(x), y) = N (y − µθ, σ2
θ), (1.9)

where N (µ, σ) is a Gaussian distribution parmetrized by the mean µ and the stan-

dard deviation σ.

There are many other supervised learning algorithms such as nearest neighbor-

hood or support vector machines that take a non-parametric approach, however,

we will not cover them in this thesis.

1.5 Unsupervised Learning

Unsupervised learning is used when there is no label assigned to each example,

but somehow the model has to discover the hidden structure underlying the set of

training examples. Many machine learning algorithms are used for unsupervised

learning. Because the target output is not specified, there is often a wider range of

choice in the design of the model structure and objective functions.

One common task is clustering the given data points into a fixed number of

groups. There are algorithms such as k-means clustering and Gaussian mixture

models (GMMs), which perform this task. k-means clustering is one of the most

popular machine learning algorithms for clustering In k-means clustering, centroids

of clusters are learned, and a data point has to fall into one of these clusters.

Clustering can provide an estimate of the number of major modes in the data.

Another popular task is reconstruction. Algorithms such as principal compo-

nent analysis (PCA), auto-encoders (Baldi and Hornik, 1989) and denoising auto-

encoders (Vincent et al., 2008) fall into this category. A good reconstruction un-
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der compression or noise requires a good representation of the data, hence, these

algorithms are forced to learn representation of the data. Some algorithms are

combined with additional regularization terms in order to enhance the ability to

extract meaningful structures (Vincent et al., 2008; Rifai et al., 2011) when the

compressed representation of the input has less dimensionality than the input, the

algorithm is called a dimensionality reduction algorithm. Dimensionality reduction

also includes algorithms such as t-SNE (Maaten and Hinton, 2008). Dimensionality

reduction algorithms are very useful when we visualize the data or parameters of

the model in a low-dimensional space, preferably a 2-D space.

In density estimation, the goal is to estimate the underlying distribution p(X)
in which the training examples were sampled from. Algorithms such as resc-

tricted Boltzmann machines (RBMs) (Smolensky, 1986), variational auto-encoders

(VAEs) (Kingma and Welling, 2013; Rezende et al., 2014) fall into this category.

Some of the research projects in this thesis are unsupervised learning algorithms,

which will be discussed in detail in the following chapters.
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2 Deep Learning

Deep learning is a research field aiming at learning multiple levels of abstraction

and feature representation for data using deep neural networks (Bengio, 2009; Le-

Cun et al., 2015; Schmidhuber, 2015; Goodfellow et al., 2016). In the past decade,

deep learning has been popularized as a powerful and scalable approach to solve

complicated machine learning tasks. The main advantage of a deep learning ap-

proach is that deep architectures help the models 1 to better handle the curse of

dimensionality (Bellman, 2013) by learning a composite and hierarchical feature

representation of the data. The curse of dimensionality refers to a phenomenon of

explosive increase of the complexity when the dimensionality of the data increases.

The effectiveness of deep architectures was first shown by the success of deep

belief networks (DBNs) (Hinton et al., 2006) and stacked auto-encoders (Bengio

et al., 2007). In these works, a greedy layer-wise learning strategy is used to train

a deep architecture one layer at a time. This approach was first used for learning

features in unsupervised learning tasks, however, it was also shown to be useful

to initialize a deep neural network with the parameters of deep belief networks

or stacked auto-encoders (Erhan et al., 2010). This technique is referred to pre-

training, and it is used in many machine learning applications.

Deep neural networks are a key component of many machine learning systems,

including speech recognition (Dahl et al., 2010; Mohamed et al., 2011; Graves et al.,

2013; Graves and Jaitly, 2014), handwriting recognition (Graves, 2013), object

classification (Krizhevsky et al., 2012), image caption generation (Vinyals et al.,

2015), machine translation (Sutskever et al., 2014; Cho et al., 2014; Bahdanau

et al., 2015) and playing games (Mnih et al., 2015; Silver et al., 2016).

Recent advance in deep neural networks is not limited to architectural improve-

ments, but it also includes optimization methods (Amari, 1998; Martens, 2010;

Pascanu and Bengio, 2013; Dauphin et al., 2014; Kingma and Ba, 2014; Desjardins

1. In deep learning, they are usually neural networks.
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et al., 2015; Dauphin et al., 2015), development of activation functions 2 (Nair and

Hinton, 2010; Glorot et al., 2011; Zeiler and Fergus, 2013; Goodfellow et al., 2013;

Klambauer et al., 2017), initialization techniques (Glorot and Bengio, 2010; Saxe

et al., 2013; He et al., 2015), regularization methods (Srivastava et al., 2014; Ioffe

and Szegedy, 2015; Ba et al., 2016) and theoretical improvements (Bengio et al.,

1994; Pascanu et al., 2012, 2013; Bengio et al., 2015; Gal and Ghahramani, 2015;

Zhang et al., 2016; Dinh et al., 2017).

There are two other common operations in deep learning, beyond the linear

transformations discussed in chapter 1, which are convolution and recurrence. Con-

volutional neural networks (Fukushima, 1980; LeCun et al., 1989) are specialized in

modelling data with spatial relationships in the data such as images or video frames.

Recurrent neural networks are specialized in modelling dynamics of sequences such

as text and speech (Jordan, 1997; Elman, 1990; Hochreiter and Schmidhuber, 1997).

These two operations can be combined in order to model spatio-temporal features

in the data, such as video (Yao et al., 2015).

This thesis includes research projects that contribute ideas on constructing deep

recurrent neural networks that can extract hierarchical and decomposable repre-

sentation from sequential data. Techniques for capturing multiple timescale repre-

sentation of sequences will be described in subsequent chapters.

2.1 Neural Networks

Artificial neural networks (ANNs) are in a family of models that share spe-

cific features, which are described in this section. The first ever neural network

architecture appeared in Rosenblatt (1958), called the Perceptron. The Percep-

tron was later extended to the multilayer Perceptron in Rumelhart et al. (1988).

After the Perceptron, various types of ANNs have been proposed, including con-

volutional neural networks (Fukushima, 1980; LeCun et al., 1989), Hopfield net-

works (Hopfield, 1982), self-organizing maps (Kohonen, 1982), Boltzmann ma-

chines (Ackley et al., 1985), restricted Boltzmann machines (Smolensky, 1986),

auto-encoders (Baldi and Hornik, 1989), sigmoid belief networks (Neal, 1992) deep

2. The activation functions will be described with more details in the following sections.
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belief networks (Hinton et al., 2006), deep Boltzmann machines (Salakhutdinov

and Hinton, 2009), stacked denoising auto-encoders (Vincent et al., 2010), varia-

tional auto-encoders (Kingma and Welling, 2013; Rezende et al., 2014), adversarial

networks (Goodfellow et al., 2014), highway networks (Srivastava et al., 2015) and

residual networks (He et al., 2015). We will refer to ANNs as neural networks in

the remainder of this thesis.

2.1.1 Neurons

A neuron is a basic computational unit of neural networks. A neuron h takes

an input and applies an affine transformation to the input using its parameters,

the weight vector w ∈ Rd and the bias term b ∈ R1:

z = w>x + b, (2.1)

where x ∈ Rd is the input, and z is the outcome of the affine transformation. A

non-linear function φ(x) is applied to z:

h = φ(z), (2.2)

where h is the activation or state of the neuron h for the input x. The non-linear

function φ(x) is especially important when neurons are stacked to form a hierarchy,

which is able to represent complicated functions. The non-linearity function is also

called an activation function. z is called the pre-activation since it is a value before

applying the activation function. Figure 2.1 depicts a graphical view of a neuron.

2.1.2 Universal Approximator Theorem

There is a rich literature discussing the universality 3 of neural networks. It

has been proven that a single layer feedforward neural network 4 with a sufficient

number of neurons that uses a sigmoid function as the non-linearity is a univer-

sal approximator of any continuous function to arbitrary precision (Hornik et al.,

1989; Cybenko, 1989; Funahashi, 1989; Barron, 1993). The universal approximator

3. If a computational model is universal, it can simulate any other computational model to
arbitrary precision.

4. Feedforward neural networks will be discussed in more depth in section 2.2.
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Figure 2.1: A neuron: a neuron is connected with the inputs using its weights. The last
connection is the bias term.

theorem states that increasing the number of hidden units can decrease the error

of the approximation.

2.1.3 Why Deep Neural Networks?

The universal approximator property of a single layer neural network is one of

the most cited theoretical results that justifies the use of neural networks as function

approximators. However, there are some practical issues to train a single layer

neural network with a large number of neurons due to the limited computational

resource. Also, there is a lack of training data to train a neural network with a

large number of parameters. Deep neural networks are argued as a more practical

approach to function approximators, although there is only a few theoretical results

for deep neural networks (Le Roux and Bengio, 2010; Montufar et al., 2014). In

Eldan and Shamir (2016), it was shown that a two-layer feedforward neural network

requires an exponential number of neurons in the input dimension d to approximate

a simple function on Rd that can be approximated by a three-layer feedforward with

a polynomial number of neurons in d.

2.1.4 Activation Functions

Activation functions introduce non-linearities to the neural networks. It is im-

portant to include non-linearities in deep neural networks to approximate complex

functions. The most commonly used activation functions are the logistic func-
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tion (sigmoid), hyperbolic tangent function (tanh), softplus function (softplus) and

rectified linear units (ReLU, Nair and Hinton, 2010):

sigmoid(x) = 1
1 + exp(−x) , (2.3)

tanh(x) = exp(x)− exp(−x)
exp(x) + exp(−x) , (2.4)

softplus(x) = log(1 + exp(x)), (2.5)

ReLU(x) =

x, if x > 0,

0, else x <= 0.
(2.6)

Note that in recurrent neural networks, more complicated activation functions are

commonly used (Hochreiter and Schmidhuber, 1997; Cho et al., 2014; Chung et al.,

2014). These will be described in later sections.

2.1.5 Hidden Layers

Neurons which receive the same inputs can form a layer. We commonly call this

set of neurons, a hidden layer, and each neuron in the layer, a hidden unit. Usually,

there are no connections between neurons in the same layer. There are three types

of layers in neural networks: an input layer, a hidden layer and an output layer (see

Figure 2.2). The input layer is where the input values are placed. Sometimes the

input data is preprocessed into a specific range or in a special format (e.g., one-hot

encoding) depending on which kind of tasks is in our hands. The output layer is

where the model can place its outputs. The outputs of the output layer should be

in the same range with that of the targets. In deep neural networks, it is common

to stack more than two hidden layers to form a deep architecture.

2.1.6 Backpropagation Algorithm

The error surface defined by the loss function of a highly non-linear function

(e.g., deep neural networks) is often non-convex 5, and there is no guarantee that

there is only one global solution to solve this problem. In addition, no analytical

solution to the optimization problem is known. Therefore, one has to consider

5. Note that the error surface of highly non-linear loss function is not always non-convex.
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using an iterative optimization algorithm such as gradient descent methods:

θτ+1 = θτ − η∇θf(θτ ), (2.7)

where η is a learning rate, and τ denotes the time step.

The backpropagation algorithm is used to compute the gradient of the loss with

respect to each parameter of neural networks. It computes the gradient in different

layers by propagating the error signal that originates from the loss function in

a backward direction. The update of parameters are conducted after two steps:

(1) a forward propagation and (2) a backward propagation. During the forward

propagation, all the outputs of the neurons from the input layer to the output

layer are computed and stored in a memory. During the backward propagation, the

partial derivatives of the neurons are computed, and the gradients are propagated

from the output layer to the input layer using the chain rule. When using the

backpropagation algorithm, it is very important to ensure that all the operations

conducted in the neural networks are differentiable.

In deep neural networks, there are a couple of issues with backpropagation when

the number of hidden layers increases. One of the problems is vanishing gradients,

where the magnitudes of the error signals diminish. This is because the non-linear

functions map the inputs into a small output range, e.g., a sigmoid activation

function maps the input into an output range of [0, 1]. For certain range of the

inputs, the derivative of the corresponding output range is close to 0. Vanishing

gradients become more problematic as the hidden layers are stacked. Piecewise

linear functions such as rectified linear units (ReLU) (Nair and Hinton, 2010) can

alleviate vanishing gradients. Other problems are related to optimization, due to

the high non-convexity of the error function of deep neural networks. Developing

and analyzing optimization routines for neural networks is an active field of research

with a practical benefit for many applications (Zeiler, 2012; Dauphin et al., 2014;

Kingma and Ba, 2014).

2.1.7 Pre-training

Pre-training was introduced in Hinton et al. (2006) to train deep belief networks

(DBNs). In Hinton et al. (2006), DBNs are trained by a greedy layer-wise learning

algorithm and fine-tuned with supervision using labeled data. While Bengio et al.
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(2007) pre-trained a stack of auto-encoders and then fine-tuned them as a super-

vised MLP. They also introduced supervised greedy layer-wise pre-training for deep

architectures. Pre-training is a two-step approach to train neural networks, and

can be seen as a particular regularization scheme for transferring domain knowl-

edge (Donahue et al., 2014). When it is too difficult to directly train a neural

network on a given dataset, one can pre-train the model on the same dataset or

on another dataset with more examples. Once the pre-training is done, the model

can be fine-tuned on the target dataset. Each step can be used for unsupervised

learning tasks or supervised ones.

2.1.8 Shortcuts or Linear Paths for Gradients

It is sometimes useful to introduce some linear connections between layers of

deep neural networks, where gradients can flow without any obstacle (Raiko et al.,

2012; He et al., 2015). It is also possible to connect the input layer directly to any

intermediate hidden layer, and any hidden layer to the output layer (Graves, 2013).

Srivastava et al. (2015) applied the gating mechanism used in gated recurrent neural

networks (Hochreiter and Schmidhuber, 1997; Cho et al., 2014) to feedforward

networks. Using gated feedforward connections, the model is much more resistant

to vanishing gradients and is able to train with hundreds of hidden layers.

2.2 Feedforward Neural Networks

A feedforward neural network refers to a network of neurons that do not form

feedback connections. It has a simple structure which maps the inputs to the tar-

get outputs. Multilayer Perceptrons (MLPs) (Rumelhart et al., 1988) and convolu-

tional neural networks (CNNs) (Fukushima, 1980; LeCun et al., 1989) are typical

examples of feedforward neural networks. Feedforward neural networks are usually

used to process non-sequential data, however, they are frequently combined with

recurrent neural networks to form a more complicated structure (Pascanu et al.,

2013).

Figure 2.2 shows a graphical view of an MLP. The MLP is an extension to the

Perceptron (Rosenblatt, 1958) with additional hidden layers for internal hidden
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Figure 2.2: Multilayer Perceptron: multiple numbers of hidden layers are stacked to form a
multilayer architecture. The activation functions of neurons can be specified by the practitioner,
however, the neurons at the output layers should output a range that matches with the targets.
The bias terms are omitted for brevity.

representation of the data. The neurons of the input layer are observed variables

that represent the values of the input data. A hidden layer receives the output

of the preceding layer as the input and computes the activations of its neurons.

The activations output by the neurons are then propagated to the next layer. The

neurons of the hidden layers (hidden units) are unobserved variables, and they

are usually treated as deterministic variables. However, it is not necessary to

assume that the hidden units are always deterministic. In Neal (1992); Tang and

Salakhutdinov (2013), the hidden units are considered as stochastic variables. The

output layer represents the final output of the model, and it is important to ensure

that the range of the outputs matches the range of the targets. For instance, if

the task is a binary classification problem, then the number of output neurons is

one, and the MLP outputs a probability value in the range of [0, 1]. The MLP

architecture with more than 1 or 2 hidden layers is what is typically known as deep

feedforward neural networks. The activations functions of the intermediate hidden

units and the output neurons can be modified by practitioners based on the tasks
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or the types of input data.

Feedforward neural networks are acyclic graphs, that is, the arrows from the

input layer to the output layer define a computational graph without any cycles.

Signals are propagated only once to the neurons, and there is no connectivity pat-

tern that direct the outputs to the previous neurons, which would form a feedback

loop.

A feedforward neural network with multiple hidden layers can learn a more

complicated function than a shallow neural network. Each hidden layer contains

many hidden units, therefore, the activation of `-th hidden layer can be computed

as:

h` = φ`(W `h`−1 + b`), (2.8)

where φ`(x) is the activation function of the layer `, W ` ∈ R|h`|×|h`−1| is the weight

matrix, b` ∈ R|h`| is the bias term, h`−1 ∈ R|h`−1| is the activation of the previ-

ous layer, and h0 = x. Each hidden unit in the layer ` detects features from its

input and maps them into activation. The overall mapping function of the feedfor-

ward neural network becomes a composite function after computing each mapping

function in a sequential manner.

2.3 Recurrent Neural Networks

A recurrent neural network (RNN) is a special type of neural network that can

handle variable-length inputs and outputs. An RNN processes a sequence of an

arbitrary length by recursively applying a state-transition function to its dynamic

state whenever it reads each symbol from an input sequence. Unlike hidden Markov

models (HMMs), which also have a dynamic state that is defined in a discrete state-

space S, RNNs exploit a distributed representation 6. Therefore, the expressive

power of the dynamic state of RNNs is much richer than HMMs. For comparison,

the state-space of HMMs is usually defined as a single set of mutually exclusive

states, but in RNNs, the state-space is defined by a number of neurons. If there

6. Each input to a neural network is represented by many hidden units (features), and each
hidden unit contributes in representing many possible inputs.
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are N neurons, and each neuron can represent a value in {0, 1}, the size of the

state-space of an RNN becomes |S| = 2N . Since the value of each neuron in RNNs

are typically in the range of [−1, 1], the state-space can become even larger.

HMMs are probabilistic sequential models that interpret a sequence of obser-

vations as probabilistic outcomes of the dynamic state, which is hidden. One issue

with HMMs is the difficulty of scaling up the algorithm since the size of the state-

space is limited, otherwise the computational complexity of the inference can be

dramatically increased as well as the number of the parameters in the transition

matrix (Viterbi, 1967). In addition, the Markov property 7 restricts the dynamic

state of HMMs to become only dependent on the last previous state, which is

a disadvantage when modelling long-term time dependencies. In contrast, RNNs

have a memory in the form of dynamic state that enables the model to preserve

long-range context. Also, the expressive power of the model increases exponentially

when the number of neuron increases, but the model can be trained efficiently via

backpropagation through time (Rumelhart et al., 1986).

2.3.1 Simple Recurrent Neural Networks

Elman networks (Elman, 1990) are known as simple recurrent neural networks.

A simple recurrent neural network consists of a hidden layer, a context layer and

an output layer. These layers are expressed mathematically as follow:

zt = W inxt +W recht−1 + b, (2.9)

ht = φ(zt), (2.10)

vt = W outht + c, (2.11)

yt = φ(vt), (2.12)

where xt ∈ R|X |×1 is an input vector, ht ∈ R|H|×1 is the hidden state. For the

hidden layer, W in ∈ R|H|×|X | is a weight matrix that transforms the input vector,

W rec ∈ R|H|×|H| is a recurrent transition matrix that transforms the previous hidden

state, and b ∈ R|H|×1 is the bias term of the hidden layer. For the output layer,

W out ∈ R|Y|×|H| is a weight matrix connected to the hidden state, and c ∈ R|Y|×1

7. The Markov property assumes that the future state is independent of the past given the
present state: p(xt+1|x1, . . . , xt) = p(xt+1|xt).
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is the bias term of the output layer. We use the subscript to index the time step,

and the superscript to denote which layer the parameters belong to. In Jordan

networks (Jordan, 1986), the previous output is used in Eq. 2.9 instead of the

previous hidden state. The activation of the hidden layer at time step t is an

outcome of a state-transition function that takes the current input symbol xt and

the previous hidden state ht−1 as inputs. Here, φ is a hyperbolic tangent function,

but other types of activation functions can be used as well.

The inputs and targets to RNNs are expected to be data points that are se-

quences. That is, an input example is a sequence given as x = {x1, x2, . . . , xT},
and T is the length of the sequence. Let us think about a language modelling

task, where x is a sequence of discrete symbols, and each symbol indicates either a

character or a word. x is generated from a stochastic process xt ∼ p(Xt | X1:t−1).
The probability of the sequence p(x) can be factorized using the chain rule:

p(x) = p(X1 = x1)p(X2 = x2 | X1 = x1) · · · p(XT = xT | X1 = x1, · · ·XT−1 = xT−1).

An RNN reads each symbol xt at each time step and predicts the next symbol xt+1.

That is, the conditional distribution p(Xt | X1:t−1) is now modelled as a one-step

process of the RNN using Eqs. 2.9–2.12. RNNs trained to model the probability of

sequences are also called generative RNNs.

It is not necessary to assume that the data is always a time-series. RNNs can

be applied to images as well, by treating pixels as symbols that occur sequentially

in the spatial domain (Graves et al., 2007; van den Oord et al., 2016).

2.3.2 Backpropagation Through Time

Backpropagation Through Time (BPTT) (Rumelhart et al., 1986; Werbos, 1988,

1990; Williams and Peng, 1990) is an extension of backpropagation algorithm,

which is a popular method to compute the gradients for parameters of RNNs.

Figure 2.3 depicts an RNN with a recurrent connection in its hidden layer. An

RNN can be unfolded in the temporal axis given a finite number of time steps. A

graphical view of an unfolded RNN is shown in Figure 2.4. For each time step, there

is a clone of the hidden state, and the recurrent connection of the RNN is replaced

by direct connections. This results in a very deep neural network on the temporal

axis, where the parameters are shared across time. The BPTT is performed by
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applying backpropagation algorithm to the unfolded RNN.

xt

yt

ht

W out

W rec

W in

Figure 2.3: An RNN de-
picted as a folded form.
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Figure 2.4: A folded RNN can be unfolded for finite number of
time steps.

The BPTT computes the gradients of the RNNs in two stages as feedforward

neural networks do. We start by computing the forward pass of the computational

graph using Eqs. 2.9–2.12. The loss function is computed at every time step, and

the error signal is propagated to yt.

The gradients of pre-activations or activations vt, ht, zt are defined as:

∂L
∂vt

= ∂L
∂yt

φ
′(vt), (2.13)

∂L
∂ht

= ∂L
∂vt

W out + ∂L
∂zt+1

W rec, (2.14)

∂L
∂zt

= ∂L
∂ht

φ
′(zt). (2.15)

The gradients of the parameters W in, W rec and W out are computed as:

∂L
∂W out

=
T∑
t=1

∂L
∂vt

h>t , (2.16)

∂L
∂W in

=
T∑
t=1

∂L
∂zt

x>t , (2.17)

∂L
∂W rec

=
T−1∑
t=1

∂L
∂zt+1

h>t . (2.18)

(2.19)

The gradients for the bias terms can be computed in the same way. From Eq. 2.18,
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we can draw an explanation why exploding and vanishing gradients are critical in

recurrent neural networks.

2.3.3 Vanishing and Exploding Gradients

A major problem in training RNNs is that vanishing gradients can become much

severe than feedforward neural networks. In addition to vanishing gradients, we

start to observe a new problem, which is exploding gradients (Hochreiter, 1991;

Bengio et al., 1994). It is straightforward to understand RNNs as extremely deep

feedforward neural networks when they are unfolded in time. The final output of an

RNN is a composition of a large number of non-linear transformations. Even though

each non-linear transformation is a smooth function, the composition function is

not necessarily a smooth function. Therefore, the derivatives of the composition

function become either very small or very large.

In Bengio et al. (1994), exploding or vanishing gradients refers to an exponen-

tial increase or decrease of the norm of gradients due to a very long recurrence.

Hochreiter (1991); Bengio et al. (1994) and Pascanu et al. (2012) provide theoretical

analysis on these problems. The gradient computed at time step T is propagated

to an arbitrary time step τ by following rule:

∂LT
∂hτ

= ∂LT
∂hT−1

∂hT−1

∂hT−2
· · · ∂hτ+1

∂hτ
, (2.20)

= ∂LT
∂hT−1

∂hT−1

∂hτ
. (2.21)

The term ∂hT−1
∂hτ from Eq. 2.21 is computed as a product of Jacobians via the chain

rule:

∂hT−1

∂hτ
=

T−2∏
i=τ

∂hi+1

∂hi
=

T−2∏
i=τ

W recdiag(φ′(hi)), (2.22)

where W rec is the recurrent transition matrix, and φ
′(hi) are diagonalized deriva-

tives of hi. Each Jacobian is equal to a multiplication of W rec and φ
′(hi). If the

spectral radius 8 of each Jacobian is smaller than 1, the gradient can decrease to 0
exponentially fast as T − τ , if the spectral radius of each Jacobian is larger than 1,

8. The largest absolute value of eigenvalues of a square matrix.
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the gradient can increase towards to an exponentially large number as T − τ (Pas-

canu et al., 2012). These phenomena are called vanishing and exploding gradients,

respectively. For exploding gradients, there is an empirical solution to mitigate

the problem, which is known as gradient clipping (Tomáš, 2012; Pascanu et al.,

2012; Graves, 2013). For vanishing gradients, there are some approaches using or-

thogonality of the recurrent transition matrix in order to preserve the long-range

context (Le et al., 2015; Arjovsky et al., 2016; Vorontsov et al., 2017). Vanishing

gradients are more difficult to resolve, and RNNs can fail to capture the long-term

temporal dependencies. The following sections will cover a few approaches to over-

come vanishing gradients. However, both vanishing and exploding gradients are not

the only bottlenecks of training RNNs. In subsequent chapters, the contributed ar-

ticles will show the other challenges in training RNNs and discuss how to better

handle these issues.

2.3.4 Long Short-Term Memory

The Long Short-Term Memory (LSTM) unit was initially proposed by Hochre-

iter and Schmidhuber (1997) in order to mitigate vanishing and exploding gradients

problems. Since then, a number of minor modifications to the original LSTM unit

have been made (Gers et al., 2000; Graves and Schmidhuber, 2005; Zaremba and

Sutskever, 2014). The core idea of LSTMs is an introduction of memory cells with

a self-loop connection with a constant value 1. Because a memory cell only runs

through linear operations, it can store a bit of information for an arbitrary long

period without suffering too much from vanishing gradients. Figure 2.5 depicts a

graphical view of a single LSTM unit.

An LSTM unit has a set of sigmoidal gating units: an input gate it, a forget

gate ft, and an output gate ot. For the memory cell, we use ct as the notation.

The memory cell conveys the context of an LSTM unit, while the gates control

the amount of update and emission of the context stored in the memory cell. A

context vector of the memory cells is updated as a weighted sum between the

previous context vector and the new context vector. This can be expressed in a

mathematical form as:

ct = ft ct−1 + it c̃t, (2.23)
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Figure 2.5: LSTM: (1) the memory cell is placed in the center. (2) The new context is computed
and multiplied by the (3) input gate. The previous state of the memory cell is multiplied by the
(4) forget gate and accumulated to the new context. The state of memory cell is updated by the
new context. Finally, the new state of the memory cell is multiplied by the (5) output gate, and
the hidden activation of the LSTM is computed. A closed dot is used to indicate shifting the time
to backward by 1.

where c̃t is the new context vector and can be computed as:

c̃t = tanh
(
W xcxt +W hcht−1 + bc

)
. (2.24)

The input gates control how much the new context should be reflected to the

memory cell, and the forget gates control how much an old context should be

forgotten. These gates are computed from the previous hidden state, the current

input and the last state of the memory cell:

it = σ
(
W xixt +W hiht−1 +W cict−1 + bi

)
, (2.25)

ft = σ
(
W xfxt +W hfht−1 +W cfct−1 + bf

)
, (2.26)

where it denotes the input gates, and ft denotes the forget gates. Here, σ(x) is an

element-wise sigmoid function. xt, ht−1 and ct−1 are the input vector, the previous

hidden state and the previous cell context vector of the LSTM units, respectively.

Note that W ci and W cf are the weight matrices that connect the previous context

vector in the inference of the input and forget gates, and they are diagonal matrices.

26



This suggests that the context in each memory cell does not directly interact with

the update of other cells.

Once the memory cell contexts of the LSTM units are updated, the hidden

activations ht are computed as:

ht = ot tanh (ct) .

The output gates ot control to which degree the context in each memory cell is

exposed. The output gates are dependent on the current input vector, the previous

hidden state and the new context vector.

ot = σ
(
W xoxt +W hoht−1 +W coct−1 + bo

)
. (2.27)

Here, W co is a diagonal matrix.

The three gates and the memory cell enable the LSTM unit to adaptively forget,

memorize or emit the context. If the context stored in the memory cell is deemed

important, the forget gate will be closed (have a value close to 1) and hold the

content across a long period of time, which is essentially capturing the long-range

context. The unit can also decide to wipe out the memory content, if the content

is not useful anymore. If the current input is not important, the input gate can be

opened (have a value close to 0) and not change the context of the memory cell.

Because of this adaptive memory capability and effective performance in practice,

LSTMs are used in many sequence modelling tasks.

2.3.5 Gated Recurrent Units

A Gated Recurrent Unit (GRU) (Cho et al., 2014) is a lightweight version of

an LSTM. Unlike LSTMs, GRUs do not have an explicit cell structure, and they

are designed to adaptively reset or update the memory content. A GRU has a reset

gate rt and an update gate zt. Because a GRU does not have a memory cell, the

context is fully exposed at each time step, and the new context is determined by

performing leaky integration between the previous context and the new context.

Figure 2.6 shows a graphical view of a GRU.
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Figure 2.6: GRU: a GRU consists of a reset gate and an update gate. A closed circle is used to
indicate a time-shift of 1 in backward. A closed square is an operation equivalent to f(x) = 1−x.

At each time step t, the hidden state of GRUs is computed as:

ht = (1− zt) ht−1 + zt h̃t, (2.28)

where ht−1 and h̃t are the previous context and the new candidate context, respec-

tively. The update gates zt control in what amount the previous context should

be forgotten and in what amount the new context should be added. The update

gates are computed by taking the previous hidden state ht−1 and the current input

vector xt as inputs:

zt = σ (W zxt + U zht−1 + bz) . (2.29)

The new memory context h̃t is computed similarly to the conventional state-

transition function of RNNs shown in Eq. 2.9:

h̃t = tanh (Wxt + rt � Uht−1 + b) , (2.30)

where � denotes an element-wise multiplication.

A major difference between the GRU and the state-transition function of the

simple RNN is that the activations of the previous time step ht−1 are modulated by
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the reset gates rt. By using these reset gates, GRUs preserve the previous hidden

state if they are deemed necessary or ignore the previous hidden state if they are

no longer needed. The reset gates take the previous hidden state and the current

input vector as inputs, and can be computed as:

rt = σ (W rxt + U rht−1 + br) . (2.31)

This update mechanism helps GRUs to capture the long-range context as the

LSTMs do. GRUs are often computationally more efficient than LSTMs due to

the smaller number of parameters and computations. They perform well on many

sequence modelling tasks (Chung et al., 2014).

2.3.6 Recurrent Neural Networks with External Memories

LSTMs and GRUs were proposed to alleviate vanishing gradients in order to

capture long-term temporal dependencies. Another approach to capturing long-

term temporal dependencies is using an external memory that can be read or

written by a pre-defined access protocol. The external memory can be imple-

mented as matrices (Weston et al., 2014; Graves et al., 2014), neural stack archi-

tectures (Grefenstette et al., 2015) or complex-valued vectors (Danihelka et al.,

2016). An RNN is typically used as a controller that reads or writes the content of

the external memory.

A neural turing machine (NTM) (Graves et al., 2014) consists of a controller

network and a memory bank. The controller network reads and writes heads using

a fully differentiable addressing mechanism, which is based on normalized weights

over all memory addresses. NTMs can be trained by gradient descent and can

perform tasks such as copying, sorting and associative recall from examples. NTMs

and LSTMs can perform comparably on these tasks, however, NTMs that have

external memory show better generalization ability to longer sequences.

In Associative LSTMs (Danihelka et al., 2016), the memory term is implemented

as a sum of key-value pairs, where each key-value pair is a complex multiplication

between a key and an input vector. The context in the memory can be retrieved

by multiplying a complex conjugate of the key, that is associated with the target

context, to the associative memory. In order to reduce the noise in retrievals,

associative LSTMs make multiple copies for each context item in the memory and
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the final retrieval is an average of these copies.

2.3.7 Sequence to Sequence Models

Broadly speaking, a sequence-to-sequence model is an RNN based model that is

used to learn a mapping function from a sequence to another sequence. Sequence-

to-sequence models were first proposed in neural machine translation (NMT) (Cho

et al., 2014; Sutskever et al., 2014), but their applications are not only limited

to NMT. Technically, sequence-to-sequence models can be applied to any task re-

quiring multiple outputs for an input such as image caption generation (Xu et al.,

2015), video caption generation (Yao et al., 2015), text-to-speech (Wang et al.,

2017; Sotelo et al., 2017) and speech recognition (Chan et al., 2015), where the

goal is to transform a source sequence into a target sequence.

A sequence-to-sequence model is constructed as a composite of an encoder

RNN and a decoder RNN. The encoder RNN first reads a source sequence x =
{x1, . . . , xTx} and summarizes it into a context vector c. The decoder RNN is a con-

ditional generative RNN that models a conditional distribution P (y | x), where the

context is provided instead of the source sequence x. The last hidden state of the en-

coder RNN is usually given as the context (Cho et al., 2014; Sutskever et al., 2014).

The decoder RNN reads each symbol from a target sequence y = {y1, . . . , yTy} and

predicts the next target symbol. In sequence-to-sequence model, the lengths of the

source sequence and the target sequence can be different. Sometimes, the difference

can be quite large, e.g., the source side is a sequence of words, and the target side

is a sequence of characters (Chung et al., 2016). Figure 2.7 depicts a graphical view

of a sequence-to-sequence model.

x1 x2 x3 x4 y1 y2

y3y2

< bos >

y1

Context

Figure 2.7: Sequence-to-Sequence Model: a sequence-to-sequence model with a single layer
encoder RNN and a single layer decoder RNN.

One issue with the sequence-to-sequence model is that the long-range context is
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not well captured due to the practical difficulties of training RNNs. It was shown

in NMT that the translation quality drops quickly when the length of the source

sequences increases (Bahdanau et al., 2015).

Attention Mechanism In order to overcome this limitation, one can use a

content-based attention mechanism, which is also called a soft alignment mech-

anism (Bahdanau et al., 2015). Unlike the naive sequence-to-sequence model,

a sequence-to-sequence model with the attention mechanism retains the encoder

states. Whenever the decoder processes each symbol in the target sequence, atten-

tion coefficients over the encoder states are computed at each time step, and the

context is obtained as a weighted sum of the encoder states using the attention coef-

ficients as weights. Figure 2.8 visualizes a graphical view of a sequence-to-sequence

model with an attention mechanism. More details on the model architecture and

equations are described in chapter 6.

Context

x1 x2 x3 x4

y1 y2

y3y2

< bos >

y1

Figure 2.8: Sequence-to-Sequence Model with Attention Mechanism: a sequence-to-sequence
model with a single layer encoder RNN, a single layer decoder RNN and an attention module.
Whenever the decoder processes each symbol, the context is obtained as a weighted sum of the
encoder states.
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2.3.8 Hierarchical Recurrent Neural Networks

One of the desired properties of deep neural networks is learning a decomposable

and hierarchical representation of data. Unfortunately, it is not clear how RNNs

can learn such hierarchical representation of sequences since there are two direc-

tions to consider, one from the input layer to the output layer, and another along

the temporal axis. For images, deep convolutional neural networks can capture dif-

ferent levels of spatial relationships. The lower-level layers tend to detect fine-scale

features such as edges and corners, and higher-level layers tend to capture more

abstract and coarse-scale features such as partial or full object shapes (Lee et al.,

2009). The same thing could happen for the sequences and RNNs, but now the

spatial relationships are replaced by temporal dependencies. In El Hihi and Bengio

(1995), the authors propose stacking multiple RNNs on top of each other, and let

them update the hidden states in different timescales. The motivation behind this

is to show that the temporal dependencies form a hierarchical structure. This type

of RNN, which assigns different update frequency to each of the hidden layers, is

called a multiscale RNN. The model has one or a small number of time-delay fac-

tors that prevent the hidden layers from changing their hidden states at the same

frequency. The key idea is to separate the temporal dependencies by length and

model them differently.

Multiscale RNNs can provide a few advantages compared to standard RNNs

that do not assign explicit timescales for updating the hidden layers. For example,

multiscale RNNs compute fewer matrix multiplications by updating the higher-level

layers less frequently, allowing multiscale RNNs to be computationally cheaper than

standard RNNs. Secondly, by updating the hidden state less frequently, especially

at the higher-level layers, which model long-term temporal dependencies, multi-

scale RNNs can mitigate the vanishing gradients problem. Multiscale RNNs also

allow more predictable separation of explanatory factors than standard RNNs since

different layers can be set to run on different explicit timescales. In some cases, the

timescales can be parametrized and learned meaning the timescales are no longer

fixed variables and explicitly given, however, we still know that the upper-level

layer is always changing the hidden state slower than the lower-level ones due to

the structure of the model.

There are mainly two approaches to implement multiscale RNNs. The first ap-

proach is to consider the timescales as hyperparameters. That is, each hidden layer
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of the RNN is updated with a pre-defined schedule, e.g., at every n time steps. One

issue with this approach is that fixed timescales are not suited to the case where

different segments in the hierarchical structure have variable lengths. The second

approach is to learn the timescales with parameters. Learning the timescales may

fit the purpose of the multiscale approach better, however, it can introduce more

challenges than the first approach. It is difficult to obtain the training signal for

learning the timescales. Imagine implementing a detector associated with each hid-

den layer that finds the right times to update the hidden state. This detector needs

boundary information in order to learn a termination of a meaningful chunk. For

some domains such as text, it is relatively easy to obtain the boundary information.

We can use word tokenizers to obtain the word-level boundaries, punctuation marks

to obtain the sentence-level boundaries, and line changes to obtain the paragraph-

level boundaries. However, in most cases, the boundary information is not trivially

extracted, meaning one has to invent an algorithm that can discover the bound-

aries by itself. The detected boundaries have to be represented as discrete variables

in order to perform the conditional computation when updating the hidden state.

This leads to the more economic use of computational resources, but introduc-

ing discrete variables makes it harder to compute gradients using backpropagation

through time. The multiscale approach by learning the timescales is a challenging

problem. This approach aligns with the main contribution of this thesis, and it will

be studied in depth over the chapter 4,6 and 8.
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3 Prologue to First Article

3.1 Article Details

Gated Feedback Recurrent Neural Networks. Junyoung Chung, Caglar Gul-

cehre, Kyunghyun Cho and Yoshua Bengio, Proceedings of the 32nd International

Conference on Machine Learning (ICML 2015).

Personal Contribution.

Yoshua Bengio provided me his intuition on multiscale RNNs before starting this

work. Inspired by Yoshua Bengio and his student’s earlier work, and the clockwork

RNN, I came up with this idea of allowing all possible recurrent connections be-

tween hidden layers of deep RNNs and learning them. Kyunghyun Cho helped me

with shaping the idea with more concrete plans from the initial stage. Caglar Gul-

cehre spent a lot of time with me for the experimental design. I implemented the

algorithms and did all of the experiments reported in the paper. I also participated

heavily to the writing with Yoshua Bengio and Kyunghyun Cho, who contributed

significantly to the introductory part.

3.2 Context

This paper was motivated by two earlier works, which are El Hihi and Bengio

(1995) and Koutńık et al. (2014). The idea of allowing the top-down connection was

inspired by the clockwork RNN (Koutńık et al., 2014), then later it was extended

in this work to allow all recurrent connections between layers. This idea can be

also related to skip-connections (Graves, 2013). In skip-connections, intermediate

hidden layers can be connected to the output layer, and the input layer can be

connected to any intermediate hidden layer. Skip-connections are helpful when
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the network is deep by providing a side road to the gradients. Here in this work,

skip-connections are applied in a recurrent fashion with gating units that control

the connections, and also top-down connections are allowed.

3.3 Contributions

Introducing a sigmoidal switch unit for each connection between layers was

inspired by the gated RNNs. The gated RNNs refer to RNNs that use GRUs or

LSTMs as the recurrent hidden units. A switch unit can control the traffic of the

information between layers and can increase the modelling power compared to a

model that has a deterministic connectivity pattern between hidden layers.

We observed that these extra connections with gating units help the model to

perform well on the language modelling and program evaluation tasks (Zaremba

and Sutskever, 2014). We achieved state-of-the-art results on the Hutter dataset

at the moment this paper was published. One drawback of GF-RNNs is that it is

difficult to explicitly show whether each layer is updating at a different timescale.

Later with the hierarchical multiscale RNNs (Chung et al., 2016), we demonstrated

a more improved model that shows an empirical evidence that the hidden layers

are updated at different timescales.
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4 Gated Feedback Recurrent
Neural Networks

4.1 Introduction

Recurrent neural networks (RNNs) have been widely studied and used for var-

ious machine learning tasks which involve sequence modeling, especially when the

input and output have variable lengths. Recent studies have revealed that RNNs

using gating units can achieve promising results in both classification and genera-

tion tasks (see, e.g., Graves, 2013; Bahdanau et al., 2015; Sutskever et al., 2014).

Although RNNs can theoretically capture any long-term dependency in an input

sequence, it is well-known to be difficult to train an RNN to actually do so (Hochre-

iter, 1991; Bengio et al., 1994; Hochreiter, 1998). One of the most successful and

promising approaches to solve this issue is by modifying the RNN architecture

e.g., by using a gated activation function, instead of the usual state-to-state transi-

tion function composing an affine transformation and a point-wise nonlinearity. A

gated activation function, such as the long short-term memory (LSTM, Hochreiter

and Schmidhuber, 1997) and the gated recurrent unit (GRU, Cho et al., 2014), is

designed to have more persistent memory so that it can capture long-term depen-

dencies more easily.

Sequences modeled by an RNN can contain both fast changing and slow chang-

ing components, and these underlying components are often structured in a hierar-

chical manner, which, as first pointed out by El Hihi and Bengio (1995) can help to

extend the ability of the RNN to learn to model longer-term dependencies. A con-

ventional way to encode this hierarchy in an RNN has been to stack multiple levels

of recurrent layers (Schmidhuber, 1992; El Hihi and Bengio, 1995; Graves, 2013;

Hermans and Schrauwen, 2013). More recently, Koutńık et al. (2014) proposed a

more explicit approach to partition the hidden units in an RNN into groups such

that each group receives the signal from the input and the other groups at a sep-

arate, predefined rate, which allows feedback information between these partitions
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to be propagated at multiple timescales. Stollenga et al. (2014) recently showed

the importance of feedback information across multiple levels of feature hierarchy,

however, with feedforward neural networks.

In this paper, we propose a novel design for RNNs, called a gated-feedback

RNN (GF-RNN), to deal with the issue of learning multiple adaptive timescales.

The proposed RNN has multiple levels of recurrent layers like stacked RNNs do.

However, it uses gated-feedback connections from upper recurrent layers to the

lower ones. This makes the hidden states across a pair of consecutive time steps

fully connected. To encourage each recurrent layer to work at different timescales,

the proposed GF-RNN controls the strength of the temporal (recurrent) connection

adaptively. This effectively lets the model to adapt its structure based on the input

sequence.

We empirically evaluated the proposed model against the conventional stacked

RNN and the usual, single-layer RNN on the task of language modeling and Python

program evaluation (Zaremba and Sutskever, 2014). Our experiments reveal that

the proposed model significantly outperforms the conventional approaches on two

different datasets.

4.2 Background

4.2.1 Revisiting Recurrent Neural Network

An RNN is able to process a sequence of arbitrary length by recursively applying

a transition function to its internal hidden states for each symbol of the input

sequence. The activation of the hidden states at time step t is computed as a

function f of the current input symbol xt and the previous hidden states ht−1:

ht =f (xt,ht−1) .

It is common to use the state-to-state transition function f as the composition

of an element-wise nonlinearity with an affine transformation of both xt and ht−1:

ht =φ (Wxt + Uht−1) , (4.1)
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where W is the input-to-hidden weight matrix, U is the state-to-state recurrent

weight matrix, and φ is usually a logistic sigmoid function or a hyperbolic tangent

function.

We can factorize the probability of a sequence of arbitrary length into:

p(x1, · · · , xT ) = p(x1)p(x2 | x1) · · · p(xT | x1, · · · , xT−1).

Then, we can train an RNN to model this distribution by letting it predict the

probability of the next symbol xt+1 given hidden states ht which is a function of

all the previous symbols x1, · · · , xt−1 and current symbol xt:

p(xt+1 | x1, · · · , xt) = g (ht) .

This approach of using a neural network to model a probability distribution over

sequences is widely used, for instance, in language modeling (see, e.g., Bengio et al.,

2001; Mikolov, 2012).

4.2.2 Revisiting Gated Recurrent Neural Network

The difficulty of training an RNN to capture long-term dependencies has been

known for long (Hochreiter, 1991; Bengio et al., 1994; Hochreiter, 1998). A pre-

viously successful approaches to this fundamental challenge has been to modify

the state-to-state transition function to encourage some hidden units to adaptively

maintain long-term memory, creating paths in the time-unfolded RNN, such that

gradients can flow over many time steps.

Long short-term memory (LSTM) was proposed by Hochreiter and Schmidhuber

(1997) to specifically address this issue of learning long-term dependencies. The

LSTM maintains a separate memory cell inside it that updates and exposes its

content only when deemed necessary. More recently, Cho et al. (2014) proposed a

gated recurrent unit (GRU) which adaptively remembers and forgets its state based

on the input signal to the unit. Both of these units are central to our proposed

model, and we will describe them in more details in the remainder of this section.
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Long Short-Term Memory

Since the initial 1997 proposal, several variants of the LSTM have been intro-

duced (Gers et al., 2000; Zaremba et al., 2014). Here we follow the implementation

provided by Zaremba et al. (2014).

Such an LSTM unit consists of a memory cell ct, an input gate it, a forget gate

ft, and an output gate ot. The memory cell carries the memory content of an LSTM

unit, while the gates control the amount of changes to and exposure of the memory

content. The content of the memory cell cjt of the j-th LSTM unit at time step t

is updated similar to the form of a gated leaky neuron, i.e., as the weighted sum of

the new content c̃jt and the previous memory content cjt−1 modulated by the input

and forget gates, ijt and f jt , respectively:

cjt = f jt c
j
t−1 + ijt c̃

j
t , (4.2)

where

c̃t = tanh (Wcxt + Ucht−1) . (4.3)

The input and forget gates control how much new content should be memorized and

how much old content should be forgotten, respectively. These gates are computed

from the previous hidden states and the current input:

it =σ (Wixt + Uiht−1) , (4.4)

ft =σ (Wfxt + Ufht−1) , (4.5)

where it =
[
ikt
]p
k=1

and ft =
[
fkt
]p
k=1

are respectively the vectors of the input and

forget gates in a recurrent layer composed of p LSTM units. σ(·) is an element-

wise logistic sigmoid function. xt and ht−1 are the input vector and previous hidden

states of the LSTM units, respectively.

Once the memory content of the LSTM unit is updated, the hidden state hjt of

the j-th LSTM unit is computed as:

hjt = ojt tanh
(
cjt
)
.

The output gate ojt controls to which degree the memory content is exposed. Simi-
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larly to the other gates, the output gate also depends on the current input and the

previous hidden states such that:

ot = σ (Woxt + Uoht−1) . (4.6)

In other words, these gates and the memory cell allow an LSTM unit to adap-

tively forget, memorize and expose the memory content. If the detected feature,

i.e., the memory content, is deemed important, the forget gate will be closed and

carry the memory content across many time steps, which is equivalent to captur-

ing a long-term dependency. On the other hand, the unit may decide to reset the

memory content by opening the forget gate. Since these two modes of operations

can happen simultaneously across different LSTM units, an RNN with multiple

LSTM units may capture both fast-moving and slow-moving components.

Gated Recurrent Unit

The GRU was recently proposed by Cho et al. (2014). Like the LSTM, it was

designed to adaptively reset or update its memory content. Each GRU thus has a

reset gate rjt and an update gate zjt which are reminiscent of the forget and input

gates of the LSTM. However, unlike the LSTM, the GRU fully exposes its memory

content each time step and balances between the previous memory content and the

new memory content strictly using leaky integration, albeit with its adaptive time

constant controlled by update gate zjt .

At time step t, the state hjt of the j-th GRU is computed by:

hjt = (1− zjt )hjt−1 + zjt h̃
j
t , (4.7)

where hjt−1 and h̃jt respectively correspond to the previous memory content and

the new candidate memory content. The update gate zjt controls how much of the

previous memory content is to be forgotten and how much of the new memory

content is to be added. The update gate is computed based on the previous hidden

states ht−1 and the current input xt:

zt =σ (Wzxt + Uzht−1) . (4.8)

The new memory content h̃jt is computed similarly to the conventional transition
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function in Eq. (4.1):

h̃t = tanh (Wxt + rt � Uht−1) , (4.9)

where � is an element-wise multiplication.

One major difference from the traditional transition function (Eq. (4.1)) is that

the states of the previous step ht−1 is modulated by the reset gates rt. This behavior

allows a GRU to ignore the previous hidden states whenever it is deemed necessary

considering the previous hidden states and the current input:

rt =σ (Wrxt + Urht−1) . (4.10)

The update mechanism helps the GRU to capture long-term dependencies.

Whenever a previously detected feature, or the memory content is considered to be

important for later use, the update gate will be closed to carry the current memory

content across multiple time steps. The reset mechanism helps the GRU to use the

model capacity efficiently by allowing it to reset whenever the detected feature is

not necessary anymore.

4.3 Gated Feedback Recurrent Neural Network

Although capturing long-term dependencies in a sequence is an important and

difficult goal of RNNs, it is worthwhile to notice that a sequence often consists of

both slow-moving and fast-moving components, of which only the former corre-

sponds to long-term dependencies. Ideally, an RNN needs to capture both long-

term and short-term dependencies.

El Hihi and Bengio (1995) first showed that an RNN can capture these de-

pendencies of different timescales more easily and efficiently when the hidden

units of the RNN is explicitly partitioned into groups that correspond to different

timescales. The clockwork RNN (CW-RNN) (Koutńık et al., 2014) implemented

this by allowing the i-th module to operate at the rate of 2i−1, where i is a posi-

tive integer, meaning that the module is updated only when t mod 2i−1 = 0. This
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makes each module to operate at different rates. In addition, they precisely de-

fined the connectivity pattern between modules by allowing the i-th module to be

affected by j-th module when j > i.

(a) Conventional stacked RNN (b) Gated Feedback RNN

Figure 4.1: Illustrations of (a) conventional stacking approach and (b) gated-feedback approach
to form a deep RNN architecture. Bullets in (b) correspond to global reset gates. Skip connections
are omitted to simplify the visualization of networks.

Here, we propose to generalize the CW-RNN by allowing the model to adap-

tively adjust the connectivity pattern between the hidden layers in the consecutive

time steps. Similar to the CW-RNN, we partition the hidden units into multi-

ple modules in which each module corresponds to a different layer in a stack of

recurrent layers.

Unlike the CW-RNN, however, we do not set an explicit rate for each mod-

ule. Instead, we let each module operate at different timescales by hierarchically

stacking them. Each module is fully connected to all the other modules across the

stack and itself. In other words, we do not define the connectivity pattern across

a pair of consecutive time steps. This is contrary to the design of CW-RNN and

the conventional stacked RNN. The recurrent connection between two modules,

instead, is gated by a logistic unit ([0, 1]) which is computed based on the current

input and the previous states of the hidden layers. We call this gating unit a global

reset gate, as opposed to a unit-wise reset gate which applies only to a single unit

(See Eqs. (4.2) and (4.9)).

The global reset gate is computed as:

gi→j = σ
(
wi→j
g hj−1

t + ui→jg h∗t−1

)
,
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where h∗t−1 is the concatenation of all the hidden states from the previous time

step t− 1. The superscript i→j is an index of associated set of parameters for the

transition from layer i in time step t− 1 to layer j in time step t. wi→j
g and ui→jg

are respectively the weight vectors for the current input and the previous hidden

states. When j = 1, hj−1
t is xt.

In other words, the signal from hit−1 to hjt is controlled by a single scalar gi→j

which depends on the input xt and all the previous hidden states h∗t−1.

We call this RNN with a fully-connected recurrent transitions and global reset

gates, a gated-feedback RNN (GF-RNN). Fig. 4.1 illustrates the difference between

the conventional stacked RNN and our proposed GF-RNN. In both models, infor-

mation flows from lower recurrent layers to upper recurrent layers. The GF-RNN,

however, further allows information from the upper recurrent layer, corresponding

to coarser timescale, flows back into the lower recurrent layers, corresponding to

finer timescales.

In the remainder of this section, we describe how to use the previously described

LSTM unit, GRU, and more traditional tanh unit in the GF-RNN.

4.3.1 Practical Implementation of GF-RNN

tanh Unit. For a stacked tanh-RNN, the signal from the previous time step is

gated. The hidden state of the j-th layer is computed by

hjt = tanh
(
W j−1→jhj−1

t +
L∑
i=1

gi→jU i→jhit−1

)
,

where L is the number of hidden layers, W j−1→j and U i→j are the weight matrices

of the current input and the previous hidden states of the i-th module, respectively.

Compared to Eq. (4.1), the only difference is that the previous hidden states are

from multiple layers and controlled by the global reset gates.

Long Short-Term Memory and Gated Recurrent Unit. In the cases of

LSTM and GRU, we do not use the global reset gates when computing the unit-

wise gates. In other words, Eqs. (4.4)–(4.6) for LSTM, and Eqs. (4.8) and (4.10)

for GRU are not modified. We only use the global reset gates when computing the

new state (see Eq. (4.3) for LSTM, and Eq. (4.9) for GRU).
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The new memory content of an LSTM at the j-th layer is computed by

c̃jt = tanh
(
W j−1→j
c hj−1

t +
L∑
i=1

gi→jU i→j
c hit−1

)
.

In the case of a GRU, similarly,

h̃jt = tanh
(
W j−1→jhj−1

t + rjt �
L∑
i=1

gi→jU i→jhit−1

)
.

4.4 Experiment Settings

4.4.1 Tasks

We evaluated the proposed GF-RNN on character-level language modeling and

Python program evaluation. Both tasks are representative examples of discrete

sequence modeling, where a model is trained to minimize the negative log-likelihood

of training sequences:

min
θ

1
N

N∑
n=1

Tn∑
t=1
− log p

(
xnt | xn1 , . . . , xnt−1; θ

)
,

where θ is a set of model parameters.

Language Modeling

We used the dataset made available as a part of the human knowledge compres-

sion contest (Hutter, 2012). We refer to this dataset as the Hutter dataset. The

dataset, which was built from English Wikipedia, contains 100 MBytes of charac-

ters which include Latin alphabets, non-Latin alphabets, XML markups and special

characters. Closely following the protocols in (Mikolov et al., 2012; Graves, 2013),

we used the first 90 MBytes of characters to train a model, the next 5 MBytes as a

validation set, and the remaining as a test set, with the vocabulary of 205 charac-

ters including a token for an unknown character. We used the average number of

bits-per-character (BPC, E[− log2 P (xt+1|ht)]) to measure the performance of each

model on the Hutter dataset.
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Python Program Evaluation

Zaremba and Sutskever (2014) recently showed that an RNN, more specifically

a stacked LSTM, is able to execute a short Python script. Here, we compared the

proposed architecture against the conventional stacking approach model on this

task, to which refer as Python program evaluation.

Scripts used in this task include addition, multiplication, subtraction, for-loop,

variable assignment, logical comparison and if-else statement. The goal is to gen-

erate, or predict, a correct return value of a given Python script. The input is

a program while the output is the result of a print statement: every input script

ends with a print statement. Both the input script and the output are sequences

of characters, where the input and output vocabularies respectively consist of 41
and 13 symbols.

The advantage of evaluating the models with this task is that we can artificially

control the difficulty of each sample (input-output pair). The difficulty is deter-

mined by the number of nesting levels in the input sequence and the length of the

target sequence. We can do a finer-grained analysis of each model by observing its

behavior on examples of different difficulty levels.

In Python program evaluation, we closely follow (Zaremba and Sutskever, 2014)

and compute the test accuracy as the next step symbol prediction given a sequence

of correct preceding symbols.

4.4.2 Models

We compared three different RNN architectures: a single-layer RNN, a stacked

RNN and the proposed GF-RNN. For each architecture, we evaluated three dif-

ferent transition functions: tanh + affine, long short-term memory (LSTM) and

gated recurrent unit (GRU). For fair comparison, we constrained the number of

parameters of each model to be roughly similar to each other.

For each task, in addition to these capacity-controlled experiments, we con-

ducted a few extra experiments to further test and better understand the properties

of the GF-RNN.
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Table 4.1: The sizes of the models used in character-level language modeling. Gated Feedback
L is a GF-RNN with a same number of hidden units as a stacked RNN (but more parameters).
The number of units is shown as (number of hidden layers) × (number of hidden units

per layer).

Unit Architecture # of Units

tanh
Single 1× 1000

Stacked 3× 390
Gated Feedback 3× 303

GRU

Single 1× 540
Stacked 3× 228

Gated Feedback 3× 165
Gated Feedback L 3× 228

LSTM

Single 1× 456
Stacked 3× 191

Gated Feedback 3× 140
Gated Feedback L 3× 191

Language Modeling

For the task of character-level language modeling, we constrained the number

of parameters of each model to correspond to that of a single-layer RNN with 1000
tanh units (see Table 4.1 for more details). Each model is trained for at most 100
epochs.

We used RMSProp (Tieleman and Hinton, 2012) and momentum to tune the

model parameters (Graves, 2013). According to the preliminary experiments and

their results on the validation set, we used a learning rate of 0.001 and momentum

coefficient of 0.9 when training the models having either GRU or LSTM units. It

was necessary to choose a much smaller learning rate of 5 × 10−5 in the case of

tanh units to ensure the stability of learning. Whenever the norm of the gradient

explodes, we halve the learning rate.

Each update is done using a minibatch of 100 subsequences of length 100 each,

to avoid memory overflow problems when unfolding in time for backprop. We

approximate full back-propagation by carrying the hidden states computed at the

previous update to initialize the hidden units in the next update. After every 100-th

update, the hidden states were reset to all zeros.
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(a) GRU (b) LSTM

Figure 4.2: Validation learning curves of three different RNN architectures; stacked RNN, GF-
RNN with the same number of model parameters and GF-RNN with the same number of hidden
units. The curves represent training up to 100 epochs. Best viewed in colors.

Table 4.2: Test set BPC (lower is better) of models trained on the Hutter dataset for a 100
epochs. (∗) The gated-feedback RNN with the global reset gates fixed to 1 (see Sec. 4.5.1 for
details). Bold indicates statistically significant winner over the column (same type of units,
different overall architecture).

tanh GRU LSTM

Single-layer 1.937 1.883 1.887
Stacked 1.892 1.871 1.868

Gated Feedback 1.949 1.855 1.842
Gated Feedback L – 1.813 1.789

Feedback∗ – – 1.854

Python Program Evaluation

For the task of Python program evaluation, we used an RNN encoder-decoder

based approach to learn the mapping from Python scripts to the corresponding

outputs as done by Cho et al. (2014); Sutskever et al. (2014) for machine translation.

When training the models, Python scripts are fed into the encoder RNN, and the

hidden state of the encoder RNN is unfolded for 50 time steps. Prediction is

performed by the decoder RNN whose initial hidden state is initialized with the

last hidden state of the encoder RNN. The first hidden state of encoder RNN h0 is

always initialized to a zero vector.

For this task, we used GRU and LSTM units either with or without the gated-

feedback connections. Each encoder or decoder RNN has three hidden layers.
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For GRU, each hidden layer contains 230 units, and for LSTM each hidden layer

contains 200 units.

Following Zaremba and Sutskever (2014), we used the mixed curriculum strat-

egy for training each model, where each training example has a random difficulty

sampled uniformly. We generated 320, 000 examples using the script provided by

Zaremba and Sutskever (2014), with the nesting randomly sampled from [1, 5] and

the target length from [1, 1010].
We used Adam (Kingma and Ba, 2014) to train our models, and each update

was using a minibatch with 128 sequences. We used a learning rate of 0.001 and

β1 and β2 were both set to 0.99. We trained each model for 30 epochs, with early

stopping based on the validation set performance to prevent over-fitting.

At test time, we evaluated each model on multiple sets of test examples where

each set is generated using a fixed target length and number of nesting levels. Each

test set contains 2, 000 examples which are ensured not to overlap with the training

set.

4.5 Results and Analysis

4.5.1 Language Modeling

It is clear from Table 4.2 that the proposed gated-feedback architecture out-

performs the other baseline architectures that we have tried when used together

with widely used gated units such as LSTM and GRU. However, the proposed

architecture failed to improve the performance of a vanilla-RNN with tanh units.

In addition to the final modeling performance, in Fig. 4.2, we plotted the learning

curves of some models against wall-clock time (measured in seconds). RNNs that

are trained with the proposed gated-feedback architecture tends to make much

faster progress over time. This behavior is observed both when the number of pa-

rameters is constrained and when the number of hidden units is constrained. This

suggests that the proposed GF-RNN significantly facilitates optimization/learning.

Effect of Global Reset Gates After observing the superiority of the proposed

gated-feedback architecture over the single-layer or conventional stacked ones, we
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Table 4.3: Generated texts with our trained models. Given the seed at the left-most column
(bold-faced font), the models predict next 200 ∼ 300 characters. Tabs, spaces and new-line
characters are also generated by the models.

Seed Stacked LSTM GF-LSTM

[[pl:Icon]]

[[pt:Icon]]

[[ru:Icon]]

[[sv:Programspraket Icon]]</text>

</revision>

</page>

<page>

<title>Iconology</title>

<id>14802</id>

<revi

<revision>

<id>15908383</id>

<timestamp>

2002-07-20T18:33:34Z

</timestamp>

<contributor>

<username>The Courseichi</userrand

vehicles in [[enguit]].

==The inhibitors and alphabetsy and moral/

hande in===In four [[communications]] and

<revision>

<id>41968413</id>

<timestamp>

2006-09-03T11:38:06Z

</timestamp>

<contributor>

<username>Navisb</username>

<id>46264</id>

</contributor>

<comment>The increase from the time

<title>Inherence relation</title>

<id>14807</id>

<revision>

<id>34980694</id>

<timestamp>

2006-01-13T04:19:25Z

</timestamp>

<contributor>

<username>Ro

<username>Robert]]

[[su:20 aves]]

[[vi:10 Februari]]

[[bi:16 agostoferosı́n]]

[[pt:Darenetische]]

[[eo:Hebrew selsowen]]

[[hr:2 febber]]

[[io:21 februari]]

[[it:18 de februari]]

<username>Roma</username>

<id>48</id>

</contributor>

<comment>Vly’’’ and when one hand

is angels and [[ghost]] borted and

’’mask r:centrions]], [[Afghanistan]],

[[Glencoddic tetrahedron]], [[Adjudan]],

[[Dghacn]], for example, in which materials

dangerous (carriers) can only use with one

further trained another GF-RNN with LSTM units, but this time, after fixing the

global reset gates to 1 to validate the need for the global reset gates. Without the

global reset gates, feedback signals from the upper recurrent layers influence the

lower recurrent layer fully without any control. The test set BPC of GF-LSTM

without global reset gates was 1.854 which is in between the results of conventional

stacked LSTM and GF-LSTM with global reset gates (see the last row of Table 4.2)

which confirms the importance of adaptively gating the feedback connections.

Qualitative Analysis: Text Generation Here we qualitatively evaluate the

stacked LSTM and GF-LSTM trained earlier by generating text. We choose a

subsequence of characters from the test set and use it as an initial seed. Once

the model finishes reading the seed text, we let the model generate the following

characters by sampling a symbol from softmax probabilities of a time step and then

provide the symbol as next input.

Given two seed snippets selected randomly from the test set, we generated the

sequence of characters ten times for each model (stacked LSTM and GF-LSTM).

We show one of those ten generated samples per model and per seed snippet in

Table 4.3. We observe that the stacked LSTM failed to close the tags with </user-

name> and </contributor> in both trials. However, the GF-LSTM succeeded to
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close both of them, which shows that it learned about the structure of XML tags.

This type of behavior could be seen throughout all ten random generations.

Table 4.4: Test set BPC of neural language models trained on the Hutter dataset, MRNN =
multiplicative RNN results from Sutskever et al. (2011) and Stacked LSTM results from Graves
(2013).

MRNN Stacked LSTM GF-LSTM

1.60 1.67 1.58

(a) Stacked RNN (b) Gated Feedback RNN
(c) Gaps between (a) and

(b)

Figure 4.3: Heatmaps of (a) stacked RNN, (b) GF-RNN, and (c) difference obtained by sub-
stracting (a) from (b). The top row is the heatmaps of models using GRUs, and the bottom row
represents the heatmaps of the models using LSTM units. Best viewed in colors.

Large GF-RNN We trained a larger GF-RNN that has five recurrent layers,

each of which has 700 LSTM units. This makes it possible for us to compare the

performance of the proposed architecture against the previously reported results

using other types of RNNs. In Table 4.4, we present the test set BPC by a mul-

tiplicative RNN (Sutskever et al., 2011), a stacked LSTM (Graves, 2013) and the

GF-RNN with LSTM units. The performance of the proposed GF-RNN is compa-

rable to, or better than, the previously reported best results. Note that Sutskever

et al. (2011) used the vocabulary of 86 characters (removed XML tags and the
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Wikipedia markups), and their result is not directly comparable with ours. In this

experiment, we used Adam (Kingma and Ba, 2014) instead of RMSProp to opti-

mize the RNN. We used learning rate of 0.001 and β1 and β2 were set to 0.9 and

0.99, respectively.

4.5.2 Python Program Evaluation

Fig. 4.3 presents the test results of each model represented in heatmaps. The

accuracy tends to decrease by the growth of the length of target sequences or the

number of nesting levels, where the difficulty or complexity of the Python program

increases. We observed that in most of the test sets, GF-RNNs are outperforming

stacked RNNs, regardless of the type of units. Fig. 4.3 (c) represents the gaps

between the test accuracies of stacked RNNs and GF-RNNs which are computed

by subtracting (a) from (b). In Fig. 4.3 (c), the red and yellow colors, indicating

large gains, are concentrated on top or right regions (either the number of nesting

levels or the length of target sequences increases). From this we can more easily

see that the GF-RNN outperforms the stacked RNN, especially as the number of

nesting levels grows or the length of target sequences increases.

4.6 Conclusion

We proposed a novel architecture for deep stacked RNNs which uses gated-

feedback connections between different layers. Our experiments focused on chal-

lenging sequence modeling tasks of character-level language modeling and Python

program evaluation. The results were consistent over different datasets, and clearly

demonstrated that gated-feedback architecture is helpful when the models are

trained on complicated sequences that involve long-term dependencies. We also

showed that gated-feedback architecture was faster in wall-clock time over the train-

ing and achieved better performance compared to standard stacked RNN with a

same amount of capacity. Large GF-LSTM was able to outperform the previously

reported best results on character-level language modeling. This suggests that GF-

RNNs are also scalable. GF-RNNs were able to outperform standard stacked RNNs
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and the best previous records on Python program evaluation task with varying dif-

ficulties.

We noticed a deterioration in performance when the proposed gated-feedback

architecture was used together with a tanh activation function, unlike when it was

used with more sophisticated gated activation functions. More thorough investi-

gation into the interaction between the gated-feedback connections and the role of

recurrent activation function is required in the future.
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5 Prologue to Second Article

5.1 Article Details

A Character-Level Decoder without Explicit Segmentation for Neural

Machine Translation. Junyoung Chung, Kyunghyun Cho and Yoshua Bengio,

Proceedings of the 54th Association for Computational Linguistics (ACL 2016).

Personal Contribution.

The idea of taking a character-level approach in neural machine translation was

initially proposed by Yoshua Bengio and Kyunghyun Cho. Kyunghyun Cho and I

designed the biscale RNNs. I implemented the algorithm and performed all of the

experiments. I wrote the major part of the paper, Kyunghyun Cho did a general

editing afterward, and Yoshua Bengio did the final editing.

5.2 Context

The character-level approach has been believed to be a difficult path to per-

form a machine translation task due to the data sparsity issue. In fact, for neural

machine translation systems, a large dictionary size has been the difficulty, and

researchers were struggling to solve this problem (Jean et al., 2015; Luong et al.,

2015). Before this paper was published, neural machine translation systems us-

ing subwords as tokens have shown some promising results (Sennrich et al., 2015).

This success has dramatically reduced the size of the dictionary that is used in

neural machine translation systems, and partially removed the rare-word problem.

The rare-word problem arises due to the long-tailed distribution of words in text

corpora that are used for training machine tranlsation systems, where some infre-

quent words are very sparse compared to other frequent words. However, even for

53



the subword-based translation systems, it was still necessary to build a dictionary

from the training corpus before training. Also, the rare-word problem could not

be completely resolved since the dictionary contains a limited number of tokens

(subwords) that are built from the training corpus.

5.3 Contributions

In this work, we proposed to replace only the decoder to use characters instead

of subword units. The motivation of this setting was to provide a transparent

comparison between two different types of input units. We did an exhaustive

experiments using four shared tasks from the WMT’15 parallel corpora except for

En↔Fr. We proposed a biscale RNN, which consists of two hidden layers with

different update speeds. The first layer is a fast layer, which is expected to model

the components that change fast, such as characters. The second layer is a slow

layer, which is expected to model the components that change slower such as words

or phrases. The new architecture was inspired by the GF-RNN (Chung et al., 2015).

Here, unlike to the GF-RNN, a biscale RNN exploits a set of gating units that are

tied. One drawback of the biscale RNN is that the gating units are continuous

variables in the range of [0, 1]. This ends up being like updating the hidden state

at every time step, but the amount of change is scaled down by the gating units.

The biscale RNN was extended to the hierarchical multiscale RNN (Chung et al.,

2016), which exploits discrete gating units.
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6 Character-Level Neural
Machine Translation

6.1 Introduction

The existing machine translation systems have relied almost exclusively on

word-level modelling with explicit segmentation. This is mainly due to the issue

of data sparsity which becomes much more severe, especially for n-grams, when

a sentence is represented as a sequence of characters rather than words, as the

length of the sequence grows significantly. In addition to data sparsity, we often

have a priori belief that a word, or its segmented-out lexeme, is a basic unit of

meaning, making it natural to approach translation as mapping from a sequence

of source-language words to a sequence of target-language words.

This has continued with the more recently proposed paradigm of neural machine

translation, although neural networks do not suffer from character-level modelling

and rather suffer from the issues specific to word-level modelling, such as the in-

creased computational complexity from a very large target vocabulary (Jean et al.,

2015; Luong et al., 2015). Therefore, in this paper, we address a question of whether

neural machine translation can be done directly on a sequence of characters without

any explicit word segmentation.

To answer this question, we focus on representing the target side as a character

sequence. We evaluate neural machine translation models with a character-level

decoder on four language pairs from WMT’15 to make our evaluation as convincing

as possible. We represent the source side as a sequence of subwords extracted

using byte-pair encoding from Sennrich et al. (2015), and vary the target side to

be either a sequence of subwords or characters. On the target side, we further

design a novel recurrent neural network (RNN), called biscale recurrent network,

that better handles multiple timescales in a sequence, and test it in addition to a

naive, stacked recurrent neural network.

On all of the four language pairs–En-Cs, En-De, En-Ru and En-Fi–, the models
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with a character-level decoder outperformed the ones with a subword-level decoder.

We observed a similar trend with the ensemble of each of these configurations,

outperforming both the previous best neural and non-neural translation systems

on En-Cs, En-De and En-Fi, while achieving a comparable result on En-Ru. We

find these results to be a strong evidence that neural machine translation can indeed

learn to translate at the character-level and that in fact, it benefits from doing so.

6.2 Neural Machine Translation

Neural machine translation refers to a recently proposed approach to machine

translation (Forcada and Ñeco, 1997; Kalchbrenner and Blunsom, 2013; Cho et al.,

2014; Sutskever et al., 2014). This approach aims at building an end-to-end neural

network that takes as input a source sentence X = (x1, . . . , xTx) and outputs its

translation Y = (y1, . . . , yTy), where xt and yt′ are respectively source and target

symbols. This neural network is constructed as a composite of an encoder network

and a decoder network.

The encoder network encodes the input sentence X into its continuous repre-

sentation. In this paper, we closely follow the neural translation model proposed

in Bahdanau et al. (2015) and use a bidirectional recurrent neural network, which

consists of two recurrent neural networks. The forward network reads the input

sentence in a forward direction: −→z t = −→φ (ex(xt),−→z t−1), where ex(xt) is a contin-

uous embedding of the t-th input symbol, and φ is a recurrent activation function.

Similarly, the reverse network reads the sentence in a reverse direction (right to

left): ←−z t =←−φ (ex(xt),←−z t+1). At each location in the input sentence, we concate-

nate the hidden states from the forward and reverse RNNs to form a context set

C = {z1, . . . , zTx} , where zt =
[−→z t;←−z t

]
.

Then the decoder computes the conditional distribution over all possible trans-

lations based on this context set. This is done by first rewriting the conditional

probability of a translation: log p(Y |X) = ∑Ty
t′=1 log p(yt′|y<t′ , X). For each condi-

tional term in the summation, the decoder RNN updates its hidden state by

ht′ = φ(ey(yt′−1),ht′−1, ct′), (6.1)
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where ey is the continuous embedding of a target symbol. ct′ is a context vector

computed by a soft-alignment mechanism:

ct′ = falign(ey(yt′−1),ht′−1, C)). (6.2)

The soft-alignment mechanism falign weights each vector in the context set C

according to its relevance given what has been translated. The weight of each

vector zt is computed by

αt,t′ = 1
Z
efscore(ey(yt′−1),ht′−1,zt), (6.3)

where fscore is a parametric function returning an unnormalized score for zt given

ht′−1 and yt′−1. We use a feedforward network with a single hidden layer in this

paper. 1 Z is a normalization constant: Z = ∑Tx
k=1 e

fscore(ey(yt′−1),ht′−1,zk). This pro-

cedure can be understood as computing the alignment probability between the t′-th

target symbol and t-th source symbol.

The hidden state ht′ , together with the previous target symbol yt′−1 and the

context vector ct′ , is fed into a feedforward neural network to result in the condi-

tional distribution:

p(yt′ | y<t′ , X) ∝ ef
yt′
out(ey(yt′−1),ht′ ,ct′ ). (6.4)

The whole model, consisting of the encoder, decoder and soft-alignment mechanism,

is then tuned end-to-end to minimize the negative log-likelihood using stochastic

gradient descent.

6.3 Towards Character-Level Translation

6.3.1 Motivation

Let us revisit how the source and target sentences (X and Y ) are represented

in neural machine translation. For the source side of any given training corpus,

we scan through the whole corpus to build a vocabulary Vx of unique tokens to

1. For other possible implementations, see (Luong et al., 2015).
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which we assign integer indices. A source sentence X is then built as a sequence of

the indices of such tokens belonging to the sentence, i.e., X = (x1, . . . , xTx), where

xt ∈ {1, 2, . . . , |Vx|}. The target sentence is similarly transformed into a target

sequence of integer indices.

Each token, or its index, is then transformed into a so-called one-hot vector

of dimensionality |Vx|. All but one elements of this vector are set to 0. The only

element whose index corresponds to the token’s index is set to 1. This one-hot

vector is the one which any neural machine translation model sees. The embedding

function, ex or ey, is simply the result of applying a linear transformation (the

embedding matrix) to this one-hot vector.

The important property of this approach based on one-hot vectors is that the

neural network is oblivious to the underlying semantics of the tokens. To the

neural network, each and every token in the vocabulary is equal distance away

from every other token. The semantics of those tokens are simply learned (into

the embeddings) to maximize the translation quality, or the log-likelihood of the

model.

This property allows us great freedom in the choice of tokens’ unit. Neural net-

works have been shown to work well with word tokens (Bengio et al., 2001; Schwenk,

2007; Mikolov et al., 2010) but also with finer units, such as subwords (Sennrich

et al., 2015; Botha and Blunsom, 2014; Luong et al., 2013) as well as symbols re-

sulting from compression/encoding (Chitnis and DeNero, 2015). Although there

have been a number of previous research reporting the use of neural networks with

characters (see, e.g., Mikolov et al. (2012) and Santos and Zadrozny (2014)), the

dominant approach has been to preprocess the text into a sequence of symbols,

each associated with a sequence of characters, after which the neural network is

presented with those symbols rather than with characters.

More recently in the context of neural machine translation, two research groups

have proposed to directly use characters. Kim et al. (2015) proposed to represent

each word not as a single integer index as before, but as a sequence of characters,

and use a convolutional network followed by a highway network (Srivastava et al.,

2015) to extract a continuous representation of the word. This approach, which

effectively replaces the embedding function ex, was adopted by Costa-Jussà and

Fonollosa (2016) for neural machine translation. Similarly, Ling et al. (2015) use

a bidirectional recurrent neural network to replace the embedding functions ex
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and ey to respectively encode a character sequence to and from the corresponding

continuous word representation. A similar, but slightly different approach was

proposed by Lee et al. (2015), where they explicitly mark each character with its

relative location in a word (e.g., “B”eginning and “I”ntermediate).

Despite the fact that these recent approaches work at the level of characters,

it is less satisfying that they all rely on knowing how to segment characters into

words. Although it is generally easy for languages like English, this is not always the

case. This word segmentation procedure can be as simple as tokenization followed

by some punctuation normalization, but also can be as complicated as morpheme

segmentation requiring a separate model to be trained in advance (Creutz and

Lagus, 2005; Huang and Zhao, 2007). Furthermore, these segmentation 2 steps

are often tuned or designed separately from the ultimate objective of translation

quality, potentially contributing to a suboptimal quality.

Based on this observation and analysis, in this paper, we ask ourselves and the

readers a question which should have been asked much earlier: Is it possible to do

character-level translation without any explicit segmentation?

6.3.2 Why Word-Level Translation?

(1) Word as a Basic Unit of Meaning A word can be understood in two

different senses. In the abstract sense, a word is a basic unit of meaning (lexeme),

and in the other sense, can be understood as a “concrete word as used in a sen-

tence.” (Booij, 2012). A word in the former sense turns into that in the latter sense

via a process of morphology, including inflection, compounding and derivation.

These three processes do alter the meaning of the lexeme, but often it stays close

to the original meaning. Because of this view of words as basic units of meaning

(either in the form of lexemes or derived form) from linguistics, much of previous

work in natural language processing has focused on using words as basic units of

which a sentence is encoded as a sequence. Also, the potential difficulty in finding a

mapping between a word’s character sequence and meaning 3 has likely contributed

to this trend toward word-level modelling.

2. From here on, the term segmentation broadly refers to any method that splits a given
character sequence into a sequence of subword symbols.

3. For instance, “quit”, “quite” and “quiet” are one edit-distance away from each other but
have distinct meanings.
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(2) Data Sparsity There is a further technical reason why much of previous re-

search on machine translation has considered words as a basic unit. This is mainly

due to the fact that major components in the existing translation systems, such as

language models and phrase tables, are a count-based estimator of probabilities.

In other words, a probability of a subsequence of symbols, or pairs of symbols, is

estimated by counting the number of its occurrences in a training corpus. This ap-

proach severely suffers from the issue of data sparsity, which is due to a large state

space which grows exponentially w.r.t. the length of subsequences while growing

only linearly w.r.t. the corpus size. This poses a great challenge to character-level

modelling, as any subsequence will be on average 4–5 times longer when characters,

instead of words, are used. Indeed, Vilar et al. (2007) reported worse performance

when the character sequence was directly used by a phrase-based machine trans-

lation system. More recently, Neubig et al. (2013) proposed a method to improve

character-level translation with phrase-based translation systems, however, with

only a limited success.

(3) Vanishing Gradient Specifically to neural machine translation, a major

reason behind the wide adoption of word-level modelling is due to the difficulty in

modelling long-term dependencies with recurrent neural networks (Bengio et al.,

1994; Hochreiter, 1998). As the lengths of the sentences on both sides grow when

they are represented in characters, it is easy to believe that there will be more

long-term dependencies that must be captured by the recurrent neural network for

successful translation.

6.3.3 Why Character-Level Translation?

Why not Word-Level Translation? The most pressing issue with word-level

processing is that we do not have a perfect word segmentation algorithm for any one

language. A perfect segmentation algorithm needs to be able to segment any given

sentence into a sequence of lexemes and morphemes. This problem is however

a difficult problem on its own and often requires decades of research (see, e.g.,

Creutz and Lagus (2005) for Finnish and other morphologically rich languages and

Huang and Zhao (2007) for Chinese). Therefore, many opt to using either a rule-

based tokenization approach or a suboptimal, but still available, learning based

segmentation algorithm.
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The outcome of this naive, sub-optimal segmentation is that the vocabulary is

often filled with many similar words that share a lexeme but have different mor-

phology. For instance, if we apply a simple tokenization script to an English corpus,

“run”, “runs”, “ran” and “running” are all separate entries in the vocabulary, while

they clearly share the same lexeme “run”. This prevents any machine translation

system, in particular neural machine translation, from modelling these morpholog-

ical variants efficiently.

More specifically in the case of neural machine translation, each of these mor-

phological variants–“run”,“runs”,“ran”and“running”– will be assigned a d-dimensional

word vector, leading to four independent vectors, while it is clear that if we can

segment those variants into a lexeme and other morphemes, we can model them

more efficiently. For instance, we can have a d-dimensional vector for the lexeme

“run” and much smaller vectors for “s” and“ing”. Each of those variants will be

then a composite of the lexeme vector (shared across these variants) and mor-

pheme vectors (shared across words sharing the same suffix, for example) (Botha

and Blunsom, 2014). This makes use of distributed representation, which generally

yields better generalization, but seems to require an optimal segmentation, which

is unfortunately almost never available.

In addition to inefficiency in modelling, there are two additional negative con-

sequences from using (unsegmented) words. First, the translation system cannot

generalize well to novel words, which are often mapped to a token reserved for an

unknown word. This effectively ignores any meaning or structure of the word to

be incorporated when translating. Second, even when a lexeme is common and

frequently observed in the training corpus, its morphological variant may not be.

This implies that the model sees this specific, rare morphological variant much less

and will not be able to translate it well. However, if this rare morphological variant

shares a large part of its spelling with other more common words, it is desirable

for a machine translation system to exploit those common words when translating

those rare variants.

Why Character-Level Translation? All of these issues can be addressed to

certain extent by directly modelling characters. Although the issue of data sparsity

arises in character-level translation, it is elegantly addressed by using a parametric

approach based on recurrent neural networks instead of a non-parametric count-
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based approach. Furthermore, in recent years, we have learned how to build and

train a recurrent neural network that can well capture long-term dependencies by

using more sophisticated activation functions, such as long short-term memory

(LSTM) units (Hochreiter and Schmidhuber, 1997) and gated recurrent units (Cho

et al., 2014).

Kim et al. (2015) and Ling et al. (2015) recently showed that by having a

neural network that converts a character sequence into a word vector, we avoid

the issues from having many morphological variants appearing as separate entities

in a vocabulary. This is made possible by sharing the character-to-word neural

network across all the unique tokens. A similar approach was applied to machine

translation by Ling et al. (2015).

These recent approaches, however, still rely on the availability of a good, if not

optimal, segmentation algorithm. Ling et al. (2015) indeed states that “[m]uch of

the prior information regarding morphology, cognates and rare word translation

among others, should be incorporated”.

It however becomes unnecessary to consider these prior information, if we use

a neural network, be it recurrent, convolution or their combination, directly on

the unsegmented character sequence. The possibility of using a sequence of unseg-

mented characters has been studied over many years in the field of deep learning.

For instance, Mikolov et al. (2012) and Sutskever et al. (2011) trained a recurrent

neural network language model (RNN-LM) on character sequences. The latter

showed that it is possible to generate sensible text sequences by simply sampling

a character at a time from this model. More recently, Zhang et al. (2015) and

Xiao and Cho (2016) successfully applied a convolutional net and a convolutional-

recurrent net respectively to character-level document classification without any

explicit segmentation. Gillick et al. (2015) further showed that it is possible to

train a recurrent neural network on unicode bytes, instead of characters or words,

to perform part-of-speech tagging and named entity recognition.

These previous works suggest the possibility of applying neural networks for the

task of machine translation, which is often considered a substantially more difficult

problem compared to document classification and language modelling.
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6.3.4 Challenges and Questions

There are two overlapping sets of challenges for the source and target sides. On

the source side, it is unclear how to build a neural network that learns a highly

nonlinear mapping from a spelling to the meaning of a sentence.

On the target side, there are two challenges. The first challenge is the same

one from the source side, as the decoder neural network needs to summarize what

has been translated. In addition to this, the character-level modelling on the tar-

get side is more challenging, as the decoder network must be able to generate a

long, coherent sequence of characters. This is a great challenge, as the size of the

state space grows exponentially w.r.t. the number of symbols, and in the case of

characters, it is often 300-1000 symbols long.

All these challenges should first be framed as questions; whether the current

recurrent neural networks, which are already widely used in neural machine trans-

lation, are able to address these challenges as they are. In this paper, we aim at

answering these questions empirically and focus on the challenges on the target side

(as the target side shows both of the challenges).

6.4 Character-Level Translation

In this paper, we try to answer the questions posed earlier by testing two dif-

ferent types of recurrent neural networks on the target side (decoder).

First, we test an existing recurrent neural network with gated recurrent units

(GRUs). We call this decoder a base decoder.

Second, we build a novel two-layer recurrent neural network, inspired by the

gated-feedback network from Chung et al. (2015), called a biscale recurrent neural

network. We design this network to facilitate capturing two timescales, motivated

by the fact that characters and words may work at two separate timescales.

We choose to test these two alternatives for the following purposes. Experiments

with the base decoder will clearly answer whether the existing neural network is

enough to handle character-level decoding, which has not been properly answered

in the context of machine translation. The alternative, the biscale decoder, is tested
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(a) Gating units (b) One-step processing

Figure 6.1: Biscale recurrent neural network

in order to see whether it is possible to design a better decoder, if the answer to

the first question is positive.

6.4.1 Biscale Recurrent Neural Network

In this proposed biscale recurrent neural network, there are two sets of hidden

units, h1 and h2. They contain the same number of units, i.e., dim(h1) = dim(h2).
The first set h1 models a fast-changing timescale (thereby, a faster layer), and

h2 a slower timescale (thereby, a slower layer). For each hidden unit, there is an

associated gating unit, to which we refer by g1 and g2. For the description below,

we use yt′−1 and ct′ for the previous target symbol and the context vector (see

Eq. (6.2)), respectively.

Let us start with the faster layer. The faster layer outputs two sets of activa-

tions, a normal output h1
t′ and its gated version ȟ1

t′ . The activation of the faster

layer is computed by

h1
t′ = tanh

(
Wh1 [

ey(yt′−1); ȟ1
t′−1; ĥ2

t′−1; ct′
])
,

where ȟ1
t′−1 and ĥ2

t′−1 are the gated activations of the faster and slower layers
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respectively. These gated activations are computed by

ȟ1
t′ = (1− g1

t′)� h1
t′ , ĥ2

t′ = g1
t′ � h2

t′ .

In other words, the faster layer’s activation is based on the adaptive combination

of the faster and slower layers’ activations from the previous time step. Whenever

the faster layer determines that it needs to reset, i.e., g1
t′−1 ≈ 1, the next activation

will be determined based more on the slower layer’s activation.

The faster layer’s gating unit is computed by

g1
t′ = σ

(
Wg1 [

ey(yt′−1); ȟ1
t′−1; ĥ2

t′−1; ct′
])
,

where σ is a sigmoid function.

The slower layer also outputs two sets of activations, a normal output h2
t′ and

its gated version ȟ2
t′ . These activations are computed as follows:

h2
t′ = (1− g1

t′)� h2
t′−1 + g1

t′ � h̃2
t′ ,

ȟ2
t′ = (1− g2

t′)� h2
t′ ,

where h̃2
t′ is a candidate activation. The slower layer’s gating unit g2

t′ is computed

by

g2
t′ =σ

(
Wg2 [(g1

t′ � h1
t′); ȟ2

t′−1; ct′
])
.

This adaptive leaky integration based on the gating unit from the faster layer

has a consequence that the slower layer updates its activation only when the faster

layer resets. This puts a soft constraint that the faster layer runs at a faster rate

by preventing the slower layer from updating while the faster layer is processing a

current chunk.

The candidate activation is then computed by

h̃2
t′ = tanh

(
Wh2 [(g1

t′ � h1
t′); ȟ2

t′−1; ct′
])
. (6.5)

ȟ2
t′−1 indicates the reset activation from the previous time step, similarly to

what happened in the faster layer, and ct′ is the input from the context.

According to g1
t′ � h1

t′ in Eq. (6.5), the faster layer influences the slower layer,
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Figure 6.2: (left) The BLEU scores on En-Cs w.r.t. the length of source sentences. (right) The
difference of word negative log-probabilities between the subword-level decoder and either of the
character-level base or biscale decoder.

only when the faster layer has finished processing the current chunk and is about

to reset itself (g1
t′ ≈ 1). In other words, the slower layer does not receive any input

from the faster layer, until the faster layer has quickly processed the current chunk,

thereby running at a slower rate than the faster layer does.

At each time step, the final output of the proposed biscale recurrent neural net-

work is the concatenation of the output vectors of the faster and slower layers, i.e.,

[h1; h2]. This concatenated vector is used to compute the probability distribution

over all the symbols in the vocabulary, as in Eq. (6.4). See Fig. 6.1 for graphical

illustration.
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(l)
Char

2 X Base 18.5618.87
18.39 20.53 26.0026.07

25.04 29.37 21.1021.24
20.14 23.51

(m) 2 X Bi-S 18.3018.54
17.88 20.53 25.5925.76

24.57 29.26 20.7321.02
19.97 23.75

State-of-the-art Non-Neural Approach∗ – 28.70(5) 24.30(6)

E
n

-F
i

(n)

B
P

E

BPE 2 X X Base 9.6110.02
9.24 11.92 – – 8.979.17

8.88 11.73
(o)

Char
2 X Base 11.1911.55

11.09 13.72 – – 10.9311.56
10.11 13.48

(p) 2 X Bi-S 10.7311.04
10.40 13.39 – – 10.2410.63

9.71 13.32

State-of-the-art Non-Neural Approach∗ – – 12.70(7)

Table 6.1: BLEU scores of the subword-level, character-level base and character-level biscale decoders for both single models and ensembles.
The best scores among the single models per language pair are bold-faced, and those among the ensembles are underlined. When available,
we report the median value, and the minimum and maximum values as a subscript and a superscript, respectively. (∗) http://matrix.
statmt.org/ as of 11 March 2016 (constrained only). (1) Freitag et al. (2014). (2, 6) Williams et al. (2015). (3, 5) Durrani et al.
(2014). (4) Haddow et al. (2015). (7) Rubino et al. (2015).
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6.5 Experiment Settings

For evaluation, we represent a source sentence as a sequence of subword symbols

extracted by byte-pair encoding (BPE, Sennrich et al. (2015)) and a target sentence

either as a sequence of BPE-based symbols or as a sequence of characters.

Corpora and Preprocessing We use all available parallel corpora for four lan-

guage pairs from WMT’15: En-Cs, En-De, En-Ru and En-Fi. They consist of

12.1M, 4.5M, 2.3M and 2M sentence pairs, respectively. We tokenize each corpus

using a tokenization script included in Moses. 4 We only use the sentence pairs,

when the source side is up to 50 subword symbols long and the target side is either

up to 100 subword symbols or 500 characters. We do not use any monolingual

corpus.

For all the pairs other than En-Fi, we use newstest-2013 as a development set,

and newstest-2014 (Test1) and newstest-2015 (Test2) as test sets. For En-Fi, we

use newsdev-2015 and newstest-2015 as development and test sets, respectively.

Models and Training We test three models settings: (1) BPE→BPE, (2)

BPE→Char (base) and (3) BPE→Char (biscale). The latter two differ by the

type of recurrent neural network we use. We use GRUs for the encoder in all the

settings. We used GRUs for the decoders in the first two settings, (1) and (2),

while the proposed biscale recurrent network was used in the last setting, (3). The

encoder has 512 hidden units for each direction (forward and reverse), and the

decoder has 1024 hidden units per layer.

We train each model using stochastic gradient descent with Adam (Kingma and

Ba, 2014). Each update is computed using a minibatch of 128 sentence pairs. The

norm of the gradient is clipped with a threshold 1 (Pascanu et al., 2013).

Decoding and Evaluation We use beamsearch to approximately find the most

likely translation given a source sentence. The beam widths are 5 and 15 respec-

tively for the subword-level and character-level decoders. They were chosen based

on the translation quality on the development set. The translations are evaluated

4. Although tokenization is not necessary for character-level modelling, we tokenize the all
target side corpora to make comparison against word-level modelling easier.
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using BLEU. 5

Multilayer Decoder and Soft-Alignment Mechanism When the decoder is

a multilayer recurrent neural network (including a stacked network as well as the

proposed biscale network), the decoder outputs multiple hidden vectors–
{
h1, . . . ,hL

}
for L layers, at a time. This allows an extra degree of freedom in the soft-alignment

mechanism (fscore in Eq. (6.3)). We evaluate using alternatives, including (1) using

only hL (slower layer) and (2) using all of them (concatenated).

Ensembles We also evaluate an ensemble of neural machine translation models

and compare its performance against the state-of-the-art phrase-based translation

systems on all four language pairs. We decode from an ensemble by taking the

average of the output probabilities at each step.

Figure 6.3: Alignment matrix of a test example from En-De using the BPE→Char (biscale)
model.

6.6 Quantitative Analysis

Slower Layer for Alignment On En-De, we test which layer of the decoder

should be used for computing soft-alignments. In the case of subword-level decoder,

we observed no difference between choosing any of the two layers of the decoder

against using the concatenation of all the layers (Table 6.1 (a–b)) On the other

hand, with the character-level decoder, we noticed an improvement when only the

slower layer (h2) was used for the soft-alignment mechanism (Table 6.1 (c–g)). This

suggests that the soft-alignment mechanism benefits by aligning a larger chunk in

5. We used the multi-bleu.perl script from Moses.
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the target with a subword unit in the source, and we use only the slower layer for

all the other language pairs.

Single Models In Table 6.1, we present a comprehensive report of the transla-

tion qualities of (1) subword-level decoder, (2) character-level base decoder and (3)

character-level biscale decoder, for all the language pairs. We see that the both

types of character-level decoder outperform the subword-level decoder for En-Cs

and En-Fi quite significantly. On En-De, the character-level base decoder out-

performs both the subword-level decoder and the character-level biscale decoder,

validating the effectiveness of the character-level modelling. On En-Ru, among the

single models, the character-level decoders outperform the subword-level decoder,

but in general, we observe that all the three alternatives work comparable to each

other.

These results clearly suggest that it is indeed possible to do character-level trans-

lation without explicit segmentation. In fact, what we observed is that character-

level translation often surpasses the translation quality of word-level translation.

Of course, we note once again that our experiment is restricted to using an unseg-

mented character sequence at the decoder only, and a further exploration toward

replacing the source sentence with an unsegmented character sequence is needed.

Ensembles Each ensemble was built using eight independent models. The first

observation we make is that in all the language pairs, neural machine translation

performs comparably to, or often better than, the state-of-the-art non-neural trans-

lation system. Furthermore, the character-level decoders outperform the subword-

level decoder in all the cases.

6.7 Qualitative Analysis

(1) Can the character-level decoder generate a long, coherent sentence?

The translation in characters is dramatically longer than that in words, likely mak-

ing it more difficult for a recurrent neural network to generate a coherent sentence

in characters. This belief turned out to be false. As shown in Fig. 6.2 (left), there

is no significant difference between the subword-level and character-level decoders,
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even though the lengths of the generated translations are generally 5–10 times

longer in characters.

(2) Does the character-level decoder help with rare words? One advan-

tage of character-level modelling is that it can model the composition of any charac-

ter sequence, thereby better modelling rare morphological variants. We empirically

confirm this by observing the growing gap in the average negative log-probability

of words between the subword-level and character-level decoders as the frequency

of the words decreases. This is shown in Fig. 6.2 (right) and explains one potential

cause behind the success of character-level decoding in our experiments (we define

diff(x, y) = x− y).

(3) Can the character-level decoder soft-align between a source word

and a target character? In Fig. 6.3 (left), we show an example soft-alignment

of a source sentence, “Two sets of light so close to one another”. It is clear that the

character-level translation model well captured the alignment between the source

subwords and target characters. We observe that the character-level decoder cor-

rectly aligns to “lights” and “sets of” when generating a German compound word

“Lichtersets”(see Fig. 6.3 (right) for the zoomed-in version). This type of behaviour

happens similarly between “one another” and “einander”. Of course, this does not

mean that there exists an alignment between a source word and a target character.

Rather, this suggests that the internal state of the character-level decoder, the base

or biscale, well captures the meaningful chunk of characters, allowing the model to

map it to a larger chunk (subword) in the source.

(4) How fast is the decoding speed of the character-level decoder? We

evaluate the decoding speed of subword-level base, character-level base and character-

level biscale decoders on newstest-2013 corpus (En-De) with a single Titan X GPU.

The subword-level base decoder generates 31.9 words per second, and the character-

level base decoder and character-level biscale decoder generate 27.5 words per sec-

ond and 25.6 words per second, respectively. Note that this is evaluated in an online

setting, performing consecutive translation, where only one sentence is translated

at a time. Translating in a batch setting could differ from these results.
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6.8 Conclusion

In this paper, we addressed a fundamental question on whether a recently pro-

posed neural machine translation system can directly handle translation at the level

of characters without any word segmentation. We focused on the target side, in

which a decoder was asked to generate one character at a time, while soft-aligning

between a target character and a source subword. Our extensive experiments, on

four language pairs–En-Cs, En-De, En-Ru and En-Fi– strongly suggest that it is

indeed possible for neural machine translation to translate at the level of characters,

and that it actually benefits from doing so.

Our result has one limitation that we used subword symbols in the source side.

However, this has allowed us a more fine-grained analysis, but in the future, a

setting where the source side is also represented as a character sequence must be

investigated.
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7 Prologue to Third Article

7.1 Article Details

Hierarchical Multiscale Recurrent Neural Networks. Junyoung Chung,

Sungjin Ahn and Yoshua Bengio, Proceedings of the 5th International Conference

on Learning Representations (ICLR 2017).

Personal Contribution.

Introducing discrete gating units to implement multiscale RNNs was my own idea.

Yoshua Bengio suggested using the straight-through estimator to compute the gra-

dients for the discrete variables. I implemented the algorithm and performed all of

the experiments. Sungjin Ahn participated in the development of the update rule

and contributed to the writing. I wrote the major part of the paper with Sungjin

Ahn, and Yoshua Bengio did a general editing.

7.2 Context

The main difference between this work and the previous work on multiscale

RNNs (El Hihi and Bengio, 1995; Koutńık et al., 2014) is that the timescales are

learned from the data instead of being treated as hyper parameters. This poses a

significant challenge since computing the gradients of a discontinuous function is

intractable. In this work, we used a trick called straight-through estimator (Hinton,

2012; Bengio et al., 2013; Courbariaux et al., 2016) to compute the gradients. The

straight-through estimator is a biased estimator, and in order to reduce its bias,

we introduced a technique called slope-annealing.
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7.3 Contributions

Learning a decomposable and hierarchical feature representation of sequences

has been one of the long-standing challenges of RNNs. It is yet unclear how to

explicitly ask each hidden layer to model different level of abstract terms in RNNs.

There are huge potential benefits of being able to decompose the learned representa-

tion of sequences at multiple timescales. For example, one can imagine a controller

that makes decisions in different levels depending on the context or progress of

the task. Now, this controller can be used in a program execution task, where

programs form a hierarchy. In most of the time, sub-programs are executed, but

once in a while a main program has to be executed to collect the outputs of the

sub-programs.

In this work, we showed that the proposed RNN architecture can capture the un-

derlying multiscale structures of sequences. The proposed update mechanism using

a set of boundary detecting units whose states are binary, allows using three types

of state-transition operations. The first operation is COPY, where the dynamic

state of an RNN is copied from the previous state without any loss of information.

The second operation is UPDATE, which is identical to the state-transition equa-

tion of an RNN, be it a simple RNN, a GRU or an LSTM. The third operation

is FLUSH, where the current state is propagated to the upper-level layer, and the

state is reset into a zero vector.

The proposed hierarchical multiscale RNN (HM-RNN) otbtained state-of-the-

art results on the Hutter dataset and Text8 dataset, and a comparable result to

the state-of-the-art result on the Penn Treebank dataset. The HM-RNN outper-

formed a standard deep RNN on a handwriting generation task using IAM-OnDB

dataset (Graves et al., 2008).

7.4 Future Directions

Segments of a sequence can be generated by a segmentation algorithm by consid-

ering the nearby tokens as the inputs, if not the whole sequence, and the generation

process does not necessarily need to be unidirectional. In some tasks, the system

needs to operate as an online system, for example, in speech recognition. In a few
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cases, the system has to predict the targets without knowing the future informa-

tion. The HM-RNN learns to perform the prediction of the boundaries using the

data only given up to the present step. However, in certain circumstances, it would

be beneficial to incorporate the very least of the future information. In speech

recognition, the prediction of phonemes can be delayed by a few time steps to use

more tokens as the inputs. The same approach can be applied to HM-RNN for

predicting the boundaries.
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8 Hierarchical Multiscale
Recurrent Neural Networks

8.1 Introduction

One of the key principles of learning in deep neural networks as well as in

the human brain is to obtain a hierarchical representation with increasing levels

of abstraction (Bengio, 2009; LeCun et al., 2015; Schmidhuber, 2015). A stack

of representation layers, learned from the data in a way to optimize the target

task, make deep neural networks entertain advantages such as generalization to

unseen examples (Hoffman et al., 2013), sharing learned knowledge among multi-

ple tasks, and discovering disentangling factors of variation (Kingma and Welling,

2013). The remarkable recent successes of the deep convolutional neural networks

are particularly based on this ability to learn hierarchical representation for spatial

data (Krizhevsky et al., 2012). For modelling temporal data, the recent resurgence

of recurrent neural networks (RNN) has led to remarkable advances (Mikolov et al.,

2010; Graves, 2013; Cho et al., 2014; Sutskever et al., 2014; Vinyals et al., 2015).

However, unlike the spatial data, learning both hierarchical and temporal represen-

tation has been among the long-standing challenges of RNNs in spite of the fact that

hierarchical multiscale structures naturally exist in many temporal data (Schmid-

huber, 1991; Mozer, 1993; El Hihi and Bengio, 1995; Lin et al., 1996; Koutńık et al.,

2014).

A promising approach to model such hierarchical and temporal representation is

the multiscale RNNs (Schmidhuber, 1992; El Hihi and Bengio, 1995; Koutńık et al.,

2014). Based on the observation that high-level abstraction changes slowly with

temporal coherency while low-level abstraction has quickly changing features sen-

sitive to the precise local timing (El Hihi and Bengio, 1995), the multiscale RNNs

group hidden units into multiple modules of different timescales. In addition to

the fact that the architecture fits naturally to the latent hierarchical structures in

many temporal data, the multiscale approach provides the following advantages

76



that resolve some inherent problems of standard RNNs: (a) computational effi-

ciency obtained by updating the high-level layers less frequently, (b) efficiently de-

livering long-term dependencies with fewer updates at the high-level layers, which

mitigates the vanishing gradient problem, (c) flexible resource allocation (e.g., more

hidden units to the higher layers that focus on modelling long-term dependencies

and less hidden units to the lower layers which are in charge of learning short-term

dependencies). In addition, the learned latent hierarchical structures can provide

useful information to other downstream tasks such as module structures in com-

puter program learning, sub-task structures in hierarchical reinforcement learning,

and story segments in video understanding.

There have been various approaches to implementing the multiscale RNNs. The

most popular approach is to set the timescales as hyperparameters (El Hihi and

Bengio, 1995; Koutńık et al., 2014; Bahdanau et al., 2016) instead of treating them

as dynamic variables that can be learned from the data (Schmidhuber, 1991, 1992;

Chung et al., 2015, 2016). However, considering the fact that non-stationarity is

prevalent in temporal data, and that many entities of abstraction such as words and

sentences are in variable length, we claim that it is important for an RNN to dynam-

ically adapt its timescales to the particulars of the input entities of various length.

While this is trivial if the hierarchical boundary structure is provided (Sordoni

et al., 2015), it has been a challenge for an RNN to discover the latent hierarchical

structure in temporal data without explicit boundary information.

In this paper, we propose a novel multiscale RNN model, which can learn the

hierarchical multiscale structure from temporal data without explicit boundary

information. This model, called a hierarchical multiscale recurrent neural network

(HM-RNN), does not assign fixed update rates, but adaptively determines proper

update times corresponding to different abstraction levels of the layers. We find that

this model tends to learn fine timescales for low-level layers and coarse timescales

for high-level layers. To do this, we introduce a binary boundary detector at each

layer. The boundary detector is turned on only at the time steps where a segment of

the corresponding abstraction level is completely processed. Otherwise, i.e., during

the within segment processing, it stays turned off. Using the hierarchical boundary

states, we implement three operations, UPDATE, COPY and FLUSH, and choose

one of them at each time step. The UPDATE operation is similar to the usual

update rule of the long short-term memory (LSTM) (Hochreiter and Schmidhuber,
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1997), except that it is executed sparsely according to the detected boundaries.

The COPY operation simply copies the cell and hidden states of the previous

time step. Unlike the leaky integration of the LSTM or the Gated Recurrent Unit

(GRU) (Cho et al., 2014), the COPY operation retains the whole states without any

loss of information. The FLUSH operation is executed when a boundary is detected,

where it first ejects the summarized representation of the current segment to the

upper layer and then reinitializes the states to start processing the next segment.

Learning to select a proper operation at each time step and to detect the boundaries,

the HM-RNN discovers the latent hierarchical structure of the sequences. We find

that the straight-through estimator (Hinton, 2012; Bengio et al., 2013; Courbariaux

et al., 2016) is efficient for training this model containing discrete variables.

We evaluate our model on two tasks: character-level language modelling and

handwriting sequence generation. For the character-level language modelling, the

HM-RNN achieves the state-of-the-art results on the Text8 dataset, and comparable

results to the state-of-the-art on the Penn Treebank and Hutter Prize Wikipedia

datasets. The HM-RNN also outperforms the standard RNN on the handwriting

sequence generation using the IAM-OnDB dataset. In addition, we demonstrate

that the hierarchical structure found by the HM-RNN is indeed very similar to the

intrinsic structure observed in the data. The contributions of this paper are:

— We propose for the first time an RNN model that can learn a latent hierar-

chical structure of a sequence without using explicit boundary information.

— We show that it is beneficial to utilize the above structure through empirical

evaluation.

— We show that the straight-through estimator is an efficient way of training

a model containing discrete variables.

— We propose the slope annealing trick to improve the training procedure based

on the straight-through estimator.

8.2 Related Work

Two notable early attempts inspiring our model are Schmidhuber (1992) and

El Hihi and Bengio (1995). In these works, it is advocated to stack multiple layers

of RNNs in a decreasing order of update frequency for computational and learning
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efficiency. In Schmidhuber (1992), the author shows a model that can self-organize

a hierarchical multiscale structure. Particularly in El Hihi and Bengio (1995), the

advantages of incorporating a priori knowledge, “temporal dependencies are struc-

tured hierarchically”, into the RNN architecture is studied. The authors propose

an RNN architecture that updates each layer with a fixed but different rate, called

a hierarchical RNN.

LSTMs (Hochreiter and Schmidhuber, 1997) employ the multiscale update con-

cept, where the hidden units have different forget and update rates and thus can

operate with different timescales. However, unlike our model, these timescales are

not organized hierarchically. Although the LSTM has a self-loop for the gradients

that helps to capture the long-term dependencies by mitigating the vanishing gra-

dient problem, in practice, it is still limited to a few hundred time steps due to the

leaky integration by which the contents to memorize for a long-term is gradually

diluted at every time step. Also, the model remains computationally expensive

because it has to perform the update at every time step for each unit. However,

our model is less prone to these problems because it learns a hierarchical structure

such that, by design, high-level layers learn to perform less frequent updates than

low-level layers. We hypothesize that this property mitigates the vanishing gradient

problem more efficiently while also being computationally more efficient.

A more recent model, the clockwork RNN (CW-RNN) (Koutńık et al., 2014)

extends the hierarchical RNN (El Hihi and Bengio, 1995) and the NARX RNN (Lin

et al., 1996) 1. The CW-RNN tries to solve the issue of using soft timescales in the

LSTM, by explicitly assigning hard timescales. In the CW-RNN, hidden units

are partitioned into several modules, and different timescales are assigned to the

modules such that a module i updates its hidden units at every 2(i−1)-th time

step. The CW-RNN is computationally more efficient than the standard RNN

including the LSTM since hidden units are updated only at the assigned clock

rates. However, finding proper timescales in the CW-RNN remains as a challenge

whereas our model learns the intrinsic timescales from the data. In the biscale

RNNs (Chung et al., 2016), the authors proposed to model layer-wise timescales

adaptively by having additional gating units, however this approach still relies on

the soft gating mechanism like LSTMs.

Other forms of Hierarchical RNN (HRNN) architectures have been proposed in

1. The acronym NARX stands for Non-linear Auto-Regressive model with eXogenous inputs.
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the cases where the explicit hierarchical boundary structure is provided. In Ling

et al. (2015), after obtaining the word boundary via tokenization, the HRNN ar-

chitecture is used for neural machine translation by modelling the characters and

words using the first and second RNN layers, respectively. A similar HRNN ar-

chitecture is also adopted in Sordoni et al. (2015) to model dialogue utterances.

However, in many cases, hierarchical boundary information is not explicitly ob-

served or expensive to obtain. Also, it is unclear how to deploy more layers than

the number of boundary levels that is explicitly observed in the data.

While the above models focus on online prediction problems, where a prediction

needs to be made by using only the past data, in some cases, predictions are made

after observing the whole sequence. In this setting, the input sequence can be

regarded as 1-D spatial data, convolutional neural networks with 1-D kernels are

proposed in Kim (2014) and Kim et al. (2015) for language modelling and sentence

classification. Also, in Chan et al. (2016) and Bahdanau et al. (2016), the authors

proposed to obtain high-level representation of the sequences of reduced length by

repeatedly merging or pooling the lower-level representation of the sequences.

Hierarchical RNN architectures have also been used to discover the segmenta-

tion structure in sequences (Fernández et al., 2007; Kong et al., 2015). It is however

different to our model in the sense that they optimize the objective with explicit

labels on the hierarchical segments while our model discovers the intrinsic structure

only from the sequences without segment label information.

The COPY operation used in our model can be related to Zoneout (Krueger

et al., 2016) which is a recurrent generalization of stochastic depth (Huang et al.,

2016). In Zoneout, an identity transformation is randomly applied to each hidden

unit at each time step according to a Bernoulli distribution. This results in occa-

sional copy operations of the previous hidden states. While the focus of Zoneout

is to propose a regularization technique similar to dropout (Srivastava et al., 2014)

(where the regularization strength is controlled by a hyperparameter), our model

learns (a) to dynamically determine when to copy from the context inputs and (b)

to discover the hierarchical multiscale structure and representation. Although the

main goal of our proposed model is not regularization, we found that our model

also shows very good generalization performance.
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Figure 8.1: (a) The HRNN architecture, which requires the knowledge of the hierarchical bound-
aries. (b) The HM-RNN architecture that discovers the hierarchical multiscale structure in the
data.

8.3 Hierarchical Multiscale Recurrent Neural

Networks

8.3.1 Motivation

To begin with, we provide an example of how a stacked RNN can model tempo-

ral data in an ideal setting, i.e., when the hierarchy of segments is provided (Sordoni

et al., 2015; Ling et al., 2015). In Figure 8.1 (a), we depict a hierarchical RNN

(HRNN) for language modelling with two layers: the first layer receives characters

as inputs and generates word-level representations (C2W-RNN), and the second

layer takes the word-level representations as inputs and yields phrase-level repre-

sentations (W2P-RNN).

As shown, by means of the provided end-of-word labels, the C2W-RNN obtains

word-level representation after processing the last character of each word and passes

the word-level representation to the W2P-RNN. Then, the W2P-RNN performs an

update of the phrase-level representation. Note that the hidden states of the W2P-

RNN remains unchanged while all the characters of a word are processed by the

C2W-RNN. When the C2W-RNN starts to process the next word, its hidden states

are reinitialized using the latest hidden states of the W2P-RNN, which contain

summarized representation of all the words that have been processed by that time

step, in that phrase.

From this simple example, we can see the advantages of having a hierarchical

multiscale structure: (1) as the W2P-RNN is updated at a much slower update

rate than the C2W-RNN, a considerable amount of computation can be saved,
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(2) gradients are backpropagated through a much smaller number of time steps,

and (3) layer-wise capacity control becomes possible (e.g., use a smaller number

of hidden units in the first layer which models short-term dependencies but whose

updates are invoked much more often).

Can an RNN discover such hierarchical multiscale structure without explicit

hierarchical boundary information? Considering the fact that the boundary infor-

mation is difficult to obtain (for example, consider languages where words are not

always cleanly separated by spaces or punctuation symbols, and imperfect rules

are used to separately perform segmentation) or usually not provided at all, this is

a legitimate problem. It gets worse when we consider higher-level concepts which

we would like the RNN to discover autonomously. In Section 8.2, we discussed

the limitations of the existing RNN models under this setting, which either have

to update all units at every time step or use fixed update frequencies (El Hihi

and Bengio, 1995; Koutńık et al., 2014). Unfortunately, this kind of approach is

not well suited to the case where different segments in the hierarchical decompo-

sition have different lengths: for example, different words have different lengths,

so a fixed hierarchy would not update its upper-level units in synchrony with the

natural boundaries in the data.

8.3.2 The Proposed Model

A key element of our model is the introduction of a parametrized boundary

detector, which outputs a binary value, in each layer of a stacked RNN, and learns

when a segment should end in such a way to optimize the overall target objective.

Whenever the boundary detector is turned on at a time step of layer ` (i.e., when

the boundary state is 1), the model considers this to be the end of a segment

corresponding to the latent abstraction level of that layer (e.g., word or phrase)

and feeds the summarized representation of the detected segment into the upper

layer (`+1). Using the boundary states, at each time step, each layer selects one of

the following operations: UPDATE, COPY or FLUSH. The selection is determined

by (1) the boundary state of the current time step in the layer below z`−1
t and (2)

the boundary state of the previous time step in the same layer z`t−1.

In the following, we describe an HM-RNN based on the LSTM update rule.

We call this model a hierarchical multiscale LSTM (HM-LSTM). Consider an HM-
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LSTM model of L layers (` = 1, . . . , L) which, at each layer `, performs the following

update at time step t:

h`t, c`t, z`t = f `HM-LSTM(c`t−1,h`t−1,h`−1
t ,h`+1

t−1, z
`
t−1, z

`−1
t ). (8.1)

Here, h and c denote the hidden and cell states, respectively. The function

f `HM-LSTM is implemented as follows. First, using the two boundary states z`t−1

and z`−1
t , the cell state is updated by:

c`t =


f `t � c`t−1 + i`t � g`t if z`t−1 = 0 and z`−1

t = 1 (UPDATE)

c`t−1 if z`t−1 = 0 and z`−1
t = 0 (COPY)

i`t � g`t if z`t−1 = 1 (FLUSH),

(8.2)

and then the hidden state is obtained by:

h`t =

h`t−1 if COPY,

o`t � tanh(c`t) otherwise.
(8.3)

Here, (f , i,o) are forget, input, output gates, and g is a cell proposal vector. Note

that unlike the LSTM, it is not necessary to compute these gates and cell proposal

values at every time step. For example, in the case of the COPY operation, we do

not need to compute any of these values and thus can save computations.

The COPY operation, which simply performs (c`t,h`t) ← (c`t−1,h`t−1), imple-

ments the observation that an upper layer should keep its state unchanged until

it receives the summarized input from the lower layer. The UPDATE operation

is performed to update the summary representation of the layer ` if the boundary

z`−1
t is detected from the layer below but the boundary z`t−1 was not found at the

previous time step. Hence, the UPDATE operation is executed sparsely unlike the

standard RNNs where it is executed at every time step, making it computation-

ally inefficient. If a boundary is detected, the FLUSH operation is executed. The

FLUSH operation consists of two sub-operations: (a) EJECT to pass the current

state to the upper layer and then (b) RESET to reinitialize the state before starting

to read a new segment. This operation implicitly forces the upper layer to absorb

the summary information of the lower layer segment, because otherwise it will be

lost. Note that the FLUSH operation is a hard reset in the sense that it completely
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erases all the previous states of the same layer, which is different from the soft reset

or soft forget operation in the GRU or LSTM.

Whenever needed (depending on the chosen operation), the gate values (f `t , i`t,o`t),
the cell proposal g`t , and the pre-activation of the boundary detector z̃`t

2 are then

obtained by:

f `t
i`t
o`t
g`t
z̃`t


=



sigm
sigm
sigm
tanh

hard sigm


fslice

(
srecurrent(`)t + stop-down(`)

t + sbottom-up(`)
t + b(`)

)
,(8.4)

where

srecurrent(`)t = U `
`h`t−1, (8.5)

stop-down(`)
t = z`t−1U

`
`+1h`+1

t−1, (8.6)

sbottom-up(`)
t = z`−1

t W `
`−1h`−1

t . (8.7)

Here, we use W j
i ∈ R(4dim(h`)+1)×dim(h`−1), U j

i ∈ R(4dim(h`)+1)×dim(h`) to denote state

transition parameters from layer i to layer j, and b ∈ R4dim(h`)+1 is a bias term. In

the last layer L, the top-down connection is ignored, and we use h0
t = xt. Also, we

do not use the boundary detector for the last layer. The hard sigm is defined by

hard sigm(x) = max
(
0,min

(
1, ax+1

2

))
with a being the slope variable.

Unlike the standard LSTM, the HM-LSTM has a top-down connection from

(` + 1) to `, which is allowed to be activated only if a boundary is detected at

the previous time step of the layer ` (see Eq. 8.6). This makes the layer ` to be

initialized with more long-term information after the boundary is detected and

execute the FLUSH operation. In addition, the input from the lower layer (`− 1)

becomes effective only when a boundary is detected at the current time step in

the layer (` − 1) due to the binary gate z`−1
t . Figure 8.2 (left) shows the gating

mechanism of the HM-LSTM at time step t.

Finally, the binary boundary state z`t is obtained by:

z`t = fbound(z̃`t ). (8.8)

2. z̃`t can also be implemented as a function of h`t , e.g., z̃`t = hard sigm(Uh`t).
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Figure 8.2: Left: The gating mechanism of the HM-RNN. Right: The output module when
L = 3.

For the binarization function fbound : R→ {0, 1}, we can either use a deterministic

step function:

z`t =

1 if z̃`t > 0.5

0 otherwise,
(8.9)

or sample from a Bernoulli distribution z`t ∼ Bernoulli(z̃`t ). Although this binary

decision is a key to our model, it is usually difficult to use stochastic gradient

descent to train such model with discrete decisions as it is not differentiable.

8.3.3 Computing Gradient of Boundary Detector

Training neural networks with discrete variables requires more efforts since the

standard backpropagation is no longer applicable due to the non-differentiability.

Among a few methods for training a neural network with discrete variables such

as the REINFORCE (Williams, 1992; Mnih and Gregor, 2014) and the straight-

through estimator (Hinton, 2012; Bengio et al., 2013), we use the straight-through

estimator to train our model. The straight-through estimator is a biased estimator

because the non-differentiable function used in the forward pass (i.e., the step

function in our case) is replaced by a differentiable function during the backward

pass (i.e., the hard sigmoid function in our case). The straight-through estimator,

however, is much simpler and often works more efficiently in practice than other

unbiased but high-variance estimators such as the REINFORCE. The straight-

through estimator has also been used in Courbariaux et al. (2016) and Vezhnevets

et al. (2016).

The Slope Annealing Trick. In our experiment, we use the slope annealing
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trick to reduce the bias of the straight-through estimator. The idea is to reduce

the discrepancy between the two functions used during the forward pass and the

backward pass. That is, by gradually increasing the slope a of the hard sigmoid

function, we make the hard sigmoid be close to the step function. Note that starting

with a high slope value from the beginning can make the training difficult while it

is more applicable later when the model parameters become more stable. In our

experiments, starting from slope a = 1, we slowly increase the slope until it reaches

a threshold with an appropriate scheduling.

8.4 Experiments

We evaluate the proposed model on two tasks, character-level language mod-

elling and handwriting sequence generation. Character-level language modelling is

a representative example of discrete sequence modelling, where the discrete symbols

form a distinct hierarchical multiscale structure. The performance on real-valued

sequences is tested on the handwriting sequence generation in which a relatively

clear hierarchical multiscale structure exists compared to other data such as speech

signals.

8.4.1 Character-Level Language Modelling

A sequence modelling task aims at learning the probability distribution over

sequences by minimizing the negative log-likelihood of the training sequences:

min
θ
− 1
N

N∑
n=1

Tn∑
t=1

log p (xnt | xn<t; θ) , (8.10)

where θ is the model parameter, N is the number of training sequences, and T n

is the length of the n-th sequence. A symbol at time t of sequence n is denoted

by xnt , and xn<t denotes all previous symbols at time t. We evaluate our model on

three benchmark text corpora: (1) Penn Treebank, (2) Text8 and (3) Hutter Prize

Wikipedia. We use the bits-per-character (BPC), EE[− log2 p(xt+1 | x≤t)], as the

evaluation metric.
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Penn Treebank
Model BPC

Norm-stabilized RNN (Krueger and Memisevic, 2015) 1.48
CW-RNN (Koutńık et al., 2014) 1.46
HF-MRNN (Mikolov et al., 2012) 1.41

MI-RNN (Wu et al., 2016) 1.39
ME n-gram (Mikolov et al., 2012) 1.37

BatchNorm LSTM (Cooijmans et al., 2016) 1.32
Zoneout RNN (Krueger et al., 2016) 1.27

HyperNetworks (Ha et al., 2016) 1.27
LayerNorm HyperNetworks (Ha et al., 2016) 1.23

LayerNorm CW-RNN† 1.40
LayerNorm LSTM† 1.29

LayerNorm HM-LSTM Sampling 1.27
LayerNorm HM-LSTM Soft∗ 1.27
LayerNorm HM-LSTM Step Fn. 1.25
LayerNorm HM-LSTM Step Fn. & Slope Annealing 1.24

Table 8.1: BPC on the Penn Treebank test set. (∗) This model is a variant of the HM-LSTM
that does not discretize the boundary detector states. (†) These models are implemented by
the authors to evaluate the performance using layer normalization (Ba et al., 2016) with the
additional output module.

Model We use a model consisting of an input embedding layer, an RNN mod-

ule and an output module. The input embedding layer maps each input symbol

into 128-dimensional continuous vector without using any non-linearity. The RNN

module is the HM-LSTM, described in Section 8.3, with three layers. The output

module is a feedforward neural network with two layers, an output embedding layer

and a softmax layer. Figure 8.2 (right) shows a diagram of the output module. At

each time step, the output embedding layer receives the hidden states of the three

RNN layers as input. In order to adaptively control the importance of each layer

at each time step, we also introduce three scalar gating units g`t ∈ R to each of the

layer outputs:

g`t = sigm(w`[h1
t ; · · · ; hLt ]), (8.11)
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Hutter Prize Wikipedia
Model BPC

Stacked LSTM (Graves, 2013) 1.67
MRNN (Sutskever et al., 2011) 1.60
GF-LSTM (Chung et al., 2015) 1.58

Grid-LSTM (Kalchbrenner et al., 2015) 1.47
MI-LSTM (Wu et al., 2016) 1.44

Recurrent Memory Array Structures (Rocki, 2016a) 1.40
SF-LSTM (Rocki, 2016b)‡ 1.37

HyperNetworks (Ha et al., 2016) 1.35
LayerNorm HyperNetworks (Ha et al., 2016) 1.34

Recurrent Highway Networks (Zilly et al., 2016) 1.32
LayerNorm LSTM† 1.39

HM-LSTM 1.34
LayerNorm HM-LSTM 1.32

PAQ8hp12 (Mahoney, 2005) 1.32
decomp8 (Mahoney, 2009) 1.28

Table 8.2: BPC on the Hutter Prize Wikipedia test set (right). (†) These models are imple-
mented by the authors to evaluate the performance using layer normalization (Ba et al., 2016)
with the additional output module. (‡) This method uses test error signals for predicting the
next characters, which makes it not comparable to other methods that do not.

where w` ∈ R
∑L

`=1 dim(h`) is the weight parameter. The output embedding he
t is

computed by:

he
t = ReLU

(
L∑
`=1

g`tW
e
` h`t

)
, (8.12)

where L = 3 and ReLU(x) = max(0, x) (Nair and Hinton, 2010). Finally, the

probability distribution for the next target character is computed by the softmax

function, softmax(xj) = exj∑K

k=1 e
xk

, where each output class is a character.

Penn Treebank We process the Penn Treebank dataset (Marcus et al., 1993) by

following the procedure introduced in Mikolov et al. (2012). Each update is done

by using a mini-batch of 64 examples of length 100 to prevent the memory overflow

problem when unfolding the RNN in time for backpropagation. The last hidden

state of a sequence is used to initialize the hidden state of the next sequence to

approximate the full backpropagation. We train the model using Adam (Kingma
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Text8

Model BPC

td-LSTM (Zhang et al., 2016) 1.63
HF-MRNN (Mikolov et al., 2012) 1.54

MI-RNN (Wu et al., 2016) 1.52
Skipping-RNN (Pachitariu and Sahani, 2013) 1.48

MI-LSTM (Wu et al., 2016) 1.44
BatchNorm LSTM (Cooijmans et al., 2016) 1.36

HM-LSTM 1.32
LayerNorm HM-LSTM 1.29

Table 8.3: BPC on the Text8 test set.

and Ba, 2014) with an initial learning rate of 0.002. We divide the learning rate by

a factor of 50 when the validation negative log-likelihood stopped decreasing. The

norm of the gradient is clipped with a threshold of 1 (Mikolov et al., 2010; Pascanu

et al., 2012). We also apply layer normalization (Ba et al., 2016) to our models.

For all of the character-level language modelling experiments, we apply the same

procedure, but only change the number of hidden units, mini-batch size and the

initial learning rate.

For the Penn Treebank dataset, we use 512 units in each layer of the HM-LSTM

and for the output embedding layer. In Table 8.1, we compare the test BPCs of

four variants of our model to other baseline models. Note that the HM-LSTM

using the step function for the hard boundary decision outperforms the others

using either sampling or soft boundary decision (i.e., hard sigmoid). The test BPC

is further improved with the slope annealing trick, which reduces the bias of the

straight-through estimator. We increased the slope a with the following schedule

a = min (5, 1 + 0.04 ·Nepoch), where Nepoch is the maximum number of epochs. The

HM-LSTM achieves test BPC score of 1.24. For the remaining tasks, we fixed the

hard boundary decision using the step function without slope annealing due to the

difficulty of finding a good annealing schedule on large-scale datasets.

Text8 The Text8 dataset (Mahoney, 2009) consists of 100M characters extracted

from the Wikipedia corpus. Text8 contains only alphabets and spaces, and thus we

have total 27 symbols. In order to compare with other previous works, we follow

the data splits used in Mikolov et al. (2012). We use 1024 units for each HM-LSTM

layer and 2048 units for the output embedding layer. The mini-batch size and the
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Figure 8.3: Hierarchical multiscale structure in the Wikipedia dataset captured by the boundary
detectors of the HM-LSTM.

initial learning rate are set to 128 and 0.001, respectively. The results are shown

in Table 8.3. The HM-LSTM obtains the state-of-the-art test BPC 1.29.

Hutter Prize Wikipedia The Hutter Prize Wikipedia (enwik8) dataset (Hut-

ter, 2012) contains 205 symbols including XML markups and special characters.

We follow the data splits used in Graves (2013) where the first 90M characters are

used to train the model, the next 5M characters for validation, and the remainders

for the test set. We use the same model size, mini-batch size and the initial learn-

ing rate as in the Text8. In Table 8.2, we show the HM-LSTM achieving the test

BPC 1.32, which is a tie with the state-of-the-art result among the neural mod-

els. Although the neural models, show remarkable performances, their compression

performance is still behind the best models such as PAQ8hp12 (Mahoney, 2005)

and decomp8 (Mahoney, 2009).

Visualizing Learned Hierarchical Multiscale Structure In Figure 8.3 and

8.4, we visualize the boundaries detected by the boundary detectors of the HM-

LSTM while reading a character sequence of total length 270 taken from the valida-

tion set of either the Penn Treebank or Hutter Prize Wikipedia dataset. Due to the

page width limit, the figure contains the sequence partitioned into three segments

of length 90. The white blocks indicate boundaries z`t = 1 while the black blocks

indicate the non-boundaries z`t = 0.

Interestingly in both figures, we can observe that the boundary detector of

the first layer, z1, tends to be turned on when it sees a space or after it sees

a space, which is a reasonable breakpoint to separate between words. This is

somewhat surprising because the model self-organizes this structure without any

explicit boundary information. In Figure 8.3, we observe that the z1 tends to
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detect the boundaries of the words but also fires within the words, where the z2

tends to fire when it sees either an end of a word or 2, 3-grams. In Figure 8.4,

we also see flushing in the middle of a word, e.g., “tele-FLUSH-phone”. Note

that “tele” is a prefix after which a various number of postfixes can follow. From

these, it seems that the model uses to some extent the concept of surprise to learn

the boundary. Although interpretation of the second layer boundaries is not as

apparent as the first layer boundaries, it seems to segment at reasonable semantic

/ syntactic boundaries, e.g., “consumers may” - “want to move their telephones a”

- “little closer to the tv set <unk>”, and so on.

Another remarkable point is the fact that we do not pose any constraint on

the number of boundaries that the model can fire up. The model, however, learns

that it is more beneficial to delay the information ejection to some extent. This is

somewhat counterintuitive because it might look more beneficial to feed the fresh

update to the upper layers at every time step without any delay. We conjecture

the reason that the model works in this way is due to the FLUSH operation that

poses an implicit constraint on the frequency of boundary detection, because it

contains both a reward (feeding fresh information to upper layers) and a penalty

(erasing accumulated information). The model finds an optimal balance between

the reward and the penalty.

To understand the update mechanism more intuitively, in Figure 8.4, we also

depict the heatmap of the `2-norm of the hidden states along with the states of the

boundary detectors. As we expect, we can see that there is no change in the norm

value within segments due to the COPY operation. Also, the color of ‖h1‖ changes

quickly (at every time step) because there is no COPY operation in the first layer.

The color of ‖h2‖ changes less frequently based on the states of z1
t and z2

t−1. The

color of ‖h3‖ changes even slowly, i.e., only when z2
t = 1.

A notable advantage of the proposed architecture is that the internal process of

the RNN becomes more interpretable. For example, we can substitute the states

of z1
t and z2

t−1 into Eq. 8.2 and infer which operation among the UPDATE, COPY

and FLUSH was applied to the second layer at time step t. We can also inspect

the update frequencies of the layers simply by counting how many UPDATE and

FLUSH operations were made in each layer. For example in Figure 8.4, we see

that the first layer updates at every time step (which is 270 UPDATE operations),

the second layer updates 56 times, and only 9 updates has made in the third layer.
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Penn Treebank Line 1

Penn Treebank Line 2

Penn Treebank Line 3

Figure 8.4: The `2-norm of the hidden states shown together with the states of the boundary
detectors of the HM-LSTM.

Note that, by design, the first layer performs UPDATE operation at every time step

and then the number of UPDATE operations decreases as the layer level increases.

In this example, the total number of updates is 335 for the HM-LSTM which is

60% of reduction from the 810 updates of the standard RNN architecture.

8.4.2 Handwriting Sequence Generation

We extend the evaluation of the HM-LSTM to a real-valued sequence modelling

task using IAM-OnDB (Liwicki and Bunke, 2005) dataset. The IAM-OnDB dataset

consists of 12, 179 handwriting examples, each of which is a sequence of (x, y) coor-

dinate and a binary indicator p for pen-tip location, giving us (x1:Tn , y1:Tn , p1:Tn),
where n is an index of a sequence. At each time step, the model receives (xt, yt, pt),
and the goal is to predict (xt+1, yt+1, pt+1). The pen-up (pt = 1) indicates an end of

a stroke, and the pen-down (pt = 0) indicates that a stroke is in progress. There is

usually a large shift in the (x, y) coordinate to start a new stroke after the pen-up

happens. We remove all sequences whose length is shorter than 300. This leaves us

10, 465 sequences for training, 581 for validation, 582 for test. The average length

of the sequences is 648. We normalize the range of the (x, y) coordinates separately

with the mean and standard deviation obtained from the training set. We use the

mini-batch size of 32, and the initial learning rate is set to 0.0003.

We use the same model architecture as used in the character-level language

model, except that the output layer is modified to predict real-valued outputs. We

use the mixture density network as the output layer following Graves (2013), and
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IAM-OnDB

Model Average Log-Likelihood

Standard LSTM 1081
HM-LSTM 1137

HM-LSTM & Slope Annealing 1167

Table 8.4: Average log-likelihood per sequence on the IAM-OnDB test set.

the ground truth of pen-tip location
Visualization by segments using Visualization by segments using

the states of z2

Figure 8.5: The visualization by segments based on either the given pen-tip location or states
of the z2.

use 400 units for each HM-LSTM layer and for the output embedding layer. In

Table 8.4, we compare the log-likelihood averaged over the test sequences of the

IAM-OnDB dataset. We observe that the HM-LSTM outperforms the standard

LSTM. The slope annealing trick further improves the test log-likelihood of the

HM-LSTM into 1167 in our setting. In this experiment, we increased the slope

a with the following schedule a = min (3, 1 + 0.004 ·Nepoch). In Figure 8.5, we let

the HM-LSTM to read a randomly picked validation sequence and present the

visualization of handwriting examples by segments based on either the states of z2

or the states of pen-tip location 3.

8.5 Conclusion

In this paper, we proposed the HM-RNN that can capture the latent hierarchical

structure of the sequences. We introduced three types of operations to the RNN,

which are the COPY, UPDATE and FLUSH operations. In order to implement

these operations, we introduced a set of binary variables and a novel update rule

that is dependent on the states of these binary variables. Each binary variable is

learned to find segments at its level, therefore, we call this binary variable, a bound-

ary detector. On the character-level language modelling, the HM-LSTM achieved

3. The plot function could be found at blog.otoro.net/2015/12/12/

handwriting-generation-demo-in-tensorflow/.
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state-of-the-art result on the Text8 dataset and comparable results to the state-of-

the-art results on the Penn Treebank and Hutter Prize Wikipedia datasets. Also,

the HM-LSTM outperformed the standard LSTM on the handwriting sequence gen-

eration. Our results and analysis suggest that the proposed HM-RNN can discover

the latent hierarchical structure of the sequences and can learn efficient hierarchical

multiscale representation that leads to better generalization performance.
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9 Prologue to Fourth Article

9.1 Article Details

A Recurrent Latent Variable Model for Sequential Data. Junyoung Chung,

Kyle Kastner, Laurent Dinh, Kratarh Goel, Aaron Courville and Yoshua Bengio,

Proceedings of the 28th Advances in Neural Information Processing Systems (NIPS

2015).

Personal Contribution.

The idea of combining a variational auto-encoder with an RNN came out during

a meeting between Yoshua Bengio and myself. I proposed to condition the prior

distribution of the latent variables on the hidden state of a context RNN and to

use an RNN encoder and RNN decoder, which replace the feedforward encoder and

decoder of a variational auto-encoder (VAE) (Kingma and Welling, 2013; Rezende

et al., 2014). Yoshua Bengio suggested using a single RNN that provides the tempo-

ral context to the encoder, decoder and the conditional prior distribution. Laurent

Dinh contributed on reviewing the theoretical aspect of the proposed model. Kyle

Kastner handled most of the data engineering part, which was crucial for speech

datasets that can easily occupy a lot of space in the memory and file systems. I

programmed the main algorithm, and Kratarth Goel and Kyle Kastner contributed

a significant amount of efforts on writing necessary software and pipelines. I did

the most of the experiments on the speech generation tasks, and Kratarth Goel

did the experiment on the handwriting generation task. Kyle Kastner contributed

on the visualization of the examples shown in the paper. The introductory part

was written by Aaron Courville, and I wrote the rest of the paper with Laurent

Dinh and Kyle Kastner. Yoshua Bengio did the general editing. This work was

also contributed indirectly by the members of MILA 1 speech synthesis team.

1. Montreal Institute of Learning Algorithms

95



9.2 Context

Generative RNNs (Graves, 2013) showed promising results on many tasks that

involve unsupervised learning of sequential data such as natural language (Sutskever

et al., 2011; Graves, 2013) or handwriting examples (Graves et al., 2008; Graves,

2013). However, in speech modelling tasks, such as generating spoken utterances,

the RNNs struggled with the under-fitting problem. Using more complicated out-

put functions such as mixture density networks (Graves, 2013) can be helpful to

some extent, however, the sample quality of the generated examples are not as

good as the original examples.

In feedforward neural networks, a latent variable model named after the auto-

encoder, the variational auto-encoder (VAE) (Kingma and Welling, 2013; Rezende

et al., 2014), showed promising performance on modelling toy image datasets. La-

tent variable models were also extended to RNNs. A popular RNN-based latent

variable model is the deep recurrent attentive writer (DRAW) (Gregor et al., 2015)

which was tested on the toy image datasets that VAEs were tested on. There are

also variational recurrent auto-encoders (Fabius et al., 2014) and stochastic recur-

rent neural networks (Bayer and Osendorfer, 2014) that were evaluated on small

audio datasets or motion capture dataset.

9.3 Contributions

In this work, we proposed a new type of latent variable model that is based on

an RNN and can model large-scale sequential datasets. There are some challenges

with directly applying VAEs to sequences. The first issue is handling variable-

length examples, which is often the case in sequence modelling tasks. The second

issue is that VAEs have originally tried on toy image datasets with a size of 784
pixels (the dimensionality of an example from the MNIST dataset) or 1024 pixels

(the dimensionality of a gray-scale image from the CIFAR10 dataset). Therefore,

whether VAEs could scale-up to model raw waveforms was unclear since the dimen-

sionality of a speech signal can be orders of magnitude larger than the toy image

data and of a very different nature. The proposed VRNN is a straightforward

extension of a VAE, where each component of the VAE such as the encoder and
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decoder are conditioned by the temporal context, which is the hidden state of an

RNN.
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10 Variational Recurrent
Neural Networks

10.1 Introduction

Learning generative models of sequences is a long-standing machine learning

challenge and historically the domain of dynamic Bayesian networks (DBNs) such

as hidden Markov models (HMMs) and Kalman filters. The dominance of DBN-

based approaches has been recently overturned by a resurgence of interest in recur-

rent neural network (RNN) based approaches. An RNN is a special type of neural

network that is able to handle both variable-length input and output. By training

an RNN to predict the next output in a sequence, given all previous outputs, it

can be used to model joint probability distribution over sequences.

Both RNNs and DBNs consist of two parts: (1) a transition function that

determines the evolution of the internal hidden state, and (2) a mapping from the

state to the output. There are, however, a few important differences between RNNs

and DBNs.

DBNs have typically been limited either to relatively simple state transition

structures (e.g., linear models in the case of the Kalman filter) or to relatively

simple internal state structure (e.g., the HMM state space consists of a single set

of mutually exclusive states). RNNs, on the other hand, typically possess both

a richly distributed internal state representation and flexible non-linear transition

functions. These differences give RNNs extra expressive power in comparison to

DBNs. This expressive power and the ability to train via error backpropagation are

the key reasons why RNNs have gained popularity as generative models for highly

structured sequential data.

In this paper, we focus on another important difference between DBNs and

RNNs. While the hidden state in DBNs is expressed in terms of random variables,

the internal transition structure of the standard RNN is entirely deterministic. The

only source of randomness or variability in the RNN is found in the conditional out-
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put probability model. We suggest that this can be an inappropriate way to model

the kind of variability observed in highly structured data, such as natural speech,

which is characterized by strong and complex dependencies among the output vari-

ables at different time steps. We argue, as have others (Boulanger-Lewandowski

et al., 2012; Bayer and Osendorfer, 2014), that these complex dependencies cannot

be modelled efficiently by the output probability models used in standard RNNs,

which include either a simple unimodal distribution or a mixture of unimodal dis-

tributions.

We propose the use of high-level latent random variables to model the variability

observed in the data. In the context of standard neural network models for non-

sequential data, the variational auto-encoder (VAE) (Kingma and Welling, 2013;

Rezende et al., 2014) offers an interesting combination of highly flexible non-linear

mapping between the latent random state and the observed output and effective

approximate inference. In this paper, we propose to extend the VAE into a re-

current framework for modelling high-dimensional sequences. The VAE can model

complex multimodal distributions, which will help when the underlying true data

distribution consists of multimodal conditional distributions. We call this model a

variational RNN (VRNN).

A natural question to ask is: how do we encode observed variability via latent

random variables? The answer to this question depends on the nature of the

data itself. In this work, we are mainly interested in highly structured data that

often arises in AI applications. By highly structured, we mean that the data is

characterized by two properties. Firstly, there is a relatively high signal-to-noise

ratio, meaning that the vast majority of the variability observed in the data is due

to the signal itself and cannot reasonably be considered as noise. Secondly, there

exists a complex relationship between the underlying factors of variation and the

observed data. For example, in speech, the vocal qualities of the speaker have a

strong but complicated influence on the audio waveform, affecting the waveform in

a consistent manner across frames.

With these considerations in mind, we suggest that our model variability should

induce temporal dependencies across time steps. Thus, like DBN models such as

HMMs and Kalman filters, we model the dependencies between the latent random

variables across time steps. While we are not the first to propose integrating

random variables into the RNN hidden state (Boulanger-Lewandowski et al., 2012;
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Bayer and Osendorfer, 2014; Fabius et al., 2014; Gregor et al., 2015), we believe we

are the first to integrate the dependencies between the latent random variables at

neighboring time steps.

We evaluate the proposed VRNN model against other RNN-based models –

including a VRNN model without introducing temporal dependencies between

the latent random variables – on two challenging sequential data types: natural

speech and handwriting. We demonstrate that for the speech modelling tasks,

the VRNN-based models significantly outperform the RNN-based models and the

VRNN model that does not integrate temporal dependencies between latent ran-

dom variables.

10.2 Background

10.2.1 Generative Sequence modelling with Recurrent Neu-

ral Networks

An RNN can take as input a variable-length sequence x = (x1,x2, . . . ,xT ) by

recursively processing each symbol while maintaining its internal hidden state h.

At each time step t, the RNN reads the symbol xt ∈ Rd and updates its hidden

state ht ∈ Rp by:

ht =fθ (xt,ht−1) , (10.1)

where f is a deterministic non-linear transition function, and θ is the parameter

set of f . The transition function f can be implemented with gated activation

functions such as long short-term memory (LSTM, Hochreiter and Schmidhuber,

1997) or gated recurrent unit (GRU, Cho et al., 2014). RNNs model sequences by

parameterizing a factorization of the joint sequence probability distribution as a

product of conditional probabilities such that:

p(x1,x2, . . . ,xT ) =
T∏
t=1

p(xt | x<t),

p(xt | x<t) = gτ (ht−1), (10.2)
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where g is a function that maps the RNN hidden state ht−1 to a probability distri-

bution over possible outputs, and τ is the parameter set of g.

One of the main factors that determines the representational power of an RNN

is the output function g in Eq. (10.2). With a deterministic transition function

f , the choice of g effectively defines the family of joint probability distributions

p(x1, . . . ,xT ) that can be expressed by the RNN.

We can express the output function g in Eq. (10.2) as being composed of two

parts. The first part ϕτ is a function that returns the parameter set φt given the

hidden state ht−1, i.e., φt = ϕτ (ht−1), while the second part of g returns the density

of xt, i.e., pφt(xt | x<t).
When modelling high-dimensional and real-valued sequences, a reasonable choice

of an observation model is a Gaussian mixture model (GMM) as used in (Graves,

2013). For GMM, ϕτ returns a set of mixture coefficients αt, means µ·,t and covari-

ances Σ·,t of the corresponding mixture components. The probability of xt under

the mixture distribution is:

pαt,µ·,t,Σ·,t(xt | x<t) =
∑
j

αj,tN
(
xt; µj,t,Σj,t

)
.

With the notable exception of (Graves, 2013), there has been little work investi-

gating the structured output density model for RNNs with real-valued sequences.

There is potentially a significant issue in the way the RNN models output

variability. Given a deterministic transition function, the only source of variability

is in the conditional output probability density. This can present problems when

modelling sequences that are at once highly variable and highly structured (i.e.,

with a high signal-to-noise ratio). To effectively model these types of sequences, the

RNN must be capable of mapping very small variations in xt (i.e., the only source

of randomness) to potentially very large variations in the hidden state ht. Limiting

the capacity of the network, as must be done to guard against over-fitting, will

force a compromise between the generation of a clean signal and encoding sufficient

input variability to capture the high-level variability both within a single observed

sequence and across data examples.

The need for highly structured output functions in an RNN has been previously

noted. Boulanger-Lewandowski et al. (2012) extensively tested NADE and RBM-

based output densities for modelling sequences of binary vector representations of
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music. Bayer and Osendorfer (2014) introduced a sequence of independent latent

variables corresponding to the states of the RNN. Their model, called STORN,

first generates a sequence of samples z = (z1, . . . , zT ) from the sequence of inde-

pendent latent random variables. At each time step, the transition function f from

Eq. (10.1) computes the next hidden state ht based on the previous state ht−1, the

previous output xt−1 and the sampled latent random variables zt. They proposed

to train this model based on the VAE principle (see Sec. 10.2.2). Similarly, Pa-

chitariu and Sahani (2012) earlier proposed both a sequence of independent latent

random variables and a stochastic hidden state for the RNN.

These approaches are closely related to the approach proposed in this paper.

However, there is a major difference in how the prior distribution over the latent

random variable is modelled. Unlike the aforementioned approaches, our approach

makes the prior distribution of the latent random variable at time step t dependent

on all the preceding inputs via the RNN hidden state ht−1 (see Eq. (10.5)). The

introduction of temporal structure into the prior distribution is expected to im-

prove the representational power of the model, which we empirically observe in the

experiments (See Table 10.1). However, it is important to note that any approach

based on having stochastic latent state is orthogonal to having a structured output

function, and that these two can be used together to form a single model.

10.2.2 Variational Auto-Encoder

For non-sequential data, VAEs (Kingma and Welling, 2013; Rezende et al.,

2014) have recently been shown to be an effective modelling paradigm to recover

complex multimodal distributions over the data space. A VAE introduces a set

of latent random variables z, designed to capture the variations in the observed

variables x. As an example of a directed graphical model, the joint distribution is

defined as:

p(x, z) = p(x | z)p(z). (10.3)

The prior over the latent random variables, p(z), is generally chosen to be a simple

Gaussian distribution and the conditional p(x | z) is an arbitrary observation model

whose parameters are computed by a parametric function of z. Importantly, the

VAE typically parameterizes p(x | z) with a highly flexible function approximator
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such as a neural network. While latent random variable models of the form given

in Eq. (10.3) are not uncommon, endowing the conditional p(x | z) as a potentially

highly non-linear mapping from z to x is a rather unique feature of the VAE.

However, introducing a highly non-linear mapping from z to x results in in-

tractable inference of the posterior p(z | x). Instead, the VAE uses a variational

approximation q(z | x) of the posterior that enables the use of the lower bound:

log p(x) ≥ −KL(q(z | x)‖p(z)) + Eq(z|x) [log p(x | z)] , (10.4)

where KL(Q‖P ) is Kullback-Leibler divergence between two distributions Q and

P .

In (Kingma and Welling, 2013), the approximate posterior q(z | x) is a Gaussian

N (µ, diag(σ2)) whose mean µ and variance σ2 are the output of a highly non-linear

function of x, once again typically a neural network.

The generative model p(x | z) and inference model q(z | x) are then trained

jointly by maximizing the variational lower bound with respect to their parameters,

where the integral with respect to q(z | x) is approximated stochastically. The

gradient of this estimate can have a low variance estimate, by reparameterizing

z = µ + σ � ε and rewriting:

Eq(z|x) [log p(x | z)] = Ep(ε) [log p(x | z = µ + σ � ε)] ,

where ε is a vector of standard Gaussian variables. The inference model can then

be trained through standard backpropagation technique for stochastic gradient de-

scent.

10.3 Variational Recurrent Neural Network

In this section, we introduce a recurrent version of the VAE for the purpose of

modelling sequences. Drawing inspiration from simpler dynamic Bayesian networks

(DBNs) such as HMMs and Kalman filters, the proposed variational recurrent

neural network (VRNN) explicitly models the dependencies between latent random
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variables across subsequent time steps. However, unlike these simpler DBN models,

the VRNN retains the flexibility to model highly non-linear dynamics.

Generation The VRNN contains a VAE at every time step. However, these

VAEs are conditioned on the state variable ht−1 of an RNN. This addition will

help the VAE to take into account the temporal structure of the sequential data.

Unlike a standard VAE, the prior on the latent random variable is no longer a

standard Gaussian distribution, but follows the distribution:

zt ∼ N (µ0,t, diag(σ2
0,t)) , where [µ0,t,σ0,t] = ϕprior

τ (ht−1), (10.5)

where µ0,t and σ0,t denote the parameters of the conditional prior distribution.

Moreover, the generating distribution will not only be conditioned on zt but also

on ht−1 such that:

xt | zt ∼ N (µx,t, diag(σ2
x,t)) , where [µx,t,σx,t] = ϕdec

τ (ϕz
τ (zt),ht−1), (10.6)

where µx,t and σx,t denote the parameters of the generating distribution, ϕprior
τ and

ϕdec
τ can be any highly flexible function such as neural networks. ϕx

τ and ϕz
τ can

also be neural networks, which extract features from xt and zt, respectively. We

found that these feature extractors are crucial for learning complex sequences. The

RNN updates its hidden state using the recurrence equation:

ht =fθ (ϕx
τ (xt), ϕz

τ (zt),ht−1) , (10.7)

where f was originally the transition function from Eq. (10.1). From Eq. (10.7),

we find that ht is a function of x≤t and z≤t. Therefore, Eq. (10.5) and Eq. (10.6)

define the distributions p(zt | x<t, z<t) and p(xt | z≤t,x<t), respectively. The

parameterization of the generative model results in and – was motivated by – the

factorization:

p(x≤T , z≤T ) =
T∏
t=1

p(xt | z≤t,x<t)p(zt | x<t, z<t). (10.8)
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(a) Prior (b) Generation (c)
Recurrence

(d) Inference (e) Overall

Figure 10.1: Graphical illustrations of each operation of the VRNN: (a) computing the con-
ditional prior using Eq. (10.5); (b) generating function using Eq. (10.6); (c) updating the RNN
hidden state using Eq. (10.7); (d) inference of the approximate posterior using Eq. (10.9); (e)
overall computational paths of the VRNN.

Inference In a similar fashion, the approximate posterior will not only be a

function of xt but also of ht−1 following the equation:

zt | xt ∼ N (µz,t, diag(σ2
z,t)) , where [µz,t,σz,t] = ϕenc

τ (ϕx
τ (xt),ht−1), (10.9)

similarly µz,t and σz,t denote the parameters of the approximate posterior. We note

that the encoding of the approximate posterior and the decoding for generation are

tied through the RNN hidden state ht−1. We also observe that this conditioning

on ht−1 results in the factorization:

q(z≤T | x≤T ) =
T∏
t=1

q(zt | x≤t, z<t). (10.10)

Learning The objective function becomes a time step-wise variational lower

bound using Eq. (10.8) and Eq. (10.10):

Eq(z≤T |x≤T )

[
T∑
t=1

(−KL(q(zt | x≤t, z<t)‖p(zt | x<t, z<t)) + log p(xt | z≤t,x<t))
]
.

(10.11)

As in the standard VAE, we learn the generative and inference models jointly by

maximizing the variational lower bound with respect to their parameters. The

schematic view of the VRNN is shown in Fig. 10.1, operations (a)–(d) correspond
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to Eqs. (10.5)–(10.7), (10.9), respectively. The VRNN applies the operation (a)

when computing the conditional prior (see Eq. (10.5)). If the variant of the VRNN

(VRNN-I) does not apply the operation (a), then the prior becomes independent

across time steps. STORN (Bayer and Osendorfer, 2014) can be considered as an

instance of the VRNN-I model family. In fact, STORN puts further restrictions

on the dependency structure of the approximate inference model. We include this

version of the model (VRNN-I) in our experimental evaluation in order to directly

study the impact of including the temporal dependency structure in the prior (i.e.,

conditional prior) over the latent random variables.

10.4 Experiment Settings

We evaluate the proposed VRNN model on two tasks: (1) modelling natural

speech directly from the raw audio waveforms; (2) modelling handwriting genera-

tion.

Speech modelling We train the models to directly model raw audio signals, rep-

resented as a sequence of 200-dimensional frames. Each frame corresponds to the

real-valued amplitudes of 200 consecutive raw acoustic samples. Note that this is

unlike the conventional approach for modelling speech, often used in speech synthe-

sis where models are expressed over representations such as spectral features (see,

e.g., Tokuda et al., 2013; Bertrand et al., 2008; Lee et al., 2009).

We evaluate the models on the following four speech datasets:

1. Blizzard: This text-to-speech dataset made available by the Blizzard Chal-

lenge 2013 contains 300 hours of English, spoken by a single female speaker (King

and Karaiskos, 2013).

2. TIMIT: This widely used dataset for benchmarking speech recognition sys-

tems contains 6, 300 English sentences, read by 630 speakers.

3. Onomatopoeia 1: This is a set of 6, 738 non-linguistic human-made sounds

such as coughing, screaming, laughing and shouting, recorded from 51 voice

actors.

1. This dataset has been provided by Ubisoft.
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Table 10.1: Average log-likelihood on the test (or validation) set of each task.

Speech modelling Handwriting
Models Blizzard TIMIT Onomatopoeia Accent IAM-OnDB

RNN-Gauss 3539 -1900 -984 -1293 1016
RNN-GMM 7413 26643 18865 3453 1358

VRNN-I-Gauss ≥ 8933 ≥ 28340 ≥ 19053 ≥ 3843 ≥ 1332
≈ 9188 ≈ 29639 ≈ 19638 ≈ 4180 ≈ 1353

VRNN-Gauss ≥ 9223 ≥ 28805 ≥ 20721 ≥ 3952 ≥ 1337
≈ 9516 ≈ 30235 ≈ 21332 ≈ 4223 ≈ 1354

VRNN-GMM ≥ 9107 ≥ 28982 ≥ 20849 ≥ 4140 ≥ 1384
≈ 9392 ≈ 29604 ≈ 21219 ≈ 4319 ≈ 1384

4. Accent: This dataset contains English paragraphs read by 2, 046 different

native and non-native English speakers (Weinberger, 2015).

For the Blizzard and Accent datasets, we process the data so that each sample

duration is 0.5s (the sampling frequency used is 16kHz). Except the TIMIT dataset,

the rest of the datasets do not have predefined train/test splits. We shuffle and

divide the data into train/validation/test splits using a ratio of 0.9/0.05/0.05.

Handwriting generation We let each model learn a sequence of (x, y) coordi-

nates together with binary indicators of pen-up/pen-down, using the IAM-OnDB

dataset, which consists of 13, 040 handwritten lines written by 500 writers (Liwicki

and Bunke, 2005). We preprocess and split the dataset as done in (Graves, 2013).

Preprocessing and training The only preprocessing used in our experiments is

normalizing each sequence using the global mean and standard deviation computed

from the entire training set. We train each model with stochastic gradient descent

on the negative log-likelihood using the Adam optimizer (Kingma and Ba, 2014),

with a learning rate of 0.001 for TIMIT and Accent and 0.0003 for the rest. We

use a minibatch size of 128 for Blizzard and Accent and 64 for the rest. The final

model was chosen with early-stopping based on the validation performance.

Models We compare the VRNN models with the standard RNN models using

two different output functions: a simple Gaussian distribution (Gauss) and a Gaus-

sian mixture model (GMM). For each dataset, we conduct an additional set of
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experiments for a VRNN model without the conditional prior (VRNN-I).

We fix each model to have a single recurrent hidden layer with 2000 LSTM

units (in the case of Blizzard, 4000 and for IAM-OnDB, 1200). All of ϕτ shown in

Eqs. (10.5)–(10.7), (10.9) have four hidden layers using rectified linear units (Nair

and Hinton, 2010) (for IAM-OnDB, we use a single hidden layer). The standard

RNN models only have ϕx
τ and ϕdec

τ , while the VRNN models also have ϕz
τ , ϕ

enc
τ and

ϕprior
τ . For the standard RNN models, ϕx

τ is the feature extractor, and ϕdec
τ is the

generating function. For the RNN-GMM and VRNN models, we match the total

number of parameters of the deep neural networks (DNNs), ϕx,z,enc,dec,prior
τ , as close

to the RNN-Gauss model having 600 hidden units for every layer that belongs to

either ϕx
τ or ϕdec

τ (we consider 800 hidden units in the case of Blizzard). Note that

we use 20 mixture components for models using a GMM as the output function.

For qualitative analysis of speech generation, we train larger models to generate

audio sequences. We stack three recurrent hidden layers, each layer contains 3000
LSTM units. Again for the RNN-GMM and VRNN models, we match the total

number of parameters of the DNNs to be equal to the RNN-Gauss model having

3200 hidden units for each layer that belongs to either ϕx
τ or ϕdec

τ .

10.5 Results and Analysis

We report the average log-likelihood of test examples assigned by each model in

Table 10.1. For RNN-Gauss and RNN-GMM, we report the exact log-likelihood,

while in the case of VRNNs, we report the variational lower bound (given with

≥ sign, see Eq. (10.4)) and approximated marginal log-likelihood (given with ≈
sign) based on importance sampling using 40 samples as in (Rezende et al., 2014).

In general, higher numbers are better. Our results show that the VRNN models

have higher log-likelihood, which support our claim that latent random variables

are helpful when modelling complex sequences. The VRNN models perform well

even with a unimodal output function (VRNN-Gauss), which is not the case for

the standard RNN models.
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Figure 10.2: The top row represents the difference δt between µz,t and µz,t−1. The middle row
shows the dominant KL divergence values in temporal order. The bottom row shows the input
waveforms.

Latent space analysis In Fig. 10.2, we show an analysis of the latent random

variables. We let a VRNN model read some unseen examples and observe the

transitions in the latent space. We compute δt = ∑
j(µj

z,t − µj
z,t−1)2 at every time

step and plot the results on the top row of Fig. 10.2. The middle row shows the

KL divergence computed between the approximate posterior and the conditional

prior. When there is a transition in the waveform, the KL divergence tends to grow

(white is high), and we can clearly observe a peak in δt that can affect the RNN

dynamics to change modality.

Speech generation We generate waveforms with 2.0s duration from the models

that were trained on Blizzard. From Fig. 10.3, we can clearly see that the waveforms

from the VRNN-Gauss are much less noisy and have less spurious peaks than those

from the RNN-GMM. We suggest that the large amount of noise apparent in the

waveforms from the RNN-GMM model is a consequence of the compromise these

models must make between representing a clean signal consistent with the training

data and encoding sufficient input variability to capture the variations across data

examples. The latent random variable models can avoid this compromise by adding

variability in the latent space, which can always be mapped to a point close to a

relatively clean sample.

Handwriting generation Visual inspection of the generated handwriting (as

shown in Fig. 10.4) from the trained models reveals that the VRNN model is

able to generate more diverse writing style while maintaining consistency within

samples.
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(a) Ground Truth (b) RNN-GMM (c) VRNN-Gauss

Figure 10.3: Examples from the training set and generated samples from RNN-GMM and
VRNN-Gauss. Top three rows show the global waveforms while the bottom three rows show
more zoomed-in waveforms. Samples from (b) RNN-GMM contain high-frequency noise, and
samples from (c) VRNN-Gauss have less noise. We exclude RNN-Gauss, because the samples are
almost close to pure noise.

10.6 Conclusion

We propose a novel model that can address sequence modelling problems by

incorporating latent random variables into a recurrent neural network (RNN). Our

experiments focus on unconditional natural speech generation as well as handwrit-

ing generation. We show that the introduction of latent random variables can

provide significant improvements in modelling highly structured sequences such as

natural speech sequences. We empirically show that the inclusion of randomness

into high-level latent space can enable the VRNN to model natural speech sequences

with a simple Gaussian distribution as the output function. However, the standard

RNN model using the same output function fails to generate reasonable samples.

An RNN-based model using more powerful output function such as a GMM can
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(a) Ground Truth (b) RNN-Gauss (c) RNN-GMM (d) VRNN-GMM

Figure 10.4: Handwriting samples: (a) training examples and unconditionally generated hand-
writing from (b) RNN-Gauss, (c) RNN-GMM and (d) VRNN-GMM. The VRNN-GMM retains
the writing style from beginning to end while RNN-Gauss and RNN-GMM tend to change the
writing style during the generation process. This is possibly because the sequential latent random
variables can guide the model to generate each sample with a consistent writing style.

generate much better samples, but they contain a large amount of high-frequency

noise compared to the samples generated by the VRNN-based models.

We also show the importance of temporal conditioning of the latent random

variables by reporting higher log-likelihood numbers on modelling natural speech

sequences. In handwriting generation, the VRNN model is able to model the di-

versity across examples while maintaining consistent writing style over the course

of generation.
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11 Conclusion of the Thesis

In this thesis, we have proposed a series of new architectures to explore mul-

tiscale RNNs. Performing both temporal and hierarchical abstraction has been

a long standing challenge of RNNs, and there is a huge reward for having a ro-

bust model that can learn multiscale representation of sequences. In chapter 4, we

proposed a framework to build deep RNNs, where connectivity patterns between

hidden layers in consecutive time steps are not deterministic, but can be learned by

a set of scalar gating units. We learned that top-down information is often helpful

when modelling sequences since it conveys more global information or structure of

the data. This lesson led us to develop biscale RNNs introduced in chapter 6.

Biscale RNNs were used for neural machine translation as a building block of

the character-level decoder. A biscale RNN has a fast layer that updates the hidden

state quickly to model the characters and a slow layer that updates the hidden state

slower than the fast layer in order to model the words. It is a simplified version

of multiscale RNNs that only consists of two timescales. One drawback of biscale

RNNs is that boundary detecting units used to open and close the connections

between layers are continuous variables in the range [0, 1], instead of having binary

states. This results in the leakage of gradients, and the hidden state of the slow

layer keeps getting updated at every time step, which is not ideal. Making a binary

decision is important in order to introduce useful properties to multiscale RNNs.

In chapter 8, we introduced a more generalized framework to build multiscale

RNNs. The architecture itself has not changed much from biscale RNNs, however,

now the boundary detecting units are implemented as discrete variables. In order

to compute the gradients for the discrete variables, we used the straight-through

estimator. With boundary detecting units being discrete and making binary de-

cisions, we can implement a novel update rule that consists of three operations:

COPY, UPDATE and FLUSH. The new approach shows empirical evidence that

the model is capturing meaningful temporal structure in the data. The proposed

model is more resistant against over-fitting, suggesting the multiscale representa-
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tion learned by the model yields better generalization.

Chapter 10 introduced an inclusion of latent variables to RNNs. This work was

a direct extension of the VAE into a recurrent form in order to process sequences.

We let the latent variables become dynamic by repeating a VAE at every time step

and conditioning it by the hidden state of an RNN. The prior distribution for the

latent variables was set to a conditional Gaussian distribution, which is dependent

on the hidden state of the RNN. In this work, we showed that injecting noise in a

higher-level latent space is more efficient than lower-level space that is close to the

data.

We have reviewed three articles that are related to building RNN architectures

that can extract hierarchical and decomposable representation of sequences, and

one article about introducing latent variables to RNNs that can help to explain

the complicated structure of the data. Learning a decomposable representation is

important not only for supervised or unsupervised learning of sequences, but also

for reinforcement learning. RNNs have an important role to solve partially observ-

able Markov decision process (POMDP) problems in deep reinforcement learning.

If RNNs can learn the decomposable and multiscale representation of the input

sequence, we can design a policy that plans and draws actions in a hierarchical

manner. This approach is essential for solving hierarchical reinforcement learn-

ing, where sparse reward is a big issue. The decision search space can be reduced

by exploring with higher-level actions from a higher-level policy. By extracting

decomposable representation, the higher-level layers of RNNs can be used as the

representation for the higher-level policy. Changing the RNN architecture cannot

solely overcome the issue with sparse rewards, but this kind of RNN architecture

can be an important building block for many problems that require a hierarchical

decision making process.
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